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Abstract 

Samples of Arabian pandora Pagellus affinis (Boulenger, 1887) were collected between 

April 2005 and March 2007, and from April 2008 to March 2009 from two landing sites 

(Al-Lakbi and Raysut) along the Arabian Sea coast of Oman. The samples were analysed to 

evaluate the biology and population dynamics of this species.  

The marginal increment analysis of otoliths showed the formation of one opaque 

zone and one translucent zone every year. The timing of formation of translucent ring was 

approximately 4 months (June–September) and the opaque ring formed with the cycle 

depending on the annual changes in seawater temperature in the Arabian Sea. The fishery 

targeted the individuals ranging in ages from 2 to 6 years; while, the maximum age 

estimated was about 9 years. 

 The von Bertalanffy growth (VBG) constants calculated for males and females were 

not significantly different, so the suggesting common equation for both sexes' P. affinis was 
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As aging of fish using sectioned otoliths was time consuming, use of linear 

relationship between otolith weight (OWT) and age of fish to rapidly assess age was 

examined. This approach could be used to derive VBG curve, although there was 

significant difference from the curve obtained using sectioned otoliths. Thus, OWT–age 

relationships would be useful to age the fish. 
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The species P. affinis is a multiple spawner with males and females reaching 

maturity and spawning at almost same time. Seasonal changes in gonadosomatic index 

(GSI), hepatosomatic index (HSI) and relative condition factor (Kn) indicated the fish 

spawned from April to October with peak of spawning activity during August and 

September. The size-at-50% maturity was calculated at 22.1 and 23.53 cm TL and age-at-

first maturity at 3.15 and 3.53 years for females and males, respectively. Four types of ova 

were observed: immature (0.03–0.176 mm), maturing (0.25–0.35 mm), mature (0.57–0.75 

mm), and ripe (0.81–0.99 mm). Average fecundity was calculated at 199,524 eggs per 

female. Relationship of fecundity-to-ovary weight, body weight, and total length of fish 

exhibited a linear trend. 

Food and feeding habits showed that P. affinis is a carnivorous feeder and the major 

part of its diet is sardines and other fish (primary item). The minor presence of algae may 

be an accidental inclusion during capture of benthic prey. A higher percentage of empty 

stomachs were observed during June and September. 

Length–weight relationships of males and females showed no significant difference 

between sexes. P. affinis displayed a negative allometric growth for both sex as well as for 

sexes combined (a= 0.0173 & b=2.954). 

Total mortality (Z) was estimated as 0.9363 y
1

, and the natural mortality (M) stood 

at to 0.488 y
1

. Length at 50% capture (Lc) of Arabian pandora was calculated as 19.8 cm 

TL. The yield and spawning biomass-per-recruit analyses indicated that the current fishing 

mortality rate (Fcurr) is almost same as the target one (F0.1), which suggest that it is 

exploited at optimum and should be maintained. This conclusion was supported by the 

following points: (1) estimated rate of fishing mortality (F = 0.448 y
1

) was relatively close 
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to F0.1 (0.572); (2) selective fishing gears targeting the species provide the bulk of the 

landing. However, further rise in the fishing effort may cause overfishing. The management 

models proposed for P. affinis in the Arabian Sea could be reflect the fishery status in the 

region. Finally, 10% decrease in natural mortality will be associated with an increase in 

the total yield-per-recruit and consequently the proportion of spawning stock biomass 

(SSB) will be more than its value (59.453 g) at current fishing mortality. In conclusion, the 

present study indicates that the current exploitation pattern needs to be sustained. 
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1. General introduction 

Sustainability has been accepted globally as the key management criterion for all finite 

natural resources including fisheries. The current fisheries scenario of the world has been 

passing through a difficult period due to stagnation in yield from capture, pollution of water 

bodies and several other factors. As a result, there is growing global concern of the state of 

fishery resources (Pauly, 1984; Watson & Pauly, 2001; FAO, 2009). In many developing 

countries, this situation still continuing and be worsen due to population growth, lack of 

definite employment opportunities and short-term socioeconomic consequences. Of the 

world‟s fisheries resources on which assessment information is available, about 52% of 

stocks are fished to capacity and about 28% of the stocks are  overexploited (FAO, 2009). 

For any sustainable fisheries management, information on the life-history parameters of the 

exploited stocks is the primary requisite (Parent & Schriml, 1995; Jennings et al., 1998; 

Musick, 1999; Marriott et al., 2007; Heupel et al., 2010). The increased fishing activity in 

recent years has adverse impact on aquatic environments worldwide affecting the life-

history processes such as reproduction, growth, mortality and community structure 

(Beverton & Holt, 1957, Irlandi & Peterson 1991, Sainsbury et al., 1993) and the 

differences in such life-history features would indicate that some species are more 

vulnerable to overfishing than others (Heupel et al., 2010). The temporal variation in stock 

abundance could be the outcome of the early “critical period” of the juvenile life due to 

high mortality rates (Elliott, 1989; Einum et al., 2003). Besides, seasonal variation in 

environmental conditions would influence oscillations in fish population (Shelton et al., 

1985).  
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Fishes of the family Sparidae, commonly called seabreams, are represented by 29 

genera and 100 species (Randall, 1995). These demersal fishes occur in all the oceans from 

shallow coastal waters to deeper offshore reefs and at least 15 species are known from 

Omani waters (Al-Abdessalaam, 1995). Seabreams are commercially important fishes in 

the range of their distribution, not only for small-scale and semi-industrial fisheries; but 

also, for aquaculture (Hanel & Sturmbauer, 2000). As seabreams are highly preferred in 

Oman, their stocks are subjected to heavy fishing both by artisanal fisheries sector and by 

licensed industrial trawlers.  

 There are no specieswise catch statistics for sparids from Oman and the catches of 

all the sparids are reported under one group as „seabreams‟. The estimated average annual 

catch of seabreams ranged between 6000 and 10000 t (Anon, 2010). While, the artisanal 

fishermen use handlines, gillnets and traps for capture of seabreams in the coastal waters, 

the industrial trawlers fish fairly in deeper waters (up to 150 m depth) in the Arabian Sea 

off Oman.  

The biomass and potential yield of sparids in Oman have been estimated to be 

around 40,000 t and 9,000 t respectively; however, their catch hover around 6000 t annually 

(Al-Mamry, 2006). Among the sparids of Oman, the Arabian pandora Pagellus affinis (Fig. 

1.1) is the common commercially important species. The Arabian pandora has a palatable 

flesh and is usually marketed fresh or frozen. Knowledge on the biology and stock 

characteristics of the species P. affinis from Oman is scanty. Hence, this species has been 

considered as the candidate for detailed studies for the thesis. 
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Figure 1.1 Arabian pandora, P.  affinis (Boulenger, 1887) from the Arabian Sea  

 

The species Pagellus affinis has a limited distribution and is apparently restricted to 

the northwestern Indian Ocean from the northern coast of Somalia, northward to the Gulf of 

Aden and the Sea of Oman (Randall, 1995). P. affinis is demersal and performs local 

migration between different water depths. Although, migration is initially determined by its 

size and age, factors such as sea bottom, food availability, water temperature and 

reproductive behavior influence movements of this species (Walker, 1978). The species has 

been observed in shoals of mixed sizes near fishing harbors suggesting that it prefers sandy 

and rocky bottom (personal observation).  

Sparids have pelagic eggs and larvae (Leu, 1994). The larvae of the South African 

Rhabdosargus sarba attain 1 cm TL after 1 month of hatching and live in estuarine nursery 

areas (Wallace & van der Elst, 1975; Leu, 1994). Juvenile R. sarba remains in the estuarine 

environment until it attains sexual maturity at 26 cm TL and migrates back to the sea to 

spawn (Wallace, 1975; Radebe et al., 2002).  

The onset and duration of spawning season in seabreams appear to be influenced by 

seawater temperature (Morato et al., 2003). Many species of sparids are hermaphrodites 
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and in some species concurrent development of both ovaries and testes occur (Radebe et 

al., 2002, Hesp & Potter, 2003). Few species of sparids change their sex either from female 

to male (protogynous) or from male to female (protandrous) during part of their life 

(Buxton & Garratt, 1990; Randall, 1995). Many sparids are omnivores in their feeding 

(Figueiredo et al., 2005). To date, the reproductive biology and diet composition of P. 

affinis fish in Oman has not been investigated.  

 

1.1 Study area  

The Sultanate of Oman is located in the northwest Indian Ocean (16 25′ 2″ N and 54 62′ 

2″ E) bordered by three seas, the Arabian Gulf and the Sea of Oman in the north, and the 

Arabian Sea in the south (Fig. 1.2). Oman has a coastline of about 3165 km with varying 

depths and environments, and is characterized by unique locations. 

The Arabian Sea borders two-thirds of the coastline of Oman starting from Yemen 

in the south to Ra‟s al Hadd at the entrance to the Sea of Oman in the northeast. Most part 

of the coast is facing the open Arabian Sea with sandy beaches amounting to nearly two-

thirds of the coastal zone, while the rest is rocky. Except for the western Dhofar, the 

continental shelf is wider [35–50 nautical miles nm]. The coastal area is rich in fish 

resources varying from small crustaceans (e.g. shrimp) and small pelagics (e.g. sardine) to 

large pelagic fishes (e.g. kingfish, yellowfin tuna) as well as, a variety of demersal fishes 

(Mckoy et al., 2009). Large trawlable areas are found in this region (approximately 60% of 

the shelf area). The Arabian Sea is subjected to reversal of SW/NE monsoonal winds that 

results in the seasonal upwelling during the SW monsoon season (May–September) along 

the coasts of Oman transporting cooler nutrient-rich bottom water to the surface that 
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triggers higher growth of phytoplankton, zooplankton, micronekton and macroalgae 

(Ashjian et al., 2002; Al-Habsi et al., 2008; Mckoy et al., 2009). The coast is also known 

for the presence of low-oxygen zones (less than 0.2–1 ml L
1

) between 200 and 1200 m due 

to sinking of organic matter from the highly productive surface waters (Sheppard et al., 

2000; McIlwain et al., 2006) and this zone may be even found at depths of 40-50m (Baird 

et al., 2009). Though, the sea surface temperature normally ranges from 21C to 28C, it 

drops to about 18C during the upwelling season (Morrison et al., 1998). The availability of 

higher levels of nutrients and their utilization by the phytoplankton during the SW monsoon 

season increase the zooplankton biomass five times compared to the late NE monsoon 

reversal (Luo et al., 2000; Ashjian et al., 2002). The Arabian Sea in which P. affinis dwells 

is accounted to be one of the most biologically productive areas of the world's oceans 

(Ryther et al., 1966). 

The fish catch from the Arabian Sea contributes to about 73% of the total annual fish 

landings of Oman (Al-Mamry, 2006). The artisanal fishery sector has helped to develop 

fisheries of Oman over the last few decades (Ben Meriem et al., 2003, unpublished). 

Fishing activity in the Arabian Sea is widely controlled by the seasonal southwest monsoon 

winds associated with the strong Somali current. During this period and due to the rough 

weather in the Arabian Sea, fishing activities are reduced and fishermen use their time for 

repair and maintenance of the gears and boats. 

The primary fishing gears used in the area are gillnets, handlines and fish traps. The 

handline fishery usually consists of smaller fiberglass boats (approximately 8 m in length) 

fitted with one or two outboard engines and usually five fishermen onboard and fishing is 

restricted to daylight hours only. Fish traps (halfmoon shaped) are constructed from plastic 
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coated steel wire (Al-Masroori et al., 2004) and are used less frequently; each fisherman 

can own over 60 traps and operate them once in 3 days. The large licensed trawlers are 

approximately of 500 gross tons having about 2500 HP engine and carry about 30 crews 

(Mathews et al., 2001; McIlwain et al., 2006) and operate in depths beyond 50 m or in 

specified areas beyond 10 nautical miles.  

Monthly random samples of P. affinis were obtained between April 2005 and March 

2007 and, between April 2008 and March 2009 from the catches of the handline and 

gillnets operated in depths ranging from 20 to 70 m in the Arabian Sea off Oman and 

landed at the local fishing ports of Al-Lakbi (18 11″ 1′ N 56 32′ 56″ E) about 700 km 

southwest of Muscat and Raysut (16 57″ 37′ N 53 59′ 52″ E) which is about 300 km 

southwest of Al-Lakbi. Samples from trawl nets operated in deeper waters were also 

obtained (Fig. 1.2). 

 

 

 

 

 

 

 

 



7 
 

 

Figure 1.2 Map showing the Arabian Sea coast of Oman from which P.         

affinis were sampled. 

 

 

 

 

 

 

 

 



8 
 

1.2 Rationale for the thesis  

To capture demersal fishes from the Arabian Sea off Oman, several fishing gears are used. 

Despite the long coastline, the local fishermen complain that fish stocks are declining and 

their livelihood is threatened (FAO, 2009; Al-Mamry, 2006). Further, as various fishing 

techniques are employed, overlapping of fishing activities has been recorded (Stengel & Al 

Harthy, 2002). Due to depletion of large pelagic fish stocks in Omani waters (e.g. the 

kingfish, Scomberomorus commerson), a shift in fishing activity from pelagic to demersal 

has taken place (Siddeek et al., 1991). Hence, the Government of Oman introduced 

restrictions on some gears both spatially and temporally (Stengel & Al Harthy, 2002). 

However, trawl fishery activities in the Arabian Sea for the past several years have affected 

the demersal resources adversely (Mathews et al., 2001). Therefore, the existing regulations 

need to be altered and fine-tuned.  

 Estimate of growth rate, size/age structure and longevity of fish are needed to 

understand the rates of replenishment of stock and their response to alerted mortality 

regimes (Choat et al., 2003) as the above information is the central element in fishery 

management (Hilborn & Walters 1992).  Also, study of maturation, spawning and fecundity 

is essential to gain knowledge on the reproductive strategies of the fish. To date, the only 

biological study that covers reproduction of P.  affinis in Omani waters is that of McIlwain 

et al. (2006). As this study was based on 1-year sampling from the catches of licensed 

trawlers, it is not clear whether the results can match for artisanal sector. Further, 

estimation of age at maturity was not made. Moreover, not much is known on the feeding 

habits and stock parameters of P. affinis from the Omani waters. Though, data on the 

abundance and distribution of P.  affinis are available in Oman from research trawl surveys 
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(Stromme, 1986), information on the mortality and population dynamics of the species is 

lacking. So, the main objective of this study was to explore the biological variability in the 

life-history characteristics of P. affinis from the Arabian Sea coast of Oman. The study 

addresses the aspects related to biological and dynamical characteristics of the species such 

as age and growth, reproduction, food and feeding, length–weight relationship, mortality 

and exploitation rates, yield per recruit and stock estimation based on exploited stock. The 

results of the study would be useful to develop strategies to manage the fishery of P. affinis  

in Oman.  

The present study was undertaken based on monthly length frequencies of P. affinis 

collected from the commercial catches off the Arabian Sea coast of Oman. The sampling 

covered the periods from April 2005 to March 2007, and from April 2008 to March 2009. 

Age and growth were evaluated using both otoliths‟ readings and length–frequency. Stock 

assessment of this species has been made utilizing an appropriate analytical technique 

(Chapter 5). In addition, estimates of fishing mortality, yield and spawning biomass-per-

recruit based on current fishing effort (Fcurr) are presented for the first time. Additional 

information on the reproductive biology and feeding habits of the species is provided.  

The thesis is divided into six chapters. The first one (this chapter) “General Introduction” 

introduces the problem and aim of the study. The second one deals with the investigation 

on the periodicity of otolith ring formation in P.  affinis, the age structure and construction 

of von Bertalanffy growth curve (VBGC). The third chapter describes the stages of gonadal 

maturation in male and female, seasonal spawning cycle, age and length at 50% sexual 

maturity and fecundity of P. affinis. The fourth chapter is concerned with the food and 

feeding habits that describes the diet of two different size groups and during various 

months. The fifth chapter deals with the stock assessment of P.  affinis along the Arabian 
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Sea coast of Oman. In addition to the above chapters, conclusion, management and research 

recommendations based on the current investigation are provided (sixth chapter). 

Bibliography and appendices are also given at the end. 
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2. Age and growth 

2.1. Introduction 

Age determination and growth modeling are of vital importance in the field of fisheries 

management and considered as critical input data needed to assess fish stocks (Hilborn & 

Walters, 1992; Dwyer et al., 2003; Lou et al., 2005; Tracey & Lyle, 2005). Age and growth 

studies of fish are also essential for estimating the biological and physiological aspects such 

as age-at-50% maturity, stock age structure, yield-per-recruit and adaptation of stock to 

change in habitat, exploitation and productivity (Morales-Nin, 1992; DeVries & Frie, 1996; 

Francis et al., 1999; Campana, 2001; Welcomme, 2001; Robinson & Motta, 2002; 

Kanyerere, 2004; Sulikowski et al., 2007; Simon et al., 2010).  

Most of physiological processes in fishes is influenced by the environmental 

conditions including food availability, spawning, behavioral interactions conditioned by 

intra- and inter-specific demographics, and genetic factors (Morales-Nin, 1992), and 

seasonal abiotic factors such as temperature, light, and salinity (Moghadam et al., 2007; 

Björnsson et al., 2011). Also, the fishing pattern affected the size of fish leading to 

decreasing of the average and maximum sizes of the fish in the population (Zhao & 

McGovern, 1997; Halpern & Warner, 2002; Choat et al., 2003; Garcia et al., 2007). This 

suggests that fishing is removing faster-growing fish from the population and may have 

genetic or physiological consequence in the life history of the species (Hood & Johnson, 

1999). 

Age of fishes was determined both directly by counting the growth rings on their 

hard structures such as scales, otoliths, fin spines, vertebrae. etc., and indirectly by using 

the length frequency analysis. Using of hard structures for fish age determination is well 
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documented (Campana, 2001; Dwyer et al., 2003; Natanson et al., 2007). However, owing 

to variation in the separation and clarity of observable increments, the above structures 

often yield variable results of age determination (Welch et al., 1993; Howland et al., 2004). 

