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Abstract

Remote sensing satellite imagery provides information about the surface of the Earth

at a range of spectral bands and spatial resolutions. This information is a valuable

resource for the management of terrestrial and marine environments. During the

capturing process, incoming light is reflected or refracted by the instrument optics

which causes a small amount of blurring. This effect is described by a mathematical

operation called convolution in which the satellite input radiance field is convolved

with the instrument Point Spread Function (PSF). This form of instrumental

distortion has the largest impact on high-contrast scenes where bright land or clouds

are adjacent to dark surfaces such as water.

This thesis investigates three mechanisms for improving the quality of recorded

satellite data. An efficient convolution method was developed to minimise boundary

effects, a deconvolution algorithm was used to remove instrumental distortion,

and a resolution enhancement algorithm was developed to improve the spatial

resolution of input images. The latter two of these problems are underdetermined

and require appropriately selected constraints in order to find unique and stable

solutions. An entropy-based method was chosen as the constraint element due to

its heavy grounding in statistical mechanics and information theory. MODerate

resolution Imaging Spectroradiometer (MODIS) Aqua images were used to quantify

the improvement of these algorithms, with a focus on coastal marine and open-ocean

environments.

Deconvolution is an algorithm-based process designed to reverse convolution

effects with a known PSF. Multiscale Entropy deconvolution was applied to MODIS

level 1A imagery to remove instrumental distortion from top-of-atmosphere radiance

counts. Removing these effects at the beginning of the satellite image processing
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chain reduces the propagation and amplification of errors in subsequent processing

stages. Wavelet transforms were implemented to decompose images into a range

of resolution levels that represent different spatial frequencies. This allows both

large-scale and small-scale features to be resolved simultaneously. Multiresolution

Support images were used to accurately define and target important areas within the

imagery. The combination of these techniques includes two-dimensional structural

information in the Multiscale Entropy calculation which results in accurate

deconvolution. Validation of the Multiscale Entropy deconvolution algorithm was

undertaken using in-situ measurements from the Baltic Sea and a QuickBird image

of a high-contrast Antarctic ice edge.

A novel approach to the spatial resolution enhancement of MODIS imagery

uses information about the optical PSF, along with the result of Multiscale

Entropy deconvolution. With this information, a system of linear equations

was constructed that models how high-resolution PSF convolution redistributes

information over a finite area. A new method termed Multiresolution Entropy

was developed to constrain the linear system and retrieve an optimal solution.

The algorithm successfully improved the spatial resolution of input images and

compared favourably to other interpolation-based methods. The key requirement of

this technique is to obtain high-resolution PSF measurements at the same sampling

frequency as the desired final output resolution.

The techniques developed and presented in this thesis contain a range of

important research contributions. The combination of Fast Fourier Transform

convolution with a boundary renormalisation approach produces an efficient and

accurate convolution method with minimal boundary effects. A multi-detector

convolution process accurately simulates the MODIS Aqua instrumentation and

allows for successful deconvolution. A detector saturated estimation technique

for ocean colour bands ensures the correct quantity of instrumental distortion is

removed during deconvolution. The formulation of a linear system consisting of high-

resolution PSF modelling and appropriate physical constraints defines the spatial

resolution enhancement problem. The development of Multiresolution Entropy

targets high-frequency content, constrains the linear system and results in a unique
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and stable resolution-enhanced solution. The techniques developed throughout this

thesis provide considerable benefit to the quality of remote sensing imagery and can

substantially improve the monitoring and management of coastal zones and other

marine environments.
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Chapter 1

Introduction

Monitoring marine environments is critical to the sustainable management of coastal

regions and resources. Approximately 85% of the Australian population live within

50km of the coastline, of which a large proportion live in state capital cities

that are located on or near the coast (Australian Bureau of Statistics, 2002).

These regions are constantly subjected to pressure from recreational and industrial

fishing, coastal population growth and urbanisation, storm water run-off, human

waste management, anthropogenic climate change, and large-scale natural events

including flooding, fires and other weather-related phenomena. Therefore, it is

crucial to develop accurate monitoring systems that deliver frequent, high-resolution

information to help manage these densely populated regions.

Remote sensing is the attainment of information about objects with which the

observer has no physical contact. Remote sensing enables data to be collected

in areas previously unavailable due to cost, inaccessibility or danger (Ikeda and

Dobson, 1995). One form of remote sensing uses artificial Earth-orbiting satellites

to record data about the surface of the Earth. Highly-sensitive satellite instruments

can accurately record information about the Earth, from which products such as sea

surface temperature, ocean colour, vegetation indices and global solar radiation can

be derived (Baker, 1990). Some commonly used remote sensing satellite instruments

include the Advanced Very High Resolution Radiometer (AVHRR) (km resolution),

which senses cloud cover, surface brightness and surface temperature (NOAA,

2010); the MODerate resolution Imaging Spectroradiometer (MODIS) (250m - 1km

1



1. Introduction 2

resolution), which measures large scale global dynamics (Justice et al., 1998); and

the Landsat Thematic Mapper (30m - 100m resolution), which is a multi-spectral

scanning radiometer used to detect and measure changes on the surface of the

Earth (USGS, 2009). Other higher-resolution instruments capture spatially detailed

information at less frequent time intervals or in targeted data acquisitions.

This thesis will concentrate on MODIS satellite instruments on-board the Earth

Observing System (EOS) platform Aqua. MODIS Aqua captures data in 36 spectral

bands at several spatial resolutions including 250m, 500m and 1km resolution.

MODIS Aqua is calibrated to deliver over 40 standard data products such as

atmospheric aerosols, snow cover, land and water surface temperature, leaf area

index, sea ice extent and ocean chlorophyll concentration among many others. Aqua

is fixed in a sun-synchronous, near-polar, circular orbit designed to maintain an

equatorial crossing at approximately 10:30 A.M. local time each day. Aqua travels

at a forward velocity of approximately 7.5km/s in low Earth orbit at an altitude of

705km. This rapid orbital path allows MODIS to provide complete global coverage

every one to two days.

MODIS Aqua measures top-of-atmosphere radiance counts by reflecting the

Earth-leaving light field onto an array of detectors using a rotating double-

sided mirror. As the light field interacts with the instrument optics, a small

amount of blurring is introduced into the recorded signal. This blurring is an

inherent property of all sensor-based optical systems and is described by the

mathematical operation known as convolution. That is, the existing distortion-

free light field enters the instrument and becomes convolved with the instrumental

spatial response function. The optical system introduces spatial distortion and

attenuates the signal. The signal is then detected by sensors which add noise

and have their own intrinsic gain characteristics. Calibrating the entire system to

make an accurate measure of radiance is a critical issue and has been achieved by

Guenther and Barnes (1996) and Xiong and Barnes (2006). Given the calibration

process has been performed successfully, a correction for optical distortion can be

made. Deconvolution algorithms are designed to retrieve the optimal distortion-free

signal provided the instrument response function and noise level have been well
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characterised. Detector-based noise is the primary factor that makes deconvolution

problems ill-posed and difficult to solve. However, a unique and stable solution can be

found by applying a suitable set of constraints. This thesis investigates the Multiscale

Entropy deconvolution of MODIS Aqua data to accurately remove instrumental

distortion and improve satellite imagery. Light detection and instrumental distortion

are the last processes to occur in the light-path of the recorded signal and should

therefore be the first effects that are corrected. Removing instrumental distortion

errors directly after detector calibration limits the amplification of these errors at

subsequent processing stages. This is a core argument that is central to the satellite

image deconvolution research described in this thesis.

The convolution operator is one of the fundamental calculations performed within

every iteration of the deconvolution process. Selecting the appropriate convolution

boundary condition is a major concern for successful image deconvolution. A

common approach is to add a zero-padded border around the convolution input

image, and remove the border immediately after convolution is performed. However,

image content that is redistributed into the padded border is removed with every

iteration of the deconvolution algorithm, resulting in a spatially biased loss of

image intensity. Fast Fourier Transforms (FFTs) are commonly applied to increase

the computational speed of convolution. In this thesis, a new convolution method

will be developed that combines the speed benefits attributed to FFT convolution

with a boundary renormalisation approach to provide efficient and robust signal

convolution.

Image spatial resolution is a fundamental measure of image quality. Methods

designed to preserve or enhance spatial resolution are considered highly valuable.

The natural instrumental convolution that occurs during satellite measurements

is an analogue process that redistributes image content over a finite area. Using

this knowledge, it is possible to improve the spatial resolution of a recorded

image that has undergone a natural convolution process, provided that a high-

resolution instrument response function is available. This thesis investigates an

entirely novel approach to spatial resolution enhancement using high-resolution

convolution modelling and a customised entropy-based linear system regularisation
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method.

The data collecting capabilities provided by MODIS Aqua, and other remote

sensing platforms, allow for constant and accurate monitoring of both coastal marine

and open-ocean environments. This information has remarkable value, and any

improvements made to the data processing chain are highly advantageous. This

thesis aims to identify, explore, quantify and correct three distinct mechanisms

that occur in the retrieval and processing of satellite imagery. These mechanisms

include an efficient convolution correction method that can minimise boundary

contamination, an operational image deconvolution algorithm implemented for

MODIS Aqua ocean colour bands, and a novel spatial resolution enhancement

method for optical imaging systems. These three research components will be

investigated and developed with the aim of improving the monitoring and

management of coastal marine and open-ocean environments.

All of the computational techniques developed throughout this thesis are

implemented in the Interactive Data Language (IDL). IDL was selected because it

contains a rich base of mathematical libraries that are fundamental to the algorithms

developed in this thesis, and IDL is a standard programming language in the remote

sensing research field.

Chapter 2 introduces relevant literature and background information concerning

the three main research areas. A comprehensive review of current techniques and

their limitations is explored and the necessity for further research and development

is highlighted. The specific techniques developed in this thesis are general and have

a wide range of application in other fields.

Chapter 3 describes a correction method for FFT convolution that limits

boundary contamination artefacts resulting from convolution padding methods.

The proposed correction method makes a single data-driven boundary condition

assumption and only uses information contained within the original input signal

to produce consistent convolution results and maintain data integrity. An analysis

of the algorithm shows that it performs identically to the equivalent spatial-domain

convolution approach with the only discernible differences being resolved at the level

of machine rounding errors. The correction method can be applied at minimal cost
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to performance and has valuable applications for scientific data processing where

algorithm efficiency and data accuracy are imperative.

Chapter 4 investigates the Multiscale Entropy deconvolution of MODIS Aqua

imagery which results in the removal of instrument response function effects. The

implementation utilises three efficient computational methods: FFT convolution,

Wavelet image decomposition and a gradient method step size estimation algorithm

that together enable rapid image deconvolution. Multiscale Entropy uses Wavelet

transforms to implicitly include two-dimensional structural information of an image

into the entropy calculation. An evaluation using synthetic data showed that the

deconvolution algorithm reduced the maximum individual pixel error from 90.01%

to 0.34%, effectively removing instrumental distortion down to the level of detector-

based noise. Deconvolution of MODIS data is shown to resolve all significant features

and is most effective in regions with large changes in radiance such as coastal zones,

contrasting land covers and cloud edges.

Chapter 5 describes the validation process of the Multiscale Entropy

deconvolution of MODIS Aqua imagery using two separate validation approaches.

In-situ Baltic Sea samples including surface reflectance, chlorophyll-a, total

suspended matter and the diffuse attenuation coefficient were compared with

MODIS Aqua overpass measurements. However, minimal scene contrast and

limited in-situ spatial extent were found to insufficiently characterise the effects of

deconvolution. A high-resolution QuickBird scene containing an Antarctic ice edge

was spatially matched and directly compared with MODIS Aqua top-of-atmosphere

radiance measurements. The results indicate that deconvolution improved the

radiometric accuracy of MODIS Aqua measurements in the blue wavelengths, but

did not contain a sufficient number of comparable measurements in the green or red

wavelengths to reach any strong conclusions.

Chapter 6 develops a novel spatial resolution enhancement technique for satellite

imagery by using high-resolution instrument response function measurements and

pre-processed image deconvolution results. The resolution enhancement problem

is formulated as an ill-posed system of linear equations by modelling a high-

resolution convolution process and applying suitable physical constraints. This ill-
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posed inverse problem can be solved using a novel variant of Multiscale Entropy

regularisation, which is designed to simultaneously maximise information content

and manage detector-based noise. This technique shows particular promise for single-

frame imagery. Results show that this approach can moderately enhance the spatial

resolution of satellite imagery, provided the instrument response function is sampled

at the desired final resolution-enhanced sampling frequency.

Chapter 7 summarises each of the major research components in this thesis

and discusses their original contribution. The improvement that each research

topic contributes to satellite data is outlined and its impact on the monitoring

and management of coastal marine and open-ocean environments is discussed.

Concluding remarks for each research component are presented and an evaluation

of the entire body of work is made.



Chapter 2

Background

2.1 MODIS Aqua

Containing six Earth-observing instruments, Aqua was launched on May 4, 2002

to observe and study the water cycle. The main instrumentation inside MODIS

Aqua comprises a double-sided scan mirror that continuously rotates and reflects

Earth-leaving radiances onto an along-track array of detectors (Figure 2.1). As the

scanning mirror rotates, MODIS Aqua horizontally stripes the surface of the Earth

in the scan direction while the craft travels forward in the track direction (Barnes

et al., 1998). These strips of data are combined to build up a continuous image.

MODIS Aqua contains a field baffle that restricts the input radiance field to a 10km

field-of-view in the along-track dimension. This enables a 10-element scan to be

recorded across the swath for each 1km resolution band. Similarly, the 500m and

250m resolution bands record 20 and 40-element arrays respectively. The field baffle

has a strong effect on the instrument response. The spatial response of each detector

in every band has a unique shape determined by the relative position of the detector

with respect to the field baffle.

MODIS Aqua has a zenith angle of ±55◦ and achieves a swath width of 2330km.

This translates to an unprocessed image width of 1354 pixels at 1km resolution due

to the range of viewing angles of the instrument and the curvature of the Earth. The

imagery retrieved from MODIS Aqua is segmented into individual datasets known as

granules. Each granule consists of 5 minutes satellite time of recorded imagery and

7
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Figure 2.1: MODIS Aqua cutaway detailing the MODIS scan cavity subsystems
and on-board calibrators (Xiong et al., 2005).

results in a final unprocessed image size of 1354× 2040 pixels at 1km resolution.

This level 0 data contains raw digital number readings from the instrument and

are processed into level 1A radiance counts using NASA’s SeaWiFS Data Analysis

System (SeaDAS) (Fu et al., 1998; Nishihama et al., 1997). Processing the imagery

to level 1B adds calibration and geolocation information to the imagery (Xiong et al.,

2005). Further processing to level 2 or 3 results in individual data products, such as

sea surface temperature or ocean colour, which are readily used in many scientific

research fields.

The scanning-based design of MODIS Aqua results in the spatial coverage of

recorded measurements increasing in both the scan and track dimensions as the

instrument zenith angle increases. As the spatial coverage of MODIS measurements

grow at large zenith angles, the spatial pattern of the scan takes on the shape of a

bow-tie. This results in the spatial coverage of consecutive scans partially overlapping

at off-nadir angles, and is known as the panoramic bow-tie effect. When MODIS data

is reprojected to produce standard data products, intelligent measurement selection

schemes are employed to account for these effects. Spatially duplicate measurements

caused by bow-tie effects are seen in Chapters 4 and 5 and require management.
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2.2 Convolution

Convolution is a mathematical process which combines two input signals to produce

a third resultant output signal. Each value in the convolved output signal is equal

to the sum of the point-wise multiplication of the two overlapping input signals.

The first input signal is typically the data to be convolved and the second input

signal is often referred to as the convolution function, impulse response function,

point spread function, blurring kernel or filter kernel. Convolution is often described

as the single most important technique in Digital Signal Processing (DSP) and

has many applications in other fields including electrical engineering, statistics and

probability (Smith, 2003; Jähne, 2002; Acharya and Ray, 2005). For a continuous

system, the convolution of two signals, f and g, is described using the convolution

integral (Smith, 2003):

(f ∗ g)(x) =
∫

∞

−∞

f(u) g(x− u) du (2.1)

where ∗ is the convolution operator

Discrete signals are required for digital computation to be performed. The

equivalent convolution operation can be represented for discrete systems using the

convolution sum (Smith, 2003):

O(x) = (I ∗K)(x) =
M−1
∑

i=0

K(i) I(x− i) (2.2)

where O(x) = convolved output signal

(N +M − 1 elements)

I(x) = input signal (N elements)

K(x) = convolution kernel (M elements)

This equation describes how the convolved output signal O relates to the two

input signals I and K where x is now discrete. Convolution is calculated by passing

a centred convolution kernel from left-to-right over the input signal and summing
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the point-wise multiplication of the two signals to produce the final convolved signal.

The following mathematical properties hold for convolution (Jähne, 2002):

Commutativity f ∗ g = g ∗ f
Associativity f1 ∗ (f2 ∗ g) = (f1 ∗ f2) ∗ g

Distributivity over Addition (f1 + f2) ∗ g = f1 ∗ g + f2 ∗ g

There are many applications that require convolution to be performed on two-

dimensional imagery. For this purpose, Equation 2.2 can easily be extended into

two-dimensional space for use in image convolution:

O(x, y) =
M−1
∑

j=0

M−1
∑

i=0

K(i, j) I(x− i, y − j) (2.3)

where O(x, y) = convolved output signal

((N +M − 1)× (N +M − 1) elements)

I(x, y) = input signal (N ×N elements)

K(x, y) = convolution kernel (M ×M elements)

The two-dimensional input signal and convolution kernel are defined to be square

for simplicity. However, this is not strictly required and any sized rectangular

imagery can be accommodated. In the image domain, convolution is performed by

centring the two-dimensional convolution kernel over every pixel in the input signal

and summing the point-wise product of the two signals, as depicted for the first

data point in Figure 2.2. However, in areas close to the edge of the input signal, the

convolution kernel extends beyond the boundaries of the input signal and therefore

the full convolution sum cannot be calculated (Figure 2.2(c)). This problem occurs

around the entire boundary of the input signal extending to approximately half the

size of the convolution kernel in each dimension. The incomplete overlap here results

in an intensity reduction being observed around the interior border of the convolved

output. In many cases, this intensity reduction is considered a natural by-product

of signal convolution, and its effects are largely ignored when performing spatial

domain convolution.
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(a) (b) (c)

Figure 2.2: Two-dimensional representations of (a) the convolution kernel, (b)
the data to be convolved and (c) the convolution of the first data point with
the convolution kernel. Only the pixels in the convolution kernel that overlap
the data will be included in the convolution sum calculation.

Since the conception of the Fourier transform, it has been well known that

convolution can also be performed in the frequency domain. This capability arises

from the Convolution Theorem:

F(f ∗ g) = F(f)F(g) (2.4)

where F indicates a Fourier transform (Trott, 2004)

That is, the convolution of two functions in the time or spatial domain implies the

multiplication of their Fourier transforms (Jähne, 2002). Reciprocally, convolution

in the frequency domain can be achieved by multiplication in the time or spatial

domain. The computation time required to calculate the Discrete Fourier Transform

(DFT), and in turn, frequency domain convolution, is often much greater than

calculating standard spatial domain convolution. A breakthrough was made with

the introduction of the Fast Fourier Transform (FFT) which brought about efficient

transform computation due to its radix-2 recursive architecture (Cooley and Tukey,

1965). This ushered in a new era of DSP where convolution could be readily applied

to solve problems with reasonable compute time. Further research resulted in more

advanced mixed-radix FFT algorithms that exploited a combination of base values
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and increased the overall algorithm efficiency (Singleton, 1969). More recently,

Hassanieh et al. (2012) developed an optimised technique for calculating the sparse

Fourier transform which further improves on the computational complexity of the

FFT and could have a significant impact on DSP, communications and digital media.

One major problem that arises when performing convolution in the frequency

domain is circular convolution. This occurs when the Fourier transforms of two

signals are multiplied together. When a signal is transformed into the frequency

domain, by way of a DFT or FFT, a spectrum is retrieved which represents

frequency, phase and amplitudinal information encoded into the component

sinusoids of the signal. From the perspective of the time domain, a one-dimensional

signal becomes repeated head to tail an infinite number of times. This is due

to the periodicity of frequency-based analysis. When two frequency spectra are

multiplied together, and convolution is performed, the information at the start of

the signal will contaminate information at the end of the signal and vice-versa. This

introduces an edge effect into the convolved signal that can become problematic if

large discontinuities are present between the start and end of the original signal.

The same problem is also encountered with two-dimensional imagery where the

transformed signals become effectively repeated infinitely in both dimensions.

To minimise this edge effect, a border with a size at least half the dimensions

of the convolution kernel can be added around the input signal and padded with

data values. Several common techniques exist for border value padding such as zero-

padding, repetition, replication and mirroring. Zero-padding simply adds a padded

the border filled with the value zero (Figure 2.3(a)). This results in a convolution

identical to the spatial domain intensity reduction mentioned earlier, but removes

any possibility of contamination from circular convolution. Repetition repeats the

edge-values of the signal to fill the border (Figure 2.3(b)). Replication repeats the

input signal in the border so that the tail of the input signal is adjacent to the

head of the input signal in each dimension (Figure 2.3(c)). This technique is useful

in avoiding the intensity reduction seen with zero-padding, but results in the same

effect encountered with circular convolution. Mirroring reflects the input signal in

the border in each dimension and can be a helpful technique in avoiding severe edge
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(a)

(b)

Figure 2.3: Common boundary conditions added to standard image processing
test image Lena (256× 256) including (a) zero-padding and (b) repetition.
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(c)

(d)

Figure 2.3 continued: Common boundary conditions added to standard image
processing test image Lena (256× 256) including (c) replication and (d)
mirroring/reflection.



2.2. Convolution 15

discontinuities (Figure 2.3(d)). After frequency domain convolution is performed,

the result is inverse-transformed back into the spatial domain and the padded

border is removed to retrieve the final convolution result. These border padding

techniques provide a range of mechanisms to mitigate potential edge effects, but still

introduce errors into the inner border of the convolved signal. Chapter 3 investigates

an alternative boundary correction method that is applicable to frequency-domain

convolution and produces results with reduced boundary artefacts.

Convolution is a process encountered in all optical systems from digital cameras

to the human eye. Every optical instrument has a unique convolution kernel, which is

more commonly referred to as a Point Spread Function (PSF) in the image domain.

A PSF is a two-dimensional representation of the spatial response of an instrument

and it describes how a point source is imaged by the optical system. The PSF of an

instrument can be experimentally characterised by shining a synthetic point source

through the optical system and recording the response. This process is repeated a

number of times with the position of the synthetic point source being moved to cover

the entire field-of-view of the instrument. In this way, a complete two-dimensional

spatial response of the optical system is constructed. Meister et al. (2008) used a

similar technique to derive PSFs for all 10 detectors in every 1km resolution MODIS

Aqua ocean colour band. Figure 2.4 shows the MODIS Aqua band 8 (405nm -

420nm) PSF on a logarithmic scale with 1km pixel grid size. The central maximum

of the PSF is the image point of the instrument and the majority of the recorded

signal comes from this point. A large low response area, appearing like a platform,

surrounds the central peak and this cumulative area can have a significant impact

on the recorded signal.

Every optical system encounters some degree of blurring and distortion due to

the quality of the imaging system and the associated environmental conditions.

The PSF of an instrument strictly represents instrumental effects including optical

aberration, the diffraction limit and instrumental stray light that emanates from

within the field-of-view of the instrument.

Optical aberration occurs when the light from a point source does not converge

into a single point upon transmission through the imaging system. Aberration
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exists in two forms: monochromatic and chromatic. Monochromatic aberration is

caused by geometric distortions in the optical lens and is encountered when light is

either reflected or refracted. This form of aberration is present even when making

monochromatic observations, or in other words, when the instrument is measuring

narrow frequency bands as is the case in many scientific instruments. Chromatic

aberration, or colour aberration, occurs when a lens-based imaging system measures

large frequency bands such as the entire visible spectrum. As light passes through

the optical system, the incoming wavelengths are dispersed by different quantities

as determined by the refractive index of the lensing material. When this light is

measured on a flat imaging plane, such as an array of detectors, the different

colours become separated into their spectrum, causing the effect known as chromatic

aberration (Figure 2.5(a)). This effect can be mitigated by including a secondary

achromatic lens into the optical system which corrects for refraction and allows all

of the wavelength of light to converge into a point at the detector (Figure 2.5(b)).

Chromatic aberration is not a common problem for satellite remote sensing

because most satellite instruments compile true-colour images by combining

individual narrow-band images that span the visible spectrum. However,

monochromatic aberration is seen regularly in remote sensing. A classic example

of this is the initial optical system of the Hubble Space Telescope (HST) launched

in 1990. It was discovered shortly after deployment that the main imaging mirror

contained monochromatic spherical aberration that severely blurred all recorded

imagery from the HST (Figure 2.6). This was due to the main mirror being polished

by a faulty device and then checked by the same faulty device, disguising the fact

there were significant distortions in the instrument. Concerted effort was directed

into the removal of this aberration using estimated characterisation models and the

application of deconvolution methods (Hanisch and White, 1994; White and Allen,

1991). These methods proved moderately and temporarily successful until the HST

received an optics upgrade during a manned servicing mission in 1993.

In the absence of other limiting factors, such as aberration and atmospheric

effects, the ability of an imaging system to resolve detail is ultimately limited by

diffraction. An optical system that can produce images with angular resolution equal
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(a)

(b)

Figure 2.5: Refraction of light wavelengths through an optical lens showing (a)
chromatic aberration and (b) a correction technique called achromatic lensing.
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(a)

(b)

Figure 2.6: Images from Hubble’s Wide Field and Planetary Camera (WFPC)
of spiral galaxy M100 showing (a) the uncorrected image with spherical
aberration and (b) the image after corrected optics were applied (NASA, 1993).
The difference between (a) and (b) highlights the dramatic effect caused by
monochromatic spherical aberration.
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to the theoretical limit of the instrument is said to be diffraction limited, or operating

at its diffraction limit (Bom and Wolf, 1980). Most Earth-based instruments, such as

optical telescopes, are typically seeing-limited and operate at much lower resolution

than their diffraction limit due to distortions introduced by the travel-path of

light through several kilometres of irregular atmosphere. However, radio telescopes

commonly operate close to their diffraction limit because the wavelengths they

measure are suitably long so that atmospheric distortion becomes negligible. Space-

based telescopes always operate at their diffraction limit as long as their optical

systems do not contain any form of aberration.

When an ideal optical system, free from any imperfections in the lens or mirror,

undergoes uniform illumination of the circular aperture of the instrument, the

resulting diffraction response is in the form of an Airy pattern (Figure 2.7). This

diffraction pattern, or instrument PSF, contains a central peak known as the Airy

disk and concentric rings that are together called the Airy pattern (Airy, 1835).

