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ABSTRACT d:  SUM^.^^ 7 7 

Western Austral ian Archaean komatii tes which are associated with nickel 

sulphide mineralization can be separated into two groups - Mineralized or  

Barren, based on komatiite lithogeochemistry. Mineralized komatiites may 

host nickel sul phi de deposi t s  whereas Barren komati i tes  do not. Chemical 

relationships were determined from a data base of approximately 3300 samples 

of fresh komatiite u l ~ a r n a f i c  from four nickel provinces and other greenstone 

be1 t s  not known to contain nickel sulphides. Mean chemical values fo r  each 

group of komati i tes were : 

Category Ni P - N i C U P  Cu A1 Ca Zn Cr Mn Fe COP Co 
- (21 

- - -  - EL - -  - - - - 
Mineral ized 1027 2220 36 42 1.6 2.2 19.2 69 1617 1057 6 .1  49 119 

Barren 429 1530 29 39 2.2 2.8 16.4 76 2260 1128 7.0 32 119 

Discriminant analysis , using the above thir teen chemical determinations 

as variables, fo r  each of 2775 samples from forty l o c a l i t i e s ,  indicated that  

samples could be classif ied as e i the r  Mineralized o r  Barren with an expected 

accuracy of greater than 80 percent. No single  element o r  chemical deter-min- 

ation i s  def inf t ive,  b u t  col lect ively,  Cr, Ni, Z n ,  C u ,  Nip, - Mg, Fe and Co can 

distinguish between the two groups of ul tramafics. Crit ical  elements are Cr, 

Ni and Nip, - assuming tha t  values of Z n ,  C u ,  Mg and Fe approximate the mean 

value fo r  a l l  West Austral ian komatiites. The Ni to  Cr ra t io  i s  always greater 

than unity ( 1 )  in Mineralized komatiites and the Ni to  Nip - ra t io  i s  always 

less  than 3.5. Sulphur i s  not a diagnostic element. 

NOTES : 

1. - P indicates a par t ia l  or  sulphide analysis. 

2. Al, Ca, Mg and Fe resul ts  are expressed i n  percentages; a l l  others in 

parts per mill ion. 



(ii) 

Increasing Ni/Cr ratios and decreasing Ni/NiP - ratios within a komatiite 
can be regarded as indicative of increasing nickel sulphide potential. 

Mineralized komatiites contain less Cr within the silicate lattice structure 

and less chromite than Barren komatiites. However, the more important 

relationship appears to be the lesser amount of Cr attached to the silicate 

mineral lattice. 

Correlation analysis showed that: 

1. most correlations are much stronger in Barren than in Mineralized 

ultramaf ics; 

2. the chalcophile elements, Cu, Ni, Co and Fe (constituents of nickel 

sulphide deposits), show moderate to strong correlations with the rock 

forming elements, Mg, Mn, Ca, A1 in Barren ultramaf ics, but only weak 

or no correlation in the Mineralized ultramafics; 

3. copper has moderate positive correlation with Fe, Mn, Ca, A1 and 

negative correlation with Mg in Barren ultramafics but shows no 

correlation with these same elements in Mineralized ultramaf ics. 

These correlation differences suggest that in Barren komatiites Ni, Cu, 

Co and Fe are contained in the silicate mineral lattice whereas in Mineralized 

komatiites they are presently partly as a separate sulphide fraction. In 

addition they may also suggest that these sulphides were added or removed from 

Mineralized komatiites after the formation of the komatiite magma, probably by 

concentration and removal in an' immissible sulphide-oxide melt. -. '. 
Komatiites can be divided into two separate suites called volcanic and 

intrusive. Volcanic suites such as those at Kambalda and Windarra South may 

contain many individual komatiite flows. The basal section of a komatiite 

volcanic pile consists of a small number of thick units which may contain 

sulphide mineralization whereas the central and upper parts of the pile consists 

of multiple - thin units. Both thick and - thin units consist of an olivine 

cumulate derived lower part overlain by a silicate liquid derived upper part. 

In thick units the olivine cumulate section is dominant whereas in - thin units the 



( i i i )  

s i l i c a t e  liquid section i s  dominant. Spinifex texture i s  character is t ic  of 
. ,  

4' 

unmetamorphosed sequences. ufl &)++ CI 
0 

In metamorphosed sequences such as Windarra South i t  i s  not possible to  

identify individual komati i tes using mineralogical o r  textural c r i t e r i a  b u t  

i t  can be accomplished using chemical data. 

Intrusive su i te  komati i t e  sequences such as Forrestania or Perseverance 

usually consist of a small number of high Mg, homogeneous peridoti tes  and/or 

dunites. Equigranular, equant olivine textures are character is t ic .  These 

komatiites are often continuous over s t r ike  lengths of the order of tens of 

kilometers and contain relat ively 1 i t t l e  internal chemical variation. 

Volcanic komatiites such as those a t  Windarra South and Kambalda are 

considered to be ul tramafic lavas. Chemical differences between volcanic 

and  intrusive sequences have been defined. Typical chemical values for  the 

cumulate section of a volcanic komatiite and for  intrusive komatiites, both 

with moderate to  high mineral iza t i  on coefficients are: 

Classification Nip - - Ni - - -  Z n  Cr Mn COP @ CUP & Cu A1 - - - 

Vol can i c 
Komati i tes  1000 2100 30 - 90 1-2  17-24 60 1300 1000 5.5 55 120 

Intrusive 
Komati i tes 1200 2500 5 - 60 0.5 20-26 60 1000 900 6 60 125 

In general, i f  NiP o r  Ni are less than 500 and 1800 ppm respectively, or  Cr 

greater than 2100 ppm, a komatiite can be regarded as Barren. 

I t  has been possible to  define sections of greenstone belts as prospective 

for  nickel sulfides and other parts as unprospective. For example, the 

Forrestania section of the Forrestania-Southern Cross greenstone bel t  has a 

different chemical signature to  the Southern Cross section. The l a t t e r  section 

i s  unlikely to contain economic nickel sulphide accumulations. 
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CHAPTER I 

/' 

Nickel sulphide deposits in Western Australia are generally related t o  

komati i t e  (Nal d re t t  and Cabri 1976) i ntrusi ve and vol cani c rocks. They 

occur as disseminated and massive sulphide accumulations a t  or near the basal 

interface of komatiites with other rocks; less  comonly a t  internal 

komatii t e  contacts; o r  as widespread, low grade disseminations within 

komatiite intrusives.  However, only a small percentage of the many thousands 

of s t r i k e  miles of komatii t e  ultramafic within the Y 

1975) of the Western Australian Archaean Shield (Fig 

prospective f o r  nickel sulphides. 

lgarn Block (Trenda 

1)  contain, or  are 

A 1 ithogeochemical study of komatiites was undertaken with the fol l o  

objectives: 

to  determine i f  komatiites could be classif ied as Mineralized or  Barren, 

based on certain major and minor chemical components; 

t o  define the chemical character is t ics  of the volcanic and intrusive 

komati i t e  sui tes  ; 

t o  provide data on the internal structure and compositional variations 

within komatiite sequences; 

t o  provi.de a bet ter  understanding of the genes 

to  compare the lithogeochemistry of komatiites 

i s  of komati 

from widely 

i tes  . 
scattered 

nickel provinces and greenstone be1 t s  , to  determine i f  s ignif icant  

chemi cal differences existed on a geographic basis ; 

t o  determine i f chemical gradients within komati i t e  sequences could be 

recognized along and/or across s t r ike  from nickel sulphide accumulation. 



Fig.  1 .  Locat ion o f  Y i l g a r n  Block ,  Western A u s t r a l i a  



1.1 FORMAT OF THESIS 

The t h e s i s  i s  organized as f o l l o w s :  

Chapter one o u t l i n e s  t h e  ob jec t i ves ,  scope and a n a l y t i c a l  procedures used. 

Chapter two describes b r i e f l y  the geo log ica l  environment i n  which n i c k e l  

su lph ide  depos i ts  occur w i t h  emphasis on t h e  geology o f  komat i i tes .  More 

d e t a i l e d  geo log ica l  desc r ip t i ons  o f  each n i c k e l  p rov ince a re  g iven i n  t h e  

Appendices. 

Chapter t h ree  discusses t h e  r e s u l t s  o f  t he  s t a t i s t i c a l  ana lys is ,  describes 

how Mineral i zed and Barren komati i t e  geochemistry d i f f e r s  and the  re1 a t i  ve 

importance o f  each chemi ca l  va r i ab le .  

Chapter f o u r  describes t h e  chemical and geo log ica l  c h a r a c t e r i s t i c s  of t he  

vo l can i c  and i n t r u s i v e  komati i t e  s u i t e s  . Several examples from each s u i t e  a re  

discussed i n  d e t a i l .  The eva lua t i on  o f  t h e  Windarra South geochemical r e s u l t s  

i 11 u s t r a t e s  how geochemi s t r y  can a s s i s t  i n  i n t e r p r e t i n g  t h e  i n t e r n a l  s t r u c t u r e  

o f  metamorphosed komati i t e  sequences. 

Chapter f i v e  appl i es the  chemi ca l  c r i t e r i a  der ived i n  Chapters th ree  and 

f o u r  t o  determine whether t h e  Wonganoo-Bandjawarn greenstone b e l t  i s  

p rospect ive  f o r  n i c k e l  su l  p h i  des . 
Chapter s i x  describes komat i i t es  i n  the  Southern Cross sec t i on  o f  t h e  

Southern Cross-Forrestania greenstone b e l t  and shows how they  d i f f e r  chemical ly  

from For res tan ia  komat i i tes .  Th is  i s  an example o f  reg iona l  d i f f e rences  i n  

k o m a t i i t e  geochemistry. 

Chapter seven evaluates t h e  areas o r i g i n a l l y  thought  t o  be Barren b u t  

were c l a s s i f l e d  as Minera l  i z e d  by t h e  d i s c r i m i n a n t  ana lys is .  Th i s  chapter  

a l so  discusses the a p p l i c a t i o n  o f  t he  geochemical and d i s c r i m i n a n t  ana lys is  

c r i t e r i a  der ived e a r l  i e r  t o  two new areas. One o f  these areas i s  shown t o  be 

h i g h l y  p rospect ive  f o r  n i c k e l  su l  phides. 

Chapter e i g h t  discusses t h e  main r e s u l t s  o f  t h e  study and o u t l i n e s  some 

concl us i ons . 



The Appendi ces include descr ip t ions o f  the geology o f  three n icke l  

provinces : Leonora-Wi luna; Kalgoorl  ie-Norseman and Windarra. Areas o r  

groups o f  samples no t  discussed i n  d e t a i l  i n  the t e x t  are a lso  evaluated 

here. Supplementary descr ipt ions of Mulvar - the computer program used i n  

t h i s  study - and some o f  the ana l y t i ca l  procedures are a lso included. 



1.2 DATA BASE 

Three thousand th ree  hundred (-3300) samples o f  f r esh  rock k o m a t i i t e  

u l  t ramaf i c were c o l l  ected and chemi c a l  l y  analyzed du r ing  the  p e r i o d  1972 

t o  1974 i n c l u s i v e .  Data was obta ined from 51 l o c a l i t i e s ,  represent ing  

poss ib l y  80 k o m a t i i t e  sequences and severa l  hundred (:actual f i g u r e  n o t  

known) i n d i v i d u a l  Romat i i te  i n t r u s i v e s  and lavas (.Table 1 and Fig.  2). 

The chemical r e s u l t s  f o r  t h e  groups l i s t e d  i n  Table 1 are  discussed 

i n  d e t a i l  i n  Chapters 4 t o  8 and i n  t h e  Appendices, Kambalda, Windarra 

South, Trough We1 1s , Eureka greenstone be1 t , Red We1 1 , A i r p o r t  , Y i  lmia, 

Queen V i c t o r i a  Rocks, Forrestania,  B u l l  f i n c h  and Mistake Creek are  

descr ibed i n  Chapter 4; Dingo Range West, Devines, Dingo Range East, L a l o r  

North, M t .  Step and C o l i n  Well a re  descr ibed i n  Chapter 5; Southern Cross 

d r i l l  holes, Marvel Lock A, Marvel Lock B y  Marvel Lock C and Ennuin a re  

descr ibed i n  Chapter 6; Area A, Y e r i l l a ,  M t .  Jewel North, Heather Well, Area B 

and Area C a re  descr ibed i n  Chapter 7; and a l l  remaining groups are descr ibed 

i n  t h e  Appendices. 

Samples were o f  f o u r  main types: 

- Rocksamplesfrommineopenings.  

- Pieces of d r i  11 core (about 5 cm 1 ong) , se lec ted  a t  t en  (3.05 m ) o r  

twenty f o o t  (6.10 m ) i n t e r v a l s .  I n  some cases, w ider  spaced o r  random 

samples were used. 

- Core pulps represent ing  d r i l l  h o l e  i n t e r v a l s  o f  one t o  f i v e  f e e t  (.30 

t o  1.52 m ) .  

- D r i l l  c u t t i n g s  from r o t a r y  d r i l l  ho les - each sample represent ing  a f i v e  

(1.52 m ) , ten  (3.05 m 1 o r  twenty (6.10 m ) f o o t  i n t e r v a l .  

The d i f f e r e n c e  i n  sample types d e t r a c t s  f rom t h e  data  base t o  a smal l  

degree b u t  does n o t  a f fec t  t h e  o v e r a l l  conclus ions o f  t h e  study. It i s  

important ,  however, when comparing i n d i v i d u a l  samples, o r  samples from d r i  11 

h o l e  t o  d r i l l  hole, i f  one ho le  has been sampled b y  core p ieces and t h e  o the r  



MAJOR M I N E R A L I Z E D  GROUPS 

CODE # NAME 

1 F o r r e s t a n i a  
3 Windarra South  
7 Windarra 

13  Kambalda 
25 Nepean 
2 6  S c o t i a  
50 Weebo Bore 

M I N O R  MINERALIZED GROUPS 

CODE # NAME 

Bouchers 
M t .  Jewel  
Trough S e l l s  
Red Dam 
Devines 
S i r  Samuel 
Marvel Lock A 
J u b i l e e  
Queen V i c t o r i a  Rocks 

UNCLASSIFIED 

CODE # NAME 

2 2  Area B. 
47  Area C 

BARREN GROUPS 

C O D E #  NAME 

Eureka 
Ennuin 
Mis take  Creek 
Red Well 
German Well 
Area A 
Yandel 
E r l i s t o w n  
Credo 
Mertondale  
Marvel Lock B 
Marvel Lock C 
Dingo Range West 
M t .  S t e p  
La lo r  North 
Co l in  Well 
Dingo Range West 
B u l l f i n c h  
Southern  Cross  
M t .  Jewel  North 
Hea ther  Well 
A i r p o r t  
South Bul long 
Yeri l la  
Wongi South  
Y i l m i a  H i l l  

TABLE 1 - Code numbers and names o f  a l l  groups  o f  k o m a t i i t e s  
r e f e r r e d  t o  i n  t h i s  s t u d y .  



Fig. 2. Y i  l ga rn  Block, showing d i s t r i b u t i o n  o f  "greenstone 
b e l t s " ,  l o c a t i o n  o f  f o u r  n icke l  provinces,  and 
approximate 1 oca t ions  o f  komati i t e  sequences sampled, 
( f o r  a r ea  names r e f e r  t o  Table 1 ) .  



using core pulps, The core pulps give an average value, whereas~pieces give 

4 point value, and t h i s  i s  s ignif icant  when dealing with komatiite lavas. 

Chemical variables were selected from elements known to  be an integral 

part of ultramafic rocks, and from elements thought to  be indicative of 

sulphide mineralization. Important l imiting factors in deciding which 

elements could be used were the type of chemical analysis required f o r  any 

determination and the cost of the analysis. Major rock forming elements 

selected were calcium, magnesium, iron and aluminium; minor elements included 

chromi urn, titanium and manganese; and elements associated with mineral i  zation 

were nickel, copper, zinc and cobalt. The par t ia l  extractions of nickel,  

copper and cobalt designated NIP, CUP - and COP - respectively, were included 

because Cameron, e t  a1 . (1971)  showed them t o  be of possible value in 

determining mineralization potential .  Sulphur and vanadium were analyzed in 

the f i r s t  407 samples. 



1.3 ANALYTICAL PROCEDURES 

Most analyses were carried out in a mining company laboratory using 

procedures specif ical ly  designed, o r  modified, fo r  t h i s  program. Analytical 

precision was controlled by the use of a nurnher of external and internal 

reference samples . The reference sampl es consisted of both synthetic 

samples and ul tramafic rock pulps, with a wide variety of chemically and 

geologically different  matrices, and were obtained from the U.S.G.S. 

(standards ref .  6-2, GSP-1, AGV-1,  PCC-1 ,  DTS-1, B C R - 1 ) ;  Canadian Dept. of 

Miner (Ultramafic re f .  standards - U M 1 ,  UM2, UM4) ; La Trobe University 
- - 

(ANU27183, ANU23182) ; Victorian Mines Dept. (USBS 99) ; and Townser and I .  ' v/~. - 
a- . - .  

