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Abstract 
 
 
 
The cell pressure probe (CPP) is an apparatus used to measure membrane parameters 

of cells, namely the hydraulic conductivity which indicates the permeability of the 

membrane to water, the permeability coefficient which indicates the permeability of 

the membrane to solutes, and the reflection coefficient which indicates the extent to 

which water and solute transport across the membrane is coupled. This thesis is a 

numerical exploration of the impact of unstirred layers on the measurement of these 

parameters. Unstirred layers alter the effective concentration across the membrane, 

and hence influence the calculation of the membrane parameters which are usually 

obtained using the concentration value in the external bulk solution and assume a 

homogeneous internal cell solution. 

 

In CPP experiments, cell pressure dynamics are changed by imposing either: a) a 

hydrostatic perturbation, where cell sap is injected into or removed from the cell, or b) 

an osmotic perturbation, where permeable solutes are added to or removed from the 

external solution. Outputs are pressure-time curves which are termed relaxation 

curves.  

 

Much of the CPP data has been obtained for Chara, a large-celled algae. The model 

developed here will be applied to two sets of Chara data: one previously published, 

and one unpublished and obtained from collaborators who freely contributed their 

data to this study.  Data from two types of CPP experiments were used to estimate 

membrane parameters by fitting both the classical and unstirred layer (UL) models. 

These were: hydrostatic pressure pulse experiments, and osmotic pressure pulse 

experiments using permeable solutes. 

 

This thesis comprises five chapters. Chapter 1 provides an introduction to the research 

area, and gives an overview of the cell system, CPP experiments, and membrane 

transport theory. In Chapter 2 an analysis of predictions and limitations using the 

classical (i.e. usual) method of parameter estimation is made by applying it to 

published data. This classical model makes simple assumptions about the system, 
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allows analytical solutions to the membrane transport equations, and does not include 

unstirred layers. In Chapter 3, a model based upon the classical model but 

incorporating unstirred layers, is outlined and its behaviour and predictions examined. 

In Chapter 4, the unstirred layer model is applied to unpublished CPP data, its 

predictions compared with those from the classical model, and the overall predictions 

and behaviour of the unstirred layer model evaluated. Finally, in Chapter 5 an 

assessment of usual practices and assumptions made in the parameter estimation 

process using the CPP is carried out, and recommendations for future research are 

given. 

 

The UL model was found to reproduce the observed CPP data to a high degree of 

accuracy, and reproduced subtle details in the observed data better than the classical 

model. Estimated parameters from the two models differed significantly; the relative 

difference in the parameters with respect to the UL model was up to 50% for osmotic 

experiments and 5% for hydrostatic experiments. This shows that unstirred layers 

have a significant impact on estimated parameters, and that the membrane parameters 

commonly estimated using the classical model may be in error by up to 50%.  

 

Data from three Chara cells were fit in Chapter 4. Significant inter-cell variation in 

estimated parameters was found. Estimated parameters for experiments carried out 

within the same cell were quite consistent, indicating that the UL model is predicting 

the membrane parameters well since parameters are expected to characterise a cell 

and its membrane. The behaviour of the UL model was also consistent with 

expectations from the Kedem and Katchalsky theory for membrane transport, 

suggesting that the UL model affects the estimated membrane parameters but not the 

overall behaviour predicted by the membrane transport equations. 

 

Cell pressure dynamics were found to be very sensitive to the thickness of the 

unstirred layers in the system, so that estimated membrane parameters are dependent 

on knowledge of the UL thicknesses. In Chapter 4, the UL model was used to 

estimate the external UL thickness together with the membrane parameters, while the 

internal UL thickness was fixed at a value effectively equivalent to assuming the 

whole cell interior is a UL. The model estimated the external UL thickness to be in 

the range of 30-50 μm for fits to the unpublished data. Some variation in estimated 
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parameters between types of CPP experiments (e.g. hydrostatic or osmotic 

experiments; experiments with positive or negative pressure perturbations) were 

found, but the sample size was not sufficiently large for definite conclusions to be 

made. The UL model did not predict polarity in the membrane parameters (i.e. 

differences in parameters between positive and negative pressure perturbations). This 

suggests that evidence of polarity found in the parameters is likely due to effects of a 

composite membrane (e.g. presence of a tonoplast) or of dehydration of the 

membrane, and not due to the presence of ULs.  