The Rayleigh criterion for diffraction limited systems provides a definition for the

Figure 2.7: Airy pattern instrument response caused by the diffraction of light
through a uniformly illuminated circular aperture.
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minimum separation between two equally intense point sources that may be resolved

into distinct objects. This is also known as two-point resolution and is analogous to

astronomical imagery where stars are effectively point sources. As two point sources

move closer together, an imaging system records the superposition of their point

responses, and at some small distance it becomes impossible to detect that there

were originally two separate point sources. According to the Rayleigh criterion, two

point sources are barely resolved if the central peak of the diffraction pattern of one

point source coincides with the first zero of the diffraction pattern of the second

point source (Bom and Wolf, 1980). In other words, the Rayleigh resolution limit is

determined by the distance between the central maximum and the first zero of the

instrument PSF. This distance, with respect to the observed wavelength of light, is

defined:

d = 1.22
λf

D
(2.5)

where d = distance between the central maximum

and the first zero

λ = observed wavelength of light

f = focal length

D = diameter of the aperture

As the aperture of the lens becomes larger, and/or the observed wavelength of

light becomes smaller, the finer the resolution and greater the resolving power of the

imaging system. The corresponding minimum angular resolution at which an object

can be resolved is:

sinθ = 1.22
λ

D
(2.6)

The PSF also represents instrumental stray light that can emanate from

anywhere within the field-of-view of the instrument. This should not be confused

with atmospheric stray light that largely comes from the molecular scattering of light

outside the field-of-view of the instrument. The characterisation of instrumental
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stray light is dependant on the physical attributes of the optical system and is

resolved in the side-lobes of the instrument PSF. For instance, the area surrounding

the image point of the MODIS Aqua band 8 PSF (Figure 2.4) describes the spatial

response of how stray light sources within the field-of-view of the instrument affect

the current measurement.

These three instrument-based effects – optical aberration, the diffraction limit

and instrumental stray light – all have a detrimental impact on recorded imagery

and therefore should ideally be removed. The effect that an instrument PSF has on

recorded data can be described at point (x, y) with a convolution equation (Bracewell

and Roberts, 1954):

I(x, y) = (O ∗ P )(x, y) +N(x, y) (2.7)

where I(x, y) = intensity distribution (recorded image)

O(x, y) = observed object (real image)

P (x, y) = point spread function

N(x, y) = Gaussian additive noise

and ∗ is the convolution operator

Equation 2.7 describes the physical process that occurs when an optical system

observes and records information about a target. The real image O(x, y), as it exists

before passing through the optical system, becomes convolved with the instrument

response function P (x, y). This corresponds to light passing through the optical

system and being reflected or refracted by the lens of the instrument. Finally,

Gaussian noise N(x, y) is added to the recorded signal as the incoming light is

converted to digital measurements by the array of detectors in the instrument. The

culmination of this entire process results in the recorded image I(x, y).

2.3 Deconvolution

Deconvolution is an algorithm-based procedure that aims to reverse the effects

of convolution. If the recorded signal I, the instrument response function P , and
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an estimate of the detector-based noise N are all known, then deconvolution can

be applied to reconstruct the original signal O (Equation 2.7). Deconvolution has

attracted a significant amount of attention with the two main obstacles being the

identification of a PSF cut-off frequency and the processing of detector-based noise.

Qiu et al. (2000) showed that a long-range cut-off frequency can dramatically

improve the accuracy of image deconvolution, especially in high-contrast scenes such

as bright clouds over dark terrain or broken snow and ice scenes. This result indicates

that instrument PSFs should not be truncated to increase computational efficiency.

Rather, the PSF should be preserved with the longest possible range in order to

maintain the highest quality data reconstruction.

The presence of noise is the leading factor that makes deconvolution problems

particularly difficult to solve. Gaussian noise is the most often assumed model,

however Poisson or a combination of Gaussian and Poisson noise can also be

accommodated using the Anscombe transform (Anscombe, 1948).

An efficient solution to the deconvolution inverse problem can be found by

describing the convolution equation in Fourier space. Let ‘ ˆ ’ denote the Fourier

transform operator (Krantz, 1999) which is equivalent to the notation defined by

Trott (2004). From Equation 2.7, taking the Fourier transform leads to:

Î(u, v) = ˆ[O ∗ P ](u, v) + N̂(u, v) (2.8)

The Convolution Theorem states that, under suitable conditions, the Fourier

transform of a convolution is the point-wise product of Fourier transforms (Equation

2.4). Therefore, Equation 2.8 becomes:

Î(u, v) = Ô(u, v) · P̂ (u, v) + N̂(u, v) (2.9)
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The Fourier-quotient method can be applied to isolate Ô and retrieve the

deconvolved image:

ˆ̃
O(u, v) =

Î(u, v)

P̂ (u, v)
= Ô(u, v) +

N̂(u, v)

P̂ (u, v)
(2.10)

where ˜ indicates an estimate

This method can be computed very efficiently. However, the primary drawback

is that noise becomes amplified at frequencies close to the PSF cut-off frequency.

This makes the Fourier-quotient method unsuitable for the deconvolution of data

containing even small quantities of noise.

Deconvolution is generally an ill-posed problem. This means that no unique or

stable solution exists. To combat this ill-posed nature, regularisation techniques

must be introduced in order to constrain the solution space, promote some desirable

properties and help identify a unique and stable solution.

2.3.1 Linear Regularisation Methods

The Method of Least Squares (MLS) is a standard approach to solving over-

determined systems. In a linear system we have:

Ax = b (2.11)

The MLS aims to find a model in which the sum of the squared residuals has

the smallest value:

||Ax− b||2 (2.12)

where ||.|| represents the Euclidean norm

Interpreting this into the deconvolution domain, the minimisation becomes:

||I(x, y)− P (x, y) ∗O(x, y)||2 (2.13)
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This leads to the direct solution in Fourier space:

ˆ̃
O(u, v) =

P̂ ∗(u, v)Î(u, v)

|P̂ (u, v)|2
(2.14)

where P̂ (u, v) 6= 0

P̂ ∗(u, v) = complex conjugate of P̂

Again, this problem is generally ill-posed and requires the use of regularisation

techniques to find a unique and stable solution. Tikhonov regularisation is one of

the most commonly used regularisation methods for ill-posed problems (Tikhonov

et al., 1987). From the standard approach in Equation 2.12, Tikhonov regularisation

aims to give preference to a solution that shows some desirable properties using the

minimisation:

||Ax− b||2 + α||x||2 (2.15)

The Tikhonov matrix α is a regularisation parameter that represents the balance

between data fit accuracy and solution smoothness. The mechanism of a balancing

regularisation parameter is used in many other deconvolution algorithms, as will be

seen shortly. In the case of image deconvolution, the minimisation is:

JT (O(x, y)) = ||I(x, y)− (P ∗O)(x, y)||2 + α||(H ∗O)(x, y)||2 (2.16)

where ||I(x, y)− (P ∗O)(x, y)||2 = data fit accuracy

H(x, y) = high pass filter

||(H ∗O)(x, y)||2 = smoothed solution

This can be calculated directly in Fourier space:

ˆ̃
O(u, v) =

P̂ ∗(u, v)Î(u, v)

|P̂ (u, v)|2 + α|Ĥ(u, v)|2
(2.17)
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Tikhonov regularisation is capable of producing reasonable results, however it

also tends to produce overly-smoothed images. This becomes a severe problem if

discontinuities are contained within the original data.

Wiener deconvolution is another linear regularisation method that can be used

to restore images (Dhawan et al., 1985). This method utilises the Wiener filter to

minimise the impact of noise at frequencies that have a small signal-to-noise ratio

(Wiener, 1949). Wiener deconvolution works by making an estimation of the spectral

distribution of the desired noiseless signal. From Equation 2.7, the aim is to find some

G(x, y) to allow the estimation of O(x, y):

Õ(x, y) = G(x, y) ∗ I(x, y) (2.18)

where Õ(x, y) = an estimate of O(x, y) that

minimises the mean square error

G(x, y) = an appropriately chosen Wiener filter

The Wiener filter can be described in the frequency domain by:

Ĝ(u, v) =
P̂ ∗(u, v)Î(u, v)

|P̂ (u, v)|2Î(u, v) + N̂(u, v)

=
P̂ ∗(u, v)

|P̂ (u, v)|2 + N̂(u,v)

Î(u,v)

=
P̂ ∗(u, v)

|P̂ (u, v)|2 + 1
SNR(u,v)

(2.19)

where SNR(u, v) = Signal-to-Noise Ratio

= Î(u,v)

N̂(u,v)

The spectral estimation of the desired noiseless signal is assumed to be reasonably

well behaved in the frequency domain for the purpose of this method. The estimate

is then compared with the original image and noise is iteratively filtered. This
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method can be computed very quickly but contains some serious disadvantages, such

as severe artefact creation around image features. Information about the spectral

content of the noise is also required for this method to work, and this may not

necessarily be well behaved in the frequency domain.

Some of the main drawbacks generally encountered with linear regularisation

methods include: their inability to incorporate a priori information which allow

negative values to exist in the solution; the formation of Gibbs oscillation around

discontinuities (Gottlieb and Shu, 1997); and the degradation of resolution from

using a low-pass filter as a window function. With these limitations in mind, several

other approaches to image deconvolution will be investigated.

2.3.2 CLEAN

The CLEAN method is a standard approach to deconvolution that was developed

specifically for astronomical images (Högbom, 1974). CLEAN assumes that all

objects are a collection of point sources and attempts to decompose images by

representing all significant components with δ-functions. CLEAN iteratively finds

the brightest feature in the image and subtracts a fraction (loop gain) of the PSF

(dirty beam) at the location of the feature. The subtracted image (residual map)

is then used in the next iteration and the process is terminated when the side-

lobes of the image are smaller than the noise level. The restored image (clean

map) is obtained by convolving the final map of δ-functions with the addition

of the ideal PSF (clean beam) and residual map. There are many examples of

successful applications of the CLEAN method in astronomy (Belton and Gandhi,

1988; Deshpande, 1996; Qui et al., 2000) and several efficient implementations of

CLEAN have been developed, with the most popular being published by Clark

(1980). One drawback of the original CLEAN method is that it does not operate

well on images containing extended structures.

Wakker and Schwarz (1988) extended the CLEAN algorithm to include

Multiresolution Support images as an attempt to help deconvolve interferometric

imagery. This became known as Multi-Resolution Clean and begins by defining

two intermediate images: a smooth map is created by convolving the data with a
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Gaussian function, and a difference map is created by subtracting the smoothed map

from the original data. CLEAN is then applied to these intermediate images and

the resulting recombination of the cleaned intermediate images restores the image

back to full resolution.

When information is transformed into the frequency domain, the convolution

operator becomes diagonalised and noise that has been amplified during the

inversion process can be localised and reduced. This is acceptable when dealing with

smooth images. However, Fourier basis functions are not good at representing data

containing sharp spatial features. Other functions such as the Wavelet transform

are better designed to handle these events (Daubechies, 1992). This has led to a

second variant of the CLEAN algorithm known as the Wavelet CLEAN method

(WCLEAN) (Starck and Bijaoui, 1994; Starck et al., 1998). Wavelet decomposition

is a technique that divides data into separate frequency components in order to

resolve each component at a resolution matched to its scale. The greatest advantage

over Fourier methods is that Wavelets can efficiently model discontinuities such as

sharp spikes, singularities and high-contrast edges. WCLEAN operates by applying

the Wavelet transform to the original image, the PSF, and the clean beam. The

CLEAN algorithm is then performed at every resolution scale of the image and PSF.

The reconstructed image is then retrieved using an iterative algorithm involving the

clean beam.

The three distinct waves of development seen with the CLEAN method are

indicative of developments to deconvolution methods in general. The concepts

of multiresolution analysis and Wavelet-based image decomposition represent

significant advancements which have been replicated in other deconvolution

methods. Ultimately, the CLEAN method has shown some good results under the

right circumstances, however, the application of satellite remote sensing may benefit

from a more uniform approach to deconvolution.
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2.3.3 Bayesian Methods

To evaluate the probability of finding the original image O given the data I, the

Bayesian approach of constructing a conditional probability density relationship

implies:

Pr(O|I) = Pr(I|O)Pr(O)
Pr(I)

(2.20)

The Pr(I|O) term is the conditional probability of finding the data I given the

original image O. For maximisation purposes, Pr(I) is a constant and can be ignored

because it has no effect on the maximisation. From here, several different Bayesien-

based approaches can be derived. If the additive noise is assumed to be Gaussian

distributed, then a starting point is to inspect the probability density function of

the Gaussian distribution:

Pr(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (2.21)

where µ = mean

σ2 = variance

For deconvolution, the maximum likelihood solution seeks to maximise the

probability density function Pr(I|O), and in the case of Gaussian noise, results

in:

Pr(I|O) = 1
√

2πσ2
N

e
−

(I−P∗O)2

2σ2
N (2.22)

where σ2
N = the variance of the noise

Assuming that Pr(O) is constant, this is equivalent to minimising:

J(O) =
||I − (P ∗O)||2

2σ2
N

(2.23)



2.3. Deconvolution 30

One method that is commonly used here is known as the Landweber method

(Landweber, 1951):

On+1 = On − γ(P T ∗ (I − P ∗On)) (2.24)

where On+1 = next image

On = current image

P T = the transpose of the PSF

γ = step size

Another method dealing with Gaussian noise can be derived from a Gaussian

Bayes model. Here, the noise is assumed to have zero mean and unit variance and

this leads to the Wiener filter solution previously seen in Equation 2.19:

ˆ̃
O(u, v) =

P̂ ∗(u, v)Î(u, v)

|P̂ (u, v)|2 + σN (u,v)
σO(u,v)

(2.25)

This method is very fast to compute, but has several severe limitations as

previously discussed. Alternatively, Poisson noise can also be modelled and is

generally considered quite appropriate because it is analogous to photon noise

recorded by the detector. Poisson noise is defined by:

Pr(x) =
λxe−λ

x!
(2.26)

Interpreting this for the purposes of deconvolution gives:

Pr(I|O) =
∏

x,y

[(P ∗O)(x, y)]I(x,y)e−(P∗O)(x,y)

I(x, y)!
(2.27)

The maximum likelihood principle can be applied here and solved by taking the

logarithm and calculating its first derivative:

∂ ln p(I|O)(x, y)
∂O(x, y)

= 0 (2.28)
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With a normalised PSF, this leads to the Richarson-Lucy method (Richardson,

1972; Lucy, 1974) which is a common technique used in astronomy:

On+1(x, y) =
I(x, y)

(P ∗On)(x, y)
∗ P T (x, y)On(x, y) (2.29)

This method calculates the most likely real image given the recorded image and

PSF. Flux is preserved and the solution is always positive. If convergent, this method

has been shown to produce the maximum likelihood solution for the desired image O

(Dempster et al., 1977). However, it is not guaranteed that this method will converge

on a solution and this can be problematic if robust deconvolution is required.

A Poisson Bayes model leads to the Maximum A Posteriori (MAP) solution

in which the probability density function Pr(I|O)Pr(O) is maximised. This is

equivalent to the maximum likelihood Poisson solution provided the probability

density function Pr(O) is uniform. This method requires a background model

M(x, y) which is usually chosen to equal On and can be calculated using the extra

probability density function term:

Pr(O) =
∏

x,y

[M(x, y)]O(x,y)e−M(x,y)

O(x, y)!
(2.30)

The MAP solution to the maximisation of Pr(I|O)Pr(O) now becomes:

On+1(x, y) = On(x, y)e
I(x,y)

(P∗On)(x,y)
−1∗PT (x,y) (2.31)

2.3.4 Maximum Entropy Method

The Maximum Entropy Method (MEM) is a technique that aims to extract the

greatest amount of information from a measurement as justified by the signal-to-

noise ratio of the data (Starck et al., 2002). The MEM retains all known information

about a system, subject to the applied constraints, by determining the least biased

image. In this way, unknown information is approximated in an unbiased manner.

In physics, entropy is defined as a measure of disorder in a system. Mathematical

entropy requires a broader definition. Shannon initially defined the field of

Information Theory in his ground-breaking publication ‘A mathematical theory of
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communication’ (1949). This gave rise to a new definition of entropy as a measure

of the degree of uncertainty in a system. Shannon postulated that by applying

entropy to an information source, the minimum channel capacity required to reliably

transmit the source as encoded binary digits can be determined.

Entropy is a measure that assigns a positive weight to all possible configurations

that are not excluded by the given information or constraints (Shannon, 1949). This

form of entropy exists as:

S(X) = −
∑

x

Pr(x) log2 Pr(x) (2.32)

where Pr(x) = probability that X is in state x

Pr(x) log2 Pr(x) = 0 if Pr(x) is 0

Jaynes (1957) proposed that this form of entropy could be used for

radio interferometric image deconvolution and showed that the only unbiased

configuration is the solution that has maximum entropy. It has further been shown

that maximum entropy is the only consistent method of selecting a solution which

does not introduce correlations in the image beyond those which are required by

the original data (Johnson and Shore, 1980, 1983; Livesey and Skilling, 1985).

For the application of image restoration, a statistical model for the imaging

process must be developed to allow the definition of an entropy measure. This

requires a discrete representation of the object in terms of pixels. The object is

divided into N pixels, each with area ∆A and containing a particular radiance that

can be considered as a random emission of photons with energy e. If ri is the average

rate of emission of photons from the ith pixel, then the average radiance of the ith

pixel is described by:

fi =
e

∆A
ri (2.33)
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The probability that a photon was emitted from the ith pixel, given that it was

emitted from the object is:

Pri =
ri
∑

i ri
=

fi
∑

i fi
=
fi

F
(2.34)

where F = total intensity

The entropy of the discrete probability distribution is defined as:

S = −
n
∑

i=1

Pri logPri = −
n
∑

i=1

fi

F
log

fi

F
(2.35)

This model describes the uncertainty as to which pixel emitted a given photon.

Described more generally, this form of entropy has been proposed alongside other

definitions in the image domain, each having unique attributes and advantages under

different circumstances. These include:

Burg (1975):

Sb(O(x, y)) = −
∑

pixels

ln(O(x, y)) (2.36)

Frieden (1975):

Sf (O(x, y)) = −
∑

pixels

O(x, y) ln(O(x, y)) (2.37)

Gull and Skilling (1991):

Sg(O(x, y)) = −
∑

pixels

O(x, y)−m−O(x, y) ln

(

O(x, y)

m

)

(2.38)

where m = background model

The major advantage of Gull and Skilling’s definition is that entropy has a

maximum of zero when O equals the background model m. This is the form of

entropy that has achieved the most success in image deconvolution and continues to

be developed in new applications.
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Returning to Bayes’ theorem (Equation 2.20) allows the evaluation of the

probability of finding the original image O given the data I under a maximum

entropy framework. Pr(I|O) is the conditional probability of finding the data I

given the original image O, which essentially represents the distribution of the noise.

Uncorrelated Gaussian noise with variance σ2 is given by:

Pr(I|O) = exp

(

−
∑

pixels

(I − P ∗O)2
2σ2

I

)

(2.39)

Without any knowledge of O other than it being positive, applying the maximum

entropy principal leads to:

Pr(O) = exp(αS(O)) (2.40)

where α = Lagrange multiplier

S(O) = entropy on image O

Again, Pr(I) is independent of O and can thus be considered a constant. After

substitution and taking logarithms:

ln(Pr(O|I)) = αS(O)−
∑

pixels

(I − P ∗O)2
2σ2

I

(2.41)

This consists of the entropy of the image and a quantity corresponding to χ2

which can be used to measure the statistical distance between the data and the

model prediction. The solution can be found by minimising:

J(O) =
∑

pixels

(I − P ∗O)2
2σ2

I

− αS(O) (2.42)

=
χ2

2
− αS(O)

where α = balance between data fit and solution smoothness
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Skilling and Bryan (1984) developed an operational maximum entropy

deconvolution algorithm that performed well, but was limited by the computational

capabilities of its time. As computer hardware progressed, these methods became

outdated and were replaced by more accurate and computationally complex

methods. The Pyramid Maximum Entropy Method introduced the concept of

multiresolution image analysis into maximum entropy deconvolution (Bontekoe

et al., 1994). This was a breakthrough for the MEM as the new multiresolution

interpretation allowed significant features to be resolved at different image

resolutions and then recombined to produce the final image. However, the

Pyramid Maximum Entropy Method suffered from some major drawbacks such as

multiresolution image reconstruction, the need to determine a default background

model and user-defined reconstruction parameter estimation. The Multiscale

Entropy method resolved many of these issues and showed that the concept of

multiresolution image analysis was indeed beneficial, but the correct mathematical

tool to implement this method was the Wavelet transform (Starck, 1996).

Chapter 4 investigates the Multiscale Entropy deconvolution of MODIS Aqua

ocean colour imagery and shows that instrumental PSF effects can significantly

impact the quality of recorded satellite data. Wavelet transforms and optimal

step size estimation are combined with customised techniques including multi-

detector FFT convolution and detector-saturated radiometric correction to produce

an accurate and robust MODIS deconvolution implementation.

2.4 Resolution Enhancement

There have been several studies performed on the statistical limitations for resolution

enhancement using a range of different approaches. These studies set out to

systematically and empirically define quantifiable limits to the statistical boundaries

of how far resolution enhancement techniques can reach. The most significant

early work in this area was performed by Helstrom (Helstrom C.W., 1964, 1969,

1970). In these publications, Helstrom used the Cramer-Rao inequality to derive

a lower mean-square error limit for unbiased estimators of point source positions,
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the radiance values for the point source objects and the distance between the point

sources. Further work developed a geometrical optics field model when considering

the general distribution of radiance sources and instrument PSFs for objects of

inconsistent shape. Helstrom translated these results to instruments containing

circular apertures and considered point source responses by applying well-reasoned

simplifications and approximations to the derived optical model. These advances

laid the foundations for statistical evaluations of optical system resolution.

Further work in this area was performed by Lucy with respect to statistical

limitation caused by photon counts and deconvolution processes (Lucy, 1992a,b).

The concept of defining limitations based on the number of detected photons is

analogous to the signal-to-noise ratio of the recorded image. In both papers, Lucy

redefined the concept of resolution to be the separation of two point sources that can

be resolved through a deconvolution process. It was then shown that the resolution

of the detected image can potentially be increased beyond the limit imposed by the

Rayleigh criterion, as long as some strict conditions relating to the signal-to-noise

ratio are met. This new resolution limit is termed the ‘super-resolution limit’.

Bettens et al. (1999) extended Helstrom’s work by further developing the Cramer-

Rao lower bound to estimate the precision level attainable with respect to the

distances between two point sources. This analysis assumed the instrument PSF

to be Gaussian distributed and went on to derive a lower bound for the estimated

two-point distance variance. More recently, Shahram (2004) presented a frequency

domain approach to the two-point problem by calculating the optimal maximum

likelihood estimation for the distance between the two point sources. The Cramer-

Rao lower bounds were then calculated in exact and closed form. Shahram (2004)

also rigorously studied a range of cases including unknown and unequal point source

intensities and presented practical results detailing the specific effects that the

relevant parameters have on resolution and its limitations. The major result for

the case of equal intensities is that the minimum resolvable distance is proportional

to ( 1
SNR

)
1
4 .

Another approach to resolution was investigated by Kosarev (1990) in which

Shannon’s information theory was applied to the two-point resolution problem
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to define a resolution limit. In this work, resolution is defined as the inverse of

the minimum discernible distance between two point sources of equal brightness.

Information Theory is applied to calculate a resolution enhancement limit with

respect to the maximum channel capacity of a noisy transfer. In this way, a direct

relationship is derived to logarithmically relate resolution to the signal-to-noise ratio.

den Dekker and van den Bos (1997) and Baker and Kanade (2002) presented

detailed reviews of the different approaches that have been applied to the formulation

of resolution. However, the latter of these reviews primarily deals with the case of

multi-frame super-resolution.

Chapter 6 develops a novel approach to spatial resolution enhancement by

utilising information contained within high-resolution PSF measurements. Super-

resolution is achieved by solving a underdetermined system of linear equations with

the use of a modified variant of Multiscale Entropy regularisation. Results show

that a reasonable amount of high-frequency content can be extracted from the PSF,

and the resolution enhanced imagery compares favourably to common interpolation

techniques.



Chapter 3

Convolution

3.1 Introduction

Convolution is a formal mathematical operation which combines two input signals

and produces a point response by calculating the integrated product of the two

overlapping input signals. Evaluating this convolution sum at every overlapping

position of the two input signals produces the resultant convolved output signal.

Convolution has far-reaching applications including digital signal processing,

electrical engineering, computer vision and statistics, as well as being a fundamental

element in deconvolution problems (Starck et al., 2002). In a continuous system,

the convolution of two signals, f and g, is described using the convolution integral

(Bracewell, 2000):

(f ∗ g)(x) =
∫

∞

−∞

f(u) g(x− u) du (3.1)

where ∗ is the convolution operator

Digital computation requires data to be represented as discrete signals. The

equivalent convolution operation can be calculated for discrete systems using the

convolution sum (Smith, 2003):

38
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O(x) = (I ∗K)(x) =
M−1
∑

i=0

K(i) I(x− i) (3.2)

where O(x) = convolved output signal

(N +M − 1 elements)

I(x) = input signal (N elements)

K(x) = convolution kernel (M elements)

This equation describes how the convolved output signal O(x) relates to the

two input signals I(x) and K(x) from a computational perspective where x is now

discrete. The results is the convolved output signal O(x) containing N +M − 1 data

points (Smith, 2003). Often, the final convolved signal is required to be the same

length as the input signal. In this case, all data points that fall beyond the window

of the input signal are discarded and the final convolved signal is returned with the

same dimensions as the input signal. This form of convolution can be performed in

one or two dimensions and, for the purposes of this chapter, will be referred to as

standard convolution.

There are many convolution applications for two-dimensional imagery. To

accommodate this, Equation 3.2 can be extended into two-dimensional space:

O(x, y) =
M−1
∑

j=0

M−1
∑

i=0

K(i, j) I(x− i, y − j) (3.3)

where O(x, y) = convolved output signal

((N +M − 1)× (N +M − 1) elements)

I(x, y) = input signal (N ×N elements)

K(x, y) = convolution kernel (M ×M elements)

The two-dimensional input signal and convolution kernel are defined to be square

for simplicity. However, this is not a requirement and any sized rectangular imagery

can be accommodated. Equation 3.3 is simply an extension of the one-dimensional

convolution sum, and therefore all operations and results for one-dimensional data
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are applicable to two-dimensional data. The computational complexities for the

convolution sums in Equations 3.2 and 3.3 are:

One-dimensional Convolution ⇒ O(N) = N ×M

Two-dimensional Convolution ⇒ O(N ×N) = N2 ×M2

(3.4)

A worst case scenario occurs when the kernel M is the same size as the input

signal. In this case, the computational complexity of standard spatial domain

convolution scales with the square of the input signal. This has little impact

when convolving small signals but becomes exceedingly slow for large input signal

convolution.

Since the conception of the Fourier transform, it has been well known that

convolution can also be performed in the frequency domain. This capability arises

from the Convolution Theorem:

F(f ∗ g) = F(f)F(g) (3.5)

where F indicates a Fourier transform (Trott, 2004)

That is, the convolution of two functions is equal to the inverse Fourier

transform of the rectangular product of their Fourier transforms (Smith, 2003).

However, the computation time required to calculate the Discrete Fourier Transform

(DFT) and, in turn, frequency domain convolution, is often much greater than

calculating standard convolution. The introduction of the Fast Fourier Transform

(FFT) brought about efficient transform computation due to its radix-2 recursive

architecture (Cooley and Tukey, 1965). For this reason, the FFT operates at optimal

speed when the input signals have a data length, or a padded data length, equal

to a power of 2 (Brigham, 1986). Alternatively, more advanced mixed-radix FFT

algorithms have been developed that efficiently exploit a combination of base values

and can be used to potentially reduce the final border padding size. For the purposes

of this chapter, a simple radix-2 algorithm will be considered.



