The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method

by

Bruce Kenneth Cartwright, B. Eng., M. Sc.

Submitted in fulfilment of the requirements for the Degree of

Master of Philosophy

University of Tasmania

April 2012

Candidate	Bruce Kenneth Cartwright
Student number	602728
Department	National Centre for Maritime Engineering and Hydrodynamics Australian Maritime College
Supervisors:	
Primary	Professor M. R. Renilson, Australian Maritime College
Co-	Mr G. J. Macfarlane, Australian Maritime College
Research Advisors:	
	Dr S. M. Cannon,
	Defence Science and Technology Organisation, Melbourne, Australia.
	Dr P. H. L. Groenenboom,
	ESI Group, Delft, Netherlands.

Declaration

I certify that:

a) except where due acknowledgement has been made, the work is that of the candidate alone

b) the work has not been submitted previously, in whole or in part, to qualify for any other academic award

c) the content of the thesis is the result of the work which has been carried out since the official commencement date of the approved research program

d) ethics procedures and guidelines have been followed

Bruce K Cartwright Date: 12 April 2012

Authority of Access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Abstract

Mesh-free methods are becoming popular in the maritime engineering fields for their ability to handle non-benign fluid flows. Predictions of ship motions made using mesh-free methods need to be validated for benign conditions, such as regular waves, before progressing to non-benign conditions. This thesis aims to validate the response of a ship in regular waves by the Smoothed Particle Hydrodynamics (SPH) mesh-free method.

Specifically, the SPH technique uses a set of interpolation points, designated SPH particles, located at nodes that track the centre of discrete fluid volumes with time. As part of this research a set of simple rules was established to locate the free surface of the fluid based on the location of the SPH particles. These simple rules were then used to validate the hydrostatics of a ship floating in the fluid, identifying the vertical location of the water line to 0.22% of the Design Water Line length.

The propagation of regular waves in SPH has historically been problematic, resulting in diminishing wave height with propagation distance. In this study, non-diminishing deepwater regular waves were generated in a shallow tank by moving segments of the floor in prescribed orbital motions, a technique developed by the researcher and hereinafter called the moving-floor technique. The resulting waves showed no discernible loss in wave height with propagation distance, and were computationally more efficient than modelling a full-depth tank. The resulting surface profiles of the waves were within \pm 5% of the theoretical values, while the velocity and pressure profiles were within \pm 10%.

The pitch and heave transfer functions for a round bilge high speed displacement hull form at Froude numbers of 0.25 and 0.5 were predicted using waves in SPH developed by the moving-floor technique. These predictions were compared to transfer functions obtained from experiments in a towing tank. The results obtained using SPH generally under-predicted the experimental results by about 10%, but by as much as 50% at peaks or at high frequencies where the responses were small. Reasons for the under-prediction by the SPH technique are discussed in this thesis.

The outcomes of this research demonstrate that with some refinement, the SPH technique should be capable of accurately predicting the motions of a ship in regular waves. It is hoped this work will serve as a stepping stone to exploit the flexibility of the SPH technique to analyse any shape hull, to be applied to non-linear waves, and to be coupled with a structural solver.

Acknowledgements

It is a pleasure to acknowledge my Principal Supervisor, Professor Martin Renilson, for his continued enthusiasm, guidance, encouragement and relentless questioning of my ideas that have facilitated my understanding of the subject sufficient to complete this body of work.

I also thank Dr Paul Groenenboom for his assistance with the preparation and explanations of the software on which much of this work is based.

Damian McGuckin deserves special thanks for allowing me to use the resources of his company, Pacific ESI, to conduct this work.

Finally this work would not have been possible without the support of my partner, Carol Atkinson, for all the things she does.