 

Data were also available from osmotic experiments where bubbles were used to 

separate the new and old external solutions during the solution changeover. Fits to 

experiments where bubbles are present were found to be more straightforward and to 

give more accurate estimates of membrane parameters, as the time for solution 

exchange was significantly shortened. Where bubbles were not present, the time for 

solution exchange could not be as effectively incorporated into the model due to lack 

of experimental data regarding the duration and shape of the solution changeover. 

 

Results clearly showed that some common assumptions regarding the effects of ULs 

on CPP experiments are incorrect. External ULs are often assumed to primarily 

influence only the first few seconds of the relaxation curve, but the UL model shows 

that internal and external ULs influence the cell dynamics throughout the entire 

course of a CPP experiment. Furthermore, the extent of the influence on ULs on CPP 

data can only be quantified numerically. Previous attempts at using solutions to 

steady-state diffusion equations, or using steady-state equations relating permeability 

across the membrane to permeability in the ULs to predict the impact of ULs on 

estimated membrane parameters, are shown to be inaccurate. Published estimates of 

membrane parameters for Chara are deemed to be in error, because even where 

effects of ULs have been claimed to be taken into account, this has not been done 

numerically. In addition, it is shown that relaxation curves can be fit using the 

classical model (which does not incorporate ULs) despite the presence of unstirred 

layers, because ULs do not change the fundamental shape of the relaxation curves, 

and therefore the true effects of ULs are hidden.  
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It is recommended that the classical model no longer be used for parameter 

estimation, and a more realistic model incorporating ULs be applied. This will lead to 

a more accurate estimation of membrane parameters. The model developed in this 

thesis, by taking into account effects of unstirred layers, can help to resolve the extent 

to which ULs impact on estimated membrane parameters, and also the extent to which 

ULs influence parameter variation among different types of experiments or 

experimental conditions. Currently, further experimental data is necessary for a wider 

application of the UL model and fuller assessment of its predictions. The UL model 

may also be extended in the future for application to more complicated systems such 

as root tissues. 
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1 Introduction 
 
 

1.1 Background to membrane transport parameters 
 

Understanding cell membrane transport properties is central to our understanding of 

water and pressure dynamics in cells and entire organisms. Physical properties of cell 

membranes and walls can be described by parameters such as hydraulic conductivity and 

solute permeability, which describe the extent to which water and solutes permeate the 

cell membrane. These parameters govern the passive transport of water and solutes into 

and out of cells, and thus control changes in cell pressure and volume. Solutes also cross 

membranes via active transport of ions, however active transport is beyond the scope of 

this study. 

 

Determining and characterising membrane transport parameters, and understanding what 

factors affect and influence them, aids in our understanding of how cells regulate the 

transport of water and solutes into and out of their system, and how these dynamics may 

be affected by changes in their environment. Understanding how a plant or animal cell 

grows and interacts with its surroundings is fundamental to our understanding of biology 

and all living organisms. 

 

An accurate measurement of membrane transport parameters has, however, proven 

difficult. Most of this research in plant cells has been carried out on Chara, a large-celled 

pond water algae with typical length 30-130 mm and diameter 0.7-1 mm (Hertel and 

Steudle, 1997). Membrane parameters in giant algal cells were originally determined 

using intracellular perfusion and transcellular osmosis techniques, which were developed 

in the 1950’s (Zimmermann and Steudle, 1978). Today, most current techniques for 

measuring cell pressure and volume are either pressure relaxation or pressure clamp 

methods (Ortega, 1993). In the former the volume is held constant while the cell pressure 

change is measured, in the latter the pressure is held constant while changes in cell 

volume are measured. Pressure relaxation experiments yield a plot of pressure with time, 
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while the pressure clamp yields a plot of sap volume in the pipette with time (Murphy 

and Smith, 1998).  

 

The cell pressure probe (CPP) is an instrument designed to measure hydrostatic pressure 

(turgor pressure) in cells. It uses a pressure relaxation technique which was developed in 

the 1970’s to determine membrane transport parameters (hydraulic conductivity, solute 

permeability, and reflection coefficient) and elasticities of plant cell walls (Steudle and 

Zimmermann, 1974; Hüsken et al. 1978; Steudle and Tyerman, 1983; Steudle et al. 1987; 

Steudle, 1993; Henzler and Steudle, 1995; Ye et al. 2004). A related technique, the root 

pressure probe, performs similar experiments on roots and the methods of parameter 

estimation are also similar to that for the CPP (Steudle, 1994; Steudle, 1993).  

