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SUMMARY 

 

The mature central nervous system (CNS) is unable to repair following traumatic brain 

injury (TBI). Intervention is difficult as the pathobiology of the brain following injury is 

a complex sequence of events that needs to be fully elucidated.  Understanding the 

endogenous mechanisms evoked by the damaged brain when attempting repair from 

injury is vital for devising effective therapies to treat brain injury.  The current thesis is 

based upon the hypotheses that ultimately, recovery following trauma will require the 

induction of neurogenesis and either appropriate regeneration or compensatory 

plasticity of pre-existing neural pathways and that the mechanisms underlying 

regeneration of mature axons is fundamentally different to developmental growth.  

 

This thesis investigated the reactive and regenerative alterations associated with the 

neural response to physical injury in the adult mammalian brain.  This thesis studies are 

focused upon the potential for regeneration following injury and how comparable 

regenerating neurons characteristics are to their developmental counterparts. It 

investigated the alterations within the damaged neurons and the surrounding brain area 

which may be indicative of an intrinsic capacity for regeneration including frank 

neuronal replacement following injury, and the role of the neuronal cytoskeleton in 

neuronal regenerative events, as the mechanisms underlying these processes are 

currently poorly understood. 

 

This thesis demonstrated that heterogenous populations of cultured cortical neurons are 

able to survive and regenerate following severe structural injury, suggesting that 

neurons have an intrinsic capacity for regeneration, regardless of the mode of injury. 

Additionally, alteration of the intrinsic cytoskeletal environment, through the knockout 

of the neurofilament light chain protein, decreased the regenerative ability of mature 

neurons, providing further evidence for the intrinsic regulation of regeneration. Results 

from this thesis indicate that the growth cones of regenerative sprouts differ from their 

developmental counterparts in their predominant morphology, their dynamic behaviour 

and their ability to respond to critical growth factors. These differences between the 

regenerating and developing growth cones may account for the inability of regenerative 
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sprouting axons to make accurate pathway decisions and successfully respond to 

trauma.   

 

The presence of neurogenesis was investigated following structural injury in vitro, 

which indicated no evidence of neurogenesis following injury.  While focal brain injury 

in vivo induced proliferation of neural progenitors, immunohistochemistry confirmed 

that astrocytic but not neuronal, cell proliferation was evoked by focal injury, consistent 

with the in vitro data. However focal injury induced an axonal regenerative response 

into the injury site, which was neuronal cell type specific, and significant remodelling in 

a subpopulation of interneurons away from the injury, demonstrating that the adult 

cortex is capable of significant remodelling following brain injury.   

 

These studies address the central issues examining the potential for neuronal repair and 

appropriate regeneration with an emphasis on developmental versus regenerative 

growth. This thesis provides significant insight into why regenerative attempts are 

limited or aberrant and how responses exhibited by cortical neurons are specific to 

subpopulations. This knowledge will provide the evidence base for new therapeutic 

strategies to improve clinical outcomes for sufferers of TBI. 
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1 INTRODUCTION 

 

Traumatic brain injury (TBI) is a leading cause of death and disability in persons under 

the age of 45 years, in developed nations. (Adams, 1995; Egeler-Peerdeman, 1993; 

Povlishock, 2005; Maas et al., 2008). TBI can affect individuals at any age, and 

encompasses any form of acquired injury to the head that causes central nervous system 

(CNS) damage.  Currently in Australia the most common causes of TBI include 

transport accidents, falls, collisions with objects and water related injuries (The 

Victorian Neurotrauma Initiative, 2009). The incidence of TBI is rising rapidly on a 

global scale, for two main reasons (Maas et al., 2008).  Firstly there is an increasing use 

of motor vehicles in low to middle income countries.  Secondly, for persons over the 

age of 65 accidental falls represent the most common form of injury and 

epidemiological evidence indicates that as the population ages an increase in the 

number of head injuries from falls is also occurring.  TBI equates to a major health and 

socio-economic burden, as head injury often affects individuals in the most productive 

years of their lives (Duff, 2001; Finnie and Blumbergs, 2002).   The current cost burden 

of TBI in Australia alone is estimated to be 8.6 billion dollars (The Victorian 

Neurotrauma Initiative, 2009).  

 

While TBI incidence is rising rapidly on a global scale, there still remains no effective 

treatment. The inability to recover following TBI can be accounted for by the relatively 

limited capacity of the mature CNS to repair and regenerate.  This is in distinct contrast 

to both the peripheral nervous system (PNS) and the developing CNS, which both 

demonstrate remarkable regenerative capacities. Hence the basis for the inability of the 

mature CNS to recapitulate these systems remains a pertinent research question at the 

forefront of neuroscience research.   

 

Moderate to severe head injury often causes overt brain damage resulting in widespread 

neuronal dysfunction. However, even mild brain trauma can elicit a cascade of cellular 

changes that culminates in neuropathology. Additionally, head injury has been 

implicated in the development of neurodegenerative diseases, such as Alzheimer's 

disease, later in life (Smith et al., 1999; Graham et al., 2000; King et al., 2000a; Vickers 
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et al., 2000; Jellinger et al., 2001).  However, there are varying degrees of focal and 

diffuse injury that can occur in TBI, affecting various regions of the brain (reviewed in 

Farkas and Povlishock, 2007), making the pathobiology complex and intervention 

difficult. Due to the array of mechanisms evoked by TBI and individual patient 

differences, the response of the adult brain remains to be fully elucidated.  The sequence 

of events following injury must be fully comprehended before successful therapeutic 

intervention can occur.   Understanding the structural and functional architecture of the 

mammalian brain is key in endeavouring to comprehend the pathobiology of TBI. 

 

1.1 THE MAMMALIAN BRAIN  

 

The mammalian nervous system is a network of nerve cells and fibres that infiltrates 

virtually all areas of the body.   The nervous system is broadly divided into the CNS and 

PNS.  The brain, together with the spinal cord makes up the CNS and can be is divided 

into grey and white matter. Grey matter consists predominantly of neuronal cell bodies 

and dendrites and is highly vascularised, whereas white matter is composed primarily of 

axons, the majority of which are ensheathed by specialised myelinating glial cells.  The 

brain can further be subdivided into the cerebrum, cerebellum and brainstem.  The 

cerebrum is comprised of a pair of cerebral hemispheres, their surface thinly coated by 

the cerebral neocortex.  The cerebral neocortex, which is between just two and four 

millimetres thick, is made up of an estimated 25 billion neurons, and is responsible for 

up to 80% of the function of the human brain (Markram et al., 2004; Nolte, 2009).   

1.1.1 Neurons of the neocortex 

During evolution, higher vertebrates developed a large cerebral cortex, with the most 

recent development being the outer neocortex (meaning new cortex) (Medina and 

Abellan, 2009; Rakic, 2009). The neurons within the neocortex can be generally 

categorised into two groups, pyramidal cells and cortical interneurons, or non-pyramidal 

cells, based primarily on morphology (Hendry, 1989; Molnar et al., 2006). Interactions 

between cortical pyramidal cells and interneurons facilitate highly integrated cortical 

processing.  A notable feature of the neocortex is the sorting of neurons in the outer 

region into six horizontal layers, denoted layer I through VI, from the most superficial 

to deep layer (Silberberg et al., 2005; Nolte, 2009) (Figure 1.1).  Laminae are 
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determined by variations in cell body size and density throughout the cortical depth 

(Parnavelas, 2000) (Figure 1.1). Each layer can be distinguished based on the 

predominant neuronal cell population. Layer I, the molecular layer, is relatively cell 

free.  Layers II and IV, the external and internal granular layers are comprised of 

relatively small locally projecting interneurons, whereas layers III and V contain 

characteristic large cortical pyramidal cells and are thus designated the external and 

internal pyramidal layers, respectively. In addition to the laminar organisation, the 

neocortex also has a distinct columnar organisation with several structures, including 

the apical dendrites of pyramidal cells, cortical afferents, axons of some intra-cortical 

cells and the cell bodies of cortical neurons, arranged horizontally and perpendicular to 

the cortical surface.  

 

Synaptic transmission within the neocortex follows a distinct and highly complex 

pattern, with integration both within and between the cortical laminae (reviewed by 

Silberberg et al., 2005).  Briefly, thalamic input primarily enters layer IV and is passed 

onto layer III pyramidal cells that, in turn, project to layer II.   Layers II and III also 

receive input from association brain regions and provide descending input to layer V 

pyramidal cells.  Depending on their type, layer V pyramidal neurons either project to 

subcortical regions, comprising the major source of neocortical output, or to the 

contralateral hemisphere.  Layer V pyramidal cells also project to layer VI, forming 

both cortico-cortical interconnections and corticothalamic feedback circuits.  The 

majority of neocortical pyramidal cells also project their dendrites into layer I, forming 

an additional level of cortical processing and integration.  

 

1.1.1.1 Pyramidal neurons 

Pyramidal neurons are the primary glutamatergic excitatory cells of the neocortex 

(Elston et al., 2001).  Pyramidal neurons have large cell bodies ranging from 10-50 

micron in diameter (Lynch, 2006), extensive dendritic arborisations that have 

specialised synaptic protrusions termed dendritic spines and one long projecting axon. 

The pyramidal-shaped soma elaborates a prominent apical dendrite that extends up 

towards the pial surface.  Basal dendrites extend horizontally from the base of the soma.  

The axon of pyramidal cells, which is usually myelinated, generally extends from the 
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base of the soma, opposite to the apical dendrite, but may instead arise from a basal 

dendrite (Feldman, 1984). Pyramidal neurons are primarily contained within layers II to 

VI and comprise approximately 70-80% of all neocortical neurons (Peters and Jones, 

1984; Markram et al., 2004; Voelker et al., 2004; Silberberg et al., 2005).  The 

pyramidal cell layers contain predominantly neurons that project long axons to other 

regions of the CNS.  

 

1.1.1.2 Interneurons 

Interneurons incorporate a sub-population of cortical neurons with a vast array of 

morphological features and molecular identities (Parnavelas, 2000). Knowledge on the 

various subtypes of gamma -aminobutyric acid-ergic (GABAergic) interneurons have 

been predominately derived from immunohistochemical studies looking at the 

localisation of the three calcium binding proteins (Xu et al., 2010); calbindin (Hof and 

Morrison, 1991; Seress et al., 1993; Leuba et al., 1998), calretinin (Hof et al., 1993; 

Fonseca and Soriano, 1995; del Rio and DeFelipe, 1997) and parvalbumin (Aria et al., 

1987; Hof et al., 1991; Hof and Nimchinsky, 1992; Hof et al., 1999).  The three types of 

calcium binding proteins are found within mutually exclusive populations of 

interneurons.  Calbindin positive proteins are found mainly in granule cells of the 

dentate gyrus (Seress et al., 1993), interneurons in cortical layers II/III, and to a lesser 

extent in layers V/VI (Leuba et al., 1998).  The interneuron population positive for 

parvalbumin is found in cortical layers II and III and the molecular layer of the dentate 

gyrus and throughout the subiculum (Seress et al., 1993; Leuba et al., 1998).  Calretinin 

positive interneurons reside predominately in the superficial portions of cortical layers 

II and IV (Leuba, 1998).  Other subpopulations of neurons immunopositive for calcium 

binding proteins occur in subcortical regions as well as the cingulate cortex and 

amygdala (Hof and Nimchinsky, 1992; Hof et al., 1999).  Interneurons are 

predominantly inhibitory (mostly GABA inhibitory) in function and play a vital role in 

modulating cortical output (Segal and Barker, 1984; Markram et al., 2004; Otsuka and 

Kawaguchi, 2009; Xu and Callaway, 2009).   Interneurons’ axons essentially do not 

leave the immediate vicinity of the soma, and therefore modulate the intrinsic activity of 

the directly surrounding pyramidal cells (Kawaguchi and Kubota, 1997; Otsuka and 

Kawaguchi, 2009; Xu and Callaway, 2009).  These neurons are morphologically 
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identified by the absence of a prominent apical dendrite and the presence of few, if any, 

dendritic spines; although specific sub-types of interneurons may have dendritic spines 

equivalent to pyramidal neurons (Fairen et al., 1984; Markram et al., 2004).  Thus, 

interneurons have less extensive dendritic arborisations, a short, locally projecting axon 

and a small cell body (Hof et al., 1999; Markram et al., 2004; Nolte, 2009).  

 

1.2 DEVELOPMENT OF THE MAMMALIAN BRAIN 

 

The complexity and relative large size of the human brain elicits the mental capabilities 

that distinguish humans from all other species. During development a relatively simple 

neural tube is transformed into this intrinsically complex organ through a stringently 

controlled pattern of neuronal proliferation, migration and maturation (Noctor et al., 

2004; Corbin et al., 2008).  The process of development of the cortex, corticogenesis, 

has been widely described (see reviews by Frisén et al., 1998; Parnavelas, 2000; 

Nadarajah and Parnavelas, 2002; Honda et al., 2003; Kubo and Nakajima, 2003; 

Marshall et al., 2003).  Neurons destined to form the neocortex are generated at the 

ventricular lining and periventricular zones.  More specifically, cortical pyramidal 

neurons are generated in the germinal ventricular zones of the dorsal telencephalon, 

whereas sources of cortical interneurons include the lateral ganglionic eminence and 

medial ganglionic eminence of the ventral telencephalon (Parnevelas, 2000; Kreigstein 

and Noctor, 2004; Wonder and Anderson, 2006). The neocortex develops in two 

distinct stages (Figure 1.2).  Firstly post-mitotic neurons migrate toward the margin of 

the cerebral wall to form the primordial plexiform layer, or preplate.  New born neurons 

migrate into the preplate and as they accumulate, form a new series of layers called the 

cortical plate, which thereby splits the preplate into the superficial marginal zone (layer 

I) and a deeper layer, the subplate (layers II-VI); the second stage of development.  The 

later born post-mitotic neurons that form layers II-VI of the cortical plate are arranged 

in an ‘inside-out’ sequence, where new cells migrate through the existing cells before 

stopping at the top of the plate (reviewed by Parnevalas, 2000; Kreigstein and Noctor, 

2004).  The subplate and ventricular zone are separated by the intermediate zone, which 

will eventually contain the axons of the cortex (Bielas and Gleeson, 2003).   
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There are two main modes by which new neurons migrate, known as radial and 

tangential migration (Naradajah et al., 2001).  Neurons of the cerebral cortex, 

specifically those destined to become pyramidal neurons, take on a mode of radial 

migration, moving in a direction perpendicular the pial surface, guided by radial glia 

(Huang, 2009).  Interneuronal precursors of the cerebral cortex, on the other hand, 

undergo tangential migration, moving from the ganglionic eminence in a direction 

parallel to the pial surface (Huang, 2009).  However not all precursor neurons are able 

to reach their appropriate destination by radial migration and tangential migration alone. 

A third mode of migration, termed ‘multipolar migration’ also exists (Tabata and 

Nakajima, 2003) characterised by net radial migration, interspersed with episodes of 

tangential migration. After completing migration a neuron enters a phase of growth, the 

first stage of which involves developing multiple neurites (Dotti et al., 1988; Deitch and 

Banker, 1993).  Following initiation, one neurite will polarise and grow more rapidly 

than the other neurites to form the axon (Dottie et al., 1988) while the other shorter, 

highly branched processes become dendrites.  Axons then extend through a carefully 

selected pathway to find their final, specific target where they form synapses.  The 

highly precise neuronal network of the brain is established through temporal and spatial 

regulation of guidance molecules that direct growth of the axons along specific 

pathways (Dickson et al., 2002; Osterfield et al., 2003). 

 

1.2.1 Neuron outgrowth and the cytoskeleton 

The extensive neuronal network of the brain is developed by the highly accurate 

pathway selection of axons. Growth cones are transient structure present on the tips of 

elongating axons that enable this stringent pathway selection (Figure 1.3).  The growth 

cone is present for a finite time during development, between the commencement of 

neuronal differentiation and the phase of synaptogenesis. Fundamentally, growth cones 

translate extracellular guidance cues into a mode of either extension or retraction, 

depending on whether the cue is attractive or repulsive.  Upon reaching the desired 

target the growth cone immobilises, remodels and forms a synapse. 

 

Growth cones have both sensory and motor capabilities, which enables the integration 

of environmental cues to be translated into path finding behaviour, such as outgrowth, 
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retraction, stalling, turning and fasciculation (for review see Tessier-Lavigne and 

Goodman, 1996; McFarlane, 2000; Suter and Forscher, 2000; Gordon-Weeks, 2004) 

(Figure 1.3). Growth cones undergo dramatic shape changes ranging from large fan like 

shapes to a more stream like structure (Kalil, 1996).  Morphological analysis of growth 

cones in different regions of developing central and peripheral pathways in a variety of 

species has demonstrated that the change in morphology is related to the environmental 

cues (Halloran and Kalil, 1994; Kalil, 1996; Skaliora et al., 2000).  When growth cones 

track along straight trajectories, such as the internal capsule, they exhibit simple 

streamline forms (Skaliora et al., 2000).  The internal capsule represents a compact 

curved sheath of cortical projection axons and as such the axons grow fast in direct 

trajectories with minimal pausing and exploring of their surrounding.  When 

encountering a decision region, such as the ventral intermediate zone for the cortical 

projection axons, growth cones undergo dynamic alterations in morphology becoming 

large and considerably more complex in shape.  When reaching a decision region such 

as the ventral intermediate zone, growth cone motility slows down with extensive 

exploration of the environment and pausing, which can last up to several hours 

(Skaliora et al., 2000).   

  

Environmental guidance cues are either attractive cues that the growth cone will turn 

toward, or repulsive guidance cues that cause a collapse in the growth cone.  It is 

important to note however, that growth cone turning, and advances, are actually 

regulated independently, except when the guidance cue is particularly strong (Sanford et 

al., 2008). Guidance cues in the growth cone environment can be either anchored in the 

extracellular matrix, on a cell membrane or presented as a concentration gradient that 

diffuses from an intermediate or final target source (Chilton, 2006). Growth cones are 

responsible for translating extracellular guidance cues, which dictate trajectory into 

cytoskeletal rearrangements, which establishes axonal morphology and route taken 

(Tanaka and Sabry, 1995; Nakamura et al., 2000; Pak et al., 2008; Hung et al., 2010). 

Guidance molecules such as neurotrophins, semaphorins, ephrins, netrins and slits are in 

abundance within the developing brain (Dickson, 2002; Sanchez-Camacho and 

Bovolenta, 2009; Hung et al., 2010; Yukawa et al., 2010).  Neurotrophins act as 

attractants and the semaphorins, ephrins and slits act predominately as a repellent, 
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however they can also be attractive in some contexts.  Netrins can act as either an 

attractant or repellent, depending on the context (Dickson, 2002).  Binding to and 

activation of receptors for these guidance molecules in the growth cone cytoplasm 

triggers intracellular signalling pathways directed predominately at the growth cone 

cytoskeleton (Gallo and Letourneau, 2004; Kalil and Dent, 2005; Zhou and Schnider, 

2006).  However, it is important to note that the intracellular environment of the growth 

cone also plays a role in the response to guidance molecules.  Specifically cyclic 

nucleotide levels, the intracellular calcium concentration and membrane potential all 

moderate the response of the growth cone to a certain guidance cue (Mcfarlane, 2000; 

Wen et al., 2004).  

 

Growth cones are highly structured due to the diversity and organisation of their 

cytoskeletal components.  Within the axon and the growth cone, the cytoskeleton is 

classified into three components, the microtubules, microfilaments and neurofilaments 

(Figure 1.4).  The central zone of the growth cone, including the termination of the 

neurite shaft, consists predominantly of bundles of microtubules (reviewed in 

Gungabissoon and Bamburg, 2003; Gordon-Weeks, 2004).  The central zone is also rich 

in membranous organelles required for membrane elaboration (Figure 1.3).  The 

peripheral area, specifically the lamellipodia and filopodia, are dominated by 

microfilaments, in the form of filamentous actin (F-actin) (Figure 1.3). While 

microtubules reside predominately in the central zone and F-actin in the peripheral 

zone, there is extensive overlap of these cytoskeletal components between the two 

regions, within the transitional zone.  Within growth cones, microtubules and actin are 

the cytoskeletal components responsible for movement and are the ultimate targets of 

directional signalling. 

 

1.2.1.1 Microtubules within the developing axon and growth cone. 

 Microtubules are long hollow structures comprised of protofilament aggregates of 

tubulin.  Two subunits of tubulin, α and β tubulin, polymerise to form these 

protofilaments.  Thirteen protofilaments then aggregate together to form the 

microfilament. Within the axon, microtubules participate in the active process of axonal 

transport. This allows fast transport of macromolecules and organelles to the distal area 
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of axons and to the growth cone.  The role of microtubules in axon transport has been 

compared to a railroad track, on which two microtubule associated ATPases serve as 

“motors” (Waterman-Storer, 1997; Pfister, 2000; Hollenbeck and Saxton, 2005). Within 

the axonal shaft, microtubules form a dense parallel array that upon entering the growth 

cone splays apart. Studies over the past decade convincingly indicate that dynamic 

microtubules within the growth cone play a crucial role in growth cone steering (Buck 

and Zheng, 2002). 

 

Within the growth cone microtubules reside principally in the central domain of the 

growth cones, however are present at times in both the transitional and peripheral zone.  

Microtubules within the central domain are frequently in a fan like splayed out 

orientation, however in slow growing growth cones and growth cones that are pausing, 

they become bundled and form loops (Sabry et al., 1991; Tanaka and Kirschner, 1991; 

Dent and Kalil, 2001).  The majority of microtubules enter the central domain of the 

growth cone through the terminal end of the neurite shaft.  The microtubules contained 

within the central zone are in a state of dynamic instability, which means they are 

constantly undergoing rapid periods of growth and shrinkage (Buck and Zheng, 2002, 

Gordon-Weeks, 2004; Chilton, 2006; Lee and Suter, 2008; Lowery and Vactor, 2009).  

The dynamic growth of microtubules that results from this dynamic instability allows 

the microtubules to respond to the growth cones’ intracellular environment, namely F-

actin.  The dynamic growth is a result of the process of end polymerisation of 

heterodimer subunits of tubulin.  Tubulin heterodimers are intrinsically polar polymers 

that associate in a head to tail formation within each protofilament (Gordon-Weeks, 

2004).  The positively charged (plus) end of the microtubules is orientated to the distal 

area of the growth cone and the negatively charged (minus) ends are orientated 

proximally toward the axon shaft.  Both the plus and minus end have potential for 

growth, however the plus ends have a far greater capacity and growth occurs at a more 

rapid rate than the minus ends.  Orientation of the fast growing plus ends of the 

microtubules toward the distal part of the growth cone allows for the extension of the 

growth cone along a trajectory. Microtubules are in a constant state of dynamic 

instability, alternating between slow growth at the minus end and rapid growth at the 

plus end.  The transition from slow growth at the proximally orientated minus end to 



 

 10 

rapid growth at the distally orientated plus can result in complete depolymerisation 

(termed a catastrophe) and retraction of the microtubule, unless rescued to another 

transition of slow growth.  This dynamic instability is likely to be structurally due to a 

loss of a structural cap (GDP β-tubulin) at the end of the microtubule (Gordon-Weeks, 

2004). Microtubules dynamics is regulated by two families of proteins, microtubule 

associated proteins (MAPs) and plus end tracking proteins (TIPs).  MAPS regulate 

dynamic instability by increasing the rate of rescue and decreasing the rate of 

catastrophes (Pryer et al., 1992).  TIPs are located on the plus end of growing 

microtubules and are involved in facilitating the microtubule and F-actin interaction 

(Geraldo et al., 2008). Tyrosination of microtubules is also required for successful 

microtubule and F-actin interactions, and the knock out of ligases responsible for 

tyrosination leads to a decrease in ability to path find (Marcos et al., 2009). 

 

The formation of microtubules and promotion of the bundle formation (stabilisation) 

and conversely the dissolution of the bundles and aggregate formation (destabilisation) 

of microtubules has also been shown to be important in the turning of growth cones.  

Local stabilisation and destabilisation of microtubules via the drugs taxol and nocodazol 

respectively has been shown to alter growth in vitro (Buck and Zheng, 2002; 

Chuckowree and Vickers, 2003).  When microtubules are locally stabilised the growth 

cone turns toward the site of stabilisation and reciprocally local destabilisation results in 

the turning away from the site of destabilisation.  The actin cytoskeleton actively 

participates in microtubule initiated growth cone turning (Buck and Zheng, 2002) with 

local microtubule stabilisation and growth within the growth cone being dependent 

upon the F-actin interaction. Microtubules growing toward the front of the growth cone 

transverse the transitional zone and get into the peripheral domain.  This allows 

interaction between the microtubules and F-actin within the peripheral zone, 

microtubules preferentially interacting with the filopodial F-actin bundles (Lee and 

Suter, 2008; Geraldo et al., 2008; Geraldo and Gordon-Weeks, 2009; Lowery and 

Vactor, 2009).  
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1.2.1.2 Microfilaments within the developing axon and growth cone 

The second principal cytoskeletal component within developing axons and growth 

cones is the microfilaments, specifically F-actin.  Monomeric globular, G-actin subunits 

polymerise to form filamentous, F-actin.  Morphology of the peripheral domain is 

largely determined by the F-actin and its organisation into filopodia and lamellipodia. 

Filopodia are narrow, cylindrical and highly motile extensions of the growth cone.  

They interact with the environment, having the capacity to extend tens of microns from 

the growth cone.  F-actin forms rod-like parallel bundles within the filopodium.  

Lamellipodia, the veil like membranous extensions situated between the filopodia, 

contain a meshwork of connected and branched F-actin. The predominance of 

lamellipodia or filopodia correlates with the translocation rate of the growth cone 

(Argiro et al., 1984; reviewed in Pak et al., 2008).  These dynamic structures are 

constantly extending and retracting, enabling the growth cone to explore the 

extracellular environment for potential guidance cues.  

 

The guidance and growth of growth cones is determined by the interactions of filopodia 

and the F-actin, through transmembrane receptors, with the extrinsic environment.  The 

F-actin present within in the filopodia also undergoes dynamic assembly, which is the 

precursor for membrane protrusion and extension (Forscher and Smith, 1988).  

Polymerised F-actin within the peripheral domain is under constant retrograde transport, 

powered by myosin motors, towards the central domain of the growth cone (for reviews 

see Suter and Forscher, 2000; Gallo and Letourneau, 2004).  During this retrograde 

transport, F-actin is dynamic, undergoing filamentous turnover; near approach of the 

central domain, filaments undergo depolymerisation and actin subunits are recycled for 

future polymerisation to F-actin.   The surface of the filopodium is rich in 

transmembrane proteins which act as receptors for cell adhesion molecules.  The 

adhesion of the filopodia to a suitable substrate activates transmembrane signalling 

causing F-actin polymerisation, and results in elongation of the filopodium. Outward 

movement of an axon is inversely proportional to retrograde F-actin flow (Hely and 

Willshaw, 1998).  The slower the retrograde flow of F-actin toward the central zone of 

the growth cone, the faster the microtubule invasion into the target area. 

 



 

 12 

Axonal outgrowth is achieved by an interaction between the actin and microtubules 

cytoskeleton, which creates stretch of the axon (Lamoureux et al., 2010).  A growth 

cone in a straight trajectory contains actin bundles uniformly distributed throughout the 

lamellipodia, however a concentration of the actin meshwork occurs at the leading edge.  

Assembly of F-actin occurs at this leading edge and at the tips of the filopodium.  The 

retrograde F-actin flow from this area is at a diminished rate compared to the 

polymerisation rate of the microtubules within the central domain.  This allows the 

growing microtubules to extend into the peripheral domain where there is decreased 

retrograde F-actin flow (Buck and Zheng, 2002).  Contact with an actin bundle within 

the peripheral domain induces the microtubule to advance in a linear path along the 

bundles toward the leading edge; microtubules that do not come in contact with actin 

are swept back toward the central domain (for review see Zhou and Cohan, 2004).  The 

microtubule and F-actin interaction results in outgrowth of the growth cone in the 

direction of the leading edge.  The majority of known guidance molecules affect 

direction of growth through the rapid reorganisation of the actin/microtubule 

cytoskeleton in the peripheral zone (Cohen-Corey and Fraser, 1995; Gallo and 

Letourneau; 2003; Hou et al., 2008; Geraldo and Gordon-Weeks, 2009; Hall and Lalli, 

2010), further highlighting the importance of the actin/microtubules reorganisations. 

 

1.2.1.3 Intermediate filaments within the developing axon and growth cone 

The intermediate filaments are integral to the structural morphology of the neuron and 

axon.  Neurofilaments provide tensile strength as well as stabilising neuronal structure 

(Hamberger et al., 2003). They are involved in controlling axonal calibre, an important 

factor in the speed of conductance down the axon. The neuronal intermediate filament 

protein family is made up of neurofilament light chain (NF-L), middle chain (NF-M) 

and heavy chain (NF-H), α-internexin and peripherin (Lee et al., 1993; Lee and 

Cleveland, 1996). Neurofilament triplet proteins, with α-internexin comprise the 

neuronal intermediate filament family of type IV intermediate filament proteins 

(Lariviere and Julien, 2004) (Figure 1.5A).  During development, two more 

intermediate filaments vimentin and nestin are also present within CNS neurons (Gates 

et al., 1995; Arnold and Trojanowski, 1996).  These proteins share a common structural 

organisation comprising a central α helical rod domain flanked by amino terminal head 
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and carboxy-terminal tail domains (Figure 1.5A). Together NF-L, NF-M and NF-H 

copolymerise to form neurofilaments.  The expression of intermediate filaments varies 

throughout development and facilitates the transition of a developing neuron, from a 

highly plastic mitotic cell, to a post-mitotic highly polarised structure with distinct 

morphological features (Nixon and Sihag, 1991; Nixon and Shea, 1992). Specifically, 

the first intermediate protein to be expressed is vimentin, in undifferentiated cells 

(Bignami et al., 1982; Cochard and Pauin, 1984). Later in development as the 

undifferentiated cells form neuroblasts the expression of nestin, α-internexin and 

peripherin is initiated (Porttier et al., 1983; Parysek and Goldman, 1987; Kaplan et al., 

1990; Lendahl et al., 1990).  This expression persists until neuron differentiation, which 

triggers the expression of the neurofilament proteins (Shaw and Weber, 1982; Carden et 

al., 1987; Nixon and Shea, 1992); the presence of neurofilaments are indicators 

associated with mature neurons and thus increased expression of these proteins is 

concomitant with a decrease in the other development-associated intermediate filaments 

(Lariviere and Julien, 2004).  NF-L expression is detected initially, at the beginning of 

neural differentiation and can regularly overlap with α-internexin and peripherin 

expression (Willard and Simon, 1983; Carden et al., 1897).  Subsequently NF-M 

expression is correlated with neurite formation and NF-H expression occurs later in 

neuronal differentiation, during the postnatal period (reviewed in Larivere and Julien, 

2004).  The expression of intermediate filaments is not conserved in neurons and 

subpopulations of pyramidal neurons have been shown to express different intermediate 

filaments (Masliah et al., 1993; Dickson et al., 2000; 2005). Neurofilament expression 

is dramatically elevated after synapse formation, axonal diameter expansion and 

myelination (Nixon and Shea, 1992; Lee and Cleveland, 1996).  The distribution of 

neurofilaments in mature neurons is not uniform; neurofilaments are generally more 

abundant in axons than dendrites and are more heavily phosphorylated in the axonal 

than somato-dendritic cellular compartment (Shaw and Weber, 1991).  