Many authors indicated that the otolith is the dependable structures to age bony fish 

(Nedreaas, 1990; ICES, 1991, 1996; Stevenson & Campana, 1992; Saborido-Rey, 2001; 

Simon et al., 2010), as scales underestimate age in larger specimens (Beamish & 

McFarlane, 1987; Simon et al., 2010) and, fin spines and vertebrae are often difficult to 

interpret (Campana et al., 2006). However, as age determination using otoliths is usually 

based on reading growth increments on thin sectioned otoliths, viewed under a microscope, 

this method is time consuming and expensive. Therefore, attempts were made to develop 

cost effective alternative methods of age determination for monitoring the age structure of 

fish populations. The method of linking otolith weight or length to age of fish was found 

useful to age fish (Newman & Dunk, 2002; Pilling et al., 2003; Dougall, 2004).  

It was found that there was proportionate increase in the weight of otolith with fish 

age in many species (Cubillos et al., 2001 for Trachurus symmetricus murphyi; Pilling & 

Halls, 2003 for Lethrinus mahsena and Dougall, 2004 for Lates calcarifer). Hence, the 

weight of otolith would be a dependable tool to age the fish and to develop species-specific 

calibration curves to estimate the age structure of the population (Fletcher, 1991; Ferreira & 

Russ, 1994; Fletcher & Blight, 1996; Kamukuru, 2005).  

The Arabian Sea is known for seasonal variation in temperature and productivity 

due to monsoon wind driven upwelling (Baird et al., 2009). This variation in temperature 

might affect the growth and hence formation of growth rings within the otoliths 

microstructure of fish (Campana, 1999; Kanyerere, 2004). The process of growth in otoliths 

is influenced by deposition of microcrystalls of calcium carbonate in a non-collagenous 
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organic matrix from the environment through a multi stage process depending on fish 

metabolism rates and water chemistry (Mugiya et al., 1981; Campana, 1999; Rodríguez 

Mendoza, 2006). The difference in the intensity of amount of organic material deposition 

on the otolith is expressed as increments that vary from opaque band and translucent 

(hyaline) band (Campana, 1999; Rodríguez Mendoza, 2006). As the appearance of the 

translucent and opaque zones on otoliths is the result of periodic variations in growth, these 

zones can then be used to age fish (Rodríguez Mendoza, 2006). While, the opaque zone in 

the otoliths is formed during the period of faster growth, translucent zone is laid down 

during the period of slow growth (Beckman & Wilson, 1995; Rodríguez Mendoza, 2006).  

Accurate age determination is necessary for providing accurate information and 

quality estimates on growth, mortality rates and productivity (Baker & Wilson, 2001; 

Natanson et al., 2007), and to ensure that appropriate decisions are made to prevent 

overexploitation of fish populations (Campana, 2001). Historical aging inaccuracies have 

resulted in numerous fishery collapses around the world (Campana, 2001). Therefore, A 

major requirement of all aging studies is that the annual growth zones used are validated as 

being formed annually (Beamish & McFarlane, 1983; Francis & Francis, 1992; Hyndes et 

al., 1992; Campana, 2001).  

Marginal increment analysis (MIA) is a common method of validating growth zones 

in otoliths (Hyndes et al., 1992; Campana, 2001). The marginal increment is measured as 

the distance from the inner margin of the outermost zone to edge of the otolith (Rodríguez 

Mendoza, 2006). The annual formation of such zones (opaque & translucent) would lead to 

the marginal increment to drop once a year. For example, as a newly formed opaque zone 

first becomes delineated, a new translucent zone begins to form at the otolith‟s edge 

(Rodríguez Mendoza, 2006(. This translucent zone increases progressively with fish growth 
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until a new opaque zone is formed due to a seasonal change in growth rate (Hyndes et al., 

1992). Due to reasonable sample requirement and lower cost, MIA is a commonly applied 

procedure for age validation in fish.  

Pagellus affinis is a common fish species in Oman that is targeted by artisanal and 

foreign licensed fishing fleets that export their catch to other countries. As a result there is 

concern about the current level of exploitation. The lack of detailed biological information 

on the species and understanding its ecosystem-level interactions, delays the development 

of species-specific management policies. Hence, details on the species population dynamics 

are imperative to develop reliable stock assessments. Consequently this study aimed at 

determining size at age characteristics of P. affinis, validating age estimates using MIA, 

developing growth models from size at age data, and investigated the reliability of using 

whole otolith weight as a cheap and quick monitoring tool to predict age of P. affinis.  

 

2.2. Materials and methods 

2.2.1. Fish sampling  

Random samples of P. affinis were obtained every month at landing sites (Al-Lakbi and 

Raysut) from catches observed from the Arabian Sea using gillnets (144–148-mm mesh 

size), handlines (artisanal fishery) and trawls (110 mm mesh size) from April 2005 to 

March 2007, and from April 2008 to March 2009. For each specimen, total length (TL: ±1 

cm), total weight (TW: ±1 g) and sex were recorded prior to otolith removal. During 

dissection both the sagittal otoliths were removed and then they were cleaned in running 

water, dried and stored in marked paper envelopes for processing and reading. To support 
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the age determination techniques and the growth modeling analyses undertaken in this 

study, an alternative method was also employed by using the weight of the otoliths. 

2.2.2. Preparation of otoliths for examination  

As symmetry in otolith shape was apparent, from each fish one sagittal otolith was 

randomly taken to weigh (±0.001 g) and measured the length (±0.001 mm) before 

embedding in epoxy resin. The embedded otolith was positioned transversally and 0.5 mm 

thick sections were cut through the otolith core using a Buehler Isomet low-speed saw 

containing a diamond wafering blade. The sectioned otolith was polished over a series of 

silicon carbide paper (400–800 grit), rinsed with water and onto glass slides was mounted. 

At 4× and 10× magnification mounted otoliths were examined using transmitted light 

microscopy. To enhance the clarity of growth zones castor oil was used to each section.  

2.2.3. Interpretation of growth zones 

Determination of age was made by enumerating the opaque and translucent zones on the 

otolith. When a fish sampled before September had a new ring mark, its age was 

determined as 1 year. In contrast, when a fish sampled after September lack a new ring 

mark, age was determined as 1 year. An opaque core was defined as the first complete 

increment followed by a translucent band plus an opaque band. Thereafter, one translucent 

band and one opaque band together constituted a complete growth zone or “annulus”. 

Otoliths were examined twice, at 3-week intervals without the knowledge of sample details. 

Each otolith was assigned a readability scale of 1–3 following the criteria (Table 2.1) given 

by Fossen et al., (2003) and (Kanyerere, 2004). Where differences occurred between two 

readings, a third reading was made to assign the final age estimate. An additional reading 
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by an independent reader was also taken on a blind randomized sample (n = 71) of fish to 

assess inter-reader variability.  

 

Table 2.1 Criteria used for classifying otolith readability in P. affinis (adapted from 

Fossen et al., 2003; Kanyerere, 2004). 

 

Readability                             Growth zone appearance 

1                   Otolith structure is exceptionally clear unambiguously definition  

                              between translucent and opaque zones.  

2                   Relatively clear zonation, but not well defined; two possible                  

                              interpretations of banding patterns.    

3                            The zones are vaguely marked, multiple interpretation possible. 

 

2.2.4. Precision of estimates 

Aging precision was quantified using two indices, the average percent error (APE) and 

coefficient of variation (CV) (Beamish & Fournier 1981; Chang 1982). APE was calculated 

as: 

 

 

 

where R is the number of times each fish was aged, Xij the ith age determination of the jth 

fish, and Xj the mean age calculated for the jth fish.  

Chang (1982) modified this index to a CV, substituting the absolute deviation by the 

standard deviation from the mean age as: 
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2.2.5. Validation 

The MIA was used to validate the periodicity of zone formation. Marginal increments were 

measured from the inside of last opaque zone to the ventral apex of the otolith edge using 

image analysis LS report Five. Mean marginal increments were analyzed on a monthly 

basis (n = 422); for the pooled samples across the years. Marginal increment data were also 

pooled for fish aged between 1 and 3 years and fish 5 years. Fish aged as 0 were 

excluded from MIA. 

2.2.6. Estimation of growth and longevity  

Nonlinear regression procedure of Statgraphics (1994) was applied to calculate the growth 

parameters ( L , K  and ot ) by fitting the observed age–length data to the von Bertalanffy 

(1938) equation:  

 

                                                                       

                                           

where Lt is length at time t, L∞ the asymptotic length, K the growth coefficient that 

determines the rate at which L∞ is attained and t0 the theoretical age of fish at zero length. 

Assigned age data were adjusted to a relative monthly age based on the capture date and 
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both the birth date and increment formation being assigned as occurring on the 1st 

September (see Chapter 3) before modeling growth. Theoretical longevity was estimated 

based on Alagaraja (1984); (Te) = 4.605/M, where Te is longevity and M is natural 

mortality. The procedures for estimating natural mortality are given in Chapter 5. 

2.2.7. Length–frequency distribution  

Data of length–frequency distribution were also used to assess growth parameters of P. 

affinis. Total lengths (TL) of fish were collected from trap, gillnet and trawl fisheries. The 

combination of fishing gears used would minimize bias attributable to gear selectivity 

(Lucena & O'Brien, 2001).  

Asymptotic length (L∞) and growth coefficient (k) of von Bertalanffy Growth 

Formula (VBGF) were estimated by Electronic Length–Frequency Analysis (ELEFAN-1) 

technique using FISAT-II (Pauly & David, 1981). To calculate the growth performance 

index (ǿ) of P. affinis, Pauly & Munro (1984) equation was used. This equation was as 

follows: 

  ǿ = log K+ 2 log L∞ 

 

2.2.8. Data analysis 

One-way ANOVA test was applied for the difference in the monthly marginal increments 

for all combined ages. The log likelihood assuming an additive normally distributed error 

structure was minimized to estimate the parameters. A likelihood profile technique (Efron, 

1981; Punt, 1994) was applied to calculate the confidence intervals (95%) of the estimates 
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of parameters of selected growth model. The keys of age–length were constructed 

separately for females, males and combined sexes. Growth curves for females and males 

were compared using the analysis of residual sums of squares (ARSS) method described by 

Chen et al. (1992). The otolith weight (Wo) and total length of fish relationship was 

determined by linear regression (Labropoulou & Papaconstantinou, 2000). To compare the 

relationships between otolith weight and age between the sexes, analysis of covariance 

(ANCOVA) was used, with age as the dependent variable, otolith weight as the covariate 

and sex as the categorical variable (Zar, 1996).  

 

2.3. Results 

2.3.1. Otolith reading for aging 

Of the 1070 fish processed, 89.9% could be aged (males = 463; females = 487). In the 

remaining samples, otolith breakage, failed preparation, or poorly defined increments 

prevented age determination. Aged otoliths typically displayed clear and easily identified 

annuli, with sections displaying alternating patterns of zones (translucent and opaque) when 

viewed under microscope with transmitted light (Fig. 2.1). These patterns were particularly 

evident along the proximal side of the otolith section and indicated that the fish attained up 

to 9 years of age. Inter-reader age determination from a subsample of 71 otoliths, indicated 

that the majority of readings were in agreement (66.2%), and that disagreements differed by 

only one (29.6%) or two (4.2%) opaque zones (Fig. 2.2). The APE and CV between the two 

readers were 2.98% and 7.76%, respectively. Bowker (1948)  tests of symmetry 2
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indicated that inter-reader variability in age determinations were due to random error (  = 

3.11, P  0.05) and not systematic bias. 

The periodicity of annuli formation in P. affinis was tested by trickery the monthly 

marginal increment of otoliths (Fig. 2.3). Analysis of monthly marginal increments for fish 

aged between 1 and 5 years suggested an annual formation of bands occurs (Fig. 2.3). Once 

mean marginal increments reached their lowest values (Sept and Oct) they steadily 

increased through to March. Marginal increments with all ages combined were significantly 

different between months (F = 138.29, df = 11, 413, P = 0.0006). 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.1 Sectioned otolith of P. affinis from a 6 years old fish showing annual bands 

that are marked here with black dots.  

 

2
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Figure 2.2 Frequency distribution of the differences in the age of P. affinis counts by two 

independent readers, n = 71. 

 

 

 

 

The results show that one opaque zone and one translucent zone, regardless of status 

of maturity of the individual fish, considered as an annulus. Since spawning of P. affinis 

takes place in the Arabian Sea during the monsoon season (Chapter 3), we considered 1st 

September (peak of the spawning season) as the birth date for each cohort. Therefore, the 

age was determined by counting the number of both translucent and opaque zones and it 

was decided that each pair of growth rings (one translucent and one opaque) corresponded 

to an individual year.  
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Figure 2.3 Monthly mean (±SD) marginal increments for P. affinis of ages 1–5. Numbers 

above data points represent sample sizes; only samples having two or more fish have been 

used. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 1-3 annuli

  6

 13

      21

   2

  20
 29

   2
  16

   12

 5
  41

 36

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 4 annuli

  5
 14

 18

     14   6

  8

   4

   9

 19

   3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

> 4 annuli

      9

   12

     18

    34

   21
    2

 8

M
a

rg
in

a
l 

in
c

re
m

e
n

ts
 (

m
m

) 

Month 



23 
 

2.3.2. Growth modeling from sectioned otoliths 

The analyses of the length–age keys for both sexes separately are provided in Tables 2.4–

2.6 (Appendix A). The estimated ages of fish based on annual rings in otolith section was 

from 0 to 9 years with a high proportion between 2 and 6 years. Age of females and males 

ranged between 0 and 9 years and sex indeterminate individuals aged from 1 to 6 years. 

Age and size estimates of females, males and pooled sexes displayed relatively good fits 

with the von Bertalanffy growth model with coefficient of determination (R
2
) values being 

0.688, 0.676 and 0.667 respectively (Fig. 2.4). Growth parameter estimates (L∞, K and t0) 

and their confidence limits corresponding to male, female, and sexes combined data are 

detailed in Table 2.2. For males and females an analyses of residual sum of squares (ARSS) 

indicated that growth curves were not significantly different (ARSS F3, 943 = 1.453; P = 

0.226). The combined growth curves had a ǿ value of 2.535 with the R
2
 = 0.667. The 

calculated asymptotic length (L∞) was lower than the observed maximum TL (39.8 cm). As, 

the total sample comprised only two individuals greater than 8 years of age, result and L∞ 

appeared as an underestimates. The fish relatively had faster growth for the first 4 years 

attaining 66% of their asymptotic length. Thereafter, growth rate slowed down with 

increasing in age (Fig. 2.4). The details of the fish analyzed for each age class are provided 

in Table 2.6. Table 2.3 shows the mean observed lengths (cm TL) and standard deviations 

of pooled data from Arabian Sea for all P. affinis. The mean expected length is always 

same as the observed length for most age classes.  

 Using the VB growth coefficient, the theoretical longevity was estimated at 9.43 

years, which is similar to the observed maximum age of 9 years. 
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Figure 2.4 Length-at-age scatterplots with modeled von Bertalanffy growth curves for 

male, female, and combined sexes of P. affinis caught in Arabian Sea (2005–2009). Note: 

Y-axis does not start at zero. 
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Table 2.2 von Bertalanffy growth parameter estimates [L∞ cm, K y
1

 and t0 y] and 

confidence intervals (CI) for P. affinis from Arabian Sea (n = 905) 

Sex           Parameters          Estimates                95% CI                           95% CI 

                                                                                 Lower                             Upper   

  

Female          L∞                             36.02                          34.05                               40.28 

                     K                         0.268                          0.214                               0.299 

                     t0                       0.539                        0.390                             0.946 

Male            L∞                              36.09                           35.17                              42.43 

                    K                           0.261                          0.192                              0.274 

                    t0                         0.508                        0.256                           0.843 

All              L∞                               36.09                           35.4                                40.05 

                   K                            0.264                           0.214                            0.273 

                   t 0                         0.525                         0.409                          0.813 

 

Table 2.3 Mean observed and expected total lengths (cm TL) of all P. affinis sampled 

from Arabian Sea 

  Age               n                 Size range                    Mean length              Modeled length               

   (y)                                    (cm TL)                       (cm TL) ± SD                (cm TL) 

 

    0                    6                       12–15                      13.9 (1.18)                         8.54 

    1                    47                     14–22                      16.94 (1.76)                       14.93 

    2                    153                   14.7–25.2                19.67 (2.05)                       19.83 

    3                    212                   15.6–26.5                22.29 (1.95)                       23.59 

    4               202                   21–29.6                   25.37(2.13)                        26.49 

    5                    197                   21–33                      28.42 (2.32)                       28.71 

    6                    99                     24.5–35.2                30.22 (2.47)                       30.42 

    7               31                     27–39.8                   33.59 (2.47)                       31.72 

    8                    13                     32–36.8                   34.49 (1.29)                       32.73 

    9                    2                       36.2–36.5                36.35 (0.21)                       33.14 

Standard deviation in parentheses. 

n = number of fish examined. 
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2.3.3. Growth modeling from whole otolith weight 

A total of 513 undamaged otoliths were obtained for otolith weight (OW) analysis. Otolith 

weights ranged from 0.021 (g) for a 0 year fish to 0.179 (g) for a 9 year fish. (Table 2.7) 

shows sample size, the weight of otolith range and mean otolith weight (±SE) for every age 

class of fish. The age and otolith weight relationship displayed positive linear relationships 

in males, females, and combined sexes (Fig. 2.5 and Table 2.8). The otolith weight–age 

relationship was not significantly different between the sexes (ANCOVA, F1, 512 = 0.098; 

P = 0.754). The estimated ages of fish using otolith weight are shown in Table 2.9. Males 

and females had no significantly different growth curves (ARSS, F3, 507 = 1.34; P = 

0.261). The phi prime was calculated as 2.54. The coefficient of determination for growth 

rate of males and females were 0.82 & 0.86 respectively. Figure 2.6 reveals the growth 

functions of the sectioned otolith and whole otolith weight. Two methods were detected 

when plotting whole otolith weight relationship and sectioned otolith were found to be 

significantly different (ARSS, F3, 1456= 55.76; P  0.05). 
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Figure 2.5 Relationship between otolith weight (g) and age (y) for (A) female, (B) male 

of P. affinis in the Arabian Sea and (C) the regression line fitted to this data is based on the 

equation (Age = 51.428OW  0.35). 
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Table 2.7 Sample size (N), mean otolith weight (OW), standard error (SE) and range of otolith 

weight (wt) for different ages of 225 fishes collected during 2008 

 

  Observed age          N             Mean otolith weight ± SE                    Range     

       (y)                                                          (g)      

         0                       5                        0.0294 ± 0.0032                    0.021–0.037 

         1                       37                      0.0396 ± 0.0013                    0.031–0.069 

         2                       85                      0.0502 ± 0.0011                    0.024–0.078 

         3                       126                    0.0645 ± 0.0012                    0.029–0.091 

         4                       111                    0.0736 ± 0.0012                    0.041–0.144 

         5                       90                      0.0882 ± 0.0016                    0.05–0.138 

         6                       56                      0.1011 ± 0.0023                    0.068–0.145 

         7                       11                      0.1166 ± 0.0044                    0.079–0.13 

         8                       7                        0.139   ± 0.011                      0.087–0.179 

 

 

Table 2.8 Relationship between otolith weight (OW) and age of P. affinis in the Arabian 

Sea 

 

      Sex                             n                                Equations                              r
2
 

     

    Female                       263                   Age = 51.95 OW  0.301               0.73 

    Male                          250                   Age = 50.89 OW  0.407               0.68 

    Sexes combined        513                   Age = 51.43 OW  0.35                 0.71 

 

 

Table 2.9 von Bertalanffy growth parameters estimated from otolith weight of P. affinis 

Sex                   n                         t0 (y
1

)                         K (y
1

)                 L∞ (cm) 

     

Males               250                      0.004                          0.250                      37.03 

Females           263                    0.0104                        0.256                      36.99 

All                    513                    0.0039                        0.252                      37.01 

 



29 
 

  

Figure 2.6 Plot of growth curves based on sectioned otolith and whole weight of otoliths 

of P. affinis in the Arabian Sea. 