 

The CPP is a widely used technique. However, unstirred layers (ULs) adjacent to the cell 

wall or membrane have not adequately been taken into account in CPP analyses. The 

importance of ULs on membrane transport have been well documented (Dainty, 1963; 

Barry and Diamond, 1984; Kargol, 2000). Consideration of the impact of ULs on 

membrane parameters in CPP experiments has been more qualitative than quantitative, 

and calculations have largely been performed by applying transport equations on the 

basis that the effects of ULs can be considered negligible (Heidecker et al. 2003). 

Therefore, membrane parameters estimated by the CPP may, in fact, not reflect the true 

membrane parameters of the cells. 

 

Variations in measured membrane parameter values may be due to changes in the system 

outside the membrane (e.g. effects of ULs, and external concentration levels), changes in 

the system inside the membrane (effects of ULs, or more than one membrane in the cell 

affecting the pressure dynamics), or changes in the physical properties of the membrane 

caused by water and solute flow interaction (Zimmermann and Steudle, 1978; Kiyosawa 

and Tazawa, 1973; Dainty and Ginzburg, 1964a). Most of these changes are not directly 

observable by the CPP, and without proper quantitative analysis reasons for observed 

parameter behaviour and identification of the variables affecting parameter estimation 

can only be inferred. 
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The determination of membrane parameters with the CPP is based on a conceptual two-

compartment model of the cell, which shall be referred to here as the ‘classical model’ 

(Wendler and Zimmermann, 1985a). This views the system as a single membrane 

separating two compartments, namely the inner and outer regions of the cell. These 

compartments are sharply defined by the membrane, and are assumed to be homogeneous 

with uniform solute concentrations, so that a step change in concentration occurs across 

the membrane. In many plants cells, however, the vacuole occupies a large portion of the 

interior so that the cell contains two membranes: the plasmalemma and the tonoplast, and 

three compartments: the external region, the cytoplasm, and the vacuole. The 

compartments are not homogeneous since ULs are present. The anatomy of a simple cell, 

such as is exhibited in Chara, is illustrated in Fig. 1.1. 

 

ig. 1.1  Diagram of a simple cell, showing cell wall, plasmalemma (plasma membrane), cytoplasm, 

uantitative analysis of CPP experiments based on the classical model uses analytical 

s. 

 

F
tonoplast and vacuole (Molz and Ferrier, 1982). 

 
 

Q

solutions of the transport equations to estimate the membrane parameters. It is argued 

here that these analyses are limited by those assumptions in the model required for the 

development of analytical solutions, and especially the assumption that there are no UL

Further knowledge can be gained by using process-based numerical models which 

implement differential equations to explore more complex conceptual models of the
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system. To my knowledge no process-based numerical work on the classical model and 

CPP experiments has been done, prior to Tyree et al. (2005). The aim of this study is to 

develop a more realistic numerical model than the classical model, where the model 

developed here has non-homogeneous compartments, with ULs adjacent to the 

membrane. The well-known Kedem-Katchalsky (KK) equations for membrane transport 

(Kedem and Katchalsky, 1963a,b,c; Katchalsky and Curran, 1967) on which current CPP 

experimental analyses are based, and diffusional processes in the ULs, will be the 

foundation for this model. This model will be used to examine the validity of the classical 

model, by fitting real data with both models and comparing estimated parameters 

between the two models.  

 

A numerical study of measurements from a CPP experiment and the impact of ULs on 

these is timely in light of the renewed interest in aquaporin (water channel) research, and 

research into pathways of water and solute movement. Inhibition of water channel 

activity and the resulting changes in the membrane parameters in the presence of certain 

solutes have shown that some solutes pass through water channels and that water 

channels are less selective than previously thought (Henzler and Steudle, 1995; Hertel 

and Steudle, 1997; Ye et al. 2004). Experimental conclusions and the accuracy with 

which parameter measurements reflect membrane pathways depend on understanding 

those factors that may affect parameter measurements. For example, ULs may contribute 

to low values for the reflection and permeability coefficients (Henzler and Steudle, 1995; 

Henzler and Steudle, 2000). Hertel and Steudle (1997) and Henzler and Steudle (2000) 

have considered various possible effects of ULs on their measurements and claimed that 

the effects of ULs should not be significant. However, Hertel and Steudle (1997) 

admitted that for conclusive results more precise parameter measurements are required 

and the effects of ULs should be eliminated, which they added is difficult to carry out 

experimentally. Numerical models that explore the effects of ULs more fully, therefore, 

can be an important aid in the interpretation of these experimental results.  
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Application of the model in this thesis will be limited to data from CPP experiments on 

Chara. Chara data is readily available, and the focus of the thesis is on development of 

the model rather than the model’s general application.  