Mersor (BCS 175/2 - iron ore standard). - / I  
/ r 

' ,. 
The part ia l  extractions of nickel copper and cobalt were carried out 

using a cold leach technique which employed a mixture of ascorbic acid and 

hydrogen peroxide (Lynch 1971) , fol 1 owed by atomi c absorption spectrometry. 

According to  Smirnova e t  a1 . (1968) and Cameron e t  a1 . (1971) th i s  method i s  

specif ic  for  the sulphide fractions of each metal in ultramafic rocks. 

Cameron e t  a l .  (1971) also s t a t e  tha t  only minor quantit ies of the metals 

( less  than 5%) are  leached from s i l i c a t e s  during t h i s  process, although i f  
----_I_ 

(4 ) - 
serpentinization has taken place in the ultramafic samples, i t  may be tha t  3 ~ , , ~ . -  -, -., ---- -- 

. a r  4 
Ce - * #  

greater amounts are  leached. Throughout t h i s  study', t h i s  extraction method ..#' I 

i s  referred to as a par t ia l  extraction i n  preference t o  a sulphide extraction. 

The total  extractions for  nickel , copper, aluminium, calci um, magnesium, 

zinc, chromium, manganese and cobalt were obtained using 50 percent hydro- 

f luor ic  acid in combination with 70 percent perchloric acid leach (one 

solut ion) ,  and atomic absorption spectrometry. This extraction proved to 

be a total  extraction except 

the sample. The leach disso 

Thus  the Cr procedure was i n  

essent ial ly  a measure of the 

where chromite was a s ignif icant  component of 

lved some b u t  not a l l  of the chromWm present. 

cer tain instances a par t ia l  analysis and i s  

Cr in the l a t t i c e  of the s i l i c a t e  minerals o r  



Cr attached to  sul phi des . 
Approximately 200 representative samples were independently reanalyzed 

fo r  to ta l  Cr, using a sodium peroxide fusion technique. Samples from 

mineralized komati i t es  a t  Windarra South and Forrestania averaged 7 percent 

lower than the original values; samples from u n f t  2 a t  Windarra South 

averaged 110 percent higher; samples from Red Well averaged 35 percent 

higher. T h u s  i n  most mineralized ul tramafics , the hydrofluoric/perchloric 
-.. - ., . < 

leach apparently extracted 100 percent of the chromium whereas i n  barren , . . , 
7 .  , 
' ., 

ultramafics, i t  extracted between 40 and 100 percent of the chromium. . _ r~ 

The C u ,  Ni , Z n ,  Mn and Co values were reproducible to  bet ter  than 

5 percent relat ive error .  The Ca, Mg, A1 , Ti , Fe and Cr values were 

reproducible to  within 10 percent relat ive e r ror  and except for  Cr and A1 

can be regarded as very close t o  t rue values analytically.  The part ia l  

extractions of Cu (CUP), - N i  (NIP) - and Co ( C O P )  - are reproducible to  within 

5 percent relat ive error .  

Values fo r  a l l  elements throughout t h i s  study and i n  a l l  tables are 

expressed in  parts per mi 11 ion except for  Ca, Mg, Fe, A1 , S and Ti o2 fo r  

which values are given i n  percentages. All analyses are  on a "vola t i le  

included" basis unless otherwise s tated.  



CHAPTER 2 

2. GEOLOGICAL ENVIRONMENT 

The nickel sulphide deposits t o  which th is  study i s  relevant occur 

within the Eastern Go1 dfields Province (Will iams 1974) of the Archaean 

Yilgarn Block (Trendall 1975) of Western Australia. The location of 

nickel provinces and areas studied are shown on Fig. 2. Additional 

description of the geology of some nickel provinces i s  included i n  

Appendices 1, 2 and 3. 



2 .1  TOPOGRAPHY AND WEATHERING 

The Yilgarn Block has been peneplaned ,- t o  a very subdued topography a t  

a general a l t i tude  of between 300 and 600 m y  w i t h  a re l ie f  of approximately 

50 m. The area i s  characterized by poor outcrop, oxidation and surface 

leaching, extensive areas of transported s o i l s  and l a t e r i t e ,  and the super- 

imposed effects  of many weathering cycles. In the southeastern part of the 

Yilgarn Block basic rocks tend to  outcrop as long, low, narrow ridges and 

weathering ef fec ts  are somewhat less  severe than in the northern half of the 

Block. North of Menzies ( la t i tude 30 degrees south) ,  major 1 andscape 

elements are scarps (breakaways) and t h e i r  complementary pediments strewn 

with gibbers (gravels).  Sheet wash i s  a major erosional process. Two main 

erosional surfaces are present; the upper i s  dominant, and coincides with 

the t o p  of the 1 a te r i  t e ,  and i s  considered t o  be Early Tertiary or  Cretaceous 

(Morgan 1966). Laterite i s  extensive, overlain in places by sil iceous and 

indurated gravel. Ultramafic rocks are very poorly exposed and seldom out- 

crop except as rubbly exposures between h i l l s  of more res i s tan t  mafic rocks 

or  adjacent to  s a l t  lakes where recent erosion has stripped off older 

weathered material. In many areas, indications of ul tramafic rocks, i f  they 

are present a t  a l l ,  consist of surface deposits of opaline s i l i c a ,  chalcedony, 

magnesite, and s i l i c i f i e d  talcose fragments. 

The highly weathered mantle of the Yilgarn Block and the extensive 

development of l a t e r i t e  and l a t e r i  t i c  so i l s  which are different  chemically 

from the parent rocks, consti tute a severe barr ier  for  nickel sulphide 

exploration, Exploration methods to  date have emphasized "gossan search" 

(detailed search f o r  fragments o r  small outcrops of 1 imoni t i c  material ) , 

soi 1 geochemistry i n  areas of residual o r  mainly residual soi 1 s , "bedrock 

geochemistry" and induced polarization surveys. By f a r  the most effect ive 

method i s  bedrock geochemistry. This method uses auger, rotary or  percussion 



d r i l l s  

spaced 

mafi c. 

of res 

a t  15 o r  30 m intervals a t  r ight  angles t o  the s t r i k e  of an 

Hole depths required may vary from a meter t o  50 m. Even 

idual soi 1 , 1 eaching may be intense enough in parts of the 1 

t o  sample subsurface weathered rock. Sampling points are  usually 

ul t ra-  

i n  areas 

a te r i  t e  

profile to  remove a l l  traces of nickel in weathered ul tramafics for  depths 

of 15 to  50 m. Detailed exploration i s  thus expensive and time consuming. 



consists largely of 

2 .2  GREENSTONE BELTS 

The Archaean of Western Australia 

vol canocl a s t i c  rocks, or greenstone be 

volcanogenic and 

I t s  (Fig. 2 ) ,  extensively intruded by 

grani t ic  rock. These be1 ts are composed of ul tramafic rocks; mafic and 

f e l s i c  volcanic rocks and intrusives ; vol canocl a s t i  c sediments ; cherts ; 

graphitic and/or sulphidi c shale; banded iron formation; and arenacous and 

conglomeratic rocks. 

Archaean greenstone and sedimentary bel ts  can be envisaged as elongate, 

or i r regular ly lensoi d ,  keel -1 i ke bands of volcanics and sediments, immersed 

in a sea of grani t ic  and gneissic rocks. Many of the mafic flows are 

p i  1 lowed, which together w i t h  the evidence of interflow sedimentation, 

suggests tha t  most i f  not a l l  of the volcanism took place in a marine environ- 

ment. There i s evidence of cycl i c  volcanism in many greenstone be1 t s ,  from 

basic volcanism in lower members t o  acidic (rhyol i t i  c j  volcanism towards the 

tops of assemblages. Some of the basic members are characterized by an 

abundance of ul tramafic rocks which are typical of the kornatii t e  su i t e  

(Naldrett and Cabri 1976). Intrusions of gabbro, d ior i te  and doler i te  are 

present in a l l  be1 t s  and form regular or  i r regular  s i l l s ,  dykes and ramifying 

masses. Quartz feldspar porphyry dykes are ubiquitous to  many 1 ocal i t i e s .  

The youngest intrusive rocks are dykes, stocks and bath01 i t hic ma,sses of 

grani t ic  rock w i t h  associated pegmatite, which were apparently derived during 

grani t izat ion and development of gneissic rocks. A1 1 greenstone be1 t s  have 

been extensively folded, faulted and sheared and most are  structural ly complex. 

Two rock types besides ultramafic rocks deserve part icular  mention - 
banded iron formation and sulphide-ri ch black shales. Several facies of 

banded iron formation are recognized of which the oxide and sulphide are the 

most important within the Yilgarn Block. The oxide facies consists of 

alternating highly contorted bands of variously coloured chert ,  magnetite 



and/or hematite. The sulphide facies  i s  represented by banded pyrrhotite 

(pyri te  in zones near the sur face) ,  with minor base-metal sulphide minerals. 

Sul p h i  dic black shales are commonly interbedded w i t h  mafic volcanic and 

ul tramafi c f l  ows . They probably represent peri ods during whi ch reducing , 

sapropel i c  conditions prevailed. The shales vary from a few centimeters 

t o  tens of meters in thickness, and often extend for  some kilometers along 

s t r ike .  They exhibit f ine  scale bedding and bedding convolutions and 

consist  of fine-grained pyr i t ic  and graphitic 1 ayers , interbedded with cherty 

or  s i l iceous layers. In some cases pyrite i s  not vis ible  megascopically, b u t  

microscopi cal ly  i s  present i n  abundance. Sulphides include pyrite , 

pyrrhoti t e ,  chalcopyrite, arsenopyri t e ,  galena and sphaleri t e  and i n  rare 

instances chalcopyrite and sphaleri t e  may be concentrated t o  give copper and 

zinc contents of several percent. Some of these sulphide rich sediments 

appear t o  be spa t ia l ly  related t o  nickel sulphide mineralization, in that  

nickel sulphides may occur in equivalent s t rat igraphic positions to  pyr i t ic  

sulphide sediments, a1 ong s t r ike .  



2.3 KOMATIITES 

Ultramafic and related rocks have been grouped and classif ied by 

Nal d re t t  (1973) and Nal d r e t t  and Cabri (1976) according to  tectonic se t t ing ,  

s i ze ,  form and chemical composition. Most of the ultramafics in the Yilgarn 

Block are komatii tes and be1 ong to the synvolcanic orogenic su i te  of Naldrett 

and Cabri (1976). 

The name komatiite was coined by Viljoen and Viljoen (1969), for  ul t ra-  

mafic rocks well developed in the Komati River area of the Barberton Mountain 

1 and. Naldrett and Cabri (1976) redefined komatii tes  into the fol lowing 

su i t e  members (Table 2) : duni t e  (40 w t .  percent MgO calculated on an anhydrous 

basis) ; peridoti t e  (30 to  40 percent MgO) ; pyroxene peridot i te  (20 to  30 

percent MgO); pyroxenite (12 t o  20 percent MgO); and magnesium basalt  (10 to  

12 percent MgO) t o  basalt  ( less  than 10 percent MgO). The ultramafic members 

of the su i te  were, according to  Nal d re t t  and Cabri (1976), derived from 

liquid containing u p  t o  40 percent MgO. 

Set t l  i ng and accumulation of the 01 i vi ne phenocrysts , coup1 ed with 

f i l t e r  pressing, compaction and some adcumulus growth, were responsible fo r  

the peridotites and duni tes  (Naldrett and Turner 1977). Platy and skeletal  

growth of the 01 i v i  ne and cl i nopyroxene crystal  s characterize the upper 

parts of some flows o r  intrusives and i s  known as spinifex texture (Nesbi tt 

1971). Spinifex zones a1 ternate with zones of olivine peridoti t e  o r  

peri doti t e  (characterized by equant 01 i vi ne textures) whi ch form the basal 

sections of individual komati i t e  units . Nesbi tt (1971) suggests that  

spinifex textures are the resu l t  of rapid, in s i  t u ,  crystal l izat ion of a 

s i l i c a t e  l iquid.  , (3 ?-. 
.. 

Naldrett and Cabri (1976) indicated tha t  komati i tes  can be di s t i  ngui shed 

from ul tramafics ... derj-ved from a thole i i  t i c  parent 1 iquid, by both A1203 vs 
- -  - \4- 

FeO/(FeO+MgO) and Ti02 vs MgO plots (Fig. 3 ) .  Total Fe in  the rocks i s  

calculated as FeO. A71 West Australian komatii tes  except E n n i u n  (6) plot 



CaO 0 . 0 4  

T o t a l  1 0 0 . 4 4  

Fe 7 . 1 0  1 0 . 9 5  9 .38 1 1 . 0 7  1 1 . 3 1  1 0 . 3 6  4 . 2  
' a s  FeO 

N i  nd nd nd nd nd nd 1 8  7 Oppm 
Cu nd nd nd nd nd nd 4 O P P ~  
Zn nd nd nd nd nd nd 729pm 
C r  nd nd nd nd nd nd 1 9  30 ppm 
Co nd ' nd nd nd nd nd 119ppm 

1. D u n i t i c  k o m a t i i t e  N a l d r e t t  E T u r n e r  ( 1 9 7 7 )  
2 .  P e r i d o t i t i c  k o m a t i i t e  ( s p i n i f e x  t e x t u r e )  N a l d r e t t  E Turner  ( 1 9 7 7 )  
3 .  Pyroxene p e r i d o t i t i c  k o m a t i i t e  

( s p i n i f e x  t e x t u r e )  N a l d r e t t  E T u r n e r  ( 1 9 7 7 )  
4 .  P y r o x e n i t i c  k o m a t i i t e  N a l d r e t t  E Turner  ( 1 9 7 7 )  
5 .  Magnesian b a s a l t i c  k o m a t i i t e  N a l d r e t t  E Turner  ( 1 9 7 7 )  
6 .  B a s a l t i c  k o m a t i i t e  N a l d r e t t  E Turner  ( 1 9 7 7 )  
7 .  Average k o m a t i i t e ,  t h i s  s t u d y  McNeil 

recal cul ated on an anhydrous basis 

Table 2 .  Typical komatiite analyses from Naldrett and 
Turner ( 1  977). Mean values for  kornati i tes  
from this  study are included for  comparison. 
AlzO3, Ti02, FeO, and CaO values fa l l  be- 
tween duni t i c  komatii te  a n d  peridoti t i c  
komati i te  of Naldrett and Turner (1977), 
whereas MgO i s  between peri doti t i c  komati i t e  
and pyroxene peri doti t i c  koma t i  i t e  . Nal dre t t  
and Turner's MnO values are considerably 
higher than those of this study. 



Weight 

Perxent 

*I2O3 

0 
a MINERALISED VLTRAMAFIC 

*36 BARREN ULTRAHAFIC 

a CARR BOYD ROCKS 

Fig. 3. P lo t  o f  A1203 aga ins t  FeO/FeO+MgO for mean values 
o f  a l l  sample groups i n  t h i s  study.  The dashed 
1 i n e  represents the  d i v i d i n g  1 i n e  between u l  tramaf i c s  
w i th  komati i t e  and t h o l e i  i t e  parent magmas, according 
to  Naldret  and C+bri (1976). A1 though Ennuin ( 6 )  
f a l l s  i n t o  the  t h o l e i i t i c  sect ion,  based on i t s  geologic 
context  and Ti02 content , i t  appears t o  be a genuine 
komat i i te.  Carr  Boyd Rocks represent an u l t ramaf i c  
w i t h  t h o l e i i t i c  parentage. 



w i t h i n  the  f i e l d  appropr ia te  t o  Nal d r e t t  and Cabri ' s  komati i t e  grouping. 

Data f o r  t h ree  u l t r a m a f i c s  from Carr  Boyd Rocks (Purv is  e t  a l .  1972) which 

represent  a t h o l e i i t i c  parent  magma, a re  a l s o  shown f o r  comparison. The 

komat i i  t e  s u i t e  i s  unique among u l  t r a m a f i c  rocks i n  t h a t  i t  appears t o  be 

r e s t r i c t e d  t o  Archaean greenstone b e l t s .  There i s  an apparent c o n t r a s t  

between u l  t r ama f i  c 1 i q u i  ds generated i n  t h e  Archaean, and those developed 

l a t e r ,  and t h i s  may be an i n d i c a t i o n  t h a t  a p a r t i c u l a r  stage o f  mantle 

and/or c r u s t a l  development was reached i n  the  Late Archaean, Lower Protero-  

zo i  c Period. Nesbi tt (1972) suggested t h e  term "Archaean greenstone 

p e r i d o t i  t e "  be used f o r  t h i s  p a r t i c u l a r  u l  t r a m a f i c  s u i t e .  Komati i  t e  i s  

considered pre ferab le  as t h e  u l  t ramafics are  a s u i t e  o f  rocks and a re  n o t  

con f i  ned t o  p e r i  d o t i  tes .  



2.4 METAMORPHISM AND ALTERATION 

Binns e t  a l .  (1976) recorded a wide range i n  metamorphic grade through- 

out the eastern Yilgarn Block and delineated four types of metamorphic 

domain (low greenschist facies t o  mid t o  high amphibolite f ac i e s ) .  They 

a1 so recognized two contrasting s ty l e s ,  designated s t a t i c  s ty l e  where 

primary structures and textures are preserved, and dynamic s ty l e  which i s  

characterized by penetrative fol iations and 1 ineations. S ta t i c  s ty l e  i s  

usually present i n  the lower grade metamorphic domains and dynamic s ty l e  i n  

the higher grade domains. 

