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“It is not the strongest of the species that survive, not the most 
intelligent, but those who are the most adaptive to change.”  
 

— Charles Darwin —
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Abstract 

�

The Tasmanian southern rock lobster (Jasus edwardsii) 

fishery has a single Tasmania-wide management system despite 

large spatial variations in the biology (growth) and market traits 

(shell colour, body shape and live transport condition). This has 

created uneven distribution of harvest rates around the State 

where red, fast-growing, shallow-water lobsters are heavily 

targeted by fishers due to their high market demand, while pale, 

slow-growing, deep-water rock lobsters have a much lower rate 

of exploitation. In an attempt to improve yield, marketability and 

value of deep-water southern rock lobsters, translocation of 

lobsters between regions was examined as a supplementary 

management strategy for the Tasmanian rock lobster fishery. 

Adult deep-water lobsters were moved inshore to shallow-water 

reefs where changes to growth, market traits and body condition 

were monitored through recapture surveys.  

 

Red pigmentation in shell colour decreased with depth 

across southern Australia. Most of the catch is sold into Asian 

live markets where there is a preference for red lobsters. This 

market preference has lead to the price discounting of lobsters, 
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which was estimated at a total of AUS$6.67 million / year for the 

Tasmanian Rock Lobster Fishery. Morphological market traits of 

leg length and abdomen shape were also different between deep 

and shallow-water J. edwardsii populations and between the 

sexes in each population. Nutritional indicators of condition did 

not differ among adult deep-water, shallow-water and 

translocated male lobsters, however fatty acid profiles indicated 

dietary differences between deep and shallow-water lobsters. 

Haemolymph condition indices detected significant differences in 

the post-harvest condition between deep-water and shallow-

water lobsters.  

 

Translocating small, pale adult lobsters into a shallow 

water habitat resulted in a number of changes important to the 

yield and value of the fishery. Growth rates of translocated adult 

lobsters increased at their first moult in their new habitat, 

exceeding that of resident deep-water lobsters from the original 

site. Growth of translocated females exceeded resident shallow-

water females in the first year post-release. Translocation 

changed the pale colouration of deep-water lobsters into the 

bright red grade most sought after by the Asian market, however 

changes in morphology were only partial and may require several 

moults for a complete change in shape. Dietary fatty-acid 
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profiles of translocated lobsters matched those of the resident 

lobsters, while significant levels of essential omega-3 fatty acids 

in the muscle tissue of translocated lobsters suggest enhanced 

nutritional condition after translocation. The post-harvest 

condition of resident shallow-water lobsters and translocated 

lobsters were similar when recaptured 12 months later. �

 

Translocation could be an effective management tool to 

add value to the less marketable deep-water southern rock 

lobsters. These results on the magnitude and timing of 

improvements in market traits will now contribute towards the 

economic and biological evaluation of the feasibility of 

translocation as a fisheries enhancement strategy for the 

Tasmanian Rock Lobster Fishery. 
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�

1.1 Fisheries enhancement systems 
 
 

A decreasing trend in global catch rates and landings from 

capture fisheries have raised concerns about the capacity of wild 

harvest to supply the growing demand for fishery products 

(Garcia and Grainger 2005; Pauly et al. 2005). In response, 

capture fisheries and aquaculture sectors are expanding, 

restoring depleted stocks, and establishing enhancement 

programs to improve production and management of fishery 

resources (Caddy and Defeo 2003). Among the diverse strategies 

that are being implemented to achieve these objectives, there is 

an emerging field of fisheries enhancement systems, which 

combines the practice of releasing cultured organisms with 

harvest under the principals of wild fisheries (Lorenzen 2005).  

 

Enhancement initiatives are highly diverse and viewed to 

be intermediate between aquaculture and fisheries in terms of 

both technical and human control. The three widely adopted 

enhancement systems defined by Lorenzen (2008) and Bell et al 

(2008) are;  
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• Restocking – the release of cultured juveniles into a wild 

population to restore severely depleted spawning 

biomass to provide regular, substantial yields. 

• Stock enhancement – augments the natural supply of 

juveniles to overcome recruitment limitation.  

• Sea-ranching – the release of cultured juveniles into 

unenclosed coastal environments for harvest at a larger 

size in “put, grow and take” operations. There is no 

intention of allowing released juveniles to augment 

spawning biomass, as in restocking, or to strengthen 

year classes, as in stock enhancement. However, where 

the animals reach maturity before the desired harvest 

size, they will contribute to egg production.  

 

Within each of these broad enhancement systems, the 

designs of the operations vary to suit the biological or fishery 

characteristics of the target species. For instance, under specific 

circumstances the “put, grow and take” approach that defines 

sea ranching is slightly modified for enhancement operations 

where released animals are sourced from adults within the stock 

instead of hatchery reared juveniles. The use of adults instead of 

juveniles in enhancement fisheries systems is not uniquely 

defined, but falls under the broad category of translocation. 
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Translocation is the mediated movement of wild 

individuals or populations from one area with free release in 

another, in an attempt to establish, re-establish, or augment a 

population (IUCN 1987). Its applications in terrestrial systems 

range from conservation to pest management (Griffith et al. 

1989; Fischer and Lindenmayer 2000) and for the aquatic 

systems it has aided restocking, stock enhancement and sea 

ranching operations (Bell et al. 2005). Most recently, a similar 

term “managed relocation” (aka ‘assisted colonisation’ and 

‘assisted migration’) has been coined to describe the 

translocation of species to areas beyond their natural range to 

prevent their extinction from the effects of climate change (Sax et 

al. 2009; Schlaepfer et al. 2009). Thus the concept of 

translocation has many applications. 

 

Among the common themes across all applications of 

translocation, is the debate of their appropriate and responsible 

use. Translocation associated risks often parallel those for the 

release of cultured juveniles, and stem from the uncertainty 

surrounding the interaction between wild and released 

populations (e.g. genetic mixing, resource competition), the 

behaviour of released individuals in the new environment (e.g. 
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survival, movement) and the ecological impact from population 

manipulation (e.g. spread of disease, trophic interaction). From a 

conservation perspective, enhancement strategies are sometimes 

opted as a last resort (Griffith et al. 1989) and in the case of 

managed relocation, the risk of species extinction is too large to 

disregard the option altogether (Sax et al. 2009). From a fisheries 

management perspective, stakeholders may only favour the 

fisheries enhancement option if it outperforms alternative 

management measures or provide a wider range of benefits and 

economically feasible (Lorenzen 2008). A common agreement in 

all instances is that the decision to establish enhancement 

systems requires rigorous evaluation supported by 

comprehensive research.   

 

1.2 Background to management of the Tasmanian 
Rock Lobster Fishery  

 

Management of the southern rock lobster resource in 

Tasmania began with gear restrictions, minimum legal size limits 

and a prohibition on harvest of soft-shelled or ovigerous lobsters 

in the late 1880’s. Gear restrictions were later modified in the 

early 1900’s to allow the use of pots (traps), plus limited entry, 

restrictions on the total number of pots in use and closed 

seasons (Gardner et al. 2004). In 1998 an individual transferable 
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quota (ITQ) management system was introduced in response to 

declining catch rates. Under an ITQ system, licence-holders were 

given a defined access to a share of the resource. An annual 

finite catch limit provided better management and monitoring of 

the resource, and as a result, catch rates steadily increased and 

lobster stocks began rebuilding around the State. Ten years after 

the introduction of ITQ’s, the status of the fishery has 

significantly improved with an increase in state-wide egg 

production, legal biomass, catch rates and commercial revenue 

(Haddon and Gardner 2009) (Fig 1). 

 

 
Fig 1. Historical trends in estimated fishing effort (pot-lifts), 
estimated catch-rate (kg/pot-lift) and estimated legal-sized 
biomass. Since 1998 a steady increase in legal biomass with 
recovering catch rates. (Haddon and Gardner 2009) 
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The main impact of capping catch through ITQ’s was a 

shift in focus from maximising catch to optimising the value of 

the catch (Bradshaw et al. 2001). Fishers shifted fishing effort 

from offshore areas where the catch rate was high but the unit 

value was low, into inshore areas where the value of the catch 

was higher although catch rates were low (Frusher et al. 2003). 

Increased commercial fishing effort inshore is a product of 

market demand as fishers operating inshore harvest a higher 

valued product and have lower operational costs compared to 

fishers working on offshore grounds. 

 

1.3 Characteristics of Jasus edwardsii  

Biology, Market and Fishery 

 

The southern rock lobster, Jasus edwardsii has a wide 

distribution across southern Australasia in a range of depths (1 

– 200 m) and habitats (Booth 2006), although reportedly no 

genetic differentiations among spatial stocks (Ovenden et al. 

1992) due to its long larval phase (Bruce et al. 2000). In 

Australia J. edwardsii is the basis of 3 major commercial 

fisheries, in the states of South Australia, Victoria and 

Tasmania, with a gross value of exported product of AUS$134 

million in 2006 (Wood et al. 2007). Biological characteristics of J. 
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edwardsii are variable throughout its’ geographic range, 

particularly between deep and shallow-water populations. Two 

biological traits that significantly impact management of the 

commercial industry are growth rates (McGarvey et al. 1999) and 

size at onset of female sexual maturity (Gardner et al. 2006).  

 

In Tasmania, growth of J. edwardsii is faster in shallow 

water and in more northern latitudes (Fig 2). Deep-water females 

are slow-growing and in some areas they never reach the legal 

minimum length (LML) for harvesting, but since they reach 

sexual maturity at a smaller size they contribute significantly to 

the state-wide egg production (Punt and Kennedy 1997). 

Conversely in the north of the State, growth rates are so fast that 

females are often removed by the fishery before they reach 

sexual maturity and do not contribute to egg production. The 

use of a single size limit throughout Tasmania where the target 

species exhibits high spatial variation in demographic traits 

appears as an inefficient harvest strategy of the available 

resource.  
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Fig 2. Size (CL) frequency distribution of female J. edwardsii 
sampled from north (King Island), east (Schouten Island) and 
south (Maatsuyker Island) coast of Tasmania. The solid vertical 
line indicates the legal minimum size and arrows indicate the 
size at which 50% of the females are mature.  
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The majority of the southern rock lobster catch is exported 

live to China where it is popular among the sushi restaurant 

trade and during festivals and special occasions (Roberts 1994). 

The red shell colouration of southern rock lobsters is a highly 

regarded market trait by Asian consumers due to the cultural 

association of the colour red with luck, prosperity and happiness 

(Konosu and Yamaguchi 1994). However, J. edwardsii harvested 

from depths greater than 30 m have very pale shell colouration 

(McGarvey et al. 1999). In addition to shell colouration, body-

shape (leg length and abdomen shape), vitality and condition of 

lobster during live transport are also key market traits. The 

Asian market pays a higher premium for lobsters in a narrow 

size range (800 – 1500 g) without limb and carapace damage and 

which exhibit high vitality on arrival. Pale coloured, deep-water 

lobsters are generally sold at discounted prices or alternatively 

sold as cooked product on the domestic market. The price 

differential between deep-water pale lobsters and shallow-water 

red lobsters is variable and lowest during winter months when 

catch rates of all lobsters are low and market demand is high. 

So, in order to maximise their profits, some fishers adopted a 

fishing strategy which targets inshore areas until catch rates 

decline, then target offshore regions in winter to take advantage 

of higher market prices for pale lobsters (Frusher et al. 2003). 
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The interplay between the biological, market and fishery 

characteristics of J. edwardsii in Tasmania presents several 

management challenges, but also opportunities for improving 

yield, value and sustainability of the industry. 

 

1.4 Translocation as a  

fisheries enhancement strategy  

 

In response to the management issues surrounding spatial 

differences in egg production, ecosystems effects, marketing and 

yield, several options for spatial management are under 

consideration. For example, different regional minimum legal 

size limits may alter average harvest sizes so that they are better 

matched with regional growth rates and female size at maturity. 

This aims to increase egg production in northern regions and 

increase state-wide catch. But under this strategy, catches of 

extremely small and large lobsters and pale coloured lobsters 

would still fail to satisfy the Asian market demands and be sold 

at discounted prices, and so this option might improve the yield 

and sustainability but not maximise the value of the fishery. 

Other options include: increased quota allocation to direct effort 

to offshore deep-water regions, spatial closures, maximum size 

limits, and new market destinations. Some of these options 
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provide increased economic yield while others would increase 

egg production levels, however none could improve the value of 

the product. Thus these options have their own strengths and 

weaknesses as they effectively target one or a few objectives for 

improving a spatially heterogeneous fishery but fail to address 

others. 

 

Translocation is one option that when used as an 

enhancement strategy could deliver improvements in yield, value 

and sustainability. Sea ranching through multiple translocations 

would be an exclusively field-based operation where large 

numbers of adult deep-water lobsters would be removed from 

sites of low productivity in deep-water regions of the State and 

be released into areas of high productivity inshore. The success 

of this strategy depends on translocated deep-water lobsters 

surviving, and adopting the biological characteristics of the 

resident shallow-water lobsters. Translocating deep-water 

lobsters aims to enhance the inshore stocks by increasing 

productivity, catch rates and quality of yield. In achieving these 

objectives, the Tasmanian Rock Lobster Fishery may use 

translocation as a supplementary strategy in conjunction with 

existing ITQ controls, provided it relieves the spatial pressures 

addressed above and meets the following constraints: 
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management of risk of disease transfer and genetic mixing to 

acceptable levels; high survival rates of released animals; low 

immigration rates of released animals back to deep water 

habitats; translocated animals adopt the market traits of 

shallow-water lobsters; a neutral or positive impact of additions 

and removal of animals on the ecosystem; and economic 

feasibility.  

 

Invertebrate resources world-wide are coming under 

pressure as rising demand and prices for these generally high-

value species leads to their overexploitation (Caddy and Defeo 

2003). For Australian fishery resources in particular, there is a 

large gap in their management performance between their 

current use and their best use (Colquhoun and Archbold 2009) 

as illustrated by the Tasmanian southern rock lobster resource. 

Thus novel management initiatives are sometimes necessary to 

progress towards a better fishery performance. This thesis 

describes a 2-year experimental stage of a large-scale fishery 

enhancement experiment, with the specific objective of 

improving marketability and yield for the Tasmanian rock lobster 

industry. 
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1.5 Study Objectives and thesis structure 

 

The specific study aims of this thesis research were to: 

 

1) Quantify the spatial variation in the key market traits 

of shell colour, morphology, growth, physiological and 

nutritional condition between deep and shallow-water 

populations; and  

 

2) Evaluate changes to traits influencing yield and 

marketability of deep-water lobsters after translocation. 

 

Despite its commercial importance, the change in lobster 

colour with depth and throughout its range in the three 

commercial fishing states of South Australia, Victoria and 

Tasmania has not been comprehensively documented. In 

Chapter 2 I investigated the relationship between lobster colour 

and depth and how this varies between regions. This information 

was then incorporated with catch rate records in the years 

before and after the quota management change to estimate the 

economic impact of colour discounting on the Tasmanian Rock 

Lobster Industry. 
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While the key market traits of shell colour and body-shape 

are widely accepted to vary throughout its distribution, this 

information is largely anecdotal. In Chapter 3, quantitative 

measurements of shell colour and body-shape traits were taken 

from deep and shallow-water lobster populations from 

Tasmanian, South Australian and Victorian fishing grounds. 

This provided baseline information for comparisons of these 

traits in deep-water lobsters after translocation to determine 

whether translocated lobsters had adopted the traits of the 

resident shallow-water lobsters in Tasmania.  

 

Differences in market traits have been presumed to be 

related to nutritional differences between deep and shallow-

water populations. In Chapter 4, using lipid and fatty acids 

analyses I investigated the nutritional condition of shallow and 

deep-water populations and whether this altered after 

translocation.   

 

Differences in live transport condition between deep and 

shallow-water lobsters suggest differences in their physiological 

condition in response to stress. In Chapter 5, I assessed the 

post-capture condition of deep-water lobsters before and after 

translocation in comparison to shallow-water lobsters using 
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several haemolymph indices to determine how translocation may 

have altered the post-harvest condition of deep-water lobsters.  

 
Increase in yield through translocation requires 

translocated lobsters to increase their growth and adopt the 

growth rate of the resident population. Chapter 6 provides 

preliminary results of the short-term growth changes of deep-

water adult male and female lobsters translocated from a slow-

growth to a high-growth region.  

 

Practical application and research serves a key 

intermediate role for quantitative assessment of outcomes from 

fisheries enhancement strategies. Stakeholders evaluating the 

overall feasibility of translocation require quantitative data to 

measure success and model predictive scenarios. This thesis 

provides a detailed quantitative assessment of the morphological 

and physiological differences between regions of high and low 

lobster productivity and how these differences respond to 

population manipulation. This research is part of a broader 

investigation evaluating translocation aided sea-ranching as a 

suitable fisheries enhancement strategy to improve the yield, 

value and sustainability of the southern rock lobster fishery 

(Chapter7).
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Colour variation in the southern 

rock lobster Jasus edwardsii, and 
its economic impact on the 

commercial industry 
 

 

 

 

This chapter previously published as: 

 

Chandrapavan A, Gardner C, Linnane A, Hobday D (2009).  
Colour variation in the southern rock lobster Jasus edwardsii, 
and its economic impact on the commercial industry. New 
Zealand Journal of Marine and Freshwater Research 43: 537 – 
545.  
�
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Abstract 

Southern rock lobster Jasus edwardsii varies in shell 

coloration throughout southern Australia. Predominantly 

exported as a live product to Asian markets, price is influenced 

by colour with prices higher for dark red than paler coloured 

lobsters. This paper explores spatial and depth variation in shell 

colour for the Tasmanian, South Australian and Victorian 

Fisheries using catch sampling data. The proportion of red 

lobsters decreased with depth and prevalent in depths less than 

30 m, whereas paler coloured lobsters dominated the deeper 

depth ranges. The depth of transition where 50% of lobsters were 

classified as red showed a weak trend of increase with latitude 

from southern Tasmania to northern South Australia. Under 

quota management, lobster colour was a significant driver of 

fleet dynamics as fishers target areas of high price per unit. 

