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PREAMBLE 

Throughout this thesis, the term phosphorus, or its chemical symbol ‘P’, will be used. With respect to P 

fertiliser, it is acknowledged that the correct term is phosphate fertilisers, however, the term phosphate will 

only be used where specific definition is required. However, before we get too bogged down with the details 

concerning P in pasture soils, let’s get to know the element a little.  

The word phosphorus is derived from the Greek words phos and phorus, which mean ‘light’ and 

‘bringing’, respectively. Phosphate was the thirteenth element to be discovered – and interestingly it hasn’t 

had a completely pleasant impact on the world. Ironically, during the Battle of Hamburg in World War II, 

thousands of P laden fire bombs engulfed the city, where P was first discovered by an alchemist in 1669. 

Phosphate was first sold as a medical treatment in the seventeenth century to increase intelligence, and was 

still available over the counter in the 1950s; however, this perceived benefit encouraged overdosing and in 

some cases led to death (Emsley, 2000). Perhaps the agriculture industry of today can learn from experiences 

of the past. 

 



 

ABSTRACT 

By definition, there is little or no pasture production benefit of plant available soil phosphorus (P) 

concentrations above agronomic optimum. Soil P concentrations above the agronomic optimum can result in 

unnecessarily elevated P concentrations in runoff that can adversely impact on water bodies. I hypothesised 

that a reduction in these excessive P concentrations in pasture soils may be achieved through applying 

fertiliser P at rates that are less than those required to maintain soil P concentrations. This thesis considered 

this hypothesis by utilising six established field sites which represented the broad range of soils used for 

pasture production in south eastern Australia (Burkitt et al., 2001; Burkitt et al., 2006). The soils at the sites 

encompassed a wide range of P buffering indices (PBI) (from 6–519) and textures (sand to clay loam). At each 

site a replicated trial consisting of four initial soil P (Pinit) concentrations combined with four on-going P 

fertiliser rates (Pfert) had been previously established, and soil samples taken from these trials formed the basis 

for much of the work presented in this thesis.  

The first experimental chapter (Chapter 2) reports on the changes in extractable P of these field soils 

which were sampled (0-10 cm) once every six months (biannually) for up to four and a half years. Phosphorus 

extractable in calcium chloride (CaCl2-P) was monitored using annual samples of the two lowest and the highest 

Pinit concentrations receiving the two lowest and the highest on-going Pfert rates. Olsen- and Colwell-extractable 

P concentrations were monitored biannually for all sixteen treatments. Excluding a soil with an extremely low 

PBI where soil P concentrations could not be increased, the study revealed decreases to be larger the greater 

the Pinit concentration, and the smaller the on-going rate of Pfert. The influence of Pfert on decreases in extractable 

soil P was not as large as that of Pinit concentration. The relative decrease in the more readily available CaCl2-P (-

57%) was greater than relative decreases in the agronomic measures, Olsen-P (-25%) and Colwell-P (-12%). 

When Pfert was withheld, soil P concentrations initially well above agronomic optimum remained above this level. 

This study advances the knowledge of P decline characteristics and will aid land managers in understanding 

likely changes in soil P concentrations when P fertiliser inputs are reduced. 

The second experimental chapter (Chapter 3) reports the development of a model to assist policy 

makers and land managers in setting realistic timeframes to return soils with excessive P to agronomic and/or 

environmental optimum. The model utilised the original field study’s (Chapter 2) CaCl2-P, Olsen-P and Colwell-

P dataset. The model assumed and confirmed the suitability of an exponential decay function and predicted 

the final P concentration for CaCl2-P, Olsen-P or Colwell-P as: Final P concentration = (previously measured P 

concentration + e x P fertiliser applied) exp (-d x years since P applied); where e is the increase in soil P for each 

unit of applied P and d is the decay constant representing how quickly the soil P moved from the labile to 

unavailable P pools. Using parameters derived across all the soils, where P exports ranged from 2.9 and 12.3 kg 

P/ha.yr, the model predicts it would take approximately 14 years (ranging from 11 to 20 years) for Olsen-P 

concentrations of between 34 and 44 mg/kg to decrease to an agronomic optimum of 17 mg/kg. An initial 

Olsen-P concentration of between 55 and 96 mg/kg would take approximately 32 years (ranging from 26 to 49 

years). Using soil specific parameters, the model also identified that some soils, i.e. those with high PBI, could 



 

be maintained at agronomic optimum P concentrations without the risk of environmental loss being above the 

specified CaCl2-P threshold of 0.25 mg/kg (0.05 mg/L). In contrast, soils with low P sorption capacity exceeded 

the environmental threshold even when soil P concentrations were below agronomic optimum i.e. Olsen-P 14-

17 mg/kg. Despite soil P decreases varying according to soil, a soil term was not incorporated into the model as 

there were only six soils studied. Further work incorporating more soils and various P exports is required to 

examine the influence of soil properties such as P sorption, and P export, on decreases in soil P. 

Chapter 4 reports on an investigation of the changes in further soil P pools as extractable P 

concentrations of selected treatments of Chapter 2 decreased. These treatments included the two lowest and 

the highest Pinit concentrations which received no on-going Pfert treatment. This research revealed that the 

majority of the P was not being exported or sorbed, but inorganic P (Pi) was being converted to organic P (Po). 