Barrett  e t  a l .  (1977) maintain tha t  a t  l eas t  some nickel ores ( i - e .  the 

more massive sulphides) have been concentrated by metamorphic process and 

suggest that  a l l  massive sulphides may have been generated from more 

disseminated sulphides during metamorphism. There i s  no doubt that  meta- 

morphic and deformational processes played a s ignif icant  role in the 

evolution and mobilization of some massive sulphide lenses, par t icular ly a t  

Redross, Perseverance and Nepean. However, as the great bulk of massive 

sulphides occur a t  Kambalda, i n  a re lat ively low grade metamorphic domain 

(low amphibolite - s t a t i c  s t y l e  according to  Binns e t  a l .  1976) i t  seems 

more probable that  the massive ores resulted from a separate intrusion of 

magmatic sulphide l iquid (Ross and Hopkins 1975), and that  1 a t e r  metamorphism 

merely modified and in some cases remobilized the massive sulphides. 

Widespread hydration and carbonation are associated w i t h  many komatiites 

and pervasive serpenti nization has obl i te ra ted  most original textures. In 

some areas such as a t  Lunnon (Kambalda), Ross and Hopkins (1975) concluded 

tha t  talc-carbonate a1 terat ion was widespread and serpentine rocks simply 

represent portions of the komati i t e  sequence which escaped a1 teration. A t  

Mt. Monger, Wi 1 liams (1971) suggested tha t  ta l  c-carbonate a1 teration i s  also 

l a t e r  than serpentinization and that  i t s  dis t r ibut ion within an ul tramafic 



body was d i rec t ly  controlled by the presence of C02 during metamorphism, and 

was unrelated t o  the origi'nal ultramafic rock. W i t h i n  any one body the change 

from serpentini t,e t o  talc-carbonate occurs over a short  distance, b u t  is 

gradational . The carbonate materi a1 i s usual 1 y a s i  dero-magnesi t e  (e  . g . 49.1% 

Mg , 11.2% Fe, 0.6% Ca) . Where t a l  c-carbonate a1 terat ion is  complete, no 

original rock textures are retained. Ross and Hopkins (1975) concluded tha t  

there i s  a loss of CaO from peridot i te  from both serpentinized and talc-  
13 

carbonate assemblates, and tha t  the loss took place during serpentinization. 

During serpenti n i  zation practi  ca11y a1 1 anhydrous maf i c minerals of igneous 

origin were reconstituted to  the 1 i zardi te-chrysoti le-bruci t e ,  actinol i te-  

ch lor i te ,  al bi te-epidote-cl inozoisi t e ,  and prehni t e  su i tes .  Equilibrium of 

mineral assemblages throughout the en t i re  rock was generally not achieved. 

Anti gori te  bearing serpentini tes  are a progressive metamorphic a1 teration 

product of the 1 i zard i te  assemblage. 

In medium to  high amphiboli t e  facies  domains, regenerated olivine 

dominates the more magnesi um rich komati i t es .  Secondary 01 i vine i s  derived 
. . . # ' '  , -- 

\. 

by the breakdown of earl i e r  serpentine ta l  c-carbonate assemblages. Commonly, 
- ' -  . -.. ...- .._ ._-. _ --- - --. -. - _- - -. - . 

the dehydration of antigori t e  resul ts  in a crystal loblast ic  intergrowth of 

elongate 01 ivine crystals  s e t  in a talcose matrix which superf icial ly  

resembles spini fex texture. 

In most dynamic s ty l e  te r ra ins ,  much, i f  not a l l  of the original rock 

fabric  and textures,  such as spinifex texture,  have been obliterated. 

Consequently, i t  i s  often d i f f i c u l t  t o  determine from scattered and rare 

surface outcrops whether the ultramafics are intrusive o r  volcanic, and the 

thickness and composition of individual u n i t s .  Also, because changes during 

serpentinization and carbonate metasomatism involve changes i n  Mg t o  S i  r a t io ,  

and in Ca content, an abundance of metamorphic ol ivine need not necessarily 

imply a dunitic parent. 



All Mg analyses i n  t h i s  study were determined on a hydrous basis and 

thus Mg analyses are not direct ly  comparable between low grade metamorphosed, 

serpentine rich komati i tes and medi um-hi gh grade metamorphosed, regenerated 

olivine rich komatiites. The l a t t e r  will  always have a higher Mg content. 



2.5 GEOLOGICAL SUBDIVISION OF THE YILGARN BLOCK 

T r e n d a l l  ( l 9 7 5 ) ,  N i l  l i ams  (1974) and Gee (1975) subd i v i ded  t h e  Y i  l g a r n  

B lock  i n t o  g e o l o g i c a l  p rov inces  and subprovinces (F ig .  4 ) .  T r e n d a l l  (1975) 

de f i nes  a  p rov ince  as "an area of  t h e  e a r t h ' s  c r u s t  i n  which t h e  rocks have 

some geo log i ca l  cha rac te r ,  o r  combinat ions of  cha rac te r s  i n  common; these  

a re  u s u a l l y  e i t h e r  age, metamorphic grade, s t r u c t u r a l  s t y l e  o r  t ype  o f  

m ine ra l  i z a t i o n .  " T r e n d a l l  (1975) subd iv ides  t h e  Y i  l g a r n  B lock  i n t o  t h r e e  

ma jo r  p rov inces  , namely t h e  Southwestern, Murchison and Eastern Go1 df i e l  ds . 
The Southwestern Prov ince  appears t o  be a  v a l i d  s u b d i v i s i o n  on t h e  bas i s  o f  

h i g h e r  metamorphic grade ( g r a n i t e  migmati  t e  t e r r a i n  occupies 95% of t h e  

p rov ince )  ; absence of  economic m i n e r a l i z a t i o n  ( e i t h e r  go1 d  o r  n i c k e l  ) ; and 

perhaps t o  a  l e s s e r  e x t e n t  on t h e  f a c t  t h a t  p a r t s  o f  t h e  p rov ince  have 

y i e l d e d  age dates g r e a t e r  than  3,000 m.y. The Murchison Prov ince,  accord ing  

t o  T renda l l  ( l 9 7 5 ) ,  i s c h a r a c t e r i z e d  by a  dominant eas t -no r t heas t  t r e n d ,  and 

Gee (1975) by ova te  c e l l u l a r  g r a n i t e  p l u tons .  The Eas te rn  Go ld f i e l ds  

Prov ince i s  cha rac te r i zed  by  n o r t h - n o r t h w e s t e r l y  t r ends  ( T r e n d a l l ,  1975); by 

an o v e r a l l  n o r t h e r l y  t r e n d  (Gee, 1975); and by t h e  l a r g e r  s i z e  o f  vo lcanogenic  

be1 t s ,  and t h e  d i s c r e t e  na tu re  o f  i n d i v i d u a l  g r a n i t i c  p l u t o n s  (Gee, 1975). 

De l a  Hunty (1975),  however, s t a t e s  t h a t  t h e  geology o f  t h e  Murchison Prov ince  

i s  b a s i c a l l y  s i m i l a r  t o  t h a t  o f  t h e  Eas te rn  Go1 d f i e l d s  Prov ince.  

The above g e o l o g i c a l  c r i t e r i a  a re  ambiguous and do n o t  p rov ide  an 

adequate g e o l o g i c a l  b a s i s  on which t o  separate t h e  Murchison and Eastern 

Go ld f i e l ds  Prov inces.  The names a re  usefu l  i n  terms of geographic  areas, b u t  

on t h e  bas is  of  p resen t  g e o l o g i c a l  da ta  t hey  a re  n o t  separate and d i s t i n c t  

geo log i ca l  p rov inces .  For  i ns tance ,  Gee (1975) c i t e s  n o r t h  t o  n o r t h e a s t e r l y  

t rends  f o r  t h e  Murchison and o v e r a l l  n o r t h e r l y  t rends  f o r  t h e  Eastern G o l d f i e l d s .  

S u p e r f i c i a l l y  t h e r e  would appear t o  be l i t t l e  d i f f e r e n c e  between these two se t s  

of t rends .  I n  f ac t ,  i n  t h e  sou thern  h a l f  o f  t h e  Murchison Prov ince,  t r ends  can 



Fig. 4. Proposed geol  o g i c a l  and n i  c k e l  meta l  1  ogenic  p rov inces  
w i t h i n  t h e  Y i l g a r n  B l o c k  o f  Western A u s t r a l i a .  

(1)  A f t e r  W i l l i ams  (1974) ,  g e o l o g i c a l  s u b d i v i s i o n  
(2)  A f t e r  Gee ( l 97S) ,  g e o l o g i c a l  s u b d i v i s i o n  
(3 )  A f t e r  McNei l ,  t h i s  paper,  g e o l o g i c a l  s u b d i v i s i o n  
(4)  Proposed n i c k e l  p rov inces  , McNeil , t h i s  paper. 



be interpreted as mainly northerly t o  slightly west of north, and only in 

the northern half of the province can trends be said t o  be dominantly north- 

northeast or northeast. In the Eastern Go1 dfiel ds Province the dominant 

trend i s  north-northwest in the Norseman-Wiluna belt (Gee 1975) b u t  even 

here there are numerous exceptions. In the Diemals-Barlee area (the western 

section of the Eastern Goldffelds Province) the dominant trend varies from 

northeast t o  northwest. Dominant trends are subject t o  interpretation and 

are not  sufficient basis in this case t o  separate geological provinces. 

Other suggested differences such as cellular granite plutons (Murchison) and 

discrete individual granite plutons (Eastern Go1 dfiel ds) do n o t  appear t o  be 

sufficiently definitive. The larger size of the vol canogenic be1 t s  (or 

perhaps i t  should be expressed as the ratio between granitic and non-granitic 

rocks) i s  valid t o  the extent t h a t  the ratio of granitic rocks t o  non-granitic 

rocks in the Kalgoorlie-Kurnalpi Norseman and Leonora-Laverton-Agnew triangles 

is  considerably less than  in the Murchison Province. This distinction, 

however, i s  n o t  valid for the whole Eastern Goldfields Province. 

I t  should n o t  be inferred from this argument that significant differences 

do not  occur between various parts of the Yilgarn Block, outside the South- 

west Province, There are differences b u t  the two suggested major divisions 

are no t  considered t o  be logical subdivisions. I t  i s  suggested here t h a t  the 

whole region (Murchison plus Eastern Go1 dfiel ds) should be assigned province 

status and renamed the Go1 dfields Province (Fig. 4).  This Go1 dfiel ds Province 

could then be subdivided into a t  least seven and perhaps more subprovinces. 

Wi 11 i ams (1974) divided the Eastern Go1 dfi el ds Province into three 

subprovinces , namely the Southern Cross, Kalgoorl ie  and Laverton: Gee (1975) 

suggested t h a t  the province be divided i n t o  the Southern Cross subprovince and 

two other areas which he designates as the Wiluna-Norseman belt and the 

Eastern segment. However, the Southern Cross subprovince places together 

several areas with widely divergent structural and petrological domains. 



Contrasting character is t ics  within the subprovince are that  large layered 

gabbroi c intrusives which contain anorthosi tes and t i tan i ferous ,  vanadi - 
ferous magnetite layers ,  occur only i n  the northern segment; highly magnetic 

and thick banded-iron formations and lack of a consistent s t ructural  trend 

characterize the central par t ;  and l inear ,  thin greenstone bel ts  with 

associated gold and, in par t ,  nickel mineralization are present i n  the 

southern part. 

One of the character is t ics  of the Kalgoorlie subprovince of Williams 

(1974) and an implied charac ter i s t ic  of the Wiluna-Norseman be1 t of Gee 

(1975), i s  the concentration of nickel sulphide deposits w i t h i n  these areas. 

In f a c t ,  mineralization in terms of to ta l  nickel metal i n  sulphides, o r  

total  volume of suphides within ultramafics, i s  concentrated i n  fou r  widely 

separated areas: Perseverance-Mt. Keith; Windarra-Windarra South; Kambalda 

and Forrestani a. Scattered b u t  small occurrences of nickel sulphide occur 

i n  the Coolgardie-Norseman area. 

Both Wi 1 liams C1974) and Gee (1975) have made credible attempts to  

subdivide the Yilgarn Block in to  separate geological units.  The writer 

suggests tha t  the evidence presently pub1 i shed t o  support these subdivisions 

i s  tenuous and i n  many areas subject t o  al ternat ive interpretations.  To 

accept these divisions unquestioningly a t  t h i s  stage in our knowledge will 

i n h i b i t  geological and mineral exploration progress. I t  may be tha t  certain 

subdivisions such as the Wi luna-Norseman be1 t are more appropriately defined 

as provinces, rather than subprovinces. In these circumstances the Murchison 

Province could be retained. Whether o r  not the elevation of the Wiluna- 

Norseman be l t  t o  province s t a tus ,  or  the redefinition of the Murchison and 

Eastern Goldfields Provinces as one province (Go1 dfiel  ds Province) i s  

accepted, smaller areas than those defined to  date as subprovince should be 

used i n  future. For example, the Bullfinch-Forrestania area, the Leonora- 



W i  luna be1 t ,  the Kalgoorl ie-Kurnalpi-Norseman tr iangle,  are more logical 

subdivisions a t  the present s t a t e  of geological knowledge. 

I t  was considered necessary to  br ief ly consider the geologic subdivision 

of the Yilgarn Block because of genetic implications in relation t o  nickel. 

Other authors have stated tha t  known nickel sulphide deposits occur mainly 

in the Eastern Go1 dfiel  ds  Province ; are concentrated i n  the Wi luna-Norseman 

bel t  or  Kalgoorlie subprovince; and are not known t o  occur i n  the Murchison 

Province. From this i t  must not be inferred tha t  nickel exploration should 

only 6e carried out t n  the Kalgoorlie subprovince. There i s  s t i l l  

insuff icient  information available t o  exclude from prospecting kornatiites 

in other parts of the Yilgarn Block. 



2.6 NICKEL PROVINCES 

Four nickel provinces (Fig. 2 )  can be defined within the Yilgarn Block 

on present geol ogi cal know1 edge. They are : Leonora-Wi 1 una, Kal goorl i e- 

Norseman, Forrestani a and Windarra. The Leonora-Wi l una and Kal goorl i e- 

Norseman are major provinces and Forrestania and Windarra are minor provinces. 

A province i s  defined as a geographic clustering of nickel sulphide 

occurrences within an area of relat ively uniform geology. 

The Leonora-Wiluna Province contains mineralization predominantly in 

large intrusive komatiites, which appear t o  be related t o  a major crustal 

break known as the Kei th-Kill kenny lineament, The deposits change in tenor 

of mineralization and character from north t o  south. A t  the northern end of 

the province low grade, large disseminations are present, b u t  with distance 

south, grade and sulphide concentration increases and a t  the southern end of 

the province a t  M t .  Clifford,  the deposits have "volcanic" a f f in i t i e s .  

The Kalgoorlie-Norseman Province i s a 1 arge geographic area (160 by 240 km. ) 

w i t h  many small individual nickel sulphi de accumul ations. The deposits belong 

t o  the volcanic su i t e  and are re la t ive ly  h i g h  grade. Massive sulphides are a 

feature of most occurrences. The r a t io  of grani t ic  t o  other rocks w i t h i n  t h i s  

province i s  much less  than in other nickel provinces. 

The Forrestania Nickel Province i s  a narrow, 1 inear province approximately 

40 km. in length. Nickel sulphide deposits are relat ively small and occur 

w i t h i n  an intrusive su i t e  of ul tramafics. This province has more simi 1 ar i  t i e s  

w i t h  thehenol.a-Wi 1 una Province than w t  t h  the Kal goorl i e-Norseman Province. 

The Windarra Nickel Province i s  a small narrow province which contains 

two main and several minor sulphide occurrences. The komatiites are a part  

of a volcanic su i t e ,  similar t o  the ore hosts in the Kalgoorlie-Norseman 

Province. 



The geology of the Leonora-Wi 1 una, Kal goorl i e and Wi ndarra provinces 

i s  described in greater detai 1' in the appendices. The Forrestani a province 

i s  described in Chapter 4. 



CHAPTER 3 

MINERALIZED A N D  BARREN KOMATI ITES 

The multivariate analysis program used t o  evaluate the chemical data 

provided a discriminant analysis , principal component analysis , mean chemical 

values by group and correlation co-efficients (Mulvar-Geostatisti cs, Perth, 

Austral i a ) .  Di scriminant analysis proved to  be the most effect ive s t a t i s t i c a l  

method. 

I t  was assumed tha t  samples of fresh rock komatiite could be designated 

Mineralized or  Barren from t h e i r  known geological context. Samples could be 

designated Mineralized with accuracy, b u t  t h i s  may not be t rue for  a l l  samples 

designated Barren. Most samples of non-mineral ized komati i t es  came from 

isolated, o r  less  intensely prospected and d r i l l ed  areas,  and thus the geologic 

context was not always known with certainty.  For the s t a t i s t i c a l  analysis i t  

was assumed the Mineral i zed komati i t e s  and Barren komatii t es  are d i s t inc t  and 

separate groups. The data base used in the s t a t i s t i c a l  analysis consisted of 

2786 samples from 40 loca l i t i e s  - seven major mineralized areas, nine minor 

mineralized areas and twenty-four barren areas. A to ta l  of 1320 samples were 

designated as Mineralized and 1456 as Barren. 