 

 

2.3.4. Growth modeling from length–frequency analysis 

The estimated asymptotic length (L∞) and growth coefficient (k) by ELEFAN-1 technique 

using all the fish sampled for length frequency distribution for P. affinis were 43 cm and 

0.320 y
1

 respectively. The growth curve with these parameters superimposed over the 

restructured length distribution is given in Fig. 2.7. The curves which pass through most 

peaks and avoiding most troughs indicate the accumulation of large number of points, 

called ESP(explained sum of peaks). The curves clearly indicate that at smaller size of fish, 

the growth was faster which comparatively as the age of fish advanced. The calculated 

growth performance index (ǿ) of P. affinis was 2.77.  
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Figure 2.7 von Bertalanffy growth curves for P. affinis superimposed on restructure 

length–frequency histograms. Black and white bars = positive and negative deviations from 

weighted moving average of three length classes representing pseudocohorts. 
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2.4. Discussion 

The growth zone pattern in the fish otolith can be considered as biological archives and 

are commonly used for age and growth calculations of fish (Campana & Neilson, 1985; 

Edeyer et al., 2000). In the current study, the sagittal otoliths of P. affinis were used for 

the first time to estimate the age and growth characteristics. Although, in tropical fishes, 

especially around the equator the formation of periodic increments in otoliths is not 

consistent (Sparre & Venema, 1998), the otoliths of P. affinis showed the same growth 

zones pattern commonly seen in teleost fishes (Williams & Bedford, 1974). Each year 

one opaque and one translucent zone are formed and the distance between the 

translucent and the opaque zones became smaller with increasing in age. Despite, the 

growth zones were stacked in the direction of the otolith‟s margin in older individuals of 

certain sparids, (Buxton & Clarke, 1991, 1992; Pajuelo et al., 2003), I could 

successfully validate the age of P. affinis from growths rings in the otolith. The results 

of the present study would contribute to the expanding knowledge of otolith based age 

determination in tropical fishes. However, MIA is viewed as a difficult method to 

accurately validate the age due to the technical difficulties in viewing the otoliths 

variable light refraction, as well as by light reflection due to curvature at the margin of 

otolith (Campana, 2001). 

The assignment of a “birthday” and “increment formation date” is needed for 

standardizing the age determination of fish in years and months (Anderson et al., 1992). 

The time of annulus formation was demonstrated in this study by marginal increment 

analysis MIA. The lower monthly mean of MIA was recorded in September and 

increased throughout the year indicating that the annulus was laid for one time in the 

year. The deposition of one opaque and one translucent zone in a year has been reported 

in certain South African sparids (Smale & Punt, 1991; Buxton, 1992; Van der Walt & 
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Beckly, 1997; Mann, 2000; Chale-Matsau et al., 2001) and in the Canarian Archipelago 

sparids (Pajuelo & Lorenzo, 1996, 1998, 1999, 2000, 2001). 

However, an understanding of the factors affecting annuli formation on fish 

otoliths is required before using increment number and rings width to assess growth rate 

(Neilson & Green, 1982). In the Arabian Sea, the average seawater temperature in the 

fishing ground decreases from 26C in April to 21C in September (this study) which 

triggers translucent zone formation and the completion of the annual ring cycle. The 

change in Arabian Sea water temperature occurs annually during the SW monsoon 

season (June–September) and is associated with upwelling that brings high levels of 

nutrients and food to the area which is reflected in growth of the opaque zone over the 

following months. The associated decrease in seawater temperature and monsoon 

season in the Western Indian Ocean and Arabian Sea are the two factors which 

markedly affect the spawning cycles of this species. The same results were reported in 

many studies (Panella, 1980; Pajuelo & Lorenzo, 1999; Sun et al., 2002; Grandcourt et 

al., 2004). Though the timing of annulus formation is associated with spawning season 

of P. affinis in the Arabian Sea, the deposition of annulus could also coincided with 

environmental changes such as changes in water temperature.  

The aging precision estimate of 2.98% obtained in this study agrees well with 

the value (APE 2.4%) found for Diplodus puntazzo (Domínguez-Seoane et al., 2006). 

Hence, the sectioned otoliths can be reliably used to age P. affinis as there are 

comparatively well demarcated zonations. It also confirms the relative ease in counting 

annuli in sectioned otoliths (Brouder, 2005). Also, the present value of APE is 

acceptable as Shepherd (1988) suggested that 10% of error in age would largely affect 

stock assessment. The longevity from sectioned otoliths of P. affinis was nearly the 

same as that calculated from Alagaraja (1984) equation (9.43 years) for both sexes.  
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Fish age was determined also from the otolith weight (OW). It is apparent that 

the otolith weight and fish length relationship could provide a key-age structure of the 

population. Although, the VBG curves derived from these data were significantly 

different from the actual growth models (P  0.05), indicating this to be an 

undependable method to use in fish growth modeling. Generally, age determination 

based on otolith weight overestimates the lower age and underestimates the higher age 

groups of fish (Lou et al., 2007). Hence, this technique has to be improved before 

considering as a dependable method. However, weight of the otolith to the age the fish 

would be cheaper and quicker technique than studying otolith sections. The fit of this 

model showed that otolith weight or length increased with time (Worthington et al., 

1995). Cardinale et al. (2000) found that otolith weight could be a valuable tool for 

estimating fish age as the regression analyses between otolith weight and age indicated 

the predicted ages were unbiased. In the current study, though a significant relationship 

existed between otolith weight and fish age for both sexes, widespread data points 

scattered around the fitted linear regression line with overlapping of age groups having 

similar otolith weights. Such a trend will lead to error onerous prediction of fish age 

(Cardinale et al., 2000). Araya et al. (2001) correlated the relation between the otolith 

weight and the age of jack mackerel (Trachurus symmetricus morphyi) and found that 

this relationship may be used for estimating the age structure of the species. The 

significant relationships between weight of the otolith and age shown in the current 

study allowed the age of a fish of known length to be determined and a VBG line fitted 

to the length–age data to model the fish growth in the two sexes.  

In this study we recorded faster growth rate than A. berda in South Africa 

(James et al., 2003); A. spinifer in Southern Arabian Gulf (Grandcourt et al., 2004). 

Different growth rates in certain sparids were apparent between the sexes (Sarre & 
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Potter, 2000; Potts & Manooch, 2002). This may be due to the differential energy 

partitioning in females and males for reproduction and growth (Dwyer et al., 2003). 

Though there was no significant difference between growth rates in males and females 

in P.  affinis. In the present study the estimation of growth parameters indicates that no 

considerable differences in the growth characteristics between sexes for P. affinis as 

stated by Grandcourt et al. (2004) for A. bifasciatus and A. spinifer. Some fishes 

demonstrate similar bioenergy needs in male and females in their life, such as 

benthopelagic fish, roudi escolar Promethichthys Prometheus (Gempylidae), off the 

Canary Islands (Lorenzo & Pajuelo, 1999). This could be attributed to different 

environmental factors, for instance hydrographic nature which is essential for its 

characteristics (Jardas, 1996). However, similar pattern of growth rate for both female 

and male may be owing to same evolutionary forces or limits that could act on the life 

stages of the fish. Many factors affect growth and prey availability may negatively 

enhance energy requirement for movement. The overall determination of factors 

influencing age, growth and mortality in the fish population would be difficult (Peters & 

Parham 2008).  

The estimate of growth performance index (ǿ) provides the basis for comparing 

the growth of fish in terms of length (Grandcourt et al., 2005) and to evaluate the 

reliability of growth parameters (Raja Prasad et al., 2005). The comparison of growth 

curves using ǿ, showed close agreement with VBG parameters estimated from observed 

otolith age (ǿ = 2.535), modeled age from otolith weight (ǿ = 2.54), and length–

frequency analysis (ǿ = 2.77). The above suggests that the estimated growth pattern of 

P. affinis is reliable and support the use of otolith as a dependable tool to estimate age. 

The growth parameters are the basic inputs to the analytical models used for stock 

assessment and fisheries management. In this study, the growth parameters of P. affinis 
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have been estimated for the first time. The VBG curves generated from the length–age 

relationships obtained from both direct measurement of age from the otoliths and 

indirectly from relationship between otolith weight and length were almost closer. The 

information obtained on age and growth in this study will form as input data for 

analytical fisheries models to develop appropriate management strategies for 

exploitation of this species. Also, as weight of the otolith is indicative of age of fish, 

random sampling and weighing of P. affinis otoliths could be used to assess the age 

structure of the population. Fisheries managers require fish age data for routine fish 

stock assessment. Results of this study would be useful to managers since the otolith 

weight can be used to determine the age of this species, similar to annuli reading in 

sectioned otolith. The growth parameters of P. affinis established in the present study 

will be useful in stock assessment investigation to develop appropriate strategies for 

sustainable harvest of the species in the Omani waters. 
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3. Reproductive biology 

3.1. Introduction 

Reproduction is an important aspect of the biology among fishes, as recruitment and to 

stock abundance depends on its success. Among fishes the success of reproduction 

relies on the sources allocated for reproduction and the time and ground for 

reproduction (Healey et al., 2003; Crossin et al., 2004). To evaluate the reproductive 

potential of fish stocks, knowledge of pattern of reproduction and associated 

mechanisms is essential (Lambert et al., 2003). The reproductive strategy of an 

organism is influenced by the size and age at 50% maturity, spawning periodicity and 

fecundity (Stearns, 1992), and the population characteristics such as spawner biomass, 

sex-ratio, egg viability and hatching success (Lambert et al., 2003). Many of these 

characteristics display considerable spatial and temporal variability due to different 

populations exposed to different environmental and biological conditions (Stearns, 

1992; Rundle & Jackson, 1996). Furthermore, the environmental factors greatly 

influence a stock‟s ability to recruit into the adult population (Fowler et al., 2000). 

Ideally, any study should focus on these characteristics and include a fisheries 

management plan to obtain the sustainable yield of fish species (Yoneda et al., 2002). 

Teleosts display a variety of reproductive strategies in relation to seasonality of 

spawning. Fish can be defined as either single spawners where all oocytes develop 

synchronously and are released at once or multiple spawners where a number of ococyte 

batches at different times during the spawning season (Wallace et al. 1987; Pankhurst, 

1998). Many marine fish species display a discrete seasonal peak in reproductive 

activity and spawn several times over this season (Gordon & Bills, 1999). A variety of 

abiotic and biotic factors including water temperature, day length, lunar cycle and food 

availability play a role in regulating reproductive activity (Nakai et al., 1990; Gordon & 
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Bills, 1999; Neat & Balshine-Earn, 1999; Duponchelle et al., 2000). Many tropical and 

subtropical fish species typically have long spawning seasons; whereas, temperate 

species usually have short and clearly defined reproductive periods (Conover, 1992). 

Besides the geographical impact, inter-annual variations in environmental conditions 

also influence the initiation and speed of gonad development for subsequent spawning 

(Scott & Pankhurst, 1992).  

Size or age at 50% maturity is commonly evaluated for wild population as a 

key biological reference point for management decisions of harvest (Roa et al., 1999). 

Any shift in sexual maturity would significantly influence the composition and 

subsequent reproductive output of the spawning stock (Marteinsdottir & Thorarinsson, 

1998). Also, any reduction in size of maturity has been related to compensatory 

response in production of total egg of species (Marteinsdottir & Begg, 2002). In some 

fish species, average size and age at maturity varied between populations and/or 

between individuals (Godø & Haug, 1999; Takahashi, 2008) and such variability could 

be due to variations in population density (Chuwen et al., 2011), inheritability traits 

(Dieckmann & Heino, 2007), pressure of predation (Abrams & Rowe, 1996) and 

availably of food (Haug et al., 1989; Godø & Haug, 1999).  

 The process of maturation can greatly influence longevity and growth rates in 

fishes. For example, growth is typically fast in juvenile fish, but once maturity is 

reached, growth rate is reduced. The mechanics of this influence is the change in energy 

allocation into the somatic growth and differentiation of germinal tissues in the gonads 

to produce high-quality gametes (Thorpe, 2007). As a consequence of abundance of 

food and changes in seasonal environmental factors, there is elasticity in the allocation 

of energy for reproduction and somatic growth of fishes (Siems & Sikes, 1998). During 

non-reproductive periods, surplus energy is directed to somatic tissues such as muscles 



38 

 

and liver. As liver is the key organ responsible for production of yolk protein 

vitellogenin (Barbieri-Lowerre et al., 1996; Plaza et al., 2007), determination of the 

hepato-somatic index (HSI; a liver–body weight index) has been used as a measure of 

fish condition during reproductive and non-reproductive periods (Lambert & Dutil, 

1997). The amount of stored energy or somatic state of fish can significantly influence 

the process of gonad development. In fish, an increase in reproductive investment will 

result in decrease of somatic growth (Heino & Kaitala, 1999), as maturing fish allocate 

energy to produce and storage lipids in the liver and the subsequent uptake of these 

lipids into gonadal tissues (Hansen et al., 2001). HSI indicates that during the spawning 

period the fish tends to feed less in relation to other months (Lampert et al., 2004). 

During non-reproductive periods of fish, the intense feeding could be the strategy to 

store energy for reproduction (Barbieri-Lowerre et al., 1996), where these reserves 

would be used on vitellogensis (Abdel-Aziz & El-Nady, 1993). The total energy 

contained in liver of mature female Northeast Arctic cod, was proportional to egg 

production (Marshall et al., 2000); however it may vary with condition and age–size of 

fish (Marteinsdottir & Begg, 2002). Conversely, in the Atlantic cod variations in liver 

sizes could not be related to development of gonadal stages (Dahle et al., 2003).  

Estimation of the amount of eggs produced by a female in a season is difficult 

as the number of eggs produced is related to spawning frequency and batch fecundity 

(DeVlaming, 1983). The number of mature oocytes within the ovary, represent 

fecundity (Melville-Smith, 1989; Ingles & Braum, 1989) and are liberated during 

spawning. Some fish species release multiple batches of eggs during a spawning 

season (Bani & Moltschaniwskyj, 2008). Multiple-spawning fishes with group-

synchronous ovaries display discrete multi-modal oocyte size–frequency distributions 

with distinctive gaps between different stages of oocytes before spawning (Plaza et al., 
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2007) and existence of such gaps help to determine fecundity, that is all the eggs in 

advanced stage produced during the spawning season (Kjesbu et al., 1996; Hesp et al., 

2004). However, certain species release eggs in batches several times during the 

spawning period at distinct intervals (Stéquert et al., 2003) through asynchronous 

oocyte development. Hence, fecundity may fluctuate among individual spawners in a 

given year and between years (Kjesbu et al., 1996; Manning & Crim, 1998; Rickman 

et al., 2000). 

In many fish stock assessment models, annual fecundity estimates are used as  

reproductive output (Nichol & Acuna, 2001). In the fish population, the recruitment 

depends on the quality, number, and size of eggs released during the spawning season 

(Rickman et al., 2000).  

Knowledge of maturation and spawning of exploited stocks is essential to 

protect spawning stocks (Noble & Jones, 1993; Koslow et al., 1995; Mackie & Lewis, 

2001; Yoneda et al., 2002). Despite the importance of those aspects for P. affinis 

fisheries management in Omani waters, there is no studies were done before. The only 

previous study on the reproductive biology of P. affinis from Oman focused on the 

component of the population caught by the Oman-based industrial trawl fishery for one 

year from deeper waters (McIIwain et al., 2006). However, several aspects of 

reproduction including fecundity still remain unknown. The present study was carried 

out to address the knowledge gap on the seasonal patterns of reproductive biology of 

P. affinis landed by artisanal fishing sector from coastal waters and from trawl sector 

from deeper waters in the Arabian Sea, where seasonal upwelling takes place. The 

objectives of the study were to (i) determine the spawning period based on the 

occurrence of mature/spent gonads; (ii) study the seasonal changes in the HSI, GSI, 

and relative condition factor (Kn); (iii) estimate size/age at 50 % maturity; (iv) describe 
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the distribution of ova in different maturity stages of ovary; (v) calibrate the 

macroscopic maturation scale for this species through histological investigation; (vi) 

quantify the fecundity of females; and (vii) to estimate spawning frequency based on 

histological investigations. The above information would help to plan for rational 

exploitation of P. affinis stock from the Arabian Sea coast of Oman. 

3.2. Materials and methods  

3.2.1. Sample collection and analyses  

Fish were sampled monthly from April 2005 to March 2007 from artisanal fishing 

gears operated in the Arabian Sea from Lakbi and Raysut (see Chapter 1 for details). 

Additional samples were obtained from artisanal gears and trawlers during April 2008–

March 2009 for histological studies. Immediately after collection, fish were stored in 

cool box with ice and took to the laboratory for analyses within 4 hours. During 

dissection of each fish, the total length (TL; 1 cm), total weight (TW; ±1 g), sex, 

macroscopic gonad condition, gonad weight (GW; ±0.01 g) and liver weight (LW 

±0.01 g) were recorded. A six-stage gonadal maturity key (Table 3.1) modified from 

Ntiba & Jaccarini (1990) was adopted for macroscopic staging of fish. Five ovaries 

from each stage except stage VI were preserved in 5% neutral formalin for ova size–

frequency distributions. For the estimation of fecundity, 25 ovaries in Stage IV were 

used from fish ranging from 21.5 to 34 cm TL selected during the peak of spawning. 

