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Abstract 

Cyanobacterial blooms are often associated with eutrophication of lakes and 

waterbodies which degrade the water quality due to chronic and episodic inputs of 

nutrients, water stratifications and climatic changes. Increasing terrestrial 

application of photosynthesis-inhibiting herbicides that enter water bodies 

during/after heavy rain, can affect the photosynthetic capacity and growth of 

phytoplankton at sub-lethal concentrations.  As herbicide sensitivity of 

phytoplankton varies among species, their presence can alter phytoplankton 

community structure to favour more tolerant species, or particular groups such as 

cyanobacteria which are considered more tolerant of photosynthesis-inhibiting 

herbicides. This study examined the potential for photosynthesis-inhibiting 

herbicides to promote cyanobacterial blooms in temperate lakes and waterways. 

The most commonly applied triazine herbicide, atrazine, was used due to its 

solubility, mobility and persistence in temperate environments.  The relative effects 

of atrazine on the growth of selected planktonic green algae and cyanobacteria 

(primarily bloom-forming Anabaena species) were investigated using laboratory 

mono-cultures and two-species competition cultures.   

In the second chapter, the relative tolerance to atrazine of some common 

freshwater green algae (Selenastrum capricornutum, Desmodesmus asymmetricus 

and Chlorella protothecoides) and cyanobacteria of the genus Anabaena, 

particularly Anabaena circinalis were compared in single-species assays using in-

vivo fluorescence estimation of growth rates.  While the green algae species 

examined displayed higher intrinsic growth rates than Anabaena strains, their 

relative tolerance to atrazine (50 – 250 µg L-1) expressed as EC50 was of similar 

magnitude and range (72-140 µg L-1) compared to the seven Anabaena strains (59 - 

111 µg L-1 ) under light and temperature conditions typical of temperate mid-

latitude summer conditions.  However, atrazine tolerance varied significantly 

among the 10 species examined but there was no significant difference in mean 

atrazine tolerance between the two groups, the cyanobacteria and green algae 

indicating that the selective effects of atrazine operate at a species/strain level 

rather than more generally favouring cyanobacteria over green algae. 
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The third chapter adapted and tested a high through-put microplate-based 

approach as a rapid and reliable phytoplankton herbicide sensitivity assay that 

could be used to examine the influence of herbicides on the growth of green algae 

and cyanobacteria in two-species competition cultures.  The assay was based on in-

vivo fluorescence quantification of chlorophyll a and phycocyanin.  Minimum 

detection limits and correlations of cell concentration and fluorescence were 

established for two species of eukaryotic green algae and seven Anabaena strains. 

Calibration curves were established for the seven species examined and the 

detection limits and ranges were sufficient for reliable detection and simultaneous 

estimation of cyanobacteria and green algal growth rates in two-species 

competition laboratory cultures.  Two-species competition culture experiments 

were carried out using A. circinalis grown with the green algae Selenastrum 

capricornutum or Desmodesmus asymmetricus. The growth rate of A. circinalis 

strains showed a 20% increase in exponential growth rate compared to mono-

culture controls, whereas the green algal species growth rate was reduced by 13-

17%, indicating that allelopathic interactions may alter the selective effects of 

herbicides on phytoplankton community structure. 

In the fourth chapter, relative inhibition of the green alga, Desmodesmus 

asymmetricus and the cyanobacterium A. circinalis by atrazine was examined at 

different combinations of light (high = 100, low =30 µmole photon m-2 s-1) and 

temperature (high = 24°C ±1 and low= 18±1°C) when grown separately or in two-

species competition cultures.  When grown separately, A. circinalis showed similar 

or higher tolerance (EC50) to atrazine as D. asymmetricus and maintained an 

increasingly higher growth rate with increasing atrazine concentration under all 

conditions, except at low light and high temperature where the growth rate of D. 

asymmetricus was higher at atrazine concentrations >150 µg L-1.  When grown in 

competition, A. circinalis was favoured in the presence of atrazine under high light 

conditions regardless of temperature, and D. asymmetricus was favoured by the 

presence of atrazine (or equally tolerant) under low light regardless of temperature.  

Overall, the presence of atrazine favoured A. circinalis at high light with the largest 

relative effect at low temperature. This may explain how temperate mid-latitude 
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summer blooms of Anabaena circinalis can maintain their relative community 

dominance during declining autumn temperatures in lakes and rivers. 

The fifth chapter used two-species competition cultures with different relative 

starting concentrations of D. asymmetricus and A. circinalis to determine whether 

the outcome of green algae/cyanobacteria growth competition could be reversed 

by atrazine starting from scenarios of different relative dominance (4:1, equal, or 

1:4 starting concentration of each species).  In the absence of atrazine, D. 

asymmetricus dominated 10 day growth competition experiments from scenarios 

from both dominant and equal starting concentration, whereas A. circinalis 

dominated only in cultures in which it started with 1:4 dominance.  In the presence 

of low concentrations of atrazine (10-60 µg L-1), A. circinalis dominated over D. 

asymmetricus regardless of the species dominance at the start of the experiment. 

The relative patterns of growth in the experiments suggested that the dominant 

factor during exponential growth phase (first 5-6 days) was inhibition of both 

species by atrazine but more severe inhibition for D. asymmetricus.  After day 5 

inhibition of D. asymmetricus by the allelopathic activity of A. circinalis became the 

dominant factor. These experiments show that the allelopathic activity of A. 

circinalis and low concentrations of atrazine (10µg L-1) combine reverse growth 

competition outcomes even from a position of green algal dominance, and indicate 

a mechanism by which low concentrations of herbicides can shift algal communities 

toward cyanobacterial dominance in temperate mid-latitude lakes and rivers. 

The influences of photosynthetic-inhibiting herbicides in combination with other 

adaptive physiological strategies/mechanisms that promote cyanobacterial blooms 

are also discussed.
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