 

The phosphorylation state of neurofilaments, and their interaction with the MAPs, 

governs the state of axonal integrity. The highly phosphorylated neurofilament present 

in axons allows the formation of side arms (reviewed in Lariviere and Julien, 2004) 

(Figure 1.5B).  Side arms form a cross bridge with microtubules, other neurofilaments 
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and cortical F-actin, contributing to the structural characteristics of the axonal 

cytoskeleton.  Not surprisingly, neurofilaments are particularly abundant in neurons 

with large diameter axons such as those of motor neurons where fast impulse 

conduction velocities are crucial for appropriate functioning.  Additionally they are also 

involved in the regulation of axonal transport and the anchoring of cellular constituents 

(for review see Lariviere and Julien, 2004). However neurofilaments rarely enter the 

developmental growth cone, being contained to the axon and the axonal shaft.  

Furthermore, the presence of neurofilaments within the growth cone may be indicative 

of inappropriate growth cone function (King et al., 2001; Zhang et al., 2005). 

 

Within the mature brain neurofilaments provide the structural framework required by 

neurons to maintain their polarised morphology.  This axonal and dendritic polarisation 

is vital in creating the intricate network of fibres within the brain that transfers 

information in the form of electrical signals.  The electrical connections of the brain is 

not maintained by the internal scaffolding alone, the surrounding glial cells within the 

brain play a vital role in the support and maintenance of neuronal function. 
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1.3 GLIAL CELLS OF THE MAMMALIAN BRAIN 

 

Glial cells are the non-neuronal cells of the nervous systems and within the CNS 

include astrocytes, microglia, oligodendrocytes and ependymal cells (Figure 1.6).  Glial 

cells are closely associated with neurons within the CNS (Figure 1.6) and have 

historically been understated in their roles within the brain.  It was originally believed 

that glial cells played only a role in providing the scaffolding for neurons.  However, 

many studies over the past decades have highlighted that glial cells are involved in a 

wide variety of functions within the brain and play many vital roles (Araque and 

Navarrete, 2010). Specifically, under normal conditions glial cells perform a variety of 

structural, nutritive and physiological functions including structurally supporting 

neurons, suppling vital nutrients and gases, insulating axons and facilitating action 

potentials, and destroying pathogens and the removal of debris (reviewed in Todd et al., 

2006; Amor et al., 2010; Araque and Navarrete, 2010; Perea and Araque, 2010).  

Additionally during development, glial cells provided scaffold and guidance support to 

developing neurons.  

 

1.3.1 Astrocytes 

Astrocytes are the most common cell type in the CNS and there are approximately 10 

times more astrocytes than neurons in the human brain (Bignami, 1982).  Astrocytes are 

stellate-shaped cells with a highly ramified cytoskeleton and small cell body (three-five 

microns). There are two major populations of astrocytes; the protoplasmic astrocytes 

reside in the grey matter and the fibrous astrocytes reside in the white matter (Nolte, 

2009).  However, both types have essentially the same features, and both can be 

histologically identified by the expression of the astrocyte specific marker, glial 

fibrillary acidic protein (GFAP). Unlike neurons that interconnect through synapses, 

astrocytes are interconnected and communicate through gap junctions between cells. 

Astrocytes play a crucial role in structurally supporting neurons and the formation of 

the blood brain barrier.  Astrocytes also play crucial roles in maintaining local ion 

concentrations and pH homeostasis in the extracellular space, assist neurons in the 

turnover of nutrients and metabolic by-products and neurotransmitters (glutamate), 

regulate synapse development and modulate synaptic strength (for reviews see 
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Nedergaard et al 2003; Haydon, 2001 and Seth and Koul, 2008).  One such example of 

their other functions is glycogen metabolism.  Astrocytes are the main source of 

glycogen in the CNS, which serves as an endogenous source of energy to both 

astrocytes themselves and the surrounding neurons (reviewed in Benarroch, 2010).  

Hence astrocytes are constantly interacting with neurons and contact is highly dynamic 

(Hirrlinger et al., 2004; Haber et al., 2006) and activity dependent (Genoud et al., 2006).  

One single astrocyte domain has the potential to contact hundreds of dendrites and up to 

10000 synapses (Halassa et al., 2007; reviewed in Fellin, 2009). 

 

1.3.2 Oligodendrocytes 

Oligodendrocytes, another predominant type of glia in the CNS, have small cell bodies 

(one-three microns) and an elaborate array of branched projections (Nolte, 2009).  

Oligodendrocytes reside predominately in the white matter, which is rich in axons.   The 

primary function of oligodendrocytes is to insulate axons, control axonal diameter and 

facilitate saltatory conduction with a specialised membrane sheath called myelin. 

Myelin wraps around axons, mainly large calibre pyramidal axons (Bradl and 

Lassmann, 2010); in fact they specifically select axons with a diameter of above 0.2 

microns (Simons and Trajkovic, 2006).  Myelin acts as an insulator to electrical signals 

travelling down the axon, thus increasing the speed of conductance. An individual 

oligodendrocyte can myelinate numerous axons, however each axon is myelinated by a 

single oligodendrocyte.  The myelin sheath is not continuous down a single axon; 

between the myelin sheaths are gaps where the axon is exposed and action potential is 

regenerated in a saltatory manner, with these gaps termed nodes of Ranvier (Thaxton 

and Baht, 2010). These regions are dense in sodium voltage-gated ion channels 

(Waxman and Ritchie, 1993) and have an accumulation of axonal organelles (reviewed 

in Edgar and Nave, 2009).  While their main purpose is myelination of axons, 

oligodendrocytes also play another supportive role for CNS neurons that involves the 

production of growth factors and guidance cues.  Specifically they provide trophic 

support of the soma through the secretion of neurotrophins (reviewed in Tigue and 

Tripathi, 2008; Bradl and Lassmann, 2010).   Furthermore, during development 

oligodendrocytes secrete inhibitory extracellular guidance cues that act to confine 
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developing neurites to correct trajectories (Nagashima et al., 1999; Goldberg and 

Barres, 2000), aiding in path finding. 

 

1.3.3 Microglia 

Resident microglia, which are the CNS-resident macrophages, when resting are smaller 

than astrocytes and oligodendrocytes and constitute approximately 5-12 percent of the 

total glial population (Nolte, 2009). Microglial cells are the primary immune cell type 

of the otherwise immune privileged CNS and are present throughout the CNS, however, 

generally the grey matter contains more microglia than the white matter (Rivest, 2009). 

Following entry into the CNS during embryonic, fetal and postnatal stages, microglial 

precursors undergo a defined sequence of developmental events involving dispersion 

and differentiation to generate a brain-resident population of macrophages (Cuadros and 

Navascués, 1998; Navascués et al., 2000).  Once residing within the CNS, microglia 

develop a ramified morphology with active processes (Barron, 1995; Navascués et al., 

2000). During brain development, microglia function as phagocytic cells that remodel 

the developing tissue (Barron, 1995). In the adult brain they participate in dynamic 

immune-surveillance functions (Nimmerjahn et al., 2005) activating in response to 

infectious organisms, brain injury and chronic disease (for a recent review see Rivest 

2009). 

 

Microglia, in conjunction with astrocytes and oligodendrocytes work closely together 

with neurons to achieve the highly integrated processing that occurs in the CNS.  The 

complex interactions between all cell types allows fast and efficient transfer of electrical 

signals around the brain and to and from the brain stem and spinal cord.  The 

complexity and specificity of connections renders the cells of the brain vulnerable to 

insults such as TBI. 

 

 

1.4 THE RESPONSE OF THE MAMMALIAN BRAIN TO TBI 

 

TBI causes trauma to a range of cells in and around the injury area.  Accumulating 

evidence now indicates that rather than respond passively to brain injury, the brain 
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evokes an adaptive sequence of alterations directed at healing and remodelling 

(Maxwell et al., 1990; King et al., 2001; Oehmichen, 2004). Astrocytes, 

microglia/macrophages, oligodendrocytes, neurons, neural progenitor cells and brain 

vasculature all undergo adaptive alterations in response to a traumatic insult (Maxwell 

et al., 1990; Christman et al., 1997; Deller and Frotscher, 1997; Vickers et al., 2000; 

King et al., 2001; Finnie and Blumbergs, 2002; Tonchev et al., 2003; Lee et al., 2003; 

Lie et al., 2004; Emsley et al., 2005).  Furthermore, inflammation is a common 

pathological consequence following injury, which disrupts the blood brain barrier 

(Lossinsky et al., 2004; Habgood et al., 2007) allowing cells from the blood stream to 

come in contact with the injury site. This post-traumatic inflammatory response can be 

characterised by glial activation, leukocyte recruitment, and upregulation and secretion 

of mediators such as cytokines and chemokines (reviewed in Ziebell et al., 2010). 

Understanding the coordinated response of the different cells types to injury is 

imperative in fully comprehending the brain’s response to TBI.  

 

The principal mechanisms causing brain injury can be divided into two broad 

categories: contact and non-contact injury (Finnie and Blumbergs, 2000).  Contact 

injuries results from direct impact and may be penetrative, such as a gunshot wound, or 

non-penetrative, such as a direct strike to the head.  Contact injuries additionally often 

generate local effects such as scalp laceration, skull fracture and extradural haematoma.  

Non-contact injuries are non-penetrative and result from dynamic inertial forces that 

rapidly rotate the brain within the skull, such as a rapid de-acceleration in a car accident.  

Both contact and non-contact injuries are capable of generating focal, multifocal and 

diffuse lesions (Povlishock and Katz, 2005).  Focal lesions incorporate focal cortical 

contusion as well as both deep and extracerebral haemorrhage.  In addition, shock 

waves generated at the site of impact may travel through the skull and brain, possibly 

causing contusions and intracerebral haemorrhage remote from the site of impact.  

Differential movement between the brain and the cranium may also generate diffuse 

injuries in which pressure gradients within the brain tissue create shear, tensile and 

compressive forces (Adams, 1995; Steward et al, 1999).  Due to the combined 

influences of injury type and severity, and factors intrinsic to the patient, brain injury 

initiates an array of pathophysiological mechanisms.  
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The principal mechanisms evoked by TBI are classified as either primary or secondary 

damage. Primary damage following brain injury involves any neural disruption that is a 

direct result of the injury, occurring at the time of injury (Maxwell et al., 1997; Graham 

et al., 2000; Finnie and Blumbergs, 2002).  Such damage may involve neuronal and 

glial cell populations as well as brain vasculature, inflammatory, neurochemical and 

metabolic alterations (Finnie and Blumbergs, 2002; Werner and Engelhard, 2007).  In 

this regard, cells and blood vessels may be sheared, torn or stretched at the time of 

injury casing haemorrhage, axonal damage and immediate cell death (Finnie and 

Blumbergs, 2002). Primary injury initiates a progressive wave of secondary injury, 

exacerbating the original injury.  

 

Secondary injury develops latently and can occur over a period of hours, days and 

weeks following the primary injury evoked by the initial trauma (Graham et al., 2000).  

Secondary perturbations include ischemia, excitotoxicity, spreading neurotoxicity due 

to disruption of ionic homeostasis and tissue destruction, energy failure, cerebral 

swelling, initiation of necrotic and apoptotic neuronal death cascades, neuronal 

degeneration due to downstream deafferentation/denervation and inflammation, which 

may in turn compound other responses and add to the spread of neurotoxic effects 

(Maxwell et al., 1997; Finnie and Blumbergs, 2002; Bayir et al., 2003; Chen et al., 

2003a; Liou et al., 2003; Povlishock and Katz, 2005).  Thus the delayed alterations 

following injury compounds the original effect of the primary injury resulting in further 

anatomical and functional deficits.  For injury resulting from the direct insult there is 

limited scope for therapeutic intervention following injury. However the delayed 

clinical manifestations of secondary injury such as ischemia and hypertension are more 

malleable to therapeutic interventions. 

 

1.4.1 The neuronal response to TBI 

Studies from both experimental models of neuronal injury and cases of human TBI 

indicate that neurons undergo a stereotypical sequence of reactive and potentially 

regenerative alterations following injury (Maxwell et al., 1997).  Neuronal alterations 

following injury are either a rapid result of primary injuries or a downstream effect of 
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secondary injury, with the time course ranging from hours to weeks. Changes in the 

soma may culminate in cell atrophy, death or survival (Kelly, 1981; Tuszynski and 

Gage, 1995; Martin, 2001; Singleton et al., 2002; Selzer, 2003). Due to their relatively 

long-distance projection and fragility, axons are particularly vulnerable to TBI, with 

axonal injury a common occurrence, even in seemingly mild cases of injury (Gennarelli, 

1996; Maxwell et al., 1997; Smith et al, 2000).  

 

1.4.1.1 Axonal injury 

Axonal injury, either as a result of primary injury or a secondary effect, results in the 

formation of two axonal segments.  Primary injury involves the direct physical 

disconnection of the axon into two separate segments. Disconnection of the axon as a 

result of secondary injury can be described as a nine-step process (Maxwell et al., 

1997).  Firstly perturbation of the axolemma occurs; secondly axon mitochondria swell; 

third involves the development of nodal blebs and decreased internode diameter; fourth 

is the loss of microtubules and changes in neurofilaments; fifth is an involution of the 

axolemma from the myelin sheath; causing, sixth, the formation of periaxonal spaces; 

seventh axon swelling occurs; eighth is the development of “myelin intrusions” and 

lastly the disconnection of the axon and the formation of axon bulbs, or “retraction 

balls”.  This process occurs at varying rates and may take several days to reach 

axotomy.  Regardless of the mode of injury, following disconnection, the axonal ends 

almost immediately seal over and the proximal and distal sections begin to retract away 

from each other and enlarge.  This is due to the blocked anterograde and retrograde 

transport of organelles and other material, including mitochondria, vesicles, 

multivesicular bodies and neurofilaments (Kelly, 1981; Di Giovanni, 2009).  The distal 

segment becomes completely separated from the cell body of origin and ultimately 

degenerates by a mechanism that is known as Wallerian degeneration (Figure 1.7).  The 

degeneration of the distal segment also results in a loss of synaptic input to the target 

cells.  This leads to an alteration in synaptic activity in the post-synaptic cells, which 

can ultimately lead to dysfunction of that cell (Martin, 2001).  Hence, a lesion at one 

site in the CNS can cause widespread disruption involving distant cells, according to the 

connections interrupted by the lesion. The persisting proximal segment of an axon has 

the ability to attempt to regenerate, or sprout (Figure 1.7). 



 

 21 

 

1.4.1.2 Alterations in the cytoskeleton following injury 

The neuronal cytoskeleton plays an important role in the neural response to both 

primary and secondary injury.  Primary injury, in which axolemmal permeability is 

compromised, typically results in loss, accumulation or compaction of certain 

cytoskeletal components. However, as previously described, trauma without the 

disruption of axolemmal permeability can also cause cytoskeletal abnormalities (Pettus 

et al., 1994; Pettus and Povilshock, 1996; Maxwell et al., 1997 Graham et al., 2000).  

 

While axons can recover from seemingly mild forms of compression, severe levels of 

compression can irreversibly block fast axonal transport due to mechanical breakage of 

the axoplasm (Gallant, 1992).  Local reduction in the number of microtubules is a 

common consequence of axonal disruption (Hoffman et al., 1984; 1985; Jafari et al., 

1997; 1998; Maxwell and Graham, 1997; Adlard et al., 2000), notably at the nodes of 

Ranvier (Maxwell and Graham, 1997), and may be accompanied by a loss MAPs such 

as tau and dendritic MAP-2 in the damaged neurons (Saatman et al., 1998; Zhang et al., 

2000).  Conversely the proximal stumps of severed axons have also been demonstrated 

to have an accumulation of tau (Smith et al., 1999). This loss of microtubules may be a 

result of a post-traumatic calcium influx, which favours microtubule dissolution 

(Graham et al., 2000).  Disruption of microtubules and their associated motor proteins 

can disrupt the process of fast axonal transport, resulting in a failure of membrane-

bound vesicles and cytoskeletal elements to be conveyed to distal axonal regions. 

However, this disruption may be only local, with fast transport continuing normally in 

regions where microtubules are intact, resulting in accumulations of cytoskeletal and 

other organelles at different sites along the damaged axon, contributing to multi-focal 

axonal swelling (Maxwell et al., 1997). 

 

Neurofilament disruption following injury (Yaghmai and Povlishcok, 1992) can 

additionally have severe effects on neuronal structure and function (Posmantur et al., 

2000), as neurofilaments provide mechanical strength to axons by counteracting 

compressive forces of the local environment (Hoffman et al, 1984; Cleveland et al., 

1991). Neurofilament density is relatively constant over a wide range of axonal calibres 
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(Julien and Grosveld, 1991). Therefore larger axons will tend to contain a greater 

number of neurofilaments than smaller axons and respond in different ways when 

damaged, particularly when inflicted with tensile strain (Maxwell et al., 1997; Reeves et 

al., 2005).   

 

Neurofilament compaction is a common consequence of injury (Okonkwo et al., 1998).  

Neurofilaments can persist in both proximal and distal axonal stumps for long periods, 

potentially due to the steric protection given by the remaining filamentous structure 

(Hall and Lee, 1995). This compaction can occur in both mild and severe forms of 

injury, and is dependent upon disruption of axolemma permeability (Jafari et al., 1997; 

1998; Polvishock et al., 1997; Chung et al., 2005; DiLeonardi et al., 2010).  Compaction 

can occur within minutes of injury and can persist for hours following the insult and is 

thought to be the result of loss and/or collapse of neurofilament side arms, with 

concomitant preservation of filamentous structure (reviewed by Maxwell et al., 1997).  

Neurofilament side-arm collapse following axonal injury may be the result of altered 

interaction between protein kinases and phosphatases.  Alternatively, post-traumatic 

disruption of calcium homeostasis may abnormally activate proteolytic calpains, which 

cleave the neurofilament side arms from the core filamentous structure.  Both processes 

could theoretically lead to a reduction in intra-filament spacing and therefore 

neurofilament compaction.  It should be noted however, that even in the absence of 

disrupted axolemmal permeability and consequent neurofilament compaction, 

neurofilament disarray and misalignment could still occur (Maxwell, 1997). 

 

Aberrant phosphorylation of neurofilaments is a hallmark of neurodegenerative diseases 

and injury (Petzold, 2005; Anderson et al., 2008; Staal et al., 2009; Shea et al., 2009). In 

the cell body and dendrites, serine/threonine phosphatases may maintain neurofilaments 

in a predominantly dephosphorylated form; while in the axon the phosphorylated 

neurofilament side-chains are maintained by protein kinases (Maxwell et al., 1997). 

After injury abnormally phosphorylated neurofilaments tend to accumulate in the cell 

body, while neurofilaments within the axons may become dephosphorylated.  

Neurofilament phosphorylation in the cell body impedes neurofilament transport into 
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the axon, subsequently contributing to decreased axon calibre following axonal damage 

(Schlaepfer, 1987).  

 

Neurofilaments are present throughout the neurons except for the axon terminals.  

Calpains present in axon terminals are responsible for the breakdown of neurofilaments 

in this region; this degradation providing normal synaptic signalling feedback to the cell 

body (Schlaepfer 1987; King et al., 2000a).  In the post-traumatic period, 

neurofilaments can be observed in distended axonal regions as well as infiltrating axon 

terminals, possibly indicating a disruption in calpain mediated neurofilament 

breakdown (King et al., 2000a).  Support for this comes from in vitro (Dickson et al, 

2000) and in vivo (King et al., 2000b; 2001) studies which have demonstrated extensive 

accumulations of neurofilaments into ring- and bulb-like structures in severed axonal 

stumps. Both structures lacked microtubules and appeared to contain a dense core of 

organelles (including mitochondria), surrounded by either a whorl (in ring-like 

structures) or dense ball (in bulb-like structures) of bundled neurofilaments. 

Interestingly, these damaged axons exhibit similar morphological changes to a subtype 

of dystrophic neurites characteristically observed in Alzheimer's disease (King et al., 

2000b; Dickson et al., 2005). 

 

The highly polarised nature of neurons renders them particularly vulnerable to TBI and 

axonal injury regularly occurs as a result of the insult.  However it is not neurons alone 

that are affected during an injury.  The surrounding glial cells are also susceptible to 

injury and they too are involved in the stereotypic response of the brain, undergoing an 

array of injury-induced alterations. 

 

1.4.2 Response of glial cells to TBI 

Glial cells undergo a variety of alterations following injury that can have both desirable 

and undesirable effects.  Classically, reactive glial cells have been identified as the main 

inhibitor to regeneration following TBI. Indeed, the incapacity for axonal regeneration 

in the adult CNS can be attributed, at least in part to the limited ability of neurons to 

extend new processes in a non-permissive environment (Compston, 1995).  Following 

injury, astrocytes, oligodendrocytes and microglia undertake active responses directed 
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at isolating and clearing the injured area.  Specifically, astrocytes actively respond to 

injury, culminating in the formation of a glial scar, which acts to seal the injury site to 

prevent cytotoxic spread at the same time inhibiting neuronal regeneration (for a recent 

review see Sofroniew and Vinters 2010). Brain-resident microglia are also activated to 

transform into phagocytosing macrophages and along with macrophages derived from 

the circulatory system act to clear cell debris from the lesion site (Amor et al., 2010). 

  

While astrocytes facilitate brain function in an uninjured brain, whether astrocytes play 

an overall beneficial or adverse function after brain injury remains unclear.  Astrocytes 

undergo a stereotypical sequence of reactive alterations following TBI referred to as 

reactive gliosis.  This process is characterised by cellular hypertrophy and hyperplasia, 

cytoplasmic enlargement, elongated cytoplasmic processes and an upregulation in the 

expression of GFAP (Maxwell et al., 1990; Ridet et al., 1997; Raivich et al., 1999; 

Kernie et al., 2001; McGraw et al., 2001; Chirumamilla et al., 2002; Chen et al., 2003a, 

b; Laird et al., 2008). Activated and enlarged astrocytes migrate to the lesion border and 

actively form the glial scar (Raivich et al., 1999; Kernie et al., 2001; Chen et al., 2003a, 

b; Laird et al., 2008).  The glial scar is a dense structure comprised of these activated 

astrocytes and extracellular matrix proteins.  It forms a physical barrier which acts to 

segregate the damaged from non-damaged tissue and may facilitate the isolation of the 

damaged area and removal of debris from the surrounding healthy tissue (Laird et al., 

2008).  Studies in transgenic mice in which reactive astrocytes were conditionally 

knocked out following experimentally induced injury demonstrated that the loss of 

reactive astrocytes results in a reduction in glial scar, which exacerbated the magnitude 

and duration of inflammatory activation with prolonged leukocyte infiltration, in 

comparison to non transgenic controls (Bush et al., 1999; Faulkner et al., 2004; Myer et 

al., 2006).  Reactive astrocytes have also been implicated in other repair processes 

following injury including the facilitation of both blood brain barrier restoration and 

synaptogenesis (reviewed in Laird et al., 2008) 

  

However, numerous studies have demonstrated that reactive astrocytes play inhibitory 

roles following injury as well (Fawcett and Asher, 1999). Classically, astrogliosis has 

been considered one of the fundamental extrinsic limitations to regeneration (Fawcett, 
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2006; Fitch and Silver 2008). Primarily the glial scar is impenetrable to regenerating 

neurites, making reconnection of the injured tissue impossible (Rieer and Houle, 1988; 

Silver and Miller, 2004).  The reactive astrocytes within the scar release a range of 

extracellular matrix proteins that are inhibitory to axon growth, including the chondrotin 

sulphate proteoglycans, aggregan and versicam and neural-glial antigen-2 (Fawcett, 

1992, 1997; Caroni, 1998; Fawcett and Asher, 1999; Mathews et al., 2002; Rhodes and 

Fawcett, 2004).   Additionally, astrocytes play a crucial role in taking up extracellular 

glutamate in the uninjured brain.  Following injury, astrocytes down regulate expression 

of glutamate transporters (Rao et al., 1998; Beschorner et al., 2007) leading to an 

increase in extracellular glutamate, which has excitotoxic effects in the injured brain 

(reviewed in Floyed and Lyeth, 2007).  Reactive astrocytes are also implicated in the 

formation of brain edema following injury (Kimelberg, 1992) and the inflammatory 

response of the brain to injury, releasing a range of pro-inflammatory cytokines 

(reviewed in McGraw et al., 2001; Morganti-Kossmann et al., 2002; Laird et al., 2008). 

 

Extended loss of oligodendrocytes can be a prominent feature of CNS injury (Emery et 

al., 1998; McTigue et al., 2001).  Demyelination of axons, as a result of the 

oligodendrocyte loss, leads to dysfunction of axon potential conduction in the affected 

segments.  As previously mentioned, oligodendrocytes may aid in path finding, 

confining developing neurites to correct trajectories (Nagashima et al., 1999; Goldberg 

and Barres, 2000).  The oligodendrocyte guidance molecules that are present during 

development are inhibitory to axonal growth in the adult brain, which may be a factor in 

the inhibition of axonal regeneration following injury (Fawcett and Asher, 1999; 

Bandtlow and Schwab, 2000; Watkins and Barres, 2002; Grados-Munro and Fournier, 

2003). Myelin plays a key role in the extrinsic inhibition to regeneration.  CNS 

myelination is associated with cessation of axon growth (Nagashima et al., 1999) and 

loss of neuronal plasticity (Goldberg and Barres, 2000).  Myelination may therefore 

provide growth inhibitory signals as the nervous system nears maturity.  Furthermore, 

contact of regenerating neurites with either myelin or oligodendrocytes causes long 

lasting growth cone collapse, through intracellular signalling mechanisms (reviewed in 

Schwab et al., 1993; Filbin, 2003).  Preventing oligodendrocyte development and the 

formation of myelin in vivo through local and repetitive X-irradiation induces enhanced 
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sprouting around the lesion site, in conjunction with persistent increased levels of the 

growth associated protein, GAP-43 (Kapfhammer and Schwabb 1994; Schwegler et al., 

1995; Vanek et al., 1998).  Oligodendrocytes have been linked to growth inhibition 

following injury due to the release of growth inhibitory factors, such as NogoA, myelin 

associate glycoprotein and oligodendrocyte myelin glycoprotein.  Studies have 

demonstrated that these three proteins inhibit axon growth both in vivo and in vitro.  

Interestingly, all three proteins mediate their inhibitory activity through primarily the 

same receptor, Nogo-66.  However, the myelination state alone does not appear 

sufficient in explaining the limited regenerative attempts. Studies have demonstrated 

that although central white matter substantially inhibits neuronal regeneration, 

regeneration is also inhibited by the relatively myelin-free CNS grey matter (Nagashima 

et al., 1999).  Furthermore when the inhibitory myelin environment is removed 

completely while there is an increase in axonal outgrowth this rarely exceeds a few 

millimetres (Fawcett, 2006). Additionally, Davies et al. (1997) found that regenerating 

mature axons were able to extend for considerable distances in un-injured CNS white 

matter tracts. The PNS is capable of regeneration over relatively long distances, and 

differences between oligodendrocytes and Schwann cells, the myelinating cells of the 

PNS, may be attenuating the CNS regenerative capability (Watkins and Barres, 2002).  

Myelin within the PNS is rapidly removed following axonal injury.  In contrast, this 

process takes considerably longer in the CNS, indicating that certain components of 

CNS myelin are likely to inhibit regeneration (Watkins and Barres, 2002).  

Additionally, in the PNS, myelin sheaths may not be disrupted, or myelinating cells 

may form new myelin conduits to guide and nurture regenerating axons (Kelly, 1981).  

This difference between myelinating cells ability to facilitate regeneration in the PNS in 

comparison to the CNS is due to intrinsic differences between PNS and CNS neurons 

and additionally differences in the myelinating cells themselves.   However, while the 

myelin debris and myelin growth factors are inhibitory to growth in the injured brain, 

replacement of lost oligodendrocytes and remyelination following injury is required for 

proper neuronal functioning to be reinstated. 

 

Microglia are activated in a range of neurodegenerative disease processes and also in 

response to brain injury (Ling et al., 2001; Kelley et al., 2007). Microglia are the main 
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cell type involved in the inflammatory response of the brain.  In response to injury 

microglia migrate to sites of injury, multiply and develop into brain macrophages 

responsible for clearing neuronal debris and destroying pathogens (Thomas, 1992; 

Lotan and Schwartz, 1994; Aihara et al., 1995; Barron, 1995; Ravivich et al., 1999).  

 

Classifying the response of glial cells to injury as either a desirable or adverse response 

remains under dispute.  Indeed it is clear that a reactive response from the one cell type 

can evoke an array of effects.  Specifically reactive astrocytes play a vital role in 

isolating and preventing the spread of neurotoxic damage following injury.  Why this 

same structure prevents axonal regeneration remains to be determined. Similarly, 

guidance molecules secreted by oligodendrocytes inhibit axonal outgrowth.  However, 

in a contrasting effect, remyelination following injury will be vital for proper axonal 

function.  This intrinsic response of non-neuronal cells to prevent neuronal regeneration 

is curious as it indicates that induction of axonal growth following injury may not be 

functionally appropriate in the mature brain. 