Average monthly sea surface temperature (SST), salinity and dissolved oxygen for 

2008 in the Arabian Sea were obtained from the Ecology Section at the Marine 

Science and Fisheries Centre (MSFC). 
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Table 3.1 Macroscopic maturity stages of male and female P. affinis in the Arabian Sea (Ntiba & Jaccarini, 1990) and microscopic classification of 

female modified from Scott & Pankhurst (1992) 

     

    Stages of maturity                    Testes                                                     Ovary  

                                         External features                                                External feature                                          Histological features                 

 

I Immature                     Small, transparent, pale,                                    Small, transparent, pale in color,                 Previtellogenic oocytes                

                                       occupying a very small portion                           occupying a very small portion to              (Fig. 3.12A)                               

                                       up to 1/3 of body cavity length                         1/3 of body cavity, ova invisible  

                                                                                                                  to naked eye           

        

II Maturing 1                 Whitish, translucent, occupying                        Pale yellow, granular ova visible                  Cortical alveoli stage oocytes         

/resting                           about 1/2 of body cavity                                   to naked eye, occupying about 1/2                appear (Fig. 3.12B) 

Previtellogenic                                                                                         of body cavity 

 

III Maturing 2               Creamy white, occupying about                        Pale yellowish, blood vessels visible            Oocytes in exogenous     

/vitellogenic                  3/4 of the body cavity                                        on dorsal side, ova clearly visible,                vitellogenesis (Fig. 3.12C) 

                                                                                                                 occupying about 3/4 of the body cavity 

 

IV Mature                     Creamy white, soft, occupying about                 Pinkish yellow, blood vessels                        Final oocyte maturation and      

/hydrated                       full length of body cavity                                   prominent, large ova prominently                  hydration (Fig. 3.12D)    

                                                                                                                  visible, occupying about full  

                                                                                                                  length of body cavity 

 

V Ripe/Running           White, occupying entire length                           Yellowish, occupying entire length             Hydrated oocytes in the oviduct 

/ovulated                       of the body cavity, exudes milt                           of the body cavity, slight pressure               and postovulatory follicles  

                                      on slight pressure                                                extrudes eggs                                               present (Fig. 3.12E) 

 

VI Spent                        Flabby, little reddish, occupying                        Flaccid, reddish, occupying                         Atretic vitellogenic oocytes but 

                                      about 1/2 of body cavity                                     about 1/2 of body cavity                              predominantly vitellogenic                                                                                                                                                                             
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3.2.2. Biological data 

The monthly gonado-somatic index (GSI) was calculated for females and males 

separately using the formula given by June (1953) and Yuen (1955): 

 

 

 

where GW is the gonad weight (g) and TW the total body weight (g). 

The hepato-somatic index (HSI) was calculated for each month sex-wise as follows: 

 

 

 

where LW is the liver weight (g) and TW the total body weight (g).  

The relative condition (Kn) was estimated as 

 

 

where TW is the total body weight, a and b the allometric coefficients of length–weight 

relationship estimated separately for each sex by nonlinear regression (parameter data were 

obtained from Chapter 5) and TL the total length.  

The determination of ova maturation was established through the analysis of five 

ovaries each preserved in 5% neutral formalin from stages I to V. From each ovary, 

approximately 200 ova were measured using an ocular micrometer fitted in the eye piece 

of a dissecting microscope following the method of Clark (1934). A random sample of 

oocytes was made by taking small pieces from posterior and middle of the ovary and 

mixed well and placed on a clean slide. Ocular micrometer division was calibrated and 

each micrometer division was equal to 0.016 mm. Diameters of the ova were measured and 
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recorded. Frequencies of the ova diameters were compared for different ovarian stages 

(Vazzoler, 1996).  

Length-at- maturity (L50) was defined as the TL at which 50% of fish were mature. 

A logistic function was fitted to the proportion of mature fish per 1-cm length interval 

using non-linear least-squares regression (King, 1995) for both sexes separately. For 

predictions from a logistic model, to attain nominal coverage rates, bootstrapping has been 

used to evaluate coverage rates and recalibrate the endpoints of confidence intervals. The 

logistic equation was 

 

 

 

where P is the proportion of mature fish in length class L, r the width of the maturity curve 

and L50 the length at 50% maturity. Age at 50% maturity (t50) was calculated using the 

estimated length at 50% maturity and the von Bertalanffy growth parameters rearranged to 

the form: 

 

 

 

3.2.3. Fecundity 

Fecundity was estimated gravimetrically from mature ovaries collected during the 

spawning from sample of mature females. From the ovaries preserved in 5% neutral 

formalin for few days, two to three sub-samples from each ovarian lobe were taken and 

weighed (±0.005 g). The sub-samples of ovaries were preserved in modified Gilson‟s 

fluid of Simpson (1951) for 2 weeks for easier separation of eggs. Each sub-sample was 

distributed evenly over a cell counting chamber divided into 100 squares, each square 
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measuring 5 mm × 5 mm. The numbers of mature ova in 20 randomly chosen squares 

were counted using a binocular microscope and were recorded. The absolute fecundity 

and relative fecundity were calculated using the following formulae: 

 

  

 

where F is the absolute fecundity, C the number of mature eggs in the sub-sample, SW the 

weight of the sub-sample and GW the weight of the ovary. 

 

 

 

where RF is the relative fecundity (per kg total body weight), F the absolute fecundity, 

and TW the total weight of the fish (g). 

 

3.2.4. Histological assessment of gonad maturation 

A histological examination of the ovaries was conducted to validate macroscopic stages 

and to determine the maturation of the eggs. The description of gametogenesis was with 

reference to Scott & Pankhurst (1992) (Table 3.1). The ovaries of fish used for 

histological analysis were dissected out, weighed (±0.001 g), and fixed in FAAC 

(formalin acetic-acid calcium-chloride) fixative. As no significant differences in 

maturation and oocyte–frequency distributions between right and left ovaries are usually 

found (LaRoche & Richardson, 1980; DeMartini & Fountain, 1981; West, 1990), the left 

ovary was used for all histological analysis. The ovary from the middle portion was 

sectioned to minimize probable variation in the developmental stage of oocytes due to 

their position in the ovary (Forberg, 1982; Gooley et al., 1995). The middle portion of the 
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ovary was dehydrated in alcohol series, cleared in toluene, and infiltrated with and 

embedded in paraffin wax. Sections (5 m) were cut and stained with hematoxylin and 

counterstained with eosin. For each maturity stage of ovary, the diameters (m) of 103–

146 oocytes were measured using light microscope at 10 magnification.  

From mature females sampled from July to November in 2008 spawning frequency 

was determined. The fraction of daily spawning for females was estimated by the 

occurrence of postovulatory follicles (POFs) within ovaries (Hunter et al., 1986). The 

spawning frequency was the inverse of the average percentage of spawning females, and 

the average percentage of spawning females was calculated as the total quantity of mature 

and reproductively active females in the spawning season (McPherson, 1991). 

 

3.2.5. Data analysis  

One-way ANOVA, followed by Tukey‟s post-hoc tests were used, to find out the 

differences among the mean GSI, HSI, and relative condition factor (Kn) as a function of 

month. To look at the changes in the individual's frequency in each maturity stage for 

males and female during different months, 2
 test of independence was used. Following 

significant 2
 analysis, standardized residuals were used to determine whether observed 

frequencies were different from expected frequencies under the assumption that the 

number of individuals in each maturity stage was independent of month. 2
 tests of 

homogeneity were used to describe whether sex ratios differed significantly from unity 

across the whole sample. Since the size at 50% maturity is defined as the median (L50) of 

the size distribution of maturing fish, median tests (Zar, 1984) were used to relate length 

at 50% maturity between the sexes. To find out relationships between fecundity and ovary 

weight, fish weight, fish length and relative fecundity linear regression analysis with log–
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log-transformed data were used. SPSS version 16 was used for all statistical analysis and 

a significance level () of 0.05 was applied in all tests. 

3.3. Results 

3.3.1. Sea surface temperature and salinity  

The mean maximum SST for the available three years data was found in November (Fig. 

3.1). SST was declining markedly from their maxima (April–May) to their minima (June–

September). The mean monthly salinities showed seasonal patterns throughout the year; 

however, in September no data were available. The minimum salinity of 34
0
/00 was found 

in July and October (Fig. 3.2). Figure 3.2 shows also the pattern of dissolved oxygen which 

increased from April to June, dropped in July and climbed up again from August to 

October. 
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Figure 3.1 Monthly sea surface temperatures (SST) during 2005, 2006, and 2008 in 

Arabian Sea. 

 

Figure 3.2 Monthly salinity (S) and dissolved oxygen (DO) in 2008 in Arabian Sea. 
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3.3.2. Gonado-somatic index, hepato-somatic index & relative condition        

factor (Kn) 

The GSI values in female and male were significantly different among the months (females 

F = 35. 23, df = 28, 673, P  0.001; males F = 69.72, df = 28, 639, P  0.000). The mean 

monthly GSI in females and males followed identical patterns in all the 3 years. The mean 

GSI increased sharply from April to reach peak values in September and rapidly falling to 

minimum values by November (Fig. 3.3). In general, smaller GSI was recorded during 

November when SSTs were high (27C) and at lower monthly temperature, the mean GSI 

values were greater for female and male.  

The monthly HSI values for females and males showed significant differences among 

months (females F = 20.341, df = 28, 656, P  0.001; males F = 9.548, df = 28, 603, P  

0.001) during the study period. While the HSI values of females showed a similar trend to 

that of female GSI profile with high values in September and low values in May and 

November, an irregular trend was noticed in males (Fig. 3.4). The decline in HSI values in 

females was associated with the appearance of ovaries in stages immature and regressed 

during November and the increase in HSI in December was due to the females with stage 

III ovaries. Higher values of HSI for females coincided with the peaks of GSI during 

reproductive period (April–October) (Fig. 3.4). While, there was significant correlation 

for the HSI values of females in the 3-year study period (r
2
 = 0.742, df = 1, 27, P  

0.0004), the values of males were not consistent across and there was no correlation in the 

3-year study period (r
2
 = 0.137, df = 1, 27, P  0.479). 
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Figure 3.3 Monthly gonado-somatic indices (GSI) of females and males of P. affinis. 

Error bars represent the standard error of the mean. Means with different letters are 

significantly different from one another. Sample size of females and males ranged from 9 

to 48 and 5 to 45 respectively. 
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Although significant differences in Kn values between months (females F = 4.22, df = 

1, 28, P  0.001; males F = 14.606, df = 1, 28, P  0.001) were detected, average Kn 

values displayed an irregular pattern over the 3-year period (Fig. 3.5). The monthly Kn did 

not coincide with peaks of GSI or HSI values in both females and males; whereas, the Kn 

values were higher for males in 2005 and 2006, decreased to a lowest value of 0.89 in 

November in same year. This pattern was not same in 2008. This shows that the changes 

in Kn values were not influenced by the gonadal maturity. It could be due to the changes 

in feeding intensity of the fish or other unknown factors (Jayabalan et al., 2011).  
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Figure 3.4 Monthly hepato-somatic index (HSI) estimated for females and males of P. 

affinis. Error bars represent the standard error of the mean. Means with different letters 

are significantly different from one another. Sample size of females and males ranged 

from 7 to 48 and 5 to 37, respectively. 
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Figure 3.5 Monthly relative condition index (Kn) for females and males of P. affinis. 

Error bars represent the standard error of the mean. Means with different letters are 

significantly different from one another. Sample size of females and males ranged from 7 

to 48 and 5 to 46, respectively. 
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3.3.3. Spawning pattern from macroscopic studies  

The maturity stage frequency of occurrence of male and female was dependent on months 

(males 2
 = 394.83, df = 33, P  0.05; females 2

 = 359.43, df = 33, P  0.05). Fish with 

advanced stages of gonad development were observed between April and October with a 

greater proportion of running/ripe gonads occurring in July and September (Figs. 3.6 and 

3.7). The pooled maturity stage frequency distributions in female during different months 

showed an occurrence of stage vitellogenic and hydrated individuals; however, stage-

ovulated individuals occurred in greater frequencies between June and September (Fig. 

3.6). Stage-regressed females were very frequent in November. There was a greater 

frequency of stage V males between July and October (Fig. 3.7). In contrast, the 

frequencies of stage V individuals in both sexes were less than expected in the remaining 

months. The frequency of male and female stage II individuals was significantly more and 

less than expected, respectively. Frequency of males in stage IV was greater and smaller 

than expected in August–September and February–March, respectively. However, females 

in stage III were found at a lower frequency than expected during the peak of spawning 

months. Therefore, occurrence of mature, ripe/running and spent gonads indicates that P. 

affinis may spawn for about 7 months between April and October in Omani waters. The 

overall sex-ratio male to female of P. affinis was 1:1.04, which was not significantly 

different from 1:1 (2
 = 0.58, df = 1, P  0.05). 
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Figure 3.6 Frequency distribution of female P. affinis in each reproductive stage (II, III, 

IV, and V) in each month for data pooled across years. Arrows indicate the direction in 

which the observed frequencies differed from expected frequencies, generated under the 

assumption that stages were independent of months. Numbers in parentheses are values of 

n. 
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Figure 3.7 Frequency distribution of male P. affinis at stages (II, III, IV, and V) for 

pooled data. Arrows indicate the direction in which the observed frequencies are different 

from expected frequencies, generated under the assumption that stages were independent 

of months. Numbers in parentheses are values of n. 
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3.3.4. Ova size–frequency distribution 

A total of 7037 ova were measured from 25 ovaries of I–V maturity stages. Five types of 

ova (immature, maturing, mature, nucleus migrated, and ripe) were observed in the 

studied ovaries (Fig. 3.9). Immature ova had a greater frequency in all ovarian stages. 

They represent the reserve ova from which a batch of ova will be withdrawn for further 

maturity. Immature ova were irregular in shape with clear nucleus and unyolked. 

Maturing ova were round with a partially visible nuclei and little yolk. The mature ova 

were opaque and fully yolked, and the ripe ova were partly transparent and hydrated (Fig. 

3.9). The size–frequency distributions of the ova show the developmental sequence of 

maturation. As maturation progressed, there was no clear gap between size modes of 

unyolked and yolked ova. Immature ova (0.03–0.176 mm), were present in all maturity 

stages (Fig. 3.8). In stage II ovaries, a batch of immature ova increased in size to a mode 

of 0.25–0.35 mm (Fig. 3.8), which increased further to a modal diameter of 0.40–0.55 mm 

in stage III ovaries (Fig. 3.8). In stage IV ovaries, the mature ova (0.57–0.75 mm) 

emerged from other ova as it becomes a distinct and separate mode. There was significant 

overlap in size of mature ova and ova with migrated nucleus in stage IV (Fig. 3.9). A 

number of groups of ova at different development stages were observed in stage V 

ovaries. Ova diameter clearly shows a polymodal distribution with some overlap between 

stages and ripe ova at mode 0.81–0.99 mm (Fig. 3.8).  
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Figure 3.8 Oocyte size–frequency distrributions (mm) from representative females of 

various reproductive stages.  
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Figure 3.9 Photomicrograph of whole ova of P. affinis representing unyolked (U), 

partially yolk (PY), yolked (Y), nucleus migrated (NM), and hydrated (H) ova. Scale bar 

200µm.  
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3.3.5. Fecundity  

The fecundity of P. affinis ranged from 14,460 to 757,830 eggs in females measuring 

between 21.5 cm and 34 cm TL total length with weight varying from 128 to 718 g. There 

was a general increase in fecundity with the increase of the ovary weight (Fig. 3.10A), 

total weight (TW) (Fig. 3.10B) and total length (TL) of the fish (Fig. 3.10C). The 

relationship between fecundity and relative fecundity also showed similar trend (Fig. 

3.11). Relative fecundity showed significantly positively correlated. The regression of 

log-transformed analyses showed significant linear relationships between fecundity and 

total weight, ovary weight, total length, and relative fecundity. The coefficient of 

determination indicated fecundity in relation to the weight of the fish was highly 

correlated (R
2
 = 0.83) than the total length and weight of the ovary. There was significant 

linear relationship between fecundity and total length of fish (F = 68.37, df = 1, 24, P  

0.05, R
2
 = 0.74).  
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Figure 3.10 Relationships between log fecundity and log ovary weight (A), log fish 

weight (B), and log total length (C); r
2
 the coefficient of determination for P. affinis from 

the Arabian Sea. 
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Figure 3.11 Relationship between log relative fecundity and fecundity for P. affinis from 

Arabian Sea; R
2
 = the coefficient of determination. 

 

 

3.3.6. Histological assessment of gonad maturation  
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based on the criteria outlined in Table 3.1. Figure 3.12A shows the primary phase of 

oocyte development. In P. affinis, oogonia increased and turned into primary oocytes 

(early and late perinucleolus stages), which later developed within follicles, grew into 

cortical alveoli, become vitellogenesis, go through maturation, and ovulated as a final 

point. In males, both identifiable testicular and ovotestis tissues were observed in 

November (Fig. 3.14A). The testicular zone contained spermatogonia and occasionally 
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immature (inactive) males (Figs. 3.14B and D). Mature male contained spermatozoa 

concentrated in the lumen and spermatogonia restricted to the periphery of the testes; 

whereas, immature testes possessed a higher proportion of spermatgonia and very few 

spermatids or spermatozoa.  

On the basis of histological classification of the ovary, the distribution of oocyte 

diameters during the various stages of ovarian development are shown in Table 3.3 and 

Fig. 3.12. The sizes of oocytes ranged from 10 to 700 m and within this size range 

included the maturation stages EP to H. The mean size of the immature stage early 

perinucleolus stage (EP) was 24 ± 0.5 m; whilst, the mean size of the spawning ripe 

oocyte (H) was 656 ± 8 m (Table 3.2). The average oocyte diameter in stage MN was 

smaller (360 ±7 m) than the average size during the spawning ripe stage (H) (656 ± 8 

m) and this can be attributed to the swelling oocytes due to hydration just before 

spawning. Three types of POF stages were identified in samples collected during October. 