3.1. Introduction 41

The speed advantages associated with the FFT allow frequency-domain

convolution to be reduced in computational complexity:

1D FFT Convolution ⇒ O(N) = N log2(N)

2D FFT Convolution ⇒ O(N ×N) = N2 log2(N)

(3.6)

This represents a significant speed improvement over standard convolution. To

investigate this Computational Advantage (CA), consider the standard and FFT

convolution of a one-dimensional signal of length N , with a kernel also of length N :

CA (N) =
N2

N log2(N)
=

N

log2(N)
(3.7)

If it is assumed that the input signal length is a power of 2 for speed purposes,

i.e. N = 2p:

⇒ CA (p) =
2p

log2(2p)
=

2p

p
(3.8)

Figure 3.1 shows the computational advantage of using FFT convolution. The

computational advantage is significantly increased as the signal becomes larger. For

instance, the convolution of a signal of length 1048576 (p = 20) can be calculated

approximately 50 000 times faster using FFT convolution than standard convolution.

In two dimensions, this is equivalent to convolving a moderate sized image of

1024× 1024 pixels. This highlights the extreme computational advantage that can

be obtained using FFT convolution.

FFT convolution requires that the two input signals have the same dimensions

so they can be directly multiplied in the frequency domain. This can be achieved by

padding the perimeter of both the input signal and the kernel to equal dimensions.

However, if the input signal padding is not larger than the size of the original kernel,

circular convolution will be encountered due to the inherent properties of frequency

domain analysis. When a discrete signal is transformed into the frequency domain,

it is represented as a periodic object. That is, the signal no longer has a start or an

end; it is repeated head-to-tail an infinite number of times. When FFT convolution

is performed, information at the end of the signal will contaminate the start of the
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Figure 3.1: Computational advantage of FFT convolution over standard
convolution.

signal and vice-versa. This is known as the ‘wrap-around’ effect and is a result of

circular convolution.

Consequently, for FFT convolution of two-dimensional imagery, the left and

right sides of the image can be considered to be connected, as can the top and

bottom edges of the image. To avoid wrap-around contamination, a border must be

constructed around the input signal that is larger than the length of the kernel in

each dimension. In this way, the kernel will not be large enough to span the distance

of the border and contaminate opposing edges in the image.

As a result, FFT convolution is burdened with the extra computational overhead

of initialising and transforming padded arrays. With respect to comparing standard

and FFT convolution, this overhead dominates only when the kernel size is small.

Thus, a threshold exists above which it is faster to perform FFT convolution and

below which it is faster to perform standard convolution (Figure 3.2). This threshold

is calculated from the computational complexities defined for one-dimensional

convolution in Equations 3.4 and 3.6. The jaggedness of the threshold is a result
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of the computational overhead encountered by FFT convolution zero-padding to

powers of 2. Additional discontinuities would be included in the threshold for more

complicated mixed-radix algorithms. It is clear that standard convolution is more

efficient for small kernel sizes and FFT convolution is more efficient when the kernel

size becomes large, regardless of the size of the input signal.

Figure 3.2: Padded convolution efficiency threshold above which it is faster to
perform FFT convolution and below which it is faster to perform standard
convolution.

Avoiding the circular convolution problem forces the input signals to be padded.

However, the data used to pad the input will still affect the outer edges of the

convolved result, as determined by the size and shape of the convolution kernel.

For instance, consider the convolution of a signal that has been zero-padded. To

calculate the convolved response at the left edge of the input signal, the kernel

is centred on the left edge with approximately half of the kernel overlapping the

input signal, while half of the kernel overlaps the zero-padded border. When the

convolved response is calculated for this point it will undergo an intensity reduction
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caused by the product of elements with value zero. By extending this concept, the

entire boundary of the signal will exhibit an intensity reduction that decreases away

from the boundary according to the size and shape of the kernel. The effect of this

contamination can be seen by zero-padding and convolving a flat signal of value 1.0

with a normalised Gaussian convolution kernel (Figure 3.3). The perfect convolution

of a flat signal should produce a resultant flat signal identical to the input, provided

the convolution kernel is normalised. Clearly this is not the case as the zero-padded

border contaminates the boundary of the convolved signal. This effect can be even

greater with two-dimensional inputs where the kernel overlap at the corners of the

input image will be approximately one-quarter of the kernel size.

Figure 3.3: Boundary contamination encountered by convolving a zero-padded
flat signal (length = 300, value = 1.0) with a normalised symmetrical Gaussian
convolution kernel (length = 155, FWHM = 77).
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There are several other common approaches that aim to minimise this problem

by filling the border with data derived from the original input signal. These methods

include replication, mirroring and repetition (Figure 3.4). Replication simply repeats

the input signal in the border, while mirroring reflects the input signal in the

border. Repetition copies the edge-values of the signal and repeats them to fill

the border. The major advantage of the mirroring and repetition methods is that

there is no discontinuity between the input signal and padded border. This reduces

edge contamination when convolution is performed. All of these methods rely on

generating information to fill the borders. This is not ideal because any information

contained in the border will contaminate the edges of the convolved signal to some

degree. One solution would be to discard the contaminated outer-boundary of the

convolved signal and be left with only the perfectly convolved inner region. However,

for scientific purposes this is often unacceptable due to increasing quantities of data

being discarded as the size of the kernel increases. Also, processes that require

multiple convolution operations progressively reduce the remaining data.

3.2 Method

A robust convolution method would make a single consistent data-based boundary

assumption and also minimise the unintended intensity variation at the edges of

the final convolved output. One solution is to use zero-padding and renormalise

the kernel multiplication according to the area of the convolution kernel that

intersects the input array for every point in the convolution sum (Equation 3.3). This

increases the intensity of the contaminated border according to known localised data

values while also disregarding the information contained in the border. Even though

this technique can produce desirable results, it still scales with the computational

complexity of spatial-domain convolution (Equation 3.4). This approach will be

termed Standard convolution with Boundary Renormalisation (SBR). Smith (2003)

briefly described this concept but failed to highlight its importance in conjunction

with FFT convolution. Performing FFT convolution and then correcting the result

using a post-convolution correction factor is proposed in this chapter as a more
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efficient method to achieve the boundary renormalisation approach. This method

will be developed in the following sections and referred to as FFT convolution with

Border Correction (FBC).

The contamination seen in Figure 3.3 represents the intensity loss encountered

using a zero-padded signal in convolution. Provided the border is filled with zero,

the input signal can be FFT convolved and later corrected using a factor derived

from the convolution kernel. Zero-padding the signal border allows the intensity loss

at each data point to be accurately quantified. This is a critical element for the

separability of the convolution operation and the correction factor. The correction

factor can be retrieved by constructing a boolean template T of the padded signal

according to the following rule:

T (x̃) =







0 if pixel is in the border

1 if pixel is in the signal
(3.9)

where x̃ = signal length after zero-padding

The template is convolved with the normalised kernel K and the correction array

C is retrieved by removing the padded border from the result. These operations

follow the altered convolution sum equation:

C(x) =
M−1
∑

i=0

K(i)T (x̃− i) (3.10)

Here, the result is calculated over the entire padded domain and then subset to

the size of the original data to retrieve the final correction array. Having determined

the correction factor, it is a simple calculation to correct the intensity loss in the

FFT convolved signal. The correction factor represents the integrated response of

the kernel that intersects with the input image. Therefore, the FFT convolved

output is simply divided by the correction factor to correct for convolution boundary

contamination:
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Oc(x) =
(I ∗K)(x)

C(x)
(3.11)

where Oc(x) = corrected convolved output signal

The simplest implementation of this correction method relies on the kernel being

normalised prior to operation. This naturally leads to an opportunity to increase

algorithm efficiency. Depending on the size of the original input signal and the extent

of the kernel, the correction factor may potentially contain a large centralised area

that remains unaffected by convolution boundary contamination. This area will be

represented in the correction factor by the value 1.0. Therefore, it is only necessary to

apply the correction where C(x) 6= 1.0 and this will produce optimal computational

efficiency. Alternatively, if an unnormalised kernel is used for convolution, then the

central region unaffected by convolution boundary contamination will be represented

in the correction factor by a single value other than 1.0. In this case, applying the

correction factor requires the calculation to be performed over the entire signal

domain, losing any potential efficiency optimisation.

3.3 Results

Figure 3.5 displays the responses of the different boundary condition methods from

Figure 3.4 when convolved with a normalised symmetrical Gaussian convolution

kernel (length = 155, FWHM = 77). The results show a wide range of edge

responses for the different boundary condition methods. It is clear that the zero-

padding and replication boundary conditions produce severe edge contamination

for this particular signal. This is an inherent property of both boundary condition

methods and is caused by large edge-discontinuities being created at the input data

boundaries. The remaining three methods all produce responses similar to each other

due to the input data edge values being preserved by the boundary mechanism and

no severe edge discontinuities being added at the boundary of the input data. The

convolved signal for the FBC method does not extend beyond the boundaries of the

original input signal because the edges of the signal are corrected and the border is
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discarded.

Choice of convolution boundary condition has always been a difficult decision

because information beyond the boundaries of the input data is unknown. Therefore,

in making a boundary condition assumption, there will always be some form of

edge degradation or contamination around the convolution output. The best option

is to choose a boundary condition method that suits the input data. For the

particular example shown in Figure 3.5, it is clear that the FBC method, repetition

and mirroring outperform the zero-padding and replication boundary conditions.

However, many real-world problems deal with data containing far less structure than

that illustrated in this example. For instance, Chapter 4 implements a remote sensing

deconvolution method and Chapter 6 develops a spatial resolution enhancement

algorithm that both require accurate convolution operations that minimise boundary

effects. In these cases, the FBC method may provide a unique and effective

solution to limiting contamination that results from convolution operations by down-

weighting the contribution at the edges.

To evaluate the equivalence of the SBR and FBC methods, synthetic and real test

signals were convolved using both methods and the differences were analysed. These

results can be directly compared because the two convolution methods perform

equivalent operations. That is, SBR renormalises the intersection of the kernel with

the input signal which increases the intensity of the contaminated edge values.

Equivalently, the FBC method applies a correction to the convolved signal to

increase the intensity of the edge values in exactly the same manner. Therefore,

it is anticipated that the differences between the two methods will be very small.

Figure 3.6 shows different sized synthetic and real test signals that were used

to compare the equivalence of the FBC and SBR methods. Each test signal was

convolved using both methods and the residual of the resultant convolutions was

calculated as the absolute value of the difference between the FBC and SBR results.

The maximum values of the residuals is reported in Table 3.1 and represents the

single largest difference between the two methods. For every processed test signal,

the magnitude of the maximum residual difference is very small and is indicative of

double precision rounding errors.
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(a) Flat line

(b) Sine wave

Figure 3.6: One-dimensional test signals used to test the equivalence of the
FBC and SBR methods including (a) a one-dimensional flat line and (b) a
one-dimensional sine wave. These test signals are referred to in Table 3.1.
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(c) Airport transect

(d) USC texture mosaic #2

Figure 3.6 continued: One-dimensional and two-dimensional test signals used
to test the equivalence of the FBC and SBR methods including (c) a one-
dimensional airport transect and (d) the two-dimensional USC texture mosaic
#2. These test signals are referred to in Table 3.1.
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(e) USC texture mosaic #3

(f) Airport

Figure 3.6 continued: Two-dimensional test signals used to test the equivalence
of the FBC and SBR methods including (e) the two-dimensional USC texture
mosaic #3 and (f) a two-dimensional airport image. These test signals are
referred to in Table 3.1.
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Table 3.1: All test signals are convolved with both the FBC and SBR methods.
The residual convolution result is calculated by subtracting the FBC result
from the SBR result and the maximum residual difference is reported.

Test Signal Signal Type Dimensions
Maximum Residual

Difference

(a) Flat line Synthetic 1 × 128 5.55112× 10−16

(b) Sine wave Synthetic 1 × 512 1.33227× 10−15

(c) Airport
Real 1 × 1024 4.61853× 10−14

transect

(d) USC texture
Synthetic 128 × 128 2.58638× 10−12

mosaic #2

(e) USC texture
Synthetic 256 × 256 4.47642× 10−13

mosaic #3

(f) Airport Real 512 × 512 4.27747× 10−12

These results show that the two convolution methods operate equivalently.

However, with the FBC method utilising efficient FFT convolution, dramatic speed

improvements can be made over using the standard convolution approach. This

advantage, coupled with the conceptual design behind boundary renormalisation,

may be used to provide an efficient and accurate convolution for many scientific

applications.

However, there are some drawbacks associated with the FBC method. Firstly,

optimal algorithm efficiency requires the kernel to be normalised before the

convolution operation, which limits the usability of the FBC method for some

applications. For instance, derivative and edge-detection calculations can be

performed with convolution by using a kernel that contains both positive and

negative components. If the FBC method is used with a normalised kernel for these

applications, the positive and negative components of the kernel are rescaled in the

kernel normalisation process. This results in a disruption and sensitivity reduction

for any derivative or edge-detection calculation. Alternatively, an unnormalised

kernel would alter the intensity of the central region of the convolution result due
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to the correction factor being a value other than 1.0 in this area. Furthermore,

in both cases an obvious boundary effect would be introduced from the partial

renormalisation of the kernel at the boundary. Therefore, the FBC correction method

may be considered unsuitable for applications where the convolution kernel has

negative components.

It should also be noted that if there are any asymmetries present in the

convolution kernel, the FBC method will produce subtly different boundary effects

on opposing edges of the convolved output. This effect is determined by the

renormalised kernel intersection and will only be as extreme as the asymmetries

contained in the kernel.

3.4 Summary

Convolution of digital signals has always involved a trade-off for scientific

application. FFT convolution achieves fast processing speed but can result in

undesirable boundary effects. However, data accuracy is essential for scientific

applications because a reduction in accuracy can lead to loss of data integrity

and also detrimentally impact subsequent processing and analysis. This balance is

directly caused by the choice of boundary condition used in the convolution process.

Results show that boundary renormalisation is achievable in the Fourier-domain

by way of a post-convolution correction factor. The proposed correction factor

adds minimal computational overhead to the FFT convolution process which

results in the corrected convolution still utilising speed attributes associated with

FFT convolution. As such, the FBC method employs an efficient data-based edge

correction approach that is beneficial for many scientific applications.

This chapter has established a robust data-driven convolution boundary

condition and examined its advantages and disadvantages for scientific applications.

The main advantage of this approach is that boundary contamination effects

are limited to structure contained in the input data and kernel, which in turn

produces a consistent convolution result. The primary research contribution in this

chapter is the novel combination of a boundary renormalisation approach with FFT
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convolution to define a post-convolution correction factor and achieve accurate and

efficient results.

The following chapters, specifically Chapters 4 and 6, make particular use of

the FBC method to perform accurate signal convolution with minimised boundary

effects. In fact, many of the small-signal convolutions that are performed in

Chapter 4 do not operate successfully without some form of boundary correction

and the FBC method provides an efficient and robust solution to this problem.



Chapter 4

Deconvolution

4.1 Introduction

Monitoring coastal environments is important for the sustainable management

of regions affected by natural events, human activity and anthropogenic climate

change. Remote sensing satellite instruments provide data at a range of spectral

bands and spatial resolutions which are valuable to the monitoring of such regions.

Often, however, the quality of remotely sensed data near the coast is compromised

by contamination of the low signal from the ocean by high radiances from land

and clouds. This contamination comes from radiance scattering in the atmosphere

(Gordon, 1978) and from the instrument Point Spread Function (PSF). This chapter

examines a means of removing instrumental distortion resulting from the instrument

PSF.

Every satellite optical system has a unique PSF which describes the two-

dimensional spatial response of the instrument. This interaction can be described at

point (x, y) with a convolution equation (Bracewell and Roberts, 1954):

57
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I(x, y) = (O ∗ P )(x, y) +N(x, y) (4.1)

where I = intensity distribution (recorded image)

O = observed object (real image)

P = point spread function

N = Gaussian additive noise

and ∗ is the convolution operator

Deconvolution is an algorithm-based procedure that attempts to reconstruct

the original signal O given the recorded signal I, the spatial response function of

the instrument P , and an estimate of the detector-based noise N . Deconvolution

problems arise in a wide range of scientific and engineering disciplines; prominent

examples occur in radio astronomy (Starck et al., 2002), microscopy (McNally et al.,

1999) and seismology (Mendel, 1983).

4.2 MODIS Aqua PSF

The PSF of an instrument describes how a two-dimensional image of a point source

is rendered by the optical system. This transformation can be characterised using a

range of one-dimensional calibration tests performed on the instrument. Using such

measurements, Meister et al. (2008) produced PSFs for all 10 detectors in every 1km

resolution MODIS Aqua ocean colour band. MODIS Aqua contains a field baffle that

is designed to restrict the field-of-view and reduce internal sensor-stray light. The

PSF of each detector differs slightly according to its unique physical distance from

the baffle. Figure 4.1 shows the PSFs for detectors 1, 5 and 10 of MODIS Aqua band

8 (405nm - 420nm) on a logarithmic scale with 1km pixel grid size. This band was

chosen because the PSF is well centred and its shape is indicative of the other ocean

colour bands. The peak of the PSF coincides with the image point of the instrument

and shows that the majority of the recorded signal comes from this point. However,

there is a large low response area surrounding and extending up to 20km from the

image point. The underlying PSF is a result of the sensor optics and is spectrally
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(a)

(b)

(c)

Figure 4.1: MODIS Aqua band 8 point spread functions (405nm - 420nm) on a
logarithmic scale with 1km pixel grid size including (a) detector 1, (b) detector
5 and (c) detector 10. The low response area for each detector changes due to
the unique position of the detector with respect the the field baffle.
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independent. A truncation of the PSF occurs in both the scan and track dimensions

due to the effect of the field baffle. The position of the detector relative to the field

baffle determines the position of the truncation effect with respect to the centre of

the PSF.

In deconvolution methods, PSFs are commonly truncated to a 3× 3, 5× 5 or

7× 7 pixel area around the image point to reduce computing time. These cut-off

levels have average integrated responses of 99.61%, 99.69% and 99.74% respectively

for MODIS Aqua band 8. However, it has been shown near high-contrast edges that

these approximations result in contamination, or radiance bias error, of more than

1% at distances up to 21km (Qiu et al., 2000). Scene contamination will vary from

one band to another depending on the spectral reflectance of the target. Even so,

all spectral bands experience some degree of contamination. Using the entire PSF

throughout the deconvolution process will produce the greatest deconvolved data

accuracy.

Figure 4.2 shows the effect that the MODIS Aqua band 8 PSF has on a synthetic

test scene containing typical ocean reflectance of 0.5% and bright land reflectance

of 30%. This synthetic scene has been designed with sharp land/ocean edges to

highlight instrumental effects in coastal regions. Figures 4.2(a) and 4.2(b) clearly

show the extent of contamination that can occur around sharp discontinuities. Figure

4.2(c) displays a transect of the right-hand edge of the land/ocean boundary and

shows significant contamination on either side of the discontinuity. This example

demonstrates an extreme case containing high contrast. It should be noted that

the instrumental distortion is not symmetrical. There is a greater amount of

contamination in the scan dimension, compared with the track dimension, resulting

from asymmetries present in the instrument PSF.

Figure 4.3 shows the relative error introduced by the instrumental spatial

response as a function of distance from a high-contrast edge. Four land/cloud

reflectance values have been chosen along with a fixed water reflectance value to

demonstrate the extent of contamination under different circumstances. In all cases,

the first pixel from a high-contrast edge produces large errors that decrease rapidly

with distance. It is evident that significant contamination errors still occur at large
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(a)

(b)

(c)

Figure 4.2: Contamination test showing (a) synthetic test scene with typical
land and ocean reflectance, (b) synthetic test scene convolved with MODIS
Aqua band 8 PSF with original boundary indicated and (c) comparison of
original (solid) and convolved (dashed) right-hand edge transects.
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distances from the high-contrast edge, especially with highly reflective features.

Satellite instruments measure top-of-atmosphere radiances convolved with the

instrument PSF as part of the measurement process. Before the incoming light

is detected by the sensors, instrumental distortion is the last effect that occurs

in the light-path of the measured signal and should therefore be the first effect

that is removed after calibration is performed. Removing instrumental effects at

the beginning of the data processing chain, before standard MODIS processing

occurs (Nishihama et al., 1997; Barbieri, 1997), results in these instrumental errors

not being propagated through, or magnified by, subsequent processing stages such

as atmospheric correction or chlorophyll estimation. This approach will produce

optimal radiometrically corrected top-of-atmosphere images.

4.3 Multiscale Entropy Deconvolution

The Maximum Entropy Method (MEM) is a deconvolution technique that extracts

the greatest amount of information from a measurement as justified by the signal-to-

noise ratio of the data (Starck et al., 2002). The MEM determines the least biased

image subject to applied constraints, and therefore retains all known information

while unknown information is approximated in an unbiased manner. The concept

of entropy originated from Shannon (1949) and is defined in Information Theory as

a measure of the amount of information in a signal. This form of entropy was used

to determine the minimum channel capacity required to reliably transmit encoded

binary digits (Shannon, 1949). Jaynes (1957) proposed that entropy could be used

for radio interferometric image deconvolution and showed that the only unbiased

configuration is the solution that has maximum entropy. Furthermore, it has been

shown that maximum entropy is the only consistent method of selecting a solution

which does not introduce correlations into the image beyond those which are required

by the original data (Johnson and Shore, 1980, 1983; Livesey and Skilling, 1985).

The MEM compares favourably to other deconvolution techniques and consistently

provides robust results (Madden et al., 1996).

Several major advances have been made in MEM deconvolution, from the
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early operational algorithms (Skilling and Bryan, 1984) to the implementation

of multiresolution image analysis (Bontekoe et al., 1994). Currently, the most

advanced method is the Multiscale MEM (Pantin and Starck, 1996) which

incorporates Wavelet transforms and Multiresolution Support images throughout

the deconvolution process (Starck, 1995).

The Wavelet transform is similar to the Fourier transform, but rather than

approximating a signal with a number of infinite sine waves, Wavelets are used to

approximate the signal at several decreasing levels of resolution (Daubechies, 1992).

This multiresolution paradigm makes Wavelets suitably compact and capable of

effectively modelling discontinuities. The Wavelet transform procedure implemented

for use in deconvolution is the discrete à trous [with holes] algorithm (Holschneider

et al., 1989; Shensa, 1992; Starck and Bijaoui, 1994). This algorithm provides a

simple method for calculating the Wavelet decomposition of an image. Using this

technique, an image O(x, y) can be decomposed into its Wavelet coefficients and

losslessly represented by:

O(x, y) = cnp
(x, y) +

np
∑

j=1

wj(x, y) (4.2)

where cnp
(x, y) = smoothed image at the lowest scale

np = total number of Wavelet scales (typically 4)

wj(x, y) = Wavelet coefficients at scale j

Each successive Wavelet scale is determined by calculating the difference between

the current smoothed image and the next smoothed image. This process begins by

convolving the original data with a low-pass filter, or Wavelet scaling function, ψ.

For the application of image deconvolution, the B3 spline is often chosen due to

its ability to represent a large range of spatial structures which is highly beneficial

throughout the deconvolution process. In one dimension, the B3 scaling function is:

ψ =

[

1
16

1
4

3
8

1
4

1
16

]

(4.3)
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This can be extended into two dimensions by convolving the B3 scaling function

with the transpose of itself, producing the two-dimensional convolution mask:

ψ1 =
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(4.4)

The smoothed images at each resolution scale can now be iteratively calculated

by convolving the original image with the first-level convolution function:

cj(x, y) =
∑

v=0

∑

u=0

ψ1(u, v)cj−1(x− 2j−1u, y − 2j−1v) (4.5)

This is similar to a formal convolution but also includes a spacing factor of 2j−1

that handles the reduction in resolution at different resolution levels. The Wavelet

scales, wj, can be extracted from the smoothed images by calculating the difference

between two consecutive resolution levels:

wj(x, y) = cj−1(x, y)− cj(x, y) (4.6)

Each Wavelet scale now contains structural information about the original image

O at different spatial frequencies and this allows reconstruction techniques to be

matched to different resolution levels. A practical implementation of Equations 4.5

and 4.6 is to perform standard convolution of the smoothed image with a Wavelet

function that disperses at each subsequent resolution scale. This results in the B3

Wavelet scaling function at resolution level 2 becoming:
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(4.7)

Further resolution levels are additionally interspersed with zero-padded rows and

columns, highlighting why this method is called the à trous [with holes] algorithm.

This implementation has the added advantage of maintaining constant image sizes

throughout all resolution scales. It is more manageable to vary the size of the

relatively small Wavelet function and keep the larger imagery at the same size.

As the resolution levels are calculated, cj(x, y) becomes progressively smoother

which results in wj(x, y) containing lower spatial frequencies while maintaining

constant size. Figure 4.4 depicts the full Wavelet decomposition of a standard image

processing test image (Figure 4.4(a)) through four levels of Wavelet decomposition

(Figure 4.4(b), 4.4(c), 4.4(d) and 4.4(e)) and the lowest scale smoothed image

(Figure 4.4(f)). Equation 4.2 details how the summation of Figures 4.4(b), 4.4(c),

4.4(d), 4.4(e) and 4.4(f) produces the original image (Figure 4.4(a)) with no loss of

information. This example clearly shows how Wavelet decomposition can separate

an image into a range of different spatial frequencies to be used in subsequent

processing.

If the scaling function chosen for Wavelet decomposition can be broken into two

one-dimensional signals, such as a vertical and a horizontal projection, then the

function is said to be separable. This is certainly the case for the two-dimensional

B3 spline, as it was originally created from a one-dimensional array. In this case,

there is an opportunity to accelerate the convolution process by convolving the two-
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(a)

(b)

Figure 4.4: Multiresolution Wavelet decomposition depicting (a) the original
test image ‘Lena’ and (b) the first Wavelet scale containing high-frequency
content.
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(c)

(d)

Figure 4.4 continued: Multiresolution Wavelet decomposition depicting (c) the
second Wavelet scale containing moderately high-frequency content and (d)
the third Wavelet scale containing moderately low-frequency content.
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(e)

(f)

Figure 4.4 continued: Multiresolution Wavelet decomposition depicting (e) the
fourth Wavelet scale containing low-frequency content and (f) the smoothed
image at the lowest scale cnp

(x, y).
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dimensional image with the one-dimensional scaling function twice. This is carried

out by a row-by-row convolution with the horizontal scaling function projection, and

then a column-by-column convolution with the vertical scaling function projection.

This produces an identical convolution to the two-dimensional convolution case,

which has previously been reported to operate with a computational complexity of

N2M2 (Chapter 3), but can now be reduced to a computational complexity of N2M

(Smith, 2003). This technique can dramatically reduce the convolution execution

time, depending on the size of the convolution function, and has been implemented

for the deconvolution algorithm.

Multiresolution Support is a set of boolean images that represent significant

structures at each Wavelet scale of resolution. Multiresolution Support images are

calculated according to:

M(j, x, y) =







1 if wj(x, y) ≥ kσj

0 if wj(x, y) < kσj
(4.8)

where M(j, x, y) = Multiresolution Support images

k = threshold

σj = standard deviation of noise at scale j

The threshold k is used to distinguish between the real signal and the noise in

the signal. A value of k = 3 is generally used to define noise with a probability of

99.7%, assuming a Gaussian distribution. The standard deviation of the noise at

the various wavelet scales can be calculated by simulating a reasonably sized test

image that contains only noise, applying the wavelet decomposition and calculating

the resultant noise level at each wavelet scale. Figure 4.5 displays the four levels of

Multiresolution Support derived from the Wavelet decomposition of Figure 4.4(a).