Consequently, catches of pale lobsters from deeper depths 

remain low despite the high catch rates in these areas. The 

colour price differential varies seasonally (higher in summer) so 

fishers increase supply of pale lobsters during winter. 

Discounting on colour equates to AUS$6.67 million/year for the 

Tasmanian Fishery alone, which indicates value from 

management or marketing research to reduce discounting.  

 



�

�

Chapter 2                                                           Economics of colour variation                           

�

19 
 

���� Introduction 

 

Southern rock lobster Jasus edwardsii (Hutton, 1985) are 

found throughout southern Australia and New Zealand and are 

fished across their distribution (Kailola et al. 1993). In Australia, 

the state-managed fisheries of Tasmania, South Australia and 

Victoria are managed using quota systems for the commercial 

sector with a gross value of exported product of AUS$134 million 

dollars in 2006 (Wood et al. 2007). These fisheries exploit a large 

depth range with catch taken from 1 to 250 m (main fishing 

range 1-140 m) (Booth 2006). Inshore populations of J. 

edwardsii are of a bright red colour and receive greater fishing 

effort by both the commercial and recreational sectors than 

lobsters caught from deeper depths that are of a paler coloration 

(Bryars and Geddes 2005). Commercially classed as 

“pale/brindle” and “white” lobsters, the exoskeletons of deep-

water lobsters are mosaics of red, orange, and yellow tones. 

Colour variation is one of the many spatial differences in the 

biology of this species, and market grading of lobsters according 

to colour is a common practice in lobster processing facilities in 

Australia (Bryars and Geddes 2005).  
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Red coloured lobsters are in high demand throughout the 

year, driven by the Chinese market that receives 90% of 

Australia’s exports (Wood et al. 2007). High demand is due to the 

cultural association of the colour red with happiness, luck and 

prosperity (Konosu and Yamaguchi 1994). Lobsters are displayed 

alive in restaurants so appearance and condition are also critical 

for this live market. In Australia, lobsters lacking uniform red 

coloration are often sold at discounted prices or sold into the 

local market for cooked product (Harrison 2004). Therefore, 

improving the price of pale coloured lobsters has been identified 

by the commercial industry as an opportunity for expanding 

value of the industry (Gardner and van Putten 2008a, b). Yet 

despite its commercial importance, information on the spatial 

distribution of colour categories and how they change and relate 

to depth has not been explored to date. This information is 

important in understanding seasonal fishing patterns and 

fishing effort particularly as it relates to the change in 

management system in 1998 when a shift in emphasis to quality 

of product occurred (Ford 2001). Thus data from fisheries 

independent surveys and commercial catch sampling were 

examined in this study to determine spatial and depth patterns 

in lobster colour.  The beach price differential that exists owing 

to colour grading was examined seasonally and the economic 
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impact of colour differences was estimated both before and after 

management change for the Tasmanian rock lobster industry.  

 

���� Materials and Methods 

 

2.2.1 Catch effort and colour data  

 

The Tasmanian Rock Lobster Fishery is managed as a 

single zone but because of demographic variation the fishery is 

divided into eight areas for stock assessment purposes 

(Semmens et al. 2006). The South Australian Rock Lobster 

Fishery is separated into two discrete fishing zones, Northern 

and Southern, and the Victorian Fishery is divided into Western 

and Eastern zones (Fig. 1) (Department of Primary Industries 

2003; Linnane et al. 2006). Colour, depth at capture, effort and 

location data were obtained through fisheries independent 

research catch sampling surveys and commercial catch sampling 

conducted by all three state fisheries for the period 1993–2006. 

Observers conducting these surveys in each of these regions 

recorded colour according to the three categories used by lobster 

processors: red, pale, and white, based on the intensity and 

distribution of the red pigmentation in the exoskeleton (Fig. 2). 
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Fig. 1 South-east region of Australia showing the fishing zone 
boundaries for the three fisheries: Northern Zone (NZ) and 
Southern Zone (SZ) of the South Australian Fishery, Western 
Zone (WZ) and Eastern Zone (EZ) of the Victorian Fishery, and 
the 8 stock assessment areas of the Tasmanian Fishery (Area 8 
spilt further into south and southwest regions). 

 

Colour varies in a continuum so this qualitative grading includes 

an unknown degree of observer variation. Using these data, the 

proportional change in the three lobster colour categories with 

depth was evaluated for each of the three state fisheries. 

Commercial fishers report that they preferentially direct effort 

into shallower water to increase the proportion of the catch in 

premium colour grades. Differences in effort distribution would 

be expected to create a gradient of increasing lobster density 

with increasing depth.  We examined this pattern in the 

Tasmanian dataset using catch rate as a proxy for lobster 
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( ) ( )( )bxabxa eeP ++ += 1

density for time periods before (1992–94 and 1995–97) and after 

(2000–02 and 2003–05) the quota management change.   

Fig. 2 Natural colour variation in Jasus edwardsii from a deep 
red colour (far left) to pale cream colour (far right), categorised by 
the three commercial grades of red, pale, and white.    

 

 

2.2.2 Data analyses 

 

Sample sizes in each region from all three states were 

variable and ranged between 843 and 13 780 lobsters. Data were 

analysed from all fishing zones and from the original eight stock 

assessment areas of Tasmania. Area 8 in Tasmania was split 

into two zones (south and southwest) because of the large 

number of lobsters collected from this area. The relationship 

between the proportion of lobsters that were classed as pale (P) 

and depth (x) was modelled for each region with a logistic 

function of the form:   

where the coefficients a and b were estimated by maximising the 

log likelihood derived from using the log transformation (Neter et 
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al. 1990). These models were then used to estimate the depth at 

which 50% and 95% of the population were classed as pale, thus 

providing an estimate of the depth at which 50% and 5% of the 

population were classed as red (D50% and D5%). Estimation of 

uncertainty around these estimates followed the method of 

Turner et al. (2002) which determined 95% confidence limits 

around model fits from 500 simulations for each area in a 

bootstrapping routine where data were randomly sampled with 

replacement from each of the depth bins (Haddon 2001). The 

middle 95% of the bootstrap replicates constituted the 

confidence interval. Confidence limits derived by this method 

reflect the uneven distribution of certainty around estimates of 

the transition of colour with depth.  

 

2.2.3 Economic impact 

 

Economic implications of colour variation were examined 

for the Tasmanian fishery which has been managed through 

individual transferable quota since 1998 (Bradshaw 2001). A 

result of this management regime was that market revenue after 

1998 could only vary through changes in beach price rather 

than through number of lobster landings. Since beach price is 

influenced by lobster colour, changes to revenue after the shift to 



�

�

Chapter 2                                                           Economics of colour variation                           

�

25 
 

quota management is partially a function of the colour 

composition of catches landed. The economic impact of colour of 

landings was explored for three time series: before quota (1992–

95); immediately before and at management transition (1996–

99); and during an extended period after quota introduction 

(2000–05). Each time series is reviewed by summer (November–

March) and winter (April–September) periods owing to seasonal 

changes in fleet dynamics. Historical monthly price of lobsters 

was obtained in Australian dollars from sales records of an 

exporting lobster processor (provided by Ian Hawthorn, Red 

Lobsters Pty Ltd). For the summer period of 2006 the average 

seasonal beach prices (over 5 months) were AUS$25.50/kg for 

red, AUS$20.20/kg for pale, and AUS$18.60/kg for white 

lobsters. For the winter period the average seasonal beach prices 

(over 6 months) increased to AUS$36.00/kg for red, AUS$32.17 

for pale and AUS$31.17/kg for white lobsters. Prices for 

historical data were adjusted for inflation using national 

consumer price index with 2005 as the base year.  

 

Although commercial fishers record all catch and effort in 

compulsory logbooks, this data series does not include colour of 

catch. Consequently, the proportion of catch in each colour 

grade was estimated on the basis of the average depth at which 



�

�

Chapter 2                                                           Economics of colour variation                           

�

26 
 

pots were deployed as recorded by fishers. Gross revenue was 

then estimated from catch, estimated proportions of catch in 

each colour grade and the beach price for each colour grade.  

The estimated gross revenue for the colour graded (discounted) 

catch was then contrasted with estimated gross revenue that 

would occur in the absence of price discounting by colour by 

using only the beach price of red coloured lobsters. This 

approach provided an estimate of the loss in revenue because of 

differentiation based on colour only, but still inclusive of the 

seasonal price differential. 

 

2.3 Results 

 

A strong relationship between depth of capture and lobster 

colour was observed in all three states (Fig. 3). Red lobsters 

comprised greater than 50% of the catch in depths less than 33 

m in Tasmania, 43 m in Victoria, and 64 m in South Australia. 

Significantly reduced proportions of red lobsters were 

encountered in depths greater than 60 m but did not disappear 

from the depth profile. The proportion of pale lobsters in depths 

down to 100 m was higher in Tasmania and Victoria than in 

South Australia and white lobsters were a minor component of 

the colour composition in all states except in Tasmania where it 

was 50% of the catch at 100 m depth (Fig. 3).    
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Fig. 3 Profile of colour change with depth of all lobsters sampled 
from each state: South Australia (1993–2005: n = 77, 102); 
Victoria (1993–2006: n = 68, 787); Tasmania (1993–2003: n = 
340, 224). Numbers on the top of plots show the sample size for 
each depth interval. (Black area = red lobsters; Hatched area = 
pale lobsters; White area = white lobsters). 
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The depth at which 50% of lobsters were red (D50%) 

varied between regions with a weak trend from the northwest of 

South Australia to the southeast waters of Tasmania. The 

shallowest D50% was observed in southern Tasmania with a 

range of 32–39 m whereas the deepest D50% was observed in 

the Northern Zone of South Australia at 90 m (Fig. 4). This 

spatial trend was considered weak because variation between 

locations was high, for example, a significantly higher D50% 

value was estimated from Area 6 than from either of the adjacent 

areas (Areas 5 and 7; Fig. 4). Model estimates of D5% relative to 

D50% for each region indicate the rapidity of the transition from 

red to pale colour with depth: where D5% is close to D50% the 

transition is very sharp and occurs over a small depth range.  

The difference between D5% and D50% was greatest for Area 

8SW, however, this appears to be a spurious result given the 

much smaller ranges for adjacent areas (Areas 8S and 1). This 

atypical pattern in Area 8SW appeared to result because the 

biological pattern was not correctly specified by a logistic 

function in this single case so the model fit was poor at the 

extremity of D5%. Overall the model estimates from the 

bootstrapping analyses were similar to the observed median 

depths for colour transition except for two sites, the Western  



�

�

Chapter 2                                                           Economics of colour variation                           

�

29 
 

 
 

 
 
Fig. 4 Observed median estimates of the depth at which 50% of 
sampled lobsters were red colour (open circle) from the 13 
regions across the three fisheries relative to the logistic model 
estimates of the depth at which 50% of sampled lobsters were 
red colour (filled square) and depth at which 5% of sampled 
lobsters were red colour (open square). Error bars indicate 
confidence limits around each point estimate.   

 

Zone of Victoria and Area 6 of Tasmania (Fig. 4). In both these 

instances the transition in colour with depth was not 

symmetrical and thus neither the median value nor bootstrap 

estimate of D50% was ideal. 

 

Overall, catch rates increased whereas the quantity of 

lobsters harvested decreased with depth, although catch rate 

trends were highly variable in depths greater than 100 m owing 

to limited data (Fig. 5). In all regions, catch rates inshore (<30 m 

depth) showed little difference before and after quota 
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introduction but there was marked increase in the tonnages of 

lobsters harvested. At greater depths, in the years post quota, 

catch rates were at their highest whereas the average annual 

catch remained unaffected in Areas 1 to 4 and dropped slightly 

in Areas 5 to 8. In the years after quota introduction, there was 

an increased shift in catch rate trends at all depths greater than 

30 m in the southwest region of Tasmania (Areas 7 and 8), while 

catch remained unaffected by management change.  

 

The price differential between summer and winter months 

increased more than two fold post quota owing to the 

discounting value being less in winter (Table 1). Discounting of 

catch on the basis of colour had a greater impact on gross value 

of product (GVP) in summer than in winter owing to both greater 

discounting in summer (when supply is greater) and also 

increased supply of non-red coloured lobsters. 
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Fig. 5 Comparison between total numbers of lobsters harvested 
with depth (left column) and change in catch rates with depth 
observed (right column)(mean ± SD) for the four time periods for 
the four condensed regions of the Tasmanian fishery. (Note 
different scale on y axis).  
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The catch limit that occurred through quota management in 

1998 had improved revenue from discounting for the summer 

months of post-quota years by about AUS$2 million annually, 

but little change for winter months which continues to incur loss 

of around AUS$1 million annually (Table 1). Overall, the quota 

management had improved revenue loss owing to colour by 24% 

to the current estimated value of AUS$6.67 millions/year. 

 
 
 
 
 
 
 
 
Table 1 Trends in revenue loss owing to colour, collectively from 
all areas in the Tasmanian fishery. The average price differential 
(AUS/kg) between red and non-red lobsters (average of pale and 
white lobsters) and the average gross value of product (GVP, 
AUS$ millions/year) for the winter and summer periods over 
three time series are indicated. Total value indicated is the sum 
of summer and winter discount values averaged for each of the 
times series.  
�

 

 

 

 

 

 

 

 

         Real Price Discount          Observed Real GVP Discount                                              
($/kg, base year 2005)            (AUS$ millions/annum) 

    Year          Summer    Winter    Summer       Winter       TOTAL 
1992-1995        6.18           5.05       7.70             1.10             8.80 
1996-1999        4.83           2.09       5.83             0.97             6.80 
2000-2005        5.63           2.84       5.24             1.43             6.67 
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2.4 Discussion 

 

2.4.1 Spatial variation in colour  

 

We observed a clear transition in shell colour of J. 

edwardsii with depth from a dark red colour in shallow depths 

to a pale cream colour at deeper depths across all three states. 

The rapidity in depth transition in shell colour was variable 

between regions and around Tasmania, but had a weak 

latitudinal trend, in a similar pattern to that which occurs with 

depth range of red lobsters’ growth rates and size at onset of 

female maturity across this region (McGarvey et al. 1999; 

Gardner et al. 2006). The latter is thought to be driven by 

differences in temperature whereas the strong relationship we 

document between red shell coloration and depth appears to 

have a dietary basis, presumably because of changes in reef 

composition and in prey items with depth. Macro and encrusting 

algal assemblages which dominate inshore reef systems produce 

a wide variety of carotenoids which are then subsequently 

consumed by herbivores and larger reef dwelling animals such 

as lobsters who must acquire carotenoids dietarily (Goodwin 

1960). Thus the concentration and intensity of red pigmentation 

in the exoskeleton is accumulated through the absorption of 
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dietary carotenoids and carotenoproteins and the subsequent 

synthesis into astaxanthin (Konosu and Yamaguchi 1994). 

Aquaculture studies have manipulated pigmentation by differing 

astaxanthin levels in artificial diets to produce different coloured 

juvenile J. edwardsii (Crear et al. 2002, 2003) and American 

lobster Homarus americanus (Tlusty 2005; Tlusty and Hyland 

2005). Studies have also reported that both background 

colouration and photoperiod to have no effect on the colouration 

of juvenile southern rock lobsters (Stuart et al. 1996; Crear et al. 

2003) and thus unlikely to be causative factors of colour 

variation in adult J. edwardsii. Therefore, the pale coloration 

deep waters rock lobsters around Tasmania, below the photic 

zone, most probably infers to a shift in dietary composition that 

is indicative of a shift in prey species or change in prey 

availability. Given that the diet of deep-water lobsters is 

unknown, shell colour could be used as a crude indicator of diet 

quality, at least in terms of carotenoid intake. 

 

The variation we observed in the spatial and depth range 

of red lobsters may reflect the high variability in depth range and 

compositional differences in macroalgal communities across 

southern Australia. The penetration depth of light can vary in its 

quality and in its intensity, reaching the reef surface with an 
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overall trend for this depth range to extend into deeper water as 

wave exposure and water clarity increases (Edgar 2001). Depth 

range of algal communities may also be influenced by seasonal 

and temporal oceanographic processes such as localised up-

welling events which are common in the southeast region of 

South Australia (Schahinger 1987). Furthermore, differences in 

geology and hydrology between these regions may also be a key 

factor as availability of homesites which provides adequate 

protection and food source are also highly variable.  

 

In all states, red lobsters are still present at depths to 100 

m, well below the photic zone, and in Victoria white lobsters are 

found in shallow-water depths of around 20–30 m. In these 

instances, movement of lobsters rather than diet may account 

for these observations. For example, in the spiny lobster 

Panulirus cygnus, colour change in the wild can occur during its 

intermoult period in association with an offshore migration event 

at the onset of maturity, termed “the whites run” (Melville-Smith 

et al. 2003).  Large-scale migrations do not occur in Australian 

populations of J. edwardsii and thus do not contribute to the 

colour differences reported here (Gardner et al. 2003). However 

small-scale along-shore movement undertaken by immature 

females and males events are evident in some areas of the South 
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Australian (Linnane et al. 2005) and New Zealand fisheries 

(Annala and Bycroft 1993). Seasonal fluctuations in food 

resource and access to new spawning grounds are thought to be 

some of the reasons for these small-scale movement patterns 

and may explain some of the variation in the D50% red lobsters 

between adjacent areas of the Tasmanian fishery. 