 

However, the model developed in this thesis could be applied to experimental data from 

other membrane systems to examine the impact of unstirred layers. For example, in 

stopped flow spectrofluorimetry experiments on wheat root membrane vesicles, carried 

out to examine the role and function of aquaporins (e.g. Niemietz and Tyerman, 1997), 

effects of unstirred layers on the estimated parameters are predicted to be small. The 

model in this thesis could be applied to these data to aid in the examination of the effects 

of unstirred layers.  

 

The model in this thesis could also be applied to experiments which have tried to estimate 

the relative permeabilities of the tonoplast and the plasma membrane. Niemietz and 

Tyerman (1997) measured the hydraulic conductivity of isolated membrane vesicles with 

and without a plasma membrane, and found that the water permeability of the tonoplast 

was higher than that of the plasma membrane. Zhang and Tyerman (1999) applied the 

CPP to intact wheat root cells, and modelled pressure changes using the coupled 

differential equations by Wendler and Zimmermann (1985) for a double membrane 

(three-compartment) system. In contrast to Niemietz and Tyerman (1997), they found 

that the water flow was dominated mostly by flow across the plasma membrane. 

Application of the model in this thesis to these data could aid in the interpretation of these 

results, as the CPP experiments are more likely to be affected by unstirred layers. 

1.2 Cell Pressure Probe Experiments 
 

The CPP measures the change in cell turgor pressure over time following a perturbation 

of the cell from an equilibrium state. Turgor pressure is easily measured and is one of the 

variables that describe the state of a cell. Cell volume also changes with pressure, but by 

less than 1% of the total cell volume during a typical experiment, as the cell wall is fairly 

rigid (Henzler and Steudle, 2000).  
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The CPP (Fig. 1.2) comprises a pressure chamber, at one end of which is a micrometer 

device attached to a metal rod to adjust pressure in the chamber, and at the other a 

micropipette which inserts into the cell. The pressure chamber and micropipette contain 

silicon oil, which transmits cell pressure to the pressure transducer in the middle of the 

chamber. The transducer consists of a membrane containing a wheatstone bridge which, 

when the membrane is distorted, converts pressure into a voltage. The cell sits in a 

separate chamber containing artificial pond water (APW, a nutrient solution comprised of 

a mixture of impermeant solutes with an osmotic pressure of about 0.01 MPa) (Hüsken et 

al. 1978; Steudle, 1993). 

 

 

 
 
Fig. 1.2  The cell pressure probe (E. Steudle’s webpage). 

 
 
During an experiment the micropipette is pushed into the cell. This causes sap to escape 

from the cell into the micropipette, from which it is assumed that the tip of the pressure 

probe is located in the vacuole of the cell (Zhang and Tyerman, 1999). Since the silicon 

oil is immiscible with water a meniscus forms between the cell sap and the oil. The 

bathing solution (APW) is kept flowing at a constant rate around the cell, and a constant 

temperature is usually maintained throughout the experimental procedure.  

 

The experimental procedure is slightly different for small and large cells. Since a slight 

compressibility of the chamber exists, which is mostly due to the rubber seals and partly 
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due to the silicon oil, changes in the volume and pressure of small cells are not sufficient 

to register a pressure in the transducer. Therefore, when measuring pressure changes in 

small cells, the position of the meniscus is kept fixed during the course of an experiment, 

and the volume of the chamber changed by adjusting the metal rod via a compensation 

method. For a large cell, such as Chara, the meniscus does not need to be fixed (Hüsken 

et al. 1978; Steudle, 1993; Tomos, 2000). 