These Multiresolution Support images separate the areas in the original image that

are solely attributed to noise and allows these areas to be regularised, leaving all

significant features at varying Wavelet resolutions intact.
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(a)

(b)

Figure 4.5: Multiresolution Support images calculated from the Wavelet
decomposition of Figure 4.4(a) showing (a) level 1 support containing high-
frequency content and (b) level 2 support containing moderately high-
frequency content. Multiscale Entropy is calculated using the complement of
these support images and this results in only the dark regions contributing to
the entropy calculation.



4.3. Multiscale Entropy Deconvolution 72

(c)

(d)

Figure 4.5 continued: Multiresolution Support images calculated from the
Wavelet decomposition of Figure 4.4(a) showing (c) level 3 support containing
moderately low-frequency content and (d) level 4 support containing low-
frequency content. Multiscale Entropy is calculated using the complement of
these support images and this results in only the dark regions contributing to
the entropy calculation.
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Using these new ideas, Starck (1996) developed a new definition of entropy, based

on Gull and Skilling entropy (1991), that encompassed Wavelet image decomposition

and Multiresolution Support:

Sms(O) =
1

σI

n
∑

j=0

∑

pixels

(1−M(j, x, y))σj(wj(x, y)−mj − |wj(x, y)| ln
|wj(x, y)|

mj

)

(4.9)

where Sms(O) = Multiscale Entropy on image O

σI = standard deviation of noise in image I

1−M(j, x, y) = complement of Multiresolution Support

mj = background model at scale j

=
σj

100

By incorporating the Wavelet transform into Multiscale Entropy, the spatial

structure of an image is implicitly included in the entropy calculation. In this

way, the algorithm makes use of contextual information in the image throughout

the deconvolution process and is able to deconvolve images based on their unique

structural attributes. While Equation 4.9 collapses the entropy on image O to a

single number that is used to guide the deconvolution process, Multiscale Entropy

can be visualised by ignoring the second summation and inspecting the intermediate

result (Figure 4.6). This shows how Multiscale Entropy responds to the information

content in two-dimensional imagery. Areas in the image that were originally smooth

and homogeneous result in large values of Multiscale Entropy, and areas that were

originally discontinuous and turbulent result in small values of Multiscale Entropy

(Figure 4.6). This example also illustrates how Multiscale Entropy preserves the

two-dimensional structure of imagery at a range of resolution levels.
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Figure 4.6: Visualisation of the Multiscale Entropy on Figure 4.4(a). The
complete Multiscale Entropy response for this image is -1066222 as calculated
by Equation 4.9.

Multiscale Entropy is defined on image O. The algorithm initially assumes that

O is equal to the recorded image I, and proceeds to iteratively modify O until the

deconvolution is successful. Starck (1996) developed the function J(O) that must

be minimised to retrieve the deconvolved image O:

J(O) =
∑

pixels

(I − P ∗O)2
2σ2

I

− αSms(O) (4.10)

where α = balance between data fit and solution smoothness

Only areas containing noise as defined by Multiresolution Support undergo

regularisation and this allows the parameter α to be calculated as α = max(PSF)
2σI

for

all image types (Pantin and Starck, 1996). This independence significantly increases

the ability of the algorithm to operate autonomously which has previously been one

of the major challenges for MEM deconvolution.
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Equation 4.10 can be minimised using a one-step gradient method:

On+1 = On − γ∇(J(On)) (4.11)

where On+1 = next image

On = current image

γ = step size

∇(J(On)) = search direction

This requires calculation of the search direction, which is the derivative of

Equation 4.10:

∇(J(O)) = −P T ∗ (I − P ∗O)
σ2
I

+ α
1

σI

∑

scalesj

[(1−M(j))σjsgn(w
(O)
j ) ln(

|w(O)
j |
mj

)] ∗ ψT
j

(4.12)

where P T = transpose of the PSF

sgn() = signum function

ψT
j = transpose of the Wavelet function at scale j

= 1
2j
ψ( x

2j
, y

2j
)

The Wavelet function, ψ, corresponds to the discrete à trous algorithm where the

magnitude of the function gets smaller as its spatial coverage gets larger with each

subsequent resolution level. This aids in limiting how much low-frequency content

is included in the gradient calculation, otherwise the lower spatial frequencies tend

to dominate the search direction.

The result of Equation 4.12 is a new image that describes the quantity in which

each pixel in the deconvolving image should change in order to successfully converge.

Figure 4.7 depicts the first deconvolution search direction and contains balanced

edges that are the result of a convolution process. As the algorithm proceeds

iteratively, the quantity and amplitude of these edges diminishes until deconvolution

is achieved.
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Figure 4.7: First iteration search direction for the Multiscale Entropy
deconvolution of Figure 4.4(a).

Many convolution operations are required to calculate the gradient ∇(J(O))

(Equation 4.12) within every iteration. The implementation developed here uses

Fast Fourier Transforms (FFTs) to perform all convolutions due to the efficiency

advantages of convolving two signals in the frequency domain over the spatial domain

(Chapter 3). Furthermore, any convolution that involves the MODIS instrument

PSF requires a composite of 10 individual convolutions, one for each of the 10

detectors in the MODIS 1km resolution ocean colour bands. MODIS builds imagery

by horizontally scanning the surface of the Earth, resulting in each detector recording

the information for every 10th row. The first detector in MODIS band 8 is responsible

for image row numbers 1, 11, 21 and so on, the second detector is responsible for

image row numbers 2, 12, 22 and so forth. It has been previously identified that each

detector has a unique PSF (Figure 4.1). Therefore, accurate deconvolution requires

convolutions to be individually performed with the PSF of each detector, and every

10th convolved row for each corresponding detector to be extracted to construct the

final convolved response. This process adds a factor of 10 to the computation time
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for each MODIS PSF convolution, but is necessary to ensure accurate deconvolution

results are achieved.

A significant amount of research has been performed on step size estimation

techniques for gradient methods (Shi, 2005), with a stand-out algorithm known

as the BB method, which was published by Barzilai and Borwein (1988). This

method has been shown to achieve super-linear convergence in finding solutions

to convex quadratic problems. A dramatic reduction in processing time can be

achieved using the BB method due to its optimal step size selection. This effectively

reduces the algorithm compute time as the total number of iterations required to

achieve successful deconvolution is substantially reduced. There are several more

complicated methods that could be used for the step size estimation including the

Levenberg-Marquardt method (Moré, 1978) and even an appropriately modified

version of the adaptive backpropagation Rprop learning algorithm (Riedmiller and

Braun, 1993). As these techniques are significantly more demanding, the BB method

has been implemented for its computational efficiency and simplicity of use. The BB

method calculates the ideal step size for the convergence of the one-step gradient

method according to:

γ =

∑

[(On −On−1)× (∇(J(O))n −∇(J(O))n−1)]
∑

[∇(J(O))n −∇(J(O))n−1]2
(4.13)

where On−1 = previous image

∇(J(O))n−1 = previous search direction

This requires that the image and search direction from the previous iteration

be temporarily stored to calculate the stepping distance in the search direction of

Equation 4.12.

The MODIS Aqua ocean colour bands were designed to record water-based

measurements and have a dynamic range specifically calibrated to target these

regions. As such, land and water measurements often fall within the dynamic range

of the sensors and are well rendered by MODIS. However, when MODIS measures

extremely bright targets such as ice or clouds using the ocean colour bands, the real

signal is often many times brighter than the maximum sensitivity of the instrument.
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In this case, the recorded signal is truncated to the maximum recordable MODIS

value of 4095, which is a result of 12bit quantisation of all MODIS bands. Figure 4.8

displays a scatter plot of the 500m resolution MODIS Aqua band 3 (469nm) with the

1km resolution MODIS Aqua band 8 (412nm) for a typical scene containing a range

of water, land and cloud measurements. MODIS band 3 contains a wider dynamic

range than the ocean colour bands and bright cloud measurements do not saturate

the band 3 detectors. MODIS Aqua band 8, however, has a clear upper limit which

prevents high-radiance measurements from being radiometrically accurate.

A problem arises for the deconvolution of imagery containing saturated

measurements. The correct quantity of instrumental distortion is not accounted for

during deconvolution due to the forced truncation of the true radiometric brightness

of ice and clouds. This results in severe underestimation of instrumental effects up

Figure 4.8: Scatter plot of 500m resolution MODIS Aqua band 3 (469nm) with
1km resolution MODIS Aqua band 8 (412nm) for a typical MODIS Aqua scene
containing a range of water, land and cloud measurements. The upper limit of
MODIS Aqua band 8 measurements at the value 4095 is caused by the limited
dynamic range of the ocean colour detectors.
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to a factor of approximately 25 for some ocean colour bands. Therefore, accurate

deconvolution is unattainable in regions containing saturated measurements without

applying some form of pre-deconvolution correction.

A cross-band correction method was developed to estimate the brightness of

saturated ocean colour band measurements that have undergone truncation. This is

achievable because other high-resolution MODIS bands contain significantly larger

dynamic ranges and do not experience detector saturation. Each MODIS Aqua

ocean colour band was spectrally matched to the closest 250m or 500m MODIS

land/cloud band (Table 4.1). For each combination of bands, the saturated ocean

colour measurements were discarded, the high-resolution matched MODIS band was

appropriately downscaled, and a linear relationship was calculated (Figure 4.9).

Before deconvolution was applied, all saturated ocean colour measurements were

replaced with radiometric estimates using these linear relationships (Figure 4.10).

While the estimated measurements appear rather unnatural, this approach provides

a significantly more accurate radiometric response for bright features and reduces

deconvolution inaccuracies introduced with truncated measurements. This saturated

measurement correction method is crucial for removing the correct quantities of

instrumental distortion from MODIS data.

Table 4.1: Spectrally matched band combinations of the MODIS ocean colour
and high-resolution land/cloud bands.

MODIS ocean colour band Matched high-resolution MODIS band

Band 8 (412nm)

Band 3 (469nm)Band 9 (443nm)

Band 10 (488nm)

Band 11 (531nm)
Band 4 (555nm)

Band 12 (547nm)

Band 13 (667nm)
Band 1 (645nm)

Band 14 (678nm)

Band 15 (748nm)
Band 2 (859nm)

Band 16 (869nm)
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Figure 4.9: Scatter plot of 500m resolution MODIS Aqua band 3 (469nm) with
1km resolution MODIS Aqua band 8 (412nm) for a typical MODIS Aqua scene
with filtered saturated measurements.

Figure 4.10: Scatter plot of 500m resolution MODIS Aqua band 3 (469nm)
with 1km resolution MODIS Aqua band 8 (412nm) for a typical MODIS Aqua
scene with estimated saturated measurements.
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Deconvolution generally increases the brightness of bright features and decreases

the brightness of dark features in regions of contrast. After deconvolution is applied,

it is common for many data values to be less than 0, and there will certainly be many

data values greater than 4095 after saturation correction is applied. All of these data

values must be reassigned to 0 and 4095 respectively as a requirement of standard

MODIS processing. The value of -1 is reserved for absent MODIS measurements

which occur in 9 out of 10 MODIS granules. These values must also be replaced to

allow subsequent processing stages to be successful.

4.4 Results

The accuracy of the deconvolution algorithm is evaluated by convolving a synthetic

test scene, adding noise, then deconvolving the scene and analysing the differences.

Initially, a standard image processing test scene (Figure 4.11(a)) is convolved with

the MODIS Aqua band 8 PSF and average band 8 noise (Xiong et al., 2009) is added

(Figure 4.11(b)). The difference between the original and the convolved image is

displayed in Figure 4.11(c) and indicates the effect the instrument would have if the

original image was rendered by MODIS Aqua band 8. This particular image contains

a maximum individual pixel error of 90.01%. Figure 4.11(d) displays a frequency

histogram of the pixel differences in Figure 4.11(c). The convolved image is then

deconvolved using the implemented Multiscale Entropy deconvolution algorithm and

the result is displayed in Figure 4.11(e). The difference between the original and the

deconvolved image is displayed in Figure 4.11(f) and a frequency histogram of this

difference is shown in Figure 4.11(g).

The Multiscale Entropy deconvolution algorithm removes instrument effects

down to a level where no visible structures remain (Figure 4.11(f)) and the maximum

individual pixel error has been reduced from 90.01% to 0.34%. The frequency

histogram in Figure 4.11(g) indicates that the final pixel differences are normally

distributed with a maximum magnitude of 0.18, whereas the Gaussian noise added

to the original image had a maximum magnitude of 0.11. Therefore, it is clear that

Multiscale Entropy deconvolution has successfully removed the instrument effects
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(a)

(b)

Figure 4.11: Synthetic data deconvolution accuracy test showing (a) the
original image and (b) the original image convolved with MODIS Aqua band
8 PSF and average band 8 noise added.
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(c)

(d)

Figure 4.11 continued: Synthetic data deconvolution accuracy test showing (c)
the difference between the original and convolved image and (d) a frequency
histogram of (c).
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(e)

(f)

Figure 4.11 continued: Synthetic data deconvolution accuracy test showing (e)
the convolved image after deconvolution with the developed algorithm and (f)
the difference between the original and deconvolved image.
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(g)

Figure 4.11 continued: Synthetic data deconvolution accuracy test showing (g)
a frequency histogram of (f).

from the data with a high level of accuracy.

Figure 4.12 shows an image from MODIS Aqua band 12 (546nm - 556nm) that

was chosen due to the sensitivity of coastline contrast in that waveband. The original

convolved and noisy data as received from MODIS Aqua is shown in Figure 4.12(a)

and the deconvolved data is shown in Figure 4.12(b). Figure 4.12(c) shows the

relative pixel error with an adjusted scale and represents the instrument effects that

are removed from the data. These effects are further represented with a frequency

histogram in Figure 4.12(d) and have a maximum individual pixel error of 19.44% for

this particular image. Considerable contamination can be seen in land regions due to

large changes in radiance (Figure 4.12(c)). The coastline also contains contamination

with the largest errors being produced at high radiance edges. The deconvolution

process has increased the brightness of the beaches and sharp edges have been

resolved.
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(a)

(b)

Figure 4.12: MODIS deconvolution test showing (a) the original MODIS Aqua
band 12 data (convolved and noisy) and (b) the deconvolved MODIS Aqua
band 12 data. Image of Hawke Bay, New Zealand (Approx. lat/long -39.44,
177.46), 06/04/2009.
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(c)

(d)

Figure 4.12 continued: MODIS deconvolution test showing (c) the rescaled
relative error removed from the original data and (d) a frequency histogram of
the relative error. Image of Hawke Bay, New Zealand (Approx. lat/long -39.44,
177.46), 06/04/2009.
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Figure 4.13 shows the deconvolution of an open-ocean scene from MODIS Aqua

band 12. This scene has undergone the same process as the previous example

but highlights an extreme case where bright clouds contaminate dark ocean

measurements. Figures 4.13(a) and 4.13(b) show the convolved and deconvolved

MODIS Aqua band 12 images. The rescaled relative pixel error is displayed in

Figure 4.13(c) and its frequency histogram is shown in Figure 4.13(d). The maximum

individual pixel error for this scene reaches 114.63% which is significantly larger than

the previous coastal scene example (Figure 4.12). The largest contamination errors

are observed immediately around high-contrast cloud edges. However, the large

spatial extent of the PSF causes water regions close to clouds, within approximately

20km, to experience moderate instrumental distortion. This contamination becomes

even more severe for pockets of water that are surrounded by cloud cover. In this

case, Multiscale Entropy deconvolution successfully removes instrumental distortion

and restores accurate ocean measurements in high-contrast areas.

In removing the radiance contamination caused by the instrument optics, a

greater quantity of ocean measurements become available for processing. Without

deconvolution, ocean measurements near cloud edges are flagged for removal and

do not contribute to the final data products. This reduces the spatial coverage and

availability of ocean measurements and can detrimentally impact the usefulness

of satellite imagery. When the instrumental distortion is removed via Multiscale

Entropy deconvolution, a significant number of valuable ocean measurements are

recovered and can then contribute to downstream satellite data products, which

improves the spatial coverage and availability of the data.

The bow-tie effect of scanning-based satellite instruments has the potential to

introduce inaccuracies into the deconvolution process. As a result of bow-tie effects,

the number of spatially duplicate measurements increases towards the left and

right edges of a MODIS scene. This effect is most extreme at these edges and is

present in level 1A MODIS data on which the deconvolution algorithm operates. The

deconvolution process can introduce radiometric inaccuracies into these areas where

spatial contrast is observed due to the contribution of duplicate measurements. This

effect does not occur for deconvolution at the centre of a MODIS scene where there
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(a)

(b)

Figure 4.13: MODIS deconvolution test showing (a) the original MODIS Aqua
band 12 data (convolved and noisy) and (b) the deconvolved MODIS Aqua
band 12 data. Image of Southern Pacific Ocean (Approx. lat/long -45, 150),
21/04/2010.
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(c)

(d)

Figure 4.13 continued: MODIS deconvolution test showing (c) the rescaled
relative error removed from the original data and (d) a frequency histogram
of the relative error. Image of Southern Pacific Ocean (Approx. lat/long -45,
150), 21/04/2010.
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are no duplicate measurements. A possible solution to this problem could employ a

mask-based method to account for measurement duplication and prevent errors from

being introduced during deconvolution. However, this process has not been included

in the developed implementation. Wherever possible, the measurements analysed in

this thesis have been taken from regions away from the edge of MODIS scene.

4.5 Summary

The deconvolution algorithm implemented throughout this chapter has the potential

to autonomously and efficiently remove instrument effects from optical deconvolution

problems. The removal of instrumental spatial distortion is greatly beneficial to the

quality of satellite imagery because it prevents errors from being propagated and

magnified by downstream processing. This process improves all MODIS ocean colour

data products which are commonly used in many scientific fields.

The Multiscale Entropy deconvolution algorithm provides advantages to both

terrestrial and marine environments where spatial contrast is observed. Coastal

water measurements that are compromised by bright land masses receive particular

improvement. This is crucial to the sustainable management of water regions

in densely populated coastal zones. Open-ocean measurements containing high-

radiance clouds that contrast with dark ocean also receive vast improvements in

data measurement quality. This can reduce the quantity of ocean measurements

that are removed due to cloud contamination and improves the spatial coverage of

satellite data products.

The primary research contributions in this chapter include: a multi-detector

convolution process which is fundamental to the operation of the deconvolution

algorithm; a detector saturated radiometric correction method that allows MODIS

measurements beyond the dynamic range of the detectors to be estimated and more

accurately contribute to the deconvolution; and the development of a combination

of efficient computational methods that culminate in an accurate and robust

deconvolution algorithm. These components are unique and critical to the successful

deconvolution of MODIS Aqua imagery.



Chapter 5

Validation

5.1 Introduction

Remote sensing data is a useful resource for the management of coastal and inland

water bodies. Satellite imagery combined with physical and biological models can be

used to forecast harmful algal blooms, track sediment transport and monitor general

water quality (Stumpf and Tomlinson, 2005; Ruhl and Schoellhamer, 2001; Brando

and Dekker, 2003). Many climate studies use remote sensing satellite products and

rely on this information to be highly accurate (Behrenfeld et al., 2006; Higurashi

and Nakajima, 2000; Achard et al., 2002; Kaufman et al., 2002). Remote sensing

ocean colour products are becoming increasingly important for the management of

water quality in coastal zones (Platt et al., 2008). As such, it is vital to quantify

the accuracies and uncertainties of remote sensing products so that their use in

marine research can be made with confidence. This is often achieved by comparing

remote sensing products with in-situ validation measurements and, in the case of

calibration, incorporating correction factors into the data processing stream.

Satellite instruments measure top-of-atmosphere radiance that comprise a

combination of natural physical processes. For passive satellite sensors, the signal

recorded at satellite height is the reflection of sunlight off the surface of the

Earth. Light recorded at the satellite sensor is affected by atmospheric, oceanic and

coupled atmosphere-ocean processes. Coastal marine measurements can additionally

contain bathymetric effects where reflections occur at the surface and off the shallow

92
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seabed. It is important to note that only approximately 10% of the recorded top-

of-atmosphere signal corresponds to the water signal, with the remaining 90%

being attributed to atmospheric effects (Yang and Gordon, 1997). To derive marine

products, it is necessary to remove the atmospheric component of the signal

using a process called atmospheric correction (Kaufman, 1989; Vermote et al.,

2002; Wang, 2010). In fact, the production of ocean colour and other water-based

products implicitly refers to the application of atmospheric correction methods.

After atmospheric correction is applied, the remaining signal is further processed to

account for variables such as solar zenith angle, Earth-Sun distance, sensor waveband

response and a range of sensor transmittance processes. Once this processing is

complete, one of the most important output products for marine purposes is the

spectral remote sensing reflectance, Rrs(λ), that describes the fraction of the incident

light that is reflected from the surface of the water under consistent lighting

conditions. Remote sensing reflectance is a primary data product used to derive many

higher-level marine products including chlorophyll-a concentration, Total Suspended

Matter (TSM) (also known as suspended solids or suspended particulate matter)

and the spectral diffuse attenuation coefficient of downwelling irradiance at 490nm

(Kd(490)). These products are readily used in marine research and will be the focus

of the in-situ validation efforts in this chapter.

The optical properties of open-ocean waters are reasonably well understood

and have attracted a significant amount of research (Gordon and Clark, 1980;

Dekker, 1993; Lee et al., 1999). However, optically complex coastal waters provide

increased signal processing difficulty due to shallow water processes and higher

concentrations of in-water constituents including algal blooms, Coloured Dissolved

Organic Matter (CDOM) (also known as yellow substance, or gelbstoff), suspended

particulate matter, coccolithophores, detritus, and bacteria (Sathyendranath, 2000).

Water is typically classified into two optical cases (Morel and Prieur, 1977; Mobley

et al., 2004). Case 1 waters are predominantly affected by phytoplankton and

its subsequent by-products. Open-ocean environments are generally classified as

case 1 waters and behave predictably from a remote sensing standpoint. Case

2 waters contain much larger quantities of TSM and CDOM which significantly
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increase their optical complexity. Many coastal zones are classified as optical case 2

waters because they often contain higher concentrations of suspended particulate

matter from terrestrial run-off. This classification system is commonly used for

computational modelling. Predictive bio-optical models can estimate the inherent

optical properties of case 1 water such as absorption, scattering and backscattering

coefficients, as well as the apparent optical properties which include reflectance and

the diffuse attenuation coefficient. Chlorophyll-based bio-optical models also use this

classification scheme and specialise at estimating chlorophyll concentrations from

satellite measurements of ocean colour.

Instrumental distortion, which is also referred to as adjacency effects or stray light

from land, occurs in high-contrast scenes where bright land or clouds contaminate

the water signal. This source of contamination is an important factor for water-based

measurements in coastal regions. In this chapter, instrumental distortion effects

are removed from MODIS Aqua imagery using Multiscale Entropy deconvolution

(Chapter 4), and the results are compared with accurate in-situ measurements.

A comparison of both the original (convolved) and deconvolved MODIS products

against the in-situ measurements will allow for any improvement to be quantified.

Further deconvolution validation is investigated by comparing MODIS Aqua imagery

with a high-resolution QuickBird image containing an Antarctica ice edge. This is

a good example of a high-contrast satellite image that should substantially benefit

from deconvolution.

The first area of investigation is the north-west Baltic Sea which contains unique

brackish waters with low salinity due to restricted salt input water from the North

Sea. It is estimated that a significant quantity of freshwater (upwards of 450km3)

contributes annually to the Baltic Sea from surrounding catchment areas (Rydén and

Karlsson, 2012). The primary circulation driver is surface wind that inputs Ekman

transport forces into the waterbody (Jansson, 2003). It is common for cyanobacterial

blooms to become extensive in the Baltic Sea throughout the summer period. The

atmospheric conditions over the Baltic Sea are typically relatively clear (Carlund

et al., 2005). The Baltic Sea has particularly high CDOM concentrations which

result in high absorption of short wavelengths ranging from ultraviolet to green.
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Additionally, red wavelengths are heavily absorbed by water. This leads to less

reflectance and a decrease in the signal-to-noise ratio in these parts of the spectrum.

For this reason, accurate atmospheric correction is vital to produce good ocean

colour products for the Baltic Sea region. The Baltic Sea is generally classified as

optical case 2 waters due to its high CDOM content (Kratzer et al., 2003, 2008;

Kratzer and Tett, 2009). This further increases the difficulty of deriving accurate

marine products in this region because of the complex interaction of shallow coastal

waters and high concentrations of particulate matter.

5.2 In-situ Baltic Sea

5.2.1 Method

MODerate resolution Imaging Spectroradiometer (MODIS) is a satellite instrument

aboard the Earth observing system platform Aqua. MODIS Aqua captures data

in 36 spectral bands with wavelengths ranging from 0.4µm to 14.4µm, and at

several spatial resolutions including 2 bands at 250m, 5 bands at 500m and 29

bands at 1km resolution. MODIS is designed to deliver a wide range of ocean

colour products. The validation undertaken in this chapter will concentrate on 1km

resolution imagery because this is the spatial resolution for which MODIS Aqua

instrument Point Spread Functions (PSFs) are available (Meister and McClain,

2010). More specifically, MODIS Aqua captures 1km resolution ocean colour imagery

at centre-wavelengths of 412, 443, 488, 531, 547, 667, 678, 748 and 869nm and these

wavebands must undergo individual deconvolutions using their respective unique

PSFs before comparisons can be made with in-situ measurements.

The in-situ validation measurements were collected by Dr. Susanne Kratzer et

al. (pers. comm., August 11, 2012) from the Baltic Sea in July 2008 using the

instrumentation and techniques described by Kratzer and Vinterhav (2010) and

Zibordi et al. (2012). The collection of this in-situ data was specifically designed

for comparison with satellite measurements that cover extended spatial areas, as

determined by resolution of the satellite instrument. The sampling stations were

selected such that they form two transects (Figure 5.1). The first transect includes
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Figure 5.1: In-situ measurement stations for the July 2008 sea-truthing
campaign.
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stations BI, BII, BIII that were established by Kratzer and Tett (2003, 2009) and

station BY31, the deepest part of the Baltic Sea (459m). The stations of the second

transect include CI, CII and CIII and are positioned approximately 10km apart.

They were originally selected for the evaluation of adjacency effects in the coastal

zone (Vinterhav 2008). Both transects range in distance from land from 7 to 32km.

The in-situ measurements were taken in 2008 over a period of eight days that

experienced favourable water illumination and sea state conditions. It was noted

by Kratzer and Vinterhav (2010) that all of the measurement dates offered more or

less cloud free sampling conditions.

Temporally and spatially matched MODIS overpasses were collected and

processed to level 2 using the SeaWiFS Data Analysis System (SeaDAS) version

6.4 for both the original and deconvolved imagery. For each in-situ measurement, a

3× 3 pixel area corresponding to the position of the sampling station was extracted

from the MODIS image and filtered for invalid data points. Retrieved pixel groups

with at least 5 values remaining after filtering were averaged and compared with the

in-situ measurements. The locations and sample times for the in-situ measurements,

along with the matching MODIS overpass times are reported in Table 5.1 and true-

colour images of each entire MODIS overpass are displayed in Figure 5.2.

Table 5.1: Sampling stations, sampling times and MODIS overpass times for
the July 2008 sea-truthing campaign.

Date Sampling station Sampling time MODIS overpass

(GMT) (GMT)

24/07/2008 BY31 08:58 12:25

BIII 10:01

BII 10:53

BI 11:37

25/07/2008 CI 08:35 11:30

CII 09:21

CIII 10:15

31/07/2008 CIII 10:14 10:55

CII 11:10

CI 12:00
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The validation undertaken in this chapter will concentrate on comparing

key ocean colour quantities including the spectral remote sensing reflectance,

chlorophyll-a concentration, TSM and Kd(490). The in-situ remote sensing

reflectance measurements are available for the wavelengths 412, 443, 490, 510, 560,

620 and 670nm, and were selected to match the wavelengths of MERIS detectors.