�

2.4.2 Impact of colour variation on the fishery 

 

Fleet movements typically reflect attempts by fishers to 

find the optimal balance between costs (a function of catch rates) 

and revenue (a function of volume of product and beach price). 

The introduction of the quota systems in lobster fisheries across 

southern Australia has provided the incentive to shift fishing 

business strategy towards maximising catch value and 

minimising fishing costs in response to fixed volume of product 

(Bradshaw 2001). Fishers have the capacity to improve beach 

price by adjusting their effort in response to colour and seasonal 

differences in price. A general pattern is for fishers to target 

inshore areas for red lobsters in summer when supply is high 

and discounting for colour is greatest. In winter, fishers target 

locations with higher catch rates with less regard for colour 

because low supply leads to higher prices and less discounting 
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on the basis of colour. Ford’s (2001) review of the Tasmanian 

Rock Lobster Industry 2 years after the introduction of the quota 

system found that there was already a trend of shifting catches 

to winter months. A socio-economic study on the impact of the 

Tasmanian quota system conducted 2 years after the 

introduction of quota, found only 25% of fishers had shifted 

their effort inshore to target red-coloured lobsters whereas 60% 

said they spent more time fishing in winter to seek higher prices 

when supply was more limited (Frusher et al. 2003). These 

trends in seasonal and spatial fishing patterns have altered little 

since then. For the 2003–05 period, fishing trends showed 

greater catch from shallow depth regions around Tasmania (with 

the exception of Area 7 and 8) whereas catch rates remained 

relatively low despite the intended stock rebuilding that was 

intended to occur though the quota introduction. Greater 

increase in catch rates in depths more than 50 m in all regions 

around Tasmania was seen during the post-quota years 

especially on the west coast. But despite high catch rates, catch 

levels from these depths were low and were mostly exploited 

during the winter months when the price differential between red 

and non-red lobsters was small. Similar trends in catch rates by 

depth were also evident in both South Australian and Victorian 
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fisheries (Department of Primary Industries 2003; Linnane et al. 

2006). 

 

Limited catches due to quota introduction resulted in a 

large reduction in the price differential of lobsters, which has 

increased the value of the industry by approximately AUS$2 

millions for the post-quota years. While this is an economic 

improvement, the discounting practise continues to have a 

significant economic impact with the current estimated value of 

revenue loss at AUS$6.67 millions/year. Greater supply of pale 

lobsters during winter when demand for all coloured lobsters is 

high largely reduced the discounting value by around 50% (Table 

1), despite the worsening weather conditions during winter 

months and lower catch rates at this time. Opportunities for 

further reductions to discounting and reducing the impact of 

fishing effort in the inshore areas are currently the major 

challenges facing all the state fisheries. Options include 

developing non-Asian markets such as those in the United 

States and Europe where colour of lobsters is less important, 

limiting harvest of pale lobsters to periods of high demand when 

colour preferences become less critical and the allocation of 

additional quota units for deep-water regions in order to shift 

effort away from inshore areas. One management option 
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currently under consideration in all three states is the sea-

ranching of deep-water lobsters in shallow-water inshore areas 

(Gardner and van Putten 2008a). Translocation of pale and white 

coloured lobsters into areas of red coloured lobsters is aimed at 

achieving fast improvements to market traits such as growth, 

colour and condition which are assumed to be related to the diet 

of these animals. Thus, both the spatial and depth variability in 

lobster colour highlighted through this study and the current 

significant economic impact owing to colour grading estimated 

for the Tasmanian Fishery, provides valuable information for 

future management plans.  
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Abstract 

This study explored translocation as a method to increase the 

value of less marketable deep-water southern rock lobster Jasus 

edwardsii. Firstly, variation in the commercially important shell 

colouration and body shape between deep-water and shallow-

water Tasmanian populations and among South Australian and 

Victorian populations was quantified. Deep-water J. edwardsii 

were pale coloured with longer walking legs but less meat 

content than shallow-water, red coloured J. edwardsii. Body 

shape traits were highly variable among deep-water populations 

across the three States and also between the sexes in each 

population. Deep-water lobsters were then translocated to a 

shallow-water inshore reef to determine if the observed variation 

in traits was plastic, and whether translocation could be used to 

improve the quality of deep-water lobsters. Translocated lobsters 

were monitored over a 14 month post-release period and during 

this time they changed from a pale/white colour to the more 

marketable red colour within one moult. Plasticity was observed 

in abdomen morphology but not leg morphology. The 

translocation experiment was successful in transforming 

pale/white deep-water lobsters into red lobsters with higher 

market value in a phenotypic response to altered environmental 

conditions. Translocation appears to have commercial 
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application for exploiting natural plasticity in market traits of 

lobsters to increase price. 

 

3.1 Introduction 

 

The price of live Australian southern rock lobster (Jasus 

edwardsii) in its main export markets in Asia can vary according 

to the colouration of the exoskeleton, overall body size and 

shape, degree of injury to appendages and its vitality after live 

transport. External appearances contribute to the price of 

lobsters sold live because consumer preferences are highly 

influenced by visual presentation. The most important market 

trait is shell colour, which varies systematically with capture 

depth and location throughout southern Australia (Chapter 2). 

Shallow-water J. edwardsii are typically red, while lobsters 

caught from depths greater than 30 m are paler and are 

commercially graded into categories of “pale” and “white” 

(Chapter 2). The fishing industry also differentiates lobsters on 

morphometric traits that reduce meat content. Characteristics 

associated with less meat yield such as long and spindly legs 

and/or abdomens that are narrow compared to their carapace 
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are believed to be more pronounced in deep-water pale lobsters 

than in shallow-water red lobsters.  

 

The discounting of pale, deep-water lobsters based on 

colour and morphology is a standard practice for most of the 

year and greatest during summer months when supply is 

greater. Colour discounting reduced revenue by an estimated 

AUS$7 million or 12% of total revenue for the Tasmanian rock 

lobster industry in 2008 (Chapter 2). Discounting is also an 

issue for fisheries management as it influences fleet movements 

within the Tasmanian rock lobster fishery, and increases fishing 

pressure on the more depleted inshore stocks (Gardner et al. 

2006). Management changes incorporating spatial elements are 

currently under review, with aims of increasing profitability and 

to reducing fishing pressure on inshore, more depleted reefs. 

One option under consideration is sea ranching through the 

translocation of pale-coloured, deep-water lobsters into inshore 

reefs and the economic and biological feasibility of this strategy 

is contingent upon translocated lobsters adopting the growth 

rates and phenotypic characteristics of the resident shallow-

water population (Gardner and van Putten 2008a, b). 
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Differences in market traits may reflect differences in diet 

and/or adaptation to local habitat and through translocation. 

We investigate whether it is possible to harness the observed 

phenotypic differences between deep and shallow-water J. 

edwardsii to enhance its marketability. Our objectives for this 

study were twofold. Firstly, we examined the magnitude of 

phenotypic plasticity of the key market traits within the 

Australian southern rock lobster fishery by quantifying the 

variation in body-shape traits and shell colouration. Secondly, 

we translocated deep-water lobsters into a shallow-water reef 

inshore to test whether a change in habitat can induce a plastic 

response. We assessed this by comparing the market traits of 

the recaptured translocated lobsters with resident deep and 

shallow water populations.  

3.2 Materials and methods 

 

3.2.1 Lobster collection and translocation 
 

Lobsters used for colour analysis 

Natural variation in shell colour was determined from 

wild-caught, shallow-water (5 – 15 m) and deep-water (60 – 80 

m) lobsters collected from Taroona Research Reserve (42.95°S, 

147.34°E) and around Maatsuyker Island (43.38°S, 146.17°E) 

respectively in Tasmania (TAS).  
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Lobsters used for morphometric analyses 

For analysis of spatial variation in body-shape traits, South Australian 

(SA) shallow-water lobsters (10 – 30 m) from Ringwood Reef (37.55°S, 

140.05°E) and deep-water lobsters (40 - 100 m) from Robe (37.74°S, 

139.84°E) and deep-water (70 – 110 m) lobsters from Victoria (VIC) (38.52°S, 

141.53°E) were measured for comparisons with lobsters from the shallow and 

deep-water TAS sites (Fig 1). All lobsters analysed were mature adults and 

captured using baited pots and upon capture were measured, sexed, and clipped 

on one pleopod. To estimate leg length and meat yield, the fourth walking leg 

was removed by applying pressure to the base of the coxa to induce autotomy, 

and immediately placed in ice, then later stored in a -30˚C freezer. Lobsters 

with regenerated or damaged legs were not sampled. A sub-sample of the deep-

water and shallow-water populations was photographed for measurements of 

shell colour and body-shape traits.  

 

Translocation of lobsters 

During November 2005, approximately 2000 adult lobsters 

(68 - 120 mm) were trapped from around Maatsuyker Island and 

translocated to Taroona Research Reserve. The reserve supports 

a large population of fast-growing, red coloured Jasus edwardsii 

protected from fishing. All translocated lobsters were individually 

coded with T-bar tags in the ventral surface of the first 

abdominal segment (coloured Hallprint T-bar anchor tag), 

clipped on one pleopod, measured, and sexed. Taroona Reserve 
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was resampled at 5, 8, 12 and 14 months after release, and at 

each time the same data was recorded for all recaptured 

translocated lobsters and fourth walking leg (non-injured, non- 

 
 

 
 
 
Fig 1. South-east region of Australia with deep and shallow-
water sampling locations in Tasmania (MAT = deep-water site at 
Maatsuyker Island, TAR = shallow-water site at Taroona Marine 
Reserve), South Australia (ROB = deep-water site at Robe, RWR 
= shallow-water site at Ring-wood Reef) and Victoria (VIC = only 
deep-water site sampled). In Tasmania, lobsters for the 
translocation experiment were moved from MAT and released 
into TMR.   
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regenerated) was removed. If the same lobster was caught twice 

the remaining fourth walking leg in the pair was removed. A sub-

sample of translocated lobsters (10 – 20 lobsters) was 

photographed for measurements of shell colour and body-shape 

traits. Moult growth increments of more than five millimetres 

and the partial or complete regeneration of the cut pleopod were 

used as moult confirmation (Ziegler et al. 2004). 

 

3.2.2 Colour analysis 

 

The range in natural colouration among red, pale and 

white lobsters was quantified by image analysis of digital photos 

taken of shallow-water and deep-water Tasmanian lobsters. Only 

hard-shelled lobsters with minimal carapace fouling were 

selected and colour was measured on five locations on the body, 

including the dorsal and lateral surface of the carapace, dorsal 

region of the abdomen closest to the carapace, the dorsal surface 

of the telson and the ventral surface of the sternum (Fig. 2). 

Colour changes in translocated lobsters were examined in all five 

body locations of recaptured moulted and non-moulted lobsters 

at each of the resampling surveys. The exoskeleton was blotted 

dry before being photographed with a Nikon Coolpix 5400 digital 

camera with a Nikon SL1 Macro Cool Light ring flash attached 

by a Nikon UR-E11step-down ring lens adapter (adapted from 
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Tlusty, (2005)). A black cloth hood was attached at the base of 

the ring flash to exclude external light. A 10 cm metal rod was 

also attached at the base of the camera to ensure constant 

distance from the exoskeleton. The camera was manually set 

under the macro operating function (shutter speed - 1/8 second, 

aperture - F4.4, picture quality - “normal”, light metering - 

“spot”, white balance - “speed light”, sensitivity - “ISO100”, 

image adjust and sharpness set to “auto”). Colour of the different 

body locations was quantified using the histogram function in 

Adobe Photoshop 7.0. Each image was opened in the RGB colour 

mode and a circular region (diameter of 1000 pixels) was 

measured for the mean values (darkest = 0 to lightest = 255) of 

each of the red, green and blue channels. These three individual 

channel values were added together to produce a single value for 

each image ranging from 0 – 765 (range of combined RGB value). 

This method was selected for analysis because we were only 

interested in the final colour produced by the three colour 

channels and not the changes or differences in the individual 

colour channels between the colour categories.  In all five body 

locations the red channel dominated in intensity over the green 

and blue channels, therefore only variants of the colour red was 

present in our samples.  
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3.2.3 Morphometric analyses 
 

Spatial and depth variation in leg length were compared 

among shallow and deep-water lobsters collected from TAS, SA 

and VIC sites. Prior to measurement, leg samples were thawed at 

room temperature and blotted dry. Periopods were measured 

along the dorsal length of the merus and the ventral length of 

the propodus (excluding the connective tissues). Total leg length 

(LL) was calculated from the combined lengths of the merus and 

propodus. To determine meat yield of the fourth walking leg, wet 

weight was recorded for the whole leg sample and the moisture 

content was determined by drying overnight at 100˚C and then 

reweighing the sample. Samples were then placed in a muffle 

furnace for three hours at 550˚C, and reweighed to determine 

the ashed weight. The difference between the wet and ashed 

weights provided an estimate of the combined moisture and 

organic weights of the meat content (g). Note that this method 

overestimates the meat yield as our calculations also include the 

water and organic content of the exoskeleton.  

 

Spatial and depth variations in abdomen dimensions were 

assessed from digital image analysis using Image J v1.33 

software (Wayne Rasband, National Institute of Health, USA, 
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http://rsb.info.nih.gov/ij/). Lobsters were restrained on a stable 

platform in a fully extended position underneath a camera stand 

fitted with an external light source. Photos were taken of the 

dorsal and ventral surface of the carapace and the abdomen 

region of each lobster. In order to minimise variation through 

different measurement techniques, carapace length was also 

calculated from the digital images. Tail measurements were 

taken from the ventral surface of the abdomen and included the 

anterior tail width (ATW) measured across the grooves between 

the pleurons of the first and second abdominal segments, 

posterior tail width (PTW) measured from the base of the sixth 

abdominal segment across the width of the sixth sternite, and 

the area of the tail inclusive of the ventral surface area of the 

abdomen covering the second to the sixth abdominal segment 

extending down to the anus (see Appendix for a diagram). 

3.2.4 Data analyses 
 

Colour data were normally distributed (Shapiro-Wilk W 

test) and variances were homogenous. Colouration of wild J. 

edwardsii between the three colour lobster categories was 

assessed among the five body locations using a MANOVA design, 

with Pillai’s trace test statistic, followed by Tukey’s post hoc 

analysis. Differences in shell colouration of the abdomen 
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between moulted and non-moulted translocated lobsters 

recaptured five months after release were analysed using a one-

way ANOVA. There were insufficient lobsters in each moult 

category in subsequent surveys for statistical analyses. Analyses 

were performed using Statistica (V7.1 Statsoft Inc, Tulsa OK 

USA).  

 

Allometric relationships among body-shape traits were 

examined using a combination of standardised major axis (SMA) 

and major axis (MA) regression analyses (types of Model II 

regression) using SMATR v2.0 software (Standardised Major Axis 

Tests and Toutines by D. Falster, D. Warton and I. Wright; 

http://www.bio.mq.edu.au/ecology/SMATR). These slope fitting 

techniques were considered most appropriate for describing 

bivariate growth relationships given all the measured variables 

(tail, leg and carapace measurements) had variation associated 

with them due to both measurement error and natural 

variability (Sokal and Rohlf 1981). The SMATR procedure is 

analogous in principal to ANCOVA, thus MA and SMA slopes 

were fitted between the desired two morphometric traits and 

tested for homogeneity of slopes and differences in slope 

elevation (if a common slope was present), followed by post-hoc 

pair-wise comparisons using the Wald statistic (for details of 
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statistical procedures see (Warton et al. 2006). All statistical 

analyses were tested for significance at p = 0.05. 

 

All variables (tail, leg, carapace and meat yield 

measurements) were log10 transformed to achieve linearity and 

normality. Since tail morphometry is a secondary indicator of 

sexual maturity in female lobsters, only mature females were 

included in the analyses. An estimate of setation development of 

the pleopod was first determined to identify mature and 

immature females (Gardner et al. 2005). Further removals of 

immature females were based on observed data points that 

deflected and formed an angular delineation from the regression 

slope. Immature females were only detected in our samples from 

shallow-water TAS and deep-water SA lobsters. Allometric 

comparisons were made among Tasmanian populations (deep, 

shallow and translocated) and between deep and shallow-water 

sites (TAS, SA and VIC) separately for each sex and also between 

males and females (M and FM).  
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3.3 RESULTS 

 

3.3.1 Shell colour variation 

 

The natural shell colour of red lobsters had a RGB range 

of 100 – 250, while pale and white lobsters ranged from 350 to 

800 (Fig. 2). Shell colouration varied significantly between all 

three market colour grades (F10,92 = 49.5, p < 0.001) as well 

colouration between body locations (F12,135 = 21.0, p < 0.001) 

with generally the dorsal surfaces more pigmented than the 

ventral surfaces (Fig 3). Five months after translocation, moulted 

lobsters were significantly darker than non-moulted lobsters, 

and both females and males had changed from pale or brindle 

coloration to the high market value red colouration (females, 

F1,13 = 14.5, p = 0.01; males F1,6 = 14.0, p = 0.01). By the end of 

the moulting period (10 months after translocation), all 

translocated lobsters had changed colour from pale or white to 

the red colour range. The timing of the colour change also 

suggests that translocated males had begun moulting earlier 

than resident males. Colour change was proportional in all body 

locations, therefore only the results for the tail region are 

presented (Fig. 4).  
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Fig 2.  Examples of the five body locations in red (bottom row), 
pale (middle row) and white (top row) lobsters with their 
corresponding RGB value below each photo. From left to right: 
carapace-dorsal, carapace-lateral, tail, uropod, and sternum. 
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Fig 3. Natural colour variation (mean ± SE) of the five body 
locations of wild-caught red (n = 13), pale (n = 19) and white (n = 
32) lobsters with image examples of the carapace-dorsal (left) 
and the sternum (right). Each colour category was significantly 
different from each other and body locations within each colour 
category that are significantly different in colour are indicated by 
different letters to the right of error bars (post-hoc Tukey’s HSD 
test); white (a,b,c), pale (d,e,f,g), red (h,i). Error bars were often 
smaller than data symbols. 
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Fig 4. Mean colour differences (mean ± 95% confidence intervals) 
of the tail region between moulted (filled) and non-moulted 
(open) recaptured translocated female (diamond) and male 
(square) lobsters from four post-release sampling surveys. 
Moulting time periods for shallow-water male and female 
lobsters are indicated by horizontal bars above axis. RBG value 
range (mean ± 95% confidence intervals) for the tail region of red 
coloured lobsters (n = 13) are indicated by the dotted lines. RGB 
value for time zero was calculated from combined RGB values of 
the tail of pale and white lobsters (from Fig 2) (RGB range : 0 
(darkest) – 765 (lightest)).  
 