The structures established by the thecal and granulose layers of the oocytes surround the 

zona radiata externa (Figs. 3.13A–D). Recently, ovulated follicles formed convoluted 

folds of the thecal and granulose layers with darkly staining nuclei (Fig. 3.13B), whereas 

older POF were less structured, compact, and displayed nuclei that were in various stages 

of degeneration (Figs. 3.13C and D). 

 

3.3.7. Spawning patterns from histological appearance 

During July, ovaries had different vitellogenic phases of oocytes, migratory nuclear 

oocytes, and hydrated oocytes (Fig. 3.12C). The presence of varied types of POF and 

vitellogenic oocytes in ovaries (Fig. 3.12E) collected during August-October indicated 

occurrence of recent spawning and the potential for additional eggs. This shows that P. 
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affinis is multiple spawner. Thus, the continual ovulation of the oocytes and simultaneous 

addition of vitellogenic oocytes form the succeeding batches of eggs to be spawned 

subsequently. Hence, the spawning in P. affinis appears to be cyclical and is achieved 

through the discharge of sequential batches of eggs at ripe stage. 
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Figure 3.12 Sections of ovaries of P. affinis: (A) early perinucleolar oocyte (EP) and late 

perinucleolar oocyte (LP); (B) cortical alveoli (CA); (C) migrating nucleus (MN), cortical 

alveoli (CA) and postovulatory follicles (POF); (D & E) hydrated oocytes (H) and (F) 

POFs in stage 2. Scale bar = 100 m (D), 500 m (B & E), 50 m (A), and 200 m (C). 
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Figure 3.13 Sections of ovaries of P. affinis: (A) the outer layer of yolk granule. Yg: 

yolk granule; yv: yolk vesicle; zre: zona radiata externa; (B) POFs in stage 1. (g), 

granulose and t, thecal layer; (C) POFs in stage 2. (g), granulose and t, thecal layer; (D) 

POFs in stage 3. Scale bar = 100 m (A & C), 200 m (D) and 50 m (B). 
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Figure 3.14 Sections of testis of P. affinis: (A) region of ovotestes in which the testicular 

tissue (t) predominated and oocytes in the ovarian zone (o), spermatogonia (sg) , spermatid 

(st) and spermatozoa (sz). Scale bar = 500 m, (B & D) show immature and inactive 

gametes, (C) main sperm duct during spermatogenesis, showing that both spermatids and 

spermatozoa are present. Scale bar = 500 m (A) and 200 m (B & D). 
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3.3.8. Spawning frequency 

The mean monthly spawning frequency was greatest in August and September compared 

to October (Table 3.3). The proportion of spawners from July to October in P. affinis 

ranged from 0.24 to 0.69. These values indicate that females spawn at intervals of 1.44–

4.17 days. The overall mean for the spawning months was 1.89 days in all period (Table 

3.4). 

 

 

Table 3.2 Mean diameters (±SE) and size ranges of oocytes in different maturity stages 

of ovaries of P. affinis.  

       Stages of                      No. of oocytes           Mean size ± SE              Size range 

     maturation                      measured                       (m)                              (m)                    

      

           EP                                   139                           24± 0. 5                          10–34                                                                  

           LP                                   132                          58 ± 2                              32–97 

           CV                                  118                         137 ± 3                             80–189 

           V                                     146                         228 ± 2                           145–300 

           MN                                 115                         360 ± 7                            257–594 

           H                                    103                         656 ± 8                            466–700 

 

 

 

 

Table 3.3 Spawning frequency of female P. affinis in Arabian Sea, Oman 

 

Month                 Number of female                     Spawning               Spawning                    

                             Mature        POFs                     frequency               interval (d)      

      

   July                    7                    7                              0.5                              2 

August                   6                   7                              0.54                            1.86 

September             4                   9                              0.69                            1.44 

October                 19                 6                              0.24                            4.17  

November             0                   0                              0                                 0 
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3.3.9. Length at 50% maturity  

The lengths at which 50% maturity attained by females and males are given in Fig. 3.15; 

with 95% confidence interval (CI). Males matured at 23.53 cm TL (CI, 22.5–23.8) with an 

estimated age of 3.5 years from inverse von Bertalanfy growth function (VBGF). Females 

matured at 22.1 cm TL (CI, 21.5–22.5) and the estimated age was 3.14 years. Although, 

males matured at a slightly larger size than females, there was no significant difference 

between the sizes of maturity for males and females (Median test, 2
 = 0.0045, df = 1, P  

0.05). 
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Figure 3.15 Proportion of sexually mature female and male P. affinis (data were fitted to the 

logistic equation with 95% confidence interval).  
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3.4. Discussion 

This study confirms several aspects of spawning in P. affinis. Monthly distribution of 

maturity stages, GSI and relative condition factor, ova diameters, fecundity and length and 

age -at-50% sexual maturity are discussed here to elucidate maturation and spawning. In 

this study, the spawning season of P. affinis was evaluated from occurrence of mature 

gonads and mean monthly GSI profiles. These findings showed that P. affinis spawns for 7 

months from April to October, with peak activity during August and September. The 

monthly evolution of gonado-somatic indices demonstrated only one peak a year for both 

sexes. Many reproductive studies concentrate on quantifying the reproductive traits of 

individual stock for better understanding of the mechanisms underlying population 

fluctuation. Several approaches help to understand the reproductive aspects of fish 

populations (Firedland et al., 2005). Obtaining data on gonad weights and the proportions 

of different reproductive stages are common method used to determine the reproductive 

season (Fowler et al., 2000). 

Although the use of GSI is a commonly applied index of reproductive development 

(Claramunt & Roa, 2001), it can be a poor indicator of actual spawning activity 

(DeVlaming et al., 1982; DeMartini & Lau, 1999) if not used in conjunction with other 

techniques like oocyte diameter and histological analysis (McDonough et al., 2003). In P. 

affinis, the sharp rise in the mean monthly GSIs from June to October and drop in 

November evidently showed that the species spawned during these months. Thus, based on 

maturity stages and GSI, it is clear that P. affinis has a prolonged spawning season with 

peak activity in August and September in the Arabian Sea. There were clear development 

in gonads maturity of P. affinis over time. The wide period characterizes by this fish might 

be to guarantee high recruitment (Shapiro, 1992). Other seabreams have protracted 

spawning season, which owing to environmental condition of tropical fish (Mytilineou, 
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1987; Vassilopoulou & Papaconstantinou, 1990). However, an earlier study from the same 

area based on 1-year data from trawl catches alone, estimated spawning of fish during 

August-October, and a smaller peak for females in December (McIIwain et al., 2006). The 

period of reproductive development of P. affinis agrees with other species of sparids 

(Andaloro, 1982). In P. affinis, the peak reproduction is associated with monsoon season, 

when SSTs averaged between 20.5C and 21C, less saline water and high nutrition (Luo 

et al., 2000). This agrees with the observations of Sadovy (1996) who concluded that many 

fishes spawn in cooler periods. In tropical fishes, spawning patterns are associated with 

seasonal changes in environmental conditions that might influence spreading of larvae, 

growth and availability of food (Grimes, 1987; Robertson, 1991). Seasonal monsoons or 

the rains and photoperiod, which were not explored in this study, are also considered as 

important factors that regulate the timing of spawning in tropical fishes (Munro et al., 

1995; Sivakumaran et al., 2003).  

Sex ratio is an important parameter of population structure. If sex ratio differs from 

the unity, this can be the result of several factors such as mortality rate (Mazzoni & 

Caramaschi, 1997), selective capture influence (Hood & Johnson, 1999), partial 

segregation by sex (Mejuto et al., 1995), season (Hoey, 1991; Mejuto et al., 1991), 

migration patterns (Sadovy & Shapiro, 1987) and change in population structure between 

inshore and offshore locations (Hyndes & Potter, 1996). In this study, the overall male to 

female ratio indicated homogeneity (1:1); but differed from the ratio reported earlier as 1 

M:0.88 F (McIIwain et al., 2006). Differences in sex ratio between the two studies could 

be due to the variation in depths of fishing and fished area as trawlers operated in deeper 

waters and the artisanal gears fished in coastal waters. Our result agreed with sex-ratio 

reported for the related species Diplodus puntazzo (Micale et al., 1996). 
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Monthly HSI and GSI in females in this study were correlated which may reveal the 

enhanced metabolic activity of the liver due to production of vitellogenin. Normally, 

higher monthly HSI indicates the storage of energy for reproduction (Lambert & Dutil, 

2000). As the liver is the primary organ involved in vitellogenin synthesis, livers 

commonly enlarge in female during the reproductive season in response to the increased 

demand for vitellogenin (Htun-Han, 1978; Wallace & Selmen, 1979). Reductions in liver 

size and fat content are also observed during spawning as stored energy is utilized to meet 

the increased reproductive needs (Karlsen et al., 1995; Hansen et al., 2001). In P. affinis, a 

strong positive relationship existed between ovary weight and liver weight. The difference 

in HSI trends in males and females might be due to their different energy demands during 

reproduction, as the rates of metabolism for egg production in females is much larger than 

that production of sperm in males (Kokka & Jennions, 2008). In fishes the somatic 

condition factor indicates the physiological state of the fish, that results from the 

interaction between biotic and abiotic factors (Tavares-Dias et al., 2010; Lemos et al., 

2012). The condition factor often varies in relation to nutritional availability and the 

demands for energy storage during reproductive activity (Vazzoler, 1996). However, as Kn 

values showed irregular trends in both sexes throughout the study period. Thus, they were 

not helpful for the determination of spawning season of P. affinis.  

In this study, the process of forming of the ovary of P. affinis did not vary much from 

that described for the sparid Acanthopagrus spp. (Abu-Hakima, 1984). The process of 

ovarian development also agreed with the basic development defined for other teleost 

species (Abu-Seedo & AL-Khatib, 1995; Coward & Bromage, 1998; Dadzie et al., 2000). 

From the histological data on the changes in maturity stages with months, the presence of 

mature fish from April to October indicated that P. affinis in waters of Oman has a 

prolonged spawning season and reflected the seasonal changes taking place in Arabian 

Sea. During the spawning season POFs were observed together with oocytes at yolk stage 
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in histological section of ovaries of mature pandora. Females that have mature oocytes and 

POFs are suggested to have recently ovulated (Lambert et al., 2000). The occurrence of 

developing oocytes and POFs together indicates that the fish spawns more than once in a 

spawning season (Collins et al., 1998; Yamaguchi et al., 2006). The process of follicular 

regression in P. affinis was divided into three stages of regression because they presented 

well-defined characteristics (Leonardo et al., 2006). From histological information 

hydrated oocytes were rarely observed. This may be explained by short lifespan of this 

stage of oocytes development before spawning (Brown-Peterson, 2000). The appearance of 

translucent (hydrated) oocytes is a sign that spawning would be imminent within a day or 

perhaps hours (West, 1990). In the present study, histological observations showed ovaries 

containing both testes and ovaries reflecting sex change in this species (Lee et al., 2001; 

Lee et al., 2002). In sparids, a complex sexuality such as protogyny, simultaneous and 

rudimentary hermaphroditism have been described (Buxton & Garratt, 1990).  

In this study, the sexual maturity in P. affinis was estimated and found that this 

species attains its maturity at an age of about 3.14–3.5 years, which matched to a mean 

total length of 22.1 cm in female and 23.53 cm (TL) in males. As the reproductive 

potential of a fish stock is influenced by the size and age-at-50% maturity (Trippel et al., 

1997), they are used as significant parameters in fish stock assessment models to evaluate 

spawning biomass (Abookire, 2006). Furthermore, length-at-first maturity has a great 

importance in the determining the optimum mesh size for fishing regulation. Fish 

integrate their physiological function with environmental cycles which is also influenced 

by genetic factors (Hassin et al., 2000). The time of sexual maturity is a vital transition in 

the life history of an organism as energy resources that were formerly distributed to 

growth and survival are now needed for reproduction (King, 1995).  

The difference in the size and age-at-50% maturity between females and males has 

been found in related species such as Pagrus auriga (Pajuelo et al., 2006) and Argyrozona 
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argyrona (Brouwer & Griffiths, 2005) where the males were larger and older than females 

at maturity. Similarly, in P. affinis of Oman McIIwain et al. (2006) found the females to 

mature at 21.4 cm and males at 22.3 cm (TL). The difference in size-at-first sexual 

maturity among males and females is a common feature occurring in sequential spawners 

due to different birth dates (Lowerre-Barbieri et al., 1998). In general, fisheries selectively 

remove larger, older individuals from the population (Jennings & Lock, 1996). Moreover, 

the mean size of fish may vary from year to year naturally (McBride & Thurman, 2003) 

and in different geographical locations of species distribution (Bromley et al., 2000). 

Furthermore, availability of food (Sampson & Al-Jufaily, 1999); oceanographic 

conditions (Brodziak & Mikus, 2000) and growth patterns (Stearns, 1992; Tripple, 1995) 

would also affect the variation in sizes. However, our study indicated the females to 

mature at marginally a lower size and age than males. Reasons for the variation in the 

observation between McIIwain et al. (2006) and the present study could be explained by 

changes either through phenotypic plasticity or the genetic composition of the stock 

(Thorpe, 2007). 

The following evidences show that P. affinis is a serial spawner: (a) the prolonged 

spawning season revealed by the monthly GSI values and occurrence of mature gonads 

and (b) the presence of different developmental stages of oocytes as well as several modes 

of greater diameter oocytes. The restricted occurrences of resting fish further argue that P. 

affinis is a multi-spawner and show that the fecundity of P. affinis is a batch fecundity. 

This indicates a characteristic asynchronous type of ovarian formation. Fish species that 

have extended spawning seasons are usually multiple spawners and individual females 

produce several batches of eggs (Hontela & Stacey, 1990). In fishes to find out whether 

the fish has determinate fecundity, size frequencies of oocytes from various stages have 

been used (Hunter et al., 1992). In the mature ovaries of most multiple spawners more 

than one group of yolked oocytes are present with continuous distribution of different 
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sizes of oocytes (Blaxter & Hunter, 1982). Furthermore, they are correlated to oocyte 

development “synchronized in more than two groups” in which each set of oocytes 

develop simultaneously and are released when they reach total maturation (Lampert et al., 

2004). A relationship might exist between the pattern of oocyte and ovarian development 

for either synchronous or asynchronous oocyte development (Somarakis et al. 2004). The 

frequency distributions of the oocyte sizes in this species show a continuous development 

from the smallest to the largest size groups indicating several batches of eggs at all stages 

of maturity (Seifali et al., 2012) . It could be concluded that in P. affinis, the production 

and extraction of ova from the ovary are a continuous process and that may spawn several 

times a year (Bless, 1994) . The gonads with advanced stages of maturity (Stages III and 

IV) seen throughout and different types of ovas present in the ovaries; indicated that the 

eggs are released in successive batches.  

This study is the first account of fecundity of P. affinis. Fecundity of P. affinis in the 

present study is correlated allometrically to individual mass, largely it is nearby a function 

of the cube of fish length. Fecundity in fishes is highly variable between individuals 

(Sadovy, 1996). The intermittent spawning of fish might compensate for lower fecundity 

(McBride & Thurman, 2003). However, in P. affinis the fecundity appears to be moderate. 

A reduction in population fecundity, might be due to the decreased average female size 

even if the sex ratio of the population is maintained (Sadovy, 1996). In most cases, 

fecundity increases with fish size as observed in the present study (Collins & Sedberry, 

1991; Wilson & Nieland, 1994; Cuellar et al., 1996; Collins et al., 1998). Hence, larger 

females are relatively more important for egg production than small ones. The size of the 

ova is possibly related to the amount of food that females can metabolize, integrate, and 

store in each egg (El-Agamy et al., 2004).Though, compared to most marine teleosts, and 

particularly other coral reef fishes, P. affinis has normal-sized egg, high spawning 

frequencies, and moderate fecundity. Differences in amount of fecundity have been 
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related with temperature, population density, availability of food, stress and other 

environmental influences (Lambert & Dutil, 2000; Lambert et al., 2003). However, for 

comparison, the available information for similar species was used. The results of present 

study followed the same trend like those of Zaki et al. (2004) for Diplodus vulgaris, 

Algamdi (2001) for Acanthopagrus bifasciatus, and El-Greisy (2000) for Diplodus sargus. 

Similar to P. affinis, an average sized female coral reef fish can produces about 100,000 

eggs (Takemura et al., 2004) and fecundity increased with increase in fish size (Degani, 

1990). 

The information of fecundity will be important to assess the spawner biomass of P. 

affinis. At present there is no restriction on the size of P. affinis to be landed or the fishing 

season. It is hoped that the results of the study would be helpful to formulate suitable 

management measures for sustainable harvest of the resource. 
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4. Diet 

4.1. Introduction  

Details of specific diet composition and feeding habits of targeted species are important 

factors in the development of fisheries management plans. Fish populations constitute an 

important component of the resources in aquatic environment. Until recently, dynamics of 

fish population have been studied as single species in isolation from the aquatic system in 

which they live. It was documented that the conventional approaches in the management of 

fisheries are incomplete and partially unsuccessful and hence there is need to move the 

single stock- and species-based management considerations to broader conservation of 

ecosystem-based management (Pauly et al., 2002; Garcia et al., 2003). As food 

partitioning allows coexisting fish species to exploit the available food supply with 

minimal competition, diet is considered an important feature that regulates the structure of 

fish communities (Gerking, 1994). 

The study of stomach contents provides insight on the feeding habits of fish. 

Removal of small pelagic fishes occupying lower trophic levels would reduce the food 

available to larger trophic levels species resulting in a decline of species composition at 

higher trophic levels (Wallace, 1999; Hartvig, 2011). This is extremely a worrisome 

situation that will lead to gradual removal of long-lived, larger species of fishes in the 

marine ecosystem (Pauly et al., 2002). Analysis of stomach-contents of fishes provides 

information on feeding habits of the fish species, which will vary markedly with food 

availability, depth, season and ground (Morato et al., 2003). The main factor of structuring 

benthic communities depends on predators that regulate the populations of species at lower 

trophic levels (Shears & Babcock, 2002). If any change in this balance occurs, for example 

overexploitation of predatory fish, it will cause population destabilization in lower levels 

through a process known as trophic cascade (Polis et al., 2000).  
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The survival, growth, and reproductive output of fish are dependent on the input of 

energy and nutrients obtained through feeding (Wootton, 1990). Therefore, essential 

dietary items for species that support valuable fisheries may need to be identified so that 

the trophic balance necessary for their survival can be maintained. In general, the features 

such as habitat, availability of food, competition and the physiology of fish influence the 

condition of a fish (Francis, 1997; Lee & Khan, 2000; Yaragina & Marshall, 2000). The 

condition status of fish can influence the health survival, reproduction, etc. of the 

population (Lambert & Dutil, 1997; Marshall & Frank, 1999; Shulman & Love, 1999). 