As a result, there are discrepancies between the in-situ and MODIS measurement

wavelengths. To accommodate this inconsistency, a realistic interpolation or curve-

fitting method must be applied to the in-situ measurements so that reflectance

values can be estimated at the appropriate MODIS wavelengths. Initially, a 6th

order polynomial was fitted to the in-situ remote sensing reflectance measurements

to allow MODIS-compatible values to be extracted. However, with only very few

spectral in-situ data points, the fitted curves provided unsatisfactory and unrealistic

results, requiring a more comprehensive fitting technique.

Every waterbody contains a unique reflectance spectrum that is affected by

in-water constituents, suspended particulate matter, living micro-organisms and

bathymetric topology. Ficek et al. (2011) report a range of typical Baltic Sea

reflectance spectra that illustrate the spectral response with increasing quantities

of CDOM (Figure 5.3). These spectra can be used to constrain the in-situ spectral

curve-fitting process and provide more accurate MODIS-comparable reflectance

measurements.

The aim is to use the shape of the typical Baltic Sea spectra to constrain the

interpolation and allow the use of higher order polynomial fitting. Each group of

in-situ reflectance measurements was matched to a suitably amplified Baltic Sea

reflectance spectrum. The amplification process is justifiable because the spectra

generally increase in reflectance consistently across the visible wavelengths (Figure

5.3). The in-situ reflectance measurements were then superimposed onto the matched

Baltic Sea spectrum and curves were fitted to the data points. An 11th order

polynomial was chosen for curve fitting because it sufficiently captured the structure

and variation of the data. During the fitting process, the in-situ data points were

weighted 50 times greater than the underlying typical Baltic Sea spectra. This is

because, while the underlying typical spectra are required to help constrain the fitted



5.2. In-situ Baltic Sea 100

Figure 5.3: Typical Baltic Sea reflectance spectra for increasing quantities of
CDOM. Data originally measured and reported by Ficek et al. (2011).

curves, the in-situ measurements are significantly more important and should be

treated preferentially. Using a weighted combination of the in-situ measurements and

typical Baltic Sea reflectance spectra, optimal MODIS-compatible measurements

were extracted for each group of in-situ spectral samples to allow direct comparison

with MODIS Aqua data. Figure 5.4 displays an underlying amplified typical Baltic

Sea reflectance spectrum, the fitted weighted curve, the in-situ measurements and

the MODIS-compatible measurements drawn from the fitted curve.

The in-situ measurements were designed to replicate the MERIS product of

water-leaving reflectance which is defined as (Antoine and Morrel, 2005):

ρw(λ) = π
Lw(λ)

Ed(λ)
(5.1)

where ρw = MERIS water-leaving reflectance (sr−1)

λ = observed wavelength (nm)

Lw = water-leaving radiance (µWcm−2nm−1sr−1)

Ed = downward irradiance (µWcm−2nm−1)
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Figure 5.4: Spectral reflectance curve showing an underlying amplified typical
Baltic Sea reflectance spectrum (black crosses), fitted curve weighted by in-situ
measurements 50:1 (red line), in-situ measurements (blue crosses) and MODIS-
compatible measurements drawn from the fitted curve (green crosses). In-situ
measurements were recorded on 24/07/2008 by Kratzer and Vinterhav (2010)
at sampling station BIII (Figure 5.1) in the Baltic Sea region.

In contrast, MODIS produces remote sensing reflectance, which is defined

(Zibordi et al., 2010):

Rrs(λ) =
nLw(λ)

E0(λ)
(5.2)

where Rrs = MODIS remote sensing reflectance (sr−1)

nLw = normalised water-leaving radiance (µWcm−2nm−1sr−1)

E0 = mean extraterrestrial solar irradiance (µWcm−2nm−1)

(Thuillier et al., 2003)
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These two quantities are largely equivalent, except for a factor of π contained

in the MERIS water-leaving reflectance product (Equation 5.1). Gordon and Voss

(1999) identified that a good approximation to re-align these products is:

Rrs(λ) =
ρw(λ)

π
(5.3)

Applying this correction allows the in-situ water-leaving reflectance values to be

directly compared with the MODIS remote sensing reflectance measurements.

5.2.2 Results

MODIS-compatible reflectance values were extracted from the in-situ Baltic Sea

measurements using the weighted curve-fitting method described in Section 5.2.

Figures 5.5 and 5.6 display comparisons of the in-situ and MODIS spectra before

and after deconvolution for each sampling station on 24/07/2008. The spectral

profile of the MODIS values is reasonably well matched to the shape of the in-situ

measurements, and these profiles are indicative of the spectral measurement on the

other sampling dates. Even containing similar profiles, the MODIS measurements

can be seen to underestimate and overestimate the in-situ truthing values. In all

cases, the deconvolved reflectance values are very similar to the original MODIS

values. This suggests that the deconvolution process does not have a large impact

for these particular validation measurements.

Figure 5.7 displays a band-by-band breakdown of spectral measurements

including those depicted in Figures 5.5 and 5.6, as well as all measurements from

the other sampling dates. A perfect match between the MODIS measurements and

truthing values would produce clustering around the 1:1 line, and this is clearly not

the case. While some points fall close to the 1:1 line, the spread of points away from

the 1:1 line indicates that MODIS is not estimating reflectance well in the Baltic

Sea either before or after deconvolution. There are several possible reasons for such

widespread results. The optical complexity of coastal waters makes it difficult for

atmospheric correction to accurately remove the atmospheric signal and produce
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(a) BI

(b) BII

Figure 5.5: Direct comparison of in-situ remote sensing reflectance spectra
with MODIS reflectance spectra before and after deconvolution for sampling
stations BI and BII on 24/07/2008.
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(a) BIII

(b) BY31

Figure 5.6: Direct comparison of in-situ remote sensing reflectance spectra
with MODIS reflectance spectra before and after deconvolution for sampling
stations BIII and BY31 on 24/07/2008.
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(a) Rrs 412nm (b) Rrs 443nm

(c) Rrs 488nm (d) Rrs 531nm

(e) Rrs 547nm (f) Rrs 667nm

(g) Rrs 678nm

Figure 5.7: Individual band scatter-plot comparisons of in-situ and MODIS
remote sensing reflectance measurements before and after deconvolution for
the 2008 sea-truthing campaign (Kratzer and Vinterhav, 2010).
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reliable water measurements. High concentrations of CDOM in the Baltic Sea also

contribute to processed measurement inaccuracy, especially in the blue-green part

of the spectrum where CDOM heavily absorbs and disrupts the signal. Additionally,

it was recorded that extensive cyanobacterial blooms were present throughout the

Baltic Sea during the 2008 sea-truthing campaign (Kratzer and Vinterhav, 2010).

These cyanobacterial blooms can result in patchiness when viewed from space and

may also disrupt remote sensing reflectance and subsequent products.

Comparisons can also be made with higher-level products including chlorophyll-

a concentration (Chl a), Total Suspended Matter (TSM) and the spectral diffuse

attenuation coefficient for downwelling irradiance (Kd(490)) as seen in Figure 5.8

(a), (b) and (c) respectively. The MODIS GSM chlorophyll-a concentration shows

significant deviation from the 1:1 line with deconvolution occasionally impacting

the estimation (Figure 5.8(a)). Such widespread results do not inspire confidence in

MODIS Aqua chlorophyll-a products in the Baltic Sea. Similar results are seen for

TSMmeasurements where severe MODIS overestimation is apparent (Figure 5.8(b)).

The MODIS Kd(490) estimations are all close to the 1:1 line and compare reasonably

well to the sea-truthing values (Figure 5.8(c)). Kd(490) is primarily derived from

MODIS Aqua bands 10 (490nm) and 4 (555nm) (Mueller, 2000). The results are

consistent with Darecki and Stramski (2004) who showed that Kd(490) was the

most accurate MODIS product in the Baltic Sea over 25 validation datasets collected

between 1993 and 2001. The Kd(490) results also appear to improve on results from

Lee et al. (2005). This is possibly due to an updated atmospheric correction model

in SeaDAS version 6 that includes data from the AErosol RObotic NETwork Ocean

Colour (AERONET-OC) stations (Zibordi et al., 2009, 2010).

In addition to visual comparisons, it is important to quantify the impact of

deconvolution over all sample points. The primary measures that will be used to

quantify the difference between the MODIS estimates and the in-situ measurements



5.2. In-situ Baltic Sea 107

(a) Chlorophyll-a (GSM)

(b) TSM

(c) Kd(490)

Figure 5.8: Comparisons of in-situ sea-truth and MODIS Aqua chlorophyll-a
concentration (GSM), Total Suspended Matter (TSM) and the spectral diffuse
attenuation coefficient (Kd(490)) before and after deconvolution for the 2008
sea-truthing campaign (Kratzer and Vinterhav, 2010).



5.2. In-situ Baltic Sea 108

are the relative Mean Norm Bias (MNB) and the relative Root Mean Square (RMS),

as used in similar analyses by Cristina et al. (2009) and Kratzer and Vinterhav

(2010):

MNB =
1

N

N
∑

i=1

(

yi − xi

xi

)

× 100% (5.4)

RMS =

√

√

√

√

1

N

N
∑

i=1

(

yi − xi

xi

)2

× 100% (5.5)

where N = number of sample points

y = in-situ measurement

x = MODIS measurement (original or deconvolved)

When calculated using all sample points, the MNB provides a measure that

describes the average difference between the in-situ and MODIS measurements,

including a direction bias. That is, a positive MNB indicates that the average of the

measurements is overestimated and a negative MNB indicates that the average of the

measurements is underestimated. It should also be noted that a MNB calculation

on data evenly spread above and below the 1:1 line would produce a value of 0,

effectively hiding any errors. For this reason, it is also appropriate to calculate the

RMS where every difference is treated as a positive error. In this way, the RMS

describes the cumulative sum of all measurement errors and can be used to determine

the total magnitude of the errors.

Table 5.2 displays MNB and RMS results calculated using all sample points

in each spectral band for the MODIS original and deconvolved measurements. An

average is taken across all bands to provide a final impact assessment for remote

sensing reflectance. MNB and RMS statistics are also derived for chlorophyll-a, TSM

and Kd(490) using all available sampling points. The improvement attained using

deconvolution is calculated as the difference between the original and deconvolved

RMS results, with positive values indicating an improvement and negative values

indicating degradation. This improvement is only calculated for RMS because the

bias component in the MNB would render its result misleading.
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Table 5.2: MNB and RMS results for remote sensing reflectance, chlorophyll-a,
TSM and Kd(490) for original and deconvolved MODIS Aqua measurements.
The improvement results indicate the magnitude of benefit encountered using
deconvolution.

Original Deconvolved Improvement

Rrs(λ) MNB RMS MNB RMS RMS

(nm) (%) (%) (%) (%) (%)

412 0.99 56.13 0.25 55.32 0.80

443 0.99 56.13 0.94 55.03 1.10

488 8.18 42.32 8.77 41.58 0.74

531 -7.03 28.60 -7.20 28.28 0.32

547 -10.07 24.75 -10.30 24.46 0.29

667 -8.38 24.39 -8.73 24.00 0.39

678 -13.40 37.72 -13.90 38.05 -0.33

Spectral Average -4.10 38.58 -4.31 38.10 0.47

Chl a (OC3) 225.13 266.28 222.78 262.72 3.56

Chl a (Carder) 240.11 298.06 247.49 296.69 1.36

Chl a (Clark) 146.56 218.95 144.06 220.98 -2.03

Chl a (GSM) 39.34 101.07 46.74 96.60 4.47

TSM 145.57 215.19 136.56 200.67 14.52

Kd(490) -9.17 15.30 -8.29 14.60 0.69

The results show that MODIS Aqua remote sensing reflectance measurements

are often underestimated, regardless of deconvolution. This is reflected in the

spectral average MNB of approximately -4% and the spectral average RMS of

approximately 38%. The improvement from deconvolution appears small but positive

from spectral bands 412nm to 667nm, and negative for band 678nm. The spectral

average improvement for remote sensing reflectance is 0.47% which indicates a small

improvement for this particular validation data.

The different chlorophyll-a algorithms all produce overestimated concentrations

for both original and deconvolved MODIS measurements. The GSM algorithm

produces the smallest errors out of all of the algorithms, but is still moderately

overestimated. Deconvolution improves the OC3, Carder and GSM algorithm results

by between approximately 1.3% to 4.5%, but is detrimental to the Clark algorithm
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adding approximately 2% RMS error to the original MODIS measurements. TSM is

generally overestimated but does receive a considerable improvement of 14.52% RMS

from deconvolution. The diffuse attenuation coefficient is slightly underestimated

and receives a small improvement from deconvolution.

The results show no consistent significant improvement across any of the analysed

MODIS products after deconvolution is applied. However, an inspection of some of

the attributes of instrumental deconvolution may provide some insight on the in-

situ validation results. The MODIS Aqua ocean colour PSFs contain a low-response

area that extends on average up to approximately 12km from the image point of

the instrument, and moderate contamination would be expected for bright features

within this distance. Most of the in-situ measurement locations are considered to be

open-sea sampling stations with the closest to land being approximately 7km. This

means that the quantity of instrumental distortion from land would be expected to

be small for the sampling points analysed in this study.

The three analysed MODIS overpasses show close to ideal sampling conditions

for a typical validation process where minimal cloud cover and good sea state are

optimal. However, these conditions are not sufficient to examine the full effects

of instrumental distortion removal via deconvolution. In fact, such clear observing

conditions are globally extremely rare. Any typical satellite scene with moderate

cloud contamination would be expected to substantially benefit from instrumental

deconvolution. As such, it would be expected that deconvolution would not have a

large impact on imagery containing minimal contrast, such as the validation data

so far analysed. This suggests that an alternative validation strategy should be

investigated to comprehensively determine the accuracy and potential benefits of

satellite image deconvolution.

5.3 QuickBird Southern Ocean

5.3.1 Method

A secondary validation was undertaken using a high-resolution QuickBird image of

an Antarctic ice edge. QuickBird is a commercial Earth observing system launched
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in 2001. It captures panchromatic imagery at 60cm resolution, and multispectral

imagery at 2.4m resolution. An Antarctic ice edge QuickBird image was chosen

due to its high contrast and large spatial extent compared to individual in-situ

measurements. This will allow for the comparison of many MODIS data points

and will provide a wider representation of the potential benefits of satellite image

deconvolution. The QuickBird ice edge image used in this chapter was supplied by

Dr. Petra Heil (pers. comm., March 13, 2013) and was captured at 4:27 AM UTC

on 26/01/2011 with solar zenith and azimuth angles of approximately 52◦ and 58◦

respectively. The image ranges in latitude from -67.72◦ to -67.92◦ and longitude from

66.61◦ to 67.05◦ and contains 3 spectral bands, 1 for each of the blue, green and

red bandpasses. Figure 5.9 shows a true-colour composite of the full extent of the

QuickBird image.

The provided QuickBird image was a radiometrically corrected standard level

2 pan-sharpened data product which includes standard correction processing such

as relative radiometric inter-detector response, non-responsive detector fill, and a

conversion for absolute radiometry (DigitalGlobe, 2006). To make this imagery

comparable to MODIS data, the QuickBird data must be converted to top-of-

atmosphere spectral radiance using the following equation (Krause, 2005):

L(λ, pixel, band) =
K(band) � q(pixel, band)

∆λ(band)
(5.6)

where L(λ, pixel, band) = top-of-atmosphere spectral radiance

image pixels (Wm−2sr−1nm−1)

K(band) = absolute radiometric calibration factor for a

given band (Wm−2sr−1count−1)

= [0.01851735, 0.01364197, 0.01783568]

RGB for the provided QuickBird image

q(pixel, band) = radiometrically corrected detector data (counts)

∆λ(band) = effective bandwidth for a given band (µm)

= [0.0574, 0.0630, 0.0543]

RGB for the provided QuickBird image
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Figure 5.9: QuickBird RGB true-colour image featuring an Antarctic ice edge.
Image provided by Dr. Petra Heil (ACE CRC and AAD).
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After correction, the QuickBird data are now top-of-atmosphere radiance

measurements, but their spectral band passes differ from MODIS and some

adjustments must be made accordingly.

The closest matching MODIS Aqua overpass was captured at 9:45 AM UTC

with solar zenith and azimuth angles of approximately 49◦ and 323◦ respectively.

The QuickBird and MODIS capture time difference results in a small change in the

solar zenith angle which is not likely to introduce significant discrepancies into the

comparison. The MODIS overpass was deconvolved using the techniques developed

in Chapter 4, and processed to level 2 calibrated top-of-atmosphere radiance using

SeaDAS 6.4. The MODIS pixels were then located within the QuickBird scene.

Initially, a small subset of the MODIS image that corresponds to the extent of the

QuickBird image was retrieved by filtering all pixel coordinates not contained within

this region. The latitude and longitude coordinates of the subset pixel locations are

depicted with crosses in Figure 5.10. The pixel locations that lie closer to each other

indicate overlapping MODIS measurements that are caused by the bow-tie effect of

scanning-based remote sensing instruments.

An inspection of the MODIS data points at the locations depicted in Figure

5.10 revealed that all of the ice shelf pixels and many of the ice sheet pixels have

values beyond the maximum recordable intensity of the MODIS Aqua sensors. This

is due to the MODIS ocean colour bands having a precisely calibrated sensitivity and

dynamic range that is optimised for water-based measurements. A pre-deconvolution

correction technique was used to estimate the intensity of measurements that were

truncated due to detector saturation, as discussed in Chapter 4. This allows the

quantity of instrumental distortion to be more accurately defined and removed

by the deconvolution algorithm. Even so, the only MODIS measurements that are

appropriate for comparison are water pixels with values that lie within the dynamic

range of the instrument. Therefore, all radiance measurements above the maximum

intensity of the sensors are removed from the comparison for each spectral band.

MODIS Aqua captures measurements with an approximate spatial coverage of

1km× 1km at nadir, and this spatial coverage increases in both dimensions with the

instrument scan angle. The MODIS instrument PSF receives more than 99% of the
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recorded signal from a small circular region centred around the image point of the

instrument. For these reasons, the spatial coverage of the MODIS measurements was

estimated using appropriately dilated ellipses by taking into account the detector-

based geometry (Nishihama et al., 1997). Figure 5.11 shows the spatial coverage of

the final 21 MODIS measurements that are available for comparison in the blue-

band. The ellipses indicate the area under which all QuickBird data points are

averaged and the intensity of the filled ellipses show the values of the averaged

QuickBird data points.

The provided QuickBird imagery contains singular spectrally-wide blue, green

and red channels with centre wavelengths of 488nm, 543nm and 650nm respectively.

In contrast, MODIS Aqua offers a range of much narrower channels (approximately

10nm bandwidths) of which 2 bands are located in each of the blue, green and red

QuickBird channels. A spectral comparison of QuickBird and MODIS Aqua band

passes, along with a typical rescaled blue seawater reflectance spectrum (Smith and

Baker, 1981; Morel and Prieur, 1977), are displayed in Figure 5.12. Considering the

spectral response of the MODIS bands in relation to the QuickBird channels and

the target blue seawater spectrum, the MODIS bands must be combined in some

way to produce single red, green and blue images for direct comparison with the

QuickBird measurements. Appropriate spectral band weights must be calculated

in order to determine the relative percentages in which to combine the MODIS

bands for comparison. This is achieved by calculating Spectral Band Adjustment

Factors (SBAFs) (Chander et al., 2013). The SBAF calculation involves integrating

the spectral responses of the MODIS and QuickBird sensors with the spectral

signature of the target at each sampled wavelength, weighted by the respective

sensor. Each pair of blue, green and red MODIS SBAFs are normalised together

to calculate unique band percentage compositions in which to combine the MODIS

Aqua measurements. Having determined the percentage compositions of the MODIS
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bands, the following operations were carried out to produce 3 MODIS Aqua images

for direct comparison with the 3 QuickBird spectral measurements:

MODISblue = 0.67×MODIS(443nm) + 0.33×MODIS(488nm)

MODISgreen = 0.57×MODIS(531nm) + 0.43×MODIS(547nm)

MODISred = 0.54×MODIS(667nm) + 0.46×MODIS(678nm)

5.3.2 Results

Comparing MODIS Aqua calibrated top-of-atmosphere radiance measurements

with high-resolution QuickBird imagery may help successfully validate the

deconvolution process. Figure 5.13 shows the blue-wavelength down-sampled

QuickBird measurements plotted against the filtered original and deconvolved

MODIS Aqua data. As noted previously, many of the radiance values are beyond

the sensitivity of the MODIS Aqua detectors and have therefore been removed,

leaving 21 valid measurements in the blue-band comparison. Linear regression was

applied to determine the line of best fit and a correlation coefficient has been

calculated for each comparison. The linear regressions display reasonably similar

slopes and intercepts, and their correlation coefficients suggest that the deconvolved

data points are slightly more consistent with the QuickBird radiance measurements

for the blue-wavelength comparison.

Equivalent comparisons are made for the green and red QuickBird channels in

Figures 5.14 and 5.15. However, in both cases a significantly larger number of data

points were removed due to detector intensity saturation, and only very few data

points remain, especially in the red channel (Figure 5.15). With so few comparable

data points, it becomes difficult to have confidence in the relationship between

MODIS Aqua and QuickBird measurements. Also, comparing correlation coefficients

to determine whether deconvolution is having a positive effect becomes unreliable.

Therefore, nothing conclusive can be determined from the comparisons made for the

green and red channels for this particular validation data.

Ultimately, the failure of comprehensively validating MODIS Aqua measurements
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(a)

(b)

Figure 5.13: Comparison of MODIS Aqua original and deconvolved data
points with down-sampled QuickBird measurements for the blue wavelengths.
Linear regression is used to determine the line of best fit and the correlation
coefficients indicate how well the linear fit describes the data points. A
moderate number of comparable data points allows for confidence in a strong
relationship between MODIS and QuickBird measurements.
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(a)

(b)

Figure 5.14: Comparison of MODIS Aqua original and deconvolved data
points with down-sampled QuickBird measurements for the green wavelengths.
Linear regression is used to determine the line of best fit and the correlation
coefficients indicate how well the linear fit describes the data points. Few
comparable data points reduce the confidence in a strong relationship between
MODIS and QuickBird measurements.
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(a)

(b)

Figure 5.15: Comparison of MODIS Aqua original and deconvolved data
points with down-sampled QuickBird measurements for the red wavelengths.
Linear regression is used to determine the line of best fit and the correlation
coefficients indicate how well the linear fit describes the data points. Very
few comparable data points significantly reduce the confidence in a strong
relationship between MODIS and QuickBird measurements.
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using high-resolution QuickBird imagery is due to the selected scene not being

ideal. Having previously determined that an in-situ validation process failed to

comprehensively examine the full extent of deconvolution, it is logical to proceed

with a validation technique that provides a much larger spatial coverage. For the

purpose of validating a deconvolution technique, it is also logical to select a scene

that contains high contrast, such as an Antarctic ice edge. However, the major

downfall for the validation with the particular QuickBird scene used in this study is

the lack of valid water measurements. Returning to Figure 5.9, there is only an area

of approximately 3km× 3km of pure water signal uncontaminated by sheet ice. A

scene that would be ideal for the purposes of validating a deconvolution method

would need to contain a high-contrast feature, but also contain a large number of

valid water measurements. In fact, an ice edge may indeed be contained in an ideal

validation scene, but there must be many more water measurements available for

comparison than in the image used for validation in this chapter.

5.4 Summary

The validation of Multiscale Entropy deconvolution of MODIS Aqua imagery

was undertaken using an in-situ measurement approach and a coincident high-

resolution QuickBird data comparison. The in-situ validation compared Baltic Sea

reflectance, chlorophyll-a, total suspended matter and diffuse attenuation coefficient

quantities against original and deconvolved MODIS Aqua data. From these products,

the diffuse attenuation coefficient compared the best with a Mean Norm Bias

(MNB) difference of approximately -9%, a Root Mean Square (RMS) difference

of approximately 15% and a deconvolution improvement of 0.69%. Remote sensing

reflectance was the next most successful comparison with approximate MNB and

RMS average differences of -4% and 38% respectively and a small improvement

of 0.47% from deconvolution. Chlorophyll-a and total suspended matter showed

significantly larger match-up errors and appeared to have been affected by the

naturally high concentrations of Coloured Dissolved Organic Matter (CDOM) in the

Baltic Sea as well as extensive cyanobacterial blooms present during the sampling
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period. While the atmospheric and sea state Baltic Sea sampling conditions were

almost ideal for in-situ validation purposes, such low-contrast conditions do not

illustrate the large potential impact of deconvolution.

The Multiscale Entropy deconvolution algorithm developed for MODIS Aqua

in Chapter 4 has the most influence on high-contrast scenes that include highly

reflective features such as clouds or ice, as well as low-reflectance features such as

water. For this reason, a secondary validation effort was performed using a high-

resolution QuickBird image featuring an Antarctic ice edge. After the appropriate

calibration, product conversion and measurement location searches were performed,

deconvolution was shown to slightly improve the MODIS Aqua blue wavelength

measurements at 443 and 488nm. However, not enough measurements were available

after valid pixel filtering to draw any strong conclusions about the green and

red MODIS bands. This validation approach would greatly benefit from a more

appropriate scene selection that includes significantly more valid and comparable

water measurements in all frequency bands.

Two distinct research contributions were established throughout this chapter. A

range of typical Baltic Sea reflectance spectra were used to constrain a high-order

polynomial spectral fitting process. The development of this technique allowed in-

situ samples to be directly compared with MODIS Aqua measurements and can be

useful in situations where spectral measurements from different instruments do not

match. A satellite measurement location mapping and coverage estimation method

was developed to locate and extract comparative measurements from high-resolution

QuickBird data. This technique was crucial in providing radiometric comparisons

for the MODIS Aqua measurements and allows for different satellite sensors to be

directly compared.



Chapter 6

Spatial Resolution Enhancement

6.1 Introduction

Digital imaging systems often aim to extract images of the highest quality from

the instrumentation. One measure of image quality is image spatial resolution.

Computational techniques that focus on enhancing the spatial resolution of imagery

are commonly referred to as super-resolution, high-resolution image reconstruction,

or simply resolution enhancement (Farsiu et al., 2004a; Park et al., 2003). Advances

in these computational techniques can affect the quality of imagery without the need

for costly instrumentation upgrades or replacements. Thus, resolution enhancement

is generally considered to be a valuable computational technique and continues to

be an extremely active research area.

Interpolation-based algorithms, such as nearest-neighbour, linear, cubic and

b-spline interpolation, estimate sub-pixel information within imagery and can be

considered the simplest form of resolution enhancement. These algorithms are

common in the field of image processing, but tend to blur images to a severe degree

(Park et al., 2003; Borman and Stevenson, 1998). This is a natural result for all

interpolation methods because the interpolated data points are simply weighted

averages of the surrounding data. For instance, consider doubling the size of an image

in two dimensions using nearest-neighbour interpolation. The interpolated image has

four times as many pixels as the original, but contains no more information than

its lower-resolution original. Thus, the deterministic resolution of the image is not

124
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affected by the change in pixel count. Much of the literature considers this property

to be the image resolution, and therefore, in many circumstances deconvolution is

referred to as increasing the resolution of data (Magain et al., 1998; Pijpers, 1999;

Piles et al., 2009; Tao et al., 2006). However, there is great interest in increasing the

spatial resolution of imagery through mechanisms that reconstruct high-frequency

content and extract information that is unattainable using common interpolation-

based approaches.