 

 

 

 

 



�

�

Chapter 3                                                                       Market trait variation                           

�

57 
 

3.3.2 Body-shape variation�

 

Deep-water male and female TAS lobsters had longer legs 

than shallow-water lobsters, but relative to their leg length, 

significantly less meat content than shallow-water lobsters (Fig. 

5). Males had longer legs than females among TAS deep and 

shallow-water populations (p < 0.05, Table 1a). However, for any 

given leg length, meat yield was greater in shallow-water TAS 

females than males, but there was no differences in meat yield 

between the sexes of deep-water TAS lobsters (p = 0.19, Table 

1b). After their first moult there was no difference in leg length of 

translocated lobsters (in either sex) compared to deep-water 

lobsters. The tail area (TA) of shallow-water TAS males was 

larger than the TA of deep-water males (Fig. 6a), but no 

difference detected among TAS females (Fig. 6b). There was an 

increase in the TA of translocated males to a similar size to that 

of shallow-water males (Table 2a). No change was detected in the 

TA of translocated females. In both sexes, the posterior tail width 

(PTW) relative to anterior tail width (ATW) was wider in deep-

water TAS lobsters than in shallow-water TAS lobsters (Figs. 7a, 

7b, Table 2b). In translocated males, the changes in the relative 

width of the PTW was not significantly different from shallow and 

deep-water males, and conversely in translocated females the 
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PTW was significantly less than deep-water lobsters and greater 

than shallow-water lobsters. 

 

Deep-water TAS male lobsters had longer legs than VIC 

males while SA males were intermediate to TAS and VIC males 

(Fig. 5c). Among deep-water female populations, SA females had 

significantly shorter legs than TAS and VIC females (Fig. 5d). 

There were no differences in leg length between TAS and SA 

shallow-water males (Fig. 5e), but shallow-water SA females had 

longer legs than TAS females (Fig. 5f). Among deep-water sites, 

VIC lobsters had larger tail area than TAS and SA lobsters for 

both sexes. Tail area did not differ between SA and TAS deep and 

shallow-water populations (Figs. 6c, 6d). There was no difference 

in the width of the PTW between deep-water SA and VIC males 

but both populations had narrower PTW than TAS males (Fig. 

7c). Conversely in deep-water females, the PTW was significantly 

different widths between all three sites. For any given ATW, the 

PTW was widest in TAS females followed by SA and narrowest in 

VIC females (Fig. 7d).  
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Fig 5.  Leg length relative to carapace length of translocated 
(those which had moulted once when recaptured)(blue regression 
line) and resident shallow (red regression line) and deep-water 
(yellow regression line) lobsters from different sites (a) TAS males 
(b) TAS females (c) resident male deep-water lobsters from all 
states (d) resident female deep-water lobsters from all states (e) 
resident male shallow-water lobsters from all states (f) resident 
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female shallow-water lobsters from all states (TAS = purple, VIC 
= brown, SA = green regression lines) . Scatter plots of meat yield 
and leg length of TAS shallow-water and deep-water males (g) 
and (h) females are shown. Results of regression analyses based 
on these plots are presented in Table 1. Correlations values (r2) 
are shown on the legend of each plot.  
 
 
 
 

�

�

Fig 6. Tail area relative to carapace length of translocated (those 
which had moulted once when recaptured) and resident shallow 
and deep-water lobsters from different sites (a) TAS males (b) 
TAS females (c) resident male deep-water lobsters from all states 
(d) resident female deep-water lobsters from all states. No data 
were available from resident shallow-water lobsters in SA and 
VIC sites. Results of regression analyses shown in these plots 
are presented in Table 2a. Correlations values (r2) are shown on 
the legend of each plot.  
�
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Fig 7. The posterior tail width relative to anterior tail width of 
translocated (those which had moulted once when recaptured) 
and resident shallow and deep-water lobsters from different sites 
(a) TAS males (b) TAS females (c) resident male deep-water 
lobsters from all states (d) resident female deep-water lobsters 
from all states. No data were available from resident shallow-
water lobsters in SA and VIC sites. 
�

�

�

 
 
 
 
 
 



�

�

Chapter 3                                                                       Market trait variation                           

�

62 
 

 
Table 1. Regression statistics of the major axis (MA) regression 
analysis of (a) leg length and carapace length and standardised 
major axis (SMA) regression analysis of  (b) meat yield and leg 
length. Results of comparisons between shallow, deep and 
translocated TAS populations and of deep and shallow-water 
lobsters are shown separately for each sex. Results of 
comparisons between males and females within each population 
are also given. Regression parameters of individual MA or SMA 
slope, common slope (CS) and intercept are indicated with 
(lower, upper 95% confidence intervals), differences in slope (��) 
and in elevation (�E) among populations were then tested for at 
the significance level of p = 0.05. Significant differences are 
indicated by different superscripts from post-hoc pair wise 
comparisons. Non-significance (p>0.05) indicated by the notation 
‘ns’. 
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�
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Table 2. Regression statistics of the major axis (MA) regression 
analysis of (a) tail area and carapace length and of (b) the 
posterior and anterior tail width. Results of comparisons 
between shallow, deep and translocated TAS populations and of 
deep and shallow-water lobsters are shown separately for each 
sex. Results of comparisons between males and females within 
each population are also given. Regression parameters as same 
as in Table 1.�
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�



�

�

Chapter 3                                                                       Market trait variation                           

�

65 
 

�



�

�

Chapter 3                                                                       Market trait variation                           

�

66 
 

�

3.4 DISCUSSION 

 

3.4.1 Natural variation in market traits 

  

The observed variation in red colouration, and the relative 

growth differences between carapace length, leg length, tail area 

and tail shape between deep and shallow-water populations may 

reflect differences in diet and/or adaptation to the local 

environment driven by trade-offs between survival, growth and 

reproduction. Shell colouration is influenced by the availability 

of carotenoids derived from the diet (Rao 1985). The carotenoid 

astaxanthin is produced by macro-algae species and through its 

subsequent consumption by herbivores and larger predators it 

becomes the primary pigment in crustacean shell colour 

(Goodwin 1960; Meyers and Latscha 1997). In juvenile southern 

rock lobsters, manipulation of tissue carotenoid levels and shell 

colouration has been achieved through incorporating differing 

astaxanthin levels in artificial feeds (Crear et al. 2003). Tlusty 

and Hyland (2005) also produced similar results in juvenile 

American clawed lobsters Homarus americanus and further 

suggested that differences in the rates of carotenoid uptake and 

deposition in the cuticle could additionally control phenotypic 

colour variation. Aquaculture studies have also reported that 
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neither background colouration nor photoperiod affected 

colouration of juvenile southern rock lobsters (Stuart et al. 1996; 

Crear et al. 2003). Sea-cage experiments aimed at colour 

enhancement in pale, deep-water adult J. edwardsii had 

produced red lobsters with supplemented feeding, but colour 

improvement in starved, pale lobsters also occurred, with the 

authors concluding that the experimental lobsters consumed 

biofouling organisms from cage surfaces (Bryars and Geddes 

2005). For adult J. edwardsii shell colour may depend on diet 

but it is unclear as to what extent colour expression reflects an 

adaptive plastic response to its physical environment or to 

physiological and behavioural stimuli.  

 

There were morphological differences between deep and 

shallow-water Tasmanian lobsters when assessed by leg length, 

tail shape and tail area. These differences in body-shape imply 

differences in meat yield as evident from the analysis of one of 

the walking legs. The narrow tail shape reported for deep-water 

lobsters was however not observed and rather the reverse trend 

with shallow-water lobsters with narrower tails than and deep-

water lobsters. There was substantial variation in the body-

shape of J. edwardsii populations across the three states 

although not with any systematic pattern such as a latitudinal 
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trend. Allometric differences in morphology were also 

pronounced between the sexes. Sexual dimorphism may be 

responsible for the differences in tail characteristics, while 

differences in leg length and meat yield between the sexes could 

be due to differences in their metabolic rates. Similar differences 

have been observed in the clawed lobsters Homarus americanus 

and Homarus gammarus, where males and females from 

geographically different sites show variations in morphology 

despite their lack of movement and genetic differentiation 

(Debuse et al. 2001; MacCormack and DeMont 2003). The 

proposed causative factors of phenotypic plasticity were lobster 

density, water temperature, food availability and interactions 

among conspecifics. All of these factors potentially contributed to 

the observed differences between deep and shallow water 

lobsters in this study. 

 

3.4.2   Market traits response to translocation and its 

commercial significance 

 

Colour change in translocated J. edwardsii was a 

significant outcome of this study and consistent with colour 

change resulting from a change in diet. It contrasts with the 

colour transformation observed in the western rock lobster 
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Panulirus cygnus, which changes from a red to paler colouration 

prior to its migration to offshore breeding grounds (Melville-

Smith et al. 2003). In this case, the distinct red to white colour 

transition in P. cygnus is assumed to have a genetically 

controlled mechanism (Wade et al. 2005). Changes in colour 

within a moult are also possible (Davis et al. 2005), but this is 

unclear from our results as increase in fouling during inter-

moult masks any minor colour change. For deep-water J. 

edwardsii moulting was required following translocation in order 

for a more marketable red colouration and from a commercial 

point of view this increases its marketability and value.  

 

Allometric changes in morphology after translocation 

varied among the body-shape traits and were also influenced by 

gender.  The relative growth of the tail area of translocated males 

was similar to those of the resident shallow-water males after 

their first moult in the new habitat, demonstrating a high degree 

of plasticity. In another instance, the posterior tail width (PTW) 

of translocated females was statistically different but growth 

changes intermediate between deep and shallow-water females, 

while the PTW of translocated males were indistinguishable from 

both shallow and deep-water males. While there was no 

significant change in the leg length to carapace relationship in 
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translocated lobsters, graphical plots (Figs. 5a, 5b) indicate a 

transitional shift towards the resident population. Leg length 

may be less responsive to habitat change than the other traits 

examined and may require several moults for a complete 

transformation.  

 

While there are many stock enhancement operations 

utilising hatchery reared juveniles (Bell et al. 2008; Zohar et al. 

2008), the capture, translocation and release of adults in the 

marine environment is less common. However translocation has 

been adopted for similar value-adding strategies in other 

commercial species. For example, the roe size and quality of sea 

urchins are being enhanced in France by transplanting adults 

with poor quality gonads from polluted and barrens areas into 

areas dense in algal assemblages (Martin 2004). Abalone is 

another high value seafood product where transplant 

experiments had shown to improve the growth rates of stunted 

populations (Dixon and Day 2004). The success of all stock 

enhancement and sea ranching strategies depend on several 

associated factors including its economic feasibility (Bartley and 

Bell 2008), but for the Australian southern rock lobster 

industries, this study highlights translocations’ potential in 

providing an opportunity to add value to its less marketable 
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product through improving its key market traits of colour and 

morphology. 

 

Translocation appears to have commercial application for 

exploiting natural plasticity in market traits of lobsters to 

increase beach price. For deep-water Jasus edwardsii 

translocated to shallow-water, a single moult was sufficient to 

elicit significant changes in colour and a range of changes in 

body-shape traits as they grew in their new environment. Given 

colour has a higher priority over body-shape traits when setting 

the market price, there may still be a low risk of continued 

discounting by processors for translocated red lobsters with 

narrow tails or short legs. These issues needs to be addressed 

through further market research to assess industry and market 

response to market traits in translocated lobsters and determine 

if both the consumer and the processor are able to discriminate 

between legal size shallow and translocated lobsters. For the 

Australian southern rock lobster industry, this study highlights 

the potential of translocation to add value through transforming 

lobsters from undesirable phenotypes to desirable ones and offer 

a novel approach to fisheries management.  
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Variation in the lipid and fatty acid 
content of adult southern rock 

lobsters, and response to 
translocation 

 

 

 

 

 

 

This chapter previously published as: 

 

Chandrapavan A, Guest M.A, Nichols P.D, Gardner C (2009). 
Translocating southern rock lobsters (Jasus edwardsii) from 
deep-water to shallow inshore water enhances nutritional 
condition through omega-3 long-chain polyunsaturated fatty 
acid content. Journal of Experimental Marine Biology and 
Ecology 375: 9-15.   
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Abstract 

Deep-water southern rock lobsters (Jasus edwardsii) were 

translocated into shallow-water inshore reefs around Tasmania 

in an attempt to enhance their growth rates and market traits. 

We assessed changes in nutritional condition in adult, deep-

water lobsters before and 12 months after relocation through 

variations in the lipid and fatty acid profiles in the 

hepatopancreas and muscle. Fatty acid compositions were 

similar between shallow and translocated lobsters and both were 

different from deep-water lobsters, suggesting a dietary 

difference between the deep and shallow-water lobsters, and a 

dietary change in deep-water lobsters after translocation.  

Nutritional condition indices, such as total lipid and 

triacylglycerol content, did not significantly vary between the 

lobster populations which may be due to within-population 

variability driven partly by differences in the moult stage of 

lobsters. Mean concentrations of fatty acids, lipid content and 

essential polyunsaturated fatty acids (PUFA) were higher in 

translocated lobsters than in both deep and shallow-water 

lobsters. Mean omega-3 long-chain PUFA content, in particular 

eicosapentaenoic acid (EPA, 20:5n-3) increased by 30% in the 

muscle of translocated lobsters, resulting in an enhanced 

nutritional value and a change in overall body condition. This�
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enhancement of key fatty acids, achieved through translocation, 

highlights the market potential of translocation for the 

commercial industry.  

 

4.1  Introduction 

 

The southern rock lobster (Jasus edwardsii) fishery in 

Tasmania currently operates below its optimal yield limit due to 

considerable regional and depth variation in biological traits of 

the lobsters (Gardner and van Putten 2008a, b). Within the 

fishery there are differences in key market traits such as shell 

colouration, size and body shape. Biological and market trait 

differences are greatest between the inshore shallow-water 

lobsters characterised by fast growth rates and bright red shell 

colour, and offshore deep-water lobsters characterised by slow 

growth rates and pale shell colour (Chapter 2). Considerable 

differences in size at sexual maturity (Gardner et al. 2006), 

seasonal catchability and possibly vitality during live transport 

occur between these populations and are further responsible for 

the greater fishing effort in inshore areas for the highly valued 

shallow-water lobster (Ford 2001). Biological variations between 

deep and shallow water J. edwardsii populations are assumed to 
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be related to differences in habitat and in particular the diet of 

these animals, but this has not previously been examined.  

 

To increase the value, yield and sustainability of this 

resource, spatial management strategies aimed at optimising 

yield and marketability of the deep-water lobster stocks are 

currently being explored. One approach is stock enhancement 

through a form of sea-ranching. Large numbers of lower valued, 

sub-legal sized, adult, deep-water lobsters were translocated to 

shallow-water reefs inshore, where resident lobsters have a 

higher market value. Key variables in this mediated movement 

will be a change in diet and water temperature, although these 

were not directly measured. After their first moult event in the 

new habitat, translocated lobsters changed from a pale 

colouration to the marketable red colour of the resident lobsters, 

and growth increments showed a 2 to 3 fold increase (Chapter 

6). What remains unclear is the role of diet in these 

transformations and to what extent nutritional condition of rock 

lobsters has been altered through translocation.  

�

Indices of nutritional condition that are sensitive to dietary 

changes include total lipid content (energy reserves), the 

proportion of structural (phospholipid) versus storage lipid 
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(triacylglycerol), fatty acid composition and ratios of specific fatty 

acids (Kanazawa and Koshio 1994; Ju and Harvey 2004). These 

indices have been used to examine differences in body condition 

caused by dietary stress such as starvation in crustaceans 

(Jones and Obst 2000; Moore et al. 2000; Parslow-Williams et al. 

2001), spatial variation within populations of the same and 

related species (Iverson et al. 2002, Murphy et al. 2002, Phillips 

et al 2003a, 2003b) and between wild and cultured populations 

(Navarro and Villanueva 2003; Nelson et al. 2005). For 

crustaceans, interpretation of nutritional information must also 

consider the physiological condition of animals such as 

reproductive and moult cycle (Chang and O’Connor 1983; 

D’Abramo 1997), and the functional role of the tissue analysed 

as these can alter the relative quantity and type of lipid reserves. 