3.1 MEAN GEOCHEMICAL RESULTS FOR EACH LOCALITY 

Mean values and standard deviations by group, f o r  each of the thir teen 

chemical variables used in Discriminant Analyses A, B and D are l i s t e d  in 

Table 3. Caution must be exercised in the evaluation of these resul ts  because 

most groups do not represent individual komatiites, b u t  are composed of many 

separate intrusions or  1 avas. Within a vol cani c komati i t e  sui t e  , geochemical 

signatures can, and usually do change i n  d ifferent  parts of the p i le .  

There i s  consi derabl e over1 ap in mean values , when standard devi a t i  ons 

are considered, between groups c lass i f ied  as e i the r  Mineralized o r  Barren. 

However, N i  , NiP and Mg values are higher in mineral i zed groups (means of 

1027 ppm, 2220 ppm and 19.2 percent respectively) than i n  barren groups 

(means of 429 ppm, 1530 ppm and 16.4 percent respectively).  The reverse i s  

t rue for  chromium ('1617 ppm in mineral ized groups and 2260 ppm in barren 

groups). There are less  pronounced differences such as higher COP and lower 

Mn, Fe and Zn in mineralized groups than in barren groups. A1 1 d i  

because of overlapping standard deviations, are not in themselves 

t o  d i f fe rent ia te  between the two populations. The geometric mean 

variable,  for  both populations, i s  included for  reference. The di 

fferences , 

suff ic ient  

of each 

fference 

between the arithmetic and geometric means i s  a measure of the variance in 

the data, for  each variable. 

Wi t h i n  the mineral i zed groups, intrusive sui tes  such as Forres tani a 

have high N i  , Mg and low Cr re la t ive  to  volcanic su i tes  such as Kambalda, 

Trough We1 1s and Windarra South. These differences are partly caused by the 

fac t  t ha t  i n  the volcanic su i t e s ,  samples were obtained not only from the 

nickel sulphide host komati i t e ,  b u t  also from numerous overlying komati i t e  

i s  the fac t  tha t  there i s  considerably more chemical 

ide host komatii tes from volcanic sui tes  than from 

lavas. A second cause 

variation within sulph 

intrusive sui tes .  

Each group l i s t ed  

or in the Appendices. 

in Table 3 i s  evaluated in detail  l a t e r  in th i s  thes 



-. .. . .. 

A. M i n e r a l i z e d  U l t r a m a f i c s  
Rap 
A r e a  N i p  N i  CUP Cu A1 Ca Mg Zn C r  Mn Fe COP Co ---- ------ 

8.  B a r r e n  U l t r a m a f i c s  

MEAN 429* 1 5 3 0  2 9 3 9 2 . 2  2.8 1 6 . 4  7 6 2260  1 1 2 8  7 . 0  32 1 1 9 *  
MEAN 270** 1 3 8 8  1 3  2 2 1 . 6  1 . 5  1 5 . 9  6 5 2 0 6 3  1 0 5 4  6 .7  2 6 117** 

ARITHMETIC 
** GEOMETRIC 

Table 3 .  Arithmetic means and standard deviations (in 
brackets) of most chemical determi nations for 
groups of samples referred t o  in this study. 
Note t h a t  a1 t h o u g h  there are differences be- 
tween the means for Mineralized and  Barren 
groups, standard deviations are such t h a t  a 
large number of results fall  between the re- 
specti ve mean va1 ues . 

. . 

Note t h a t  several areas designated ' ~ i n e i a l  i zed 
t i  ncl udi ng 13 Kambal da) , have resul ts which 
are simi 1 a r  t o  the mean values for  a1 1 groups 
designated Barren. This i s  caused by sampling 
many indi vidual komati i tes in heterogeneous 
lava piles and  i s  explained further in the 
text. 



3.2 DISCRIMINANT ANALYSIS 

D i s c r i m i n a n t  a n a l y s i s  i s  designed t o  answer t h e  ques t ion .  "What i s  t h e  

ma jo r  component o f  v a r i a t i o n  t h a t  d i s t i n g u i s h e s  between groups w i t h i n  a  

c e r t a i n  popu la t f on? "  It a t tempts  t o  h i - g h l i g h t  t he  d i f f e r e n c e s  between known 

groups, when a  number of  v a r i a b l e s  a re  a v a i l a b l e ,  f o r  a  number o f  i n d i v i d u a l s  

w i t h i n  each group. I n  t h i s  p a r t i c u l a r  i ns tance ,  where t h e r e  a r e  t h i r t e e n  

v a r i a b l e s  f o r  each i n d i v i d u a l ,  d i s c r i m i n a n t  o r  canon ica l  a n a l y s i s  can be b e s t  

understood by imag in i ng  a  p l o t  o f  da ta  p o i n t s  o r  samples i n  t h i r t e e n  

d imensional  space, where each a x i s  represen ts  one chemical v a r i a b l e .  The 

da ta  form two swarms o f  p o i n t s  i n  t he  space, one o f  m i n e r a l i z e d  u l t r a m a f i c  

samples and t h e  o t h e r  o f  bar ren  u l  t r a m a f i c  samples. The two swarms s l i g h t l y  

ove r l ap  each o the r .  D i s c r i m i n a n t  a n a l y s i s  can be used t o  determine l i n e a r  

combinat ions o f  t h e  o r i g i n a l  v a r i a b l e s ,  c a l l e d  canon ica l  v a r i a t e s  , such t h a t  

t he  v a r i a t i o n  between t h e  group means a long  t h e  canon ica l  axes de f ined  by 

t h e i  r 1  i near  combinat ions , i s  maximi zed. The f i r s t  canon ica l  v a r i  a t e  i s  

chosen, such t h a t  i t  i s  i n c l i n e d  i n  t h e  d i r e c t i o n  o f  g r e a t e s t  v a r i a t i o n  

between group means, r e l a t i v e  t o  t h e  d i s p e r s i o n  o f  t h e  observa t ions  w i t h i n  

each group; t he  r a t i o  o f  t h e  between groups t o  w i t h i n  groups sums of squares 

f o r  t h e  f i r s t  canon ica l  v a r i a t e  i s  a  maximum. The second v a r i a t e  i s  chosen 

such t h a t  i t  i - s  unco r re l  a ted  w i t h i n  groups w i t h  t h e  f i r s t  v a r i a t e  and t h a t  

t he  v a r i a t i o n  between group means, r e l a t i v e  t o  t h e  w i t h i n  group d i s p e r s i o n ,  

i s  n e x t  g r e a t e s t .  Thus t h e  p o p u l a t i o n  d i s p e r s i o n  i n  t h e  p l ane  formed by t h e  

two canonica l  v a r i a t e s  i s  maximized, and so on. 

Wi th  two groups as i n  t h i s  s tudy ,  t h e  f i r s t  canon ica l  v a r i a t e  i s  u s u a l l y  

t h e  o n l y  one of  s i g n i f i c a n c e .  For two groups, i f  t h e  canon ica l  score D  f o r  

any i n d i v i d u a l  i s  such t h a t  D i s  g r e a t e r  than  Do, then t h e  sample belongs t o  

Group A, and D  i s  l e s s  than  Do, t h e  sample belongs t o  Group B.  For  example, 

t he  canonica l  score f o r  any u l t r a m a f i c  sample i n  t h i s  s tudy  i s  d e r i v e d  f rom 

an equat ion  such as: 



where C1 t o  C13 are constants and N i p ,  - Ni, e tc .  are the  geochemical values 

expressed as logarithms. Canonical var ia tes  thus provide a measure of the  

distance between groups along axes providing maximized between group 

dispersion. Discriminate o r  canonical analysis programs assume tha t  the 

variables are normally d l s t r i  buted; the groups have a common variance/ 

covariance matrix; and the groups are in f a c t  d i s t inc t .  I f  these assumptions 

are violated,  and in most cases geologic data i s  not homogenous, performance 

i s  adversely affected and a l i nea r  separating boundary may not adequately 

represent the  s t ructure  of data. However, f o r  t h i s  study i t  appears t ha t  the 

above assumptions are adequate. 

Discriminant analysis was carried out a t  three stages using a progress- 

ively larger  data base. In addit ion,  two programs were used. Upper l imi ts  

imposed 

Ni 8000 

Cr 5000 

, "  

on the variables t o  discard spurious samples were as follows: 

ppm; CUP 350 ppm; C u  350 ppm; A1 9 percent; Co 10 percent; Zn 350 ppm; 
C 

ppm; Mn 2800 ppm; Fe 15 percent; Co 300 ppm. t:, 7L_; < I  . ,.-/.- 
\ .- .- t 4 ..- < 

I 7 -- 
-. L 

, 

3.2.1 First and Second Stage Analyses 

Discriminant analysis was f i r s t  attempted using a program (Mu1 var) from 

a Perth based service group (Geosta t is t ics  Pty.Ltd.) on a data base of 407 

samples. Seventeen chemical and eight  mineralogical variables were ava i l ab le '  
r r  + i ,  

, . 
fo r  each sample. Several d i f fe ren t  analyses were attempted using various / ,  - .. , _  

combinations of variables and groups of data. I n i t i a l l y ,  the data was 

divided into four groups: Major Mineral ized; Minor Mineral ized; Trough Wells 

and Barren; and analysis was attempted using a l l  chemical variables. The 

resul ts  were encouraging but the dis t inct ion between Major Mineral i zed and 

Minor Mineralized areas was poor. A second analysis using three  groups: 

Mineral ized (100 samples), Trough Well s (145 samples) and Barren (162 samples) 



was attempted and resul ted in good discrimination. Trough We1 1s represents 

an area of Minor Mineralization b u t  was included as a separate group t o  

prevent bias in the mineralized group of samples. The data was divided into 

two sets ;  the discriminant functions were derived from the training se t  and 

then tested using the testing se t .  The percentage of samples classified 

correctly for each group are given below: 

PERCENTAGES OF SAMPLES CLASSIFIED AS: 

Mineralized Trough Wells Barren 

Mineral i zed group data 77-79 15-6 8- 15 

Trough Wells data 7-7 92-86 1-7 

Barren group data 23-23 13-13 64-64 

The f i r s t  figure represents training se t  samples and the second figure 

testing set  samples. Thus for the mineralized group training se t  data, 77 

percent were correctly classified as Mineralized, 15 percent were classif ied 

within the Trough Wells group, and 8 percent were classified as Barren. 

Several other data subdivisions were used in subsequent analyses and, in 

to t a l ,  the results were considered encouraging enough t o  continue 

addition, a f te r  a study of the canonical functions i t  was decided 

sulphur, selenium and vanadium could be excluded from future chem 

The mineralogical variables proved t o  be of 1 i t t l e  discriminant v 

petrologic examination of most samples was discontinued. 

that . 

cal analyses. , 

lue and 

I ,  

An en1 arged se t  of data was then analyzed using the Biomed BMD07M -',- 
'q - - 

discriminant analysis program. Sampl es were divided into two groups : 

Mineral ized (728 samples) and Barren (683 samples). Fourteen chemical 

variables were available for each sample. Good discrimination was achieved 

and 80 percent of samples from barren areas and 82 percent of samples from 

mineralized areas were correctly classified.  



3.2.2 Third Stage Analyses 

Four discriminant analyses were undertaken using the  Mulvar program 

(Geos ta t i s t i c s ,  Perth)  with d i f f e r e n t  data combi nations. Three of these 

analyses, designated Analysis A ,  Analysis B and Analysis D wil l  be 

discussed below. 

In Analysis A ,  sixteen groups to ta l ing  1320 samples were designated 

Mineralized and twenty-four groups t o t a l i n g  1465 samples were designated 

Barren. The discriminant function A derived from t h i s  data base, c l a s s i f i e d  

73.5% of Mineral ized samples correc t ly  and 79.3% of Barren samples co r rec t ly  

(Table 4 ) .  The major disadvantage with Analysis A was tha t  i t  c l a s s i f i e d  
/ 

correc t ly  only 33% of Kambalda samples, 47% of Windarra sampiss and 75% of 

Windarra South samples. Analysis B was undertaken in an attempt t o  increase 

the percentage of samples c l a s s i f i ed  correc t ly .  Samples assigned t o  the ,, . 

Mineralized category were l imited t o  samples known t o  be within 70 m of A , .  

I r '  
I < 

s ign i f i can t  sulphide mineral izat ion.  The discriminant function B derived 

from th f s  revised data base improved c l a s s i f i c a t i o n  s ign i f i can t ly .  81.7% 

of Mineral ized samples and 79.9% of Barren samples were c l a s s i f i ed  co r rec t ly .  

Percentages correc t ly  c l a s s i f i ed  increased from 75 t o  88 fo r  Windarra South 

and 33 to  79 f o r  Kambalda. Analysis A and Analysis B are highly corre la ted ,  

but Analysis B i s  a more accurate function f o r  discrimination. 

In Analysis B y  the  geochemical r e su l t s  from overlying th in  ul tramafic lavas 

a t  Kambalda and Windarra South are  excluded from the  Mineralized group. I t  
8-r 

appears t h a t  t h i s  exclusion i s  va l id  and these lavas have a d i f fe ren t  . ,  -, 
. , -. , 

,,. ".*. , , 

"geochemical signature" t o  the  underlying nickel sul phide host komati i t e s .  

Throughout t h i s  t e x t ,  where discriminant analysis  r e su l t s  are quoted without 

designation, they re fe r  t o  Analysis B. 

The Mineralized and Barren groups are  separated in Analysis B by the  

fol lowing function: 

D =  -0.30 (Nip) -0.99 (Ni) -0.40 (CUP) + 0 . 5 4  ( C u )  -0.23 (Al) = 0.10 ( ~ a )  - 
-0.70 (Mg) -0.91 ( Z n )  + 1.32 (Cr) +0.09 (Mn) -0.67 (Fe) - 0.36 (COP) + 1.92 ( 



Area Name - co h e  
A )  M i n e r a l i z e d  
F o r r e s t a n i a  1 
W i n d a r r a  S o u t h  3  
W i n d a r r a  7  
K a m b a l d a  1 3  
N e p e a n  2  5  
S c o t i a  2  6 
Weebo B o r e  5 0  
B o u c h e r s  2  
M t .  J e w e l  4  
T r o u g h  Wells 11 
Red Dam 1 6  
D e v i n e s  1 9  
S i r  S a m u e l  2  0 
M a r v e l  L o c k  A  27A 
J u b i l e e  3  4  
Q u e e n  V i c t o r i a  46 

R o c k s  

DISCRIMINANT 
ANALYSIS A 

P e r c e n t  
No. o f  C o r r e c t l y  
S a m n l e s  C l a s s i f i e d  

1 8 1  9 5 
2 9 0  7  5 

5 7  4 7 
1 3  2  3  3  

7  7  1 
7  1 0 0  

2  2  1 0 0  
2  7  4  8  5 

4  6  8  3  
1 4 1  5 0  

9 8  9 
1 6  8  1 

9  6 7  
4  3  7  5 
2  2  8  2  
6  2  9 4  

B 1 B a r e n  
Gzrman  Me11 1 0  2  1 
Y m d a l  1 5  11 
Mt. STP-9 3  0  1 3  
L a l o r  N o r t h  3  1 1 4  
C o l l i n  Well 3  2  1 4  
D i n g o  R a n g e  E a s t  3 3  11 
RP-a W e 1 1  9  1 0 0  
E . m e k a  5 5 & 
A i r p o r t  . LC 0 6 5 
Y i l m i a  H i l l  5 1  2 4 6  
E n n u i n  5  1 2 9  
M a r v e l  L o c k  8 2 7 5  1 0 7  
M a r v e l  L o c k  C  27C 
S o u t h e r n  C r o s s  36 1 8 9  
S o u t h  B u l o n g  4  1 6  6 
M e r t o n d a l e  2  4  1 4  
Mistake Ck. 8  4  3  
C r e d o  2  1 1 2  
D i n g o  R a n g e  West 28 7  3  
B u l l f i n c h  3  5 3  8  
M t .  J e w e l  N o r t h  38 4  0  
H e a t h e r  Well 3  9  92  
Y e r i l l a  4  2  3  2  
Area A 1 2  3  4  

Mean, M i n e r a l i z e d  1 3 1 8  
Mean ,  B a r r e n  1 4 5 7  

TOTAL 2 7 7 5  

DISCRIMINANT 
ANALYSIS B 

P e r c e n t  
No. o f  c o r r e c t l y  
S a m ~ l e s  C l a s s i f i e d  

11 6  9  3  
1 0 7  8  8  

3  4 5  3  
3  3  7  9 

5  8  0  
7  1 0 0  

2  2  1 0 0  
11 6  8  9 

2  3  9  1 
9 3  5 1 
9 8 9  

1 6  8  1 
9  6 7  

4  3  8  4  

Table 4 .  Percent of samples correc t ly  c l a s s i f i e d  as 
e i t h e r  Mineralized o r  Barren by sample group, 
f o r  Discriminant Analyses A and 0.  In 
Analysis 0 ,  81.7 percent of samples o r i g i n a l l y  
designated Mineral i zed were simi 1 a r l  y cl  a s s i  - 
f i e d  by Discriminant function B .  Mean Ni/Cr 
and N i / N i P  r a t i o s  f o r  each group a r e  a l so  
shown. I t  i s  suggested in the t ex t  t h a t  fo r  
any group of samples to be Mineralized, the  
N i / C r  r a t i o  should exceed 1.0 and the Ni/NiP 
r a t i o  should be l e s s  than 3.5. A number of 
groups such as Kambal da and Trough We1 1s do 
not conform t o  these guidelines and the reasons 
f o r  nonconformity a re  discussed in  the  text .  