There are several more complicated approaches to achieve resolution

enhancement, with the majority of the literature focusing on multi-frame super-

resolution techniques (Park et al., 2003). This involves taking multiple, slightly offset

images of the same target and combining them in such a configuration as to take

advantage of the extra information contained in the difference between multiple

frames. When combined correctly, this approach can produce a single higher-

resolution image of the target. Many variations of multi-frame super-resolution

have been shown to operate successfully and accurately (Capel and Zisserman,

2001; Irani and Peleg, 1991; Farsiu et al., 2004b). This is because the total amount

of information about an object in multiple frames exceeds the amount of information

contained within any single frame. The extra information obtained here comes from

the sub-pixel misalignment present between multiple frames (Park et al., 2003).

However, if there is too much or too little misalignment between consecutive images,

then multi-frame super-resolution generally fails.

Multi-frame super-resolution techniques have been developed to achieve

enhanced spatial resolution from a series of remotely sensed images (Merino and

Nunez, 2007), and have also been directly applied to MODIS imagery (Shen et al.,

2008). Both of these frameworks rely on images that are obtained from consecutive

satellite passes over a time period of many days. Whilst multi-frame super-resolution

techniques can be successfully applied to terrestrial satellite imagery, they prove to

be impractical for ocean monitoring due to the comparatively rapid rate of change

in marine environments.

An alternative approach to spatial resolution enhancement is to take a single

image and apply specialised processing to retrieve the desired High-Resolution (HR)
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image (Begin and Ferrie, 2004). These approaches are generally known as learning-

based methods or dictionary leaning methods (Yang et al., 2008, 2010). For the

application of ocean-based satellite imagery, there is great interest in techniques

that achieve resolution enhancement from single images because, in most cases,

multiple images of the same target are not available within a reasonable time

frame. Learning-based resolution enhancement techniques attempt to reconstruct

the unknown HR image using rules derived from a set of training prior (Freeman

et al., 2000). In most cases, it is assumed that the PSF has been characterised

and the training examples are generated using this known PSF. Learning-based

algorithms will then typically undergo some validation testing that encompasses

processing synthetically degraded images not included in the training data. This

form of spatial resolution enhancement has seen rapid development and has achieved

remarkable improvement in image quality at reasonable computational cost (Sun

et al., 2003; Bishop et al., 2003; Wright and Huang, 2008). The major disadvantage

of learning-based methods is that the accuracy of the algorithm relies directly on

how well the input Low-Resolution (LR) image matches the training samples (Lin

et al., 2008). Ocean-based remote sensing data can potentially contain an extremely

large class of signals. Consequently, this approach would require an impractical

quantity of training data where every possible pixel configuration is represented. This

requirement effectively renders learning-based resolution enhancement approaches

unsuitable for the application of ocean-based satellite imagery.

An alternate training strategy, known as image hallucination, has seen recent

development and adds another constraint to which image resolution enhancement

can be achieved (Sun et al., 2003; Liu et al., 2007). The idea is that some prior

information about the image signal class is known, for example facial portraits,

and a set of training priors is included to further constrain the resolution-enhanced

solution. In this case, superior resolution-enhanced results can be achieved under

consistent lighting conditions. However, this technique can only be applied to a single

well-defined image class at any time. Again, this resolution enhancement approach

would be ineffective for the application of ocean remote sensing due to its extremely

large signal class size.
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Another approach to single-frame resolution enhancement is to enhance the

spatial resolution of an image within the deconvolution process (Zhang and Cham,

2008). This approach is categorised as a reconstruction-based method in which

sub-pixel information is initially estimated using interpolation, and then iteratively

adjusted until the resultant resolution-enhanced image complies with the applied

constraints. Zhang and Cham (2008) developed a blind deconvolution algorithm

under a Maximum A Posteriori (MAP) framework to achieve this form of spatial

resolution enhancement and produced effective results. With the use of a Bayesian

inferencing prior, the MAP framework induces a regularised version of the maximum

likelihood solution for image deconvolution while the instrument PSF is solved

simultaneously. The drawback with blind deconvolution techniques is that the

instrument response function is often assumed to be Gaussian distributed. This

results in an inferior deconvolution when applied to instruments that are not

Gaussian distributed, due to the inaccurate reconstruction of the instrument PSF.

In most cases, it is highly beneficial to use measured instrument response functions

for deconvolution. Dorband and Hollis (1992) briefly described a similar technique

for spatial resolution enhancement that involves a maximum entropy constraint.

However, these single-frame inter-deconvolution techniques are not well documented

and have not been followed up with significant published research.

This chapter focuses on a new approach to single-frame spatial resolution

enhancement in which sub-pixel information is extracted from a HR PSF convolution

process. The key to successful operation of this technique is to obtain HR PSF

measurements at the same sampling frequency as the desired final output resolution.

6.2 Problem Formulation

When an optical system captures an image of a scene, the underlying instrument

convolution process can be described by the following convolution equation:
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I(x, y) = (O ∗ P )(x, y) +N(x, y) (6.1)

where I = intensity distribution (recorded image)

O = observed object (real image)

P = Point Spread Function (PSF)

N = Gaussian additive noise

and ∗ is the convolution operator

This equation relates the recorded image to: the image that exists before being

rendered by the optical system (real image); the PSF which represents the inherent

physical properties of the optical instrument; and the detector-based noise level of

the optical system. This relationship is thoroughly examined in Chapters 2, 3 and 4.

The reversal of this convolution process is achieved by applying a deconvolution

technique, as discussed in detail in Chapters 2 and 4. This chapter develops a

methodology for using information concerning how data is redistributed over a

finite area during convolution to improve the spatial resolution of the recorded

imagery. This is only possible because the instrumental convolution taking place

in the satellite optical system is an analogue process. The difference between

the representation of audio on vinyl records and compact discs provides a good

analogy here. Vinyl records have audio waveform scratched into the surface of the

record, resulting in a resolution and frequency that is limited only by the waveform

inscription quality. Alternatively, compact discs represent audio as a binary digital

sampling of the original waveform which significantly limits the resolution and

frequency of the waveform. Thus, there is considerably more information in a vinyl

record than a digital compact disc. Similarly, digital convolution is performed with

discrete signals and has a specific resolution, whereas the natural convolution process

occurring in the optical system does not have the same imposed limitation. Natural

convolution can be considered to occur at an extremely high resolution, limited only

by the frequency of light passing through the instrument and the atomic precision of

the optical system. This implies that the natural instrument PSF responsible for the

convolution process is effectively a continuous signal, and the natural convolution
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process itself is an operation involving continuous signals. Therefore, there is an

opportunity to extract information from signals that have undergone a natural

convolution process, simply because this process occurs at a spatial resolution much

greater than the discrete objects recorded by the imaging system. However, this

is only possible if the instrument PSF is sampled at the desired final resolution-

enhanced sampling frequency, which allows the redistributed HR signal intensities

to be accurately modelled.

To formalise the problem using a small example, the original recorded image, I, is

defined as a 5× 5 pixel array (Figure 6.1(a)) and a Resolution Enhancement Factor

(REF) of 2 in both dimensions will be used for simplicity. Suppose at the original

LR, a deconvolution technique is applied using I, P and N to retrieve O (Chapter 4).

Now, let ↑O be initially defined as a HR nearest-neighbour interpolation of O at

twice its resolution in both dimensions, making a 10× 10 pixel array (Figure 6.1(b)),

and ↑P be a HR PSF sampled at the same frequency as ↑O (Figure 6.1(c)). ↑I
can be constructed from the original recorded data, I, also using nearest-neighbour

interpolation, so now I, P , O, ↑I, ↑P and a starting point for ↑O have all been

defined. The bold grid in Figure 6.1(b) represents the spatial coverage of single data

points in I (Figure 6.1(a)) and the faint grid represents the new HR data points in

↑O. The use of nearest-neighbour interpolation implies that every HR pixel in each

four pixel group of ↑O contains the same value as the corresponding single pixel in

O.

Consider how an individual point convolution is performed at the higher

resolution with respect to its equivalent lower-resolution operation. A single point

convolution now becomes the composite of four distinct point convolutions where

↑P is centred on each pixel in every HR upscaled group of four pixels (Figure 6.2).

Figures 6.2(a), 6.2(b), 6.2(c) and 6.2(d) show four point convolutions at HR that

make up the equivalent lower-resolution single point convolution and Figure 6.2(e)

depicts the composite convolution attained by spatially combining the previous four

single point convolutions.

This concept of a HR composite convolution is further described in Figure 6.3

where each subfigure has been reformed into one dimension. Figures 6.3(a), 6.3(b),
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(a) (b) (c)

Figure 6.1: Two-dimensional representations of (a) the original recorded image
I (5× 5), (b) the nearest-neighbour interpolation of O (5× 5) producing ↑O
(10× 10), and (c) a high-resolution point spread function (3× 3) sampled at
the same frequency as ↑O.

6.3(c) and 6.3(d) directly correspond to Figures 6.2(a), 6.2(b), 6.2(c) and 6.2(d)

respectively. Only the overlapping points of ↑O and ↑P are considered in the

reformation and the data points that do not overlap are discarded. When ↑P does

not completely overlap with ↑O, the truncated ↑P points will result in a loss of power

caused by discarding some elements and the remainder of ↑P not being normalised.

In fact, combining the four individual point convolutions in Figures 6.2(a), 6.2(b),

6.2(c) and 6.2(d) into a single HR composite convolution, ↑Pc, will most likely

result in an un-normalised composite convolution function. Therefore, as with the

convolution technique developed in Chapter 3, it is important to renormalise the HR

composite convolution function to 1.0. In this way, image power will be conserved and

any potential boundary effects will be minimised. Figure 6.3(e) shows how the four

point convolutions are combined spatially to form a single composite convolution

function, equivalent to the two-dimensional representation in Figure 6.2(e).

When the composite convolution operation is performed, information contained

in the overlapping region will be redistributed according to the distribution of ↑Pc.

That is, every overlapped pixel in ↑O will have some of its information encoded

into the upscaled group of four convolved pixels during the convolution process. In

this example, a small 3× 3 PSF is used for simplicity, but typically the PSF will

have a significantly larger extent. This would result in a much larger number of
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(a) (b)

(c) (d)

(e)

Figure 6.2: Two-dimensional representations of (a), (b), (c) and (d) the four
point convolutions at high resolution that make up the equivalent single lower-
resolution point convolution and (e) the composite convolution achieved by
spatially combining the four individual point convolutions in (a), (b), (c) and
(d). The dark pixels in ↑P indicate the central peak of the point spread
function.
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(a)

(b)

(c)

(d)

(e)

Figure 6.3: One-dimensional representations of (a), (b), (c) and (d) the four
point convolutions including only overlapping data points in ↑O and (e) the
composite convolution achieved by spatially combining and renormalising the
four individual point convolutions. Dark data points indicate areas with no
overlap, resulting in values of zero. Light data points represent overlapping
areas with non-zero values and dark-centred light data points indicate the
position where the individual convolution functions, and in turn, composite
convolution function are centred.
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pixel overlaps occurring and therefore the information encoded at convolution will

be significantly increased.

Now, consider the entire convolution of ↑O with ↑Pc. For every HR group of four

pixels, an equation can be constructed that relates the recorded data values in ↑I
to the surrounding pixels in ↑O using the HR PSF ↑Pc. The number of constraint

elements for each equation is determined by how many HR pixel overlaps occur,

which in turn is determined by the size of ↑P . The result of each equation is equal

to the corresponding value in the original convolved data I (Equation 6.1). This

process can be formulated as a system of linear equations:

Ax = b (6.2)

where A = matrix (M ×N) with each row containing HR composite

convolution modelling reformed into one dimension in row

major order

x = column vector (M) representing every HR data point in

row major order

b = column vector (N) containing the resultant composite

convolution values (I) in row major order

The construction of this system of linear equations is depicted in stages in

Figures 6.4 and 6.5. Figure 6.4 spatially describes the entire convolution of ↑O
with ↑Pc. Figures 6.4(a), 6.4(b), 6.4(c), 6.4(d) and 6.4(e) show the first 5 individual

convolutions with the HR composite convolution function. Figures 6.4(f), 6.4(g),

6.4(h) and 6.4(i) depict the remainder of the complete convolution of ↑O with

↑Pc where 5 individual HR composite convolutions for each upscaled row have

been combined for illustrative purposes. Figure 6.5 shows how the linear system

is constructed in stages by taking the HR spatial composite convolutions in Figure

6.4, discarding any non-overlapping data points and reforming into one dimension.

Figure 6.5(a) shows the first 5 composite point convolutions depicted in Figures

6.4(a), 6.4(b), 6.4(c), 6.4(d) and 6.4(e). Figures 6.5(b), 6.5(c), 6.5(d) and 6.5(e) show

the remainder of the complete convolution previously illustrated in Figures 6.4(f),
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(a) (b) (c)

(d) (e) (f)

(g) (h)
(i)

Figure 6.4: Two-dimensional representations of the complete convolution of ↑O with ↑Pc

showing (a), (b), (c), (d) and (e) composite individual high-resolution point convolutions
and (f), (g), (h) and (i) five combined composite individual high-resolution point
convolutions. Figures (a), (b), (c), (d) and (e) relate directly to Figure 6.5(a) and Figures
(f), (g), (h) and (i) relate directly to Figures 6.5(b), 6.5(c), 6.5(d) and 6.5(e) respectively.
The dark points in ↑Pc indicate the central peak of the composite convolution function.
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(a)

(b)

(c)

(d)

(e)

Figure 6.5: One-dimensional representation of the cumulative construction of
the linear system with (a) corresponding to Figures 6.4(a), 6.4(b), 6.4(c), 6.4(d)
and 6.4(e), and (b), (c), (d) and (e) corresponding to Figures 6.4(f), 6.4(g),
6.4(h) and 6.4(i) respectively. Dark points represent elements with value zero
and light points represent elements with non-zero values.
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6.4(g), 6.4(h) and 6.4(i). The one-dimensional response of the HR PSF modelling

results in a diagonal pattern in the linear system (Figure 6.5(e)). This pattern of

non-zero elements becomes more widespread as the instrument PSF size increases.

If the input imagery is significantly larger than the instrument PSF, then the linear

system will be sparse and predominantly contain elements of zero value.

These equations represent the HR PSF modelling component of the linear

system. However, a power-conserving constraint can also be useful to limit intensity

variability of any individual HR data point in every group of four pixels. This is

achieved by adding a single equation for every upscaled group of four pixels. At the

lower resolution, a single pixel of information represents the average radiance value

reflecting from a specific area on the surface of the Earth and striking the detector. If

one lower-resolution data point is to become four higher-resolution data points after

resolution enhancement, each higher-resolution data point should contain a unique

value while still conforming to the average radiance value at the lower resolution.

From the perspective of energy conservation, the average of the four higher-resolution

data points should be equal to its single lower-resolution counterpart. Therefore, a

single equation can be constructed that relates each of the four pixels in every

HR group, weighted evenly with a value of 1
REF2 , to its result, being the original

deconvolved data O. Figure 6.6 depicts the complete linear system with the bottom

half of the A matrix representing the power-conserving constraint. Each of the non-

zero elements in the power-conserving component ofA contain the static value of 0.25

for the example involving a REF of 2. The results of these equations are represented

in the bottom half of the b vector and contain values from the original deconvolved

data O reformed into one dimension in row major order. The addition of a power-

conserving constraint restricts the resolution-enhanced solution so that it conforms

to the LR deconvolution result while also maintaining enough freedom to deliver

high-frequency content to the final resolution-enhanced solution.

This particular linear system has twice as many unknown data values to be

reconstructed (M) as it has equations (N) and is therefore underdetermined. More

generally, the number of unknown data values (M) is equal to the REF multiplied

by the number of constraint equations (N). This implies that the A matrix has a
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Figure 6.6: One-dimensional representation of the complete linear system
including a power-conserving constraint. Dark points represent elements with
value zero and light points represent elements with non-zero values.

large condition number and the overall problem is ill-conditioned. From this system

of equations, a resolution-enhanced solution can be found by selecting the optimal

configuration of pixels that would result in the individual pixel values changing by

the quantities observed in the LR deconvolution process (Equation 6.1). However,

appropriate regularisation constraints must be applied to the linear system in order

to retrieve such a result.

6.3 Linear System Regularisation

The constructed linear system is designed to combine all of the available information

about the original LR convolved and deconvolved signals, as well as the HR PSF

distribution. Further regularisation constraints are required to determine a unique

and stable solution to the ill-posed linear system. Multiscale Entropy regularisation

is chosen for its ability to maximise information content, mitigate instrumental

detector-based noise and select maximally unbiased solutions (Pantin and Starck,

1996; Starck, 1995). However, the standard Multiscale Entropy algorithm used for

deconvolution requires appropriate customisation to allow the fundamental physical
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intricacies between resolution levels to be managed. The original Multiscale Entropy

method is defined for deconvolution as:

Sms(O) =
1

σI

n
∑

j=0

∑

pixels

(1−M(j, x, y))σj(wj(x, y)−mj − |wj(x, y)| ln
|wj(x, y)|

mj

)

(6.3)

where Sms(O) = Multiscale Entropy on image O

σI = standard deviation of noise in image I

1−M(j, x, y) = complement of Multiresolution Support

σj = standard deviation of noise at scale j

wj(x, y) = Wavelet coefficients at scale j

mj = background model at scale j

=
σj

100

Multiscale Entropy is designed to decompose the input signal into a succession

of different resolution levels that represent different signal frequency ranges.

Calculations are then performed on the decomposition, including an entropy metric,

and this approach has proven remarkably successful for image deconvolution. Spatial

resolution enhancement requires some fundamentally different outcomes, while still

retaining the underlying Multiscale Entropy approach. Therefore, it is necessary to

modify Multiscale Entropy in a few distinct ways. This new version of entropy will

be termed MultiResolution Entropy (MRE) and the overall resolution enhancement

approach will be termed Maximum Entropy Resolution Enhancement (MERE).

Firstly, the complement of Multiresolution Support is designed to apply

regularisation to areas in the image that do not contain significant signals, as

specified by its Wavelet decomposition. This is done because any areas in the image

that are void of significant signals are assumed to contain only noise, and it is

therefore appropriate to apply regularisation and smoothing to these areas. However,

when enhancing spatial resolution, the most important areas to reconstruct are areas

that contain large signals. This is where the greatest quantity of high-frequency

information is under-represented and restoration is most important. For this reason,
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the complement of Multiresolution Support can simply be replaced with the standard

Multiresolution Support term, M(j, x, y). This alteration has a significant impact

on the MRE calculation and results in the regularisation favourably concentrating

on high-frequency content. The MRE quantity, Smr, now becomes:

Smr(O) =
1

σI

n
∑

j=0

∑

pixels

M(j, x, y)σj(wj(x, y)−mj − |wj(x, y)| ln
|wj(x, y)|

mj

) (6.4)

A cost function requiring minimisation can be defined to retrieve a unique and

stable solution to the linear system:

F (x) = ||Ax− b||2 + λ2Smr(x) (6.5)

where F (x) = cost function

||.|| = Euclidean norm

λ = regularisation parameter

Smr(x) = Multiresolution Entropy reformed into

one dimension in row-major order

This cost function is similar to the approach taken for deconvolution in Chapter 4.

The ||Ax− b||2 component is the Euclidean distance from the statistically ideal

solution and is often called the data fit, or data fidelity term. This is a standard

approach known as ordinary least squares. It aims to minimise the residuals, but

is incapable of independently finding a stable solution because the problem is

underdetermined. Smr(x) is traditionally the regularisation component that smooths

the solution. However, this has been replaced with an entropy method designed

to reconstruct high-frequency content for the application of spatial resolution

enhancement. The regularisation parameter λ manages the balance between data

fit and high-frequency reconstruction. Only by combining the data fit approach

with some form of regularisation can a valid and stable solution be found for the

linear system. Actively solving the linear system requires the minimisation of the

cost function (Equation 6.5) using a gradient method. Therefore, it is necessary to
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calculate the cost function derivative at each iteration of the gradient method:

∇F (x) = ∇||Ax− b||2 + λ2∇Smr(x)

= 2AT (Ax− b) + λ2
1

σI

∑

scalesj

[M(j)σjsgn(w
(O)
j ) ln(

|w(O)
j |
mj

)] ∗ ψT
j (6.6)

where sgn() = signum function

ψj = Wavelet function at scale j

= 1
2j
ψ( x

2j
, y

2j
)

Multiscale Entropy, and in turn MRE, is designed to operate on two-dimensional

imagery. This is due to the Wavelet decomposition process extracting the spatial

structure contained within the input imagery, and using this information to guide the

reconstruction. Building the system of linear equations requires the two-dimensional

imagery to be reformed into one dimension. However, retrieving an appropriate

solution to the linear system requires the calculation of the MRE derivative in

two-dimensional space, as defined in Equation 6.6. Therefore, within each gradient

descent iteration it is necessary to temporarily reform x into two dimensions,

calculate ∇Smr(x, y), and then reform the result back into one dimension to continue

the reconstruction.

Within the calculation of the gradient function (Equation 6.6), it is also

important to match the Wavelet function, ψ, to the task of resolution enhancement.

In deconvolution methods, the Wavelet function is typically the B3 filter:

ψB3 =

[

1
16

1
4

3
8

1
4

1
16

]

(6.7)

The B3 filter is often chosen because it is reasonably smooth and well suited

for isolating large image structures, which has historically been a major problem for

deconvolution methods. However, for the purpose of spatial resolution enhancement,

it is more appropriate to select a Wavelet filter that scales more evenly and can target
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smaller scale features more precisely, such as the linear interpolation filter:

ψ =

[

1
4

1
2

1
4

]

(6.8)

This is extended into two dimensions by convolving the filter with the transpose

of itself, producing the two-dimensional, first-level convolution mask:

ψ1 =













1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16













(6.9)

This particular Wavelet function operates effectively for resolution enhancement

because it is a well-balanced compromise between reconstructing both small and

large-scale features. The Wavelet functions for subsequent resolution levels are

calculated according to 1
2j
ψ( x

2j
, y

2j
) where rows and columns are interspersed with

zeros in the same manner as described in Chapter 4.

The standard boolean Multiresolution Support is calculated according to the

following rules:

M(j, x, y) =







1 if wj(x, y) ≥ kσj

0 if wj(x, y) < kσj

(6.10)

where M(j, x, y) = Multiresolution Support images

k = threshold

In deconvolution methods, the threshold k is used to distinguish between the real

signal and the noise in the signal. A value of k = 3 is generally used to define noise

with a probability of 99.7%, assuming a Gaussian distribution. This is because the

aim of standard Multiresolution Support is to regularise areas in the imagery that do

not contain significant signals. However, for resolution enhancement purposes, the

aim is to reconstruct areas in the imagery that contain high-frequency information
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and MRE is designed to specifically target these areas. Therefore, it is necessary to

dynamically redefine the threshold term, making it dependant on the input image

intensity and noise level. This was achieved by inspecting how the image mean,

image range, Signal-to-Noise Ratio (SNR) and noise level interact over a range of

input values and qualitatively estimating the appropriate output threshold value. By

comparing these relationships experimentally, the MRE threshold k was determined:

k =
SNR(O)R(O)

20µ(O)

=

µ(O)
σI
R(O)

20µ(O)

=
R(O)

20σI
(6.11)

where SNR(O) = Signal-to-Noise Ratio of O

R(O) = intensity range of O

= max(O) - min(O)

µ(O) = mean of O

This threshold was found to adequately normalise the Multiresolution Support

image calculation. It also leads to MRE being sufficiently robust and capable of

accommodating input imagery with variable SNRs and intensity ranges.

The Multiresolution Support images are often too harsh in their filtering and

this can potentially introduce discontinuities into the reconstructed signal. This is

caused by the boolean definition of Multiresolution Support. It is therefore necessary

to impose some form of smoothing on M(j, x, y). Again, the Wavelet function is

useful here in gently smoothing the discontinuities contained inM(j, x, y) by adding

another convolution operation to Equation 6.6. In this case however, the aim is not

to increase the smoothing of the Multiresolution Support images as the resolution

becomes coarser. Instead, it is appropriate to convolve each Multiresolution Support

image with the first-level Wavelet filter, ψ1. This adds a subtle smoothing to each
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support image ensuring that discontinuities do not interrupt the reconstruction

process, while also maintaining the greatest amount of high-frequency content.

Figure 6.7 depicts four levels of the redefined Multiresolution Support that have

been smoothed with the first-level Wavelet filter.

The regularisation parameter, λ, manages the balance between statistical data

fit and high-frequency content reconstruction. Typically, this parameter has been

hard to estimate for deconvolution methods, often requiring user input. One of the

fundamental advances of Multiscale Entropy deconvolution is its ability to specify a

single regularisation value, namely max(PSF)
2σI

, that is consistent across all image types

(Pantin and Starck, 1996). This arises from the inclusion of Multiresolution Support

into the entropy calculation and significantly improves the operational autonomy of

the algorithm. The regularisation parameter, λ, must now also take into account the

REF, and can be calculated:

λ =
REF×max(PSF)

2σI
(6.12)

As the REF increases, with all other parameters remaining constant, the quantity

with which to apply regularisation and high-frequency reconstruction must also

increase. This is important because the more a signal is resolution enhanced, the

more underdetermined the linear system becomes, requiring a greater amount of

regularisation to allow convergence on a stable solution. Hence, the REF simply

becomes a linear multiplier contained within the λ parameter.

Since the Multiscale Entropy term has been redefined from a measure based on

the noise, as required in deconvolution methods, to a measure based on the input

signal range for the application of resolution enhancement, it is also important to

make sure that the final MRE calculation scales appropriately with the input signal

intensity. Without some form of correction here, enhancing the resolution of an image

containing a small average intensity would result in an over-regularised solution, and
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(a)

(b)

Figure 6.7: Multiresolution Support decomposition of (a) original standard test
image ‘Lena’ resulting in (b) level 1 Multiresolution Support. Light regions
signify areas in which Multiresolution Entropy will be calculated and occur
where high-frequency content is present. Dark areas indicate regions where
there is no high-frequency content and will not be incorporated into the
Multiresolution Entropy calculation.
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(c)

(d)

Figure 6.7 continued: Multiresolution Support decomposition resulting in (c)
level 2 Multiresolution Support and (d) level 3 Multiresolution Support. Light
regions signify areas in which Multiresolution Entropy will be calculated and
occur where high-frequency content is present. Dark areas indicate regions
where there is no high-frequency content and will not be incorporated into the
Multiresolution Entropy calculation.
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(e)

Figure 6.7 continued: Multiresolution Support decomposition resulting in
(e) level 4 Multiresolution Support. Light regions signify areas in which
Multiresolution Entropy will be calculated and occur where high-frequency
content is present. Dark areas indicate regions where there is no high-
frequency content and will not be incorporated into the Multiresolution
Entropy calculation.

enhancing the resolution of an image containing a large average intensity would

result in an under-regularised solution. A linear scaling factor of R
500

was found

experimentally to correct any scaling issues, resulting in the gradient equation

(Equation 6.6) now becoming:

∇F (x) = 2AT (Ax− b) + λ2
R(O)

500 σI

∑

scalesj

[(M(j) ∗ ψ1)σjsgn(w
(O)
j ) ln(

|w(O)
j |
mj

)] ∗ ψT
j

(6.13)

For the convolution of the Multiresolution Support images and the Wavelet filter

in Equation 6.13, the FFT convolution with Boundary Correction (FBC) method

developed in Chapter 3 provides accurate convolution with minimal loss of power.
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Without using the FBC method, the resultant operations lose signal intensity and

this significantly disrupts the reconstruction algorithm. Therefore, it is critical to

renormalise the convolution sum using the FBC method so that no unintended loss

of image intensity occurs.