For example, the digestive gland (hepatopancreas) of decapod 

crustaceans is primarily involved in the digestion and absorption 

of food material, lipid synthesis and storage, and in regulating 

energy metabolism (O’Connor and Gilbert 1968; Gibson and 

Barker 1979). Lipid reserves found in this gland are typically 

high and respond rapidly to changes in physiological and 

environmental parameters such as dietary stress caused by 

altered feeding rates, moulting and reproduction (Sargent 1974; 

McLeod et al. 2004). By contrast, muscular tissues such as 
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walking legs are low in lipid which is predominantly present in 

bio-membranes as phospholipids, and do not respond readily to 

short term changes in physiological and environmental 

parameters (Cockcroft 1997). This slow tissue turnover rate 

means they are useful in understanding the longer term dietary 

changes experienced by the animal (Corraze 1999).  

 

In the present study, we quantified the lipid content, lipid 

class and fatty acid compositions of both the digestive gland and 

leg muscle of shallow-water, deep-water and recaptured 

translocated lobsters to examine differences in their nutritional 

condition through short-term and long-term changes, and to 

understand the dietary plasticity of J. edwardsii through the in 

situ change of lobster habitat and diet. 

 

4.2 Materials and Methods 

 

4.2.1 Translocation and lobster collection 

 

One of the principal translocation release sites, Taroona 

Marine Reserve, is located in the Derwent Estuary in Tasmania 

and extends 800 m from the shoreline covering an area of 1.0 

km2 with a depth range of 1 to 15 m. The reserve supports high 
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densities of fast growing, red coloured Jasus edwardsii. 

Maatsuyker Island lies 10 km off the south coast of Tasmania in 

the southern ocean with a depth range down to 100 m and 

consists of rocky outcrops and patchy reefs (Fig. 1). These reefs 

are characterised by high densities of slow growing, pale 

coloured lobsters (Punt and Kennedy 1997).   

 

In November 2005, approximately 2000 sub-legal sized 

lobsters (68-120 mm) of both sexes were captured using baited 

lobster traps at depths between 60-80 m around Maatsuyker 

Island. Lobsters were tagged ventrally in the abdomen (with a 

coloured Hallprint T-bar anchor tag), one pleopod clipped and 

bio-data recorded. Prior to release of translocated lobsters, 

digestive gland and leg muscle tissue samples of hard-shelled, 

male lobsters of varying sizes were collected from 10 shallow-

water lobsters from the Taroona site and 9 deep-water lobsters 

from the Maatsuyker site. The Taroona site was surveyed twelve 

months later in November 2006, when translocated lobsters 

were recaptured and digestive gland and leg muscle samples 

were collected from 10 hard-shelled male lobsters. Selection of 

lobsters for analysis included those which had moulted at least 

once since release, and changed in shell colour from pale to  



�

�

Chapter 4                                                            Lipid and fatty acid variation                           

�

79 
 

 

Fig 1. Map of south-east Tasmania showing the deep-water site 
(Maatsuyker Island) and the shallow-water translocation site 
(Taroona Reserve).    

 

 

bright red colour. Moult growth increments of more than 5 mm 

and the partial or complete regeneration of the cut pleopod were 

used as moult confirmation (Ziegler et al. 2004). We compared 

triacylglycerol (TAG) concentrations in the digestive gland with 

blood refractive index (BRI) values of shallow-water and 

translocated lobsters to examine the influence of moult cycle. 

Haemolymph samples (1 ml) were taken from the pericardial 

sinus of only the shallow and translocated lobsters. Pigment 
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stage (PS) of the haemolymph was noted (Musgrove 2001) and 

then an aliquot of the sample was placed in a hand-held 

refractometer (Model UR-2, Industrial and Scientific Supply Co.) 

to measure blood refractive index. The blood protein/pigment 

stage index developed by Musgrove (2001) for J. edwardsii was 

used as an additional condition index. The BRI is directly 

proportional to the concentration of protein in blood of J. 

edwardsii (Oliver and MacDiarmid 2000; Musgrove 2001), which 

increases as body condition improves from the post-moult to 

pre-moult stage of the moult cycle. Haemolymph colour is 

indicative of the pigment astaxanthin, which increases in 

concentration during the late inter-moult to pre-moult stage and 

can be visually assessed for colour change. Both BRI and PS 

provide a crude indication on the moult stage, particularly in 

differentiating the beginning, middle and end phases of the 

cycle. Animals in post-moult to early-inter-moult stage will have 

low BRI values and PS of clear/grey colour. During the long 

inter-moult period as water is replaced by tissue growth in 

lobsters, BRI increases while the PS remains colourless. As 

lobsters approach the pre-moult stage, reabsorption of the old 

shell causes blood pigment to change progressively from clear to 

dark red colour and BRI levels are at their highest. Although we 

selected hard-shelled lobsters for analysis, these additional 
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indices provide more precise information on the moult condition 

of the lobsters. Animals were killed in freshwater before a single 

lobe of the digestive gland was dissected for lipid and fatty acid 

analyses. Muscle tissue from the fourth right or left walking leg 

was also removed and all samples stored in a –20˚C freezer prior 

to analysis.  

 

4.2.2 Lipid and fatty acid analyses 

 

All lobster digestive gland and muscle samples (as wet 

tissues) were quantitatively extracted overnight using a modified 

Bligh and Dyer (1959) one-phase methanol:chloroform:water 

extraction (2:1:0.65 v/v/v). Phases were separated the following 

day by addition of chloroform and water (final solvent ratio, 

1:1:0.9 v/v/v methanol: chloroform: water). Lipids were 

recovered in the lower chloroform phase, solvents removed under 

vacuum, the concentrated lipid recovered through rotary 

evaporation at 40ºC, then weighed to obtain total lipid content. 

An aliquot of the total lipid extract (TLE) was analysed using an 

Iatroscan MKV TH10 thin layer chromatography flame ionisation 

detector analyser (Tokyo, Japan) to determine the proportions of 

individual lipid classes. A polar solvent system (60:17:0.1 v/v/v 

ratio of hexane: ether: acetic acid) resolved TAG, free fatty acids, 



�

�

Chapter 4                                                            Lipid and fatty acid variation                           

�

82 
 

sterols and phospholipids. Peaks were quantified with DAPA 

Scientific Software (Kalamunda, Western Australia). 

 

An aliquot of the TLE was transmethylated at 80ºC for 2 h 

in a 10:1:1 v/v/v mixture of methanol: hydrochloric acid: 

chloroform to produce fatty acid methyl esters (FAME). FAME 

were partitioned by the addition of water and extracted with 4:1 

hexane: chloroform (v/v, 3 x 1.5 ml), the solvent removed under 

a stream of nitrogen, then silylated at 60ºC for 2h in N, O-bis-

(trimethysilyl)-triflouracetamide (BSTFA). FAME were analysed 

by gas chromatography (GC) using a Agilent Technologies 6890N 

GC (Palo Alto, California, USA) equipped with an Equity™-1 

fused silica capillary column (15 m × 0.1 mm i.d., 0.1µm film 

thickness), an FID, a split/splitless injector and an Agilent 

Technologies 7683 Series auto sampler and injector. Helium was 

the carrier gas, and pressure was maintained at 65 kPa. 

Samples were injected in splitless mode with an oven 

temperature of 120ºC, and temperature was increased to 250ºC 

at 10ºC / min, and finally to 270ºC at 3ºC / min.  Peaks were 

quantified with Agilent Technologies ChemStation software (Palo 

Alto, California, USA). Individual components were identified by 

mass spectral data and by comparing retention time data with 

those obtained for authentic and laboratory standards. GC 
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results are typically subject to an error of up to ± 5% of 

individual component area. GC-mass spectrometric (GC-MS) 

analyses were performed on a Finnigan Thermoquest GCQ GC-

mass spectrometer fitted with an on-column injector and using 

Thermoquest Xcalibur software (Austin, Texas, USA). The GC 

was equipped with an HP-5 cross-linked methyl silicone fused 

silica capillary column (50 m × 0.32 mm i.d.) of similar polarity 

to that used for GC analyses and helium was used as carrier 

gas. 

 

4.2.3 Statistical analyses  

 

A combination of analysis of covariance (ANCOVA) and 

multivariate analysis of covariance (MANCOVA) were used to 

compare total lipid content, TAG content and fatty acid 

compositions between shallow-water, deep-water and 

translocated lobster populations using lobster size (carapace 

length) as a covariate. All variables were normally distributed 

after transformations of log10 of digestive gland data and log2 

transformation of leg muscle data (Shapiro-Wilk W test and 

normal probability plots) and there was no violation of the 

homogeneity of slopes assumption. Pillai’s trace test was used as 

multivariate test of significance and significant effects were 
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further examined using Tukey’s post-hoc analysis. Statistical 

analyses were performed using Statistica (V7.1 Statsoft Inc, 

Tulsa OK USA). All identified individual fatty acids (expressed as 

percentage of total fatty acids) were compared among deep-

water, shallow-water and translocated lobsters using principal 

components analysis (PCA). PCA reduces the number of 

variables by producing components using linear correlations 

between variables to identify those fatty acids that contribute 

most to the separation between observed groups and was 

performed using PRIMER 6 software (PRIMER-E, Plymouth, UK). 

 

4.3 Results 

 

4.3.1 Total lipid content and lipid class composition 

 

Mean total lipid content (mg g-1 wet wt.) of the digestive 

gland did not significantly vary between deep-water, shallow-

water and translocated lobster populations (F2,25 = 0.56, p = 

0.58). The major lipid class in the digestive gland was 

triacylglycerol (TAG) followed by phospholipid (PL), free fatty-acid 

(FFA) and sterol (ST) (Table 1). TAG concentrations in the 

digestive gland did not vary between the lobster populations 

(F2,24 = 0.41, p = 0.66).  Total lipid content in the leg muscle 
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constituted less than 1% of the muscle (wet weight basis) and 

within populations was less variable than in the digestive gland. 

Phospholipids made up approximately 95% of the lipid content 

in the leg muscle of lobsters from each population, and the 

remaining lipid was ST, with minor proportions of FFA and TAG 

(Table 1). 

 

Table 1. Total lipid content (mg g-1 sample wet weight) and lipid 
class composition (as % of total lipid) of the digestive gland and 
leg muscle expressed as mean ± SE from shallow-water, deep-
water and translocated (recaptured after 12 months) lobsters. 
Size range indicative of the carapace length measurements, n = 
sample size; TAG = triacylglycerol; FFA = free fatty acid; ST = 
sterol; PL = phospholipid. 
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The median BRI values for shallow (1.339) and 

translocated lobsters (1.341) were similar (Fig 2b), indicating 

that most lobsters were in their late post-moult to early inter-

moult stage of the moult cycle. Several translocated lobsters 

appear to be in their late inter-moult to pre-moult, indicated by 

their darker (reddish) blood pigment colour and higher BRI, and 

these same lobsters had higher TAG level (Fig 2a, b). Generally, 

lobsters in their late inter-moult and pre-moult stage are nearing 

the end of their maximum TAG accumulation phase and our 

results suggest that the low and high ranges in TAG 

concentrations in shallow-water and translocated lobsters (Fig 

2a) may be associated with the early and late phases of the 

moult cycle respectively.  
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Fig 2. Body condition indices of shallow-water, deep-water and 
translocated (recaptured after 12 months) lobsters (A) TAG 
concentrations from the digestive gland and (B) Haemolymph 
refractive index values of only shallow-water and translocated 
lobsters (symbols indicate raw data). Also indicated are the 
broad BRI ranges associated with the moult cycle of J.edwardsii 
(see Musgrove 2001): Post-moult 1.335 – 1.3400; Inter-moult 
1.3400-1.3450; Pre-moult 1.3460-1.3600. The box and whisker 
plot shows:  box = 1st-3rd quantiles; centre line = median value; 
whiskers = minimum-maximum values. Note, no blood 
information collected for deep-water lobsters.  
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4.3.2 Fatty acid compositions  

 

Digestive Gland 

The most abundant fatty acids in the digestive gland (>5% 

of total fatty acids for all populations) were 16:1n-7c, 16:0, 

18:1n-9, 18:1n-7, 18:0, 20:5n-3 (eicosapentaenoic acid: EPA), 

20:1n-9+11 and 22:6n-3 (docosahexaenoic acid: DHA).  

Monounsaturated fatty acids (MUFA) were the dominant group of 

fatty acids (40.2 ± 4.9 % to 41.8 ± 1.9 %) with similar 

proportions of saturated fatty acids (SFA) (27.7 ± 1.7 % to 28.6 ± 

1.9 %) and polyunsaturated fatty acids (PUFA) (29.6 ± 3.0 % to 

31.8 ± 3.4%) (Table 2). Concentrations of total fatty acids (TFA) 

in the digestive gland did not vary significantly between deep 

water, shallow water and translocated populations (F2,25 = 2.68, 

p = 0.88), nor did total concentrations of SFA, MUFA and PUFA 

(F6,46 = 1.25, p = 0.30) (Fig. 3c). Analyses of selected (n-3) and (n-

6) PUFA that typically indicate dietary differences also were not 

different between lobster populations (F4,48 = 1.57, p = 0.197) 

(Fig. 3e). Mean concentrations of EFA was significantly higher in 

translocated lobsters than in shallow-water and deep-water 

lobsters (F12,22 = 5.27, p < 0.001) (Fig 3a). Mean concentrations 

of EPA and AA were significantly higher in translocated lobsters 

than in shallow-water lobsters, but not different from deep-water 
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lobsters. Mean concentrations of DHA were higher in deep and 

translocated lobsters than in shallow-water lobsters (Fig 3g).  

 

Leg Muscle  

The most abundant fatty acids in the leg muscle were the 

same as those in the digestive gland with the addition of 20:4n-6 

(AA). Both AA and EPA were found in higher proportions in leg 

muscle than in the digestive gland (> 5% and >10% of total fatty 

acids respectively) (Table 2). Concentrations of fatty acids in the 

leg muscle were less than 10% of the total fatty acids in the 

digestive gland. Although there was no significant difference in 

the concentrations of total fatty acids between shallow, deep and 

translocated lobsters (F2,23 = 5.60, p = 0.10), PUFA were 

significantly higher in translocated than in shallow-water 

lobsters (F6,42 = 3.99, p < 0.01, Fig. 3d). The sum of (n-6) PUFA 

was significantly higher in deep-water lobsters than in shallow 

and translocated lobsters, while the sum of (n-3) PUFA was 

higher in translocated lobsters than in shallow water and deep 

water lobsters (F4,44 = 5.37, p < 0.01) (Fig. 3f).  Concentrations of 

EFA were also higher in translocated lobsters than in shallow 

and deep-water lobsters (F12,36 = 6.48, p < 0.01) (Fig. 3b).  
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Fig 3. Comparisons of key fatty acid groups (A-F) and individual 
essential fatty acids (G-H) (mean ± SE, mg g-1 sample wet weight) 
from the digestive gland and leg muscle tissues of shallow-water, 
deep-water and translocated lobsters (recaptured after 12 
months): TFA = total fatty acids; EFA = essential fatty acids; SFA 
= total saturated fatty acids; MUFA = total monounsaturated 
fatty acids; PUFA = total polyunsaturated fatty acids; �3 = total 
omega-3 long-chain fatty acids; �6 = total omega-6 long-chain 
fatty acids; EPA =  Eicosapentaenoic acid;  DHA =  
Docosahexaenoic acid;  AA = Arachidonic acid. All groups were 
analysed using ANCOVA or MANCOVA and the results of the 
post-hoc Tukey’s test are indicated by superscripts where 
significant difference among lobster populations are indicated by 
different  (a, b, c ) letters.   
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Eicosapentaenoic acid (EPA) was higher in translocated lobsters 

than in shallow and deep-water lobsters while DHA was slightly 

higher in deep-water lobsters, but not different between shallow 

and translocated lobsters. Arachidonic acid (AA) was significantly 

different between all lobster populations, and was highest in 

deep-water lobsters (Fig. 3h). 

 

Leg muscle fatty acid profiles were grouped separately for 

each of the three populations on the PCA plot, although there 

was slight overlap between the FA profiles of translocated 

lobsters and shallow-water lobsters along the secondary axis 

(PC2, 23%, Fig 4). Deep-water lobsters were distinct from the 

other two populations along PC1, which accounted for 48% of 

the variance. Separation among groups along PC1 was driven 

strongly by 16:1(n-7)c and EPA while the main fatty acid causing 

separation between shallow and translocated lobsters along PC2 

was 18:1(n-9), with additional influences from EPA and DHA.  
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Table 2. Fatty acid composition (as % of total fatty acids) of the 
digestive gland and leg muscle from shallow-water, deep-water 
and translocated J.edwardsii. Values are mean ± SE of those 
fatty acids (23 out of 63) with a mean value exceeding 1% in all 
groups ; LA, linoleic acid; AA, arachidonic acid; EPA, 
eicosapentaenoic acid; DHA, docosahexaenoic acid; DPA, 
docosapentaenoic acid; SFA, saturated fatty acids; MUFA, 
monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; 
Fald, fatty aldehyde derived from plasmalogen. 
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Fig 4. Two-dimensional PCA plot of the first two principal 
components derived from the leg muscle fatty acid profiles (as % 
of total fatty acids) of shallow-water, deep-water and 
translocated (recaptured after 12 months) lobsters. The 
percentage of variance explained by each component is indicated 
on the axis title. Key fatty acids responsible for the directional 
displacements are indicated by vectors.  
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4.4 Discussion 

 

4.4.1 Fatty acid differences in Jasus edwardsii 

 

Fatty acid profiles were different in lobsters from deep-

water, shallow-water, and translocated populations. Overall FA 

compositions of translocated lobsters were more similar to those 

of shallow-water lobsters than to deep-water lobsters, while 

concentrations of some individual FA were more similar to deep-

water lobsters (e.g. 20:1n-9+11). These differences in FA profiles 

are consistent with differences in diet between lobster 

populations at different depths and thereby confirm the change 

in diet in translocated lobsters. Identification of prey items from 

lipid signature analyses, as has occurred for a number of other 

marine species, may further resolve dietary differences between 

deep and shallow-water populations. Our results also showed 

that fatty acid profiles of deep, shallow and translocated lobsters 

were similar between muscle and hepatopancreas, 

demonstrating that a period of 12 months was sufficient 

(although not the maximum time period required) for the 

biochemical signature of the new prey items to be assimilated by 

translocated lobsters. This is supported by aquarium feeding 

trial studies where lipid profiles of adult Jasus edwardsii (tail 

and leg muscle) changed in response to different feed types after 
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four months (Nelson et al. 2005), and after three months in 

juveniles (whole body) (Johnston et al. 2003).  