Contents

A	Abstract					
A	Acknowledgements					
1	Intr	oduc	ction	8		
	1.1	Mo	tivation	8		
	1.2	Ain	n of the Current Work	8		
	1.3	App	proach to the Present Work	9		
	1.4	Use	e of a Robust Code	9		
2	The	eoret	ical Background	10		
	2.1	Me	sh-Based Methods	10		
	2.2	Me	sh-Free Methods	11		
	2.3	For	mulation Principles for SPH	11		
	2.3	.1	Particle Approximation	11		
	2.3	.2	Support Domain and Influence Domain	13		
	2.3	.3	Navier-Stokes and Euler Equations	14		
	2.3	.4	Artificial Viscosity	15		
	2.3	.5	Equation of State	16		
	2.3	.6	Density Re-Initialisation	17		
	2.3	.7	Anti-Crossing Parameter	17		
	2.3	.8	Smoothing Length	18		
	2.3	.9	Time step	18		
	2.4	Rig	id Bodies in SPH	19		
	2.5	Inte	eraction of SPH with Finite Elements	21		
	2.6	Syn	nmetry Conditions	21		
	2.7	Alte	ernative Momentum Equations	22		
	2.8	Sca	ling of SPH Particles	22		
	2.9	Key	y SPH Parameters	23		
	2.10	Sun	nmary of Theory and Implementation	23		
3	Sof	twar	е	25		
	3.1	PA	M-CRASH	25		
	3.2	Pre	vious Ship-oriented Applications of PAM-CRASH	26		
4	Hy	drost	tatics	28		
	4.1	Intr	oduction	28		
	4.2	Buc	byancy Force on a Submerged Body	28		
4.2.1 2D Studies in a 3D world			2D Studies in a 3D world	28		
4.2.2 Submerged Objects in 2D		Submerged Objects in 2D	29			
	4.3 Error Limits in the Buoyant Force					
р	P.K. Contwright 2012					

	4.4	Spheres and Cubes		38
	4.5	Orthogonal and Hexagonal Spaced SPH Particles		39
	4.6	Buoyancy Force as a Function of Time		43
	4.7	.7 Location of the Free Surface		45
	4.7	.1	Location of the Free Surface	45
	4.7	.2	Floating Objects	46
	4.8	Vis	ualising the Free Surface	49
4.9 Theoretical Location of the Free Surface		The	oretical Location of the Free Surface	51
	4.9	.1	Two dimensions	51
	4.9	.2	Three dimensions	53
	4.10	R	ecommendations for the Location of the Free Surface	54
	4.11	R	ecommendations for Correct Buoyancy	55
	4.12	Н	lydrostatics of AMECRC09	55
	4.13	Т	otal Vertical Force of a Vessel Moving Forward in Calm Seas	61
	4.14	S	ummary of Hydrostatic Studies	64
5	No	n-Liı	near Free Surface Flows	65
	5.1	Ref	erence Data	65
	5.2	SPH	I Model of the Dam-Break Scenario	67
	5.2.	.1	2D Model of the Dam-Break	68
5.2.		.2	3D Model of the Dam-Break	69
	5.3	Sun	nmary of Free Surface Flows	76
6	Reg	gular	Waves in a Mesh-Free Environment	77
	6.1	Nur	nerically Modelling the Towing tank	77
	6.2	Mo	ving Floor Technique	81
6.3		Wa	ves Generated using the Moving Floor Technique	84
	6.3	.1	Wave Descriptions	84
6.3		.2	Surface Profiles	85
	6.3	.3	Through-Depth Velocity Profiles	87
6.3		.4	Through-Depth Pressure Profiles	93
6.4 Effect of		Effe	ect of Floor Depth	94
	6.5	Sun	nmary of Regular Waves in a Mesh-Free Environment	96
7 Prediction of Ship Response in Regular Waves using SPH		on of Ship Response in Regular Waves using SPH	98	
7.1 Reference Data		Ref	erence Data	98
7.2 SPH Simulation Setup		SPH	I Simulation Setup	99
	7.3	Tan	k Width, Tank Depth and Contact Thickness Effects	101
7.3.1 Tank Width Effects			Tank Width Effects	101
	7.3	.2	Tank Depth Effects	102

	7.3.3 Contact Thickness Effects				
7.	.4 Pitch and Heave at Froude Numbers of 0.25 and 0.5	104			
7.	.5 Discussion of Ship Motion Predictions using SPH	106			
8	Conclusion				
9	Future Work				
10	References	111			
Appendices					
А	1 Abbreviations	115			
А	A2 Glossary	116			
A3 Axes Systems					
А	4 Bifilar Suspension	118			
А	5 Images from a Typical Ship Motion Simulation				