Insufficient energy reserves would reduce reproductive potential in some fishes by 

lowering quality of eggs and fecundity and larvae (Lambert & Dutil, 2000). Also, to 

construct trophic models of marine ecosystems for fisheries management, information on 

food composition, consumption rates, biomass and mortality of various groups of 

organisms is essential (Christenen & Pauly, 1993; Begg & Hopper, 1997). However, the 

seasonal gut content analyses of the fish would indicate the occurrence and abundance of 

the preferable food items in space and time. 

Sparids feed on both plant material and a wide range of benthic prey organisms 

(Havelange et al., 1997; Tancioni et al., 2003). The opportunistic feeding behavior in fish 

(Sarre et al., 2000; Mariani et al., 2002; Tancioni et al., 2003) is supported by the large 

mouth gape, and the presence of molariform teeth and canine teeth (Gomon et al., 1994; 

Linde et al., 2004). Sparids have different types of feeding habits. While Diplodus 

annularis is an omnivore (Matic-Skoko et al., 2007); P. acarne and P. borgaraves are 

attracted towards the abundant food item occurring in the region (Olaso et al., 2002); 

Pagrus pagrus is a carnivore feeding on epibenthic invertebrates, mainly decapods 

(Labropoulou et al., 1999); and Pterogymnus ianiarius is an opportunistic benthic predator 

(Booth & Buxton, 1997). On the other hand, study of stomach contents and feeding habits 

of P. affinis is very rare. The knowledge on the food and feeding of this species is needed 
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for an understanding of tropho-dynamics and food web in the Omani waters. However, no 

information is available on the feeding ecology of P. affinis from Oman. 

The purpose of this study was to investigate the feeding pattern of P. affinis based 

on the examination of gut contents and to explore whether their diets change with respect 

to size, sex, reproductive status, and season in the Omani waters. These data will be used 

to help develop trophic modeling and ecosystem-based fisheries management in Oman.  

 

4.2. Materials and methods 

A total of 1373 individuals of P. affinis were randomly collected monthly from artisanal 

fisherman from Al-Lakbi and Raysut landing sites (Fig. 1.1) from April 2005 and March 

2007 and, between April 2008 and March 2009. This species was exploited by different 

fishing techniques; trawler, gillnet, and longline, so the sampling procedure covering all 

those types. In the laboratory, each fish was measured to its total length and then the 

stomach was dissected out and kept in 70% ethanol. Stomach fullness was examined 

visually before preservation and assigned to a fullness category; empty, ¼ full, ½ full, ¾ 

full, or full (Al-Marzouqui et al., 2009). Full and ¾ full stomachs were considered as 

active feeding, ½ full stomach as moderate feeding, and ¼ full stomach was recorded as 

poor feeding intensity in fish. The preserved stomach contents were emptied into a petri-

dish observed under a binocular microscope and the food items assigned into the prey 

categories of fish (sardine and other fish), molluscs (cuttlefish and squid), crustacean (crab 

and shrimp), and/or others taxa (algae and unidentifiable material recorded as semidigested 

matter).  

Dietary importance of prey items were assessed by abundance (%N) and 

percentage of prey item occurrence (%O) (Mohan & Sankaran, 1988). Percentage 
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occurrence was defined as the frequency of fish that ingested a particular prey item 

regardless of prey frequency,   

 

   
  

∑   
   
   

     

where    is the number of fish in which item i occurs; whereas % abundance was based on 

the numerical abundance of all identified prey items, as (Total number of one genus 

organism /Total number of all organisms) x 100; whereas vacuity index (VI%) is as   

 

VI% = 
                           

                        
     

 

Variation in dietary composition was examined as a function of month, season, and 

fish length (23 and 23, the size at the maturity L50  23 cm) from pooled male and 

female data. To look at the trends in prey for each season and two groups (23 and 23), 

the frequency of individuals at each size and season was analyzed using a 2
 test of 

independence. Feeding intensity, (stomach fullness) in fish was examined in relation to 

month, size and maturity stages of females and males (Chapter 3), and tested using a 2
 

test of independence. Standardized residuals (the normalized difference between the 

observed and expected frequencies in each category) were applied to find out which of the 

categories had observed frequencies that differed from the expected frequencies. ANOVA 

test was carried out to explore the monthly variation in the composition of diet and feeding 

intensity in relation to different maturity stages. 
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4.3. Results 

4.3.1. General food composition of P. affinis 

From a total of 1373 stomachs examined, 833 (61%) contained food items. Eight prey 

groups were identified in stomach contents, approximately half (50.66%) of the ingested 

food items could not be identified and was classified as semidigested matter. Fish as a 

group dominated the identifiable prey items and were followed in abundance by molluscs 

(cuttlefish and squid) and crustaceans (crabs and shrimps), respectively (Table 4.1). The 

diet did not vary throughout the period of sampling for both sexes, except in food item 

category “other fish” (2
 = 11.65, df = 1,123, P=0.001). The diets of both sexes were 

almost identical, and a high degree of similarity existed in the food of females and males 

depending on the availability.  

Overall, sardines and other fish were the most frequently found prey items and 

contributed approximately 40% and 31%, respectively, of the identifiable prey items. In 

contrast, the other prey items were comparatively few and considered as secondary prey 

items with percentages ranging between 1.2% and 8.2%. In the present study, the 

abundance of different food categories recorded in the stomachs of P. affinis indicated that 

fishes (sardine and other fishes) are the preferable food items where their abundance was 

40.39 and 31.14, respectively. Of the total stomachs examined, 540 were empty (VI% = 

39.33). The percentage of fish with empty stomach was greatest (63.36%) in June and 

smallest (9.38%) in March. The percentage of fish with empty stomach were different (2
 

=4.14, df = 1,531, P = 0.042) between males (54.40%) and females (45.54%), throughout 

the period of the study and most obvious in May (2
 = 6.72, df = 1,41, P = 0.0095). 
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Table 4.1 Frequency of occurrence (%O) and abundance (%N), of P. affinis. 

 

Major taxa and dietary categories %O %N  

 

Fish     35.29  71.53 

          Sardine     19.93                          40.39 

        Other fish     15.37   31.14 

Molluscs       7.32   14.84  

        Cuttlefish       4.10     8.27  

        Squid       3.24     6.57   

        Others        0.72      1.46 

Crustacean       5.40   10.95 

        Crab       3.00     6.08  

        Shrimp       2.4     4.87 

        Other taxa       1.32     2.68 

        Algae       0.60     1.22 

Semidigested matter     50.66     NA     

Mean gut fullness     12.50     NA 
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4.3.2. Monthly variation in the percentage composition of diet 

Semidigested matter was the dominant item in the stomachs of P. affinis in most months, 

with the percentage contribution ranging between 17.24% (March) and 64.06% (August) 

(Fig. 4.1). Among the identifiable food items, sardines were present in all months and were 

the dominant prey item in April, June–September and November (up to 49.43%). Other 

fish also occurred in most of the months that ranged from 4% to 32.3.8%. In contrast, 

shrimps dominated the ingested prey item in May and January and squids dominated in 

March. While crab was recorded in January, February, and March, cuttlefish were 

encountered in lesser percentages between October and March (2% and 10%). The 

monthly variation in diet composition showed significant differences among months (F = 

16.46, df = 19,833, P  0.001). 

 

 

 

 

 

Figure 4.1 Monthly percentage occurrence of different prey items in P. affinis during 

2005–2009.  
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4.3.3. Food composition in relation season 

The relative frequency of different prey items differed among the four seasons (2
 = 106.1, 

df = 1,12, P = 0.001). Though sardines were the primary food item in all seasons, their 

occurrence was higher in autumn and summer. The frequency of occurrence of sardines 

was less in winter and spring; and greatest in summer. The “other fish” frequency in most 

season was observed equal to excepted frequency except in autumn when the observed was 

higher than the excepted frequencies. The frequency of crustaceans was greatest in winter 

and spring and formed a small frequency in summer and autumn. Other categories were of 

food items that differed significantly among the seasons (Fig. 4.2). 

 

 

 

 

Figure 4.2 Difference of food items in P. affinis according to seasons (2005–2009 

pooled). Arrows indicate the direction in which the observed frequencies differed from 

expected frequencies generated, under the assumption that a food item was impendent of 

seasons. 
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4.3.4. Feeding intensity in relation to months  

In P. affinis, 26.9% and 27.09% of the individuals fed actively during October and 

November and fish were encountered with 5.5% active feeding in December (Fig. 4.3). 

Moderate feeding was observed in all the months and the highest percentages were noted 

in April (30.3%) and January (40%). Poor feeding was recorded in more than 44.4% and 

46.7% of fish in December and March. Although, empty stomachs occurred in all the 

months, higher percentages were observed during June (74.2%) and September (51.8%). 

The variation in feeding intensity in relation to months showed significant differences 

among months (F = 13.04, df = 15,1092, P  0.001). 

 

 

 

 

 

Figure 4.3 Feeding intensity of P. affinis during different months 2005–2009 

(combined). 
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4.3.5. Food composition in relation to size of fish 

In the fish, there was significant difference between the prey items and size groups (2
 = 

40, df = 1,7, P  0.001). In small fish, the frequency of “other fish” items formed the 

important component of the diet (Fig. 4.4). Sardine was found very frequently in large fish 

(Fig. 4.4). The frequency of shrimp was similar in both small and large fishes. Squid was 

found to be higher (about 70.37%) in small group. The group size (23 cm) differed 

significantly with groups (23) (F = 5.31, df = 8,408, P = 0.021). In general, other fish and 

squid were found in higher frequencies and sardines in lower frequencies than the expected 

frequencies. In contrast, the diet of adult fish displayed higher than expected frequencies 

for sardine and lower observed frequencies for squid and other fish, indicating that the 

feeding habits differ among the body size groups.  

 

 

 

 

 

Figure 4.4 Variations in prey item frequency for juvenile and adult P. affinis. Data were 

pooled from 2005 to 2009. Arrows indicate the direction in which the observed frequencies 

differed from expected frequencies generated, under the assumption that a food item was 

impendent of size groups.  
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4.3.6. Feeding intensity in relation to maturity stages 

Active feeding was observed in higher number of individuals in stages I (Immature), II 

(Maturing 1), and V (Ripe) in males (F = 8.3, df = 29,537, P = 0.004) and stages III 

(Maturing 2) and spent individuals in females (F = 7.07, df = 29,532, P = 0.001) (Figs. 4.5 

and 4.6). Maturing fish of both sexes recorded active feeding of 12% and 20% in males 

and females, respectively. In stage III, 21.5% of female fed actively, in male active feeding 

was observed in 10.7% of individuals. Moderate feeding was noticed in more number of 

females than males in stages IV and V; whereas, poor feeding was common in stage IV 

males and females (33% and 40%, respectively). Empty stomachs occurred in all the stages 

with percentages ranging between 33% and 50.3% in males and 20% and 80% in females. 

The degree of fullness did not differ (2
 = 0.0233, df = 1,1072, P = 0.87) between males 

and females throughout the period of the study except in full stomach (2
 = 7.75, df = 

1,131, P = 0.0053). 
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Figure 4.5 Feeding intensity in relation to different maturity stages of male P. affinis. 

 

 

Figure 4.6 Feeding intensity in relation to different maturity stages of female P. affinis. 
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4.4. Discussion 

The distribution and fluctuation of the food organisms like many other factors also affect 

the shoaling behavior, migration, growth, condition, and even the fishery. In view of this 

importance, considerable attention has been paid on the subject by various authors. Thus, 

the study of food and feeding habits of fish around the year would help to understand the 

biology and fishery of the species. It has been documented that a correlation existed 

between availability of food of a particular species and occurrence of the fishery for the 

species (Al-Marzouqi et al., 2009). The dietary compositions described in this study 

suggest that P. affinis is an omnivore species with preference for carnivorous diet, which 

relies on fishes such as Sardinella spp., cephalopod, and benthic crustaceans such as 

shrimps and small crabs. The current study is the first investigation on the dietary 

composition of P. affinis. Though the family Sparidae includes both omnivorous and 

carnivorous species, the carnivores are categorized as general predators, feeding on a 

variety of prey organisms (Pita et al., 2002). Hence, the occurrence of different types of 

food in the gut of fish during different months might be due to the seasonal availability of 

prey items.  

Unidentified teleost remains were common in the stomachs of P. affinis in the 

present study. Partial digestion of prey items often made identification to species level 

impossible (Begg & Hopper, 1997). Occurrence of fish with empty stomach was common 

in all months and maturity stages for both sexes, which is probably caused by low intensity 

of feeding (Tolonen, 1997). The high monthly vacuity indices (%VI) observed in both 

sexes during June and September may be attributed to spawning (June–October) in P. 

affinis in the Arabian Sea. The intensity of feeding of P. affinis depends on its 

physiological conditions. Furthermore, the intensive feeding of adult throughout spawning 

months may be related to sexual maturity as reported for peacock wrasse (Ouannes-
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Ghorbel & Bouain, 2006). During winter fish feed intensively to enhance energy for gonad 

development (Ouannes-Ghorbel et al., 2002). In our study, the high proportion of empty 

stomachs found in fish might be attributed to the methods of fish capture. In passive 

fishing methods such as hook and lines, where the fish had fed to satiation have a declined 

response to the bait (LØkkeborg et al., 1995); i.e. the fish fed with full stomachs have a 

tendency not to eat the bait and caught and the fish with partial fullness or empty stomachs 

were caught. Occurrence of large number of empty guts in eel (Serajuddin & Ali, 2005), in 

rays (Morato et al., 2003) and in spotted mackerel (Begg & Hopper, 1997) were correlated 

with the methods of capture. The occurrence of empty stomachs may also be owing to 

digestion rates of the food eaten (Wetherbee et al., 1990).  

In the present study, the abundance indices of the different food items of P. affinis 

indicated that fish in particular sardines are the preferable food items for this species. Also, 

the high proportion of pelagic prey in the diet may owe to their preference for inshore 

waters. The fish belonging to sardine species formed the basic food item as observed in 

Dentex genus (Nguyen-Xuan & Wojciechowski, 1973). In general, changes in diet depend 

on the availability of types of food and variability of feeding activity connected with 

climate and breeding season (Pajuelo & Lorenzo, 1996; Lee et al., 2007). The seasonal 

availability of certain prey items may play an important role in attracting P. affinis into 

inshore waters where they become accessible to the artisanal fisheries. Fishing may have 

significant influence on the trophic ecology of fish similar to the environmental and 

ontogenetic aspects (Tyrrell, 2007). As fishing has not only a direct impact on fish 

populations, but also alters communities and benthic habitats (Rijnsdorp & Vingerhoed, 

2001), and accordingly change trophic relationships (Daskalov, 2002). 

The quantity and quality of food varied with two sizes of fish. Larger pandora ate 

mostly fish and cuttlefish; whereas, smaller individuals preferred mostly crustaceans and 

other fish. There is evidence that size difference in fish reflects changing food preference, 
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as well as the ability of larger individuals to capture larger animals (Labropoulou et al., 

1999). Paul et al. (1997) observed in Pacific sandfish that non-fish items contributed to 

24% in smaller sized fish compared to 5% in larger fish. Some features affect the prey 

variety and catching efficiency (Mérigoux & Ponton, 1998). Generally, the shift in food of 

fish influenced by the morphological characteristic such as body size and gape of mouth, 

(Winemiller, 1991; Wainwright & Richard, 1995 ); development of fins, swim bladder and 

muscles (Bone et al., 1996), and shape of body (Winemiller, 1991).  

In conclusion, stomach content analysis showed that the P. affinis is predominately 

a carnivorous feeder and major part of its diet being sardines and other fish (primary item). 

Other food items in the stomach contents were secondary prey items. The minor presence 

of algae may be accidental inclusion during capture of benthic prey. A higher percentage 

of empty stomachs were observed. The phenomenon of seasonal change in feeding P. 

affinis may be due to seasonal occurrence of food items. It would be interesting to study 

the alterations in digestion using time series data (Hanson & Chouinard, 2002), in relation 

to fishing effort.  
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5. Mortality, Yield and Spawning Biomass per Recruitment 

5.1. Introduction 

The length–weight relationship in exploited fish stocks is determined mainly to express the 

mathematical relationship between the two variables to enable calculation of length, if 

weight is known or vice-versa and to study the variation in individual weight of fish of a 

given length from the anticipated weight as an indication of condition and to use a & b 

values in the yield equation.  

Acquiring knowledge of population dynamics and stock status of fish dependents 

on reliable estimates of mortality. In an exploited fish stock, mortality occurs due to 

fishing (fishing mortality, F) and natural causes (natural mortality, M) such as old age, 

predation, disease, lack of food, and competition (Sparre & Venema, 1998; King, 1995). 

Usually, natural mortality rates are high in early life stages and decrease with increasing 

size and age (King, 1995; Lorenzen, 2006). As natural death is unobservable in fish, 

indirect methods are usually used to estimate natural mortality rates (Sigler, 1999) which 

are always subject to uncertainty (Vetter, 1988). 

Natural mortality of fish is often derived from empirical equations of Pauly (1980) 

using the surrounding water temperature, the growth coefficient K and the asymptotic 

length (L∞) in the von Bertalanffy growth calculation or Rikhter & Efanov (1976) using 

age at 50% maturity or Alagaraja (1984) based on longevity of fish (Sparre & Venema, 

1998). However, natural mortality values derived from empirical techniques often vary 

markedly (Burton, 2001) and hence care must be taken while using these estimates in 

population dynamics models (Vetter, 1988).  

 Fishing reduces the size of the population and mortality rate caused by fishing is 

directly influenced by level of fishing effort (Lorenzen, 2005). Excessive fishing effort can 

lower recruitment by preventing fish from reproductive events. Fishing and natural 
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mortalities (F & M) contributing to total mortality (Z) and emigration cause losses in the 

fish population. The annual instantaneous total mortality (Z), can be estimated by length- 

(Gayanilo & Pauly, 1997) or age- based assessments (Ricker, 1975).  