 

1.5 THE REGENERATIVE CAPACITY OF THE MATURE MAMMALIAN 

BRAIN 

 

Full recovery following TBI will require the replacement of the dead and dying cells 

lost as a result of the injury, and either the appropriate extension of new axons to trace a 

path to their original target, mimicking the path finding abilities demonstrated by axons 

during development, or the compensatory remodelling of surrounding intact pathways 

to overcome the synaptic loss that occurred due to the injury.   TBI does evoke an array 

of mechanisms within the injured neurons that are indicative of an attempt to regenerate 

and repair.  Neurons respond to injury with a complex sequence of morphological, 

biochemical and gene expression alterations, some of which are directed towards the 

production of new neurons as well as sprouting, regeneration and synaptogenesis in 

resident injured neurons (Deller and Frotscher, 1997; Christman et al., 1997; King et al., 

2000a; Magavi et al., 2000; Pastor et al., 2000; Kernie et al., 2001; Rice et al., 2003; 

Kerschensteiner et al., 2005).  Injury can trigger the activation of precursor cell 

populations that in conjunction with resident cell proliferation have remarkable 
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potential to produce new neurons and glia in and around the injury site.  Axons in the 

CNS often respond actively, rather than passively, to injury and undergo a distinctive 

sprouting response or regenerative attempt.  The ultimate goal in this field of research is 

to facilitate full functionally recovery following TBI, which currently, cannot occur.  

 

1.5.1 Neurogenesis and gliogenesis following injury 

The notion that the mature brain is comprised only of post-mitotic, terminally 

differentiated cells and held in a rather static state, lacking the capacity to re-enter the 

cell cycle or regenerate following injury is no longer entirely valid. There is now 

convincing evidence that germinal regions within the CNS remain present in the adult 

brain, primarily the subventricular zone (SVZ) of the anterior lateral ventricles and the 

dentate gyrus of the hippocampus (Doetsch and Hen, 2005).  The SVZ, in particular, is 

viewed as the principle germinal region of the adult brain and is comprised of neural 

progenitor cells capable of differentiating into neurons, astrocytes and oligodendrocytes 

(Reynolds and Weiss, 1992; Richards et al., 1992; Doetsch et al., 1997, 1999; Conover 

and Allen, 2002; Doetsch, 2003; Marshall et al., 2003; Mignone et al., 2004; Abrous et 

al., 2005; Doetsch and Hen, 2005).  

 

Interestingly, it has now been demonstrated that trauma can alter the rate of cell 

proliferation in the mature brain.  Alterations in progenitor populations and cell 

proliferation have been demonstrated in diverse models of experimental brain lesion 

and stroke conditions and are proposed to contribute to post-lesion brain recovery 

(Clarke et al., 1994; Duggul et al., 1997; Holmin et al., 1997; Kernie et al., 2001; 

Arvidsson et al., 2002; Chen et al., 2003a; Douen et al., 2004; Salman et al., 2004). 

Ultimately, injury-induced proliferation and progenitor cells may result in the 

generation of new neurons and/or glia (Gu et al., 2000; Magavi et al., 2000; Jin et al., 

2001; Chen et al., 2003a, b; Douen et al., 2004; Salman et al., 2004). For example, 

experimentally induced ischemia can lead to the generation of new neurons in the 

injured neocortex (Gu et al., 2000). Furthermore, neural progenitor cells capable of 

extensive migration and integration have been demonstrated in several other brain 

regions (reviewed by Emsley et al., 2005).   Studies have indicated that migrating 

neuroblasts, produced throughout life and largely destined for the olfactory bulb, may 
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be recruited to sites of brain injury (Ramaswamy et al., 2005). The extent of 

neurogenesis in the mature brain following injury remains to be fully determined.  

 

Cellular proliferation following injury is not exclusive to neuronal progenitor 

populations, as gliogenesis has also been shown to increase following injury. For 

example resident microglia strongly increase their proliferation rate in response to 

injury (reviewed Rezaie and Male, 2002).  Importantly astrogliogenesis has been shown 

to play a significant role in the formation of the glial scar (Tan et al., 2005; reviewed in 

White and Jakeman, 2008). While the presence of newly born astrocytes is correlated 

with traumatic insults to the brain, the origin of this astrogliogenesis remains under 

question.   Thymidine analogue fate mapping experiments, in conjunction with 

retroviral and transgenic models to map cell fate, have demonstrated that the most likely 

origin of astrogliogenesis is NG2+ expressing glial precursor cells (Alonso, 2005; Burns 

et al., 2009).  The role of NG2+ cells within the mature CNS is largely unknown; 

however it is clear that they greatly increase in number following traumatic insults 

(Dawson et al., 2000; Levine et al., 2001).  NG2+ cells have the potential to generate a 

wide variety of cell types including astrocytes, but also oligodendrocytes and neurons, 

both in vitro and in vivo (Alonso, 2005; Belachew et al., 2003; Baracskay et al., 2007).  

Resident GFAP expressing astrocytes may also undergo proliferation in response to 

injury, these new astrocytes contributing to the glial scar (Buffo et al., 2008).  It is 

important to note that the field of reactive astrocytes and the origin of gliogenesis 

following injury remain contentious.  It is hard to determine whether an activated 

astrocyte within the injury site expressing precursor cell proteins is in fact a newly born 

astrocyte or a resident astrocyte reversing its differentiation state.  This is due to the fact 

that studies have demonstrated that reactive astrocytes significantly alter the expression 

of a range of proteins, including the intermediate filament nestin, a filamentous protein 

classically associated with progenitor cells (Lin et al., 1995; Krum and Rosenstein, 

1999; Douen et al., 2004). Thus is it hard to conclusively determine the origin of an 

activate astrocyte expressing the precursor protein nestin. 

 

When damage results in extensive cell death the presence of newly born neurons may 

play a vital role in recovery of the brain following injury.  Full functional recovery will 
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require the replacement of the dead and dying cells that were a consequence of a 

traumatic insult. Harnessing this intrinsic response of the resident progenitor cell 

population may provide a powerful tool to replace the neuronal loss that occurs in TBI. 

 

1.5.2 Axonal sprouting following injury 

Santiago Ramón Y Cajal first described the potential for neurons to respond to injury in 

the early 1900s, sketching reactive bulbs of injured neurite using light microscopy and 

silver staining techniques (DeFelipe and Jones, 1991).  Numerous studies have now 

demonstrated an active response by damaged mature central CNS neurons, culminating 

in an attempt to regenerate (Salin et al., 1995; McKinney et al., 1997; Dickson et al., 

2000; King et al., 2001; Bareyre et al., 2004; reviewed in Chuckowree et al., 2004).   

Frequently when the damaged mature neuron survives an insult the cell body and 

remaining portion of the injured axon undergo reactive changes involving the specific 

regulation of proteins, particularly cytoskeletal components, in preparation for an 

attempt at sprouting or regeneration (King et al., 2000a). Importantly, axonal 

regeneration and axonal sprouting are two distinct responses to axotomy, which may 

occur at the proximal stump of surviving injured axons.  Regeneration implies 

successful restoration of the specific contacts between an axotomised neuron and its 

target, whereas sprouting describes the abortive response of the proximal stump to 

regenerate, leading to multiple local axonal collaterals without the restoration of normal 

connectivity (Berry et al., 1994; Deller and Frotscher, 1997).  Many studies have now 

convincingly demonstrated that following injury surviving neurites have the ability to 

sprout axons into the local injury site (King et al., 2001; Chuckowree and Vickers, 

2003; Haas, 2004).  

 

Damaged axons in most regions of the mature CNS do not spontaneously regenerate 

and instead tend to undergo an abortive regenerative response restricted to the local 

neuropil (Cotman et al., 1994; Kapfhammer, 1997; Rhodes and Fawcett, 2004).   The 

lack of full functional recovery is often attributed to the essentially inhibitory local 

environment of the mature brain (reviewed in Yiu and He, 2006) including the presence 

of myelin-associated inhibitors and the formation of the glial scar.  However, as 

demonstrated in spinal cord injury, removal of the inhibitory CNS environment alone is 
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not sufficient in evoking full functional recovery (reviewed in Fawcett, 2006). Recent 

research indicates that there is an intrinsic loss of robust axonal extension. Whether the 

inability of the mature CNS to regenerate is due to the local non growth permissive 

environment, or to an inability to extend long axons which may be lost in a 

developmental switch (Li et al., 1995; Blackmore and Letourneau, 2006), or due to a 

switch from axonal to dendritic growth (Goldberg et al., 2002) or even a combination of 

all these factors, remains a priority research topic in the field of neuroscience. It is 

important to note however that the sprouting response into an injury site is not limited 

to directly injured neurons. 

 

The restricted regenerative capacity of the mature CNS is seemingly not present in early 

development, being an acquired limitation.  Long distance axon regeneration and full 

functional recovery following CNS injury has been displayed in embryonic models 

across species (Shimizu et al., 1990; Treherne et al., 1992; Hasan et al., 1993; Saunders 

et al., 1998).  Both in vivo and in vitro models of perinatal healing and plasticity are 

indicative of mammalian cerebral cortical structures being capable of undergoing 

dramatic healing interactions and rapid new circuit reorganisation during the perinatal 

period.  Comparison between regeneration in mature animals and younger animals 

highlights that growth occurring from regeneration in the mature CNS is shorter and 

less abundant (Varga et al., 1995).  This capacity for greater regeneration is believed to 

be lost during a discrete developmental transition.  The reduction of regenerative 

capacity occurs a few weeks postnatally in rodents and a few months in humans (Chen 

et al., 2002). 

 

A key event in axonal survival and the potential for regeneration is a substantial 

reorganisation of the cytoskeleton (Christman et al., 1997) and the formation of an 

axonal growth cone (Spira et al., 2003; Erez et al., 2008).  While the cellular 

mechanisms that govern the transformation of a severed axon into a growth cone have 

been extensively investigated (Ashery et al., 1996; Spira et al., 2003; Sahly et al., 2003; 

Erez and Spira, 2008) the precise mechanisms underlying this transformation remains 

unclear.  What is clear however, in Aplysia neurons, is the formation of regenerative 

growth cones is governed by the level of intracellular calcium (Kamber et al., 2009). If 
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the calcium level is too low the injured neurite forms an end bulb whereas when 

calcium reaches adequate levels, the stump forms a growth cone (Kamber et al., 2009).   

Local protein synthesis at the distal portion of the proximal axon enables these intrinsic 

triggers to form a regenerative cone (Twiss and Minnen, 2006).  Neurofilaments may 

also play a crucial role in determining whether and how central neurons regenerate 

following axon transection (Hall and Yao, 2000) as indicated by the disrupted 

regeneration exhibited by neurofilament-deficient mice (Zhu et al., 1997) and quail 

(Jiang et al., 1996) following peripheral nerve injury.  However, sprouting axons around 

the injury site rarely result in a true regenerative attempt and the formation of correct 

synapses (Neumann and Wolf, 1999; Neumann et al., 2002; Hammarlund et al., 2009). 

Enhancing the regenerative response is a key goal in many studies, however, any 

modification that results in an extensive and functionally appropriate sprouting response 

still remains to be elucidated.  

 

A prominent theme in current research in neuroscience is based upon facilitating and 

promoting axonal regeneration following brain injury.  However, still little is known 

about the accuracy of these regenerating sprouts.   Sprouting around the injury site may 

not always be beneficial or desirable.  Both in vitro (McKinney et al., 1997) and in vivo 

(Salin et al., 1995) experimental models indicate that post-injury sprouting may not 

always be functionally appropriate, with potential aberrant axonal connectivity possibly 

contributing to the development of epilepsy following brain traumas such as stroke 

(Carmichael, 2003).   Indeed many of the new connections that form when damaged 

axons sprout and re-synapse with targets are hyperexcitable (McKinney et al., 1997) 

and traumatic epilepsy is a common consequence of traumatic head injury (Willmore, 

1995; Jacobs et al., 2000; Santhakumar et al., 2001).  The onset of epileptic seizures 

typically occurs one to three years after head injury and the likelihood of seizure 

evolution is correlated with the severity of the initial injury (Willmore, 1995).  

Additionally, post-lesion sprouting has also been implicated in the generation of 

abnormal circuitry in other brain lesion paradigms (Jacobs et al., 2000; Parent, 2002; 

Parent and Lowenstein, 2002).  Thus the induction of growth, after injury, may be 

inappropriate, potentially exacerbating a clinically poor outcome. There is a current 

interest in rehabilitation in conjunction with induction of axonal growth following 
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injury as a TBI intervention.  Interestingly, rehabilitation has the potential to reinforce 

appropriate synapses and induce the dieback of inappropriate connections (reviewed in 

Fawcett, 2009).  This therapeutic intervention may provide a non-invasive mechanism 

to eliminate aberrant sprouting.  Induction of appropriate axonal sprouting of injured 

and collateral axons, synaptogenesis and a generalised plasticity will be of vital 

importance in promoting functional recovery from injury to the CNS. Clearly any 

intervention that prevents post-traumatic neurodegeneration, or inappropriate axonal 

sprouting and enhances adaptive neural responses has the potential to substantially 

improve the prognosis of TBI.  A great deal of emphasis is therefore being placed upon 

developing strategies to promote neural repair following injury.  However, many of the 

basic mechanisms underlying endogenous repair mechanism are not fully understood 

and need to be discovered to prevent adverse outcomes. 

 

1.5.3 Potential for structural plasticity in mature mammalian brain following 

injury 

The current body of research emerging indicates a remarkable plasticity retained within 

the brain which, until recently was thought not to exist. The cental dogma that the 

mature brain is a fixed, undynamic structure is no longer valid.  The advancement of 

multi-photon microscopy techniques in the past decade (Denk et al., 1990) has 

convincingly demonstrated that the mature brain does retain a capacity for remodelling 

and plasticity. Collateral sprouting from uninjured axons also play a large role 

following axonal injury (Salin et al., 1995; Deller and Frotscher, 1997; Jin et al., 2006), 

possibly due to availability of vacant synaptic territory within the injury site (McKinney 

et al., 1997).  However if the injury has resulted in significant cell death, collateral 

sprouting cannot account for the lost synaptic connections alone, replacement of the lost 

cells must first occur. 

 

Under normal physiological conditions the mature brain is a dynamic network of 

connections that are constantly remodelling and responding to experience-dependent 

learning.  This day to day plasticity is predominantly in dendritic spines which undergo 

rapid turnover through extension and retraction and alterations in their shapes and sizes  

(for a selection of recent papers see Grutzendler et al., 2002; Knott et al., 2002; 
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Trachtenberg et al., 2002; Majewska and Sur, 2003; Portera-Cailliau et al., 2003; 

Holtmaat et al., 2005; Majewska et al., 2006; Brown et al., 2007; Brown et al., 2008; 

Lee et al., 2008; Brown et al., 2010); which has been associated with synapse formation 

and elimination (Trachtenberg et al., 2002; Holtmat et al., 2008).  Additionally, studies 

have shown a remarkable extension and retraction of dendrite tips within 

subpopulations of neurons in the naïve brain (Lee et al., 2006; 2008). 

 

Alterations in synaptic strength and wiring, remodelling of axonal and dendritic arbors 

and changes in dendritic spine and axonal bouton turnover, have been observed not only 

in the naïve brain but also in response to injury. Cortical neurons demonstrate axonal 

and synaptic remodelling in response to various models of injury (for examples see 

King et al., 2001; Knott et al., 2002; Trachtenberg et al., 2002; Majewska et al., 2006). 

Reorganisation such as this may correlate with functional recovery not only in stroke 

(Carmichael, 2003; Carmichael, 2006; Brown, 2008; De Filippo et al., 2008), but 

comparable plasticity may also account for the recovery observed after forms of spinal 

cord injury (reviewed in Edgerton, 2004; Dunlop, 2008). Experimentally induced 

complete infarction of the somatosensory cortex induced a new pattern of electrical 

circuit activity in the intact ipsilateral hemisphere (Takatsuru et al., 2009).  

Compensatory plasticity can involve axonal sprouting of intact neurites and synapse 

alterations or the growth of new horizontal connections.  However another early plastic 

mechanism evoked by injury is the unmasking of silent pathways in the affected 

network and can occur within hours of a nerve lesion (Merzenich et al., 1983; 

Donoghue et al., 1990). Spontaneous reorganisation in small cortical lesions results in 

adjacent cortical areas taking over the function of the damaged areas (Nudo, 1999; 

Kolb, 2003).  This activation of functionally inactive connection occurs through an 

increase in excitatory transmitter release, an increase in density of postsynaptic 

receptors and changes in membrane conductance in conjunction with a decrease in 

inhibitory input or removal of inhibition from excitatory input.  Plasticity can also occur 

over a longer time period, evoked through different mechanisms.  Long-term changes 

occur through long-term potentiation and depression, and, evidenced in the motor 

cortex, involve synaptic alterations in N-methyl-D-aspartic acid receptor activation and 

an increase in intracellular calcium concentration (Hess and Donoghue, 1994; 1996). 
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When damage to a circuit is relatively small, it is feasible that reorganisation of the 

surrounding networks can recover the functional loss, however complete destruction 

within an injury site will require the replacement of lost and dying cells and frank 

extension of lost axons.  The specificity and degree of remodelling that can occur in 

response to injury has not been fully elucidated.  To understand how to manipulate both 

the uninjured and injured brain’s potential for plasticity to facility a functionally 

desirable outcome following injury, the full potential and plastic response of neurons to 

injury must first be fully understood. 
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1.6 THESIS AIMS 

 

Despite an accumulating body of literature regarding the capacity for neural 

remodelling and regeneration following structural brain injury many aspects of this 

response remain to be fully elucidated.  This thesis investigated the reactive and 

regenerative alterations associated with the neural response to physical injury in the 

adult mammalian brain.  The studies to be included utilised a range of in vitro and in 

vivo models of primary injury.  To investigate the regeneration potential of the mature 

mammalian brain a variety of procedures were utilised, including 

immunohistochemical, molecular and imaging techniques, to examine the 

morphological, cellular and molecular events that characterise the neural response to 

injury.  This thesis studies are focused upon the potential for regeneration following 

injury. Specifically, how comparable regenerating neurons are to their developmental 

counterparts, characterising alterations within the damaged neurons and the surrounding 

brain following injury, and the role of the neuronal cytoskeleton in neuronal 

regenerative events, as the mechanisms underlying these processes are currently poorly 

understood. 

 

Aim 1: To determine the motile characteristics which govern axotomised CNS 

neurons during regeneration and how these changes compare to initial neurite 

development. Axonal outgrowth and pathway selection plays a crucial role in 

development of the mammalian brain and will thus be important in axonal sprouting 

and/or regeneration.  The first aim addressed by this thesis endeavoured to characterise 

the motile capabilities of regenerating axons in comparison to development in vitro.  It 

utilised an established model of axonal transection of rat cortical neurons, grown to 

relative maturity.  The response of developing and regenerating axons was analysed 

using multi-labelling immunocytochemistry and live cell imaging.   

 

Aim 2:  To characterise the response and regenerative attempt of injured neurons 

to a novel model in injury in vitro and determine what degree the injury response 

is dependent upon mode of injury.  Due to the wide varieties in injury that can occur 
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as a result of a TBI, full comprehension of the response of the brain to various modes of 

injuries and mechanisms underlying these responses will be vital in devising successful 

treatment.  Thus the current aim endeavoured to develop an in vitro model of axonal 

injury that involved a total shearing of axonal process from the neuronal cell body, to 

determine how much the neuronal regenerative response relied upon mode and degree 

of injury.  The ability of relatively mature neurons to survive and attempt a regenerative 

response after this novel model of axonal shearing was investigated. The response of the 

neurons to this mode of axonal injury, and in comparison to the transection model of 

injury utilised in Aim 1 was examined using a combination of live imaging and 

immunocytochemical analysis. 

Aim 3. To investigate the reactive and regenerative changes that characterise the 

neural populations response to injury in vivo, exploring the co-ordinated 

alterations, in both neuronal and glial cell populations, which occur following 

injury.  The extent to which the adult brain undergoes recovery following injury 

remains controversial. A rodent model of structural injury specific to the neocortical 

grey matter of the somatosensory cortex was utilised. These studies aimed to determine 

the ultimate fate of injury-induced proliferating and progenitor cells and the potential 

for these cells to contribute towards neuronal replacement in the injured adult 

neocortex.  Furthermore the response of various populations of neural cells, including 

neurons, astrocytes, microglia and macrophages as well as alterations in brain 

vasculature, was analysed with immunohistochemical techniques, focussing specifically 

upon the neuronal cell type specific response to injury in vivo. 

Aim 4. To characterise the phenotype of neurons derived from a transgenic mouse 

lacking the neurofilament light chain protein and determine the regenerative 

abilities of the neurofilament light chain null neurons.  The axonal cytoskeleton, 

including the neurofilaments, plays a crucial role in both initial neurite outgrowth and 

elongation and regeneration.   This aim examines the cytoskeletal alterations, 

specifically the reactive and regenerative changes that characterise the axonal response 

to physical injury in neurons lacking the neurofilament triplet protein NF-L.  To meet 

this aim, a novel in vitro model of axonal injury derived from transgenic mice with a 

NF-L deletion was utilised, in conjunction with the focal acute neocortical injury 
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utilised in Aim 3. The neuronal characteristics and response of regenerating axons was 

analysed using multi-labelling immunohistochemistry, immunocytochemistry and 

molecular techniques. 

 

This thesis endeavoured to characterise the reactive and regenerative response of mature 

CNS neurons to injury.  These studies included provide insight in to some of the aspects 

of the post-injury neuronal response and further explain why the mature CNS is 

incapable of repair.  Results from theses studies enhance current knowledge regarding 

the basic mechanisms underlying neuronal and axonal regeneration and highlight 

certain neuronal responses to injury in which therapeutic intervention may be possible. 
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2 MATERIALS AND METHODS 

 

2.1 CORTICAL NEURON CULTURE 

2.1.1 Preparation of coverslips and cell culture trays 

Glass coverslips were nitric acid etched through submersion in nitric acid overnight, 

followed by 5 milli Q® washes. Coverslips were then oven dried at 80°C and 

autoclaved. Coverslips were singularly placed into either 12-well or 24-well microplates 

(Iwaki, Japan) within a laminar flow hood and further sterilised through ultraviolet 

radiation for 30 mins.  1mg/mL poly L-lysine (Sigma, USA) in borate buffer, pH 7.4 

was filter sterilised onto the coverslips using Acrodisc® 25 mm syringe filters and left 

for 24 hrs.  After this time the poly-L-lysine was removed from the coverslips and 1mL 

of NeurobasalTM media supplemented with 2% B27, 10% foetal calf serum, (all from 

Invitrogen, USA) 0.5mM L-glutamine, 25µm glutamate and penicillin/streptomycin 

antibiotics (all from Gibco BRL, Life Technologies, USA) at 37°C was added.  The 

coverslips were then incubated at 37°C in 5% CO2, until plating of culture. 

 

2.1.2  Dissection and dissociation of cortical tissue 

The Animal Experimentation Ethics Committee of the University of Tasmania approved 

all procedures involving animals. 

 

Primary dissociated cortical neuron cultures were prepared from embryonic day 18 

(E18) Hooded-Wistar rats under sterile conditions as previously described (Banker and 

Goslin, 1988). Rats were euthanased through CO2 asphyxiation at 7 L/min for 6 mins.  

Each rat is checked for reflexes and the site of incision alcohol sterilised.  An incision 

was made along the midline of the stomach and the embryos removed and placed on 

ice.  Within the laminar flow hood, the embryos were removed from the amniotic sac 

and decapitated.  The outer layers of the skull and meninges were dissected and the 

superficial layers of the frontal cortex of both hemispheres removed and placed in 5mL 

of 10mM HEPES at 37°C. 
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Following the complete dissection of all embryos, 0.25mL of 0.025% trypsin (Sigma, 

USA) was added to the 10mM HEPES and cortical tissue and incubated in a water bath 

at 37°C for 10 mins.  Following this, all solution was carefully removed, and 5mL of 

fresh 10mM HEPES added. The tissue was then incubated in the water bath at 37°C for 

five mins, this washing procedure repeated twice.  After the final wash 5mL of fresh 

10mM HEPES was added and cell dissociation was completed through gentle trituration 

using a 1mL pipette.  Cell viability was assessed using trypan blue vital dye exclusion 

(Sigma, USA). Cells were plated onto the prepared coverslips, to a density of 5.0x105 

for the 24-well plates and a density of 1.0x106 for the 12-well plates. The plates were 

then returned to the incubator. 

 

2.1.3 Maintenance 

Two days after plating, the NeurobasalTM media containing 10% foetal calf serum was 

removed and replaced with 2ml of subsequent NeurobasalTM media supplemented with 

2% B27, 0.5mM L-glutamine and penicillin/streptomycin antibiotics to selectively 

promote the growth of neurites (Brewer et al., 1993, Brewer 1995; 1997).  Every three 

to four days half of the media was removed and replaced with fresh media.  Cells were 

maintained in the 37°C humidified atmosphere of CO2 for up to 24 days in vitro (DIV). 

 

2.2 IN VITRO AXONAL INJURY 

 

Axonal injury was carried out as previously described in Dickson et al., (2000) and 

Chuckowree and Vickers, (2003) on mature cortical culture.  Cell culture maturity is 

reached at 21 DIV, when a lack of expression of developmental proteins (Chuckowree 

and Vickers, 2003; Haas et al., 2004) coincides with the expression of proteins 

correlating to maturity of the neuron and its processes (Chuckowree and Vickers, 2003; 

King et al., 2006).  At 20 DIV, coverslips were transferred to individual 35 mm sterile 

plastic petri dishes (Iwaki, Japan) within the laminar flow hood and allowed to re-

acclimatise to the incubator conditions for 24 hrs.  At 21 DIV, individual axonal 

bundles interconnecting discrete neuronal aggregates adherent to underlying substrate 

were selected for transection.  Transection was performed under microscope guidance 

using a 12cm Barkan goniotomy curved-blade diamond knife (Kaisers, Germany).  A 
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transection was made with the knife blade on appropriate axonal bundles to completely 

transect axons and leave a cell free lesion.  Several injuries (2-5) were made per 

coverslip. 

 

2.3 IN VIVO FOCAL NEORCORTICAL INJURY 

 

Acute focal neocortical injuries were performed as previously described (King et al. 

1997, 2001; Dickson et al. 2005).  Briefly, following intraperitoneal administration of 

anaesthetic (pentobarbitone sodium, 72mg/kg, Abbot Laboratories, Australia) and 

analgesic (Carprogen, 4mg/kg, Pfizer, Australia), animals were immobilised in a 

Stoelting stereotaxic frame.  A burr hole was drilled into the skull, (5mm anterior and 

4.5mm lateral to lambda for rat, 2.5mm anterior and 2mm lateral to lambda for mice) 

and a focal injury was made in the somatosensory cortex (Par1 region) by lowering a 

25-gauge Hamilton needle (Reno, USA) to a depth of 1.5mm into the grey matter for 

rats and a 29-gauge needle to a depth of 1mm into the grey matter for mice.  The needle 

was left in place for ten minutes prior to removal and suturing of the wound. 

 

2.4 IMMUNOCYTOCHEMISTRY AND IMMUNOHISTOCHEMISTRY 

 

Fixed cultures and brain sections were incubated in combinations of mouse and rabbit 

primary antibodies in diluent (0.3% Triton X-100 in 0.01 M phosphate buffered saline 

(PBS)) for two-hours at room temperature on a shaker followed by incubation at 4°C 

overnight (16-20 hr).  Primary antibodies were then removed through three ten-minute 

washes in 0.01 M PBS.  Secondary antibodies goat anti-mouse Alexa Fluor® 594 and 

goat anti-rabbit Alexa Fluor® 488 (dilution 1:1000; Molecular probes, USA) were 

diluted in 0.01 M PBS and incubated on coverslips for 90 mins on a shaker in the dark. 

Nuclear yellow (Molecular Probes, USA, 0.01%) was added for the final 5 min of the 

secondary antibody incubation, prior to washing and mounting.  Coverslips and sections 

were then washed three times in 0.01 M PBS and mounted on to glass slides using 

Permaflour aqueous mounting medium (Immunotech, France).  Immunoreactivity 

visualised using a Leica (Germany) DM BL2 upright fluorescent microscope. 
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Table 2.1 Primary antibodies used for immunohistochemistry 
Antibody name Species Immunoreactivity Dilution Supplier 

α-internexin R Class IV intermediate filament 

subunit 

1:2000 Novus  

Biologicals 

β-III-tubulin M Neuron specific β-tubulin subunit 1:10000 Promega 

BrdU M Bromodeoxyuridine, thymidine 

analogue 

1:1000 Sigma 

Calretinin R Interneuron calcium binding 

protein 

1:2000 Chemicon 

ERM M IgM Actin/membrane binding exrin-

radixin-moesin protein 

1:500 Gift from F. 

Solomon 

Ferritin R Microglial iron binding protein 1:2000 Dako 

GFAP R Glial fibrillary acidic protein 1:2000 Dako 

Ferritin R Proliferating cell nuclear antigen 1:500 Zymed 

Ndel1 R Mammalian NudE protein 1:100 Gift from D. 