 

Both tissue types revealed concentrations of n-3 and n-6 

FA were higher in deep than in shallow-water lobsters, and 

highest in translocated lobsters.  The ratio of n-3/n-6 was also 

lowest in deep-water lobsters and markedly higher in shallow 

and translocated lobsters. Eicosapentaenoic acid (EPA) and DHA 

were the two main PUFA driving the separation of deep-water 

lobsters from shallow and translocated lobsters in our principal 

component analysis. These essential fatty acids play an 

important role in the growth and development of crustaceans, 

especially during the early larval and juvenile stages (Nelson et 

al. 2006). Essential fatty acid deficiency has been linked to slow 

growth rates and a decrease in feeding efficiency in several fish 

species and a reduction in egg production and deformities in 

larval morphology (Corraze 1999). The production of aquaculture 

feeds is a prime example of the importance of nutrient balance in 

achieving positive growth and condition outcomes. An imbalance 

can lead to competition between fatty acids and the inefficient 

synthesis of prostaglandins (D'Abramo 1997). Therefore it is 

possible that an imbalance in the proportions of EFA in the diet 

(e.g. AA/EPA, DHA/EPA ratios) in conjunction with insufficient 
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levels of essential nutrients may be contributing factors in the 

slower growth rates of deep-water lobsters.  

 

4.4.2 Nutritional condition of Jasus edwardsii 

 

Total lipid and TAG content were not different between the 

three lobster populations, despite differences in the fatty acid 

compositions. The most plausible reason for similarity in TAG 

and lipid is the influence of the moult cycle. For crustaceans, 

growth is achieved through the cyclic accumulation and 

depletion of organic reserves, a significant and important feature 

of decapod physiology (Passano 1960). During the long inter-

moult period of the moult cycle, TAG reserves are accumulated 

for the next moult event. Lipid content is therefore constantly 

changing in addition to supplying the demands from 

reproduction, daily energetics, and environmental and seasonal 

fluctuations in food availability. In the present study, a high BRI 

in a number of translocated lobsters indicated they were in the 

inter-moult or pre-moult phase, while the majority were in the 

post-moult phase. These same lobsters had high levels of TAG.  

These differences in the moult phases within populations, 

especially among translocated lobsters, highlight the 

physiological heterogeneity among the lobsters used for analysis. 
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This highlights the importance of moult staging when 

quantifying lipid content, which many previous studies have 

overlooked. 

 

Most interesting was the finding of higher concentrations 

of EFA in the hepatopancreas and muscle of translocated 

lobsters than in shallow or deep-water lobsters. In particular 

very high mean concentrations of total and selected PUFA 

groups in the muscle of translocated lobsters. Rates of 

metabolism, digestion and catabolism which are hormonally 

controlled (Santos et al. 1997) and driven by several factors such 

as temperature, light and diet (Childress et al. 1990), may 

change in response to a new habitat and the ensuing 

environmental changes. Translocated lobsters analysed in our 

study had experienced 12 months in the new environment and 

had also changed in appearance (Chapter 3) and growth 

(Chapter 6). Initial differences in growth rate may have been due 

to metabolic differences, assuming significant differences in 

metabolism were present between deep and shallow-water 

lobsters, although this is largely speculative at this point. 

Translocated lobsters may have experienced increased nutrient 

uptake or a greater absorption rate indicative of the higher 

concentrations of lipid and fatty acids in the digestive gland that 
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may reflect modifications to the digestive physiology due to 

greater quantity of food being digested. This may be a 

compensatory response whereby an increase in the size and 

volume of the digestive gland and enzyme activity occurred in 

response to the new habitat.  

 

 Leg muscle of translocated lobsters had higher 

concentrations of PUFA and in particular EFA than in shallow 

and deep-water lobsters. Given the accelerated growth in 

translocated lobsters over a short period of time, increased 

tissue synthesis including incorporation of associated lipid, may 

be a possible explanation for this observation which is similar to 

a compensatory response that is sometimes induced by a period 

of starvation or reduced nutrient intake (Ali et al. 2003). 

Compensatory responses can include hyperphagia, rapid weight 

increase, repletion of energy reserves and increased nutrient 

intake. For small and pale coloured translocated lobsters, risk 

from cannibalism is high. One way to avoid this situation is to 

eat and grow as fast as possible. This catch-up growth behaviour 

in habitats of high predation has been shown in several fish 

studies where there is a trade off between escape performance 

and growth acceleration (Alvarez and Metcalfe 2007). Since 

compensatory responses are reported to be short-lived, it is 
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unclear if this will be maintained over several moults by 

translocated lobsters or if it is regulated at optimal or maximal 

rates.  

 

From a commercial and marketing point of view, increased 

concentrations of EFA in edible tissues are highly favourable. 

Recent studies have shown that consumption of oily fish has 

associated health benefits in humans, as they decrease 

cholesterol levels and the subsequent occurrence of 

cardiovascular disease (Gebauer et al. 2006; Jarvinen et al. 

2006). In particular, the emphasis is on the richness of omega-3 

long-chain PUFA, which in our study were 30% higher in 

concentration in the muscle of translocated lobsters than in 

shallow and deep-water lobsters. This is a significant and novel 

finding given the marketing issues surrounding the importance 

of omega-3 long-chain PUFA in cultured fish species comparable 

to their wild counterparts. Nelson et al. (2005) found the lipid 

and fatty acid content of muscle of cultured and wild J. 

edwardsii to be similar, but the animals differed in their quality 

attributes such as taste, texture and colour. Therefore enhanced 

nutrition in translocated lobsters may also implicate enhanced 

flavour and flesh quality thus providing the basis for further 

research.  
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4.5 Conclusion 

 

Differences in fatty acid profiles between deep and 

shallow-water populations and the change in their FA profile 

after translocation highlights the dietary plasticity of adult Jasus 

edwardsii. Changes in key market traits, in particular the health 

benefiting omega-3 long-chain PUFA, were also observed, 

although it is presently unclear if these differences arise from 

nutritional condition and/or other factors. This study is the first 

to show nutritional enhancement through the in situ 

manipulation of lobster habitat. This finding suggests 

translocated deep-water lobsters have enhanced nutritional 

condition and quality, beyond that of legal-sized shallow-water 

lobsters, thus raising its market potential. 
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Abstract  

 

Deep-water southern rock lobsters were translocated to inshore 

reefs harbouring high-market value southern rock lobsters as 

part of an experimental spatial management strategy to enhance 

their market traits, growth and post-harvest condition. We 

assessed the haemolymph condition of deep-water lobsters 

before and after (over a period of 14 months) translocation for 

comparison to resident lobsters at the release site using a range 

of moult and haemolymph indices. Moult indices indicated deep-

water lobsters were of similar moult stage to resident lobsters 

before translocation, they moulted earlier than resident lobsters 

in their new habitat but were of similar moult stage to resident 

lobsters when sampled 12 months after translocation. 

Comparisons of haemolymph parameters included total 

haemocyte count, serum protein and electrotypes such as 

magnesium and potassium, which were all significantly different 

between deep and shallow-water lobsters prior to translocation. 

These populations when sampled 12 months after translocation 

showed similar concentrations of all haemolymph parameters, 

suggesting an improved resilience to post-harvest stress in 

translocated lobsters. Benefits of translocation to inshore areas 

on the post-harvest condition of deep-water lobsters could be 
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due to improved body condition through the manipulation of 

habitat and diet but also from the reduced post-capture 

transport time and stress duration.      

 

5.1 Introduction 

 

The live trade of southern rock lobsters (Jasus edwardsii) 

from Australia to export markets in Asia began in the late 1980’s 

and supplied by the three main State fisheries of Tasmania, 

South Australia and Victoria (Roberts 1994). The species is 

harvested from a range of depths, premium lobsters are caught 

from inshore shallow-water areas (< 30 m) where they are fast 

growing, red in colour and of high vitality for live transport. 

Lobsters harvested from offshore deep-water areas (> 30 m) are 

paler in colouration and thus sold at a discounted price (Chapter 

2) but are also slow growing, and incur higher transport 

mortality. Maintaining low mortality rates is thus a priority as 

the condition of live lobsters affects its sale price and overall 

profitability of the fishing industry. While spatial differences in 

demographic traits such as growth (Punt et al. 1997), size at 

sexual maturity (Gardner et al. 2006) and shell colour (Chapter 

3) have been documented for J. edwardsii, it is not clear if 
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distinctive physiological or biochemical differences exist between 

deep-water and shallow-water lobster populations or at least in 

their response to post-harvest stress.  

 
Stress is a physiological response altering the 

physiological condition to beyond the normal range and can be 

either readily reversible if physiological disturbance are within 

the homeostatic capability of the lobsters, or it can be non-

reversible, ultimately leading to death (Taylor et al. 1997). 

Stressors associated with live transport of crustaceans generally 

arise from the interchanges between immersions and emersions 

(air breathing) and exacerbated through capture and handling by 

fishing gear and crew, exposure to varying temperatures and 

oxygen availability, physical damage and interactions with other 

lobsters. Currently, processors rely on their visual assessment of 

lobster vigour (tail flipping, antenna response and general 

handling resistance) before lobsters are live transported, but 

quantitative measurements of condition can be assessed from 

oxygen uptake (Whiteley and Taylor 1992), stress hormones 

(Chang 2005), muscle metabolites (Speed et al. 2001) and 

haemolymph (blood) parameters (Moore et al. 2000; Fotedar et 

al. 2006; Lund et al. 2009). The crustacean haemolymph is the 

principal medium for transport and storage of a range of organic 
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and inorganic constituents and indices such as blood gases, 

blood pH, proteins, lipids, cells and ions (Paterson and Spanoghe 

1997) are widely used measures of physiological condition. In 

addition to stress, haemolymph indices are also affected by the 

moult cycle, reproductive cycle and nutritional condition (Moore 

et al. 2000; Musgrove 2001), so it is important to take these 

factors into consideration when assessing post-harvest stress. 

 

Translocation of deep-water southern rock lobsters into 

shallow-water reefs inshore is currently being explored as a 

fisheries enhancement strategy to increase their yield and 

improve marketability, including the live transport condition of 

deep-water lobsters. Large-scale experimental translocations 

have shown translocated lobsters to change from a pale to a red 

colouration, increase their growth rate and achieve enhanced 

nutritional value (Chapters 3, 4, 6) after their first moult in the 

new shallow-water habitat. High survival of translocated lobsters 

(Green and Gardner 2009) in synergy with enhanced biological 

traits imply improved physiological condition for deep-water 

lobsters after translocation, although how this translates to 

improved post-harvest condition is yet to be demonstrated. Thus 

the central aim of this study was to determine how translocation 

may have altered the post-harvest condition of deep-water 
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lobsters and if translocated lobsters share similar conditional 

profiles to resident lobsters.  In this study we compare the post-

harvest condition of deep-water and shallow-water J. edwardsii 

before and 12 months after translocation, as well as describe the 

temporal variability in the hemolymph condition of translocated 

and resident shallow-water lobsters over a 14 month post- 

translocation period.  

 
5.2 Materials and methods 

 

5.2.1 Translocation of J. edwardsii 

 

During November 2005, 1998 sub-legal sized adult 

lobsters (68 - 120 mm) were captured from around Maatsuyker 

Island (60 – 80 m deep) (43.38°S, 146.17°E) using baited 

(barracouta and jack mackerel) lobster pots after a soak time of 

approximately 6 hours. Immediately upon capture, all lobsters to 

be translocated were tagged with an individually coded T-bar tag 

in the ventral surface of the first abdominal segment (coloured 

Hallprint T-bar anchor tag), had one pleopod clipped, and details 

of carapace length (CL), shell colour and sex recorded (bio-data). 

Captured lobsters were then kept on-board the research vessel 
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in a flow-though holding tank for approximately 48 hours while 

being transported to their release site (5 - 15m deep) at Taroona 

Marine Reserve (42.95°S, 147.34°E). Due to the logistical 

difficulties of haemolymph sampling on board the research 

vessel (weather, time and consistency with other surveys), a sub-

sample of translocated lobsters (127 females (FM) and 72 males 

(M)) were land transported (out of water) back to the laboratory 

and placed into a re-circulating tank for 2-5 hours (time period 

between the first and last lobster sampled) before their 

haemolymph was extracted.  

 

Also in November 2005, shallow-water lobsters (23 FM, 27 

M) from the release site (Taroona Marine Reserve) were captured 

using baited pots after a soak time of approximately 12 hours. 

Captured lobsters had their size, shell colour and sex recorded 

and land transported back to the laboratory and placed in a re-

circulating tank for 2-3 hours before their haemolymph was 

extracted. Taroona Reserve we re-surveyed using baited pots (as 

above) at 2, 3, 5, 8, 10, 12, 14 months after translocation. 

During each survey the bio-data was recorded for all recaptured 

translocated lobsters as well as a sub-sample of resident 

lobsters. Haemolymph samples were extracted after being 

transported back to the laboratory and allowed a period of 2-3 
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hours of acclimation in holding tanks. Haemolymph samples 

from resident lobsters were not collected from the 2 and 3-month 

post-translocation surveys. All haemolymph samples were 

placed immediately on ice and later stored in a -18ºC fridge. 

Moult growth increments of more than three millimetres and the 

partial or complete regeneration of the cut pleopod were used as 

moult confirmation (Ziegler et al. 2004). 

 

5.2.2 Haemolymph collection and analyses 

 

A haemolymph sample of 2 – 3 ml was extracted (using a 3 

ml syringe, 22-gauge needle) by pericardial puncture and 

transferred to a sterile Eppendorf tube. Haemolymph pigment 

stage (1: colourless to 4.5: dark red) was assessed using the 

Southern Rock Lobster Blood Colour Reference Card developed 

by Musgrove (2001). The Pigment Stage Index (PS) was developed 

by Musgrove (2001) for the southern rock lobster Jasus 

edwardsii, and refers to the change in haemolymph colour 

during the moult cycle due to changes in astaxanthin 

concentrations in the haemolymph. From post-moult to inter-

moult, colour changes from clear/pale blue through to pale 

yellow (PS 1 to PS 2.5) and progressively darken to a deep orange 

in pre-moult lobsters (from PS 3 to PS 4.5). This index can be 
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used to determine broadly the moult stage of a lobster where the 

darkening of the haemolymph colour corresponds with 

increasing pigment stage. All sampled animals were released 

alive back into Taroona Reserve. 

 

A small aliquot of the haemolymph sample was then 

placed in a hand-held refractometer (Model UR-2, Industrial and 

Scientific Supply Co.) to measure the refractive index (RI). The 

blood RI values were converted to blood serum a protein 

concentration (as outlined by Musgrove 2001) which is a reliable 

index of physiological condition (Oliver and MacDiarmid 2001). 

For the analysis of total haemocyte counts (THC) which is 

another common measure of health condition, a 200 µl aliquot of 

haemolymph was mixed with 200 µl of Na-cacodylate based anti-

coagulant in another eppendorf tube (4.28 g of Na-cacodylate 

added to 90 ml of distilled water, pH adjusted to 7.0 using 1.0 M 

HCl, 400 µl of stock 25% glutaraldehyde solution added and 

volume adjusted to 100 ml with distilled water). Tubes were well 

mixed prior to measurements of THC using a haemocytometer 

(Improved Neubauer, Bright-line, BLAUBRAND®).  

 

Key haemolymph electrolytes critical for ion regulation in 

crustaceans was extracted from, the remaining whole 
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haemolymph that was allowed to clot overnight, and then 

macerated and centrifuged at 1600 g for 10 minutes. Using a 

sterile 1ml syringe, the serum portion was extracted and 

transferred to another sterile eppendorf tube. Analysis of serum 

extracts was measured for calcium (Ca), magnesium (Mg), and 

potassium (K) using a Cobas Mira Clinical Analyser. Extracts 

were diluted 1:4 for K and concentration determined by ion-

selective electrode (ISE) and further diluted 1:8 for Ca and Mg, 

which were determined by colorimetric methods. Haemolymph 

electrolytes measurements were only analysed from a sub-

sample of translocated and resident male lobsters captured in 

Nov 2005 and Jan 2007. 

 

Multivariate analyses were used to compare haemolymph 

parameters (excluding PS index) between deep-water and 

resident lobsters before translocation (Nov 05), and between 

translocated and resident lobsters after translocation (Nov 06). 

Analyses were performed separately for the sexes due to 

differences in their moult stages during these sampling periods. 

Electrolytes were also analysed separately as these were only 

measured in males and were compared between Nov 05 and Jan 

07. All variables were normally distributed and the Pillai’s trace 

test was used as multivariate test of significance and significant 
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effects were further examined using Tukey’s post-hoc analysis. 