For effective fisheries managements knowledge of resilience of population and 

estimates of characteristics such as age and size at 50% maturity, spawning period, 

spawning frequency, fecundity, growth and mortality estimation (Quinn & Deriso, 1999). 

The above parameters are useful for stock assessment models to estimate maximum 

sustainable yield and the stock levels that remain above a selected threshold limit such as 

20% virgin biomass (Mace, 1994).  

Analyses of yield-per-recruit (Y/R) and spawning stock biomass-per-recruit 

(SSB/R) help to assess suitable yield of a species by modelling specific biological traits of 

the species (Thompson & Bell, 1934; Ricker, 1945, 1958, 1975; Beverton & Holt, 1957). 

Simple age-structured population models form the basis of numerous stock assessments, 

where fisheries catch data are not collected, insufficient, or questionable (Griffiths, 1997; 

Haddon, 2001). The models incorporate interplay between somatic growth, age-specific 

recruitment and vulnerability to capture, and the probability of death due to natural and 

fishing-related factors. Separate per-recruit models are favored for their independence of 

catch statistics, numerical simplicity (Chen & Gordon, 1997) and their ability to integrate 

age-specific gear selectivity in estimating Biological Reference Points (BRPs) (Caddy & 

Mahon, 1995). From the yield per-recruit perspective, Fmax and F0.1 are the two commonly 

applied BRPs based on fishing mortality that ensure sustainable long-term yields (Clark, 

1993; Punt, 1993). Unfortunately, the Fmax approach maximizes Y/R without taking into 

consideration any reproductive information to ensure sufficient future recruitment (Clark, 

1993) and leads to stock decline (Hilborn & Walters, 1992), so the use of F0.1 approach is 

more governor (Punt, 1993; Clark, 1993). In fish populations recruitment patterns vary 

considerably due to protracted age structures where mature fish spawn only during 
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favorable conditions for recruitment (Jones, 1991). Therefore, better understanding of the 

relationship between spawner abundance and subsequent recruitments is important for 

management of fisheries (Myers, 2001). The spawner biomass-per-recruit (SBR) model is 

commonly used for BRP recommendations (Butterworth et al., 1989; Griffiths, 1997). In a 

spawner biomass BRP (FSB(x)), the fishing mortality at which spawner biomass-per-recruit 

lies between 25% and 50% of the unfished level (Booth & Buxton, 1997) and overfishing 

may occur when the SBR drops to less than 20–30% of the unfished level (Mace, 1994).  

The present study aimed to generate the input parameters required for the 

estimation of mortality in the P. affinis population based on age structure characterization 

and incorporating them with the biological traits of the species for age-based stock 

assessment. As information on catch-at-age data is lacking, per-recruit analysis was 

undertaken to evaluate the fishery status of P. affinis. The results of the study would help 

recommend suitable management strategy for sustainable fisheries.  

 

5.2. Materials and methods 

The parameters of length and weight relationships were calculated from randomly selected 

fish sample to measure the condition of the fish. The relationship between total length (TL) 

and total (TW) was calculated as 

 

              

where W is the weight (g), L the total length (cm) and a and b constants which are obtained 

from least-squares method. ANCOVA test was used to find out the significant difference, 

if any, between the slopes (b) and intercepts (a) of males and females. 

  Instantaneous annual total mortality rates (Z) of P. affinis were assessed using 

numbers-at-age data for males, females and sexes combined (Chpater 2) using the 

baLW 
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semilogarithmic regression method (Ricker, 1975). By plotting age (t) against natural 

logarithm of the number of fish belonging to that age (LnNt), the resulting straight line has 

a slope equal to -Z ( Zb  ). The Z-value was evaluted from the fully recruited age group 

and upward. The Small fish were excluded from the calculation because they were not 

fully contribute to the fishery.  

The instantaneous natural mortality rates (M) for males, females, and sexes combined were 

estimated using the following empirical formulae:  

Rikhter & Efanov (1976):  

Pauly (1980):         

Hoenig (1983):   

Alagaraja (1984):       

 

where L is the asymptotic length, K the growth coefficient, T the mean annual seawater 

temperature (C), tmax the maximum age, and tm50% the age at 50% maturity. The mean 

annual seawater temperature of 23C (Morrison et al., 1998; McIIwain et al., 2006 and this 

study) was used in Pauly‟s (1980) equation. The growth parameters ( L  and K ) were 

obtained from the age and growth study (Chapter 2). The parameter maxt  was equal to 9 

years which was the maximum age recorded in this study (Chapter 2).  

The instantaneous fishing mortality (F) was estimated by subtracting the natural mortality 

rate from the total mortality rate as:  

                                                       MZF            

 The exploitation rate (E) was analysed from the ratio F/Z (Gulland, 1971). Length 

at 50% capture ( cL ) was estimated from the cumulative percentage length–frequency data. 

)ln(463.0)ln(6543.0)ln(279.00152.0)ln( TKLM  

)ln(982.044.1)ln( maxtM 

maxtM /)01.0ln(

155.0))/(52.1( 72.0

50%m  tM
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Selectivity curves were fitted with a logistic function to the plot of proportion of capture 

against size, from which values of parameter ( cL ). The logistic equation used was: 

 

 

  

where P  is the proportion of capture in length class L and r  the width of the ogive. 

Spawning stock biomass-per-recruit (SBR) and yield per recruit (Y/R) were 

calculated using different values of F (0 to 4 y
1

). SBR (in g) was calculated using the 

equation: 





max

)())(exp(
t

0t

t

b

tt GLatMFS
R

SB
SBR  

 

where SB is the total spawner biomass (in g), R the number of recruits and was set to 1, F 

the fishing mortality rate, M the natural mortality rate, a and b the length–weight 

relationship constants of fish, Lt the predicted von Bertalanffy mean length-at-age t, tmax 

the maximum observed age in the fishery (year), St the gear selectivity at age t which is 

also assumed to be knife-edge selection as  

  
{

     where  tc= the age at 50% capture. 

Gt the fraction of mature fish at age t is 
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{

     where  tm = the age at 50% maturity.  

Y/R was calculated from the following equation: 
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where Wt is the total weight of fish estimated from the length–weight relationship. Dt is 

discarding and tR age at recruitment 

 

   

 

where Pt is the proportion of mature females of age t, gt the proportion of females of age t, 

and et the egg production of fish of age t. 

 To test the sensitivity of the model to M, three different values of natural mortality 

(estimated M ±10% of this value) were used to produce three Y/R, SB/R, and egg 

production curves. We calculated BRPs (Thompson & Bell, 1934; Clark, 1991) for P. 

affinis based on spawning biomass-per-recruit (F20% and F40%) and Y/R (F0.1 and FMax) to 

determine the current status of the P. affinis resource as well as to evaluate the 

effectiveness of the different values of natural mortality (M). FMax is the fishing mortality 

at which maximum Y/R is obtained.  
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5.3. Results 

The length–weight relationships of males and females are shown in Table 5.1. The values 

“b” obtained were close to 3 (Table 5.1). Arabian pandora female and male in Arabian Sea 

shown negative allometry growth, and when all fish individuals were combined together, 

negative allometry growth of weight with length was noted by applied the t-test (-0.1174). 

ANCOVA revealed no significant difference in the relationships between males and 

females (F = 0.120, df = 1, 560, P  0.05). 

 

 

Table 5.1 Length–weight relationship of P. affinis. 

                       
                         

a                        b                          N                         R
2
                                                                                                                               

  Males                           0.0174                2.953                  279                   0.968 

  Females                       0.0165                2.97                    283                   0.966 

  All                               0.0173                2.954                  562                   0.967 

 

 

The minimum size caught was 13 cm and the selectivity analysis indicated that 

50% of Arabian pandora were caught at a total length of 19.8 cm and the selectivity range 

was 8.2 cm (19.8–28 cm) (Fig. 5.1). This length is corresponding to an age of about 2.48 

years using the von Bertalanffy (1934) equation.  Whereas the size at which 100% of fish 

were fully taken on to the fishery was 28 cm (TL). 
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Figure 5.1 Selectivity curve for P. affinis in the Arabian Sea showing the mean size at 

50% capture.  

 

 

Total mortality rates of males, females and sexes combined P. affinis are shown in 

Fig. 5.2. The Z-value estimated for males, females and pooled sexes was found to be 

0.9616, 0.9191 and 0.9363 y
1

, respectively. The correlation coefficient values were high 

indicating the good fitting of the regression (Fig. 5.2). The total mortality rate (Z) of males 

was higher than that of females. The difference between sexes may be due to that males 

were more vulnerable to the fishery than females of the same size. 
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Figure 5.2 Age-based catch curves for female, male, and sexes combined for P. affinis. 

Black data points indicate the data selected for mortality estimation by linear regression 

analysis. 
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Estimates of M varied substantially and depended on the method used. Natural 

mortality calculated for P. affinis as well as the estimated longevity of sexes combined data 

are given in Table 5.2. Pauly‟s (1980) method gave the highest M-value, while the 

estimated M from Hoenig‟s (1983) and Rikhter & Efanov (1976) was the same (0.488). 

Although, Alagaraja‟s (1984) equation gave the estimate of longevity as predicted in the 

aging study (Chapter 2), the value estimated by Hoenig‟s (1983) technique was selected 

for molding as the value was similar to Rikhter & Efanov (1976). 

 

 

Table 5.2 Different natural mortality rates (M) according to the different equations for P. 

affinis in the Arabian Sea   

                                                            

      Method                                                                           M (y
1

)                                                                                          

                                                           Male             Female            Combined          Te 

 Rikhter and Efanov (1976)             0.449                 0.514                0.488                9.6 

 Pauly (1980) (23C)                        0.641                 0.650               0.646                7.13 

 Hoenig (1983)                                 0.488                 0.488               0.488                 9.4 

 Alagaraja (1984)                              0.512                 0.512               0.512                8.99  

  

Te  = longevity. 

 

 

Using the resultant Z and M values, the fishing mortality (F) was estimated as 

0.448 y
1

 and the exploitation (E) rate was computed as 0.4788 y
1

.  

The parameters used for a per-recruit analysis (Beverton & Holt, 1957) are given in 

Table 5.3. At the current fishing mortality (Fcurr), the spawning biomass-per-recruit (SBR) 

was at 58.02% when correlated to a state of no fishing (Fig. 5.3). The spawner biomass and 

egg per recruit decreased with increasing of F, particularly at 10% of M. The 

precautionary reference point, when fishing mortality leaving 20% of the virgin egg per 

recruit, may result in recruitment as overfishing exceeded for three values of natural 
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mortality (M) at the current fishing mortality. BRPs (F20% = 1.33 y
1

 and Fmax = 2.6 y
1

) 

for P. affinis from spawning biomass-per-recruit and Y/R estimations were quite high due 

to high natural mortality and recruitment to the fishery.  

The Y/R analysis was estimated to show whether the present fisheries are exploited 

near the optimum level of fishing mortality. This analysis (Fig. 5.4) assumed from base 

case and the size-at-first capture (Lc = 19.8 cm) showed that the maximum Y/R at M = 

0.488 y
1

 was obtained at Fmax = 2.6 y
1

, while the value of F0.1 was 0.572 y
1

. For the 

three cases (base case, 10% and 10% of M), the Y/R curves increase to Fmax and the 

estimates for F0.1 were quite convergent to current fishing mortality for all the three cases 

(0.57, 0.51, and 0.63 y
1

, respectively) (Fig. 5.4). While, the Y/R suggested a maximum 

yield for 10% of (M) at Fmax equal to 1.89 y
1

 ,  for 10% of (M), the maximum Y/R was 

obtained at an F-value of 3.50 y
1

. The curves (Fig. 5.4) also show that Y/R was at about 

F0.1 with present exploitation rate and size of 50% capture. Hence, further rise in the 

exploitation rate retaining the current size-selective features of gear (i.e., Lc constant) 

would not markedly alter the relative yield. Figure 5.5 shows g the response of Y/R to 

different levels of natural mortality (M) and size-at-50% capture (Lc). The response 

isopleths showed that by increasing fishing mortality higher yield could be attained. At M 

= 0.4, the peak yield-per-recruit corresponded to Lc = 23–27 cm, which was higher than the 

current Lc =19.8 cm. At M-value of 0.5, the yield decreased even with increased F-values. 

To evaluate the suitability of length-at-first capture for P. affinis fishery, the size (L 

= 23 cm) at which Y/R was maximum was used. The result showed that a higher Y/R 

could be obtained (Fig. 5.6), but it is understandable that the rise in Y/R related with an 

increase in the size-at-50% capture was anticipated to happen at high rates of exploitation 

at which the outstanding biomass would be dropped to very low level. Therefore, the (Lc = 
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19.8) size of fish at first capture is optimum exploitation to maintain stock biomass. The 

present level of E = 0.4788 is close to that giving a YPR of F0.1 = 0.572.  

 

 

 

Table 5.3 Parameters of P. affinis in the Arabian Sea that are used in the per-recruit 

analysis 

                Parameters                          
                     

Values                                                                                                                                                                                                                                                       

(1) Growth                   

 L∞                                                                       36.05752 cm 

 K                                                   0.264 y
1

 

 t0                                                                          0.52528 y
1

 

(2)  ln(W-L) 

a                                                  4.05604                    

b                                                    2.95492                     

                  (3) Selectivity 

                              m                                                   0.668 

                              Lc                                                                        19.8 cm 

            tc                                                    2.48 y 

                  (4) Discarding 

                                 d1                                                    0 

                                 d50                                                   0    

(4) Mortality     

                           Fcurr                                              0.4483 y
1

 

                           M                                                 0.4879 y
1

 

      10% M                                      0.4391 y
1

 

     10% M                                       0.537 y
1

 

(5) Fecundity  

       a                                                 0.0001 

       b                                                 6.33                              

  (6) Maturity                                

      m                                                 0.6 

      L50                                              22.1 cm      

      tm                                                 3.15 y 

      tmax                                               9 y 
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Figure 5.3 Spawning biomass-per-recruit curves for P. affinis in the Arabian Sea using 

different natural mortality rates generated from biological sampling. The dotted lines 

indicate Fcurr, F40% and F20%. Reference point; where F40% and F20 = the fishing mortality 

rate at which spawning biomass-per-recruit is reduced by 40% or 20% of unfished level. 
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Figure 5.4 Yield-per-recruit curves for P. affinis in the Arabian Sea using different 

natural mortality rates. The dotted lines show Fcurr, F0.1 and Fmax.  
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Figure 5.5 Yield-per-recruit isopleths for mean size at capture Lc = 15–27 cm and natural 

mortality M = 0.4–0.5 (untis: Y/R in g, F in years).  
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Figure 5.6 Yield-per-recruit curve for P. affinis in the Arabian Sea coast using different 

fishing mortality rates. The dotted line is Fcurr and curves show the effect of increasing the 

mean size-at-first capture.  
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5.4 Discussion 

Most fish species tend to change shape as they grow (Basimi & Grove, 1985). A 

fundamental tool for studying morphological variations and life history patterns in many 

fish species and fish population is finding the relationship between the length–weight 

(Gonçalves et al., 1997; Santos et al., 2002). The exponential b in the length–weight 

relationship of fish may be influenced by many factors such as sex, time of year, stage of 

maturity, food availability, feeding rate, and environmental conditions (Gonçalves et al., 

1997; Seisay, 2001; Santos et al., 2002). Also, the value of the coefficient b for a species 

varies between stocks and between areas (Andrade & Compos, 2002). The length–weight 

parameters estimated in this study for males, females and combined sexes of P. affinis 

were negative allometry (b3). However, variations in length–weight relationships did not 

indicate the influence of season or time of the year in several species of fish, however they 

represented as mean annual values (Santos et al., 2002). Similarly, no evidence could 

support that length–weight relationships are affected by reproductive activity (Andrade & 

Compos, 2002).  

To predict the long-term impact of fishery on stocks and, relationship between the 

number of recruits and the abundance of spawners, the fishery models are applied (Hilborn 

& Walters, 1992; Quinn & Deriso, 1999; Haddon, 2001). The mortality estimates are 

important input parameters for applying the analytical models. In the present study, the 

empirical equations used for estimating M, may deviate in individual species substantially 

from the normal pattern (Grandcourtet al., 2006). The estimate of M (0.488 y
1

) in P. 

affinis differs from the related species A. spinifer (M = 0.374) (Al-Mamary, 2006) and (M 

= 0.573) (Grandcourtet al., 2004). Due to high water temperature in the Arabian Sea the 

M-value would be comparatively higher. The suggested target F0.1 and F40% values appear 

to be appropriate BRPs for current sustainable fisheries management. The current fishing 
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mortality rate (F = 0.448 y
1

) was lower than F0.1 (0.572 y
1

) and FSB40% (0.537 y
1

). In an 

optimally exploited stock, fishing mortality would be equal to natural mortality, with an 

exploitation rate of (E) 0.5 y 
1

 (Gulland 1971). 

The fish stock assessment estimates are consequently used in fisheries management 

for reviewing different fishing options (Lassen & Medley, 2001). The status of the P. 

affinis stock revealed that it was fully fished with the current fishing mortality proximal to 

the F0.1 and F40% BRPs. Several authors have suggested Target Reference Points (TRPs) of 

marine species based on SBR and egg-per-recruit models (Butterworth et al., 1989; Booth 

& Buxton, 1997; Griffths, 1997). Under data deficient situation on surplus production 

function and spawners–biomass–recruitment relationships, the TRPs appear to be 

dependable tool to determine the fishing mortality rate at which relatively high yield can 

be obtained with lower risks (Clark, 1991; Punt, 1993). The fish yield is a function of the 

annual level of recruitment and the latter is highly affected by the environmental 

conditions. The analysis of Y/R has the limitation in considering that there is no relation 

between the size of the SSB and subsequence recruitment for a range of fishing mortality 

rates (Buxton, 1992). Hence, this is the drawback in fast-growing tropical species where 

the rates natural mortality is high (Gayanilo & Pauly, 1997). Per-recruit models is 

advantageous to develop management strategy as it allows to evaluate the response of yield 

to the two fundamental management measure such as the fishing mortality and age at 50% 

selectivity. However, the results indicated that a rise in the size-at-first capture would 

increase the Y/R (Lmax), but with little reduction in yield and a slight increase in SSB at 

current level of exploitation. Furthermore, the maximum yield per recruit at the current 

size of first capture and M value was achieved at high levels of fishing mortality. Those 

levels were not acceptable from the management point of view as it affect the SSB which 

correspondingly affect the recruitment. Generally in the present study per-recruit model 
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responded well to changes in size-at-first capture of P. affinis similar to several reef fishes 

and sparids (Smale & Punt, 1991; Buxton, 1992; Punt et al., 1993; Grandcourt et al., 

2004). 