After making all of the described alterations to MRE (Equation 6.4) and its

gradient (Equation 6.13), the impact of these changes can be seen by performing

the calculations on a standard test image (Figure 6.7(a)). Figure 6.8 shows the

logarithmically rescaled response of MRE when applied to Figure 6.7(a) with the

pixel summation component of the equation ignored for illustrative purposes. This

is remarkably different to the Multiscale Entropy calculated on the same test image

in Chapter 4. MRE produces its largest values where high-contrast edges appear in

Figure 6.7(a) and this is due to the redefinition of MRE targeting high-frequency

content.

The MRE gradient can be viewed by calculating the latter half of Equation 6.13

on Figure 6.7(a). Figure 6.9 shows the MRE gradient response that is used in the

search direction of the gradient method. When comparing the MRE gradient with

Figure 6.7(a), it is clear that high-frequency edges in the image are targeted which

forces the solution in the direction of increased information in these areas.

To find a solution for the linear system, the cost function (Equation 6.5) can be

minimised using a one-step gradient method:

On+1 = On − γ∇F (x)n (6.14)

This is a gradient descent method that dynamically adjusts the stepping distance

for the search direction, ∇F (x)n, using the step size variable γ. The step size can

be determined using any number of stepping estimation techniques (Shi, 2005),

but the approach implemented here will use the BB method for its efficiency of

convergence and simplicity of use (Barzilai and Borwein, 1988). The BB method
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Figure 6.8: Logarithmically rescaled Multiresolution Entropy response to
standard test image ‘Lena’ (Figure 6.7(a)) showing large quantities of entropy
in regions of high-frequency content.

Figure 6.9: Multiresolution Entropy gradient response to standard test image
‘Lena’ (Figure 6.7(a)) showing the initial MRE search direction for the linear
system. High-contrast edges are clearly visible and become iteratively included
into the resolution-enhanced solution.
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calculates the step size for convergence of the one-step gradient method according

to:

γ =

∑

[(On −On−1)× (∇F (x)n −∇F (x)n−1)]
∑

[∇F (x)n −∇F (x)n−1]2
(6.15)

where On = current image

On−1 = previous image

∇F (x)n = current search direction

∇F (x)n−1 = previous search direction

Appropriate stopping conditions need to be implemented to determine the

convergence of the linear system and find a valid solution. It is typical to limit

the number of iterations the gradient method will perform so that the algorithm

will not continue indefinitely if the input system is significantly underdetermined.

This implementation limits the number of iterations to 60, as convergence can be

expected within this threshold, if convergence is indeed possible. It is also important

to define the minimum stepping size,minstep, so that the algorithm terminates when

it is sufficiently close to a stable solution. This can be achieved by checking that

the Euclidean norm of the difference between two consecutive iterations is above a

critical quantity:

If ||∆O(x)|| ≥ minstep× ||O(x)n||, then proceed

If ||∆O(x)|| < minstep× ||O(x)n||, then stop

(6.16)

where ∆O(x) = O(x)n−1 −O(x)n

minstep = 1× 10−6

Combining all of the discussed elements will produce an operational

entropy-based spatial resolution enhancement algorithm capable of regularising

underdetermined linear systems. A concerted effort has been placed on the

reconstruction of high-frequency content and a convergent solution will produce

a statistically stable result that is consistent with the MRE constraints.
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6.4 Results

In order to determine the reconstruction accuracy of the MERE algorithm, it

is important to build a rigorous experimental design that is free from bias and

contamination. A sensible approach is to design a synthetic testing procedure that

emulates the processes occurring in the real world with real satellite instruments.

To this end, consider the radiance field reflecting off the surface of the Earth

immediately before entering the optical system. This radiance field exists free from

any instrumental effects and has an extremely high spatial resolution, as previously

discussed. A discrete version of this field, O, was defined in Equation 6.1 and

a higher-resolution reconstruction of the radiance field, ↑O, is ultimately what

the MERE algorithm is designed to deliver. Figure 6.10 describes the procedure

required to simulate the real-world satellite image capture process and is useful as

a framework for enhancing image spatial resolution.

The test procedure starts with a Very HR (VHR) truth image to allow for later

numerical comparison. The first step is to convolve the input radiance field with

a suitably matched VHR PSF. This is the appropriate point at which to apply

instrument effects because, as described earlier, the natural convolution process is

effectively performed on continuous signals and is best simulated at the highest

possible resolution level. The instrumental distortion step is also the point at which

VHR information is redistributed within the recorded image, and will still partially

exist even after downscaling to a lower resolution. This is precisely the source

of information that the MERE algorithm takes advantage of to achieve spatial

resolution enhancement. Unless stated otherwise, all results will use a VHR PSF

derived from the MODIS Aqua instrumental characterisation model (Meister and

McClain, 2010).

The dimensions of the VHR truth image and VHR PSF are selected to be

1088× 1088 and 527× 527 respectively. These values are chosen specifically because

a significant image downscaling is required to simulate the radiance field entering,

and being recorded by, the imaging system. The VHR PSF must also be downscaled

to the sampling frequency of the desired resolution-enhanced output. However, when

the VHR PSF is downscaled to HR, it is critical that the PSFs odd dimensions
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Figure 6.10: Flowchart describing the experimental design procedure for
processing synthetic test images, enhancing spatial resolution and comparing
the results.
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are preserved. This is because instrument PSFs usually have a single peak at a

central data point and if the wrong dimensions or downscaling factor are chosen

here, then the HR PSF may end up with even dimensions and have its central peak

spread across multiple data points. This can introduce inaccuracies into the testing

procedure where convolution with the VHR PSF and HR PSF would no longer

accurately approximate equivalent operations.

After the VHR convolution is performed, a downscaling operation by a significant

factor is required to simulate the digitisation of the input radiance field. In the

experimental design, a downscaling factor of 34 is used and the MERE algorithm

enhances the image spatial resolution by a factor of 2. The downscaling operations

of the test imagery are performed using averaging because this is equivalent to the

process occurring when light strikes a satellite detector. That is, as light is reflected

off the MODIS scanning mirror and onto an array of detectors, the quantity of light

that hits the detector is measured as a voltage, or digital number, averaged over

the recording frequency of the detector and finally recorded. Therefore, by using

averaging for all of the required downscaling processes, the way light is transformed

into information within a satellite optical system is implicitly simulated.

After convolution and downscaling have occurred, an appropriate quantity of

Gaussian noise is added to the LR convolved image to simulate the natural detector-

based noise process that occurs within the satellite instrument. This is the correct

point to add detector noise to the test image because each satellite waveband has

a unique noise response that corrupts the recorded image at this resolution. In

the experimental design, the original test image is rescaled to have intensity values

between 0 and 100 which results in an average image intensity of 46.52. A SNR

of 100 is chosen and the standard deviation of the noise in the image, σI , can be

calculated according to:

σI =
µ

SNR
(6.17)

where µ = mean of the signal
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This results in the standard deviation of the added noise being 0.47 for the test

image ‘Lena’, shown in Figure 6.7(a). Additionally, this value is passed into the

MERE algorithm and used in many calculations including MRE (Equation 6.4), the

modified Multiresolution Support (Equations 6.10 and 6.11), and the MRE gradient

(Equation 6.13).

Another input into the MERE algorithm is the LR deconvolved image, and this

can be attained by applying a deconvolution technique to the LR convolved and

noisy image (Chapter 4). Separately, the original VHR truth image is downscaled to

HR by a factor of 17 for later qualitative comparison with the result of the MERE

algorithm. The VHR PSF is also downscaled to HR and LR, by factors of 17 and

34 respectively, for input into the MERE and deconvolution algorithms. Again, it

is important that downscaling by averaging is used here because this will allow the

HR and LR PSFs to approximate the VHR PSF as accurately as possible.

At this point, MERE can be performed with three inputs: the LR convolved

and noisy image (32× 32); the LR deconvolved image (32× 32); and the HR PSF

(31× 31) sampled at the same frequency of the desired resolution-enhanced output

image (64× 64). The linear system described in Section 6.2 is now constructed

and MRE regularisation is applied to find a unique and stable solution to the

system (Section 6.3). The result of the MERE process is a resolution-enhanced

image (64× 64) that contains high-frequency information extracted from the natural

optical PSF convolution process.

Comparing the final MERE result to the original test image will allow the

reconstruction accuracy to be assessed. This comparison can be achieved in two

ways. The HR MERE result can be directly compared with the HR truth image that

was downscaled from the original VHR truth image. This is a good approach for

visual comparison and illustration of the resolution-enhanced results. For a numerical

comparison, the HR MERE result can be nearest-neighbour interpolated back to

the original VHR, with the interpolation process simply replicating pixel values to

larger areas and not adding any deterministic information to the result. This is a

more appropriate method to derive quantitative results because no inaccuracies are

being introduced by downscaling the VHR truth image for comparison. Also, if the
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error metric is defined in this way, varying REF results can be compared against

each other because all results are compared against the original VHR truth image.

The process depicted in Figure 6.10 was undertaken to enhance the spatial

resolution of the standard test image shown in Figure 6.7(a), originally starting at

VHR as a 1088× 1088 pixel image. Figure 6.11 shows the HR truth image (64× 64)

downscaled from the original VHR truth image for comparison (Figure 6.11(a)), the

LR convolved and noisy image (32× 32) (Figure 6.11(b)), and the LR deconvolved

image (32× 32) (Figure 6.11(c)). Notice that the HR truth image no longer contains

an intensity range from 0 to 100, as was defined in the original VHR image. This

is because spatially only 1 in every 289 pixel is retained when downscaling by a

factor of 17 in two dimensions, which results in a significant loss of information.

Therefore, there is a large chance that many of the brightest and darkest pixels will

be removed during this process and the resulting downscaled image will undergo

a truncation in its intensity range. A more extreme intensity range truncation is

encountered to retrieve the LR convolved and deconvolved images. There is not

much qualitative difference between these two images (Figures 6.11(b) and 6.11(c)).

However, their intensity ranges indicate that the LR deconvolved image contains

slightly more extreme intensities than the LR convolved image, as would be expected

from a deconvolution process.

Figure 6.12 shows the result of the MERE algorithm having attempted a spatial

resolution enhancement by a factor of 2 (Figure 6.12(a)), the difference between the

MERE result and the HR truth image (Figure 6.12(b)), and a frequency histogram

of the difference image (Figure 6.12(c)). Qualitatively, Figure 6.12(a) appears to

contain substantially more information than either the LR convolved or deconvolved

images (Figures 6.11(b) and 6.11(c)). The intensity range, which was originally 0 to

100 in the VHR truth image, has been somewhat restored, but the minimum and

maximum intensity values appear to have overshot the original values. However, the

MERE reconstruction can be considered to be reasonably successful in this respect

because the input imagery only contained intensity ranges from approximately 12

to 86. The combination of trying to find the most statistically correct solution and

reconstructing high-frequency content using MRE has identified that the brightest
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(a)

(b)

Figure 6.11: Resolution enhancement evaluation procedure showing (a) the
high-resolution truth image (64× 64) and(b) the low-resolution convolved and
noisy image (32× 32).
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(c)

Figure 6.11 continued: Resolution enhancement evaluation procedure showing
(c) the low-resolution deconvolved image (32× 32).

and darkest pixels are missing from the LR imagery, and MERE has attempted to

reconstruct this missing information.

The difference image highlights areas in which the MERE algorithm has difficulty

reconstructing information (Figure 6.12(b)). The smooth areas in the image are

reasonably well resolved and the largest differences occur at high-contrast edges. It

is not surprising that the MERE algorithm cannot perfectly reconstruct all of the

high-frequency information. This is because a significant quantity of information,

including high-frequency information, is lost during the downscaling procedure and

not all of this information is preserved in the instrumental convolution process. The

frequency histogram of the difference image indicates that a large number of pixels

are accurately reconstructed and have a difference close to zero, while the number

of pixels that contain increasing quantities of reconstruction error becomes rapidly

smaller in a trend resembling a power law. The pixels with differences close to zero
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(a)

(b)

Figure 6.12: MERE results showing (a) the spatially enhanced image (64× 64)
and (b) the difference between the MERE result and the high-resolution truth
image (64× 64).
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(c)

Figure 6.12 continued: MERE results showing (c) a frequency histogram of the
difference image.

are attributed to the well reconstructed smooth areas in the image and pixels with

larger errors come from areas in the image that contain high-frequency content

(Figure 6.12(b) and 6.12(c)).

Bilinear interpolation is one of the simplest forms of resolution enhancement. It

is computationally inexpensive and will act as a benchmark when compared with

the MERE result. Figure 6.13 shows the result of bilinearly interpolating the LR

deconvolved image (Figure 6.13(a)), the difference between the bilinearly enhanced

result and the HR truth image (Figure 6.13(b)), and a frequency histogram of the

difference image (Figure 6.13(c)). There appears to be significantly more structure

in the bilinearly enhanced difference image than the MERE enhanced difference

image (Figures 6.12(b) and 6.13(b)). For instance, extended regions leading up to

high-contrast edges in the bilinear difference image contain clear non-zero values,

whereas these same regions in the MERE difference image exhibit values closer to
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(a)

(b)

Figure 6.13: Bilinear interpolation results showing (a) the bilinearly enhanced
image (64× 64) and (b) the difference between the bilinear result and the
high-resolution truth image (64× 64).
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(c)

Figure 6.13 continued: Bilinear interpolation results showing (c) a frequency
histogram of the difference image.

zero. This indicates that, while not perfectly reconstructing all the missing high-

frequency content, the MERE algorithm performs better than bilinear interpolation

in areas not containing extremely high contrast.

To extend this analysis of the MERE algorithm, additional comparisons

can be made with bicubic spline interpolation and a Tikhonov regularisation

of the constructed linear system. Bicubic spline interpolation is a sophisticated

interpolation technique where cubic polynomials are fitted to known data points

and the interpolated values are drawn from these fitted curves. This technique

can be incorporated into the testing procedure and used for comparison by simply

swapping the bilinear interpolation method in Figure 6.10 with a bicubic spline

interpolation method. Tikhonov regularisation is a common approach used to solve

underdetermined problems (Tikhonov and Arsenin, 1977; Tikhonov et al., 1987). It

operates by including a regularisation term into the linear system minimisation:
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‖Ax− b‖2 + λ2‖Γ(x− x0)‖2 (6.18)

where Γ = suitably chosen Tikhonov matrix

x0 = initial starting point

The identity matrix is often chosen as the Tikhonov matrix and will be used

here. This limits smoothing and gives preference to solutions with smaller residuals.

Applying Tikhonov regularisation to the linear system constructed in Section 6.2

will allow for a comparison of MRE regularisation and a common regularisation

technique. That is, using an alternative regularisation method on the linear system

will highlight whether the problem formulation or the MRE constraint has the most

impact on the accuracy of the resolution-enhanced results. Tikhonov regularisation

for resolution enhancement can be implemented by swapping the MERE method

in Figure 6.10 with a standard Tikhonov linear system solver (Hansen, 1994).

A Generalised Cross-Validation (GCV) method can be used to determine the

regularisation parameter, λ. GCV is designed to find a regularisation quantity such

that if an arbitrary element of b is removed, then the corresponding regularised

solution would predict this observation well (Wahba, 1990).

Figure 6.14 shows the result of Tikhonov resolution enhancement (Figure

6.14(a)), the difference between the Tikhonov enhanced result and the HR truth

image (Figure 6.14(b)), and a frequency histogram of the difference image (Figure

6.14(c)). The Tikhonov resolution-enhanced result successfully produces a solution,

but is affected by severe artefact creation (Figure 6.14(a)). The intensity range is less

accurately restored when compared with the MERE result and high-frequency edges

in the image are also not as accurately reconstructed. The difference image shows

that the difference structure is now overwhelmed by erroneous artefacts (Figures

6.12(b) and 6.14(b)). This is because linear methods for underdetermined problems

generally struggle with the treatment of noise, as discussed in Chapter 2. The

Tikhonov method, in particular, often overly-smooths the solution and this can be

problematic around image features. The frequency histogram reflects these errors

with a smaller number of differences with values of zero, and an increase in the
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(a)

(b)

Figure 6.14: Tikhonov resolution enhancement results showing (a) the
Tikhonov enhanced image (64× 64) and (b) the difference between the
Tikhonov result and the high-resolution truth image (64× 64).
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(c)

Figure 6.14 continued: Tikhonov resolution enhancement results showing (c) a
frequency histogram of the difference image.

quantity of differences with non-zero values (Figure 6.12(c) and 6.14(c)). This result

indicates that finding an accurate resolution-enhanced solution not only relies on

the correct problem formulation, or construction of the linear system in this case,

but also the appropriate selection of applied constraints. With this in mind, MRE

has been specifically crafted to reconstruct high-frequency content and appears to

provide a superior solution when applied to the problem of resolution enhancement.

Figure 6.15 shows the result of bicubic spline interpolation of the LR deconvolved

image (Figure 6.15(a)), the difference between the bicubic interpolation enhanced

result and the HR truth image (Figure 6.15(b)), and a frequency histogram of

the difference image (Figure 6.15(c)). As with bilinear interpolation, bicubic spline

interpolation produces similarly smooth results. The intensity ranges have been

reasonably well restored and the only other significant difference between the two

interpolation methods is highlighted in the difference image, where bicubic spline
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(a)

(b)

Figure 6.15: Bicubic interpolation results showing (a) the bicubic interpolation
enhanced image (64× 64) and (b) the difference between the bicubic result and
the high-resolution truth image (64× 64).
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(c)

Figure 6.15 continued: Bicubic interpolation results showing (c) a frequency
histogram of the difference image.

interpolation shows interesting curved structures near high-contrast edges (Figures

6.13(b) and 6.15(b)).

In addition to a qualitative comparison, it is important to numerically

quantify the performance of the MERE reconstruction against the other resolution

enhancement techniques. A useful method here is to calculate the Euclidean norm

of the difference image. The Euclidean norm of image vector x is defined:

‖x‖ =

√

√

√

√

n
∑

i=1

x2i (6.19)

=
√

x21 + · · ·+ x2n

When applied to a difference image, this technique produces a single number
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that represents the sum total over all pixels of the difference between the HR

reconstruction and the truth solution. This is because the Euclidean norm effectively

interprets every pixel difference as a positive distance from the ideal solution. The

summation of these positive differences is a good representation of the overall error

in the reconstructed image. This comparison metric will be termed the Euclidean

difference norm and its result will be referred to as the reconstruction error.

Additionally, this error method allows results with varying REFs to be compared,

as long as the experimental design is followed and the results are nearest-neighbour

interpolated to the original VHR (1088× 1088) for comparison.

Having already compared the four resolution enhancement techniques using the

standard test image ‘Lena’ (Figure 6.7(a)), it is important to extend the evaluation

by comparing results from a range of different real and synthetic test images. Figure

6.16 shows the real and synthetic test images chosen to investigate the resolving

power of the four resolution enhancement methods under different conditions. Figure

6.17 shows a comparison of results for the first test image (Figure 6.16(a)) including

each of the four resolution enhancement methods. Figures 6.18, 6.19 and 6.20 follow

this same layout for the remaining three test images (Figures 6.16(b), 6.16(c) and

6.16(d)), and indicate how each resolution enhancement method performs over a

range of different input imagery. Table 6.1 presents the reconstruction errors for

each resolution enhancement method calculated using the Euclidean difference norm

method and averaged over 5 trials for each test image.

In the synthetic image evaluation of Figures 6.17 and 6.18, every resolution

enhancement method except bilinear interpolation over-reconstructs the image

intensity range. Bilinear interpolation can not reconstruct beyond the input intensity

range because it is simply calculating weighted averages of surrounding pixels. In

terms of reconstructing the desired intensity range, synthetic imagery provides an

unrealistic example because there are many data points that contain both the

smallest and largest values in Figures 6.17 and 6.18. Natural images are much more

likely to contain only a single data point with the minimum and maximum value,

which would readily be discarded in the downscaling process. For this reason, bilinear

interpolation appears to perform well on synthetic imagery with many data points
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(a)

(b)

Figure 6.16: Test images showing (a) a standard USC texture mosaic #2
comprising various sized blocks of uniform intensity and (b) a standard USC
texture mosaic #3 comprising more complicated regions of uniform intensity.
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(c)

(d)

Figure 6.16 continued: Test images showing (c) a standard real test image of
an airport and (d) a MODIS image of Florida and Bahamas (Captured on 24
January 2003, 1805 UTC.
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(a) MERE

(b) Bilinear interpolation

Figure 6.17: Resolution-enhanced result comparison for USC texture mosaic
#2 (Figure 6.16(a)) showing (a) the MERE reconstructed result and (b) the
bilinearly interpolated result.
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(c) Tikhonov enhancement

(d) Bicubic interpolation

Figure 6.17 continued: Resolution-enhanced result comparison for USC texture
mosaic #2 (Figure 6.16(a)) showing (c) the Tikhonov resolution enhancement
result and (d) the bicubic interpolated result.
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(a) MERE

(b) Bilinear interpolation

Figure 6.18: Resolution-enhanced result comparison for USC texture mosaic
#3 (Figure 6.16(b)) showing (a) the MERE reconstructed result and (b) the
bilinearly interpolated result.
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(c) Tikhonov enhancement

(d) Bicubic interpolation

Figure 6.18 continued: Resolution-enhanced result comparison for USC texture
mosaic #3 (Figure 6.16(b)) showing (c) the Tikhonov resolution enhancement
result and (d) the bicubic interpolated result.
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containing the minimum and maximum values. However, it is incapable of restoring

the desired resolution-enhanced intensity range in natural images as seen in Figures

6.19 and 6.20.

Synthetic imagery does, however, allow for a comparison of how the four

resolution enhancement methods reconstruct uniform high-contrast edges. Bilinear

interpolation operates as expected and blurs high-contrast edges. MERE, Tikhonov

resolution enhancement, and bicubic interpolation over-reconstruct opposing sides

of the discontinuities, often producing lines of darker and brighter pixels on the

darker and brighter sides of the discontinuities respectively. Again, this effect is

encountered most with synthetic imagery and is not as severe in natural imagery.

Tikhonov resolution enhancement visibly increases artefact creation in the images

(Figures 6.17(c) and 6.18(c)). MERE visually and quantitatively appears to produce

the most accurate result (Table 6.1). The high-frequency component of Figure 6.17

provides an interesting challenge for the resolution enhancement methods. This can

be considered one of the hardest signals to recover for resolution enhancement

because it simultaneously contains high-frequency and high-contrast information.

Both interpolation techniques significantly blur this region of the test image while the

MERE and Tikhonov methods restore the high-frequency content more accurately

(Table 6.1).

The natural imagery in Figures 6.19 and 6.20 provide a more realistic example

and it is clear that Tikhonov resolution enhancement continues to be affected

by spurious artefact creation. MERE appears to reconstruct more high-frequency

information than the interpolation techniques and individual planes are almost

recognisable (Figure 6.19). Figure 6.20 depicts a typical remote sensing image

containing shallow and deep waters, as well as land and clouds. Again, the MERE

algorithm appears to provide a superior reconstruction without overly smoothing

the result. The Tikhonov resolution enhancement method quantitatively produces

the most accurate results for this particular image, even including its artefact

creation issues (Table 6.1). However, when averaged over all of the test images, the

MERE algorithm provides the best reconstruction accuracy out of the resolution

enhancement techniques included in this comparison.
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(a) MERE

(b) Bilinear interpolation

Figure 6.19: Resolution-enhanced result comparison for standard airport test
image (Figure 6.16(c)) showing (a) the MERE reconstructed result and (b)
the bilinearly interpolated result.
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(c) Tikhonov enhancement

(d) Bicubic interpolation

Figure 6.19 continued: Resolution-enhanced result comparison for standard
airport test image (Figure 6.16(c)) showing (c) the Tikhonov resolution
enhancement result and (d) the bicubic interpolated result.
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(a) MERE

(b) Bilinear interpolation

Figure 6.20: Resolution-enhanced result comparison for MODIS test image
(Figure 6.16(d)) showing (a) the MERE reconstructed result and (b) the
bilinearly interpolated result.
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(c) Tikhonov enhancement

(d) Bicubic interpolation

Figure 6.20 continued: Resolution-enhanced result comparison for MODIS
test image (Figure 6.16(d)) showing (c) the Tikhonov resolution enhancement
result and (d) the bicubic interpolated result.
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Table 6.1: Reconstruction errors calculated using the Euclidean difference norm
method for each test image and resolution enhancement method. Bold numbers
indicate the smallest reconstruction errors and therefore the most accurate
resolution enhancement method for each test image.

Test image MERE Bilinear Tikhonov Bicubic

1 - USC #2 3811.31 6291.74 5583.42 6786.59

2 - USC #3 2922.11 3441.88 3068.71 3675.05

3 - Airport 2927.25 2930.44 3172.35 3089.34

4 - MODIS 2308.94 2422.31 2226.25 2453.35

5 - Lena 3316.64 3437.84 3783.85 3608.25

Average 3057.25 3704.84 3566.92 3922.52

6.4.1 Solution Quality Analysis

Having identified that the Tikhonov method visibly amplifies artefacts in the

solution, it is important to objectively quantify that this is the case. Wang and Bovik

(2004) developed an objective Structural SIMilarity (SSIM) index that compares

local patterns of pixel intensities, normalised for luminance and contrast, between

two images. If one of the input images is the original distortion-free image, then

the SSIM index represents the quality of the second input image. A SSIM index

of 1 indicates an ideal solution with no distortion and an index of 0 represents

severe distortion and image degradation. The results of applying this technique to

the resolution enhancement methods for each test image are reported in Table 6.2,

where the two image inputs are the original VHR truth image and the nearest-

neighbour interpolated resolution-enhanced result for each method. In every case,

the Tikhonov result produces the smallest SSIM index values. This quantitatively

indicates that the Tikhonov method amplifies the creation of spurious artefacts and

can be discarded as producing unreliable results for this reason.

Overall, the MERE algorithm compares favourably with the other resolution

enhancement methods qualitatively and quantitatively across the selected range of

test images. The average reconstruction errors and SSIM indices over all of the test

images indicate that MERE outperforms the other methods and visually MERE
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produces the most compelling results.

6.4.2 Gradient Step Size

Returning to the operation of the MERE algorithm, Figure 6.21 displays the gradient

step size, γ, at each iteration of the resolution enhancement process (Equation 6.15).

The stability of the step size variable is determined by the balanced combination of

the data fidelity and regularisation terms (Equation 6.5). If λ is selected to be too

large and MRE overpowers the search direction, γ is repeatedly calculated to be very

small and the gradient method ultimately fails to find a stable solution, terminating

after exhausting the maximum number of iterations. This is because there is no step

size quantity, positive or negative, to move in the direction of the gradient that would

result in minimising the cost function and finding a stable solution. Alternatively,

if λ is selected to be too small and the data fidelity term overpowers the search

direction, then γ will typically be very small for several iterations and then be

extremely large for a single iteration. This is because not enough regularisation has

been applied to the problem and the solution space is relatively flat. When extremely

large steps are taken, severe artefacts are created around discontinuities contained in

the image and the final result becomes undesirable. Here again, the gradient method

fails to converge on a unique solution and terminates after reaching the maximum

iteration limit. Ideally, γ needs to slowly converge to 0. This would indicate that

the reconstruction has moved in the direction of the gradient (Equation 6.13) and

minimised the cost function (Equation 6.5), successfully becoming close enough to

the unique solution to be convergent and terminate the reconstruction process. This

case is exemplified in Figure 6.21. The convergence of the gradient method is directly

related to the successful evaluation of the λ parameter for resolution enhancement

(Equation 6.12). The fluctuations seen in γ correspond to the gradient method

attempting to minimise the cost function by moving in the direction of the steepest

slope. The magnitude of the fluctuations are a result of the ill-posed nature of the

resolution enhancement problem and can be expected to become larger as the REF

is increased. While some fluctuations in γ occur, the overlying trend appears to

converge to 0. This particular MERE operation managed to find a unique solution
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Table 6.2: Structural similarity index values calculated for each test image
and resolution enhancement method. A structural similarity index of 1
indicates an ideal solution with no distortion and an index of 0 represents
severe distortion and image degradation. Bold numbers indicate the smallest
structural similarity index value and therefore the most distorted and degraded
resolution-enhanced image.