Smith 

Nestin M Intermediate filament protein 

marker of neural progenitor 

1:1000 BD 

Biosciences 

NF-L R 68kD neurofilament triplet light 

molecular weight subunit 

1:1000 Millipore 

NF-M R 150kD neurofilament triplet 

medium molecular weight subunit 

1:2000 Serotec 

Parvalbumin MC Interneuron calcium binding 

protein 

1:2000 Swant 

PCNA R Proliferating cell nuclear antigen 1:500 Zymed 

SMI312 MC Pan-axonal neurofilament marker 1:2000 Swant 

Tau R Microtubule associated protein 1:15000 DAKO 

 

Trk B R Tyrosine kinase receptor B 1:500 Santa Cruz 

R = Rabbit polyclonal antibody, M = Mouse monoclonal antibody, MC = Mouse 

monoclonal cocktail.  Antibodies are IgG unless otherwise specified. 
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2.5 LIVE CELL IMAGING 

 

Time lapse imaging was carried out using differential interference contrast (Normarski) 

microscopy on a Leica (Germany) DM IRB inverted microscope.  Selected coverslips 

were transferred to a mounted 0.17mm Delta T dish (Bioptechs, USA) containing 

imaging buffer (in mM: 124 NaCl, 5 KCl, 0.2 CaCl2, 1 MgCl2, 30 dextrose and 24 

HEPES, pH 7.3) (Zhang and Benson, 2001, Chuckowree and Vickers, 2003) at 36°C, 

CO2 enriched. Temperature inside the dish was maintained through a Delta T4 culture 

dish controller (Bioptechs, USA).  Imaging buffer underwent constant replenishment 

from a stock of imaging buffer, maintained at 37°C with carbogen (5% CO2 in oxygen; 

BOC gases, Australia) being pumped through at 3 L/min.  Imaging buffer was replaced 

and removed from the Delta T dish at a constant rate. Preliminary trials determined the 

optimal rate of imaging buffer replenishment and carbogen enrichment. Appropriate 

cells clusters were randomly selected which were free from contact with surrounding 

neuronal cells clusters and glial populations.  A standard minimum distance of 50µm 

from the selected axon and surrounding cells was set. 

  

Live cell images were captured every minute over a two-hour period with a Hamamatsu 

Orca ER (Hamamatsu Photonics, Japan) digital camera attached to a G4 Macintosh 

computer (Apple Computers, USA) using the Open Lab 4.0.2 program. To ensure that 

the intrinsic motility of axons was the variable investigated, all external variables of 

growth cone and axonal motility were controlled.  The imaging environment 

constructed was completely devoid of external stimuli except for a constant light 

source.  All cells included in the data were imaged once; stimulus history of growth 

cone in vitro can alter behavioural response (Diefenbach et al., 2000).  The strict 

regulation of content of imaging buffer and replenishment rate ensured calcium levels 

(0.02mM CaCl2) were kept at a controlled physiological level. 
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3 CELLULAR DYNAMICS UNDERLYING REGENERATION OF 

DAMAGED AXONS DIFFERS FROM INITIAL AXON DEVELOPMENT 

 

3.1 INTRODUCTION 

 

While the mature brain, unlike the immature CNS and mature PNS, cannot completely 

repair following injury, it is now clear that the mature brain evokes an active response 

to injury and that this response culminates in an attempt to regenerate (Salin et al., 

1995; McKinney et al., 1997; Dickson et al., 2000; King et al., 2001; Bareyre et al., 

2004; reviewed in Chuckowree et al., 2004). The lack of full functional recovery is 

often attributed to the essentially inhibitory local environment of the mature brain 

(reviewed in Yiu and He, 2006) including the presence of myelin-associated inhibitors 

and the formation of the glial scar.  However, experimental evidence has convincingly 

demonstrated that removal of the inhibitory environment alone is not sufficient in 

evoking full functional recovery (reviewed in Fawcett, 2006), thus indicating that there 

must also be an intrinsic limitation to full functional recovery. Understanding the 

intrinsic limitation to mature CNS regeneration will be vital in devising effective 

strategies to treat TBI. 

 

Recent studies have indicated that the lack of robust axonal extension following injury 

may be an intrinsic limitation. It has been postulated that this ability to extend long 

axons may be lost in a developmental switch (Li et al., 1995; Blackmore and 

Letourneau, 2006). Following TBI, to re-establish the lost connections, thus reinstating 

the neuronal network, an injured axon must robustly extend into the injured 

environment and navigate its way to the correct, original target. During development, 

neurons become polarised and their axons extend relatively long distances correctly 

tracing a path to their ultimate target.  Critical to this precise and accurate axonal 

outgrowth that occurs during brain development is the growth cone. These transient 

structures, present on the tips of elongating axons, have both sensory and motor 

capabilities, which enable the integration of environmental cues, such as growth factors, 

resulting in precise path finding, ultimately culminating in the establishment of 

connectivity in extensive neuronal networks (for review see Tessier-Lavigne and 
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Goodman, 1996; Suter and Forscher, 2000; Gordon-Weeks, 2004). During development 

growth cone form is behaviour specific (Mason and Wang, 1997; Szebenyi et al., 1998), 

with these structures exhibiting striking changes in their morphology in different 

cellular contexts.  

 

Aspects of the neuronal regenerative response recapitulate the sequence of dynamic 

cellular and morphological features displayed by developing neurites (reviewed in Harel 

and Strittmatter, 2006).   Numerous studies (eg Hoffman et al., 1987, 1993; Goldstein et 

al., 1988; Hoffman and Cleveland, 1988; Muma et al, 1990; Nixon and Shea, 1992) 

have shown that following axonal injury and during regenerative attempts, 

neurofilament expression is down-regulated, whereas expression of other cytoskeletal 

elements is elevated, suggesting that the sequence of cytoskeletal gene expression 

occurring in development is recapitulated during attempted regeneration (Hoffman and 

Cleveland, 1988; Lee and Cleveland, 1996). It has be demonstrated, both in vitro 

(Dickson et al., 2000) and in vivo (Christman et al., 1997; King et al., 2001), that the 

regenerative attempt mounted by axons is associated with cytoskeletal reorganisation 

and accompanied by an up-regulation of GAP-43.  GAP-43, a neuron specific growth 

and membrane-associated phosphoprotein, is one of the most abundant proteins in 

neuronal growth cones, where it is implicated in filopodial motility, axon guidance, 

synaptogenesis and synaptic plasticity (Brandt, 1998).  It is, therefore, not surprising 

that the expression of GAP-43 is down-regulated in the mature CNS, but elevated 

during both neuronal development and regeneration (Goslin et al., 1988; Cantallops and 

Routtenberg, 1999).  

 

However, observations from fixed preparations of focally damaged neocortex, suggest 

that regenerating axons also have a number of features that differ from developing 

neurites, such as a high intra-axonal density of neurofilaments and club-like endings on 

distal regenerating tips (King et al., 2001). Similarly, live imaging of acute slices 

revealed that although regenerative sprouts are highly motile, they differ substantially in 

morphology to classical developmental axonal growth cones, being relatively simple 

finger-like structures (Dickson et al., 2007). Similarly,  post-injury regenerating axons 

described in the adult lamprey CNS, are neurofilament-rich, relatively simple in 
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structure and lacking filamentous actin at the sprouting tip (Zhang et al., 2005). The 

similarities and differences between regenerating and developing axons are still under 

investigation. While the cytoskeletal composition, form and behaviour of growth cones 

during development has been intensively investigated (Kalil et al., 2000; Dent and 

Gertler, 2003; Zhou and Cohan, 2004), comparatively, little is known about the 

morphology, pathway selection and biochemistry of the tips of regenerating axons. 

 

This Chapter investigated the cytoskeletal and dynamic characteristics of mature 

regenerating axons compared to developing axons in vitro, endevouring to classify the 

similarities or differences that may be present between regenerating and developing 

axons.  It involved the direct comparison of axons and growth cones in vitro during 

development and after injury, the latter ultilising an in vitro neuronal transection injury 

model (Dickson et al., 2000; Chuckowree and Vickers, 2003; Chung et al., 2003).  

Neurite transection was performed at 21 DIV, when neurons are relatively mature.  

These neurons are considered relatively mature due to the absence of developmental 

markers such as GAP-43 (Dickson et al., 2000) and the Ezrin-Radixin-Moesin family of 

membrane-cytoskeletal linker proteins (Haas et al., 2004), and the presence of markers 

indicative of neuronal maturity such as punctate synaptic proteins (mature N-methyl D-

aspartate receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors localized to dendritic spines) microtubule associated protein 2 (MAP-2) and 

the neurofilament triplet proteins (for example, Chuckowree and Vickers, 2003; King et 

al; 2006).  Immunolabelling for cytoskeletal markers were used to compare growth 

cones on regenerating axons to growth cones at comparable time-points during 

development in vitro.  The behaviour of growth cones during regeneration and 

development was also investigated utilising live imaging time-lapse microscopy. 
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3.2 MATERIALS AND METHODS 

 

3.2.1 Neuronal culture and in vitro model of axonal transection 

Primary dissociated cortical cultures were prepared as previously described (Chapter 

2.1)  

Axonal transection was carried out as described in Chapter 2.2 on developmental 

cultures at 5 DIV and on relatively mature cultures (21 DIV). The sprouting response 

observed in cortical culture in vitro has been shown to commence between 4 to 6 hours 

(hrs) post-injury (PI) (Chuckowree and Vickers, 2003). Therefore the imaging time-

point, 6hrs PI, represents the initial sprouting response of the transected axons, whereas 

analysis at 24hrs PI allows the examination of the sustained sprouting response. 

 

3.2.2 Growth factor application 

Two growth factors were selected on the basis of their well-established ability to 

enhance neurite outgrowth during development (Tucker et al., 2001, Airaksinen and 

Saarma, 2002, Goldberg et al., 2002) and affect terminal axonal sprouting in response to 

injury (Zhou and Shine, 2003; Hafidi et al., 2004) in other neuronal populations. Human 

recombinant Brain Derived Neurotrophic Factor (BDNF) (20ng/mL, reconstituted in 

milli Q®) (Chemicon, Temecula, CA) or Glia Derived Neurotrophic Factor (GDNF) 

(20ng/mL, reconstituted in milli Q®) (Chemicon, Temecula, CA) and vehicle controls 

(milli Q®) were bath applied to cultures at 3, 5 and 7 DIV and immediately following 

transection at 21 DIV for 16 hrs. Concentrations were based on preliminary 

investigations determining maximal effect on outgrowth, with application of an 

increased concentration (50ng/mL) not associated with enhanced neurite growth (data 

not shown). 

 

3.2.3 Immunocytochemistry 

Cultures (3, 5 and 7 DIV and 6 and 24 hrs post-injury in 21 DIV cultures) were fixed in 

4% paraformaldehyde (PFA)/0.01M PBS for 30 mins at room temperature on an orbital 

shaker. Coverslips were then processed for immunocytochemistry as described in 
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Chapter 2.4 (for antibody details see Table 2.1). To label for filamentous actin (F-actin), 

cultures were incubated with AlexaFluor 594 phalloidin (dilution 1:200; Molecular 

Probes), for 30 min after immunocytochemistry.  

 

3.2.4 Live Cell Imaging and Analysis 

Live cell imaging was carried out as described in Chapter 2.4. For the post-injury 

investigations, images immediately prior to injury were captured and referred to at the 

later time-points to ensure the axons under investigation were severed.  Axonal 

extension and growth cone motility over the 2 hr imaging time period was quantitated 

using the individual time-lapse images. Twenty-five 2 hr time-lapse images were 

included in the analysis, 5 images for each time-point from separate cultures. To 

analyse the dynamic movement of the individual axons the centre of the growth cone of 

the axon under investigation was assigned an X, Y co-ordinate every 2 mins (n=25). 

The original position of the growth cone, at the time-point 0, was assigned the X, Y co-

ordinate 0,0. The original X, Y position was then subtracted from subsequent X, Y co-

ordinates. Mean axonal extension was calculated by determining axonal length over the 

two-hours, measured at 10 min intervals. Growth cone behaviour was analysed every 

minute (n=25) and classified as extending, pausing or retracting, calculated as a 

percentage of the total time imaged. For growth factor application experiments, neurite 

length was measured using OpenLab software. t tests or ANOVA were performed on 

quantitative data, with post hoc comparisons (Bonferroni test) as appropriate using 

Prism v4.0 software (Graphpad, USA).
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3.3 RESULTS 

3.3.1 Regenerating cortical neurons have a similar cytoskeletal profile to 

developing neurons in vitro 

Immunocytochemistry was performed at 5 DIV and following transection at 6 hrs post-

injury (Figure 3.1). Immunolabelling with antibodies to both tau (an axonal marker) and 

MAP-2 (a somato-dendritic marker) was used to confirm the axonal identity of the 

neurites under investigation (Figure 3.1A,B,E and F). Tau and MAP-2 were co-localised 

within the cell bodies of developing neurons, with MAP-2 immunolabelling confined to 

the cell bodies, dendrites and proximal axonal extensions by 5 DIV (Figure 3.1). At 6hrs 

PI, tau labelled neurites traversed the injury site. These sprouts, were not immunopositive 

for MAP-2, suggesting that they were predominately of axonal origin. High power 

magnification of growth cones labelled with antibodies to both tau and MAP-2 

additionally confirmed that the growth cones under investigation were of axonal origin, ie 

tau immunopositive only (Figure 3.1E and F). Furthermore, the regenerative sprouts were 

immunopositive for βIII-tubulin, but showed little immunolabelling for the medium 

molecular weight neurofilament triplet protein (NF-M) (phosphorylation independent 

epitope). Similarly, labelled developing cultures revealed an abundance of βIII-tubulin 

throughout the neurites and extending into the growth cone with NF-M confined to the 

centre of the axon shaft (Figure 3.1C and D).  

 

Comparison of growth cones on developing axons and on the tips of regenerative sprouts 

demonstrated distinct differences between the two structures. F-actin staining (Figure 

3.2C and D), labelling with antibodies to the actin/membrane binding ERM proteins 

(Figure 3.2A and B) and DIC images (Figure 3.4) indicated that regenerating growth 

cones were notably smaller than their developmental counterparts, with shorter filopodial 

extensions. Immunolabelling with antibodies to βIII-tubulin, ERM proteins, tau and F-

actin staining with phalloidin, demonstrated similar labelling patterns within the 

developing and regenerating growth cones. βIII-tubulin was confined to the central 

domain while ERM proteins were localised to the peripheral domain and the distal tips of 

filopodia (Figure 3.2A and B). Furthermore, there was colocalisation of F-actin and tau 
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throughout both developmental and regenerative growth cones (Figure 3.2C and D), with 

tau localised not only within the central domain, but additionally it crossed the 

transitional domain into the periphery of the growth cone. 

 

3.3.2 There was a significant difference in axonal outgrowth between developing 

and regenerating cortical neurons in vitro  

Analysis of growth cone position over a 2 hr period demonstrated that developing axons 

exhibit a wide range of movement involving rapid phases of extension and retraction 

with many changes in direction (Figure 3.3).  This exploratory motility, was observed at 

3, 5 and 7 DIV, however, the mean axonal outgrowth was shown to decrease with age 

of culture. Neurons at 3 DIV exhibited the greatest mean axonal extension over the 

imaging period (14.39 +/- 4.01µm n=5).  At 5 DIV, the mean axonal extension was less 

(12.98 +/- 2,32µm n=5), but not significantly (p>0.05), with significantly (p<0.05) less 

axonal extension occurring at 7 DIV (6.19 +/- 0.98µm n=5). The post-injury sprouting 

axons also exhibited the exploratory motility observed in developing axons, however, 

their mean axonal extension was significantly (p<0.05) less at 6 hrs (4.03 +/- 0.89µm 

n=5) and 24 hrs post-injury (5.12 +/- 1.2µm n=5), in comparison to that observed in the 

developing axons at 3 and 5 DIV. There was no significant difference between the two 

PI time-points. 

 

3.3.3 Growth cone morphology and behaviour in response to injury was 

significantly different in comparison to development 

Time-lapse analysis of developing axons revealed a range of growth cone 

morphological forms. Furthermore, as previously reported, the morphology of the 

growth cone was related to the growth cones’ behaviour (Skaliora et al., 2000). 

‘Extending’ and ‘retracting’ growth cones exhibited simple streamline forms (Figure 

3.4A). However, when a growth cone was ‘pausing’, with no net growth, the 

morphology dramatically changed to become large and considerably more complex in 

shape (Halloran and Kalil, 1994; Kalil, 1996; Skaliora et al., 2000). The same range of 

dynamic morphological alterations was not observed in the regenerating sprouts (Figure 

3.4B). Instead growth cones of regenerating axons exhibited a constant morphology, 
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with less elaborate protrusions over the two-hour imaging sequence independent of 

behaviour.  Dynamics after axonal injury was also investigated in 5 DIV developing 

neurons at 6 hrs PI, however, consistent with previous studies in our laboratory, no net 

growth or growth cone elaboration occurred (Figure 3.4C) (Dickson et al., 2000). 

 

Growth cones of developing and regenerative axons underwent distinct and quantifiable 

phases of extension, retraction and pausing (Figure 3.5A). At 3 DIV, growth cones 

spent 46.39 +/-2.06% extending, 28.82 +/-1.30% retracting and 24.79 +/-1.31% 

pausing. At 5 DIV growth cones spent 40.09 +/-2.94% extending, 30.80 +/-1.67% 

retracting and 29.10 +/-3.20% pausing. At 7 DIV growth cones spent 38.55 +/-2.87 % 

extending, 26.67 +/-1.15% retracting and 35.19 +/-3.2% pausing. At 3 DIV, 

significantly (p<0.05) more extension and less pausing than 7 DIV was observed 

(p<0.05). The tips of post-injury regenerative sprouts behaved quite differently. At both 

6 (57.75 +/-2.48% extending, 34.36 +/-2.56% retracting and 8.03 +/- 0.65 % pausing) 

and 24 hrs post-injury (55.56 +/-4.49% extending, 34.68 +/-2.04% retracting and 9.77 

+/-1.53% pausing), the growth cones on the end of regenerative neurites spent a 

significantly (p<0.05) greater percentage of time extending and less time pausing.  

There was a 36% increase in extension behaviour and a striking 70% reduction in 

pausing behaviour in the growth cones of regenerative neurites compared to 

developmental growth cones. 

 

3.3.4 Post-injury regenerative sprouts were unresponsive to growth factors 

At 3 DIV application of both BDNF and GDNF significantly (p<0.05) increased the 

mean neurite length of neurons in vitro (Figure 3.5B). At 3 DIV the mean neurite length 

of the control treatment was 41.22 +/- 2.18µm (n=380). The mean neurite length with 

BDNF treatment was 54.86 +/-4.92µm (n=404); the mean neurite length with GDNF 

treatment was 53.97 +/- 3.36µm (n=445). Similarly at 5 DIV, both BDNF and GDNF 

treatment resulted in  significant (p<0.05) increase in the mean neurite length. At 5 

DIV, the mean neurite length of the control treatment was 64.56 +/-8.11µm (n=344), 

with BDNF treatment was 75.53 +/-9.15µm (n=329) and the mean neurite length with 

GDNF treatment was 79.71 +/-9.93µm (n=334). At both 3 and 5 DIV there was no 

significant (p>0.05) difference between the effects of the two growth factors, relative to 



 

 52 

controls. BDNF and GDNF had little effect on neurite length at 7 DIV, the mean neurite 

length of the control treatment was 90.33 +/-7.23µm (n=349), with BDNF treatment 

was 93.34 +/-8.46µm (n=343) and the mean neurite length with GDNF treatment was 

96.98 +/-9.22µm (n=313). Incubation of relatively mature cell cultures with BDNF, 

GDNF or a vehicle control following axonal bundle transection had no significant 

(p>0.05) effect on neurite outgrowth in the 16hrs following transection (Figure 3.5B). 

The mean neurite length of the control treatment was 59.03 +/-6.44µm (n=96). The 

mean neurite outgrowth with 20ng/mL BDNF treatment was 59.87 +/-5.27µm (n=112); 

the mean neurite outgrowth with 20ng/mL GDNF treatment was 57.22 +/-6.19µm 

(n=98).  The punctate pattern of localisation of the BDNF receptor, Trk B, throughout 

the cell clusters and processes in development and relative maturity (Barnabé-Heider 

and Miller, 2003; Swanwick et al., 2004; Gomes et al., 2006) demonstrated widespread 

receptor expression by multiple cortical neuronal phenotypes, as shown by co-

immunolabelling for βIII-tubulin (Figure 3.6). 
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3.4 DISCUSSION 

 

Immunocytochemistry, with antibodies to both the axon and dendrite specific 

microtubule associated proteins, tau and MAP-2 respectively, enabled the visualisation 

of stages of neuronal morphogenesis - the rapid elongation of multiple dendrites and a 

single axon. Furthermore, the sprouting response of the mature injured axons in vitro 

(Dickson et al., 2000; Chuckowree and Vickers, 2003) was also demonstrated with 

axon-specific markers. Developmental axon extension requires the assembly and 

reorganisation of the cytoskeleton (Dent and Gertler, 2003), with the role of 

microtubules, neurofilaments and F-actin in this process well characterised (reviewed in 

Brandt, 1998). Recent data suggests that assumptions that the same dynamic processes 

are required for regenerative sprout elaboration may not be valid. Studies on 

regenerating lamprey reticulospinal axons indicate that regenerating axons appear to 

extend without growth cones or F-actin accumulation at their tips (Lurie et al., 1994; 

Zhang et al., 2005). It has been postulated that regenerative axonal outgrowth may be a 

direct result of protrusive forces created by tubulin and neurofilaments (Jones et al., 

2006).  

 

In the current study, DIC/live images, with F-actin staining and labelling for the ERM 

family of actin/membrane binding proteins demonstrated that the growth cones present 

on the tips of regenerative sprouts were smaller, with some lacking the complex 

morphology of developmental growth cones (Chuckowree and Vickers, 2003; Haas et 

al., 2004). Despite these differences, the regenerating and developing axons exhibited 

the same labelling profile for a range of cytoskeletal proteins.  Both the developmental 

growth cones and the tips of the regenerating axons contained isoforms of microtubules, 

as indicated by tau and ßIII-tubulin labelling. Likewise, there was comparable 

localisation of F-actin and associated binding proteins, indicated by phalloidin staining 

and ERM labelling.  However, immunoreactivity for the medium molecular weight 

neurofilament triplet protein, NF-M, consistent with previous investigations (King et al., 

1997; Dickson et al., 2000; 2005), was confined to the neurite shafts proximal to the 

lesion, and was completely absent from regenerative and developmental growth cones.  
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This pattern of labelling has been reported for other intermediate filament proteins at 

these ages including α-internexin (Dickson et al., 2005) and the high molecular weight 

subunit of the neurofilament triplet proteins, NF-H (Dickson et al., 2000). The 

comparable expression and localisation of tau and ßIII-tubulin, NF-M and F-actin in 

post-injury and developing axons and growth cones suggests that regenerating axons 

possess the cytoskeletal capacity for motility and extension (Chuckowree and Vickers, 

2003; Haas et al., 2004). 

 

In agreement with in vivo studies, developing axons, in vitro, exhibited characteristic 

movement, such as outgrowth, retraction, stalling and turning and a mean decrease in 

outgrowth with age (Suter and Forscher, 2000; Gordon-Weeks, 2004). This decline in 

outgrowth, demonstrated in vivo (Li et al., 1995; Blackmore and Letourneau, 2006) may 

be representative of the decreased requirement for outgrowth as development 

progresses, and the axon reaches its correct target and synaptogenesis occurs. A 

significantly decreased rate of axonal outgrowth also occurred after injury, again 

indicating that maturing neurons undergo a decline in the expression of genes associated 

with developmental axonal growth (Cia et al., 1999), resulting in less regenerative 

capacity.  

 

In vivo and in vitro analysis has shown that growth cone morphology correlates with 

characteristic movement (Halloran and Kalil, 1994; Kalil, 1996; Skaliora et al., 2000). 

In the current study, developmental growth cones spent a proportional percentage of 

time extending, pausing and retracting, which was highly comparable to characteristic 

behaviour analysis in vivo by neurons, at decision points in the developing brain 

(Skaliora et al., 2000). Regenerative growth cone behaviour was in striking contrast to 

that observed during development. The regenerating growth cones exhibited a greater 

tendency to extend and spent little time pausing. Growth cone pausing is implicitly 

linked to pathway selection (reviewed in Dent et al., 2003). Additionally, pausing of the 

primary growth cone of developing neurons has been highly correlated with interstitial 

axonal branching (Szebenvi et al., 1998; Kalil et al., 2000). The regenerating axons lack 

of pausing may result in impeded pathfinding and/or an inability to appropriately 

branch, both of which would contribute to a poor outcome post-injury. Furthermore, 
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aberrant sprouting has been documented in both in vitro (McKinney et al., 1997) and in 

vivo (Salin et al., 1995; Kerschenstiner et al., 2005) studies of CNS trauma. This 

sprouting may be attributable to an intrinsic lack of the regenerative growth cones 

ability to ‘path-find’ appropriately.   

 

The inability of mature axons to regenerate may also be due in part to the absence of 

growth permissive signals or the presence of growth inhibitory cues at the site of injury. 

The current chapter investigated the application of two known growth cues, in an 

environment absent of inhibitory cues. Previous studies by Goldberg and colleagues 

demonstrated BDNF, GDNF and ciliary neurotrophic factor, to be the most potent axon 

growth factors on retinal ganglion cells (Goldberg et al., 2002).  Interestingly, both 

BDNF and GDNF act on the same family of receptors and potentially affect the same 

downstream signalling pathway for neurite outgrowth.  Acting on tyrosine kinases 

receptors (BDNF acting on the Trk B receptor and GDNF eliciting its effect on neurons 

through a multicomponent receptor complex involving GFRα-1 and Ret) both BDNF 

and GDNF have been implicated in survival, differentiation and neurite outgrowth 

(reviewed in Korsching, 1993).  In this chapter’s experiments, both growth factors 

caused an increase in neurite extension during development (Tucker et al., 2001; 

Airaksinen and Saarma, 2002; Goldberg et al., 2002), with the effect decreasing with 

age (Niwa et al., 2002). The increase in neurite length was irrespective of the growth 

factor applied, indicating the degree of functional redundancy in the signalling 

pathways. In contrast, neither growth factors affected post-injury axonal outgrowth, 

suggesting that growth promoting signals alone is not sufficient to overcome the 

intrinsic inhibition of mature axons to regenerate.  Growth factors have been shown to 

promote terminal axonal sprouting in the mature nervous system in other neuronal 

phenotypes including cortical neurons (Zhou and Shine, 2003; Hafidi et al., 2004). 

Differential expression of BDNF and GDNF receptor components has been 

demonstrated in neurons of the cortex in the immediate post-injury period (Bakshi et al., 

2006), however, the present experiments demonstrated robust and consistent Trk B 

localisation in the cortical cultures at both 5 and 21DIV across multiple neuronal 

phenotypes, therefore making it unlikely that lack of responsiveness was due to simply 

to lack of receptor expression. This data further supports recent reports indicating the 
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presence of Trk B receptors in cultured cortical neurons, both excitatory and inhibitory, 

from 1 to 16DIV (Gomes et al., 2006) and in cultured hippocampal neurons from 1 to 

21DIV (Swanwick et al., 2004). 

 

Classically, the local sprouting of axons at the site of injury has been taken to indicate 

that CNS neurons successfully initiate axon regeneration that is then impeded by the 

non-permissive environment. Whereas recent advances have lead to attempts at 

identifying and overcoming the extrinsic inhibitory factors that exist in the CNS 

environment the mechanisms underpinning the intrinsic incapacity of mature CNS 

neurons to recover from trauma remain to be fully elucidated. The current Chapter 

provides significant insight into why regenerative attempts are limited or aberrant, with 

increased understanding of this phenomena essential to the development of post-trauma 

interventions. Our results indicating a preserved cytoskeletal capacity to respond to 

trauma suggest that the differences responsible for the variation may lie at the level of 

the growth cone, specifically with regards to expression of growth and guidance factor 

receptors. 
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4 AXONAL SHEARING IN MATURE CORTICAL NEURONS INDUCES 

ATTEMPTED REGENERATION AND THE REESTABLISHMENT OF 

NEURITE POLARITY 

 

4.1  INTRODUCTION 

 

There are varying degrees and regions of focal and diffuse injury that can occur in TBI 

(reviewed in Farkas and Povlishock, 2007), which plays a role in making the 

pathobiology complex and intervention difficult.  A full understanding of the response 

of the brain to various modes of injuries and mechanisms underlying these responses is 

a fundamental priority in neuroscience research.  Thus, a range of animal models both 

in vitro and in vivo has been developed in an endeavour to elucidate the response of the 

brain to TBI.  In vitro animal models, while largely two dimensional, can be 

advantageous in unravelling specific pathology and mechanisms as they allow for the 

precise control of the extracellular environment, are repeatable, have relatively low 

economic costs (Morrison et al., 1998) and have been shown to produce results 

consistent with those obtained from comparable in vivo models (Dotti et al., 1988; 

Banker and Goslin, 1988; King et al., 2001; Dickson et al., 2005; Chuckowree and 

Vickers, 2003). 

 

As previously discussed, successful regeneration will require the survival and 

appropriate polarisation of injured neurons with the formation, robust extension and 

pathfinding of the axonal growth cone.  Furthermore, the neuronal response to injury is 

heavily influenced by the action of surrounding non-neuronal cells such as the 

oligodendrocytes, astrocytes and microglia (Aldskogius and Kozlova 1998; Tao and 

Aldskogius 1999; Cullheim and Thams, 2007; Carlson et al 2009).  Astrocytes undergo 

adaptive reactive alterations in response to injury involving proliferation, hypertrophy 

and the secretion of various factors that culminate in the formation of the glial scar 

(Maxwell et al., 1990; Raivich et al., 1999; Chen et al., 2003 a,b and Galtry et al., 

2007). Thus, the response of mature neurons to injury is dependent upon the neuronal 

injury and the surrounding cells.  Firstly, the intrinsic response of axons to injury 

remains to be fully elucidated.  Secondly, how the inhibitory environment affects the 
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response of injured axons still needs to be clarified.  For example while astrocytes 

facilitate brain function in an uninjured brain, whether astrocytes play an overall 

beneficial or adverse function after brain injury remains unclear.  