Statistical analyses were performed using Statistica (V7.1 

Statsoft Inc, Tulsa OK USA).   

 

5.3 Results  

 

The PS index provides a broad indicator of moult stage, 

and differences in mean PS values were not very large between 

populations in Nov 05 and in Nov 06, suggesting no difference in 

moult categories. That is, deep-water lobsters were of similar 

moult stage to shallow-water lobsters before translocation as 

well as 12 months after translocation. Concentrations of serum 

protein (SP) and total haemocyte counts (THC) varied 

significantly between deep-water and shallow-water populations 

before translocation (Females: F2,47 = 28.97, p < 0.01; Males:  

F2,96 = 17.74, p < 0.01) but no differences between translocated 

and resident lobster populations 12 months after translocation 

(Females: F2,29 = 1.89, p = 1.68; Males:  F2,32 = 1.86, p = 1.72). 
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Fig 1. Temporal variability in the 
different haemolymph indices (mean ± 
SE)(pigment stage, serum protein and 
total haemocyte counts) sampled from 
resident (broken line) and translocated 
(solid line) female (left column) and male 
(right column) lobsters. Light grey area 
indicates the moulting period of 
translocated lobsters and dark grey area 
indicates the moulting period of resident 
lobsters. Significant difference between 
resident and translocated populations is 
indicated by * . 
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5.3.1 Pigment Stage  

 

 Growth moult increments, change in shell colouration and 

pleopod regeneration from recaptured tagged lobsters were used 

to estimate the moult period for translocated lobsters between 

sampling periods. The moult period for translocated females was 

between Feb 06 and April 06, and for translocated males we 

estimate moulting to occur between June 06 and Sep 06. These 

moult estimates were approximately 2-3 months in advance of 

the moulting by the resident population. In females, peak mean 

PS values of 4.0 (translocated) and 3.3 (resident) occurred prior 

to moulting and the lowest mean PS values 2.4 (translocated) 

and 1.8 (resident) occurred in the early inter-moult phase when 

the females were berried (carrying eggs) (Fig 1a). At the 

completion of the spawning period in Sept 06, PS values 

increased in the following months until Jan 07 when sampling 

ceased. In males however, no cyclic trends were observed for 

both translocated and resident populations (Fig 1b). Mean PS 

value did not exceed 2.0 on any of the sampling months over the 

14-month period, indicating that sampled lobsters were in their 

inter-moult phase.  
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5.3.2 Serum Protein  

 

Serum protein (SP) concentrations of translocated female 

lobsters followed a cyclic trend of rise and fall with highest peaks 

occurring 3 (Feb 06) and 12 months (Nov 06) after translocation 

(Fig 1c). For males, a cyclic trend was also observed with values 

peaking prior to moulting of resident lobsters (Sep 06), however 

the peak for translocated males occurred in Apr 06, well in 

advance of their estimated moulting period (Fig 1d). SP 

concentrations declined gradually after moulting in translocated 

males but more sharply in resident males.  Before translocation, 

mean SP concentrations of deep-water females were significantly 

lower than resident females, but both similar 12 months after 

translocation. For males, mean SP concentrations were 

significantly higher then resident males before translocation but 

no differences detected 12 months after translocation.   

 

5.3.3 Total Haemocyte Counts  

 

Trends in THC reflected that of SP for males of resident 

and translocated populations however for females only a subtle 

cyclic pattern was detected (Fig 1e, 1f). For females, we observed 
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an increase in THC leading up to the moulting period of 

translocated females, then a decrease during post-moult, 

followed by a gradual increase in the subsequent months. This 

pattern was very similar to that of resident females. Mean THC 

was higher in deep-water lobsters than in resident lobsters 

before translocation (Nov 05) but were similar between 

translocated and resident populations 12 months after 

translocation.  

 

5.3.4 Electrolytes 

 

Concentrations of electrolytes were significantly different 

between deep-water and shallow-water males before 

translocation in Nov 05 (F3,53 = 21.89, p < 0.01) but were similar 

between translocated and resident males after translocation in 

Jan 07 (F3,56 = 1.02, p = 0.39). Concentrations of Ca were similar 

between populations before and after translocation, while Mg 

concentrations of deep-water lobsters were significantly higher 

than in resident lobsters and K concentrations were significantly 

lower than in resident lobsters in Nov 05 (Fig 2).  

 



�

�

Chapter 5                                                      Haemolymph condition variation                           

�

116 
 

 

 

 

 

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig 2. Comparisons of calcium, magnesium and potassium 
concentrations (mmol L-1) between resident and translocated 
male lobsters sampled in November 2005 and January 2007. 
Significant differences between populations are indicated by *. 
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5.4 Discussion  

 

The overall haemolymph conditional profile of deep-water 

lobsters was different from those of shallow-water lobsters prior 

to translocation, but the conditional profiles of translocated 

lobsters captured 12 months later were similar to resident 

lobsters. Haemolymph indices also showed clear temporal trends 

in physiological condition, largely influenced by the moult cycle.  

 

Interpretation of the haemolymph indices relied on 

identifying the moult phases of all lobsters over the sampling 

period using the different morphological indicators (moult 

increments, pleopod regeneration, shell colour change) together 

with the PS index. This allowed us to account for the moult 

influence when assessing the overall haemolymph response to 

post-harvest stress. This step was important because crustacean 

physiology is dominated by the moult cycle and each stage is 

associated with changes in the composition of the blood 

(Maynard 1960; Mercaldo-Allen 1991). During pre-moult, a 

resorption of the exoskeleton occurs and the blood provides a 

temporary storage sites for these materials. Uptake of water at 

moult increases the haemolymph volume and rapidly dilutes 
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blood constituents. Water uptake occurs once the old 

exoskeleton begins to detach from the newly formed cuticle 

underneath. During post-moult, growth of muscle tissue reduces 

haemolymph volume and thus the concentrations of 

haemolymph components proportionally increase (Florkin 1960).  

 

Overall trends in the haemolymph indices showed peaks 

and troughs associated with different moult stages, but these 

patterns were not always synchronised between translocated 

and resident lobsters since translocated lobsters moulted earlier 

than resident lobsters. For translocated females, the peaks and 

troughs in indices occurred at the beginning and end of the 

estimated moult period, thus showing a good corroboration 

between haemolymph condition and moult indices. For 

translocated males however, clear cyclic trends in the RI and 

THC that were indicative of the moult influence on the 

hemolymph condition were suppressed in the PS index. 

Morphological moult indicators estimated moulting to occur 

several months after the peaks in RI and BRI indices, which 

suggests either an extended pre-moult phase or a staggered 

moulting event among males. Despite the inconsistencies in 

moult estimates between indices, moult stages of translocated 

and resident lobsters were similar before translocation (Nov 05) 
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and 12 months after translocation (Nov 06). Thus haemolymph 

conditional differences between translocated and resident 

lobsters are most likely to be driven by factors other than its 

moult condition.    

 

The total number of circulating haemocytes are generally 

elevated for a period of time during the post-harvest process in 

response to bacterial infections, physical injury and dehydration, 

but can decline gradually as an indication of worsening health 

condition (Jussila et al. 1997) resulting in very low THC at the 

moribund stage (Fotedar et al. 2006). For adult J. edwardsii the 

THC range that was subjective to moult stage was 5 – 25 x 106 

cells/ml. Lavallée et al (2000) reported for Homarus americanus, 

an increase in THC from 20 to 30 x 106 cells/ml from capture to 

when they arrive for processing. Jussila et al. (1997) reported a 

range of 8.5 to 15.9 x 106 cells/ml for freshly arrived western 

rock lobsters to the processing factory, and a range of 5.3 to 5.6 

x 106 cells/ml for healthy lobsters (after a 16 hour recovery). 

Lower THC of deep-water J. edwardsii males and females than 

resident lobsters from this study suggests a greater deterioration 

in the post-capture condition of deep-water lobsters.  
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Haemolymph serum protein (SP) concentrations responds 

to changes in the haemolymph volume through water uptake or 

fluid loss, thus lowest SP levels occur in post-moult lobsters 

when they ingest large volume of water to expand their newly 

formed exoskeleton (Oliver and MacDiarmid 2001). Blood pH and 

concentrations of organic and inorganic ions may also alter the 

total protein concentrations in response to stress (Paterson and 

Spanoghe 1997), while some proteins may be catabolised as an 

energy source after glycogen reserves are exhausted. Lavallée et 

al. (2000) reported a range of 18.6 to 99.8 g/L for H. americanus 

post-capture on boats, while Paterson et al. (2005) reported 

serum protein levels greater than 80 g/L for P. cygnus following 

simulated post-harvest handling. We found temporal trends in 

the serum protein concentrations of translocated and resident 

lobsters to reflect changes in the moult phases but never 

exceeding 60 mg/L. Since SP levels of deep-water lobsters was 

lower in females and higher in males than in resident lobsters, it 

is not clear from the SP index which population reflects a poor, 

healthy or declining health condition. Perhaps haemolymph 

indices sampled from dead or moribund lobsters may have 

provided a greater understanding on their deviations in health 

condition from lobsters unsuitable for live transport.  
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Emersion stress triggers a series of physiological 

disturbances interfering with the osmotic and ionic regulation as 

animals switch from aerobic to anaerobic respiration (Lignot et 

al. 2000). Thus a sign of good health is the ability to maintain 

tight regulation of ions during post-harvest. Calcium (Ca) ion 

concentrations change in the haemolymph during the buffering 

of acidosis, while magnesium (Mg) and potassium (K) 

concentrations respond to salinity changes and also increase in 

response to post-harvest stress caused by hypoxia which is 

indicative of body volume changes and how the antennal gland 

functions (Paterson and Spanoghe 1997). Paterson et al. (2005) 

reported significant deviations in Mg, K and Ca levels between 

western rock lobsters considered to be poor and good condition 

for live trade, but the same cannot be inferred for deep and 

shallow-water J. edwardsii without reference or baseline values. 

Both Mg and K were significantly different between deep and 

shallow-water males but its unclear if these deviations reflect 

poor ion regulation given the absence of reference values. 

Perhaps the sequence of the ion concentrations may provide an 

alternative approach to assess condition. For example, for 

resident males in Nov 05, the order of decreasing concentrations 

were Ca > K > Mg and this order was the same as in Jan 06, 

however the order for translocated males changed from Ca > Mg 
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> K in Nov 05 to Ca > K > Mg in Jan 06 which reflected those of 

resident males. This suggests ion regulation in deep-water males 

may have been compromised by post-harvest stress.   

 

While this study did not monitor the haemolymph 

condition of lobsters throughout the entire post-harvest 

commercial process, significant deviations in health status 

between deep-water and shallow-water lobsters (before 

translocation) at an early stage of the process suggests that as 

physiological condition worsen during subsequent processing 

the likelihood of mortality for deep-water lobsters will be higher 

than for shallow-water lobsters. The similar condition profile 

between translocated and resident lobsters seems to suggest 

increased resilience to post-harvest stress in deep-water lobsters 

achieved through translocation. The impact of translocation on 

the physiological condition of deep-water lobsters may be due to 

change in diet and/or environmental influences, but from a 

commercial point of view other key benefits of translocation 

include the overall reduction in post-harvest transport time 

simply due to their closer proximity to land, thus reducing stress 

duration. Furthermore, current and related investigations do 

suggest that the body condition of deep-water lobsters have 

improved after translocation through increased growth rate 
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(Chapter 6), enhanced shell colour (Chapter 3) and nutritional 

condition (Chapter 4). By adopting the market traits of resident 

shallow-water lobsters, we assume this will translate to 

improved live transport condition in translocated deep-water 

lobsters.  
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Abstract  

Growth rates of southern rock lobster, J. edwardsii, decrease 

from north to south of Tasmania and also decrease with depth. 

Slow-growing lobsters from deep-water regions were translocated 

to shallow-water, inshore areas to examine the potential of 

translocation to increase yield for the Tasmanian Rock Lobster 

Industry. Within their first moult, translocated lobsters 

increased their growth rates, exceeding that of resident deep-

water lobsters from the original site. Growth of translocated 

females increased to the extent that it exceeded resident 

shallow-water females in the first year post-release. The 

increased growth rate of deep-water southern rock lobsters after 

translocation and the magnitude of the growth changes achieved 

in a short period highlight the plasticity in growth of this 

species. Growth, and therefore size-at-age, is potentially 

determined by density effects, food availability or other 

unidentified environmental factors. Rapid increases in lobster 

growth achieved through translocation suggest that 

translocation could be applied to increase the productivity of the 

fishery.  
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6.1 Introduction�
 

Variable growth of the southern rock lobster Jasus 

edwardsii is the basis of ongoing spatial management challenges 

across the Australian fishery (McGarvey et al. 1999). Around the 

coast of Tasmania, growth rates of J. edwardsii decrease from 

north to south of the State and also decrease with depth (Punt et 

al. 1997). For example, the mean annual growth increment for 

females of carapace length 75 mm is 1-2 mm in the southern 

regions while in the north of the State it is more than 20 mm per 

annum. Likewise for males of carapace length 75 mm, the mean 

annual growth increment is 10 mm in the southern regions and 

22 mm in the north of the State (Punt et al. 1997). Differences in 

growth are also reflected in the spatial differences in L50% 

(length at which 50% of lobsters are mature) for female southern 

rock lobsters around Tasmania which is estimated to be 60-65 

mm in the south and 100-105 mm in the north of the State 

(Gardner et al. 2006). Thus maturation at a smaller size in deep-

water lobsters further inhibits their growth. Despite this spatial 

heterogeneity in growth and size at maturity, the Tasmanian 

Rock Lobster Fishery consists of a single fishing zone managed 

under a quota system with a State-wide size limit of 110 mm 

carapace length (CL) for males and 105 mm CL for females 

(Gardner et al. 2004). Under this management strategy, vast 
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differences in egg production, biomass levels and fishing effort 

are apparent between deep and shallow-water regions and from 

north to south of the State (Punt et al. 1997).  

 

In addition to slower growth rates, deep-water lobsters are 

characterised by paler shell colouration and body-shape traits 

that contribute to a reduced market price when compared to red 

lobsters from inshore regions. Under a quota management 

system, commercial fishers maximise the value of their catch by 

heavily targeting inshore lobster stocks and only 

opportunistically utilise the deep-water stocks, such as in winter 

months when price of pale coloured lobster are more favourable 

(Chapter 2). Better tailoring of management to the biology of J. 

edwardsii is currently being explored through research, 

including harvest strategy evaluation of regional size limits and 

harvests. One management option under consideration to deal 

with spatial differences in the biology of J. edwardsii is the 

translocation of adult lobsters from low-growth areas to high-

growth areas. If translocated deep-water lobsters survive and 

adopt the growth of resident shallow-water lobsters, 

translocation as a spatial management strategy has the potential 

to increase yield and exploitable biomass (Gardner and van 

Putten, 2008a). The first phase in exploring translocation as a 
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management tool was assessing its economic feasibility under 

assumed growth scenarios, and this predicted greatest increase 

in economic rent from the fishery when translocations occur 

between regions with greatest differences in growth (Gardner and 

van Putten, 2008b). The following phases of experimental 

translocation trials are underway in Tasmania to determine if 

translocated lobsters will adopt the biological characteristics of 

resident lobsters in the new habitat. In this paper we present 

results on the short-term growth response of translocated 

lobsters from a deep-water region in the south of the state to a 

shallow-water reef on the east coast of Tasmania.  

 
6.2 Materials and methods 

 

6.2.1 Translocation of lobsters  

 

In November 2005, 1998 adult, male and female deep-

water lobsters (68 – 120 mm CL) were trapped using baited 

metal pots in depths around 60 - 80 m from around Maatsuyker 

Island (43.38°S, 146.17°E) in the south of the State, and were 

transported in flow-through holding tanks onboard a research 

vessel and released into depths of 5 – 15 m at a marine protected 

area, Taroona Research Reserve (42.95°S, 147.34°E) on the east 

coast of Tasmania (Fig 1). All translocated lobsters were tagged 
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ventrally with T-bar tags (coloured Hallprint T-bar anchor tag), 

carapace length (CL) measurements and sex were recorded, and 

one pleopod was clipped as an indicator for moulting. Taroona 

Reserve was surveyed at 5 (April 2005), 8 (July 2005), 12 

(November 2005) and 14 (January 2006) months after the 

translocation for the collection of growth data from resident and 

translocated lobsters. Ongoing tag-recapture research surveys at 

Taroona Reserve and around Maatsuyker Island provided growth 

information of the resident lobster populations for the years 

2000 - 2005.  

 

6.2.2 Data analyses 

  

Data analyses of annual moult growth increments were 

restricted to setose (mature) females between 70 – 110 mm CL 

(at time of capture) and males between 70 – 130 mm CL. Only 

lobsters that were recaptured after the annual moulting season 

(April to May for females and September to October for males) 

were included, to ensure the lobster had moulted. Carapace 

length measurements were collected by numerous personnel 

over a number of years, and so we have assumed measurement 

errors of equal magnitude across all lobsters. Carapace length 

and growth increment data were transformed (log10) to achieve 
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normal distribution. Differences in growth moult increments 

were analysed using a combination of analysis of covariance 

(ANCOVA) using CL as covariate, and separate slope analyses 

(applied when the homogeneity of slopes assumption was 

violated). Pillai’s trace test was used as multivariate test of 

significance and significant effects were further explored using 

Tukey’s post-hoc analysis. All statistical analyses were 

performed using Statistica v7.1 (Statsoft Inc. Tulsa OK USA). 