Test image MERE Bilinear Tikhonov Bicubic

1 - USC #2 0.8762 0.8329 0.7876 0.7982

2 - USC #3 0.8630 0.8643 0.8112 0.8548

3 - Airport 0.6494 0.6500 0.6415 0.6449

4 - MODIS 0.7204 0.7164 0.7072 0.7129

5 - Lena 0.7403 0.7412 0.6853 0.7361

Average 0.7699 0.7610 0.7266 0.7494

Figure 6.21: Gradient step size, γ, at each iteration of the MERE algorithm.
The gradient step size contains some minor fluctuations, slowly converging to
0 as a unique and stable solution is approached and successfully terminating
the reconstruction at iteration 39.
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that is sufficiently stable to become convergent and terminate the reconstruction at

iteration 39.

6.4.3 Computational Complexity

Comparing the computational complexities of the four resolution enhancement

methods will help determine if the quantitative benefits of the MERE approach

come at a reasonable operational cost. Let n be the width and height of the square

LR image to undergo resolution enhancement. The REF is a scalar multiplier of the

image size n and is therefore irrelevant for the purpose of computational complexity

analysis. The computational complexities of interpolation methods have been well

established and are reported in Table 6.3 (Goshtasby, 2005).

Table 6.3: Computational complexities of nearest-neighbour, bilinear, bicubic
convolution and bicubic spline image resamplings of an n× n pixel image.

Type of Resampling Computational Complexity

Nearest-Neighbour O(n2)

Bilinear Interpolation O(n2)

Bicubic Convolution O(n2)

Bicubic Spline, Direct Computation O(n4)

Bicubic Spline, Using FFT O(n2 log n)

From the three bicubic interpolation methods reported in Table 6.3, bicubic

convolution is selected for implementation because it provides the same interpolation

results as the direct computation and FFT methods, but at reduced computational

cost. Therefore, bicubic and bilinear interpolation both have the same computational

complexity, but practically, bicubic interpolation takes longer to compute because

it performs more calculations within this order of complexity. This computational

complexity analysis can be extended to include the MERE and Tikhonov

resolution enhancement methods by tracing the operational code and identifying

the most computationally significant calculations. MERE is a non-linear resolution

enhancement method that has the potential to converge at any iteration number.

Therefore, a worst case scenario is assumed and the code is analysed with the
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maximum number of algorithm iterations in mind. An inspection of the operation

code revealed the computational requirements for each component in the MERE

and Tikhonov algorithms reported in Table 6.4.

Table 6.4: Computational complexities of the components required to enhance
spatial resolution using MERE and Tikhonov resolution enhancement.

Algorithm Component Computational Complexity

Linear system construction O(n4)

MERE solver O(n4)

MERE Total O(n4)

Singular Value Decomposition (SVD) O(n6)

Generalised Cross-Validation (GCV) O(n4)

Tikhonov solver O(n6)

Tikhonov Total O(n6)

The complete MERE algorithm consists of building the linear system and

finding a solution using the MERE solver. The linear system is built by stepping

through each data point in the HR input image (O(n2)) and performing a response

function calculation which has a further cost of O(n2). Therefore, the linear

system construction has a total computational complexity of O(n4). The most

computationally complex calculation in the MERE solver is a matrix multiplication

of a n2 × n2 and 1× n2 matrix which results in an O(n4) operation. The total MERE

algorithm also has the computational complexity of O(n4) as none if its components

exceed this complexity order.

The Tikhonov resolution enhancement method is a combination of the

construction of the linear system, a Singular Value Decomposition (SVD), a

Generalised Cross-Validation (GCV) calculation that determines the regularisation

parameter λ, and the Tikhonov solver. A SVD operation is known to have a

computational complexity of O(m2n+ n3), where m and n are the dimensions of

the input matrix A (Golub and Loan, 1996). Considering a square image where m

and n are of equal length, the computational complexity of a SVD operation now

becomes O(n3), where constants can be discarded and only the highest complexity
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order is relevant. The construction of the linear system results in the A matrix

having dimensions (REF × n)2 × n2, which, for the purposes of computational

complexity analysis, can be simplified to n2 × n2. Therefore, n2 must be substituted

into the previous computational complexity for a SVD calculation to account

for the size of the resolution enhancement A matrix. This results in the overall

computational complexity for a SVD calculation now becoming O(n6). The GCV

method operates at O(n4) complexity which is dominated by a n2 × n2 and 1× n2

matrix multiplication. The most complex calculation in the Tikhonov solver is a

matrix multiplication of two n2 × n2 matrices, which also results in a computational

complexity of O(n6).

It should also be noted that an increase in the input image size results in rapid

growth of the A matrix dimensions. In fact, as the square input image dimension n

becomes larger, the A matrix increases at a rate of n4. This represents extreme

growth and results in the MERE algorithm quickly exhausting the maximum

accessible RAM capacity in a single computer. For this reason, the analysis of

the MERE algorithm is limited to resolution-enhanced image sizes no greater than

64× 64 pixels and REFs no greater than 4.

6.4.4 PSF Structure

Another avenue for investigation is how PSF shape affects the performance of

the MERE algorithm. Since the natural convolution process is the step that

redistributes VHR information, it is conceivable that the ability to enhance image

resolution could be quite sensitive to fluctuations in the PSF. Figure 6.22 shows the

reconstruction errors encountered when the Full-Width Half-Maximum (FWHM) of

a VHR Gaussian PSF is increased from 1 to 150 pixels, following the experimental

design in Figure 6.10. A VHR PSF FWHM of 1 is a reasonably accurate scenario for

satellite instruments because they are designed to be precise, free from aberration

and therefore produce minimal blurring. As the PSF FWHM increases up to

approximately 28, the ability of MERE to enhance spatial resolution is immediately

improved. This is an interesting region where the increase in blurring benefits the

reconstruction accuracy and is not too severe that it completely eliminates high-
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Figure 6.22: Resolution-enhanced reconstruction error calculated using the
Euclidean difference norm method as a function of PSF FWHM.

frequency content. However, a region of reconstruction difficulty is encountered

with the FWHM ranging from approximately 28 to 50. This effect is a result of

the experimental design and signal discretisation. To gather all of the inputs to

the MERE algorithm, deconvolution must be performed at LR and the LR PSF

should ideally have odd dimensions. As the FWHM of the VHR PSF approaches

the downscaling factor of 34, the equivalent LR PSF becomes an inaccurate

representation of the VHR PSF. This is because with a small FWHM, the LR

PSF will have its peak at a single central pixel. But as the FWHM becomes larger,

the LR PSF begins to misrepresent the VHR PSF and have its peak spread out

over a larger area. This inaccuracy manifests itself by degrading the quality of the

deconvolution process with the FWHM between 28 and 50, which in turn affects

the quality of the resolution-enhanced reconstruction. This effect is unavoidable

because the entire experimental design is reliant on discrete signals. Disregarding this

region of PSF inaccuracy, the remaining trend indicates that resolution enhancement



6.4. Results 185

becomes more difficult as the FWHM is increased. This is an understandable result

because the original VHR truth image gets progressively blurred as the FWHM is

increased and greater quantities of high-frequency content are removed. This, in turn,

limits the availability of information with which to construct the linear system and

ultimately restricts the resolution enhancement abilities of the MERE algorithm.

6.4.5 Signal-to-Noise Ratio Analysis

The SNR of the input imagery is another important factor that will determine how

well the MERE reconstruction performs. This can be investigated by increasing the

quantity of Gaussian noise added at the LR stage of the experimental design (Figure

6.10) and then proceeding with the spatial resolution enhancement and comparison.

The reconstruction error response to an increasing SNR is shown in Figure 6.23. It is

clear that at small SNRs, where the signal is only approximately as large as the noise,

it is difficult to enhance spatial resolution. However, as the SNR becomes larger and

the size of the real signal begins to dominate the noise, the performance of MERE

dramatically improves until levelling off. Ultimately, the SNR reaches a threshold

at approximately 4, above which the noise has very little impact on reconstruction

accuracy. For comparison, the MODIS Aqua detector SNR averaged over all of

the ocean colour bands is approximately 791 (Xiong et al., 2005). Therefore, this

result indicates that the MERE algorithm operates robustly with respect to realistic

quantities of detector-based noise.

6.4.6 Varied Resolution Enhancement Factors

Thus far, a REF of 2 has been investigated and analysed. However, each of the four

resolution enhancement methods are capable of larger integer-based REFs. This

can be achieved by following the experimental design depicted in Figure 6.10 and

altering the REF at the interpolation and MERE stages. The resolution-enhanced

results for varying REFs must still be nearest-neighbour interpolated back to the

original VHR so that direct comparisons can be made.

Figure 6.24 shows the reconstruction error of each resolution enhancement
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Figure 6.23: Resolution-enhanced reconstruction error calculated using the
Euclidean difference norm method as a function of detector-based SNR.

Figure 6.24: Resolution-enhanced reconstruction error calculated using the
Euclidean difference norm method as a function of the resolution enhancement
factor.
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method as the REF is increased. The REFs of 2, 3 and 4 were selected for analysis

since any REF above these values overwhelm the memory capacity of a single

machine. Both interpolation and Tikhonov methods encounter larger reconstruction

errors as the REF increases. This is due to a combination of the amount of high-

frequency information preserved in the convolved image during the instrument

convolution process, and the specific abilities of the resolution enhancement methods

to extract this information. The interpolation methods are not designed to recapture

this information and bicubic interpolation produces significantly worse results

than bilinear interpolation. The Tikhonov method performs well at a small REF

but also begins to produce larger reconstruction errors as the REF increases.

Surprisingly, the MERE algorithm produces less total reconstruction error as the

REF is increased. This suggests that the MRE constraint at the core of the MERE

algorithm is beneficially restricting the linear system such that the reconstruction

error improves for the analysed REFs. It also indicates that, while the Tikhonov

constraint successfully minimises the residuals to determine the statistically best

result, more than just a statistical measure is required to find a desirable solution

to the linear system. This result indicates that structural information contained in

two-dimensional imagery is vital and must be taken into account when attempting

spatial resolution enhancement, a concept at the foundation of the MERE approach.

It would be expected that the MERE algorithm would not continue to produce

increasing reconstruction accuracy at higher REFs.

It is also important to visually inspect the reconstruction results using different

REFs. Figures 6.25 and 6.26 show the resolution-enhanced reconstructions with

varying REFs for the MERE and Tikhonov methods respectively. Using these

REFs, a single LR pixel becomes a 2× 2, 3× 3 or 4× 4 group of pixels and this

is represented by the subfigures within Figures 6.25 and 6.26 being displayed at

different sizes. The MERE results show a qualitatively reasonable solution for a

REF of 2 (Figure 6.25(a)), but begin to exhibit mild square-shaped discontinuities

at larger REFs (Figures 6.25(b) and 6.25(c)). This is largely due to the power-

conserving constraint implemented in the construction of the linear system where

groups of HR pixels are restricted to conform to the intensity of the corresponding
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(a)

(b)

(c)

Figure 6.25: Resolution-enhanced reconstructions with resolution enhancement
factors of (a) 2, (b) 3 and (c) 4 using the MERE algorithm.
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(a)

(b)

(c)

Figure 6.26: Resolution-enhanced reconstructions with resolution enhancement
factors of (a) 2, (b) 3 and (c) 4 using the Tikhonov method.
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LR pixel (Section 6.2). There are some possible techniques that could be employed to

minimise these discontinuities, such as adding an offset power-conserving constraint

to the linear system. However, there is no real-world physical process in the satellite

optical system that calls for such a constraint, and any additional constraints would

just serve to improve the qualitative results. As such, no further constraints to the

linear system will be investigated. It is interesting to note that, even with the square-

shaped discontinuities, the MERE results with larger REFs produce smaller overall

reconstruction errors when compared with the original VHR image (Figures 6.24

and 6.25). The Tikhonov method produces a reasonable reconstruction at a REF of

2, but begins to produce irregularities when pushed to larger REFs (Figure 6.26). In

fact the Tikhonov REF of 2 result (Figure 6.26(a)) quantitatively outperforms the

other resolution enhancement methods (Figure 6.24). This can happen occasionally

depending on the specific properties of the input system, as has been seen previously

in Table 6.1.

6.4.7 Future Work

There are some practical limitations to the MERE method. The current

implementation of the MERE algorithm requires that the HR PSF dimensions be at

most half the size of the LR image dimensions in order to calculate the renormalised

point-wise PSF response required by the construction of the linear system. This

limitation causes no unintended effects, but could potentially be replaced with an

alternative method that does not contain the same limitation.

There is also the possibility to extend the MERE and Tikonov algorithms to

incorporate non-integer REFs. The current implementation has been designed to

provide proof-of-concept that spatial resolution enhancement is indeed possible

through modelling a HR PSF convolution process and solving a linear system. This

has been carried out for the simple case of integer REFs. However, it is highly likely

that the optimum REF will be a non-integer value. Therefore, non-integer REF

compatibility would be desirable. There are several changes that must be made to

the current MERE implementation to allow for non-integer REF support. Firstly,

the LR convolved and deconvolved imagery must be interpolated by the desired
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non-integer REF. For instance, if a REF of 2.5 was selected, each LR pixel would

be interpolated to cover a 2.5× 2.5 pixel area. The 0.5 of the original LR pixel that

crosses the border would account for 50 percent of the value of the new HR pixel,

with the other 50 percent coming from the adjacent 0.5 LR pixel, as calculated

using interpolation by averaging. The HR PSF convolution process could then be

modelled on a per-pixel basis at HR rather than a per-pixel-group basis, effectively

removing the concept of a HR composite convolution. This would result in a greater

number of constraint equations in the linear system, but may not necessarily improve

the ill-posed nature of the problem. The power conserving constraint could then be

constructed, but would not appear as well-structured as the previous definition.

The interpolation step would generate new pixel values for every HR pixel that

crosses a LR pixel border. The power constraints could be simplified into single

equations where multiple adjacent pixels contain the same value, but there would

still be individual constraint equations containing a variable number of elements. All

of these changes would culminate in the MERE algorithm supporting non-integer

REFs.

It is also the case that the operational MERE code has not been optimised.

There is not a great deal of opportunity to improve the computational complexity

of the MERE algorithm for computation on a single machine because the calculation

is dominated by a n2 × n2 and 1× n2 matrix multiplication, resulting in an O(n4)

operation. However, this calculation could be parallelised and computed on GPUs

with significant gains in computational speed (Ohshima et al., 2007; Cui et al., 2009).

The CUDA and OpenCL frameworks both provide parallel computing capabilities

that are compatible with the MERE algorithm and could offer an attractive

implementation opportunity (NVIDIA, 2009; Khronos OpenCL Working Group,

2008). Such an implementation would be executable across heterogeneous platforms.

The increased speed of computation from parallel calculations would make the

MERE algorithm practical to use. Algorithm parallelisation is beyond the scope

of this work, but is noted as potential future work. The construction of the linear

system could also be further optimised, which would affect the performance of the

MERE algorithm. Currently, the linear system is built using a brute-force approach,
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but could conceivably be optimised by implementing a convolution PSF response

operation. This improvement would have no effect on the results of the MERE

method, but may slightly improve the overall runtime of the technique.

6.5 Summary

A novel approach to spatial resolution enhancement has been established and is

shown to successfully extract high-resolution content from a range of test imagery

under a maximum entropy framework named MERE (Maximum Entropy Resolution

Enhancement). This technique involves the creation of a system of linear equations

that relate Low-Resolution (LR) convolved data points to LR deconvolved data

points using a High-Resolution (HR) Point Spread Function (PSF). This critically

requires the PSF of the optical system to be sampled at the same frequency as the

intended final resolution-enhanced output image. In this way, a HR underdetermined

linear system is constructed and can be solved using additional Multiresolution

Entropy and power-conserving constraints.

Results show that the MERE algorithm provides a superior resolution

enhancement when compared with bilinear interpolation, bicubic interpolation,

and an alternative linear system solver incorporating a Tikhonov constraint. In

particular, MERE produced the best reconstruction accuracy over a range of real

and synthetic test imagery, improved reconstruction accuracy as the resolution

enhancement factor increased over a limited range, and had a robust response to

increases in detector-based noise.

The developments made in this chapter contribute to existing methods. The

approach taken to achieve spatial resolution enhancement is entirely original

and provides proof-of-concept that resolution enhancement can be achieved by

modelling a HR PSF convolution process and solving an underdetermined linear

system. The Multiresolution Entropy constraint builds on robust entropy techniques.

The appropriate selection of Wavelet filter for image decomposition and the

customisation of Multiresolution Support images enable high-frequency content to

be targeted. These techniques are all distinct research contributions that together
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allow spatial resolution enhancement to be realised.

A computational complexity analysis showed that the current MERE algorithm

has moderately unfavourable scaling properties and quickly exhausts the hardware

of a single machine as the input image size increases. A range of limitations of the

current MERE system have been discussed and some potential improvements have

been highlighted. Overall, the MERE algorithm has been demonstrated to operate

beneficially to the problem of spatial resolution enhancement and could be highly

valuable for many marine research disciplines.



Chapter 7

Conclusion

The aim of this thesis was to develop a range of computational techniques to

increase the accuracy of satellite data and improve monitoring capabilities for

marine environments. This involved an in-depth analysis of the physical instrumental

distortion process that is inherent in a convolution operation. Removing these

instrumental effects at the beginning of the satellite image processing chain reduces

errors from being propagated and amplified by subsequent processing stages.

Although the correction is small in a lot of cases, it is well quantified provided the

relative detector gain is corrected during calibration. With a deep understanding

of how instrumental convolution affects recorded imagery, several approaches were

undertaken to increase the quality of satellite products. While the techniques

developed in this thesis were applied to marine satellite imagery, they are also widely

applicable in many other fields.

An entropy-based deconvolution technique was developed to remove instrumental

distortion from MODIS Aqua imagery. One of the fundamental calculations within

the deconvolution process is a convolution operation. To perform these convolution

operations, an accurate and efficient convolution method was developed that uses

a renormalisation approach to minimise boundary contamination effects. Two

validation methods were undertaken to quantify the radiometric improvement that

deconvolution has on a range of MODIS products. Finally, a novel spatial resolution

enhancement technique was developed to extract high-frequency information from

recorded imagery that has undergone natural instrumental convolution.

194
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7.1 Research Contribution

Each of the major research components in this thesis contains distinct contributions

that have advanced the knowledge in unique ways. The FFT convolution with Border

Correction (FBC) method developed in Chapter 3 combined Fast Fourier Transform

(FFT) convolution with a post-convolution border renormalisation correction factor

to reduce boundary effects. While FFT convolution and a similar boundary condition

had both been identified previously, the combination of these two techniques had not

been documented. Hence, this represents an important contribution to convolution

literature. The FBC method has an extensive range of applications. Convolution is

a fundamental technique in digital signal processing and is also used in probability

theory, statistics and deconvolution problems. The FBC method can potentially be

applied in all of these research areas to provide a useful improvement over other

common convolution boundary condition methods.

The Multiscale Entropy deconvolution algorithm for MODIS Aqua imagery

developed in Chapter 4 included several substantial research contributions. A

multi-detector convolution process was created to simulate the physical MODIS

detector layout. This resulted in all convolution calculations accurately representing

the MODIS Aqua instrumentation and allowed successful deconvolution to be

achieved. The critical problem of detector saturation for ocean colour bands was

solved by developing a method to estimate the radiometric response of saturated

measurements using alternative MODIS bands. In this way, the correct quantity of

instrumental distortion is removed during deconvolution. The combination of these

methods along with efficient computational techniques including Wavelet image

decomposition, Multiresolution Support images and the FBC method provide an

accurate and robust algorithm for removing instrumental distortion and restoring

image quality.

Throughout the validation process undertaken in Chapter 5, two measurement

comparison techniques were developed. A high-order polynomial fitting method was

created that used typical Baltic Sea reflectance spectra to appropriately constrain

an in-situ spectral measurement fitting process. This allowed the direct comparison

of in-situ and MODIS spectral measurements and can be useful when aligning
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measurements from different remote sensing instruments. A coincident satellite

data comparison method was developed to allow MODIS Aqua measurements

to be directly compared with high-resolution QuickBird imagery. This comprised

appropriate radiometric correction, spatial measurement location mapping and

measurement coverage estimation. The result of this method allows high-resolution

comparisons to be conducted and represents a new research contribution for satellite

validation techniques.

The Multiscale Entropy Resolution Enhancement (MERE) algorithm developed

in Chapter 6 represents a significant contribution to the field of image processing.

A new entropy-based constraint named Multiresolution Entropy was created to

regularise an underdetermined system of linear equations, focus on high-frequency

content and reconstruct high-resolution features. The appropriate selection of a

Wavelet filter for image decomposition and customisation of the Multiresolution

Support definition are also important research contributions that allow high-

frequency content to be accurately targeted and reconstructed. The MERE

algorithm represents an entirely new approach to spatial resolution enhancement

and is a considerable research contribution.

7.2 Summary of Results

The boundary condition concept that underpins the FBC method was described

and compared with other common boundary condition methods. Situations in

which a border renormalisation approach would be useful were highlighted and the

reasons why this can be an improvement on common techniques were discussed.

The convolution border renormalisation approach was developed for calculation in

the spatial and frequency domains. A comparison of convolution results using both

methods over a range of synthetic and real test signals showed that the two methods

perform equivalent convolution operations. As a result, efficient convolution with

boundary renormalisation can be achieved using the FBC method.

The impact MODIS instrument effects have on recorded imagery was analysed

and shown to produce radiometric errors greater than 1% up to 20km away from



7.2. Summary of Results 197

highly reflective features. Multiscale Entropy deconvolution successfully removed

instrumental distortion from convolved test imagery. High-contrast regions were

correctly restored and instrument effects were removed down to the level of detector-

based noise. In one example, the maximum individual pixel error was reduced

from 90.01% down to 0.34%. When applied to typical MODIS images, the restored

maximum individual pixel error ranged between approximately 20% and 115% for

various contrasting features. These successful deconvolution results critically rely on

multiresolution analysis techniques that decompose the input imagery into a range

of spatial frequencies and incorporate two-dimensional structural information into

the deconvolution process.

In-situ validation of the Multiscale Entropy deconvolution algorithm proved to be

inconclusive in comprehensively characterising the effects of deconvolution. This was

due to a limited number of comparable in-situ sample points and their limited spatial

extent and contrast. A secondary validation approach compared coincident high-

resolution QuickBird imagery with MODIS overpass measurements containing a

high-contrast Antarctic ice edge. The results indicated that deconvolution improved

the radiometric quality of MODIS measurements in the blue-bands. However, not

enough comparable measurements were available for the green and red wavelengths

to conclusively determine any improvement from deconvolution in these regions of

the spectrum. It is expected that successful validation for a range of MODIS ocean

colour bands can be achieved with a more appropriate coincident high-resolution

QuickBird scene selection.

The results of the MERE algorithm provide proof-of-concept that spatial

resolution enhancement can be achieved by modelling a high-resolution point

spread function convolution process, applying appropriate constraints and solving

an underdetermined system of linear equations. MERE outperformed a range of

other resolution enhancement techniques including two interpolation methods and

an alternative Tikhonov constraint for the MERE linear system. The redefined

Multiresolution Support helps the Multiresolution Entropy constraint to accurately

target high-frequency content and improve image reconstruction in high-contrast

areas. The algorithm stepping size selection operates well and successfully guides the
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regularisation process to a convergent solution. This is directly related to the correct

calculation of the regularisation parameter that was redefined to accommodate

spatial resolution enhancement. The MERE reconstruction error quantitatively

scales well at integer resolution enhancement factors up to 4 and clearly outperforms

the other resolution enhancement techniques. MERE is very robust in the presence

of detector-based noise and can perform accurately at relatively small signal-to-noise

ratios.

7.3 Limitations and Further Work

The FBC method is limited to power of 2 signal padding to maintain the most

efficient FFT convolution operations. This can add a moderate computational

overhead as input image sizes grow and are padded to subsequent powers of 2. A

potential improvement could be realised by swapping the FFT convolution routine

that is called by the FBC method with a mixed-radix FFT convolution method.

With the availability of smaller mixed-radix padding dimensions, this could reduce

the severity of padding and increase the speed of computation. The FBC method

may not be suitable for all forms of signal convolution. Due to the renormalisation

approach of the FBC method, convolution kernels that contain negative components

can result in disruption or sensitivity reduction near signal boundaries. For this

reason, the FBC method is not appropriate for applications such as derivative or

edge-detection calculations.

The Multiscale Entropy deconvolution algorithm for MODIS Aqua imagery

could be improved to reduce inaccuracies caused by the bow-tie effect of scanning-

based instruments. The left and right edges of level 1A MODIS scenes contain

duplicate measurements that introduce small errors during deconvolution. These

errors do not affect the centre of MODIS scenes, but increase towards the edges.

The algorithm could be improved by implementing a mask-based method that

intelligently accounts for duplicate measurements prior to deconvolution. This would

eliminate contamination from bow-tie effects. The Multiscale Entropy deconvolution

algorithm also has the potential to be multi-threaded. This would allow certain
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components of the algorithm to be processed concurrently and would provide a

substantial improvement in compute time.

Recent work has shown that effective deconvolution can also be achieved with

total variance methods and proximal operators (Babacan et al., 2009; Li et al., 2012;

Dupé et al., 2009, 2012). A comparative study between these new techniques and

the method developed in Chapter 4 would be interesting future work which would

contribute further to the literature.

The current implementation of the MERE algorithm is limited to integer

resolution enhancement factors. It is highly likely that the optimum resolution

enhancement factor for specific input imagery has a non-integer value. A possible

implementation strategy was discussed in Chapter 6 and would significantly advance

the flexibility and operation of the MERE algorithm. Several elements of the MERE

algorithm also have the opportunity to be parallelised and computed on a GPU. The

scaling properties of the MERE linear system are quite extreme and parallelisation

may be an efficient way to allow for resolution enhancement of large image sizes.

Further work on spatial resolution enhancement could include a comprehensive

comparison of the technique developed in Chapter 6 with recently published super-

resolution research featuring dictionary learning, sparse representation and total

variation regularisation (Pan et al., 2013; Jia et al., 2013; Jung et al., 2013). Such

a comparison may highlight the strengths and weaknesses of these computational

techniques and uncover further research directions in achieving spatial resolution

enhancement of higher accuracy and efficiency.

This thesis has investigated and developed several computational techniques to

improve the quality of satellite data. The FBC method minimises convolution

boundary effects, Multiscale Entropy deconvolution accurately removes instrumental

distortion and the MERE algorithm provides a mechanism to enhance the spatial

resolution of satellite imagery. The combination of these three techniques results

in substantial improvement to the accuracy and quality of satellite data and

can increase the ability to monitor and manage coastal marine and open-ocean

environments.
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