Canonical score group means a re  1.72 f o r  the Mineralized group and 3.37 

for the Barren group. Thus Do i s  2.55 and samples with a score of less  than 

2.55 are c lass i f ied  Mineralized and samples with a score greater  than 2.55 

are Barren. In practice,  any samples which f a l l  near t o  2.55, e i t he r  above 

or below, are of doubtful origin.  

A "mineralization coeff ic ient"  i s  defined such t ha t  samples with scores 

between 2.55 and 2.13 have a low coeff ic ient ;  samples between 2.13 and 1.72 

have a moderate coeff ic ient ;  samples between 1.72 and 1.30 have a high 

coeff ic ient ;  and below 1.30 the coeff ic ient  i s  very high. 
-7 7: 

Averaged resu l t s  such as those i n  Table 4 should be evaluated with 

caution, par t icular ly  i f  the samples cover a large geographic area,  or  a thick 

section of ultramafics. In volcanic su i t es  such as Kambalda and Windarra 

South, the overlying komatii t e  lavas will give barren resu l t s  whereas the 

underlying ore bearing komatiites have a high t o  very high coeff ic ient  of mineral- 

izat ion.  This i s  

t o  y ie ld  reasonab 

In Table 4 w 

w i t h  the mqjority 

not a problem in homogeneous, intrusive su i t e s ,  which tend 

ly  consistent  canonical scores throughout the in t rus ive .  

i th in  the Barren groups, several areas show poor correlat ion 

of Barren groups. Samples from Area A were c lass i f i ed  as 

29% Barren and 71% Mineralized; from Yeri l l a  44% were Barren and 56% 

Mineralized; from Heather Well 40% were Barren and 60% Mineralized; and from 

M t .  Jewel 1 North 45% were Barren and 55% Mineralized. These areas which 

were or ig inal ly  desi-gnated as Barren because of no known association w i t h  nickel 

sulphfdes, may in f a c t  be Mineralized. These areas are evaluated in de ta i l  

in Chapter 7.  Some evidence for  Mineralization also occurs in the Southern 

Cross and Dingo Range West komatiites. Adequate evaluation of canonical -scores 

requires some knowledge of the geology of the komatiite sequence. 

In Analysis D ,  mu1 tip1 e discriminant analysis was undertaken, using a1 1 

areas w i t h  more than 20 samples as separate populations. The object of t h i s  

analysis was t o  provide an independent check on Analyses A and B and t o  determine 



i f  areas o r  depos 

differences could 

i t s  could be grouped together ,  o r  whether regional 

be defined. The resul t ing  functions were applied t o  a l l  

groups and the  r e su l t s  of t h i s  analysis  a re  shown in Fig. 5 where mean 

canonical values f o r  the  f i r s t  two canonical functions f o r  each area are 

plot ted.  Groups above the dividing l i n e  on Fig. 5 can be regarded as 

Mineralized; and most of the  groups below the  l i n e  are Barren. This analys is  

i s  misleading t o  the extent  t h a t  mean canonical scores f o r  each group are  

p lo t ted ,  and as has been shown above, in  any volcanic komatiite s u i t e  t h e r e  

may be populations representat ive of both Mineralized and Barren komati i  t e s .  

For example, point A on Fig. 5 represents mean scores of Lunnon and D u r k i n  

shoots a t  Kambalda whereas point 13 represents the mean of a l l  Kambalda 

samples. D4 and D5 represent separate areas within the Southern Cross 

greenstone b e l t  and 36 represents the mean of the  Southern Cross group. 

Regardless of the  d i f f i c u l t i e s  in in te rp re ta t ion ,  discriminant Analysis D 

confirms t h a t  Mineral ized and Barren komatii t e s  can be separated. Analysis D 

also indicates t h a t  komatii t e s  from d i f fe ren t  greenstone be1 t s ,  o r  nickel 

provinces, may have d i s t i n c t  geochemi cal s ignatures.  For example, the 

Southern Cross greenstone b e l t  komatiites appear t o  be d i s t i n c t  from the 

Kal goorl i  e-Norseman komati i  t e s  . The Wonganoo-Bandjawarn komati i  t e s  a1 so form 

a d i s t i n c t  group and Area A ,  Yer i l la  and Jubilee have a s imi lar  geochemical 

s ignature.  In the  case of the  Southern Cross greenstone b e l t ,  an exception 

i s  Trough We1 1s which plots  within the Kalgoorl ie-Norseman komatii t e s .  

Y - - 1  : -  , & -  p ~ t l ? ~ ~  p ~ ~ P j - ~ d *  4 - ; 7 F/ 
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Fig. 5 . Plot o f  mean canonical scores f o r  canonical var ia tes  1 
and 2 ,  Discriminant Analysis D. Note the division 
between Mineralized and Barren groups and tha t  groups 
of samples from d i f fe ren t  geographic regions f a l l  
within separate f i e l d s  on the f igure.  



3.3 PRINCIPAL COMPONENT ANALYSIS 

P r i n c i p a l  component ana l ys i  s  d i f f e r s  f rom d i s c r i m i n a n t  ana l ys i s  i n  t h a t  

i t  i s  concerned w i t h  major  components o f  v a r i a t i o n  w i t h i n  t h e  whole popu la t i on ,  

and i s  i n  no way o r i e n t e d  towards c h a r a c t e r i s t i c s  o f  known groups w i t h i n  t h e  

popu la t ion .  P r i n c i p a l  component ana l ys i s  p rov ides  a s t a t i s t i c a l  method f o r  

d i sen tang l i ng  and making sense of  t h e  v a r i a t i o n  i n ,  and t h e  c o r r e l a t i o n s  between, 

a  number o f  va r i ab l es .  It prov ides  l i n e a r  combinat ions o f  va r i ab l es ,  w i t h  

maximum val- iabi  1  i t y  exp la ined  by  t h e  l a r g e r  components - t h e  f i r s t  p r i n c i p a l  

component co inc ides  w i t h  the  maximum v a r i a t i o n ,  t h e  second w i t h  t he  maximum 

of the  remaining v a r i a t i o n s ,  e t c .  The c o e f f i c i e n t s  which de f i ne  the  p r i n c i p a l  

components may p rov ide  some i n s i g h t  i n t o  t h e  na tu re  o f  the  i n t e r r e l a t i o n s h i p  

between va r i ab l es ,  and i n t o  t n e  unde r l y i ng  fac to rs  causing t h e  v a r i a t i o n .  The 

f i r s t  few components account f o r  much o f  t h e  i n f o rma t i on  i n  t he  data and 

p i r n c i p a l  components are e f f e c t i v e  i n  reduc ing t h e  number o f  dimensions under 

study. 

P r i n c i p a l  component scores were computed f o r  t h e  f i r s t  e i g h t  components 

f o r  a l l  samples i nc l uded  i n  t h e  s t a t i s t i c a l  ana lys is .  The second component 

proved t o  be o f  va lue  i n  d e t e c t i n g  k o m a t i i t e  con tac ts  i n  metamorphosed 

mu1 t i p l e  sequences (see Windarra South).  However, t h e  conc lus ion drawn from 

the s tudy o f  t h e  p r i n c i p a l  component ana l ys i s  i s  t h a t  i n  t h i s  ins tance,  

d i sc r im inan t  ana l ys i s  i s  f a r  supe r i o r  i n  usefu lness,  n o t  o n l y  i n  d i s c r i m i n a t i n g  

between M ine ra l i zed  and Barren groups b u t  a l so  (by t he  use o f  i n d i v i d u a l  

canonical  scores) i n  t h e  i n t e r p r e t a t i o n  o f  t h i c k  k o m a t i i t e  p i l e s  and i n  

de tec t i ng  regiLonal  geochemical d i f f e rences  . 



3.4 CORRELATION ANALYSIS 

A correlat ion matrix was computed separately f o r  both Mineralized and 

Barren groups (Table 5)  using logarithmically transformed data. The 

correlat ion coeff ic ient  " r "  measures the degree of in terre la t ionship  between 

two variables.  I t  i s  a  uni t less  number ranging from +1 t o  -1. A corre la t ion 

of +1 indicates a perfect d i rec t  re1 ationship and of -1 a perfect  inverse 

relat ionship.  A coeff ic ient  of zero indicates the lack of any so r t  of l i n e a r  

relat ionship b u t  not necessarily the lack of any relat ionship.  

High correlat ions ex i s t  between the following pairs  of variables in both 

mineralized and unmineralized groups. The numbers l i s t e d  a f t e r  each pa i r  of 

variables are the coefficients  f o r  the Mineralized and Barren groups respect- 

ively. High posit ive correlat ions include: 

CUP - and Cu ( .96,  .89) 

Nip - and COP - ( .84,  .81) 

Nip - and Ni ( .75,  .66) 

Ni and Mg (.63, .51) 

Ca and Mn ( 3 3 ,  .53) 

High negative correlat ions include: 

A1 and Mg (-.60, -.64) 

Ni and A1 (-.46, -.63) 

The fo l l  owing groups of variables have strong interrelat ionships : 

Ni, Nip, - Mg, COP,  - Co, A1 and Ca; Al, Ca, Z n ,  Mn, Fe and Mg. 

These re1 ationships r e f l e c t  the normal variat ions throughout the komati i t e  

su i t e  ; and, in general,  as Ni , Ni - P ,  Mg, COP - and Co increase, A1 , C u ,  Z n ,  Mn and 

Fe decrease. The strong posit ive correl at ions between Ni-Mg and negative 

correlat ions between A1-Mg and Ni-A1, indicate t ha t  the nickel content of any 

komatiite increases with Mg whereas with increasing A1 both Mg and Ni decrease. 
- '_. . " -  ; , : ,  

These changes are fundamental t o  the komatiite se r ies . .  . ?.- I ,? : - ,  i : i  i , . , ..... ; . 



CORRELATION MATRIX MINERALIZED AND BARREN ULTRAMAFICS 

B a r r e n  

N i p  N i  CUP Cu A 1  Ca Mg Zn Cr Mn F e  COP Co 

- 6 6  - . 0 5  k . 1 4  - . 5 0  - . 3 2  - 5 1  - . 2 5  - . 0 3  - . I 9  - . 2 6  - 8 1  . 3 5  K 

- . 3 2  - . 3 7  - . 6 3  - . 5 1  .SO - a 4 6  -11 m.39 - . 3 7  - 4 3  . 4 3  K 

. 8 9  - 5 3  - 5 0  - , 3 9  - 4 5  - 0 5  a36  - 3 7  - 1 2  - 0 3 -  c 

. 4 1  . 2 2  . 9 6  . 5 5  . 5 2  7  . 4 6  . 0 2  . 3 7  - 3 9  - 0 4  - . 0 2  C 

- . 2 8  - . 4 6  - 1 5  a 1 0  . 7 0  6  9 6 1  - 1 8  - 4 7  - 5 5  - . 2 9  - . I 4  P 

- . 3 2  - . 4 4  . 0 5  . 0 3  . 4 4  5  . 4 6  . 1 0  . 5 3  . 3 7  - - I 7  - . 1 8  C 

. 3 7  . 6 3  - . 2 2  - . I 9  -.SO - . 4 5  7  . 1 6  - . 2 9  - . 3 6  - 2 9  . 4 0  P 

- . l o  - . 2 0  - 2 5  . 2 2  - 3 3  - 3 2  - . 3 5  . 2 4  . 5 1  . 5 8  - . I 4  . 1 0  2 

- . 0 5  . 0 2  .19 -12 - 5 4  -18 - . 2 0  - 2 4  . 2 0  . 3 8  . 0 4  . 3 6  C 

- . I 4  - . 2 2  .11 . 0 7  . 3 k  . 5 3  4  - 4 7  - 2 4  P 

- . a 0 7  . 0 4  . 1 9  . 1 5  . 2 1  . 1 7  - . 0 2  . 2 5  . 4 1  . 4 2  - . 0 5  . 3 7  F 

. 8 4  . 5 4  . 4 6  . & 5  - . I 4  - . I 7  . 2 0  - . 0 2  . 1 5  - 0 0 4  - . l o  C 

C 

N i p  N i  CUP Cu A1  Ca Mg Zn Cr Mn F e  C o p  Co 

M i n e r a l i z e d  

Table 5 .  Correlation Matrices computed from the mean 
values of a l l  groups designated e i ther  Min- 
eral i zed or Barren. Two general observations 
should be noted:  (1) Most correlations are  - 
much stronger in the Barren than in the Min- 
eral ized ul tramafics; ( 2 )  the chal cophil e 
elements, C u ,  Ni, Co and Fe (constituents 
of nickel sulphide deposits) ,  in par t icular ,  
show moderate t o  strong correlations with 
the rock forming elements, Mg, Mn, Ca, A1 
in Barren ultramafics b u t  only weak or no 
correlation in the Mineralized ul tramafics . 
In addition copper has quite different  rela- 
tionships in b o t h  groups (see t e x t ) .  



Some relat tonships are res t r i c ted  t o ,  o r  emphasized within,  e i t he r  

Mineralized o r  Barren groups. The Mineralized group shows a strong re la t ion-  

ship between the following groups of elements: Ni!, C U P  and C u ;  C U P ,  COP and 

Co; A1 and Cr. Thus the Mineralized group emphasizes relat ionships between 

the par t i a l  o r  sulphide extract ions ,  which suggests a higher sulphur content 

for  this group than the Barren ultramafics. The Barren group emphasizes the  

following in terre la t ionships :  C u ,  A1 , Ca, Mn, Fe and Mg; N i  and Fe; CUP,  - A1 

and Ca. 

Two general observations should be noted: 

1. Most correlat ions are much stronger i n  the Barren than in the Mineralized 

ul trarnaii cs ; 

2. The chalcophile elements, C u ,  Ni, Co and Fe (consti tuents of nickel 

sulphi de deposits)  , in pa r t i cu la r ,  show moderate t o  strong corre la t ions  

with the rock fonntng elements, Mg, Mn, Ca and A1 in Barren ultramafics,  

b u t  only weak or no correlat ion in the Mineralized ul tramafics. 

Copper i s  outstanding in i t s  behaviour in tha t  i t  has moderate posit ive 

correlat ion with Fe, Mn, Ca and A1 and negative correlat ion with Mg i n  Barren 
$7,' 

ul trarnafics b u t  shows no correlat ion w i t h  these same elements i n  Mineral ized l p  

ultramafics. In addition, Cu shows moderate posit ive correlat ion w i t h  N i  , N i p ,  - 

Co and COP - i n  Barren ul tramafics. Copper in Barren ul tramafics increases as 

the magnesi-um and nickel content decreases, t ha t  i s ,  in the l ess  ultramafic 

uni ts .  However, i n  Mtneral ized ultramafics there i s  only a s l i gh t  tendency 

f o r  Cu to  increase with a decrease in  Mg, and with decreasing Ni i t  a lso  tends 

to decrease (-and vi.ce versa) ,  These correlat ion di fferences 'suggest t ha t  . 8.,l.t. . . 
? - I . .  

' P. 
most of the Ni, Cu and Co, and some of the Fe in Mineralized ultramafics i s  I/: - -+ ..+ . . c-,, , 

~ , .. ' L 

..' .. 
held as a sulphide f rac t ion ,  not related to  the rock forming minerals. An ,, , , .  ,-- . .  . . / . ,  ... , 

._* ' . : .- ^ . 
a1 ternative or complementary explanation i s  that  a part  of t h i s  sulphide phase ,- + , ' - 

<...,- , .... . .  - has been concentrated and removed in an immiscible sulphi de-oxide me1 t .  C .r- - ,  



Whereas Ni has low t o  moderate corre la t ion  w i t h  Cu and Co in.Mineralized 

ul tramafics,  i t  shows no ~ o r r e l a t i ~ o n  with Fe. In Barren ul tramafics,  Ni has 

a  weak t o  moderate negative re la t ionship  with Fe. By con t ras t ,  Fe i s  moder- 

a te ly  corre la ted  with cobalt  i n  both groups. Other re la t ionships  which should 

be noted include a low negative corre la t ion  between Cr and Mg in  Mineralized 

ul t ramafics,  in cont ras t  t o  a  low posi t ive corre la t ion  in Barren ul tramafics ; 

a much stronger re la t ionship  between Cr and A1 in Mineralized ultramafics fl,L- I.. <:- 

than Barren; and the re la t ive ly  strong corre la t ions  between Z n  and f e ;  Mg, Ca, 

A1 , C u ,  C U P ,  - Ni and Nip - in Barren ul tramafics compared to  much weaker co r re l -  

a t i  ons in Mi neral i  zed ul tramaf i  cs . 
The highly chalcophile nature of copper i s  confirmed by the high cor re l -  

at ion coeff ic ients  between Cu and C U P  - fo r  both Mineralized (0.96) and Barren 

(0.89) ul tramafics.  Most of the  copper in a l l  komatiites i s  present as CUP 

which i s  presumably copper sulphide. In Mineralized komati i  t e s  41.2% and 46.3% 

of Co and Ni respectively i s  present as sulphide whereas in  Barren komatiites 

26.9% and 18.0% i s  present as sulphide. Nickel i s  s l i g h t l y  more chalcophile 

than Co but the  difference i s  s l i g h t .  This re la t ionship  i s  confirmed by the  

correlat ion coeff ic ients  of 0.75 and 0.52 f o r  NiP-Ni and CoP-Co respectively.  