 

While axons are particularly vulnerable in TBI (Maxwell et al., 1997), focal injury of a 

specific single axon rarely occurs (Farkas and Povlishock, 2007). Rather, most axonal 

injury occurs in a diffuse manner affecting multiple neuronal and non-neuronal cells 

(Stone et al., 2004; Singleton and Povlishock, 2004; Gallyas et al., 2006).  Thus the 

current chapter endeavoured to develop an in vitro model of axonal injury that involved 

a total shearing of many axonal process from the neuronal cell body.  The ability of 

relatively mature neurons to survive and attempt a regenerative response after this novel 

model of axonal shearing was under investigation.  The axonal shearing injury was 

performed through enzymatic dissociation and mechanical axonal stripping which 

resulted in a complete stripping of axons from the cell body clusters.  The response of 

the neurons to this mode of axonal injury, and in comparison to the transection model of 

injury previously described in Chapter 1, was investigated using a combination of live 

imaging and immunocytochemical analysis. Furthermore, the effects an activated 

astrocyte monolayer had on the response of the regenerating axons was also determined. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 In vitro model of structural injury 

Primary neuronal culture was prepared as described in Chapter 2.1.  Structural injury, 

using a combined chemical and mechanical approach, was performed on cortical 

neurons in long-term culture (21 DIV). Specifically, cultures were treated with 200µL 

of 0.05mg/mL trypsin/EDTA (Sigma, USA) for 5mins at 37°C, at which time neuronal 

cells clusters were beginning to loosen and lift from the underlying substrate.  Neuron 

clusters were then mechanically dislodged from the coverslip using a cell scraper 

(Iwaki, Japan). 200µL of initial NeurobasalTM media was added to each well to inhibit 

trypsin activity prior to centrifugation (200g, 5 mins). The cell pellet was resuspended 

in initial NeurobasalTM media and gently triturated through a 1mL pipette. This did not 

result in the formation of a single cell suspension, but instead maintained the structural 

integrity of the original cell clusters, and the processes within it, whilst completely 

removing the interconnecting axonal bundles.  Suspended cell clusters were re-plated on 

poly-L-lysine coated coverslips in 1mL of NeurobasalTM initial plating media (see 

above). At 24 hrs post-injury, media was removed and replaced with 2ml of 

NeurobasalTM supplemented with 2% B27, 0.5mM L-glutamine and 

penicillin/streptomycin antibiotics.  To investigate the interaction between injured 

neurons with astrocytes, structurally injured neurons were also re-plated onto a 

confluent astrocyte monolayer. As a control for astrocyte reactivity, supernatant from 

the injured neurons was also plated onto an astrocyte monolayer. For cell proliferation 

studies 5-bromo-2’-deoxyuridine (BrdU, Sigma, USA, 5mM) was applied to cultures at 

4 hrs post-injury and the cells fixed at 24 hrs post-injury. 

 

4.2.2 Immunocytochemistry 

Cultures were fixed in 4% PFA/0.01M PBS for 30mins at room temperature on an 

orbital shaker at either 3 or 21 DIV and 6 or 24 hrs post-injury and double-

immunolabelled with a range of primary antibodies (as detailed in Table 2.1), as 

previously described (Chapter 2.4). To label for filamentous actin (F-actin), cultures 

were incubated with AlexaFluor® 594 phalloidin (dilution 1:200; Invitrogen, USA), for 
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30mins after immunocytochemistry. Immunolabelling was visualised using microscopes 

and cameras detailed in Chapter 2.4.  

 

4.2.3 Live Imaging 

Time-lapse imaging was conducted as previously described (Chapter 2.4; Chapter 

3.2.4).  

4.2.4 Statistical analysis 

For quantitative analysis of mean fluorescence intensity, images were captured at the 

same exposure, time and magnification (400x). Regenerative sprout lengths and 

percentages with growth cones (n= 473) and growth cone area (n=400 for each 

condition) were quantitated with ImageJ software. ANOVA, with post hoc comparisons 

(Bonferroni test), and Students’ t-test was performed on quantitative data as appropriate 

using Prism v4.0 software (Graphpad, USA). 
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4.3 RESULTS 

 

4.3.1 Cortical neurons survive injury and exhibit a post-injury regenerative 

response  

Dissociated cortical neurons adhered, formed cell clusters and elaborated neurites 

within the first week in vitro. By 21 DIV neuronal clusters, interconnected by large 

networks of axonal bundles, were extensive across the coverslip surface (Dickson et al., 

2000; Chuckowree et al., 2003; Haas et al., 2004) (Figure 4.1A,B).  

 

Neuronal clusters were completely stripped of extending axonal processes through a 

chemical - trypsin mediated, dissociation from the substrate combined with mechanical 

removal of the clusters using a cell scraper, and the remaining axonal connections 

through trituration. By 6hrs post-injury, neurons that had been replated onto a new 

substrate of poly-L-lysine, remained clustered, however, no neurites extending from the 

clusters were present (Figure 4.1C). By 24hrs post-injury the injured neurons had 

elaborated new processes, extending out on the substrate, mean length 67.31 +/-

15.01µm (Figure 4.1D). Unlike the tightly associated axon bundles present prior to 

injury, the newly sprouting neurites were present as single processes (Figure 4.1E) that 

by 7 DIV were able to connect with other surrounding cell clusters (Figure 4.1F).  

 

Previous investigations indicate that cultured neurons derived from the cortex represent 

a heterogeneous population of cells (Dickson et al., 2000; Chuckowree et al., 2003; 

Haas et al., 2004). To determine if the post-injury sprouting response was restricted to 

particular subsets of this population, injured neurons were fixed at 24 hrs post-injury 

and immunolabelled for cell-type specific proteins. A population of the surviving 

injured neurons that elaborated sprouts post-injury were positive for calretinin (Figure 

4.2), a calcium binding protein localised to a subset of GABAergic interneurons 

(Pappas and Parnavelas, 1998).  However these sprouts remained locally within the 

neuronal cell cluster and did not extend out onto the poly-L-lysine substrate, beyond 

0.00µm from the cell cluster border. Other sprouts emanating from injured neurons 
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were immunopositive for SMI312, an antibody that labels phosphorylated 

neurofilament triplet proteins (Figure 4.2).  SMI312 sprouts were emanating out from 

the cluster into the lysine substrate.  No colocalisation between labelling for calretinin 

and SMI312 was evident.  

 

4.3.2 Neurite lesion does not stimulate neurogenesis 

BrdU incorporation with double labelling immunofluorescence studies were performed 

to determine whether neurogenesis had occurred in our in vitro neurite lesion model.  

The injured neurons that had adhered to the fresh substrate did not incorporate BrdU 

(Figure 4.3A-C). Double labelling with nestin an intermediate filament protein 

expressed by neural precursors (Figure 4.3D) (for a review see Michalczyk and Ziman, 

2005) and the neuronal marker tau (Figure 4.3E), indicated that there were nestin 

positive cells within the cell cluster, however these cells did not co-localise with tau 

(Figure 4.3F).  Nestin positive cells (Figure 4.3G) were also immunopositive for the 

antibody directed towards the astrocyte marker protein glial fibrillary acidic protein, 

GFAP (Figure 4.3H,I). 

 

4.3.3 Relatively mature neurons demonstrate neurite polarisation following 

injury 

Chapter 3 demonstrated that at 21 DIV, prior to structural injury, cultured neurons 

expressed specific cytoskeletal associated proteins indicative of cellular maturity such 

as tau and MAP-2 (Chuckowree and Vickers, 2003; Haas et al., 2004). In the current 

investigation Tau was localised throughout cell bodies and axonal bundles (Figure 

4.4A).  MAP-2, a somato-dendritic marker was confined in its expression and 

specifically labelled the cell body cluster and dendrites extending only a short distance 

from the cluster (Figure 4.4B), but was not present within interconnecting process 

bundles (Figure 4.4C). This polarisation of neuronal processes has been previously 

established to occur, in vitro, during early development (Dotti et al., 1988; Banker and 

Goslin, 1988), with the elaboration and specification of an axon occurring at 48hrs (de 

Anda et al., 2005). At 24hrs post-injury, confocal microscopy revealed that the 

processes emanating from the cell cluster were already immunopositive for tau only 
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(Figure 4.4D and G) with MAP-2 expression again restricted to cell bodies and minor 

processes confined to the cell cluster (Figure 4.4E and H). MAP-2 and tau expression 

was compartmentalised with no-colocalisation of expression (Figure 4.4F and I). 

Additionally, tau labelling indicated that the morphology of the sprouts emanating from 

the cell clusters was consistent with that reported for axons during development (Dotti 

et al., 1988). 

 

4.3.4 Regenerating growth cones are smaller than developmental growth cones 

but are cytoskeletally comparable 

By 24 hrs post-injury, approximately half of the regenerative axonal sprouts (57.3 +/- 

3.19%) were tipped by growth cone like structures. Comparative analysis of the mean 

area of the growth cones at the end of developing and post-injury axons revealed that 

the structures on the tips of regenerative neurites were significantly (p<0.05) smaller 

than their developmental counterparts at 3 DIV (Figure 4.5A). Replating the injured 

neurons onto the astrocyte monolayer resulted in increased GFAP expression and 

altered astrocyte morphology, indicative of increased reactivity (Raivich et al., 1999) 

(Figure 4.5B,C).  However, comparison between the mean areas of growth cones of 

neurons plated onto a substrate of poly-L-lysine or an astrocyte monolayer revealed no 

significant (p<0.05) differences in growth cones area in both developing neurons and 

injured neurons (Figure 4.5A). Application of either uninjured embryonic neurons or 

conditioned media from injured neurons did not elicit astrocyte reactivity (data not 

shown). 

 

Immunocytochemical labelling with a range of cytoskeletal and growth associated 

proteins in the growth cones of developing axons and on the tips of the axonal sprouts 

further demonstrated this distinct difference in size however, specific protein 

localisation patterns were comparable (Figure 4.6A-L). Growth cones on the tips of 

developing axons possessed complex tau (Figure 4.6A) and F-actin (Figure 4.6D) 

labelled structures. Tau and F-actin expression was concentrated in the central domain 

of the developmental growth cone and also crossed into the transitional domain into the 

periphery of the growth cone (Figure 4.6C and F). The growth cones on the tips of 

regenerative sprouts had a less extensive pattern of tau (Figure 4.6G) and F-actin 
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(Figure 4.6J) localisation that was evident only in the central domain of the growth cone 

(Figure 4.6I and L). These smaller regenerative growth cones appeared to be lacking the 

peripheral domain evident in the developmental growth cones.  Alpha-acetylated 

tubulin was localised predominately to the neurite shaft in both developmental (Figure 

4.6B,C) and regenerative (Figure 4.6H,I) growth cones and GAP-43 expression was 

present predominately within the central domain of both developing (Figure 4.6E,F) and 

regenerating growth cones (Figure 4.6K,L).   

 

4.3.5 Growth cone dynamics of regenerative sprouts differ from development 

Live imaging over a two-hour period was used to investigate the dynamics of the 

growth cones of sheared regenerative axonal sprouts compared to that occurring during 

development (Figure 4.7A,B). Analysis of growth cone position over this time 

demonstrated that developing axons exhibit a wide range of movement involving rapid 

phases of extension and retraction with many changes in direction, as previously 

reported in Chapter 3 (Figure 4.7A,B).  Analysis of regenerative growth cones, post-

injury, revealed that the growth cones underwent distinct and quantifiable phases of 

extension, retraction and pausing.  The growth cones present on the tips of regenerative 

sprouts, at 24hrs post-injury, spent 55.78 +/- 1.61 % extending, 33.93 +/- 1.27 % 

retracting and 10.28 +/- 0.61 % pausing (n=5) (Figure 4.7B). This data indicates that 

growth cones post-injury spent a significantly (p<0.05) greater percentage of time 

extending and a significantly (p<0.05) lower percentage of time pausing, as compared 

to developmental growth cones at 3, 5 and 7 DIV; replicating the data for regenerating 

growth cone behaviour following axonal transection, investigated in Chapter 3. 
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4.4 DISCUSSION 

 

TBI can be categorised into two broad phases; the direct injury occurring from the 

tearing of shearing of axons at time of impact and the sequence of events occurring after 

injury, known as secondary injury. The current experiments utilises a simple, 

reproducible and novel in vitro model replicating the primary axonal tearing and 

subsequent regenerative sprouting in cultured primary cortical neurons. This model 

utilises mechanical tearing or shearing of axons as an injury model, which may be more 

representative, than the discreet transection model, of the widespread neuronal and non-

neuronal injury occurring in vivo. To validate this model and further define the post-

injury response the dynamic and cytoskeletal axonal changes occurring after the injury 

was investigated and found a stereotype reminiscent of those observed during 

experimental and in vivo TBI and distinct from initial developmental outgrowth. 

 

While an increase in neurogenesis has been reported after brain injury in vivo (for 

example: Braun et al., 2002; Emsley et al 2005), whether such an injury evokes a 

neurogenic response that can contribute to repair remains contentious (Holmin et al., 

1997; Salman et al. 2004). Neurogenesis as a result of injury was not observed in the 

current in vitro model, as indicated by an absence in BrdU uptake and nestin labelling.  

Thus the neuronal response observed in this model can be attributed to the resident 

population of relatively mature cortical neurons.  

 

In this chapter neuronal cultures were immunolabelled for the protein calretinin, a cell 

type specific marker that labels a subset of GABAergic interneurons (Pappas and 

Parnavelas, 1998).  Calretinin immunopositive neurons survived the injury and 

extended processes from the cell clusters after replating. Similarly, another subset of 

axonal sprouts were labelled by the antibody SMI312, which specifically recognises 

phosphorylated neurofilament triplet proteins.  SMI312 has been previously reported to 

be expressed in pyramidal neurons, albeit not exclusively (Masliah et al., 1993; Dickson 

et al., 2000; 2005). These results indicate that there was not one specific cell type that 

survived the injury, instead suggesting comparable potential to survive and attempt 

regeneration across multiple neuronal populations.  However, only the SMI312 
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immunolabelled pyramidal neurons attempted to regenerate in the form of extending 

sprouts out from the cell cluster, with no calretinin immunolabelling present away from 

the cell cluster, suggesting that the regenerative sprout response observed in the Chapter 

3 and the current Chapter, may be neuronal cell type specific. 

 

As previously discussed in Chapter 3, the ability of neurons to polarise and elaborate a 

single molecularly and morphologically defined axon, tipped by a growth cone, and 

multiple, equally specific dendrites is critical to neuronal function and the establishment 

of the precise and extensive networks that characterise the brain.  Cortical neurons, in 

vitro, display markers indicative of neurite polarisation by 3 DIV (Dotti et al., 1988).  

Previous investigations in Chapter 3 established that the tightly associated neurite 

bundles emanating from the neuronal cell clusters, derived from E18 rats and grown for 

21 DIV, are primarily composed of axons, as evidenced by labelling for the axon 

specific MAP tau and no immunoreactivity for the dendritic marker MAP-2.  In the 

present set of experiments, these processes were removed, whilst leaving the cell 

cluster, and associated synaptic connections within the cluster, intact.  As such, the 

model is one of partial deafferentation, comparable to in vivo injury (reviewed in 

Chuckowree et al., 2004).  At 24 hrs post-injury, morphologically axon-like structures, 

had emanated from the cell body cluster.  Labelling for the dendrite specific protein 

MAP-2 indicated that dendritic processes remained confined to the networked cell 

clusters, consistent with that reported prior to injury. Furthermore 

immunocytochemically, after injury the differentiation of single axons and multiple 

dendrites, demonstrated by distinct compartmentalised tau and MAP-2 labelling 

(Bernhardt and Matus, 1984; Binder et al., 1985). However, regenerative axonal sprouts 

that formed post-injury did not fasciculate and extend together, as seen in the initial 

development of the culture.  Instead single axonal sprouts were distributed non-

uniformly around the cell cluster.  

 

The axon-like structures, post-injury, were tipped by a characteristic growth cone. 

Previous investigations, including those in Chapter 3, have suggested that growth cones 

on the tips of regenerating cortical neurons in vitro posses a different morphology to the 

growth cones present in development (Chuckowree and Vickers, 2003; Haas et al., 
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2004). Analysis of the mean growth cone area for developing and regenerating growth 

cones indicated that indeed, regenerating growth cones in the current model are 

significantly smaller than their developmental counterparts. Interestingly, there was no 

significant change in mean growth cone area for growth cones in contact with reactive 

astrocytes. Classically, astrogliosis has been considered one of the fundamental 

extrinsic limitations to regeneration (Silver and Miller, 2004; Fawcett 2006).  However, 

reactive astrocytes are thought to have both beneficial and undesirable effects.  

Moreover, in vitro, many studies have indicated that reactive astrocytes can be growth 

permissive (Chung et al., 2004). The astrocyte monolayer became reactive when 

exposed to the injured neurons, classified by an increase in GFAP expression and 

altered morphology (Raivich et al., 1999). The absence of reaction from both 

conditioned media and uninjured immature neurons indicated that this reactivity may be 

mediated by direct cell contact of the injured neurons. There was no significant change 

in mean growth cone area for growth cones in contact with reactive astrocytes compared 

to poly-L lysine substrate. The smaller size of the growth cones in regeneration 

compared to development, coupled with lack of response to reactive astrocytes, is 

further evidence that these structures have a diminished capacity to respond to the 

extracellular environment. 

 

Despite, these distinct morphological size differences the regenerative growth cones 

exhibited a similar complement and expression pattern of cytoskeletal proteins 

compared to that of their developmental counterparts (for review see Suter and 

Forscher, 2000; Gordon-Weeks, 2004; Pak et al., 2008). This included the presence of 

tau (Black et al., 1986), GAP43 (Goslin et al., 1988; 1990) and an F-actin network 

(Bradke and Dotti, 1999). The growth cone is vital for the translation of extracellular 

cues into pathway selection. This guidance is enabled through the interaction between 

various components of the cytoskeleton that are expressed throughout the specific 

domains of the growth cone; the central domain the transition zone and the peripheral 

domain. In the central domain no actin superstructures are present, however this area is 

rich in microtubules. The peripheral domain contains two distinct superstructures based 

on actin filaments, the linear actin bundles comprise filopodia which protrude outward 

and mesh-like actin gels comprise lamellipodia, located between the filopodia  (For 
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recent review see Pak et al., 2008). Hence the diminished surface area of regenerating 

growth cones, and the lack of an extensive peripheral domain may offer an explanation 

for the diminished capacity to ‘pause’ that was evident in regenerative axonal sprouts – 

thus morphologically resembling the dystrophic growth cones characteristic of spinal 

cord injury in vivo (Kwon et al., 2002) and in in vitro models that have also proven to 

be highly dynamic but aberrant in their ability to forward progress (Tom et al., 2004). 

 

In agreement to Chapter 3, developmental growth cones spent a proportional percentage 

of time extending, pausing and retracting, which was highly comparable to 

characteristic behaviour analysis in vivo, by neurons at decision points in the developing 

brain (Skaliora et al., 2000).   As stated, growth cone pausing is implicitly linked to 

pathway selection, and occurs in vivo in development when a growth cones reaches a 

decision region. Regenerative growth cone behaviour was in striking contrast to that 

observed during development.  The striking lack of the ability to pause, demonstrated 

by the regenerating growth cones in comparison to development, in coherence with 

Chapter 3, further suggests a lack of ability to path-find of regenerating growth cones. 

Additionally the growth cone dynamics were highly comparable to Chapter 3, 

indicating that regenerating characteristics are transferable over a range of injury 

models. 
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5 FOCAL DAMAGE TO THE ADULT RAT NEOCORTEX INDUCES 

WOUND HEALING ACCOMPANIED BY AXONAL SPROUTING AND 

DENDRITIC STRUCTURAL PLASTICITY 

 

5.1 INTRODUCTION 

 

Ultimately, an appropriate adaptive brain response to trauma will require the induction 

of neurogenesis and either directed regeneration or compensatory plasticity of neural 

pathways.  Structural injury to the brain does evoke a distinct sequence of events 

indicative of an attempt to repair and heal, including the activation of microglial, 

oligodendroglial precursor, meningeal, astrocyte and stem cell populations (Reviewed 

in Fawcett and Asher, 1999). Alterations in neural progenitor populations and cell 

proliferation have been demonstrated in diverse models of experimental brain lesion 

and stroke conditions and are proposed to contribute to post-lesion brain recovery 

(Clarke et al., 1994; Duggul et al., 1997; Holmin et al., 1997; Kernie et al., 2001; 

Arvidsson et al., 2002; Chen et al., 2003b; Douen et al., 2004; Salman et al., 2004). 

However, whether brain injury evokes a neurogenic response that contributes to 

functional recovery currently remains contentious, with the presence of neurogenic 

events differing for different injury paradigms (Holmin et al., 1997; Kernie et al., 2001; 

Kuroda et al., 2002; Rice et al., 2003; Salman et al., 2004; Yu et al., 2008). It is now 

established in Chapter 3 and 4, in agreement with previous studies, that neurons can 

also actively react to injury through the formation of reactive axonal sprouts.   However, 

another mode in which neurons respond actively to injury is through the altered 

connectivity of pre-existing pathways, compensatory plasticity (reviewed in 

Chuckowree et al., 2004; Carmichael, 2006; Fitzgerald and Fawcett 2007; Macias, 

2008).  

 

Examples of neuronal plasticity, manifesting as alterations in synaptic strength and 

wiring, remodelling of axonal and dendritic arbors and changes in dendritic spine and 

axonal bouton turnover, have been observed in the mature brain and in response to 

alterations in sensory experience and injury/lesion (for a selection of recent examples 

see Grutzendler et al., 2002; Knott et al., 2002; Trachtenberg et al., 2002; Majewska and 
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Sur, 2003; Portera-Cailliau et al., 2003; Holtmaat et al., 2005; Tailby et al., 2005; Lee et 

al., 2006; Majewska et al., 2006; Brown et al., 2007; Brown et al., 2008; Lee et al., 

2008; Yamahachi et al., 2009; Brown et al., 2010).  However, the specificity and degree 

of remodeling that can occur in response to injury has not been fully elucidated. 

Cortical neurons demonstrate axonal and synaptic remodelling in response to various 

models of injury (for example King et al., 2001; Knott et al., 2002; Trachtenberg et al., 

2002; Majewska et al., 2006). Reorganization such as this may correlate with functional 

recovery not only in stroke (Carmichael, 2003; Carmichael, 2006; Brown, 2008; De 

Filippo et al., 2008), but comparable plasticity may also account for the recovery 

observed after forms of spinal cord injury (reviewed in Edgerton, 2004; Dunlop, 2008).  

Recent research indicates that populations of interneurons within the barrel cortex 

demonstrate adaptive plasticity, specifically with regards to the remodelling of dendritic 

arbors (Lee et al., 2006; Lee, 2008).  Modifications of the dendritic tree and synaptic 

contacts may also occur following injury, with studies showing that the plastic potential 

of cortical dendrites are enhanced following injury (Kolb and Gibb, 1991; Jones and 

Schallert, 1992), lasting over two weeks post-injury (Jones and Schallert, 1992). 

Interestingly, studies have indicated that not all subpopulations of neurons are equal in 

their capacity for such adaptive structural plasticity.  For example, interneurons in the 

intact neocortex have been demonstrated to be capable of dendritic arbor remodelling 

while pyramidal neuronal subpopulations remain stable (Lee et al., 2006). 

 

The current investigations utilised a model of focal brain injury to generate a discrete 

unilateral lesion in the adult rodent somatosensory cortex. The cellular response to 

injury was investigated over a time course of up to 14 DPI (days post-injury) utilising 

immunohistochemistry and transmission electron microscopy (TEM). To determine the 

regenerative and plastic potential of different subpopulations of neurons following focal 

in vivo injury, the sprouting response and morphological plasticity of resident 

interneuron and pyramidal neuron populations around the injury site was investigated 

utilising immunohistochemistry, confocal and multi-photon microscopy. 
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5.2 MATERIALS AND METHODS 

5.2.1 In vivo brain injury  

Acute focal neocortical injuries were performed on adult male Hooded-Wistar rats (250-

270g, corresponding to approximately 8 weeks old) and adult male thy1 GFP-M mice 

(between 8-10 weeks old), the injury protocol described in Chapter 2.3. The thy1 GFP-

M mice were kept as a homozygous mouse colony, hence no routine genotyping was 

required. Thy1 GFP-M mice have a limited expression in a variety of neurons, 

including neurons within the cortex, cerebellum, motor neurons within the spinal cord, 

retinal ganglion cells and dorsal root ganglia (Feng et al., 2000).  Importantly, GFP-M 

mice were utilised by the current studies due to the fact that the expression pattern 

within the neocortex was restricted to a subpopulation of pyramidal neurons (Feng et 

al., 2000).  Following recovery, animals were terminally anaesthetised (pentabarbitone 

sodium, 140mg/kg) and transcardially perfused with 4% PFA/0.01M PBS, following a 

0.01M PBS clearing procedure, at a range of post-injury time intervals up to 14 days 

following injury (n ≥ 5 animals per time-point at 1, 7 and 14 DPI) and brains were 

processed for either immunohistochemistry or transmission election microscopy (TEM) 

as described in the relevant sections below. Non-injured, age-matched controls 

corresponding to the 1, 7 and 14 DPI time-points (n=5 animals per time-point) were 

also perfused 

 

To determine the phenotype of cells proliferating within the first 7 days following 

injury, animals were administered with 12.5mg/ml solution of the BrdU, (Sigma, USA) 

in 7mM NaOH/0.9% NaCl by intraperitoneal injection.  Animals were injected with 

BrdU (25mg/kg/day), between 1 and 6 DPI and were transcardially perfused (4% 

PFA/0.01M PBS at 7 days following injury. Prior to immunohistochemistry, antigen 

retrieval was performed by incubating sections in 2M HCl for one hour at 37°C, 

followed by three neutralisation washes in 0.1M borate buffer (pH 8.5).   

 

5.2.2 Immunohistochemistry  

Brain sections (50µm vibratome) were collected coronally and also horizontal to the 

pial surface, through the injury site, from control and experimental animals and were 
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immunohistochemically labelled in single as well as double-labelling combinations, 

with a range of cell specific antibodies (Table 2.1), as described in Chapter 2.4.    

 

5.2.3 Ultrastructural/TEM studies 

Animals were injured, as above, and then perfused at 7 or 14 DPI with 4% 

PFA/2%glutaraldehyde/0.01M PBS.  Brains were post-fixed in the same fixative 

solution overnight at 4°C and then stored in PBS until sectioned.  Small regions of the 

injury site (or equivalent regions of control non-injured brains) were removed and 

trimmed to 1-2mm cubes. Tissue blocks were then osmicated, stained with uranyl 

acetate, dehydrated and embedded in Epon resin. Thick (1µm) plastic survey sections 

were cut and stained with 1% toluidine blue in 1% borax until a suitable region was 

found. Thin sections (70-90nm) were then cut on a Reichert Ultracut ultramicrotome 

and placed onto copper-palladium mesh grids. Following staining with uranyl acetate 

and lead citrate, grids were examined using a Philips CM100 transmission electron 

microscope. 

 

5.2.4 Analysis of dendrite orientation 

For these investigations five male rats and five male thy1 GFP mice at 14 DPI were 

matched to five-control animals, for both species, with focal injuries in the 

somatosensory cortex, as detailed above, sham injury performed post-mortem. 

Vibratome brain sections (80µm) were serially sectioned through the injury site for each 

control and experimental animal, and for rat sections, immunolabelled with calretinin, 

the calcium binding protein localised to a subset of GABAergic neurons (Pappas and 

Parnavelas, 1998). A series of digital images were captured at optimal z-axis intervals 

(maximum 2.5µm), using a Zeiss LSM 510 multi-photon/confocal dual purpose 

microscope with Zen software.  Multi-photon microscopy was utilised to enable 

visualisation through the whole brain sections. Four 20x fields of view were captured 

around each injury site for two separate sections from each animal and all cells within 

the field of view identified for analysis.  Flattened 3D projection stacks were overlaid 
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with a target that had an 80µm circumference (for example see Figure 5.6 A and B), and 

analysed blinded to experimental conditions, using ImageJ© freeware.  

 

To quantify the orientation of the dendrites, the angle of all dendrites intersecting the 

80µm circumference for each neuron was measured, relative to the direction of the 

injury site.  This was calculated by drawing a line from the injury site to the centre of 

each soma and then measuring the acute angle between the intersection points for each 

dendrite at the 80µm circumference. Thus for each dendrite this angle of intersection 

ranged between 0 and 90°. Therefore an angle of 0° indicates that the dendrite is 

orientated directly in line with the injury site (either towards or away from) and angle of 

90° indicates that the dendrite is orientated laterally relative to the injury site, with a 

random distribution having an expected angle of 45° (Figure 5.6A). From this data the 

mean dendrite angle per neuron (θ) was calculated. Thus the null hypothesis was that 

there was no significant change in the mean dendrite angle, relative to the injury site, at 

14 DPI in comparison to sham-injured control. Mean dendrite angle in correlation with 

distance from the injury site were investigated for significance using two-way ANOVA, 

t-tests, and linear regression, respectively with the InStat statistical package 

(GraphPad). Circular variance of angle distribution was analysed with the Oriana 3.0 

statistical package. 

 

A limitation to analysing changes in mean dendrite angle, is that the statistical analysis 

can demonstrate significant changes in orientation relative to the control, but cannot 

give an indication of the direction of the alteration.  To determine the direction of any 

significant changes in dendrite orientation, the polarity of all dendrites was determined 

for calretinin positive neurons.  The number of dendrites in four quadrants - proximal, 

lateral 1 and 2 and distal (Figure 5.7A), to the injury site, intersecting at 80µm from the 

cell body, was calculated to determine dendrite polarity, and analysed using a two-way 

ANOVA (InStat, GraphPad). 
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5.2.5 Confocal and multi-photon microscopy 

All confocal and multi-photon images collected in this study were obtained on a Zeiss 

LSM 510 microscope, as described in Chapter 2.3.  Both lasers were passed through 

either a 20x/0.8 NA plan-apochromat (Zeiss) objective to visualise the entire injury site 

and a 64x/0.8 NA plan-apochromat (Zeiss) oil immersion objective for high power 

images. For quantification of potential dendritic changes, calretinin immunolabelled 

cells were visualised with the HeLa 594 laser passing through a 20x/0.8 NA plan-

apochromat (Zeiss), the laser and pinhole settings remaining constant.  GFP cells were 

visualised with a Mai Tai multiphoton laser, at the wavelength 850 nm, with constant 

power, passing through a 20x/1.0 DIC VIS IR W Plan-apochromat (Zeiss) water 

immersion objective. 
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5.3 RESULTS 

 

5.3.1 Focal injury induces an active healing response culminating in the 

formation of a glial scar and neovascularisation 

The cellular alterations following localised injury to the neocortex were examined at 1, 

7 and 14 DPI.  Analysis of cortical post-injury material sectioned in the horizontal plane 

revealed distinct cellular changes as the response to injury progressed, within this tissue 

core and surrounding the injury site, that were less evident using traditional coronal 

sectioning. Focal neocortical injury resulted in substantial tissue destruction at the site 

of the lesion and subsequent alterations indicative of attempted brain repair. 