A longer period of monitoring is required to examine if the Po concentration will stabilise once a maximum Po 

concentration is approached. Relationships between the various P measures allowed us to calculate a degree 

of P sorption saturation (DPSS) for these soils. Degree of P sorption saturation was relatively low for the two 

lowest PBI soils when compared to higher PBI soils, despite CaCl2-P concentrations being some of the largest 

reported in the literature. Further correlation of DPSS with P losses from Australian soils is required as we 

suggest that the thresholds will vary for soils with extreme P sorption capacities. Alternative methods of 

calculating DPSS, using Australian measures such as P sorbed after the addition of 1000 mg P/kg, as measured 

as part of the PBI method, and Colwell-P, without the requirement of an alpha value, were proposed. 

Chapter 5 reports the findings of an incubation study and the longer-term effect of drying and 

rewetting soils. It was found that extremely low PBI soils with high organic matter (OM) contents may be at 

high risk of P loss to the surrounding environment. Chapter 5 showed that drying and rewetting the soils with 

the lowest PBI produced large increases in CaCl2-P and Olsen-P, hypothesised to be of microbial and OM origin. 

Thus, irrespective of fertiliser management, there are large risks of P loss from such soils, even when Olsen-P 

concentrations are below agronomic optimum. In comparison, P released from soils of higher PBI did not result 

in large increases in CaCl2-P, which remained below the threshold of environmental concern, probably due to 

chemical sorption. 

The large potential for P loss from soils of extremely low PBI was further highlighted in the final 

experimental chapter (Chapter 6). Chapter 6 compared extractable soil P concentrations of the lowest and 

highest PBI soils to a depth of 100 cm. It was revealed that soil with an extremely low PBI was susceptible to 

large P losses, with the majority of applied fertiliser P i.e. 81% (406 kg P/ha) not recovered in this deep 

sampling zone. Such a large potential loss of applied P brings into question whether such soils should be used 

for agricultural purposes, especially if soluble P fertiliser is applied, unless the soil’s ability to sorb P is firstly 

increased through the application of a suitable amendment. 

Until preferred soil P extractions and thresholds have been accepted for determining the risk of P loss 

according to soil P concentration and buffering capacity, the depletion of soil P concentrations of intensively 



 

grazed pastures to agronomic optimum must be encouraged. Only once agronomic optimum soil P 

concentrations are reached should the appropriate maintenance P fertiliser application, to account for soil 

sorption and P exported in produce, be supplied. However, the currently defined agronomic optimum i.e. 

Colwell-P of 23 mg/kg for PBI <15, may be too high for extremely low PBI soils. Phosphorus fertiliser 

management for low PBI soils requires more precision than higher PBI soils to limit environmental loss of P. 

Indeed, intensive grazing of extremely low PBI soils is questionable until their PBI’s are increased through 

application of amendments. 

 

 

 

 

 

 



 



 

GENERAL INTRODUCTION 

Pasture-based Australasian dairy production places great emphasis on soil P concentration. Since pasture is the 

cheapest feed source, fertiliser P is typically used to achieve and maintain soil P concentrations at or above 

that required for optimum pasture production. However, soil P concentrations above agronomic optimum 

(excessive soil P concentrations) are common in Australasian intensively grazed pasture soils. These excessive 

soil P concentrations are the result of P imports in fertilisers, effluent, and livestock fodder, exceeding removal 

in farm produce, runoff, and leaching. An Australia-wide study by Gourley et al., (2010) found that 80% of 1773 

pasture paddocks sampled from 37 conventional dairy farms had Olsen-P concentrations above agronomic 

optimum (14-17 mg/kg), with 50% of these paddocks having concentrations one and a half times, and 20% at 

least three times the agronomic optimum. 

Excessive soil P concentrations are not only an unnecessary economic expense and use of a finite 

resource of raw P (Cordell et al., 2009); they also pose a risk to the surrounding waters. Indeed, surface P 

runoff from intensively managed Australian dairy pasture soils has been reported to contain total-P 

concentrations in the range of 0.9–35.0 mg/L (Nash et al., 2000; Dougherty et al., 2008; Burkitt et al., 2010b). 

It has generally been accepted that the more P there is in a soil, the greater is the risk of environmental loss 

(Sharpley and Rekolainen, 1997; Burkitt et al., 2010b). 

Reducing excessive soil P concentrations through reducing or withholding P fertiliser could potentially 

reduce P losses to the environment. However, little is known of the decrease in so-called environmental and 

agronomic P concentrations when P fertiliser is reduced or withheld, especially for a range of initial P 

concentrations (Pinit), and soil P sorption properties, representative of intensive pasture grazing systems. 

It was the objective of this thesis to; 

1) describe the decrease in soil P concentrations of a range of PBI pasture soils, which each contained a 

range of Pinit concentrations, and received a range of on-going P fertiliser (Pfert) rates,  

2) develop a model to predict the final environmental and agronomic soil P concentrations according to Pinit 

concentration, rate of on-going P fertiliser, if supplied, and time since P fertiliser application had 

occurred, 

3) quantify the processes influencing the changes in environmental and agronomic P concentrations when P 

fertiliser is withheld, particularly the degree of P sorption saturation (DPSS),  

4) assess the magnitude and duration of changes in P pools after drying and rewetting (DRW) soils in order 

to understand how PBI affects the potential of DRW cycles to supply bio-available P pools, and  

5) assess the influence of soil texture and PBI on downward P movement by comparing P recovery from the 

surface 100 cm of two contrasting soils. 
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