Nickel and cobalt  have a corre la t ion  coe f f i c i en t  of 0.43 in the  Barren 

ul tramafics and 0.54 in  the  Mineralized ul tramafics. Cobalt however does not 

always closely follow Ni in  i t s  d i s t r ibu t ion .  Whereas Ni values d i f f e r  

between cumulate and s i l i c a t e  l iqu id  portions of thick and t h i n  u n i t s ,  Co 

remains re1 a t ive ly  constant throughout. Mean values f o r  Ni between thick and 

th in  units  i n  Mineralized ul tramafics a lso  d i f f e r  subs tan t i a l ly  b u t  d i f f e r -  

ences in Co content a re  very small. The corre la t ion  coeff ic ient  of approxim- 

a t e l y  0.5 between Ni and Co indica tes  some interdependence and individual 

small f luc tuat ions  in Ni content within individual komatiite uni ts  i s  some- 

times accompanied by complimentary changes in Co. High Co in an otherwise 

chemically average un i t  tends t o  indica te  the  u n i t  i s  Barren. 



Ca and Mg have correlation coefficients of -.45 in Mineralized komati i tes 

and -.54 in Barren komatiites. A much stronger negative correlation i s  

indicated in some instances, particularly Forrestania hole 5 ( F i g .  43), some 

of the Boucher holes, crosscut A Kambal da, Yilrnia, etc.  , where sharp increases 

in Ca content in the middle of a high Mg section have a corresponding decrease 

i n  Mg. These differences would appear to  ref lect  addition of Ca and removal ":' A 1- p 

%!;, - 42; 
'1 of Mg during carbonate alteration. Highly carbonate altered rocks also tend ,. F " , ~  

' 7 -  ?* 

t o  be depleted in Nip and COP and in some instances N f .  These changes add a * 3 

further risk t o  interpretation of geochemical data without knowledge of the 
4-  

mineralogy of the samples in question. I < - - ,  .- *A / 

- . c 1 I 4  

Earrett e t  a l .  (1977)  l i s r  correlation coefficients for  Se,  Fe, Co, Ni, 

C u  and Zn for volcanic type Fe-Ni sulphide ores. Most of the i r  coefficients 

are remarkably simi 1 ar t o  those of the mineral ized u l  tramafi cs , except for  

Fe-Ni and Fe-Co which are 0.53 and 0.02 respectively compared t o  0.04 and 

0.25 respectively in the mineral ized u l  tramafi cs . The fact  that coefficients 

between the metals Co, N i ,  Cu and Zn are similar in b o t h  sulphide concentrat- 

ions and ultramafic host suggest that these metals have not been added t o  the 

system in significant quantities a f te r  the formation of the komatiite magma. 

The different re1 ationships between Fe-Ni and Fe-Co in sulphides and ultra- 

mafic suggest that Fe has been added t o  the sulphide system from an external ,7 

source and not derived entirely from the ultramafic. 3 



3.5  RELATIVE IMPORTANCE OF EACH VARIABLE 

I t  has already been pointed out t ha t  no s ingle  variable d i f f e r en t i a t e s  

between Mineral ized and Barren groups, a1 though i n  to ta l  the th i r t een  

variables discriminate accurately. An estimation of the most important 

elements can be obtained from a study of the canonical function. A 

re la t ively  high value constant f o r  a par t icular  element indicates t ha t  the  

element or variable i s  s ign i f i can t  in  the dTscriminating or canonical 

function. Thus Co, Cr, N i  , Zn and Mg appear t o  be most important. Mn and 

Ca have no e f f ec t  on the function. However, t h i s  approach considerably over- 

simplif ies the problem and does not take in to  account the normal range of 

chemical values f o r  each variable or whether certain variables are highly 

correlated and tend to  cancel each other out. 

To assess-the re la t ive  discriminant power of each variable, graphical 

plots of part ial  canonical score against  geochemical value fo r  the normal 

range of values f o r  tha t  variable in komatii tes  were constructed (Figs. 6 -9 ) .  

In b o t h  Analyses A and B y  a decrease in canonical score moves t ha t  sample 

towards the Vineral ized group. Most pldts  are  curves (as  expected with a 

log function) and thus the discrimination power of most variables changes 

with the absolute geochemical value of the variable. For example, in Fig. 7 

i t  can be seen tha t  f o r  copper, a small change in value in the range 2 t o  

20 ppm has a very large e f fec t  on canonical score,  b u t  increases in Cu 

values above 60 ppm have a re la t ive ly  small influence on canonical score. 

T h u s  the slope of each graphical p lo t ,  a t  any point ,  can be regarded as a 

measure of the discrimination power of t ha t  variable,  a t  t ha t  par t icular  

chemi cal value. 

The variables which have g rea tes t  dtscrimination power throughout the 

re1 evant geochemical range fo r  t h i s  study are : N i  , Cr, Zn and Co. Copper 
< 
c. , 

and CUP - have s ign i f i can t  power in t h e i r  lower geochemical ranges. Nip i s  '- 4-  - , ?  
I -"- - . ,  

.-. . . .I., 
s ignif icant  f o r  Analysis B only. Mg and Fe have low discriminate power and .":r.- 
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Fig. 6, Plots of parti a1 canonical scores for N i  , N i  P, Cr 
and A1 versus geochemical value for the range of 

- values common i n  kornatiite rocks. 



COP, - A1 and Mn have low discriminant power in  certain par ts  of t h e i r  geochemical 

ranges. Calcium has no influence on e i t h e r  function. Discriminant Analysis B y  

because of i t s  be t t e r  c lass i f i ca t ion  record, i s  the more useful of the two 

functions and fu r the r  comments will be res t r i c ted  t o  t h i s  analysis. 

The canonical means fo r  the Mi neral i zed and Barren groups are 1.72 and 

3.37 respectively. Thus, individual samples with canonical scores of l e s s  than 

2.55 are regarded as Mineralized, and those with scores greater  t h a n  2.55 a re  

Barren. In practice,  i f  a sample has a score of between 2.13 and 2.92, i t  

should be evaluated carefully.  If  i t  belongs to  a group of samples from the  

same komatiite sequence which has a mean canonical score of l e ss  than 2.13, the 

sample can be regarded as Mineralized. The reverse i s  t rue  i f  the group has 

mainly canonical scores greater  than 2 . 9 2 .  

A change of only 0.8 i s  needed to  move a sample's score from the mean of ' -  ... .. - 
,&, ,<, ,- 

, ,Ly 
the Mineralized group to  the boundary between the two groups (Do). This woul dl 

" ,:c y // 
.- -. - -  

resu l t  i f  the Ni value i s  reduced from 2500 pprn t o  1100 ppm (assuming-all"other, y'r.~-,~,-: 
I--? 

2: 7dy 
variables t o  remain constant (Fig. 6 ) ;  o r  the Nip value from 2000 pprn t o  150 ppm;--L.< 

by an i-ncrease i n  the Cr from 1000 ppm t o  1750 ppm; by increasing Cu from 5 pprn 

t o  2 1  pprn e tc ,  However, as was shown i n  the correlat ion analys is ,  most of 

these variables are in terre la ted  and i t  i s  thus unrea l i s t i c  t o  consider them 

separately. Nickel and Nip - have a strong positive correlat ion and thus when 

Ni decreases, Nip - can be expected t o  decrease also.  Thus Ni and Nip have a - 
cumulative effect  on the canonical score. Copper and CUP are also highly - 
posjt ively c ~ r r e l a t e d .  However, an increase i n  the Cu value increases the  

canonical score, whereas an increase in CUP - value decreases the canonical 

score, The cumulative e f fec t  of Cu and CUP - i s  i l l u s t r a t ed  i n  Fig. 7. To 

derive t h i s  graph, i t  was assumed tha t  the C U P  t o  Cu r a t i o  i s  constant a t  - 
0.88. Thus ,  a f t e r  CUP - i s  taken fnto account, a change from 5 ppm Cu to  21 ppm 

Cu would increase a canonical score by only 0.1. However, with Ni, i f  i t  i s  

assumed Ni and Nip - are highly correlated,  a decrease in Ni from 2500 ppm to  
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Fig. Z. Plots  of p a r t i a l  canonical scores  f o r  Cu, CUP and Mg 
versus geochemical values f o r  t h e  range of  values 
common i n  komatii t e  rocks. A p l o t  of t he  "net e f f e c t "  
of Cu f o r  Cu values i n  t h e  range 0 t o  120 ppm, versus 
p a r t i a l  canonical  s co re  i s  a l s o  iricluded and is der ived  
from t h e  C u  and CUP p l o t s  assuming a cons tan t  CUP t o  
Cu r a t i o  of 0.88. Note t h a t  a1 though both C u  and CUP 
ind iv idua l ly  have a s i g n i f i c a n t  inf luence on canonical 
score,  t h e  n e t  e f f e c t  p l o t  i nd ica t e s  t h a t  Cu i s  only 
s i g n i f i c a n t  below 20 ppm. 
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Zn versus geochemical values for the range of values 
comnon in komatiite rocks. The lower right plot 
shows partial canonical scores for Mg plus A1 versus 
M values in the range 1 2  t o  24 percent. The Mg and 
A? values are mean values f o r  representative sample 
groups and'are derived from Table . 
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1500 ppm could reasonably be expected t o  result  in a decrease of NiP from 

say 1000 ppm to  400 ppm. The resul t  i s  an increase in canonical score from 

the mean of the Mineralized group 1.7 t o  2.5, or the dividing point (Do) 

between the Mineralized and Barren groups. 

I n  Fig. 8, lower right,  canonical scores were computed for mean Mg 

and A1 values for 16 groups (from Table 3 )  and  plotted against mean Mg 

values. The resultant graph suggests that combined Mg and A1 do n o t  

contribute greatly to the discriminant function b u t  that in general, an 

increase in Mg tends t o  move any sample towards the Mineralized group. Some 

of the ear l ie r  discriminant analysis functions placed more emphasss on Ni?, - 
- 

FP and Mg and f a r  less emphasis on Co. l o  a large extent this  i s  probably 

caused by the fact  that there i s  a high degree of correlation between certain 

variables, and the discriminant analysis programs, not requiring' the same 

information twice, re ject  or downgrade one of the variables. However, i t  i s  

worth noting t h a t  a l l  functions have emphasized the importance of Ni, Cr, Zn  

and to a lesser extent Nip, - COP,  - Cu and Mg. Although i t  has n o t  been attempted, 

i t  i s  probable t h a t  a high degree of discrimination could be achieved using 

was concluded that  the ratios Ni/NiP - and Ni/Cr were important in separating 

Mineralized from Barren samples. These ratios for each area are l i s ted  in 
J i 7  ' 

Table 4.  -;,In general i t i s  considered that high -Ni/Cr and low Ni/NiP rat ios  - 
are indicative of mineralized ultramafics. Any group of samples with both a 

Ni-/Cr rat io  greater than 1 and a Ni/NiP - rat io  of less than 3.5 has a high 
.. . 

probability of being ~inera l ized . . ; : '~he  Ni/Mg ' ra t io  i s  also significant and a 

rat io  of less than 80 suggests these samples are Barren. The hi-gher the ra t io  
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Fig. g . Plot  of par t ia l  canonical scores f o r  Fe and Mn versus 
geochemical values f o r  the range of values common i n  
komati i t e  rocks. 



Groups of samples in which only one r a t i o  i s  favorable may o r  may not 

be Mineralized. In these cases, i t  i s  often possible to break the samples 

into sub-groups based on geology. For example, a t  Kambalda (described in  

Chapter 4 )  the samples can be subdivided in to  three subgroups: 

Lunnon Shoot, D u r k i n  Shoot and overlying komatiite lavas (t& un i t s ) .  

Whereas the combined Kambalda samples have an Ni/Cr r a t i o  of 0.7 and Ni/NiP - 

r a t i o  of 3.2, Lunnon Shoot samples ( th ick un i t s )  are 1.65 and 2.04 respect- 

ively; D u r k i n  Shoot samples ( th ick un i t s )  are 1.66 and 1.43 respectively; and 

the overlying komatiite lavas ( th in  un i t s )  are 5.37 and 0.56 respectively. 
f - * I I\' - 
L . _  .- -.* , 

{ . -\' I .  L I  I L C , -  - -  



CHAPTER 4 

4 .  CHEMICAL CHARACTERISTICS O F  V O L C A N I C  AND INTRUSIVE KOMATIITES 

Mean chemical values for West Australian komatiites are as follows: 

NiS Ni CuS Cu A1 Ca Mg Zn Cr Mn Fe CoS Co 

Mineralized 1027 2220 36 42 1.6 2.2 19.2 69 1617 1057 6.1  49 119 

Barren 429 15%' 29 39 2.2 2.8 16.4 76 2260 1128 7.0 32 119 

Allsamples 725 1870 32 40 1.9 2.5 17.8 72 1930 1090 6.5 40 119 

As i s  shown in Table 2 these values agree with values published for 

k s t  Australian komatiites by Naldrett and Turner (1977) except that mean 

Mn values in this  study are substantially less than those quoted by Naldrett 

and Turner. 

Komatii tes in Western Australia have been divided into two separate and 

dis t inct  suites or sequences - volcanic and intrusive. These suites can be 

distinguished on the basis of external and internal geologic form and habit;  

geochemis t ry  and characteristics of re1 ated sul phi de mineral i zation. 

Metamorphism, serpenti ni sation and tal  c-carbonate a1 teration have 

altered many komatiites to the extent that  i t  i s  often not possible t o  

determine visually or petrocyaphically to  which su i te  a particular sample 7 
belongs. However, they can usually be classified using chemical data. j+g L) , 

As a general rule ,  chlorite and amphibole rich komatiites are not 

mineral ized and indicate a sequence' of volcanic komati i t e  1 avas. However, 

care must be taken in interpretation i f  only a few samples are available as 

a chlorite amphibole section of komatiite could represent the uppermost 

portion of a mineralized thick unit (see Section 4.1). 



4.1 VOLCANIC KOMATIITE SUITE 

The vo l can i c  s u i t e  i s  t he  predominant komati i t e  assoc ia t i on  i n  Western 

Aus t ra l i a .  It most commonly occurs as t h i c k  heterogenous u  

p i l e s  which con ta in  two p r i n c i p a l  types o f  u l t r ama f i c  u n i t s  

The basal  s e c t i o n  o f  t h e  p i l e  cons is ts  o f  a  r e l a t i v e l y  

t h i c k  u n i t s ,  ma in ly  f i n e  t o  medium gra ined  o l i v i n e  cumulate 

1  t r ama f i  c  1  ava 

smal l  number o f  

rocks o f  

p e r i d o t i t e ,  o l i v i n e  p e r i d o t i t e  o r  r a r e l y  dun i t e  composi t ion.  These u n i t s  may 

be p a r t l y  d i f f e r e n t i a t e d  w i t h  t h i n  pyroxene p e r i  d o t i  t e  o r  pyroxeni  t e  upper 

sec t ions .  Sp in i f ex  t e x t u r e  may o r  may n o t  be present .  They have been 

considered by most authors t o  be s i  11s , emplaced e s s e n t i a l l y  contemporaneously 

as subhor i zon ta l  bodies i n  a  l a v a  p i l e .  A1 t e r n a t i v e l y  they  may represen t  

t h i c k  l a v a  flows ext ruded a t  t h e  onset  o f  k o m a t i i t e  volcanism. 

Over l y ing  t he  t h i c k  u n i t s  and fo rming  t he  bu l k  o f  k o m a t i i t e  i n  t he  p i l e ,  

are  m u l t i p l e  t h i n  u n i t s .  These u n i t s  are w e l l  d i f f e r e n t i a t e d  w i t h  t h i n  

01 i v i  ne cumul a te  1 ower sec t i ons  o f  p e r i  d o t i  t e  o r  pyroxene p e r i  d o t i  t e  cornpos i t i o n  

and re1  a t i  v e l y  t h i c k e r  upper sec t ions  o f  pyroxene p e r i  d o t i  t e  o r  pyroxeni  t e  

composit ion. Spi n i  f e x  t e x t u r e  i s  c h a r a c t e r i s t i c  o f  una l t e red  u n i t s  . The t h i n  

u n i t s  are regarded as u l t r a m a f i c  lavas.  The f i n a l  phase o f  k o m a t i i t e  vo lcan ism __  --- .. 
i n  some areas was t he  e x t r u s i o n  of va r y i ng  th icknesses o f  t h i n  h i g h  Mg b a s a l t  

/;d4?fJ:, ?4J,$*$ $; 2. , > , i - 5  " rfl 
1  avas . 