Microscopic analysis demonstrated no detectable histopathological changes in control 

brains or in brain regions contralateral to the lesion site, evidenced with both resin 

sections (Figure 5.1A and F) and also with immunolabelling for GFAP (Figure 5.1K). 

The neuropil in control non-injured resin sections was essentially homogenous, tightly 

associated and dense (Figure 5.1A and F).  At 1 DPI, tissue destruction was noted 

within the injury site, with a clear needle tract being visible (Figure 5.1B). This lesion 

site at 1 DPI was characterised by massive red blood cell infiltration (Figure 5.1G). By 

7 DPI the injury site had increased in size and now ranged from 200 – 300µm in 

diameter. The blood cells that were present at 1 DPI had cleared and neovascularisation 

of the lesion site had commenced with the area infiltrated by occasional new blood 

vessels and sparsely populated with cells and processes (Figure 5.1C).  The neuropil 

within the injury site, however, remained significantly less dense than surrounding 

tissue (Figure 5.1H).  Immunolabelling for GFAP demonstrated that the injury and peri-

lesion site had now become filled with reactive astrocytes with their processes directed 

towards the central lesion site (Figure 5.1M). At 14 DPI, blood vessels permeated the 

injury tract (Figure 5.1D and I, arrows) and a significant proportion of the tract had 

closed together leaving a central dense GFAP labelled core (Figure 5.1N) (King et al., 

2001), with a glial scar extending approximately 500µm from the edges of the lesion 

(Figure 5.1N and O). GFAP immunolabelling was greatest directly adjacent to the 

injury site, as indicated by increased immunoreactivity, with this labelling progressively 

decreasing with increasing distance from the injury (Figure 5.1N and O).  
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Ultrastructural studies of the central lesion site at 7 and 14 DPI demonstrated, in support 

of immunohistochemical analysis, the presence of activated microglia with inclusions 

(Figure 5.1E) and also proliferating cells (Figure 5.1J). 

 

5.3.2 Cortical injury induces neural progenitor proliferation but not 

neurogenesis 

As noted above, proliferating cells were a prominent feature of the tissue surrounding 

the injured neocortex (Figure 5.1J). These cells were further characterised utilising the 

progenitor marker nestin and the mitotic markers, BrdU and PCNA. Nestin 

immunoreactive cells were not evident in the grey matter of the neocortex of control 

non-injured brains (Figure 5.2A), although some labelling was observed in the 

periventricular region (data not shown). By 7 DPI, nestin immunoreactive profiles were 

localised throughout the neocortical laminae and were especially abundant adjacent to 

the injury site (Figure 5.2B and C). Alterations in the localisation of nestin 

immunoreactivity within the neocortex were restricted to the ipsilateral cortex and were 

not observed in cortical tissue contralateral to the lesion. BrdU and PCNA 

immunopositive nuclei were rarely observed within non-injured tissue sections, where 

cell proliferation was limited and generally restricted to the SVZ and pial covering, with 

occasional labelled nuclei distributed elsewhere in the brain parenchyma (data not 

shown). By 7 DPI, both BrdU and PCNA labelling was distributed in a broad zone 

surrounding the injury site and extending into the corpus callosum (Figure 5.2D and E) 

and SVZ (Figure 5.2F and G), co-localising with nestin. 

 

To determine the phenotype of proliferating cells, tissue sections were double 

immunolabelled for either BrdU, in animals administered with BrdU at 1 DPI, or nestin, 

in addition to markers for astrocytes (GFAP), microglia/macrophages (ferritin) and 

neurons (NF-M, α-internexin, calretinin and parvalbumin) (Figure 5.3).  Neuronal 

markers were selected to represent pyramidal neuron (NF-M and α-internexin) and 

cortical interneuron (calretinin and parvalbumin) populations. Examination of injured 

tissue at 7 DPI showed that both BrdU and nestin immunolabelling co-localised with 

expression of GFAP (Figure 5.3A and B). Additionally, a number of ferritin positive 
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microglia/macrophages were double labelled with BrdU (Figure 5.3C) indicating they 

were mitotically active following injury.  Contrary to the widespread colocalisation 

between nestin and GFAP, nestin immunoreactivity was not localised within ferritin-

immunopositive activated microglia/macrophages (Figure 5.3D).  Furthermore, BrdU 

and nestin immunoreactivity was absent from all neuronal populations examined within 

peri lesion tissue, including those immunopositive for NF-M (Figure 5.3E and F), 

alpha-internexin (Figure 5.3G and H), calretinin (Figure 5.3I and J) and parvalbumin 

(Figure 5.3K and L). 

 

5.3.3 Pyramidal neurons respond to injury with axonal sprouting by 7 DPI 

Cortical sections, cut in a parallel/horizontal plane to the pial surface through the injury 

site at 7 DPI, were immunolabelled with a range of neuronal markers to examine the 

neuronal response to injury.  The antibody cocktail to phosphorylated neurofilaments, 

SMI312 (Figure 5.4A and B), and the intermediate neurofilament marker, α-internexin 

(Figure 5.4C and D) demonstrated that, although no neurogenesis had occurred, 

neuronal sprouting of resident neuronal populations characterised the response to injury 

at 7 DPI (Dickson et al., 2005). SMI312 and α-internexin has been previously reported 

to be expressed in pyramidal neurons, albeit not completely exclusively (Masliah et al., 

1993; Dickson et al., 2005).  Immunoreactivity for both SMI312 and α-internexin had 

increased around the injury site (Figure 5.4A and C respectively), and high power 

confocal images revealed fine sprout like structures within the injury lesion (Figure 

5.4B and D, arrows, respectively).  However, immunolabelling with calretinin, a 

calcium binding protein that labels a subset of interneurons exclusively, was confined to 

the intact tissue, with a discreet injury border (Figure 5.4F), these calretinin 

immunopositive neurons did not exhibit a sprouting response (Figure 5.4F). 

 

5.3.4 Calretinin neurons show dendritic remodelling at 14 DPI 

At 14 DPI, calretinin labelling in the injured rat brains (Figure 5.5A), and the injured 

thy1 GFP mouse brains (Figure 5.5B), confirmed that a tissue core had formed around 

the injury site (Figure 5.5A and B, dotted lines). Immunolabelling for calretinin 

demonstrated a distinguishable neuronal difference between injured and control sham-
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injured brains.  At 14 DPI the horizontally projecting dendrites of calretinin labelled 

neurons (Figure 5.5A, arrows) differed from their sham-injured controls (Figure 5.5C). 

The dendrites of calretinin labelled cells, at 14 DPI, were radially orientated around the 

lesion site. Expression of GFP in a subset of pyramidal cells at 14 DPI (Figure 5.5B), in 

comparison to contralateral control sham-injured sections (Figure 5.5D), demonstrated 

no differences in dendrite alignment between the injured and control sham-injured 

sections, albeit there was an increase in non-specific immunoreactivity around the 

injury site.  

 

5.3.5 Calretinin neurons had a significant change in dendritic orientation around 

the injury site at 14 DPI 

To quantitate injury-induced changes in the dendritic arbor orientation of calretinin 

labelled interneurons, horizontally projecting dendrites were visualised and their 

orientation relative to the injury site and control sham-injury site determined.  All 

calretinin immunolabelled cells within the four 20x fields of view around the injury 

were included in analysis for both injured and control sham-injured sections.  All 

dendrites intersecting a circumferential point 80µm from the centre of the neural cell 

body were analysed. Neurites at this distance corresponded predominately to secondary 

dendrites that were morphologically elaborate with multiple branch points.  Figure 5.6A 

and B, illustrates a representation of horizontal dendrites of neurons most characteristic 

for the populations at 14 DPI and control sham injuries, respectively.   

 

To investigate dendritic remodelling in this subpopulation of neurons, the orientation of 

the individual dendrites for each neuron was determined (see methods). The distribution 

of the mean angle of all dendrites for each neuron, from control sham-injured and 

injured animals, relative to the distance the neuron was from the injury site, is 

represented in Figures 5.6C and D, respectively.  This data demonstrates the distinct 

shift in dendrite angle relative to injury in neurons from injured brains (Figure 5.6D), 

with a trend for this shift to increase at increasing distances from the injury site, 

however linear regression demonstrated that this trend was not significant (p=0.05). 

One-way ANOVA of the mean dendrite angle for each injured cell demonstrated a 

significant (p<0.001) decrease in mean dendrite angle at 14 DPI (n=51) in comparison 
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to control sham-injured (n=82) (Figure 5.6E). Furthermore, analysis utilising biaxial θ 

parameters of circular statistics further identified a difference in plot distributions.  

Mean dendrite angle for neurons from control animals was 45.509° with a circular 

standard deviation of 10.542° and for neurons from injured animals 19.065° with a 

circular standard deviation of 17.065°.  

 

To confirm that the alteration in dendrite orientation was not a result of either dendrite 

damage or growth, the mean dendrite length and mean dendrite number was quantified.  

One-way ANOVA demonstrated no significant (p>0.05) difference in the mean number 

of dendrites between the injured and control sham-injured brains, (mean=2.97, SD=+/-

1.90 for control sham-injured and mean=2.87, SD=+/-2.16 for 14 DPI). Mean neurite 

length for all primary, secondary and tertiary dendrites and other dendrites (with more 

than three branch points) for each interneuron around the injury site in comparison to 

control, was also analysed.  The number of neurites that branched at more than three 

points was minimal (data not shown).  There was no significant (p>0.05) difference in 

mean dendrite lengths for primary, secondary and tertiary dendrites, analysed with a 

one-way ANOVA (Figure 5.6F).   

 

To determine the directionality of the decrease in mean dendrite angle, the polarity of 

each neuron investigated was determined. This was analysed by dividing the 

quantitation zone of each cell into four quadrants (Figure 5.7A). For each dendrite, the 

quadrant in which the dendrite intersects at 80µm was recorded. The quadrants were 

divided into proximal, lateral 1 and 2 and distal, relative to the injury site. Two-way 

ANOVA revealed a significant (p<0.05) increase in the mean number of dendrites in the 

distal quadrant (Figure 5.7B) at 14 DPI in comparison to the control sham-injured. 

Additionally there was a significant (p<0.05) decrease in the mean number of dendrites 

per neuron in the lateral 1 quadrant (Figure 5.7 C). 

 

5.3.6 The dendrites of pyramidal neurons expressing GFP did not undergo 

remodelling around the injury site at 14 DPI 

To investigate whether the remodelling response was specific to the calretinin positive 
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interneurons examined or was a stereotypical neuronal response, a subset of pyramidal 

neurons was also investigated in a transgenic mouse line with GFP expression restricted 

to this cell type. All GFP positive cells within four 20x fields of view around the injury 

site were included in analysis for both injured and control sham-injured sections.  

Again, dendrites intersecting a circumferential point 80µm from the centre of the cell 

bodies were analysed. Figure 5.8 A and B, illustrates a representation of horizontal 

dendrites of neurons most characteristic for the populations at 14 DPI and control sham-

injuries, respectively. Measurements of mean dendrite angle, for pyramidal neurons in 

relation to the distance of the cell from the injury site, demonstrated no significant 

(p>0.05) shift in the injured neurons at 14 DPI (n=86) in comparison to control sham-

injured (n=46) (Figure 5.8C,D,E). Additionally there was no significant (p>0.05) 

difference in mean dendrite lengths for primary, secondary and tertiary dendrites, 

analysed with a one-way ANOVA (Figure 5.8F).  
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5.4 DISCUSSION 

 

The experimental model used in this Chapter produced a discrete lesion, causing 

structural damage to the neocortical laminae, but not surrounding or underlying 

structures (King et al., 1997; 2001). This form of injury generates a stereotypical 

sequence of changes that ultimately culminate in wound healing, including phases of 

acute haemorrhage, necrosis and oedema, followed by glial activation, scar formation 

and wound contraction (Maxwell et al., 1990; King et al., 2001). The present 

investigations highlight distinct mechanisms of injury-induced neuronal plasticity, 

which are specific to discrete subpopulations of cortical neurons and progenitor cells. 

Although there was no evidence of neurogenesis within the damaged cortex, resident 

pyramidal and inter-neurons undergo contrasting alterations in response to structural 

injury; pyramidal neurons respond by elaborating fine axonal sprouts into the injury 

site, whereas interneurons undergo dendritic remodelling, whereby the dendritic arbor 

becomes reoriented away from the injury site. These responses occurred concurrent 

with a stereotypical gliogenic response. 

 

Several studies have demonstrated evidence of neuronal proliferation in response to 

experimental brain injury (for examples see Kernie et al., 2001; Rice et al., 2003), 

providing support for neurogenesis as a mechanism of brain repair following traumatic 

brain injury.  However, this and other investigations (Holmin et al., 1997; Kuroda et al., 

2002; Salman et al., 2004) have indicated that neurogenesis does not lead to nerve cell 

replacement in the neocortex following an acute focal lesion. Specifically, we observed 

nestin-labelled cells within the SVZ and corpus callosum by 7 DPI, with nestin 

immunoreactivity extending up to the injury site.  The nestin immunoreactive profiles 

present within both the SVZ and corpus callosum co-localised with the markers PCNA 

and BrdU, respectively, indicating they were mitotically active. Double labelling studies 

indicated that nestin positive cells did not express neuronal marker proteins, however 

nestin was found to co-localise with the astrocytic marker, GFAP, indicative of a 

gliogenic, but not neurogenic, response.  These results were consistent with the in vitro 

findings in Chapter 4, which additionally did not observe neurogenesis in response to 
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acute injury. Whether this upregulation of nestin is a result of new cell division or the 

re-expression of nestin within existing glia (Kronenberg et al., 2005) is unclear.  

 

The lack of post-injury neurogenesis in the neocortex, in the present investigation, may 

be due to the location and severity of the injury. Many models of cortical lesion 

generate widespread neural damage (Posmantur et al., 1996), which often directly 

affects regions associated with high plasticity, such as the SVZ or hippocampus, or at 

least damages the cortex more extensively. The model utilised in the current 

investigation, however, specifically targeted the upper layers of the cortical grey matter 

and thus may not evoke the same signalling mechanisms initiated in more disruptive 

forms of trauma.  The absence of constitutive cortical neurogenesis has been postulated 

to result from a lack of appropriate micro-environmental cues, rather than a limit of the 

endogenous precursors themselves (Emsely et al., 2005), and this deficiency may also 

account for the absence of neurogenesis in the cortex following injury in the present 

study. 

 

Focal injury to the neocortex evoked a characteristic neurite sprouting response adjacent 

to the lesion.  This sprouting response was likely to be axonal in origin and confined to 

pyramidal neurons, and was not demonstrated to occur from a subpopulation of 

interneurons immunopositive for calretinin. This induction of axonal growth after injury 

may be maladaptive, potentially exacerbating a clinically poor outcome.    Both in vitro 

studies) including the findings in Chapters 1 and 2 (McKinney et al., 1997, Chuckowree 

and Vickers, 2003), and in vivo (Salin et al., 1995) experimental models indicate that 

post-injury sprouting may not always be functionally appropriate, with potential 

aberrant axonal connectivity possibly contributing to the development of epilepsy 

following brain lesions such as stroke (Carmichael, 2003).  Furthermore, studies have 

indicated that regenerative axonal sprouts differ from their developmental counterparts, 

being tipped by bulbous end structures in vivo (King et al., 2001; Dickson et al., 2005), 

and lacking the ability to path find in vitro evidenced by an altered growth cone 

behaviour in mature regenerating growth cones in comparison to developing growth 

cones in Chapters 1 and 2.  Recent research indicates that the anatomical and functional 

plasticity of surrounding intact cortex, rather than frank regeneration of damaged 
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neurons, may play a more fundamental role following injury. Hence, understanding the 

mechanisms underpinning the lack of injury-induced axonal sprouting in interneuron 

subpopulations may reveal fundamental differences in the intrinsic plastic capabilities 

of different cortical neuron populations and what implications this may have for brain 

healing. 

 

Although post-injury axonal sprouting was shown to be specific to pyramidal neurons, 

interneurons were not without injury-induced remodelling capabilities. This chapter 

demonstrated a particularly novel property of a subpopulation of interneurons, namely 

those that were calretinin immunoreactive, to remodel dendritic arbors in response to 

acute brain lesion.  Cortical interneurons within the barrel cortex have previously been 

shown to have a capacity for morphological plasticity (Lee et al., 2006), however, this 

was under physiologically normal conditions. Furthermore, previous investigations have 

suggested that the potential sites for structural plasticity are the horizontal connections 

within the superficial layers of the cortex (Darian-Smith and Gilbert, 1994; Kaas et al., 

1990; Lee et al., 2008). Following acute brain injury in the current study, the dendritic 

arbor of calretinin positive interneurons was orientated away from the injury site, 

relative to sham-injured controls. Although it was postulated that this change in 

dendritic orientation was due to new dendrite growth in response to injury, further 

analyses of both mean dendrite number and mean neurite length revealed that neither 

parameter was altered as a result of the injury.  Hence the alteration in dendrite 

alignment was most likely a result of remodelling of existing arbors, such that those 

close to the injury retracted, while those distal to the injury grew.  These findings are 

consistent with studies demonstrating that GABA positive interneurons exhibit dynamic 

arbor re-arrangements while pyramidal populations remain stable, under physiologically 

normal conditions (Frahm et al., 2004).  

 

A subset of pyramidal neurons, specifically those expressing GFP in the transgenic 

mouse, was also investigated to determine if this remodelling was cell-type specific.  

While the injury site in these mice had formed a comparable tissue core by 14 DPI, 

which indicates an active brain response, statistical analysis revealed no significant 

remodelling in the dendrites of these pyramidal neurons.  Thus the dendritic 
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remodelling observed at around the injury site, in our model of brain injury, may be 

confined to interneurons, specifically the calretinin positive population, demonstrating a 

cell-type specific response to injury.  These findings are in coherence with studies 

demonstrating that the GABA positive interneurons exhibit dynamic arbor re-

arrangements while pyramidal populations  

 

This Chapter supports the proposal that the adult brain has a frequently unappreciated 

capacity for cytoarchitectural remodeling and repair following injury.  In particular, this 

Chapter demonstrated a novel cell-type specific response of neuronal populations to 

acute injury; a subpopulation of pyramidal neurons elaborated axonal sprouts into the 

injury site whereas a subpopulation of interneurons (calretinin neurons) underwent a 

reorganization of their dendrites for a distal bias away for the injury site.  These distinct 

responses, within different cortical neuron populations, provide novel insight into the 

potential of the mature brain for structural plasticity following injury. 
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6 COMPLETE LOSS OF THE NEUROFILAMENT LIGHT CHAIN 

PROTEIN INTRINSICALLY REDUCUES THE REGENERATIVE 

PLASTICTY OF MATURE CNS NEURONS 

 

6.1 INTRODUCTION 

 

The axonal cytoskeleton plays a vital role in axon outgrowth and pathfinding in both 

development and regeneration (Gordon and Weeks, 2004; Graham et al., 2000).  A key 

component of the cytoskeleton is the neurofilament triplet proteins, which enable 

elongation of the axons (Walker et al., 2001) and provide mechanical strength to axons 

by counteracting compressive forces of the local environment (Hoffman et al, 1984; 

Cleveland et al., 1991; Lee and Cleavland, 1996; reviewed in Lariviere and Julien, 

2004).  The neurofilament triplet component is predominately comprised of three main 

neurofilament proteins, NF-L, NF-M and NF-H. The expression of the neurofilaments 

during neuronal development follows a highly co-ordinated sequence of expression, 

which is directly related to the maturity of the neuron. During development, NF-L is the 

first neurofilament triplet protein to be expressed, which is then sequentially followed 

by NF-M and then NF-H as the neuron matures (Benson et al., 1996). However, the 

early expression of NF-L can overlap with the other neurofilament proteins, which are 

expressed early in development, α-internexin and peripherin (Willard and Simon, 1983; 

Carden et al., 1987; Escurat et al., 1990).    

 

Classically, NF-L was believed to play a pivotal role in the formation of the triplet 

protein, and importantly, without NF-L, the triplet protein would not form (Carter et al., 

1997).  Furthermore, lack of NF-L or NF-L dysfunction has been linked to the aetiology 

of amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, highlighting the 

importance of this cytoskeletal component (Beaulieu et al., 2000; Mersiyanova et al., 

2000; reviewed in Lin and Schlaepfer, 2006). NF-L forms a core of protein which NF-

M and NF-H bind to, forming the triplet protein (Nixon 1993). NF-L enables the 

formation of this triplet through binding to the protein NDel1 (Nyugen et al., 2004).  

NDel1 is the mammalian homologue of the Aspergillus nidulans NudE, which was 

initially shown to be involved in microtubule migration.  NDel1 binds directly to NF-L, 
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and indirectly to NF-H and this binding facilitates the triplet formation (Nyugen et al, 

2004).  

 

Neurofilaments have traditionally been thought to be obligate heterodimers with a 

subunit stoichiometry of 4:2:1 (NF-L:NF-M:NF-H) (Scott et al., 1985).  However, 

recent studies have challenged this traditional stoichiometry, specifically, α-internexin 

has now been shown to closely associate to the neurofilament triplet protein in vivo 

(Yuan et al., 2006).  Indeed, the purification of neurofilament quadruplets from optic 

nerve and spinal cord suggests a new stoichiometry of 4:2:2:1 (NF-L: α-internexin: NF-

M: NF-H) (Yuan et al., 2006).  The current Chapter endeavoured to investigate the 

effect a total knock out of NF-L would have on the formation of the triplet protein.  

Furthermore, while the effect such a loss of NF-L has on regeneration has been 

investigated within the peripheral nervous system (McLean et al., 2005; Toth et al., 

2008), few studies have looked at the CNS.   To investigate the role of the 

neurofilament triplet protein in regeneration a transgenic model of mice with a targeted 

disruption of the NF-L gene was utilised (Zhu et al., 1997; Zhang et al., 2002).  This 

Chapter investigated the cytoskeletal alterations, specifically the reactive and 

regenerative changes that characterise the axonal response to physical injury in neurons 

lacking NF-L.  An in vitro model of axonal transection in mouse cortical neurons was 

established, and used in conjunction with the focal neocortical injury model described 

in Chapter 5. The neuronal characteristics and response of regenerating axons was 

analysed using multi-labelling immunohistochemistry, immunocytochemistry and 

molecular techniques. 



 

 87 

6.2 MATERIALS AND METHODS 

 

6.2.1 Neuronal culture and in vitro model of axonal transection 

Primary dissociated cortical cultures were prepared as previously described (Chapter 

2.1), with alterations in the protocol. A transgenic homozygous mouse colony with a 

complete knock out of NF-L on a black C57 background was utilised for these studies 

(kind donation from Dr Mala Rao, Dr Stephen Ginsberg and Professor Jean-Pierre 

Julien) compared to wild type mice derived from a black C57 mouse colony. 

Cortical neurons were derived from E14 NF-L-/- (Zhu et al., 1997) and C57/bl6 

(wildtype) mouse embryos, cultured separately.  Axonal transection was carried out on 

relatively mature cultures (15 DIV), when a reduction of developmental proteins 

coincided with the expression of proteins correlating to maturity of the neuron and its 

processes (Figure 6.1). Four injuries were made per coverslip, ensuring that complete 

axonal transection had occurred as described in Chapter 2.2, leaving a cell free lesion 

(approx 50 to 150µm wide). Cultures were fixed and examined at 24 hrs PI. 

 

6.2.2 Immunocytochemistry and Immunohistochemistry 

Cultures (3, 7 and 15 DIV and 24 hrs post-injury in 21 DIV cultures) were fixed in 4% 

PFA/0.01M PBS for 30 mins at room temperature on an orbital shaker and processed 

for immunocytochemistry as described in Chapter 2.4 (for antibody details see Table 

2.1).  For immunohistochemistry NF-L-/- mice animals were terminally anaesthetised 

(pentabarbitone sodium, 140mg/kg) and transcardially perfused with 4% PFA/0.01M 

PBS, following a 0.01M PBS clearing procedure.  Non-injured, age-matched wildtype 

controls corresponding to the 1, 7 and 14 DPI time-points (n=5 animals per time-point) 

were also perfused. Brain sections (50µm vibratome) were collected coronally and also 

horizontal to the pial surface, through the injury site, from control and experimental 

animals and were immunohistochemically labelled in single as well as double-labelling 

combinations, with a range of cell specific antibodies (Table 2.1), as described in 

Chapter 2.4.  Alexa Fluor® 594 and 488 (1:1000, Invitrogen) secondary antibodies 

(diluted in 0.01M PBS) were applied for 90 min, at room temperature. Immunolabelling 

was visualised using a Leica (Germany) DMLB2 upright fluorescent microscope. 
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6.2.3 Immunoblotting and Coimmunoprecipitation 

Coimmunoprecipitation and immunoblotting was performed on relative mature neurons 

(15 DIV).  Neurons were grown at a density of 4x108 in 25 mm flasks (Iwaki, Japan) 

and harvested at 4°C in mammalian tissue lysis buffer (Sigma, USA), supplemented 

with a cocktail of protease inhibitors and phosphatase inhibitors.  

Coimmunoprecipitation was performed using the Pierce  (USA) coimmunoprecipitation 

kit, as per manufacturers instructions.  Antibody concentrations and elution time were 

optimised.  For immunoblotting, initially, proteins were separated by SDS-PAGE using 

a Mini-PROTEAN® II (Bio-Rad, USA) system.  8.5% 0.375M Tris-HCl separating 

gels were used.  The separating gel was overlayed with a 4% 0.125M Tris-HCl, pH 6.8 

stacking gel.  Samples were prepared by dilution in 2x Laemelli sample buffer (1:2), 

which were then heat treated at 90°C for five minutes and incubated on ice for five 

minutes.  A broad range, pre-stained rainbow molecular weight marker (Bio-Rad, USA) 

was included in each separation to facilitate protein molecular weight determination.  

The gel was run at 100V for the duration of the separation. 

 

After separation, gels were stained for total protein with Coomassie stain, or used for 

immunoblotting, utilising a Mini Trans-Blot® Electrophoretic Transfer Cell (Bio-Rad, 

USA).  Prior to transfer, gels were equilibrated in transfer buffer for 15 minutes at room 

temperature, on an orbital shaker.  The gel ‘sandwich’, containing a nitrocellulose 

membrane (Bio-Rad,USA) and the gel, was inserted into the transfer cell.  Protein 

transfer was performed overnight at 4°C, 30V.  The nitrocellulose membrane was 

washed three times with tris buffered saline with tween (TTBS) for five minutes, before 

blocking with TTBS / 5% skim milk powder overnight.  Blocking solution was removed 

by washing with TTBS.  Primary antibodies were diluted in TTBS and incubated with 

the membrane overnight at 4°C on an orbital shaker.  Membranes were washed three 

times with TTBS for ten minutes, then incubated with species appropriate horseradish 

peroxidase conjugated secondary antibodies (1:1000 to 1:2000, DAKO, Denmark), 

diluted in TTBS, for 1.5 hours at room temperature, on a shaker.  After this, membranes 

were washed three times with Tris buffered saline (TBS), for ten minutes. 
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Protein bands were labelled using an ECL™ chemiluminescence system (Sigma, USA), 

according to the manufacturers instructions.  Bands were visualised on the 

ChemCapture 5000 and ChemCapture program. 

 

6.3 RESULTS 

 

6.3.1 Mouse cortical neurons develop in vitro and become relatively mature by 15 

DIV. 

The experiments included in this chapter utilised cultured cortical neurons derived from 

embryonic mice instead of rats and thus it was first necessary to determine if cultured 

mouse neurons follow a similar time-course of maturity to that established for cultured rat 

neurons.  Cortical neurons were derived from E14 mouse pups, this earlier time-point in 

comparison to rats yielding a greater proportion of viable neurons.   Cortical neurons 

were plated as a monolayer on a poly-L-lysine substrate and the expression of maturity 

related markers investigated (Figure 6.1).  Immunocytochemistry indicated that mouse 

cortical neurons became relatively mature by 15 DIV.  By 7 DIV, neurons were clearly 

polarised with MAP-2 positive dendrites and a Tau positive axon (Figure 6.1A).  

However, an increase in expression of MAP-2 was clearly evident by 15 DIV (Figure 

6.1B).  GAP-43 was enriched in cell bodies, axons, dendrites and growth cones (inset) at 

7 DIV (Figure 6.1C).  By 15 DIV the immunoreactivity of GAP43 was decreased, with 

minimal immunoreactivity in the axons and dendrites (Figure 6.1D).  Colocalisation of 

βIII tubulin and the synaptic vesicle marker synaptophysin at 7 DIV indicated that 

synaptophysin was diffusely localised in the neurites.  By 15 DIV synaptophysin was 

localised alongside the dendrite shafts (inset), demonstrating that synaptophysin had 

moved out of the dendrite shafts into the synapses, indicating mature synapses were 

present (King et al., 2006). 