Trends in growth differences among small (80-85 CL, well under 

the legal size) and large (Males; 100-105 CL, Females; 90-95 CL) 

those approaching the legal size) males and females are 

displayed using boxplots. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. Map of south-east Tasmania showing the deep-water 
capture site (Maatsuyker Island) and the shallow-water 
translocation release site (Taroona Marine Reserve).    
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6.3 Results 

 

Moult increments decreased with size and increments 

were highly variable across the size ranges for both males and 

females of the resident deep-water, resident shallow-water and 

translocated populations. Growth rates varied significantly 

among the three populations for both males (F(2,559) = 6.20, p < 

0.001) and females (F(2,606) = 4.48, p = 0.01) (Fig 2). For male 

lobsters ranging between 70 and 130 mm CL, the mean (± SD) 

growth rate of translocated males (after their first moult) was 

significantly greater (8 ± 6.1 mm) than resident deep-water 

lobsters (4.9 ± 3.6 mm) but less than the growth rate of the 

resident shallow-water male lobsters (11 ± 4.9 mm). For female 

lobsters ranging between 70 and 110 mm CL, the mean (± SD) 

growth rate of translocated females were significantly greater  (8 

± 4.2 mm) than resident shallow-water females (3 ± 2.5 mm) and 

resident deep-water population females (0.9 ± 0.8 mm).   

 

Growth trends between small and large sized lobsters 

showed that for small males (80 – 85 mm CL), the median 

growth increment was higher in shallow-water males (13.0 mm) 

than in deep-water males (7.4 mm) but was highest in 

translocated males (15.4 mm; Fig 3a). For large males (100 – 105  
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Fig 2. Growth regressions of resident male lobsters at 
Maatsuyker Is (Maat) (y = -0.082x + 13.17, r2 = 0.06), resident 
males at Taroona Marine Reserve (TMR) (y = -0.118x + 27.49, r2 
= 0.06) and translocated male lobsters (Trans) (y = -0.341x + 
42.34, r2 = 0.24). Also shown are the growth regressions of 
resident females at Maatsuyker Is (y = -0.046x + 4.85, r2 = 0.09), 
resident females at Taroona Marine Reserve (y = -0.172x + 
21.76, r2 = 0.16) and translocated female lobsters (y = -0.333x + 
36.08, r2 = 0.25). 
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mm CL), median growth increment was highest in shallow-water 

males (12.4 mm), followed by translocated males (7.1 mm) and 

lowest in deep-water males (3.1 mm; Fig 3b). Growth trends for 

small females (80 – 85 mm CL) showed that the median growth 

increment was highest in translocated females (8.8 mm), 

followed by shallow-water females (6.2 mm) and lowest in deep-

water females with (1.0 mm; Fig 4a).  For larger females (90 – 95 

mm CL), median growth increment was also highest in 

translocated females (4.4 mm), followed by shallow-water 

females (3.0 mm) and lowest in deep-water males (0.6 mm; Fig 

4b).     

 

6.4 Discussion 

  

This translocation experiment provided a unique 

opportunity to exploit the site-specific variation in growth rate in 

Jasus edwardsii. We were able to increase growth rates in the 

slow-growing, sub-legal portion of the population by moving 

them to areas of faster growth, and therefore increase the 

biomass of the stock. Growth in translocated females exceeded 

that of resident females of both the shallow and deep-water 

populations. This increases productivity and exploitable biomass 
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available to the fishery, given that commercial harvests are 

constrained by quota. 

 
 
 
 
 
 

 
 
 
Fig 3. Comparisons of growth increments between deep, shallow 
and translocated male lobsters in the (A) 80 – 85 mm and (B) 
100-105 mm size range. The box and whisker plot shows:  box = 
1st-3rd quantiles; centre line = median value; whiskers = 
minimum-maximum values. 
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Fig 4. Comparisons of growth increments between deep, shallow 
and translocated female lobsters in the (A) 80 – 85 mm and (B) 
95-95 mm size range. The box and whisker plot shows:  box = 
1st-3rd quantiles; centre line = median value; whiskers = 
minimum-maximum values. 
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Females are important to the fishery not only through 

contribution to exploitable biomass but also through egg 

production. Final implementation of translocation as a 

management tool needs to consider any implications for 

spawning stock biomass as translocated females receive less 

protection from size limits and enter the fishery sooner. 

 

The overall economic feasibility evaluation of translocation 

identified both the operational costs of translocation and change 

in growth to increase with distance from Maatsuyker Island 

(Gardner and van Putten 2008b). Under the assumption that 

translocated lobsters would match the growth rate of resident 

lobsters, greatest yield gain resulted when growth differences 

between capture and release sites were large. We found growth 

increments of translocated lobsters to be greater than resident 

deep-water lobsters thus achieving the primary goal of 

translocation, but the magnitude of growth change varied among 

small and large males and females. This suggests that gains in 

economic yield through translocation may be a function of size 

at release and gender in addition to growth differences between 

regions. The key outcome from the experimental trials was that 

growth of small yet mature males and females exceeded the 

growth of resident males and females within the first 12 months 
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of translocation. Given this result, selectively translocating small 

sized lobsters to release locations at shorter distances may 

deliver the predicted yield as from translocating lobsters to high-

growth areas in the north of the State, although this is yet to be 

substantiated from further experimental trials. Translocating 

small sized lobsters would however require additional effort for 

grading at sea thus increasing the cost of capture, but overall 

translocation costs will be reduced by the greater tonnages (from 

smaller sized lobsters) transported over smaller distances 

especially as catch rate of under-sized females is high.   

�

Modelled translocation from Maatsuyker Island to Taroona 

predicted a 347% increase in total biomass, with assumptions of 

constant harvest rate, that lobsters adopt the growth rate of 

resident lobsters in the first year after translocation, and that 

release mortality is no greater than 10% (Gardner and van 

Putten 2008a). Increased growth from the first year after 

translocation presented here support the predicted increased 

biomass and mortality of translocated lobsters was similar to 

resident lobsters, and was less than 10% (Green and Gardner 

2009). Given that none of the modelled scenarios considered 

growth of translocated lobsters to exceed that of the residents in 

the first 12 months, the results from this study would need to be 
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factored into future economic and biological evaluations for 

translocation operations. The magnitude of the growth changes 

in translocated lobsters in the current study is compelling in 

terms of its commercial implications, but longer term monitoring 

is needed to determine how growth rates change with 

subsequent moults, as this will influence the time period for 

translocated lobsters to enter the fishery.  

 

Growth in crustaceans is moult related and 

discontinuous, and regional variations in moult growth 

increments and moult frequency have largely been attributed to 

differences in diet, environmental factors such as water 

temperature and density effects for major commercial lobster 

species (review by Wahle and Fogarty 2006 including J. 

edwardsii McGarvey et al. 1999). Therefore to understand how 

translocation will alter lobster stock dynamics, one must 

consider the mechanisms regulating growth. For instance, 

manipulation of lobster population densities through 

translocations has the potential to also change the growth of 

resident lobsters at the capture and release sites due to change 

in food availability and other density effects. For example, Dixon 

and Day (2004) demonstrated growth enhancement of a 

“stunted’ abalone population by both density-reduction and 
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through translocation to habitats of faster growing abalone. 

Additional translocations of deep-water southern rock lobsters to 

sites of different densities are currently underway and the 

results of these experiments offer scope for quantifying density 

dependent growth in J. edwardsii. The role diet plays in the 

growth variation of J. edwardsii is also unclear but mean 

concentrations of lipid content and essential polyunsaturated 

fatty acids (PUFA) were higher in translocated lobsters than in 

deep and shallow-water lobsters suggesting enhanced overall 

body condition (Chapter 4). The change in diet through 

translocation is also apparent in the change in the shell 

colouration from pale/white to red due to the greater availability 

of dietary carotenoids in shallow-water habitats (Chapter 3).  The 

combined results of colour and growth enhancement will add 

value and increase the productivity of deep-water recruits to 

deliver greater economic yield from the fishery.       
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Translocation can improve yield and marketability 
of Jasus edwardsii  

 
 

The specific aims of this thesis were to quantify and 

describe the variation in the key market traits and growth of the 

southern rock lobster Jasus edwardsii between deep and 

shallow-water populations, and assess how these traits respond 

to translocation. In addressing these aims, the current study 1) 

described the depth and latitudinal variation in the shell 

colouration of J. edwardsii and ascertained an economic impact 

value on the commercial industry 2) quantified differences in 

growth, shell colour, body-shape market traits, nutritional and 

post-capture condition between deep-water and shallow-water 

lobster populations and 3) demonstrated how translocation can 

improve marketability and increase growth of deep-water J. 

edwardsii over a short time period. In doing so, this study has 

highlighted the plasticity of these traits and how its exploitation 

through population manipulation presents a feasible option to 

value-add to the commercial industry and increase the 

exploitable biomass of the fishery.    

 

Depth variation in the shell colour of J. edwardsii (Chapter 

2) is an unusual occurrence among commercial lobster species 

and thus creates unique marketing issues. These marketing 
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issues are due to price discounting based on shell colouration in 

Asian country markets (where there is a high regard for the 

colour red), which dominate the live market trade. Several 

approaches have been considered in dealing with the marketing 

of different coloured lobsters. Alternate market destinations for 

deep-water J. edwardsii are under development through 

industry marketing initiatives in the USA while attempts at sea-

cage grow out trials to enhance colour and improve growth 

delivered little success due to on-going feed, maintenance costs 

and poor lobster quality issues (Bryers and Geddes 1995). I have 

demonstrated that successful shell colour enhancement in J. 

edwardsii is however possible through translocation (Fig 1). 

Shell colour of all pale and white grades of J. edwardsii changed 

to the marketable red colour after its first moult in the new 

habitat (Chapter 3). For the commercial industry, colour 

enhancement through translocation can potentially eliminate the 

colour grading process and the estimated value of revenue loss 

at AUS$6.67 millions/year from price discounting can be 

recovered.  

 

In addition to colour variation, this study is also the first 

to describe morphometric variation among Australian J. 

edwardsii populations. The study revealed significant differences 
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in body-shape traits such as leg length and abdomen shape 

across a depth gradient, however there were no complete 

transformations of these traits in the short-term of a single 

moult in translocated lobsters (Chapter 3). Deep-water southern 

rock lobsters are not graded based on body-shape differences 

alone since greater weighting is given to shell colouration, but 

shape is a contributing factor to price discounting nonetheless. 

Therefore it is presumed that any inferior body-shape traits that 

persist in translocated lobsters will be overridden by the 

improved marketability of the red shell colouration.   

 

In addition to phenotypic variation in colour and 

morphology, differences in growth and body condition between 

deep and shallow-water lobster stocks also impact on the 

commercial potential of translocation. In addressing the 

commercial industry’s observations that deep-water southern 

rock lobsters have poorer condition and lower survival during 

live transport than their shallow-water counterparts, the health 

and nutritional condition of deep-water, shallow-water and 

translocated lobsters were assessed through lipid and 

haemolymph indices (Chapters 4 and 5). An overarching factor 

which heavily influenced the outcome of all these analyses was 

the moult cycle which at times masked differences between  
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Fig 1. Dorsal (left) and ventral (right) view of a deep-water (top), 
shallow-water (middle) and translocated Jasus edwardsii caught 
after its first moult post-translocation (bottom).  
 

populations and changes in translocated lobsters, although 

collectively all indices revealed translocated lobsters to be similar 
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in condition to resident lobsters after a period of 12 months. In 

particular the enhanced nutrition of translocated lobsters from 

the high amounts of omega3 fatty acid content provides an 

added marketing tool to further value-add to the product. 

Further research through simulated live-transport trials by 

Hawthorn (2009) found there was an improvement in live 

transport condition as translocated lobsters incurred lower 

mortality than deep-water lobsters. This further supports the 

results from my thesis that physiological and nutritional 

condition can be improved though translocation.       

 
 

Potential benefits from translocation occur not only 

through changes in market traits but also through increased 

productivity with improvements in growth. Previous cost benefit 

analyses showed that benefits mainly accrue through increase in 

yield (Gardner and van Putten 2008b). My thesis demonstrated 

that the growth rate of deep-water males and females increased 

after translocation, with most lobsters matching and some 

achieving greater growth increments than resident lobsters in 

their first moult event (Chapter 6). Often the core challenge of 

many enhancement operations is for released individuals to 

survive and adopt the growth of wild individuals. Translocated 

individuals achieved both these goals in their new habitat and 
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thus overcoming some of the key challenges of enhancement 

strategies. Given the growth of J. edwardsii is highly plastic, 

manipulation of lobster stock densities through translocations is 

also likely to occur and thus the impact from density-dependent 

process would also need to be further evaluated. For Tasmania, 

yield gains are predicted to be economically feasible and 

beneficial from translocations between sites of extreme 

differences in growth rates and over short distances (Gardner 

and van Putten 2008a), but this prediction may change if 

translocated lobsters consistently exceed the growth of resident 

lobsters. Mechanisms regulating life-history traits and 

phenotypic expression in commercial lobster species are highly 

variable and are most probably a combination of environmental, 

behavioural, dietary and genetic factors acting upon each other. 

While identifying these specific drivers would have further 

clarified my results, unravelling the complex interaction between 

animal and habitat was beyond the capacity of this study and 

outside the scope of commercial interest.  
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Future of translocation as a fisheries  
enhancement strategy  

 

“Translocations are powerful tools for the management of 
the natural and man-made environment which, properly used, can 
bring great benefits to natural biological systems and to man, but 

like other powerful tools they have the potential to cause 
enormous damage if misused” 

(IUCN 1987) 

 

The task of evaluating the potential risks against the 

benefits from translocations ultimately hinges on the economic, 

social, biological and environmental components that drive the 

fishery. The research presented in the thesis only assessed some 

of the biological outcomes from translocations to inform 

stakeholders of its application and provide quantitative data for 

its economical evaluation. Other aspects of translocation are 

equally imperative to its biological and economic feasibility:  

• Related research underway has estimated that 

apparent survival of all translocated lobsters from 

Maatsuyker Island to Taroona Marine Reserve is 

similar to survival of resident lobsters (Green and 

Gardner 2009).  

• Preliminary results from acoustic tracking data of 

post-release translocated lobsters indicate high site 

fidelity, overlap of home-ranges between resident 

and translocated lobsters and a slightly greater 
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foraging range than resident lobsters (B.S. Green 

unpublished data).   

• There has not been a significant impact on reef 

ecology from increasing the density of lobsters 

(Hoare 2008) although density of lobsters was 

shifted closer to the natural state.  

• Den sharing has been observed between 

translocated and resident individuals (Fig 2).   

• Impact of translocation on statewide egg production 

and changes to egg quality are currently being 

investigated while any threat from a disease 

outbreak is also being assessed through 

examination of lobsters for pathogens. 

 
 
 

 
 
 

 

Fig 2. A resident (left) and a translocated deep-water (right) 
Jasus edwardsii sharing a shelter at Taroona Marine Reserve. 
Photo by Tim Alexander 
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Although fisheries enhancement strategies using adults is 

less common than hatchery reared juveniles, they face many of 

the same challenges, concerns and constraints. Often the 

rationale for translocating adults sourced from the wild stocks 

serve to solve a specific issue rather than the broad goal of stock 

replenishment. For example, reproductively deficient individuals 

of queen conchs (Strombus gigus) from depleted inshore areas of 

the Florida Keys are being translocated to offshore regions where 

they once again develop normally and become reproductively 

active (Delgado et al. 2004). In Japan, the enhancement of 

(Strongylocentrotus nudus) roe quality and size was achieved by 

transplanting adults with poorly developed gonads from barrens 

habitats to kelp forests (Bell et al 2005). Stunted populations of 

greenlip abalone translocated to faster growth areas showed 

enhanced growth in response to greater food availability (Dixon 

and Day 2004).  One of the drawbacks to translocation strategies 

is that proving its success requires long-term monitoring even if 

the short-term results seem promising. Thus adult 

translocations such as these are often documented as research 

attempts, while their commercial application is a drawn-out 

debated process.    
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Conclusion 

 “ …the core challenge in understanding enhancement 
fisheries is to elucidate how the characteristics of the target 
population and its environment, fishing and enhancement 

technologies, and stakeholder behaviour interact and lead to 
particular outcomes ” 

Lorenzen (2008, pp 11) 

 

The research presented in this thesis has addressed some 

of the key characteristics of the target population (translocated 

lobsters) in its new environment that will inform and aid 

stakeholders in planning future management decisions. The 

process towards implementation is currently underway with pilot 

commercial scale translocations being planned between deep 

and shallow-water sites within a single fishing area (refer to Fig 

1 in Chapter 2). Stakeholders will review the outcome of these 

trials and all other research results before deciding on larger 

scale translocations from south to north of the State. The final 

adoption of translocation is envisaged to be a stepwise 

integration and used as a supplementary strategy with existing 

management arrangements, although the final implementation 

will hinge on the tradeoffs between the economic, social, 

biological and environmental components that drive the fishery. 

 

In response to challenges presented by differences in the 

biological characteristics of Jasus edwardsii and aspects of its 
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resource management, the research presented in this thesis 

provides quantitative data on the spatial differences in market 

traits, body condition and growth and how these traits can be 

improved through translocation. While the success of 

translocation as a fisheries enhancement strategy is yet to be 

determined, in exploring its feasibility the current study has 

contributed and highlighted significant and interesting aspects 

of a lobsters’ biology and its management.  
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Top: Drawing of the fourth walking leg of J.edwardsii, showing the 
measurement points taken for the merus (M) and propodus (P). 
Bottom: Photograph depicting the points of measurements taken from the 
abdomen; A to B = tail width of the first abdominal segment, C to D = tail 
width of the last abdominal segment, ABDEC = abdominal area. 
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