Barnes e t  a l .  (1974) sub jec ted  a  t h i n  u n i t  f low,  1.24 m  t h i c k ,  t o  a d e t a i l e d  

pe t rograph i  c  and chemical s c r u t i n y .  The f l o w  as descr ibed by  Barnes cons i s t ed  

of t he  f o l l o w i n g  zones (F i g .  10 ) :  

A 1  - C h i l l e d  and f r a c t u r e d  f lowtop  

A2 - F i  ne-grained, s p i  n i  f e x  t e x t u r e d  pyroxene p e r i  d o t i  t e  

A3 - S p i n i f e x  t e x t u r e d  pyroxene p e r i d o t i  t e  

B1 - F o l i a t e d  01 i v i n e  p e r i d o t i  t e  

B2 - P o r p h y r i t i c  01 i v i n e  p e r i d o t i  t e  

83 - Lower c h i l l e d  zone 



Fig.10. Chemical v a r i a t i o n  w i th in  a s i n g l e  komatii t e  lava 
from M t .  C l i f f o r d  (reproduced from Barnes e t  a1 . 
1974). 



agglomerati c appearance and consists of e i ther  patches of devi t r i f i ed  glass 

containing 14% small euhedral 01 i vine phenocrys t s  , or of small matted pl ates 

of olivine u p  t o  0.4 mm long. The lower section grades into the spinifex 

zone below. The A2 zone i s  characterized by dendritic chromite and feathery 

clinopyroxene as in t e r s t i t i a l  material between "spinifex" blades of olivine.  

The A3 zone contains large books and fans of olivine plates. Model analyses 

o f  th i s  zone indicate the rock i s  40% bladed olivine and 60% i n t e r s t i t i a l  

material. Zone B 1  i s  narrow and characterized by elongate skeletal olivine 

plates in sub-paral le l  orientation. Inters t i  t i  a1 material i s  acicul a r  cl ino- 

pyroxene a n d  dendri t i c  chromi te .  In addi t ion, euhedral 01 i vi ne crys ta !  s 

2- 

1 ".. 
The A 1  zone i s  divided into two sections. The upper section has an , 

,-* +... 
-5. ' & 
'*P 

.*. 

increase in abundance with depth. The B2 zone consists of 55% euhedral olivine 

and 5% platy 01 ivine, i.n a matrix of fine-grained feathery clinopyroxene and . 

rare euhedral chromite. Zone B2, which i s  the lower chilled zone, i s  
I 

similar t o  Zone A l .  Chromite i s  present throughout the chilled zone as small 

dendritic crystals,  b u t  in the lowermost glassy portions i t  occurs only as a 

fine dusting of minute grains. Note that nickel, sulphur and magnesia are 

concentrated in the ollvine peridottte whereas chromium, titanium and iron are 

concentrated Tn the spinifex zone. Nickel in general follows the magnesia 

curve, indicating that in these low sulphur komatiites the partitioning of 

nirkel between a sulphfde phase and the olivine l a t t i ce  i s  in equilibrium. A 

sinlTlar equi librium exists between chromium i n  chromite and in the cl ino- 

pyroxene 1 at t ice .  

Within a typi cal volcanic komati i t e  p i 1  e Ni , Mg, NIP - and COP - tend to 

increase and Cr, A1 and Cu tend t o  decrease towards the base. Cobalt remains 

constant. Z n ,  Mn and Fe are e r ra t ic  b u t  i'n some instances Zn  shows a n  

increase and Mn and Fe decrease towards the base of the sequence. These 

overall trends are severely modified by strong trends within individual 

komati i tes. 



Complete geochemical prof i les  through thick units  a t  Kambal day Bouchers 

and Windarra South show tha t  values f o r  Ni, Nip ,  - Mg and COP - consistently 

increase and Cr decreases toward the base of each uni t .  Magnesium often has a 

maximum value in the center  or jus t  below the center of the unit .  The changes 

in Ni and Mg r e f l e c t  the gradation in rock type from spinifex textured pyroxene 

per idot i te  a t  the top t o  equant o l iv ine  textured per idot i te  o r  o l iv ine  

-'. per idot i te  i n  the lower part  of the u n i t .  A thin (0.25 m) pyroxenitic, ch i l l ed  

contact zone may be present a t  t h e  base. 

The mineralization coeff ic ient  of a thick uni t  must be determined from 

the 01 ivine cumulate section of the komati i t e  (lower two-tni rdr t o  seven- 

ei gnts of the uni t )  . The pyroxeni t i  c  or  pyroxene peri doti t o ,  s i  1 i  cate 1 i qui d 

derived upper portion (as  d i s t i nc t  from the lower ol iv ine  cumulate sect ion)  

which may vary from 1 t o  10 m in thickness, will always show a lower mineraliz- 

ation coefficient  than the cumulate section (due to  higher Cr and  lower Ni 

content) and in some cases may indicate the unit  i s  Barren. Chemical values f o r  

the cumulate section of a thick uni t  with a moderate t o  high mineralization 

coefficient  are of the order o f :  Nip - 1000 ppm; Ni 2100 ppm; Cu and CUP 30 to  - 
90 ppm; A1 1 to  2%; Ca 0.1 t o  3%; Mg 17 t o  24%; Zn 60 ppm; Mn 1000 ppm; 

Cr 1300 ppm; Fe 5.5%; COP 55 ppm and Co 120 ppm. In general,  i f  Nip o r  N i  are 

l e ss  than 500 and 1800 pprn respectively o r  Cr greater  than 2100 ppm, the u n i t  

can be regarded as Barren. W i t h  higher N i  , Cr can a1 so r i s e  and the u n i t  s t i  11 

be c lass i f i ed  as Mineralized. As was pointed out e a r l i e r  the N i  to  Cr r a t i o  

should always exceed one. 

Thick units range u p  t o  60 m in width, b u t  average width i s  probably of 

the order of 25 m.  With widths of l e ss  than 15 m y  the Mg content of both the 

cumulate sections and the unit  as a whole,decreases. There i s  very l i t t l e  

data w a i l a b l e  as t o  the l a t e r a l  extent  of thick units  b u t  some a t  l eas t  

extend fo r  several thousand meters. A t  Scotia the ore host thick unit i s  a  

maximum of 50 m thick,  extends fo r  500 m along s t r i ke  and.to an unknown depth. 
/-- y' ;: 1-- fc- '2 - .. 



Examples of probable thick units in volcanic associations which are 

Barren are as follows: Wongi South - Mg up  t o  20% b u t  has low Ni (1300 t o  

. 1600 ppm) and high Cr (2500 t o  3000 p p m ) ;  Y$lmia - Mg 18.1 t o  20.4%, Ni 

2350 ppm, NIP 50 ppm, Cr 700 ppm. In t h i s  l a s t  example although Ni, Cr and 

Mg are, a l l  favorable, the Nip value of only 50 ppm indicates very l i t t l e  

sulphur in the komatii-te. 

The Katiniq Si 11 in Ungava, Quebec (Wi 1 son e t  a1 . 1969) shows some J 

4 

s imi la r i t i e s  t o  a thick u n i t  within a volcanic sequence. The s i l l  consis ts  ., ,&' 
,' 

.L 

of an upper, lower magnesia rich section (20 m th ick)  of pyroxene peridoti  t e ,  .. 

underlain by a zone of per idot i te  and 01 ivine per idot i t?  (-70 m t h i c k ) ,  which 
, - 
.. - 

in turn i s  underlain by a thin (8  m th ick)  basal pyroxene per idot i te  or  .-. 

chil led contact zone. Magnesia i s  a maximum approximately 70 rn below the top 

of the s i l l .  Cobalt, Cu and Zn  have s imi lar  values t o  'western Australian 

thick un i t s ,  b u t  Ni and S are considerably higher. Chromium i s  not reported 

(Wilson e t  a1 1969 - Table 2 ) .  Overlying the s i l l  are moderate magnesia rocks 

(MgO - 20%) named basal t  by Wilson e t  a l .  1969, which are pyroxenitic in 

composttion and are probably equf valent t o  

Nickel sulphide deposits in volcanic 

small (la few tonnes] t o  moderate i n  s i ze .  

Kambalda are seldom 1 arger than 3 t o  4 mil 1 

a t  Kamhalda are of the order of 20 million 

t h i n  uni t  komati i t e s .  

suf te  komatiites vary from very 

For example, individual shoots a t  

ion tonnes b u t  to ta l  ore reserves 

tonnes a t  plus three percent (+3%) 

Ni and to ta l  mineralization present i s  probably two t o  three times tha t  

figure. 

The deposits occur as disseminated and massive-sulphide accumulations 

a t  or  near the basal interface of ultramafics with other rocks, o r  less  

commonly a t  internal ultramafic contacts. Wall rocks may be rnafic volcanics, 

sulphide-rich shale,  sulphide-facies banded-i ron formation o r  metasediments of 

various types. 



Primary sulphides consist of pyrrhotite and pentlandi t e  with less common 

pyrite and chalcopyrite. Millerite i s  significant in some deposits, and 

violar i te  i s  important in zones of oxidation and secondary enrichment. A t  Nepean 

(Sheppy and Rowe 19751,  the massive ore i s  60% pent1 andi t e ,  20% pyrite,  18% 

pyrrhotite, with minor chalcopyrite, cubani t e ,  mackinawite and valer i i te .  The 

ore averages 1.5 m in thickness and has a  Ni:Cu ratio of 15:l and an Ni:Co 

ratio of 60:l. A t  the L u n n o n  Shoot, Kambalda (Ross and Hopkins 1975), the 

mineralization consists of one-meter thick massive sulphides overlain by 2m 

of disseminated sulphides. Pyrrhoti te  i s  the predominant sulphide with lesser  

amounts of pent1 anai t e  and chalcopyrite. Pyrrhoti te-pent1 andi t e  ratios vary 

from 0.8:1 to 2.3:l. Average Ni:Cu and Ni:Co ratios are 13:l and 5a : l  

respectively. Many occurrences appear t o  have some degree of primary or 

secondary structural control. Embayments or depressions in the footwall 

komatiite contact, thickenings in the komatiite and some types of folding. may 

be important in localization of sulphides. Sulphide-bearing sediments (black 

shales) may be spatially re1 ated t o  nickel-sul phide mineralization, in tha t  

these sediments may occur along s t r ike  in simi 1 a r  stratigraphic positions t o  

the nickel sulphides. Sulphide sediment immediately adjacent to  nickel sulphide 

i s  uncommon. 

The geochemistry of several mineral ized and barren vol canic suites will 

be described below. Others will be discussed in la te r  sections of this  thesis .  

The description of Windarra S o u t h  i l  lustrates how geochemistry can be used t o  

interpret metamorphosed, apparently structurless,  complex komati i t e  sequences. 

4.1.1 Kambal da 

Kambalda i s  approximately 40 miles south of Kalgoorl i e  (Fig. 58). The 

geology has been described in detail by Woodall and Travis (1969) and Ross and 

Hopkins (1975). There are eleven known separate areas of nickel sulphide 

mineralization within komatiite ultramafic hosts in an area 12 by 6 km (Fig. 11). 



Fig.  11. Geologica l  plan o f  Kambalda dome ( a f t e r  Ross & Hopkins,  
1975)  showing r e l a t i o n s h i p  o f  a r e a s  sampled t o  n i c k e l  
o r e b o d i e s  . 



A komatiite sequence which ranges in thickness from 240 m t o  more' than 600 m 

forms a domal feature and surrounds a core of fine-grained, pillowed meta- 

basalts .  The dome plunges to  the north-northwest and south-southeast a t  

20 degrees, and the flanks commonly dip a t  40 degrees, although in some par t s  

of the western flank the dips .  approach ver t i ca l .  The komatiite sequence i s  

under1 ain and overlain by t h o l e i i t i  c basal t s  and extensively intruded by 

sodic granite and rhyoli te  porphries. The footwall basal t  i s  a t  l e a s t  1,700 m 

thick and i s  dominated by fine-grained, massive, metabasalts which show no 

marked compositional variat ion.  Pi 1 lowed and flow breccia horizons are common. 

The komatiites range from 13% t o  26% Mg and have been subjected to  low 

grade b u t  s ignif icant  metamorphism, s2rpentini zation and t a l  c carbonate 

a l tera t ion.  Ross and Hopkins (1975) divided the ultramafic rocks in to  four 

composi t i  on types (Table 6 ) .  The ul tramafi cs show an overall .i rregul a r  

decrease in magnesium content and an increase in calcium and aluminum upwards. 

These trends are reflected in an increased abundance of t a lc -  chlori te-  

carbonate and tremoli te-chlor i te  rocks over the upper half of the sequence. 

Talc carbonate and serpentine rocks occur in the  lower pa r t .  The serpent in i tes  

contain more than 20% Mg and antigeri  t e  i s  the only serpentine phase. 

The komati i  t e  sequence consists of numerous, individual 1 i  tho1 ogical 

units (Fig. 1 2 ) .  They have been divided by Ross a n d  Hopkins (1975), in to  two 

sequences; thin un i t s ,  which dominate the upper two-thirds of the ul tramafi c ,  

and thick units which form the  lower portion of the ultramafic. Thin units  

are 0.3 to  7 m th ick;  rarely exceed 19% Mg a n d  average 14% Mg; have extensive 

spini fex zones and consist of tremol i  t e  ch lo r i t e ,  t a l c  chlor i te  carbonate o r  

intermediate l i thologies .  The thick units range from 10 m t o  30 m in thick- 

ness; show marked d i f fe ren t ia t ion ,  with increases in Mg towards the base; 

and may contain spinifex textures in the upper part  of each unit.  The th in  

units are chemi cal ly and 1 i  thologi cal ly simi 1 a r  to  komati i  t e  lavas described 

by Barnes e t  a l .  (1974) from M t .  Clifford. 



' S t a n d ~ r d  d e v i a t i o n  i n  brackets.  

Average of 14 t r e m o l i t e - c h l o r i t e  rocks from t h e  t h i c k  m e t a - p i c r i t e .  Talc  i s  absent from a l l  samples and MgO con ten t  ranges from 22.2-24.7 pe r  c  
Analyst :  B.W.Chapple. 
Average O f  33 samples o f  t a l c - c h l o r i t e - c a r b o n a t e  ( d o l o m i t e - a n k e r i t e l  rock .  MgO con ten t  ranges from 28.0-32.0 per cent .  Ana lys t :  8.Y.Chapple. 
Average of 12 samples o f  t a l c - c a r b o n a t e - c h l o r i t e  rock c o n t a i n i n g  34-38 percent  HgO. Carbonate i nc ludes  do lomi te -anke r i t e  and magnesite. Analyse 
W .  M. C. Laborator ies.  
Average of 10 samples of t a l c -magnes i te -ch lo r i t e  and 2 samples o f  a n t i g o r i t e  rock c o n t a i n i n g  40-44 per  cen t  MgO. Oata f o r  Hz0 and CO2 fo r  t a l c - ,  
a t e  samples o n l y .  Ana lys t :  B. W .  Chapple. 
Average of 23 samples from basa l  komati i t e  u n i t ,  Lunnor6hoot. Ana iys t  W .Guthr ie .  
Average of 11 samples from basal  k o m a t i i t e  u n i t ,  Durk in Shoot. Ana lys t  Y.Guthrie. 
Average of 98 samoles f rom ' t h i n  u n i t s "  (Ross & Chappell,  1975). Ana lys t  W.Guthrie. 

NOTE: Samples 1 t o  4 a r e  f rom LunmnShoot Environment (Ross & Chappell,  1975) - - - - - ... - 

Table 6 . Average composition of komatii tes from 
Kambal da based on analyses from Ross and 
Hopkins (l975),  and mean resul t s  from th i s  
study. The groups of Ross and Hopkins are 
based on mineralogy, whereas groups 5, 6 
and 7 represent mean values for  thick and 
thin units from this  study. 



H \ 
A p p r ~ x i r n u t e  p i s i t i a n  c r s s s c ~ t s  A 8 B sample traverser; 

Fig.12 . Cross section through Lunnon  S h o o t  showing relation- 
ship of "thin units" t o  ore bearing "thick units" 
(peridoti tes)  . Approximate position within sequence 
of sampling traverses A and  B i s  also indicated. 
Geology i s  from Ross and  Hopkins (1975). 



Horizons of sulphide bearing sediments occur w i t h i n ,  a n d  a t  the base of 

the komati'ite sequence. They are well banded; usually less than 5 m thick; 

occur a t  contacts between komatiites; are often continuous over hundreds of 

meters; and are mainly confined t o  the thick unit section of the sequence. 

Sulphi de sediments seldom occur adjacent t o  mineralization. 

Mineralization occurs as both contact and hanging wall bodies. Contact 

mineralization often consists of a thin layer of massive sulphides, overlain 

by a thicker and more continuous layer of disseminated sulphide. Total thick- 

ness i s  usually less than 3 m.  Primary sulphide assemblages have pyrrhotite- 

pentlandite ratios of 2.3:l (Lunnon S h o o t )  and 0.8:l (Durkin Shoot); Ni:Cu 

ratios average 13:l; and Ni:Co rat ios  average 54:l. Thin pyrite layers occur 

within some massive sulphi.de sections. The disseminated sulphides snow a 

sharp contact with underlying massive sulphides and a dis t inct  contact with 

the overlying Romatii t e .  The sulphide content ranges from 20 t o  65% and  

increases downwards. Sulphides may form a matrix (Ewers a n d  Hudson, 1972) t o  

silScate and carbonate gangue in the lower part of the disseminated zone. 