 

6.3.2 NF-L-/- cortical neurons develop polarised neurites in vitro by 3 DIV 

Light microscopy and immunocytochemistry was performed on cortical neurons derived 

from wildtype control and NF-L-/-, to determine whether NF-L-/- cortical neurons 

undergo characteristic neuronal development in vitro. NF-L-/- cortical cultures adhered to 



 

 90 

the substrate and had extended neurites by 3 DIV (Figure 6.2B).   These neurites were 

tipped with characteristic growth cones (Figure 6.2A and B inset).  Immunolabelling for 

the microtubule associated proteins tau and MAP-2 at 3 DIV, demonstrated that both 

control and NF-L-/- neurons had developed polarised neurites, with clearly defined 

dendrites (red) and one longer axon (green) (Figure 6.2C and D respectively). By 15 DIV 

(Figure 6.3), wildtype and NF-L-/- neurons demonstrated a comparable increase in the 

expression of MAP-2, when colocalised with Tau (Figure 6.3A and B respectively) when 

compared to 3 DIV (Figure 6.2C and D).  Labelling with an antibody directed NF-L 

confirmed that wildtype neurons expressed NF-L at 15 DIV (Figure 6.3C) while the 

neuronal cultures derived from NF-L-/- mutants had no immunoreactivity for this protein 

(Figure 6.3D). 

 

6.3.3 The expression profile of neuronal intermediate filaments in developing and 

relatively mature NF-L-/- cortical neurons differs from wildtype cortical 

neurons both in vitro and in vivo 

To investigate the expression of neuronal intermediate filaments in the NF-L-/- cortical 

neurons in comparison to wildtype cortical neurons, immunocytochemistry was 

performed on cultured neurons at 7 DIV and 15 DIV NF-L-/-.  At 7 DIV NF-M and α-

internexin were present throughout axons in both wildtype and NF-L-/- cortical cultures 

(Figure 6.4A-D).  NF-M immunoreactivity was decreased within NF-L-/- neurons (Figure 

6.4B) in comparison to wildtype control (Figure 6.4A).  However, there was an increased 

immunoreactivity for α-internexin in NF-L-/- neurons at 7 DIV, in comparison to 

wildtype control (Figure 6.4A and B). Dual labelling immunocytochemistry utilising NF-

M and α-internexin antibodies at 7 DIV demonstrated that both wildtype (Figure 6.4E) 

and NF-L-/- (Figure 6.4F) neurons extended axons that expressed NF-M and α-internexin 

independently. Additionally, at 7 DIV, there were axons present that expressed both 

proteins  (Figure 6.4E and F, arrows). Immunolabelling of NF-M and α-internexin at 15 

DIV demonstrated that wildtype axons were predominately immunoreactive for either 

NF-M or α-internexin exclusively (Figure 6.5A, arrows).  NF-L-/- axons were 

immunopositive for both NF-M and α-internexin (Figure 6.5B, arrowheads). The 

decrease in NF-M expression and increase in α-internexin expression in cultures derived 
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from NF-L-/- mice relative to wildtype mice was confirmed through a western 

immunoblot, from cells harvested at 15 DIV (Figure 6.5C).  

 

To confirm the difference in expression of neuronal intermediate filament proteins in 

vivo, dual labelling immunohistochemistry utilising NF-M and α-internexin antibodies 

was performed in neocortical neurons from coronal sections of wildtype and NF-L-/-

mice. In wildtype mice, axons of neocortical neurons similarly demonstrated 

immunoreactivity for either α-internexin or NF-M exclusively (Figure 6.5D, arrows).  In 

the NF-L-/- axons however, were primarily immunopositive for both NF-M and α-

internexin (Figure 6.5E, arrowheads) confirming the widespread colocalisation of NF-M 

and α-internexin observed in vitro in cultures derived from these animals (Figure 6.5A 

and B). 

 

The immunoreactivity profile of a range of antibodies was investigated in the neocortex 

of wildtype and NF-L-/- coronal sections.  MAP-2 labelling of the neocortex of wildtype 

and NF-L-/- sections demonstrated no detectable differences between the conditions 

(Figure 6.6A and B). Nuclear yellow staining (wildtype and NF-L-/-, Figure 6.6 B and C 

respectively) indicated that there was a similar distribution of nuclei throughout the 

neocortex. Immunohistochemistry for the interneuronal marker parvalbumin (wildtype 

and NF-L-/-, Figure 6.6E and F respectively) also did not reveal any distinguishable 

differences in the immunoreactivity pattern within the neocortex.  Parvalbumin 

immunoreactivity was widespread throughout the neocortex, with a high density of 

parvalbumin immunoreactive neurons in layer V (Figure 6.6E and F).  

Immunohistochemical labelling for the neurofilament markers SMI312, NF-M and α-

internexin in wildtype sections was predominately within the pyramidal cortical layers, 

specifically layer III and V (Figure 6.7A,C and E respectively).  SMI312 

immunoreactivity was decreased within the NF-L-/- neocortex and the distinct 

immunoreactive layer patterning demonstrated in the wildtype neocortex was not present 

(Figure 6.7B).  NF-M immunoreactivity was also decreased within the NF-L-/- cortex 

(Figure 6.7D) in comparison to wildtype control (Figure 6.7C), with no pattern of 

immunoreactivity corresponding to cortical layers.  Cortical layers within NF-L-/- 

neocortex (Figure 6.7F) were also not distinguishable with α-internexin immunoreactivity 
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in comparison to wildtype control (Figure 6.7E), despite an increase in immunoreactivity 

within the NF-L-/- neocortex (Figure 6.7E and F).   

 

 

6.3.4 The neurofilament associated protein NDel1 is present and associates with 

α-internexin in the absence of NF-L  

The deletion of NF-L-/- utilised by these studies resulted in an increase in α-internexin 

within the neurons.  Thus it was hypothesised that α-internexin may be compensating for 

the NF-L loss and allowing the formation of the neurofilament triplet protein.  

Furthermore, it was hypothesised that NDel1, in the absence of NF-L, may bind to α-

internexin to facilitate the formation of the triplet protein.  The expression of NDel1 in 

NF-L-/- and wildtype mice and it’s interaction with α-internexin was investigated using 

immunohistochemical techniques in vivo and in vitro and coimmunoprecipitation of 

protein derived from cultured neurons (Figure 6.8E). In vitro, NDel1 immunoreactivity 

was present at 15 DIV in both wildtype and NF-L-/- neurons (Figure 6.8A and B).  A 

similar immunoreactivity profile between wildtype and NF-L-/- neurons was also 

observed in vivo with NDel1 immunoreactivity being confined to axonal shafts (Figure 

6.8C and D. Alpha-internexin was immunoprecipitated from 15 DIV wildtype and NF-L-

/- neurons.  NDel1 was immunoprecipitated with α-internexin in the NF-L-/- neurons, but 

did not co-precipitate with α-internexin in the wildtype neurons (Figure 6.8D). 

 

6.3.5 NF-L-/- mice respond actively in response to a focal neocortical injury, 

which culminates in axonal sprouting and the formation of the glial scar. 

The response of the NF-L-/- to acute focal neocortical injury was investigated utilising 

the model previously described in Chapter 5. To investigate the glial response to acute 

injury in the mouse neocortex sections were immunolabelled with GFAP.  There was 

minimal GFAP immunolabelling in the uninjured neocortex of wildtype mice (Figure 

6.9A). NF-L-/- neocortex in contrast, had a population of resident astrocytes that 

expressed GFAP under physiologically normal conditions (Figure 6.9B, arrows).  This 

increase in GFAP had been previously described within the spinal cord of these mice 

(McLean et al., 2005). Immunolabelling for GFAP at 4 DPI in both NF-L-/- and wildtype 
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mice demonstrated that the injury and peri-lesion site had now become filled with 

reactive astrocytes (Figure 6.9C and D).  By 7 DPI (Figure 6.9E and F) GFAP labelling 

indicated that an astrocyte filled glial scar had formed at the injury site.  By 14 DPI 

(Figure 6.9G and H) a significant proportion of the tract had closed together leaving a 

central dense GFAP labelled core.  There were no differences between the injury 

response of the wildtype and NF-L-/- neocortex, when visualised with GFAP 

immunoreactivity.  To determine the sprouting response in both conditions, sections were 

immunolabelled with the phosphorylated neurofilament marker SMI312. At 4 DPI, 

SMI312 labelling demonstrated that NF-L-/- neurons responded actively to the focal 

injury, with fine sprouts present within the injury site similar to those present in wildtype 

mice (Figure 6.10A and B, arrows).   

 

6.3.6 There was a significant decrease in the number of NF-L-/- sprouts within 

the injury site in vitro 

To further investigate differences in the wildtype and NF-L-/- regenerative response, the 

neuronal response to injury was investigated in relatively mature neurons in vitro. The 

neuronal network of dendrites and axons in cultures at 15 DIV were completely 

transected, leaving a clear injury site (Chuckowree and Vickers 2003; Haas et al., 2004). 

Injured neurons were fixed at 24 hrs PI and the axonal regenerative response investigated 

using tau immunocytochemistry (Figure 6.11).  Fine sprouts were transversing the injury 

at 24 hrs for both wildtype and NF-L-/- neurons; these fine sprouts were tipped with 

characteristic growth cones (Figure 6.11A and B respectively, arrows). There was no 

significant difference in mean sprout length for wildtype (68.76+/-3.44µm) and NF-L-/-

(56.19+/-15.47µm) regenerative sprouts at 24 hrs PI (Figure 6.11C).  However, there was 

a significant (p<0.05) difference between mean numbers of sprouts per injury (Figure 

6.11D), was significantly less NF-L-/- (4.79+/-0.58) sprouts within the injury site in 

comparison to wildtype control (10.47+/-1.11).   
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6.4 DISCUSSION 

 

Primary neuronal cultures have traditionally been derived from rat embryos; therefore 

these protocols are well established in the literature (Dotti et al., 1988; Goslin et al., 

1990; Bradke and Dotti, 1999; Haas et al., 2004; King et al., 2006).  Increasingly 

researchers are using transgenic mice to model aspects of certain diseases and to 

understand the biological function of specific proteins, thus more recent studies report 

using cultured neurons derived from these transgenic mice (Lee and Zheng, 2008; Ashe 

and Zahs 2010; Luebke et al., 2010) These protocols are, however, less well established 

and require optimisation depending on the background of the strain.  Cortical cultures 

derived from wildtype (black C57) neurons utilised in this Chapter became relatively 

mature by 15 DIV.  While the cause for this decrease in days in vitro required by mouse 

neurons to mature in comparison to neuronal cultures derived from rats has not been 

directly determined, it is most likely reflective of variations in the gestation time 

between species. 

 

Development of NF-L-/- neurons in culture followed a similar time-course to the 

wildtype neurons, with appropriately polarised neurites extended by 3 DIV, indicating 

that NF-L is not required for neurite initiation.  This confirms the hypothesis that initial 

neurite growth and growth cone formation is governed by the microtubules and 

microfilaments (Dent and Kalil 2003; Gordon and Weeks 2004).  However, 

neurofilaments are required for appropriate neuronal polarisation (Lee and Cleveland, 

1996).   This thesis demonstrates that appropriate polarisation is not reliant upon NF-L, 

indicating a possible functional redundancy between the neuronal intermediate 

filaments in the initiation of polarisation.  Both during development and in relatively 

mature neurons, there were distinct differences in immunoreactivity for the 

neurofilaments markers NF-M and α-internexin.  

 

Previous studies have indicated that α-internexin may, under certain circumstances, 

form part of the neurofilament triplet protein.  Alpha internexin has been shown to be 

associated closely to NF-M in the optic nerve (Yuan et al., 2006), and in the absence of 

NF-L and NF-H, is required for NF-M transport (Yuan et al., 2003).  Furthermore, both 
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NF-M and α-internexin immunoreactivity is in a linear arrangement continuously down 

the axon, indicative of neurofilament triplet formation (Nguyen et al., 2004).  In the 

current study NF-M immunoreactivity was decreased in NF-L-/- mice with a relative 

increase in α-internexin both during development and after reaching maturity, 

confirmed with immunoblotting (Zhu et al., 1997; Zhang et al., 2002). Importantly, NF-

L-/- neurons both in vitro and in vivo demonstrated a complete colocalisation for NF-M 

and α-internexin, indicating that NF-M and α-internexin associated together within the 

NF-L-/- neurons.  Under normal conditions NF-L expression outnumbers α-internexin 

2:1 (Yuan et al, 2006).  Furthermore, it has been suggested that there may be a 

functional redundancy within the neurofilament triplet proteins, with deletion of one 

protein compensated for by another neurofilament (Rao et al., 2003; Yuan et al., 2003; 

Yuan et al., 2006).  The relative increase in α-internexin immunoreactivity and 

expression, coupled with the exclusive colocalisation with NF-M, indicates that α-

internexin in fact may be compensating for the loss of NF-L, providing further evidence 

that α-internexin is potentially able to form the triplet protein. 

 

Additional evidence for the role of α-internexin in the assembly of the triplet protein 

was demonstrated through coimmunoprecipitation of NDel1 with α-internexin.  NDel1 

has been shown to facilitate the formation of the triplet protein, through direct binding 

to NF-L, and indirect binding to NF-H (Nyguen et al; 2004).  In the current 

investigation, only in the absence of NF-L, did NDel1 bind to α-internexin.  This 

activity titration of NDel1 has previously been observed in the peripheral nervous 

system (Toth et al., 2008).  In dorsal root ganglia of NF-L-/- mice, NDel1 was shown to 

bind to vimentin, another intermediate filament family member (Toth et al., 2008).  The 

interaction of α-internexin and NDel1, in conjunction with the increase in expression of 

α-internexin, observed in the current study suggests that there may be a functional 

redundancy of α-internexin and NF-L, within the triplet protein.  However, the specific 

binding affinity for α-internexin with NDel1remains to be fully elucidated, and would 

provide significant insight into the role of α-internexin in the triplet protein. 

 

Behavioural analysis of NF-L null mice has shown that by 6 months NF-L-/- mice have 

mild sensorimotor dysfunction and spatial deficits (Dubios et al., 2005). The current 
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study observed discreet differences within the organisation of neocortical 

immunoreactivity of NF-L-/- mice in comparison to wildtype control. The neocortex is 

a highly specialised structure, which is organised into 6 layers, or laminae (Silberberg et 

al., 2005). In the wildtype control, labelling for the neurofilament markers was 

intensified within the pyramidal layers of the neocortex.  This layer specificity was not 

present within the NF-L-/- neocortex, which may be due to the alterations of the 

expression of neurofilament proteins in the different cell types of the cortical laminae.  

The loss of layer immunoreactivity profiles was restricted to the neurofilament proteins 

investigated, and was not present within the interneuronal populations.  The loss of 

layer specificity may affect the neural processing within NF-L-/- mutants as interactions 

between cortical pyramidal cells and interneurons facilitate highly integrated cortical 

processing (Douglas and Martin 2004).  

 

NF-L-/- null mice underwent a characteristic active response to injury, which 

culminated in axonal regeneration and the formation of the glial scar. As previously 

addressed in the current thesis, following injury neurons can attempt to regenerate in 

two ways.  This is either through the frank regeneration of the directly injured neurite, 

or collateral sprouting of surrounding, uninjured neurites. A classical hallmark of many 

neurodegenerative diseases is the disruption and accumulation of neurofilaments within 

the cell body and axons (reviewed in Liem and Messing 2009).  Models of TBI have 

demonstrated that neurofilament loss and/or compaction are a common consequence of 

injury and neurofilament disruption following injury has severe effects on neuronal 

structure and function (Posmantur et al., 2000). Importantly, however, neurofilament 

proteins may play an important role in axonal regeneration as in animal models where 

robust axonal regeneration occurs, the regenerating axonal sprouts are neurofilament 

rich (Jacobs et al., 1997).  The current Chapter demonstrated that the neurofilaments, 

specifically NF-L are also involved in axonal regeneration in the CNS.   NF-L-/- 

neurites were able to mount a regenerative response, which culminated in sprout like 

structures transversing the injury site, both in vitro and in vivo.  There was no 

significant difference in the mean length of these regenerating neurites, in comparison 

to control.  However, there was a significant reduction in the number of sprouts within 

the injury. Previous investigations have shown that mice lacking NF-L have a reduced 
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ability to regenerate in the PNS (Zhu et al., 1997).   However, this reduced ability to 

regenerate may be a delayed response, as by 2 months post-injury there were similar 

numbers of myelinated axons in the NF-L-/- mice and wildtype controls (Zhu et al., 

1997).  In the current study, 24 hrs PI represents a relatively prolonged time-point in 

vitro, suggesting that the delayed response to injury which has been demonstrated in the 

PNS, may not account for the reduction in regeneration within relatively mature CNS 

neurons.  The demonstrated reduction of sprouts within the injury site could either be a 

result of less injured neurites frankly regenerating, or a decrease in the plasticity of the 

surrounding uninjured neurites (reviewed in Chuckowree et al., 2004).  Utilising both in 

vitro and in vivo models, the current Chapter demonstrated that NF-L deletion resulted 

in a decreased regenerative ability, indicating that regeneration within the mature CNS 

is intrinsically driven (Li et al., 1995; Blackmore and Letourneau 2006). 

 

 A novel interaction between α-internexin and the NF-L binding protein, NDel1 was 

demonstrated within NF-L-/- neurons.  This interaction, in conjunction with 

immunohistochemical evidence, suggests that α-internexin may be forming the 

functional neurofilament triplet protein in the absence of NF-L.  However, while α-

internexin may be compensating for NF-L, the compensatory intermediate filament 

structure present demonstrated an attenuated response to injury both in vitro and in vivo, 

indicating that presence NF-L, and most likely the proper formation of the 

neurofilament triplet protein, is an intrinsic requirement for axonal regeneration and 

plasticity. 
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7 DISCUSSION 

 

Traumatic brain injury remains a leading cause of death and disability in persons under 

the age of 45 years, in developed nations (Adams, 1995; Egeler-Peerdeman, 1993; 

Povlishock, 2005; Maas et al., 2008).  TBI has such an impact primarily due to the 

limitations on repair of the mature CNS following injury. Current research efforts are 

focused upon finding a cure or therapeutic intervention that can overcome the brains’ 

limited capacity to regenerate in order to prevent or correct functional deficits.  

However, strategies for intervention are difficult as the pathobiology of the brain 

following injury involves a complex sequence of events that remains to be fully 

elucidated, which is confounded by individual patient differences (reviewed in 

Lingsman et al., 2010).  Understanding the cellular mechanisms underlying the capacity 

of the damaged brain to attempt repair from injury is, thus, vital for devising effective 

future therapies to treat brain injury. The inability for the brain to repair has been 

commonly attributed to the non-permissive nature of the mature CNS to functional 

neuronal regeneration.  However, removal of this environment does not induce 

spontaneous robust neuronal regeneration (eg Li et al., 1995; Blackmore and 

Letourneau 2006) indicating that the lack of regeneration in the mature CNS is also an 

intrinsic limitation.  This failure to regenerate is restricted to the mature CNS, with both 

the immature CNS and mature PNS demonstrating a robust regenerative capacity 

following injury. 

 

The loss of brain function and the resulting ongoing disability that occurs following TBI 

is ultimately a result of disconnections in the intricate neuronal network of the brain, this 

disconnection being either a result of overt neuron loss or neuron damage, the latter 

particularly affecting the axon.  Ultimately, recovery will therefore require the 

replacement and recovery of the dead and dying cells within the injury, the frank 

regeneration of injured axons and/or compensatory plasticity of intact pathways to 

reinstate the interrupted connections. This thesis addressed these three main pathways for 

adaptation to injury in endeavouring to characterise the response of the mature brain to 

injury, specifically focussing on cell proliferation that occurs as a response to injury, 

axonal injury and the regenerative response and the compensatory plasticity that can 
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occur in the brain following acute injury.  This thesis utilised a range of both in vitro and 

in vivo methodological approaches, focusing on specific neuronal subpopulations within 

the neocortex following injury, to provide novel insight into how the mature mammalian 

brain responds to injury. 

 

Whether brain injury evokes a neurogenic response in the neocortex that contributes to 

functional recovery remains contentious (Kornack and Rakic, 2001; Gould and Gross 

2002; Rakic, 2002; Koketsu et al., 2003).  In the current thesis, data obtained from both 

in vitro and in vivo experiments clearly show that neurogenesis does not occur in 

response to a variety of forms of injury. The lack of neurogenesis could be due to the 

absence of extrinsic signalling pathways (Emsely et al., 2005), for example, due to the 

lack of these factors in in vitro preparations, or the absence of injury extending to 

germinal regions in the in vivo model.  Indeed, other studies involving relatively 

discreet CNS injury also found no evidence of neurogenesis (Holmin et al., 1997; 

Kuroda et al., 2002; Salman et al., 2004).  Hence, the absence of neurogenesis in both in 

vitro and in vivo models investigated may be due to the absence of appropriate micro-

environmental cues, rather than a limit of the endogenous precursors themselves 

(Emsely et al., 2005).  This indicates that while neurogenesis has the potential to play a 

vital role when there is extensive damage and cell death, it may not be an ideal target 

for intervention in forms of TBI that do not induce widespread ipsilateral and 

contralateral injury.  Hence, focal brain injuries may be more dependent upon axonal 

sprouting and extant neuronal remodelling to achieve some degree of functional 

improvement. 

 

Axons are highly vulnerable to TBI due to their unique size, morphology and high 

metabolic activity.  The current study investigated the active response of axons to a 

variety of models of primary injury, both in vivo and in vitro. Acute neocortical injury 

in vivo and both models of axonal injury in vitro clearly demonstrate that the mature 

neurons can survive a traumatic insult and some neurons possess a capacity to attempt 

regeneration following injury. These fine neurites correspond to sprouting axons that 

transverse experimental injury sites, and have been previously documented in both in 

vitro (Chuckowree et al., 2003; Chung et al., 2004) and in vivo (King et al., 2000) 
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models.  Studies presented in this thesis further characterised these sprouts to be axonal 

of origin and no evidence of comparable dendrite spouting was found indicating that 

sprouting in response to injury was axonal specific.  

 

Axonal injury has been shown to involve a specific sequence of alterations, suggestive 

of a stereotypical reaction to injury (King et al., 1997; 2000; 2001; Chen et al., 2003a).  

Studies performed in vitro in the current thesis, included in Chapters 3 and 4, 

demonstrated that this axonal regenerative attempt occurred regardless of the mode of 

primary injury. Thus the axonal regenerative response can be considered a stereotypical 

intrinsic response to injury, which is neuron type-specific and not necessarily dependent 

upon the mode of injury, or severity, supporting previous investigations that have 

demonstrated that while an increase in injury severity increases the response time of 

regenerative sprouts, the ultimate outcome was the same (Levent et al., 2007). 

Additionally, the similarities in the neuronal response after the two different types of 

primary injury in vitro, axonal transection or complete axonal shearing, indicates the 

reproducibility of the response over a range of different models of traumatic injury.    

NF-L-/- studies provided further evidence of the intrinsic nature of the regenerating 

sprouts. Deletion of NF-L resulted in a significant reduction in the sprouting response in 

vitro, indicating that there was a reduction in the intrinsic capacity of axons for 

structural remodelling related to the absence of a normal neurofilamentous network. 

This loss of structural plasticity as a result of NF-L deletion following injury has been 

previously demonstrated following PNS injury (McLean et al., 2005; Toth et al., 2008).  

Thus, this thesis has demonstrated that this intrinsic reduction in regenerative ability 

related to the absence of NF-L also pertains to the CNS.  

 

The limited axonal outgrowth of regenerating neurites in comparison to development 

observed in this thesis may be responsible for the lack of robust CNS axonal extension 

that has been observed in permissive environments (Li et al., 1995; Blackmore and 

Letourneau 2006).  However, while robust axonal regeneration occurs in the PNS, 

misdirection of regenerating axons has been investigated in the PNS and may account 

for the poor functional recovery (eg de Ruiter et al., 2008). This thesis suggests that 

misdirection of regenerative sprouting may not be limited to the PNS.  In this regard, 
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the regenerative axonal sprouts in both in vitro and in vivo models of CNS injury were 

tipped with growth cone-like structures, but these lacked key morphological and 

dynamic characteristics of developing neurites, which indicates an impeded path finding 

ability and/or an inability to appropriately branch, both of which would contribute to a 

poor outcome post-injury.  Furthermore, this thesis demonstrated that regenerative 

sprouts were unresponsive to growth factors, despite the presence of relevant receptors. 

This also supports the proposal that CNS neuronal regeneration lacks intrinsic capacity 

to respond to guidance cues in the same fashion as in initial brain development. In this 

regard, intervening after injury to create a more growth permissive environment would 

still not likely be advantageous if the regenerating axons are not able to respond to 

growth factors and other cues for guiding appropriate synaptogenesis. Thus, a 

potentially more suitable way to induce a robust axonal extension may be to alter the 

intrinsic growth state of a mature injured axon.  

 

Another way neurons can respond to injury and recover following injury is through the 

induction of compensatory morphological or structural plasticity in either the injured 

neurons or surrounding non-injured neurons. Collateral sprouting from uninjured axons 

has been indicated as a potential adaptive response to injury (Deller and Frotscher, 

1997), and may be stimulated due to availability of vacant synaptic territory within the 

injury site (McKinney et al., 1997). Previous investigations have demonstrated that the 

outgrowth of dendrites following injury can be correlated to axonal rearrangement and, 

interestingly, that alterations in dendritic morphology are associated with synaptic 

modifications (reviewed in Macias, 2008).  This thesis demonstrated that not only is the 

axonal sprouting response cell type specific within the cortex, but also that specific 

subpopulations of interneurons have a remarkable capacity for structural dendrite 

remodelling, directed towards the intact cortex. This novel finding may provide further 

powerful insight into how the structural plasticity of the CNS and how this may 

contribute to adaptation to brain injury. Manipulation of the plastic potential of these 

inhibitory neurons around the injury site may provide a novel therapeutic window for 

rewiring the intact connections to establish new pathways for the functional deficits lost 

as a result of TBI. 
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7.1 CONCLUSIONS 

 

The adult brain has a frequently unappreciated capacity for cytoarchitectural remodeling 

and repair following injury.  This thesis provided significant insight into why particular 

forms of regenerative neuronal changes are limited or aberrant, as well as how the 

response may be neuronal subtype-specific in the neocortex.  In summary, the findings 

of the thesis indicate that induction of axonal sprouts into the injury site following 

trauma may not result in a functionally appropriate or desirable outcomes.  Instead the 

compensatory plasticity around the injury site, directed to the uninjured or less damaged 

cortex, may provide a more functionally appropriate therapeutic target for future 

directions. 
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9 APPENDIX 
 

9.1 SOLUTIONS 

 

9.1.1 General solutions 

0.01M PBS, pH 7.4 

100mL  9% NaCl (90g of NaCl (Sigma, USA) per 1L Milli-Q® water) 

40mL  Na2HPO4 (BDH) (28.4g per 1L Milli-Q® water) 

10mL  NaH2PO4.2H2O (Sigma) (31.2g per 1L Milli-Q® water) 

850mL  Milli-Q® water 

 

9.1.2 Cell culture solutions 

0.001% poly-l-lysine 

450mL  sterile 0.01M PBS 

50mL   0.01% poly-l-lysine (Sigma, USA) 

 

10mM HEPES buffer 

1.19g   HEPES (BDH, USA) 

500mL  0.01M PBS 

Combine and heat sterilise 

 

Imaging buffer 

15.5mL 4M NaCl (23.4g per 100mL Milli-Q® water) 

2.5mL  2M KCl (Sigma; 7.46g per 50mL Milli-Q® water) 

50mL  2M CaCl2 (BDH; 14.7g per 50mL Milli-Q® water 

250mL  2M MgCl2 (Sigma; 20.33g per 50mL Milli-Q® water) 

7.5mL  2M Dextrose (D-glucose) (Sigma; 18.02g per 50mL Milli-Q® water) 

6.25mL 2M HEPES (26.03g per 50mL Milli-Q® water) 
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Adjust to pH 7.3 with 2M NaOH, make up to 500mL with Milli-Q® water, filter 

sterilise and store at 4°C. 

 

9.1.3 Immunocytochemistry and immunohistochemistry solutions 
4% Paraformaldehyde (PFA) 

40g  PFA (Sigma, USA) 

40g  Sucrose (Sigma, USA) 

100mL  9% NaCl 

400mL  Na2HPO4 

500mL  NaH2PO4.2H2O 

Heat while stirring in a fume hood. 

 

0.3% Triton/PBS 

600µL  Triton X (Fluka, Switzerland) 

200mL  0.01M PBS 

 

9.1.4 Immunoblotting solutions 
Bis/Acrylamide 

29.2g   acrylamide (Sigma, USA) 

0.8g   N’N’-bis-methylene-acrylamide (Sigma, USA) 

Make up to 100mL with Milli-Q® water, filter through Whatman filter paper and store 

at 4°C, in the dark 

 

1.5M Tris-HCl, pH 8.8 

27.23g  Tris base (Bio-Rad, USA) 

~80mL  Milli-Q® water 

Adjust to pH 8.8 with 10M HCl and make up to 150mL with Milli-Q® water.  Store at 

4°C. 

 

0.5M Tris-HCl, pH 6.8 

6g  Tris base 
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~60mL  Milli-Q® water 

Adjust to pH 6.8 with 10M HCl and make up to 100mL with Milli-Q® water.  Store at 

4°C. 

 

10% Sodium Dodecyl Sulfate (SDS) 

10g  SDS (BDH, USA) 

Dissolve in 90mL of Milli-Q® water with gentle stirring and adjust to 100mL with 

Milli-Q®.  Store at room temperature. 

 

5X Running Buffer, pH 8.3 

9g  Tris base 

43.2g  Glycine (Bio-Rad, USA) 

3g  SDS 

Combine and add 600mL of Milli-Q® water.  Store at 4°C.  Prior to use combine 

100mL Running Buffer with 400mL Milli-Q® water. 

 

Transfer Buffer 

3.03g   Tris base 

14.4g   Glycine 

200mL  Methanol (Sigma, USA) 

Combine reagents in a fume cabinet and make up to 1L with 800mL of Milli-Q® water.  

Store at room temperature. 

 

Tris buffered saline (TBS) 

4.84g   Tris base 

58.4g   NaCl 

1.5L   Milli-Q® 

Adjust to pH 7.5 with 10M HCl and make up to 2L with Milli-Q® water. 

 

Tris buffered saline with Tween (TTBS) 

1.1L   TBS 

550uL   Tween-20 (Bio-Rad, USA) 
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TTBS/5%FCS/5% skim milk powder 

100mL  TTBS 

5mL   FCS (Gibco, USA) 

5g   skim milk powder 

Store at 4°C for a limited time. 