The stock of P. affinis in the Arabian Sea is optimally exploited at present with 

sufficient spawning biomass for recruitment. The reproductive potential (fecundity – 

Chapter 3) of P. affinis females provides evidence of a stock effect on recruitment over 

long time scales. This suggests that the growth, condition and abundance of spawners act 

in combination for reproduction and recruitment potential of the stock. Booth & Buxton 

(1997) suggested that such species are vulnerable to growth overfishing and stock 

reduction. The current fishing mortality (0.488 y
1

) is close to the target fishing mortality 

(F0.1), and hence the current fishing effort needs to be sustained. 

In conclusion, the present study shows that the current fishing mortality is slightly 

lesser than the natural mortality. As the resource is optimally exploited, there is no scope 

for further increase in fishing effort for the fishery of P. affinis in the Arabian Sea. The 

spawning stock-recruitment relationship of this species needs be established, as well as the 

critical areas such as nursery and spawning grounds. Further, it is necessary to construct a 

data base with reliable fishery statistics enabling stock assessment of higher precision. 
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6. General discussion  

It is acknowledged that the fishing patterns like environmental and climatic conditions, 

have an influence on the annual yields of different fish species. Therefore, the key issues in 

fisheries management are to estimate the level of fishing effort that causes optimum fishing 

mortality coefficient and the average size at capture at which maximum sustainable yield is 

obtained. Thus, the biological characteristics and population parameters of P. affinis 

estimated in the this study would help to formulate suitable strategies for effective 

management of that fishery in the Arabian Sea. 

Use of rings on the otoliths of the fish as the seasonal marks is well known (Hyndes 

et al., 1992; Campana, 2001; Joyeux et al., 2001; Grandcourt et al., 2004; Brouder, 2005). 

Furthermore, as there is a direct relationship between fish age and otolith weight (Metin & 

Ilkyaz, 2008), the weight of otolith is used as a reliable predictor of fish age (Cubillos et 

al., 2001; Pilling & Halls, 2003; Pino et al., 2004; Lou et al., 2005). This phenomenon was 

utilized in the this study to predict the age of P. affinis. The reliability of age determination 

of P. affinis is presently recognized by the increase in size of fish accompanied by increase 

in the weight of otoliths, that is the otolith weight of larger fish is heavier than those of 

smaller ones. The close approximation between the calculated and observed lengths in any 

age group is an additional evidence of the validity of the rings as true annual marks. 

The difficulty of reading rings in the otoliths, owing to in distinctive seasonality in 

tropical regions (Sparre & Venema, 1998) was overcome in the present study by using thin 

otolith sections. Fowler (1995) indicated that the evidence of validation of timing and 

periodicity of ring formation on otoliths have disproved the belief that no annuli are 

formed on the tropical fishes. The otoliths of P. affinis in this study were found to 

comprise of one opaque zone and one translucent zone that formed annually (Chapter 2) 

and the time of annulus formation determined by the marginal increment analysis of 
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otoliths indicated that low increment was recorded in September. A relationship between 

the type of circuli and seasonal growth was existed (Wootton, 1998), where narrow bands 

of circuli have been found during slow growing period and the broader bands of criculi 

have been observed during the period of fast growth. The formation of both translucent and 

opaque zones was consistence each year and highly correlated to the seasonal variations in 

water temperature and the monsoon season which associated upwelling in the Arabian Sea. 

The nutrients in the upwelled water stimulate phytoplankton growth and secondary 

production (Luo et al., 2000). This increased food availability during the postmonsoon 

months triggered increased growth rate which was reflected in the opaque zone formation. 

The formation of these zones is also related to other factors such as, photoperiod and 

reproduction (Panella, 1980; Manickchand-Heileman & Phillip, 2000).  

Growth rate in the first year in males and females of P. affinis were higher. Males 

attained a total length of 17.195 ± 1.8 cm, while females reached a total length of 16.82 ± 

1.73 cm at the end of 1 year. However, the growth rates decreased gradually with further 

increase in age. Similarly, in vermilion snapper, the growth increment was very high in the 

first year that gradually decreased in the following years (Hood & Johnson, 1999). Besides 

gonadal maturity in P. affinis, factors like availability of prey, population biomass, etc. 

may also influence annual growth rate in fish (Daugherty & Sutton, 2005)].  

The VBG parameters (L∞, K, and t0) are the basic input data in various models used 

for managing and assessing the exploited fish any resources. The values of K, L∞, and t0 

obtained from different methods were close to one another (Chapter 2) and there is no 

significant difference for those values  between sexes (K = 0.261 for males and K = 0.268 

for females). The age–length key (Appendix A) indicated that the maximum age of P. 

affinis was 9 years for both sexes and age groups 3 and 4 were the most abundant ones in 

the commercial catch. 
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Investigation on reproductive biology of fish helps for assessment of its potential 

for harvest. From this study the reproductive dynamics of P. affinis in the Arabian Sea is 

estimated. Sex determination, sequence of variation in maturity stages, spawning period, 

age and size-at-50% sexual maturity, and fecundity are considered as the basic data 

required for knowing the general reproductive biology of an exploited fish population. The 

ovaries and testes increase in size and weight progressively towards the spawning season. 

In the present study, the ripe males and females (stage V) attained their highest percentage 

occurrence during August–September (16.29–21.52% for males and 28.08–31.65% for 

females, respectively). The monthly gonado-somatic indices (GSI) of males and females of 

P. affinis showed highest values during August–September (2.78–4.023, 2.92–3.57, 2.63–

3.69 for males and 2.91–4.38, 3.49–4.32, 2.97–3.93 for females, respectively). However, 

the correlation between the developing of gonads in fishes and the temperature is proofed 

(Lambert et al., 2003). This was clear in the present study where the peak of spawning 

activity of P. affinis was associated with decrease in temperature (Chapter 3). HSI values 

in females followed a similar trend as GSI during the spawning season. The higher HSI in 

females might be due to the storage of vitellogenin in the liver, that is transported to the 

ovary as spawning requirements. The same finding was observed for several fish species 

where the increase in liver size coincides with vitellogenesis (Clearwater & Pankhurst, 

1994). The diameters of mature ova of P. affinis varied between 0.55 and 0.95 mm and the 

species is a fractional spawner in Oman.  

Seasonal reproductive cycle is common in tropical fishes (Robertson, 1991; 

Montgomery & Galzin, 1993; Sadovy, 1996). In P. affinis spawning occurred between 

April and October with a peak activity during in August & September. Histological 

observations also corroborated that P. affinis is asynchronous multiple spawner, exhibiting 

oocyte development during a relatively long spawning period in the Arabian Sea (April–

October). This might increase the possibility of recruitment in the stock for longer period 
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during the year. Fish typically reproduce during the period of lower water temperature and 

higher food availability (Shuter & Post, 1990; Scott & Pankhurst, 1992). Sadovy & 

Shapiro (1987) suggested that the presence of gonads containing both degenerating 

testicular tissue and proliferating ovarian tissue provide strong evidence of protandry. The 

gonads in few individuals of P. affinis (Chapter 3) contained predominantly the ovarian 

tissue besides a smaller portion of degenerating testicular tissue. 

In sparids, juveniles possess both testicular and ovarian tissue (Buxton & Garratt, 

1990). Therefore, when the juveniles of sparid species develop into either males or 

females, one type of gonadal tissue will proliferate, while the other type of gonadal tissue 

will be rudimentary or degenerate.  

Age and size-at-50% sexual maturity of fish differ not only from one species to 

another, but also in same species in different localities (Trippel et al., 1997; Cardinale & 

Modin, 1999). 

In several species of demersal fishes in the Arabian Sea, females mature earlier 

than males (McIIwain et al., 2006). The 50% maturity of males at 23.53 cm and females at 

22.1 cm indicted the age to be 3.534 and 3.145 years respectively. Hence, the stock needs 

protection till fourth year to spawn at least once.  

Fecundity estimation has its importance in the field of fish stock assessment. It 

helps to evaluate the reproductive potential of an exploited fish stock. Fecundity varies not 

only among different species (Sadovy, 1996); but also, differs in different populations a 

species due to changes in environmental conditions (Cardinale & Modin, 1999). Fecundity 

of P. affinis varied from 14,460 to 757,830 eggs in females of 21.5 and 34 cm, 

respectively. The total length-fecundity relationship of fishes is generally curvilinear 

(Gunderson et al., 1980). Hence, P. affinis exhibits a relatively protracted spawning period 

and a low maximum mean monthly GSI. This reduces the likelihood of all the eggs being 
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released during unfavorable environmental conditions and during heavy predation of eggs 

and larvae (Weddle & Burr, 1991; McEvoy & McEvoy, 1992).  

Investigation of food and feeding habits of fish is an important aspect of fish 

biology. It helps to understand the prey-predator relationship and to construct trophic 

models of marine ecosystem (Christenen & Pauly, 1993; Walters et al., 1997). Several 

species of demersal fishes in the Arabian sea chiefly feed on fish, crustaceans and molluscs 

(Al-Marzouqui et al., 2009). Similarly P. affinis was found to feed on small teleost fishes 

such as sardines and benthic crustaceans such as small crabs and shrimp. Sardine and other 

fishes accounted for 71.53% of the diet which indicated the piscivorous nature of P. affinis. 

The low feeding intensity recorded during winter started to increase through spring to 

summer which was the spawning period. In the present study, occurrence of fish with 

empty stomachs was frequent. The occurrence of such empty stomachs or stomach with 

little food has been linked to the high-energy diet (Al-Marzouqi, 2012 ). Where fish is an 

main food item in the diet, the daily consumption will be less, owing to higher calorific 

value of the diet and as such empty stomach will be common (Sreenivasan, 1979). The rate 

of digestion cause frequent occurrence of empty stomach in some fishes (Wetherbee et al., 

1990). The information gathered on food and feeding habits of P. affinis will contribute to 

ecosystem modeling of Arabian Sea fishes.  

The estimated annual total mortality coefficient (Z) of the males was lower (0.7906 

y
1

) than that of females (0.919 y
1

). The high estimates of natural mortality (0.488 y
1

) 

obtained for this species by Rikhter & Efanov (1976) and Hoenig (1983) techniques may 

be due to the environmental conditions and/or for the method used. Also, single species 

might deviate significantly from the normal mortality pattern (Grandcourt et al., 2006). 

Therefore, the estimate of M here matched favorably to that of 0.573 y
1

 for similar species 

(A. spinifer) in the Southern Arabian Gulf (Grandcourt et al., 2004). 
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The length–weight parameters (a & b) are essential for analytical models such as 

cohort or virtual population analysis (Andrade & Compos, 2002). If an individual grows 

isometrically, then b  3, that is increase in weight proceeds in proportion to the cube of 

the length. However, when b  3, growth in weight proceeds at a different rate (Pauly, 

1984) called allometric growth pattern (positive if b  3, negative if b  3) and most fish 

species tend to change body shape as they grow (Basimi & Grove, 1985). The length–

weight parameters estimated in this study for males, females and combined sexes of P. 

affinis were negative allometry (b3). However, the relation between weight and length is 

not fixed for whole year and due to variation in availability of food, rate of feeding, 

development of the gonad and spawning season (Santos et al., 2002).  

 

In the present study, analytical model (Beverton & Holt, 1957) was applied to 

determine the optimum level of fishing effort to obtain optimum yield of P. affinis. 

This model estimates the yield-per-recruit for a particular set of fishing mortality 

coefficients was applied to regulate the catch–size composition. This model was applied 

because its predominant and widely use in fisheries management (Quinn & Deriso, 1999; 

Restrepo, 1999). The study also investigated the biological reference point (F0.1 strategy) 

for the Arabian Sea pandora fishery. For management, the use of reference point F0.1 as a 

target reference point is more safe than Fmax (Deriso, 1987; Grabowski & Chen, 2004). The 

results indicated that at the present level of M (0.488 y
1

) and Lc (19.8 cm), the current 

fishing mortality coefficient (0.448) is about to which gives yield per recruit at F0.1 (0.572).  

To illustrate the influence of natural mortality coefficient (M) on the yield per 

recruit of P. affinis, the yield-per-recruit was computed by using different values of M. The 

results indicated that the yield-per-recruit increases as the natural mortality coefficient 

decreases. This means habitat conservation is necessary. The identified nursery grounds 



 117 

must be protected from all sources of pollutants as well as from illegal fishing. Russ et al. 

(1998) suggested that a closed season model can be introduced onto fishing grounds that 

have been heavily harvested or nursery grounds that need to be conserved from fishing at 

certain times of the year to enhance the fishery stock. Also, the closure of fishing would 

protect the area habitats of ground fish stocks, reduce juveniles loss and indirect influence 

of trawling, and also preserve potential spawning grounds and habitat complexity 

(Guenette et al., 1998). Such habitat protection would permit individual in a stock to grow 

to larger size and hence, overall fecundity might increase. 

Our results recommend an increase in the mesh size of trawl and gill nets to avoid 

growth overfishing and recruitment overfishing. Rising the size of the mesh is a technical 

measure of decreasing fishing mortality (Jennings et al., 2001). 

In unexploited fish stock, there would be high abundance of fish, low annual 

mortality, wide range of length–classes and age–classes and low growth rate (Goedde & 

Coble, 1981; Hsieh et al., 2006). The stock of P. affinis in the Arabian Sea is exploited at 

the optimum level at present. As excess effort in a fishery will change age and size 

structure of the populations (Stauffer et al., 1996; Jackson, 1999), any increase of effort for 

P. affinis fishery would affect the spawning stock biomass and recruitment.  

Development of management strategy for the rational exploitation of Arabian 

pandora stock in the Arabian sea requires, in addition to the results obtained (age, growth, 

mortality, and yield and spawning biomass), information on stock–recruitment 

relationship, maximum sustainable yield and the corresponding level of fishing effort.  As 

environmental conditions impact the various life-history stages of the exploited fish stock 

(Oʹbrine et al., 2003), information on the biotic and abiotic factors that affect the 

population dynamics and stock features of the Arabian pandora is necessary to delineate 

the factors that cause alterations in stock size, growth and condition of P. affinis in the 

Arabian Sea.  
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Appendix A 

Table 2.4 Age–length key used to construct age–frequency distribution for Arabian pandora from length distributions based on 

transverse sections of otoliths of fish sampled from Arabian Sea (2005–2008) 

 

 
All 

           

 
Age Class 

         

 

___________________________________________________________________________________________ 

 LF (cm) 0 1 2 3 4 5 6 7 8 9 Total 

12 1 

          
14 2 

          
16 3 17 11 3 

       
18 

 

16 20 3 

       
20 

 

5 35 23 

       
22 

 

3 35 39 10 2 

     
24 

  

13 66 53 5 

     
26 

  

1 36 52 36 8 

    
28 

   

2 51 35 18 1 

   
30 

    

27 64 18 1 

   
32 

     

53 34 5 2 

  
34 

     

10 20 16 4 1 

 
36 

     

2 5 15 6 2 

 
38 

      

2 4 3 2 

 
40 

       

1 

   

            
N 6 41 115 172 193 207 105 43 15 5 902 

Mean LF 

(cm) 13.9 16.82 19.6 22.36 25.44 28.59 30.43 33.83 34.36 35.36 

 
SD (cm) 1.2 1.8 2.3 2.07 2.14 2.45 2.62 2.3 1.7 1.01 

 
Std. Err. 0.48 0.28 0.21 0.16 0.15 0.17 0.26 0.35 0.45 0.45 
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Table 2.5 Age–length key used to construct age–frequency distribution for female of Arabian pandora from length distributions 

based on transverse sections of otoliths of fish sampled from Arabian Sea (2005–2008) 

 

 
Female 

           

            

 
Age Class 

         

 

___________________________________________________________________________________________ 

 LF (cm) 0 1 2 3 4 5 6 7 8 9 Total 

12 1 

          
14 1 

          
16 2 9 5 1 

       
18 

 

9 7 2 

       
20 

 

1 18 9 

       
22 

 

2 24 22 3 

      
24 

  

6 32 30 3 

     
26 

  

1 17 29 21 4 

    
28 

   

1 27 16 11 1 

   
30 

    

17 37 9 1 

   
32 

     

25 15 3 

   
34 

     

5 12 7 1 

  
36 

     

1 1 9 2 

  
38 

      

1 2 2 2 

 
40 

       

1 2 1 

 
N 2 21 61 84 106 108 53 24 7 3 469 

Mean LF 

(cm) 13.97 16.64 19.81 22.41 25.57 28.61 30.24 33.71 34.4 35.4 

 
SD (cm) 1.39 1.83 2.2 2 2.12 2.3 2.74 2.6 2.22 0.67 

 
Std. Err. 0.69 0.4 0.28 0.22 0.21 0.22 0.38 0.54 0.84 0.38 
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Table 2.6 Age–length key used to construct age–frequency distribution for male of Arabian pandora from length distributions based 

on transverse sections of otoliths of fish sampled from Arabian Sea (2005–2008) 

 
Male 

           

 
Age Class 

         

 

___________________________________________________________________________________________ 

 LF 

(cm) 0 1 2 3 4 5 6 7 8 9 Total 

12 

           
14 1 

          
16 

 

7 5 2 

       
18 

 

7 12 1 

       
20 

 

4 17 13 

       
22 

 

1 11 16 6 2 

     
24 

  

7 32 23 2 

     
26 

   

19 23 15 4 

    
28 

   

1 24 19 7 

    
30 

    

9 27 9 

    
32 

     

27 18 2 1 

  
34 

     

4 8 9 2 1 

 
36 

     

1 4 6 4 

  
38 

      

1 2 1 1 

 
40 

           
N 1 19 52 84 85 97 51 19 8 2 418 

Mean LF (cm) 17.13 19.4 22.33 25.3 28.53 30.62 33.96 34.33 35.25 

 
SD (cm) 

 

1.83 2.3 2.18 2.1 2.6 2.52 1.8 1.4 1.77 

 
Std.Err. 

 

   0.41 0.32 0.24 0.23 0.26 0.35 0.41 0.48 1.25 

 
 

 

 

 

 