Sulphur nickel ratios are almost identi ca7 for  both massive a n d  disseminated 

sulphides a t  3.98, There are marked concentrations of spinel phases a t  the base 

of the disseminated layer, w i t h  significant concentrations of chromi t e  (Fig. 13). 

However, overall the mean Cr content i s  s l ight ly depleted in the disseminated 

sulphides with respect t o  the komatiite host (mean 1431 ppm - Table 6 )  and i n  

the massive sulphide. the mean Cr value i s  approximately one-third the Cr 

content of the host. Zinc (Fig. 13 ,  Table 6 )  i s  sl ightly enriched in massive 

sulphide and significantly greater (3  times) in the disseminated sulphide than 

in the komatiite host (:approximately 50 ppm) .  

Hanging wall mineral i zation occurs a t  some internal komati i t e  contacts 

in the lower part of the sequence. Sulphide concentrations are generally less 

than 20% and consist of irregular patches or blebs up t o  2 cm across, and 

uniform f i  ne-grained disseminations. 



FIG. 13. Profiles for total chrome and zinc in contact sulphides 
from Lunnon Shoot. 
( after Ross and Hopkins, 1975 ) 



Arithmetic means of chemical results and canonical scores for  a1 1 

Kambalda samples; mean values for Lunnon and  Durkin Shoots, and for the thin 

units ; values for certain sampling traverses and a d r i l l  hole are shown in 

Table 7. The mean chemical values for a l l  samples from Kambalda are closer 

t o  the means for  barren komatii tes than for mineral ired komati i t e s  (Table 3 ) .  

The mean chromi um value fa1 1 s approximately midway between the mineral i red and 

barren komatiites. These apparent anomalies are caused by the fact  that 

there are two dis t inct  populations within the Kambalda samples corresponding 

t o  the thick a n d  thin units of Ross and Hopkins (1975). The thick units 

are geochemically similar t o  komatiites from other mineralized areas. Table 7 

shows the mean values for thick and thin units,  the thick units being 

represented by L u n n o n  a n d  Durkin samples. Nickel values for L u n n o n  and Durkin 

approximate 2,000 ppm Nip - 1,100 ppm Mg 19.0% and Cr 1,200 ppm. The thin 

units average 233 ppm Nip, 1,252 ppm Ni , 13.3% Mg and 2,223 ppm Cr. Copper, 

CUP - and A1 are essentially similar in both groups, b u t  Ca, Zn and Mn are 

significantly higher in the thin units and COP i s  significantly lower. Ni:Cr 

ratios are 1.65 for  Lunnon and Durkin and only 0.56 for the thin units. 

Ni :NiP ratios vary from 1.42 a t  Durkin t o  2.04 a t  Lunnon ,  and 5.37 in the thin 

units. 

Two crosscuts on the 580 level a t  Lunnon were sampled a t  regular intervals 

away from the footwall sulphides. Analyses for both cross cuts are shown in 

Table 7 and Ftgs. 14 and 15. Crosscut B samples the full  width of the lower- 

most komati'i te unit and the basal part of the second unit (one sample only).  In 

b o t h  cross cuts sampling indicates that the basal komatiite consists of high 

magnesium 01 ivine cumulate rocks, probably 01 ivine peridoti te  or duni t e  in 

the lowermost three quarters of the unit passfng upward into less magnesium 

rich s i l ica te  liquid derived rocks, including plate spinifex and tremoli t e ,  

chlorite rocks. Talc carbonate alteration i s  more extensive in crosscut B .  



No. o r  Canonical 
Location S a m ~ l e s  Score NiP CuP & & & 2 &I CoP w !  - -  
M e a n - K a m b a l d a  1 3 2  U55 1 U 3 9  4 6  5 3  2 . 6  3 . 6  1 .  57 1 9 5 8  1 2 3 7  6 . 8  3 0  1 0 9  3 . 1 5  
Mean- L u n n o n  2  3  2 . 1 0  9 8 2  1 9 0 7  4 0  '48 2 . 0  2 . 7  1 8 . 3  5 6  1 2 1 3  9 9 2  6 . 3  4  1 l U  2 . 0 4  
M e a n - D u r k i n  11 1 . 5 0  1 3 4 3  2 2 5 2  u 4  U 2 . 1  1 . 7  1 9 . 8  U U  1 1 5 0  9 9 0  6 . 3  5 0  1 1 5  1 . 4 2  
N e a n - " t h i n "  9 8  3 . 5 8  2 3 3  123U 4 8  5 5  2 . 8  U.0 1 3 . 3  7 2  2 2 2 3  1 3 2 2  7 . 0  2 u  1 0 7  5 . 3 7  . . u n i t s  

C r o s s c u t  A 
B m. 1 0 . 7 6  1 8 0 0  2 6 2 5  7 2  8 0  1 . 3  0 . u  2 2 . 8  6 0  1 3 0 0  6 0 0  6 . 0  5 2  1 0 0  l . u 6  
1 2  m .  1 1 . 4 7  1 1 3 7  2 1 0 0  38 U O  1 . 0  2 . 2  2 1 . 8  5 0  1UOO 9 0 0  6 . 0  7 0  1 0 0  1 . 8 5  
1 8  m .  1 1 . 0 8  9 7 5  2 2 0 0  6 1 2  1 4  0 . 6  2 3 . 4  6 0  1 3 0 0  7 0 0  5 . 5  6 5  1 0 0  2 . 2 6  
24 rn .  1 1 . 5 6  8 8 7  2 1 5 0  94 1 0 5  0 . 9  0 . 7  23 .U 5 0  l U 0 0  4 0 0  U.6 5 0  9 0  2 . U 2  
30 rn. 1 1 . 0 3  1 0 4 2  2 3 0 0  32 3 5  0 . 9  0.U 2 3 . h  4 0  1 0 0 0  7 5 0  5 . 5  6 5  1 0 0  2 . 2 1  
36 m .  1 0 . 9 8  9 3 7  2U75 4  1 0  1.1 0.U 23.U 40 9 0 0  5 0 0  u . 9  5 0  9 5  2 . 6 4  
112 m .  1 0 . 5 3  1 0 0 0  2kOO 1 0  . 1 5  1 . 3  0 . 4  2 2 . 8  6 0  9 0 0  8 0 0  u . 9  6 2  1 0 0  2.UO 
4 8  rn .  1 1 . 6 8  1 2 5 5  2 6 7 5  6  20 0 . 9  1 1 . 0  i 5 . 6  5 0  9 0 0  1 0 5 0  U.0 5 5  9 0  i . 6 5  
5 4  m. 1 1 . 3 7  1 1 6 3  2 1 2 5  U O  h 5  1 . 3  1.1 1 9 . 6  5 0  1 1 5 0  9 0 0  6 . 0  4 0  1 0 0  1 . 5 3  
6 0  m .  1 1 . 8 6  2 5 0  l U 5 0  1 1 2  1 2 0  u . 3  '4.3 l U . 2  9 0  9 5 0  1 4 0 0  8 . 9  2 5  1 1 0  5 . 8 0  
6 7  m. 1 3 . 9 8  3 8  5 5 0  8  1 2  k . 7  W.7 1 2 . 8  8 0  1 4 0 0  1 6 5 0  9 . 3  1 0  1 C S  1 4 . 5 0  

Ratarv H c l e  -- 
3li m. 1 3 . ? 3  613 1 4 2 5  8 6  8 3  2 . 4  L.7 1 2 . 6  6 0  2U50 1 5 5 0  8 . 2  u i  113 2 . 3 2  
3 6 . 1  m. 1 3 . 2 3  3 6 3  1 2 0 C  4 1  S C  2 . 3  . 1 3 . 2  6 0  2 3 0 0  1 3 5 6  7 . 1  3 3  9 5  3 . 3 0  
U2.2 m .  3 . 5 5  2 5 8  1 0 7 5  bG 4 8  3 . 2  . 1 2 . 8  6 0  2U50 l u 5 0  8 . 3  2 8  1 0 5  U.17 
u 6 . 3  m. 1 3 . 1 5  U13 1 2 2 5  20 7 0  2 . 6  4 . 7  1 2 . 8  6 0  2 1 0 0  1 2 0 0  1 3 8  1 5 0  2 . 9 7  
5U.L m. 1 3 . ? 1  U O O  1 2 5 0  U5 5 0  2 . 8  U.3  1 3 . 2  6 0  2 2 5 0  1 3 5 0  7 . 2  3 5  LO5 3 . 1 2  
6 0 . 5  rn. 1 2 . 5 8  U88 1 U O O  56  5 5  2 . q  u . u  l U . 1  50  1 U 5 0  1 5 0 0  6 . 6  3 8  1 0 0  2 . 8 7  
6 6 . 6  rn .  1 2 . 6 3  U88 1 4 2 5  4 3  ~ 8  2 . u  3 . 8  1 4 . 1  5 0  1 5 5 0  1 3 0 0  6 . 6  3 8  1 0 0  2 . 9 2  
7 2 . 7  m, 1 3 . 1 0  U19 1 3 2 5  3 3  4 8  2 . u  1 1 3 . 7  5 0  1 9 5 0  1 U O O  6 . 8  3 5  1 0 0  3 . 1 6  
7 8 . 8  m .  1 3 . 1 2  3 7 5  1 2 5 0  c 6  5 3  2 . 6  U.7 1 3 . 2  6 0  1 9 5 0  1 3 5 0  7 . 1  3 3  1 0 5  3 . 3 3  
8 4 . 9  m. 1 3 . 1 1  3 8 8  1 2 7 5  U8 5 0  2 . 8  3 . 8  1 9 . 7  5 0  1 9 5 0  1 3 5 0  6 . 9  3 3  1 0 0  3 . 2 8  
9 1 . 0  m .  1 3 . 5 9  2 7 5  1 1 5 0  U O  5 3  2 . 6  5 . 0  1 2 . 4  7 0  2 5 5 0  1U50 7 . 7  2 8  1 9 5  U . 1 8  
9 7 . 1  m. 1 3 . 6 3  3 3 8  1 1 0 0  U9 6 3  3.U 7 . 8  1 0 . 6  9 0  2 5 5 0  1 8 0 0  7 . 7  3 3  1 1 5  3 . 2 5  
1 0 3 . 2  m.  1 2 . 1 2  7 7 5  1 5 7 5  25 35 3 . 5  3 . 8  1 4 . 5  5 0  1 3 5 0  1 0 0 0  5 . 8  U8 9 5  2 . 0 3  
1 0 9 .  3  rn.  1 2 . 2 0  U50 1 U 2 5  36 38 1 . 9  1 1 . 5  6 0  1 2 5 0  1 2 5 0  6.U 3 5  1 0 0  3 . 1 7  
115.11 m .  1 3 . 7 8  1 6 3  1 2 2 5  U5 5 0  3 . 3  3 . 8  1 3 . 2  6 0  2 5 5 0  1 0 5 0  7 . 7  2 0  1 0 5  7 . 5 1  
1 2 1 . 5  m .  1 3 . 8 3  1 6 3  1 1 2 5  2 9  40 2 . 9  5 . 2  1 2 . 8  6 0  2 2 0 0  1 4 5 0  7 . 1  2 3  1 0 5  8 . 2 7  
1 2 7 . 6  m. 1 1 9  1 5 0  1 0 7 5  36 5 3  3 . 3  7 . 2  1 1 . 0  7 0  2 4 5 0  1 5 5 0  7 . 7  1 5  1 0 5  7 . 1 7  
1 3 3 . 7  m. 1 3 . 7 3  2 3 8  1 1 7 5  5 0  U8 2 . 9  5 .9  1 1 . 9  6 0  2UOO 1U50 7 . 1  2 3  1 0 5  U . 9 3  
1 3 9 . 8  m. 1 3 . 6 3  2 6 3  1 2 0 0  5 4  6 0  2 . 9  5 . 8  1 2 . 5  7 0  2 3 5 0  i 5 5 0  7 .u  2 8  1 1 5  Y.56 
i U 5 . 5  m. 1 3 . 8 9  1 6 3  1 1 2 5  5 9  6 3  2 . 9  4 . 3  1 2 . 8  7 0  2 3 0 0  1 2 5 0  7 . 7  1 8  1 1 5  6 . 9 0  
1 5 2  m 1 0 5  1 6 3  1 2 2 5  L15 6 3  2 ; s  4 . 1  i 3 . 2  7 0  2 3 0 0  1 5 0 0  7 . 4  1 8  1 1 5  7 . 5 1  
1 5 8 . 1  m. 1 5.8W 1 3 8  1 2 0 0  5 6  6 0  2 . 8  3 . 6  1 3 . 2  8 0  2U50 1 4 0 0  7 . 4  1 8  1 1 5  8 . 7 0  
16L1.2 rn. 1 4  8 8  1 0 5 0  5 8  6 8  2 . 9  4 . 0  1 3 . 2  7 0  2 4 5 0  1 4 0 0  i . 7  1 0  1 1 5  1 1 . 9 3  

Table 7 . Komatii t e  analyses, ~ambal da, with canonical 
scores, Ni/NiP and Ni/Cr rat ios .  Mean values 
for Kambalda, Lunnon, Durkin and thin units 
show the heterogeneous nature of the u l t ra -  
mafic sequence. Crosscuts A and B are from 
Lunnon Shoo t  The l a s t  
two samples i n  Crosscut A and samples 5 and 
6 i n  Crosscut B represent the s i l i c a t e  l iquid 
portion of a thick u n i t .  Sample 6 (60 m.)  i s  
from the base of a second, overlying thick 
u n i t .  The rotary hole samples represent 
mean values for  part of the t h i n  u n i t  se- 
quence. 
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Fi g .  14 . Plot of geochemical resul t s  for sarnpl es from 
Crosscut A, Lunnon Shoot, Karnbalda. DAIB and P C I B  
indicate scores for sampl es from Discriminant 
Analysis B and Principal Component E respectively. 
The samples represent a single thick unit which 
over1 ies nickel sulphi des . 
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Fig. 15 . Plot  of  geochemical r e s u l t s  f o r  samples from 
Crosscut B ,  Lunnon Shoot, Kambalda. DA/B and PC/B 
i nd ica te  scores fo r  samples from Discriminant 
Analysis B and Principal Component B r e spec t ive ly .  
The samples represent a s ing le  th ick  u n i t  which 
over1 i e s  nickel sul phides, except f o r  the sample 
a t  60 m.  which i s  the base of a second th ick  u n i t .  



Note t ha t  the average value of 19% Mg f o r  Lunnon and Durkin shoots (Table 7 ) ,  

a1 though apparently low for  peridoti tes , i s  in part  caused by the inclusion 

of spinifex and other low magnesium samples from the upper parts  of the thick 

u n i t .  The spinifex rocks may c lass i fy  as e i t he r  Mineralized o r  Barren 

depending on the nickel and chromi urn values. Nickel , Nip and Mg tend t o  be - 

f a i r l y  constant i n  the lowermost two-thirds of t h i s  komatiite u n i t  b u t  decrease 

rapidly in the upper one-third of the uni t .  There i s  a s l i gh t  increase in  Ni, 

Nip - and Mg content in the central par t  of the unit.  Manganese and Fe both 

show a tendency t o  decrease in value, and COP - which i s  highly correlated with 

Nip, - increases towards the base of the unit .  Cobalt i s  constant in both 

ol iv ine  cumulate and s i l i c a t e  l iquid  par ts  of the komatiite. In crosscut A ,  

a high negative correlat ion between Ca and Mg i s  i l l u s t r a t ed  i n  the sample 30 m 

above the basal contact where a sharp increase in Ca content, due to  t a l c  

carbonate a l t e ra t ion  resulted in a s ignif icant  decrease in the Mg content. In 

crosscut B y  where Ca content overall i s  higher than in cross cut A ,  the average 

Mg content tends t o  be s ign i f i can t ly  lower. Crosscut A showed a considerably 

higher degree of t a l c  carbonate a l t e ra t ion  than B. Within the th in  u n i t s ,  one 

rotary hole was sampled between depths of 30 and 170 m y  using 6.5 meter 

composite samples. A1 though t h i s  method yielded re1 i able average geochemi ca1 

data fo r  the overall composition of the thin un i t s ,  because of the wide 

in tervals  used, the resul ts  do not help t o  define the chemistry o r  width of 

i ndi vi dual uni t s .  

The discriminant functions derived from Analyses A and B both c l a s s i f y  

samples from Lunnon and Durkin shoots as Mineralized, and most of the 

remaining samples from the upper t h i n  u n i t s  as Barren. A frequency - 
distr ibution histogram of canonical scores from Analysis B (Fig. 5 4 ) ,  i s  

polyrnodal , the modes with values of less  than 2 .2  representing Lunnon and 

Durkin shoot sample scores. Mean canonical value fo r  Lunnon'samples i s  2 .12 ,  
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Fig. 41 . Histograms of geochemical resul t s ,  hole 2,  Forrestania. 
Vertical dimension not t o  scale. 
















































































































































































































































































































































































































