 

12% Separating gel 

3.35mL Milli-Q® water 

2.5mL  1.5M Tris-HCl, pH 8.8 

100µL  10% SDS 

4mL  Bis/Acrylamide 

Add quickly immediately prior to pouring 

50µL  10% APS (Bio-Rad, USA) 

5µL  TEMED (Bio-Rad, USA) 

Combine ingredients in the listed order and pour gel immediately.  Allow to polymerise 

for 45 minutes. 

 

7.5% Separating gel 

4.85mL  Milli-Q® water 

2.5mL  1.5M Tris-HCl, pH 8.8 

100µL  10% SDS 

2.5mL  Bis/Acrylamide 

Add quickly immediately prior to pouring 

50µL  10% APS 

5µL  TEMED 

Combine ingredients in the listed order and pour gel immediately.  Allow to polymerise 

for 45 minutes. 

 

4% Stacking gel 

6.1mL  Milli-Q® water 

2.5mL  0.5M Tris-HCl, pH 6.8 
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100µL  10% SDS 

1.33mL Bis/Acrylamide 

50µL  10% APS 

10µL  TEMED 

 

Coomassie stain 

1g  Coomassie blue R-250 (Bio-Rad, USA) 

40mL  methanol, 10% 

10mL  acetic acid (Spectrum, USA) 

 

Coomassie destain 

40mL  methanol, 10% 

10mL  acetic acid 

50mL  Milli-Q® water 

 

2X Sample buffer 

2.5mL  0.5M Tris HCl pH6.8 

2mL  glycerol (Sigma) 

200µL  2-β mercaptoethanol (Serva) 

2mL  10% SDS (in water) 

Make up to 10mL with Milli-Q® water, add a small amount of bromophenol blue, 

aliquot and freeze 

 



















Figure 3.1 Cytoskeletal profile of cortical neurons during development and 

regeneration. (A and B) A neuronal aggregate at (A) 5 DIV and (B) a 

transected axon bundle (21 DIV) at 6 hrs PI immunolabelled for both tau 

(green) and MAP-2 (red). Tau was distributed throughout the axon bundles 

(arrow) and growth cones (arrowhead) whereas MAP-2 localisation was more 

restricted (arrow and arrowhead). (C and D) A typical neuronal aggregate (C) at 

5 DIV and (D) a transected axonal bundle at 6hrs PI immunolabelled for both 

ßIII-tubulin (green) and NF-M (red).  ßIII-tubulin was distributed throughout 

axonal bundles (arrows) and extending into growth cones (arrowheads), 

however NF-M was restricted to axonal shafts (arrows). (E and F) Tau 

labelling, co-localised with MAP-2 which was completely absent, of a growth 

cone (E) at 5 DIV and a (F) regenerative sprout at 6 hrs PI demonstrated that 

the growth cones under investigation were axonal of origin.   Scale bar A-D = 

10µm; E, F = 2µm 

 





Figure 3.2 The morphology and cytoskeletal profile of growth cones of 

developing and regenerating axons at 5 DIV and 6 hrs PI.  (A and B) Growth 

cones at (A) 5 DIV and (B) 6 hrs PI immunolabelled for both ßIII-tubulin (green) and 

ERM (red) demonstrated that ßIII-tubulin was confined predominately to the central 

domain of the growth cone, while total ERM was confined to the peripheral region. 

(C and D) Immunolabelling and staining for both tau (green) and F-actin (red) in 

growth cones at (C) 5 DIV and (D) 6 hrs PI indicated a widespread distribution of 

both cytoskeletal components throughout the growth cones. Both cytoskeletal dual-

labelling combinations indicated that the 6 hrs PI growth cones were smaller, simpler 

structures than their developmental counterparts.  Scale bar = 2µm 

 





Figure 3.3 Axonal motility, extension and retraction in development and 

regeneration. (A) X, Y graphs demonstrating growth cone motility in development 

(3, 5, 7 DIV) and regeneration (6, 24 hrs PI). Data points illustrate the position of the 

centre of the growth cone (µm), at two min intervals, over a two hrs imaging period. 

(B) Mean axonal extension in development and regeneration (n=25). (C) Mean 

axonal retraction in development and regeneration (n=25). *p<0.05. Error bars 

represent SEM. 

 





Figure 3.4 Growth cone dynamics in development and regeneration. (A) Live 

imaging of a dynamic growth cone (3 DIV) (arrowheads) over a two hrs time period 

indicating a range of morphological changes. (B) Live imaging of a growth cone (6 

hrs PI) (arrowheads) over a two hrs time period indicating the range of morphological 

changes observed in development were not apparent in the regenerating growth 

cones.  (C) Time-lapse images of an injured immature axon bundle (5 DIV) over a 

one hrs time period indicating no net axonal outgrowth in the immature bundles.  

Scale bar = 10µm, for inset 6.5µm 

 





Figure 3.5 Growth cone dynamics and response to growth factors. (A) The 

distribution of time spent extending, retracting and pausing for each imaging time 

point in development and regeneration (n=25). (B) The effect of BDNF and GDNF 

on developmental neurite outgrowth compared to post-injury regenerative sprouting. 

*p<0.05. Error bars represent SEM.  

 





Figure 3.6 BDNF receptor localisation. (A and B) Immunolabelling with antibodies 

to both neuron specific βIII-tubulin (green) and the BDNF receptor TrkB (red) at (A) 

5 DIV and (B) 21 DIV, indicated a widespread punctate localisation of the 

neurotrophin receptor throughout nerve cell bodies and processes at both ages in 

culture.  Scale bar = 15µm, for inset 5µm 

 





Figure 4.1 DIC and fluorescent immunolabelled images of neurons at 21 DIV.  

(A and B) At 21 DIV neurons formed closely associated cell clusters interconnected 

by axon bundles (arrows). (C) At 6 hrs post-injury neurons were still present as 

clusters, however, all interconnecting neurites had been stripped. (D) By 24 hrs post-

injury many neurons within the cluster had extended processes, tipped with growth 

cone like structures (arrow). (E) Immunolabelling for the axon specific microtubule 

associated protein, tau, at 24 hrs post-injury, revealed numerous axonal sprouts 

emanating from the cell clusters (arrows).  (F) By 7 DPI, single axonal (tau 

immunoreactive) sprouts connected with surrounding cell clusters.   Scale bar: A = 

100µm, B-E = 25 µm 

 





Figure 4.2 Confocal microscopy at 24 hrs post-injury. A subset of the sprouts 

within the cell cluster were immunopositive for calretinin (red, arrowhead), with a 

further larger group of sprouts extending out form the cell cluster that were 

immunoreactive for SM312 (green, arrows). No colocalisation between these markers 

was evident. Scale bar =15µm 

 





Figure 4.3 Confocal microscopy of immunocytochemical labelling for cell-type-

specific proteins and markers of neurogenesis in relatively mature neurons after 

structural injury. (A-C) (A) Labelling for the thymidine analogue, BrdU, (B) in 

combination with a neuronal marker tau, (C) indicated that the structurally injured 

neurons under investigation did not incorporate BrdU (arrow). (D-F) (D) Labelling 

with the neural precursor marker nestin, (E) in conjunction with tau, indicated the 

presence of precursors cells (nestin immunopositive) present after injury, (F) however 

the labelling did not co-localise with tau. (G-I) Colocalisation between (G) nestin and 

(H) GFAP immunolabelling, (arrows, (I)) indicated that the precursor cells present 

within the cell clusters after injury, were of glial origin.  Scale bar: A-C= 15µm, D-I 

= 20µm 

 





Figure 4.4 Tau and MAP-2 expression in cortical neurons at 21 DIV and post-

injury. (A-C) At 21 DIV (A) tau was distributed throughout cell clusters and 

neuronal processes, (B) whereas MAP-2 was confined to cell clusters and processes 

extending for only a short distance (arrows). (D-F) Similarly, at 24hrs post-injury tau 

was distributed throughout cell clusters and (D) newly extending neurites (arrows), 

(E) whereas MAP-2 remained in the cell clusters. (F) Confocal microscopy revealed 

no colocalisation between the two markers in the sprouting neurites. (G-I) High 

power confocal microscopy revealed (G) distinct distal tau immunolabelled axons 

and (H and I) single neurons within the clusters with multiple dendrites expressing 

only MAP-2.  Scale bar: A-C = 50 µm, D-I = 25 µm 

 





Figure 4.5 Growth cone area for developing axons at 3 DIV in comparison to 

regenerative axons at 24 hrs post-injury. (A) The mean growth cone area was 

significantly (*p<0.05) greater in developing neurites at 3 DIV compared to 

regenerative neurites at 24 hrs post-injury. (A) There were no significant differences 

for mean growth cone area on astrocytes in comparison to poly-L-lysine for 

developing and regenerating growth cones. (B and C) Regenerating neurons (24 hrs 

post-injury), (C) when plated on to a monolayer of astrocytes, induced an increase in 

the fluorescence intensity of GFAP labelling and an alteration in astrocyte 

morphology, (B) in comparison to an astrocyte monolayer without injured neurons or 

developing neurons. Scale bar = 20µm 

 





Figure 4.6 Immunocytochemical profile of growth cones of developing and 

regenerating axons at 3 DIV and 24 hrs post-injury. (A-F) Growth cones at 3 DIV 

were large and showed extensive labelling (A and C, green) for tau and  (D and F, 

green) staining for F-actin, using phalloidin that was concentrated in the central 

domain (arrow) of the growth cone but crossed into the peripheral domain 

(arrowhead). At 24 hrs post-injury the growth cones were smaller and (G,I, green) the 

tau and (J,L, green) F-actin expression was concentrated in the central domain 

(arrow), with no peripheral domain labelling evident. (B,C and H,I, red) Alpha-

acetylated tubulin was confined predominately to the central domain of the growth 

cone and neurite shaft in both (B,C) developmental and (H,I) regenerative growth 

cones. (E,F and K,L, red) Similarly, GAP-43 expression was concentrated in the 

growth cones central domains in both (E,F) development at 3 DIV and (K,L) 24 hrs 

post-injury (arrows).  Scale bar = 5 µm 

 





Figure 4.7 Growth cone dynamics in development and attempted regeneration. 

(A) An example of live imaging of a dynamic growth cone (arrow) (24 hrs PI) at 20 

min intervals for two hrs. (B) The distribution of time growth cones spent extending, 

retracting and pausing (assessed every min for 120 mins) in development and at 24 

hrs post-injury (n=30). Growth cones on the tips of regenerating axons spent 

significantly (p<0.05) more time extending and less time pausing then developing 

growth cones at 3, 5 and 7 DIV.  Scale bar = 10µm, for inset 6.5 µm  

 





Figure 5.1 Immunofluorescent, light and transmission electron microscopy 

following focal brain injury. (A and F) Resin sections cut in the horizontal plain 

from the control non-injured cortex showed that the neuropil of the somatosensory 

cortex of the right hemisphere was dense unbroken structure comprising of cell 

bodies and their processes and blood vessels. (B and G) At 1 DPI a discreet, circular 

injury site was clearly visible in the horizontal sections. (G) The injury site was filled 

with red blood cells indicating there had been bleeding within the injury site. (C) By 

7 DPI the injury site (arrow) had dramatically increased in size.  (H) The red blood 

cells had cleared and the injury site was populated with cells (arrowheads) and 

processes, the area innervated with new blood vessels (arrows).  (D) The injury site at 

14 DPI remained large in comparison to that at 1 DPI and had become more densely 

infiltrated with cells and their processes, in comparison to 7 DPI.  (I) At 14 DPI blood 

vessels permeated the injury tract (arrows). (E) TEM analysis at 7 and 14 DPI 

demonstrated that the injury site was infiltrated with activated microglia with 

prominent inclusion bodies (arrow). (J) Proliferating cells (arrow denotes a dividing 

nuclei) were also present within the lesion site at 7 DPI.  (K) Immunofluorescent 

labelling of horizontal sections with an antibody to GFAP demonstrated minimal 

expression in the uninjured brain.  (L) There was little GFAP immunoreactivity 

around the injury site at 1 DPI.  (M) At 7 DPI there was a localised increased 

expression of GFAP around the injury site. (N) By 14 DPI there was substantial 

GFAP reactivity around the injury site that extended to 500µm away from the injury.  

(O) Coronal sections labeled with GFAP demonstrated that by 14 DPI a dense glial 

scar had formed within the injury tract. Scale bar: A-D = 250µm, F-I = 100µm, E and 

J = 2µm, K- N = 150µm, O = 500µm, asterisk in L-N denotes injury site 

 





Figure 5.2 Immunofluorescence labelling for nestin within the cortex at 7 DPI. 

Nestin immunoreactive cells were not evident in the grey matter of the neocortex of 

control non-injured brains (A), but by 7 DPI, were abundant within the lesioned 

tissue (B). Nestin immunoreactive profiles were present in tissue extending from the 

SVZ and corpus callosum up to the injury site (C). Double immunofluorescence 

labelling for BrdU, administered at 1 DPI, (D) and nestin (E) demonstrated 

localisation of these markers to the same cells within peri lesion tissue. Double 

labelling for PCNA (F) relative to nestin (G) confirmed the proliferation of nestin-

labelled cells within the SVZ.   Scale bar: A and B = 100µm, C = 800µm, D-G = 

50µm 

 





Figure 5.3 Double immunofluorescence labelling for BrdU and nestin (green) 

relative to astrocyte, microglial/macrophage and neuronal markers (red) in 

cortical peri lesion tissue at 7 DPI. Numerous GFAP labelled cells also contained 

BrdU immunoreactive nuclei (A), indicating that a proportion of the reactive 

astrocyte population proliferates in response to injury. Nestin labelling exclusively 

co-localised with GFAP (B) within the peri lesion tissue. Ferritin immunopositive 

microglia/macrophages were also mitotically active following injury, with a number 

of cells double labelling with BrdU (C).  Nestin labelling was not present within the 

ferritin positive microglia/macrophages (D).  Colocalisation with BrdU or nestin was 

not observed for any of the neuronal markers including NF-M, (E and F, double 

labeled for BrdU and nestin, respectively), α-internexin (G and H, double labeled for 

BrdU and nestin, respectively), calretinin (I and J, double labeled for BrdU and 

nestin, respectively) and parvalbumin (K and L, double labeled for BrdU and nestin 

respectively). Scale bar = 50µm 

 





Figure 5.4 Immunofluorescent microscopy and confocal microscopy on 

horizontal sections at 7 DPI. (A, C) Immunolabelling with the pyramidal neuron 

markers (A) SMI312 and (C) α-internexin showed an increased immunoreactivity 

around the injury site. (B, D) High power confocal images demonstrated that fine 

sprouts (arrows), (immunopositive for (B) SMI312 and (D) α-internexin, were 

transversing the injury site. However, neurons immunopositive for the interneuronal 

marker calretinin did not demonstrate the same response. (E and F) Immunolabelling 

for calretinin was confined to the intact tissue.  (F) Furthermore high power confocal 

images confirmed no sprouting response present beyond the lesion edge. Scale bar: 

A, C, E = 200µm, B, D, F = 50µm, dotted line denotes edge injury site 

 

 





Figure 5.5 Confocal images for calretinin immunolabelling and GFP localisation 

at 14 DPI.  (A and B) Confocal images for (A) calretinin and (B) GFP horizontal 

sections at 14 DPI demonstrated that the injury site had filled, forming a dense tissue 

core. (C) Horizontally projecting dendrites (arrows) of calretinin labelled 

interneurons can be clearly visualised around the injury site in sham inured control 

sections. (A) At 14 DPI the horizontally projecting dendrites of calretinin labeled 

interneurons had realigned around the injury site (arrows), as demonstrated with 

confocal microscopy. (B, D) Comparison between GFP localisation at (B) 14 DPI and 

(D) control sham injured section revealed no detectable differences.  Scale bar = 

150µm, dotted line denotes edge of injury site 

 





Figure 5.6 Quantitation of horizontally projecting neurites of calretinin-

immunolabelled cells at 14 DPI.  Horizontally projecting dendrites were visualised 

using flattened z-stacks. (A and B), illustrate representative flattened z-stacks for 

calretinin immunolabelled neurons in (A) control sham-injured and (B) injured 

horizontal sections. (C and D) Plot distribution for (C) the control sham-injured and 

(D) injured populations in relation to the distance of the cell from the injury site 

further demonstrated (D) the distinct shift in dendrite angle bias of the injured 

neurons, with a trend for this bias to be increased away from the injury site, however 

linear regression demonstrated that this trend was not significant (p=0.05). (E) The 

mean of dendrite angle bias for each cell was significantly (p<0.01) decreased at 14 

DPI in comparison to control. (F) The quantitation of the mean neurite length of 

primary secondary and tertiary branches at 14 DPI and in sham injured control 

revealed no significant differences between 14 DPI and control. Error bars denote 

SEM. 

 





Figure 5.7 Polarity quantitation of horizontally projecting neurites of calretinin-

immunolabelled cells, at 14 DPI. (A and B inset) A template comprised of four 

quadrants was layered over each neuron under investigation and the quadrant in 

which each dendrite intersected the 80µm line (B, arrow) recorded.  (C) The 

quantitation of dendrite orientation at 14 days post injury demonstrated a significant 

(p<0.01) difference in number of dendrites in the distal quadrant away from the injury 

site, in comparison to dendrites on neurons in control sham-injured tissue. Error bars 

denote SEM.  Scale bar = 200µm, 100µm for inset 

 





Figure 5.8 Horizontally projecting neurites of GFP expressing pyramidal cells 

underwent no significant change in dendrite orientation or mean length, at 14 

DPI. Horizontally projecting dendrites were visualized using flattened z-stacks. A 

and B, illustrate representative flattened z-stacks for GFP expressing neurons in (A) 

control sham-injured and (B) injured horizontal sections. (C and D) Plot distribution 

for the (C) control populations and (D) injured populations in relation to the distance 

from the injury site further demonstrated no distinct shift in dendrite angle bias of the 

injured neurons. (E) There was no significant difference in the mean dendrite angle 

bias between 14 DPI and sham injured control for this subpopulation of neurons. (F) 

The quantitation of the mean neurite length of primary secondary and tertiary 

branches at 14 DPI and sham injured control revealed no significant differences 

between 14 DPI and control. Error bars denote SEM. 

 





Figure 6.1 Immunocytochemistry of mouse cortical neurons in vitro. 

Immmunocytochemistry was performed to investigate the maturation of neurons 

derived from wild type mice.  (A) Immunocytochemistry at 7 DIV demonstrated 

neurons were polarised with MAP-2 positive dendrites (red) and a single tau 

immunopositive axon (green). (B) At 15 DIV tau (green) was abundant in axonal 

processes and MAP-2 (red) immunoreactivity was increased within dendrites. (C) 

GAP-43 (red) was enriched in cell bodies, axons, dendrites and growth cones (inset) 

at 7 DIV.  (D) By 15 DIV there was minimal immunoreactivity for GAP-43 within 

the cortical neurons.  (E) At 7 DIV colocalisation of βIII tubulin (red) and the 

synaptic vesicle marker synaptophysin (green) indicated that βIII tubulin was present 

throughout cell bodies and processes while synaptophysin (green) was confined to 

dendritic shafts (inset). (F) By 15 DIV synaptophysin was located in punctate 

positions lateral to the dendrite shaft (inset), indicating that mature synapses were 

present. Scale bar = 50µm, for inset 20µm 

 





Figure 6.2 Immunocytochemistry of wildtype and NF-L-/- cortical neurons at 3 

DIV. To visualise individual neuronal characteristics, both wildtype and NF-L-/- 

dissociated neurons were grown as a monolayer on a poly-L-lysin substrate.  (A and 

B) DIC images demonstrated that (A) wildtype and (B) NF-L-/- cortical cultures 

adhered to the substrate and had extended neurites by 3 DIV, with no distinguishable 

differences between the two conditions.  (A and B inset) These neurites were tipped 

with characteristic growth cones. (C and D) Immunolabelling for the microtubules 

associated proteins tau (green) and MAP-2 (red), demonstrated that both (C) wildtype 

and (D) NF-L-/- neurons had developed polarised neurites, with clearly defined 

dendrites (red) and a single axon (green) at 3 DIV. Scale bar = 50µm, for inset 20µm 

 





Figure 6.3 Wildtype and NF-L-/- neurons’ expression of MAP-2 and Tau at 15 

DIV. The immunoreactivity profile of 15 DIV NF-L-/- neurons was compared to 

wildtype controls.  (A) Immunohistochemistry of the antibody direct at NF-L 

demonstrated that there was NF-L present in wildtype neurons throughout the cell 

bodies and processes.  (B) There was no immunoreactivity for NF-L and the NF-L-/- 

neurons. (C and D) Immunolabelling for the microtubules associated proteins Tau 

(green) and MAP-2 (red), demonstrated that by 15 DIV in both (C) wildtype and (D) 

NF-L-/- neurons tau abundant in axonal processes and MAP-2 (red) 

immunoreactivity was present throughout all dendrites. Scale bar = 40µm 

 





Figure 6.4 Immunolabelling of α-internexin and NF-M and 7 DIV in wildtype 

and NF-L-/- neurons.  The immunoreactivity profile of developing NF-L-/- neurons 

was compared to wildtype controls.  (A and B) Alpha internexin labelling at 7 DIV in 

(A) wildtype and (B) NF-L-/- neurons was predominately confined to neurite 

processes, with an increase in immunoreactivity for (B) NF-L-/- in comparison to (A) 

wildtype.  (C and D) NF-M labelling at 7 DIV in (C) wildtype and (D) NF-L-/- 

neurons was also confined to neurite processes, however immunoreactivity was 

decreased for NF-L-/-.  (E and F) Colocalisation investigations of α-internexin (red) 

and NF-M (green) in both (E) wildtype and (F) NF-L-/- neurons demonstrated that 

there were axons which were immunopositive for exclusively α-internexin (red) or 

NF-M (green) (arrows) as well as axons in which α-internexin and NF-M were co-

localised (arrowheads). Scale bar = A-D, 50µm, E&F, 20µm 

 





Figure 6.5 NF-M and α-internexin immunohistochemistry at 15 DIV in wildtype 

and NF-L-/- neurons. (A) Colocalisation investigations of α-internexin (red) and 

NF-M (green) in wildtype neurons at 15 DIV demonstrated that wildtype axons 

demonstrated a distinct expression of NF-M (green) or α-internexin (red) (arrows), 

with no colocalisation. (B) 15 DIV NF-L-/- axons demonstrate complete 

colocalisation of NF-M (green) and α-internexin (red)(arrowheads). (C) Immunoblot 

analysis of 15 DIV cortical neurons demonstrated that in comparison to wildtype, 

NF-L-/- neurons had a relatively decreased expression of NF-M (120 Kd) and 

increased expression of α-internexin (66kd). (D) Colocalisation 

immunohistochemistry within coronal brain sections, in the wildtype cortex also 

demonstrated that axons were immunopositive for exclusively α-internexin (red) or 

NF-M (green) within the neocortex (arrows).  (E) NF-L-/- axons within the neocortex 

demonstrated a colocalisation of α-internexin (red) and NF-M (green) (arrowheads).  

Scale bar = 20µm 

 





Figure 6.6 Immunohistochemistry of interneuronal markers within the wildtype 

and NF-L-/- neocortex. (A) Labelling for MAP-2 in the wildtype neocortex 

demonstrated widespread immunoreactivity throughout the cortical layers, with a 

marginal decrease in immunoreactivity corresponding to layer IV.  (B) There was 

also widespread immunoreactivity to MAP-2 within the NF-L-/- neocortex. (C and D) 

Immunolabelling for calretinin was throughout the cortical layers within both the (C) 

wildtype and (D) NF-L-/- neocortex, with an increase in density of calretinin positive 

cells corresponding to layer IV of the neocortex.  Furthermore, there was very little 

immunoreactivity within layer I in both (C) wildtype and (D) NF-L-/- neocortex.  (E 

and F) Parvalbumin expression was throughout the neocortex of (E) wildtype and (F) 

NF-L-/- mice, with a defined increase in immunoreactivity corresponding to layer V. 

Scale bar =100µm 

 





Figure 6.7 Immunohistochemistry of neurofilament markers within the wildtype 

and NF-L-/- neocortex.  (A) Immunohistochemistry on coronal sections 

demonstrated that SMI312 immunoreactivity was predominately confined to layer V 

and to a lesser extent layer III of the neocortex. (B) There was a reduced 

immunoreactivity for SMI312 within the NF-L-/- neocortex with no discernible 

cortical layers. (C and D) Additionally NF-M labelling was predominately confined 

to layers III and V within the (C) wildtype neocortex,  (D) with no laminar expression 

present within the NF-L-/- neocortex. (E) Alpha internexin immunoreactivity was 

predominately confined to layers III and V of the wildtype neocortex. (F) 

Immunoreactivity for α-internexin was increased within the NF-L-/- neocortex 

compared to wildtype however the cortical layers were not distinguishable.  

Scale bar =100µm 

 





Figure 6.8 NDel1 immunoreactivity in mature NF-L-/- neurons and 

coimmunoprecipitation with α-internexin.  (A-D) Immunolabelling with an 

antibody direct at NDel1 demonstrated immunoreactivity both in vitro and in vivo, in 

mature NF-L-/- neurons.  (A and B) NDel1 immunolabelling was present throughout 

cell bodies and axons at 15 DIV in both (A) wildtype and (B) NF-L-/- neurons.  (C 

and D) In vivo brain sections demonstrated immunoreactivity within axon segments 

in both (C) wildtype and (D) NF-L-/- brains. (E) An immunoblot of 

immunoprecipitation with the polyclonal α-internexin antibody demonstrated that 

NDel1 coimmunoprecipitated with α-internexin exclusively in NF-L-/- neurons at 15 

DIV.  Both wildtype and NF-L-/- neurons precipitated α-internexin when probed with 

a polyclonal α-internexin antibody (column 1 and 2 or the first row respectively).  

However, only the NF-L-/- sample precipitated with α-internexin 

coimmunoprecipitated NDel1 on an immunoblot (column 2 row 2).  Both control 

samples (no antibody control and a control resin, column 3 and 4 respectively) did no 

produce any detectable bands for either α-internexin or NDel1. Scale bar =50µm 

 





Figure 6.9 Time course of GFAP immunoreactivity following focal neocortical 

injury. (A and B) GFAP immunoreactivity within non-injured wildtype (A) and NF-

L-/- (B) neocortex demonstrated an increase in GFAP immunopositive astrocytes 

within the neocortex of NF-L-/- mice (arrows).   (C and D) At 4 DPI there was an 

increase in immunoreactivity for GFAP within the injury site in both (C) wildtype 

and (D) NF-L-/- neocortices. (E and F) By 7 DPI there was a localised increased 

expression of GFAP around the injury site within both (E) wildtype and (F) NF-L-/- 

neocortices.  (G and H, wildtype and NF-L-/- respectively) Immunoreactivity was 

confined to a discreet central core by 14 DPI, demonstrating that an astrocyte 

infiltrated glial scar had formed. Scale bar =100µm 

 





Figure 6.10 Immunofluorescent labeling a 4 DPI.  (A and B) 

Coimmunohistochemistry for GFAP (green) and a combination of SMI312 and 

SMI32 (red) demonstrated that fine sprout like structures were transversing the injury 

site at 4 DPI (arrows) in both the (A) wildtype and (B) NF-L-/- injury site. Scale bar 

=30µm 

 





Figure 6.11 Quantitation of the number and mean length of NF-L-/- sprouts 

within the injury site in vitro.  The sprouting response was investigated at 24 hrs 

post injury in relatively mature (15 DIV) neurons in vitro. (A) Tau labelling of 

wildtype neurons at 24 hrs PI demonstrated that fine sprouts were transversing the 

injury site, tipped with characteristic growth cones (arrows).  (B) Tau positive 

regenerative sprouts, tipped with growth cones (arrows), were also present within the 

injury site of NF-L-/- cortical neurons.  (C) There was no significant difference 

between the mean sprout lengths for NF-L-/- regenerating sprouts in comparison to 

wildtype control.  (D) However there was a significant reduction in the mean number 

of spouts, within each injury site, in NF-L-/ neurons in comparison to wildtype 

control. Scale bar =20µm 

 


	C.BlizzardThesis
	C.BlizzardFigures
	Figure 1.1
	Figure 1.2
	Figure 1.3
	Figure 1.4
	Figure 1.5
	Figure 1.6
	Figure 1.7
	Figure 3.1
	Figure 3.1 figure legend
	Figure 3.2
	Figure 3.2 figure legend
	Figure 3.3
	Figure 3.3 figure legend
	Figure 3.4
	Figure 3.4 figure legend
	Figure 3.5
	Figure 3.5 figure legend
	Figure 3.6
	Figure 3.6 figure legend
	Figure 4.1
	Figure 4.1 figure legend
	Figure 4.2
	Figure 4.2 figure legend
	Figure 4.3
	Figure 4.3 figure legend
	Figure 4.4
	Figure 4.4 figure legend
	Figure 4.5
	Figure 4.5 figure legend
	Figure 4.6
	Figure 4.6 figure legend
	Figure 4.7
	Figure 4.7 figure legend
	Figure 5.1
	Figure 5.1 figure legend
	Figure 5.2
	Figure 5.2 figure legend
	Figure 5.3
	Figure 5.3 figure legend
	Figure 5.4
	Figure 5.4 figure legend
	Figure 5.5
	Figure 5.5 figure legend
	Figure 5.6
	Figure 5.6 figure legend
	Figure 5.7
	Figure 5.7 figure legend
	Figure 5.8
	Figure 5.8 figure legend
	Figure 6.1
	Figure 6.1 figure legend
	Figure 6.2
	Figure 6.2 figure legend
	Figure 6.3
	Figure 6.3 figure legend
	Figure 6.4
	Figure 6.4 figure legend
	Figure 6.5
	Figure 6.5 figure legend
	Figure 6.6
	Figure 6.6 figure legend
	Figure 6.7
	Figure 6.7 figure legend
	Figure 6.8
	Figure 6.8 figure legend
	Figure 6.9
	Figure 6.9 figure legend
	Figure 6.10
	Figure 6.10 figure legend
	Figure 6.11
	Figure 6.11 figure legend