 

Two kinds of experiments (perturbations) are performed with the CPP. In a hydrostatic 

pressure pulse (HPP) experiment cell sap is injected into (a positive pulse) or removed 

from the cell (a negative pulse) via the micropipette. When the probe is first pushed into 

the cell some sap escapes into the probe, and so a positive HPP experiment is first 

performed, followed by a negative HPP experiment, and so on with positive and negative 

pulses alternating. In an osmotic pressure pulse (OPP) experiment the external 

concentration is changed via a rapid changeover of bathing solution, where a test solute 

has been added to (a positive pulse) or omitted from (a negative pulse) the new solution. 

Only one test solute is used at a time. Positive and negative OPP experiments are usually 

carried out alternately.  

 

The changeover of bathing solution in an OPP experiment does not occur 

instantaneously, and it takes a few seconds for the external concentration to reach the 

maximum perturbation level. The external concentration is said to “ramp up” (or “ramp 

down”). A more rapid changeover can be made by inserting an air bubble between the 

solutions, which will be described in more detail in Chapter 4. In the experiments of 

Henzler et al. (2004), whose data is modelled in Chapters 2 and 3, no bubbles were used 

intentionally during the solution changeover but occasionally bubbles were accidentally 

present (Tyree, pers. comm.; Henzler, pers. comm.). 

 

Different solutes with varying permeabilities have been used in CPP experiments. 

However, those using very slow permeating solutes are less common. Full details of the 

CPP technique can be found in Hüsken et al. (1978), Steudle and Tyerman (1983), and 

Steudle (1993). 
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Outputs from the CPP are plots of pressure over time (P-t curves), termed pressure 

relaxations, for they chart the behaviour of the cell’s return to equilibrium pressure after a 

perturbation. For both an HPP and for osmotic flows with impermeant solutes, the 

pressure relaxation is an exponential increase or decrease to a new equilibrium (Fig. 

1.3a). The rate of return to equilibrium is described by the halftime, which is inversely 

proportional to the slope of a suitably log-transformed curve. In theory, the P-t curve is 

exponential such that a semilog plot of the P-t curve will give a straight line, however in 

reality only part of the curve is exponential and only a portion of the curve is log-

transformed (see §2.5.1a). Since some cell sap is added to or removed from the cell, the 

osmotic pressure and concentration in the cell changes only very slightly following 

perturbation, but the number of mol of solute changes more. Therefore the final 

equilibrium pressure will be slightly different from the initial pressure. 

 

For an OPP with permeant solutes, the pressure-time curves are biphasic (Fig. 1.3b). 

Following perturbation a rapid water flow across the membrane occurs in the ‘water 

phase’ bringing the pressure to a maximum or minimum, and thereafter a slow return to 

equilibrium occurs due to both solute and water crossing the membrane in the ‘solute 

phase’. Two halftimes, that of the water and solute phases, are associated with osmotic 

flows. In theory, the equilibrium pressure should be equal to the initial pressure, however 

experimentally this is often not the case. Although one expects that after a positive-

negative set of experiments the pressure should also return to its equilibrium value at the 

start of the set, this is also not always observed.  

 
The halftimes are determined from the relaxation curves, and from these the membrane 

transport parameters are obtained. 

 
Prior to applying pressure pulses, a separate set of experiments are also carried out to 

determine the bulk elastic modulus ε of the cell wall, which controls how volume of the 

cell changes with cell pressure. The parameter ε is directly measurable, in contrast to the 

membrane parameters, and is required for the determination of these. To measure ε, a few 

pressure change steps are made in the cell in both positive and negative directions, and 
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covering the expected range of pressure change in the pressure pulse experiments (Fig. 

1.4). This is done by moving the metal rod (Fig. 1.2) by various increments. From the 

size of each increment and the rod diameter, the corresponding volume change ΔVrod in 

the pressure chamber can be inferred.  

 

The associated pressure changes of the system (recorded by the pressure transducer) are 

plotted as a P-V graph. The slope of the P-V curve changes with pressure, however as ε is 

determined using small pressure intervals locally the P-V curve tends to be linear 

(Steudle et al. 1977). The slope of this line gives ε according to the formula 

0/ rodP V V/εΔ Δ =  (where V0 is the volume of the cell at equilibrium). If ΔVrod  is the 

volume change of the pressure chamber, ε combines the elasticity of the cell wall and that 

of the CPP rubber seals. However, if ΔVrod is the volume swept out by the meniscus 

during the measurement of ε then ε is that of the cell wall.  

 

In addition to exhibiting a pressure-dependence, ε has been shown to exhibit hysteresis 

such that the value of ε may differ depending on whether the cell is swelling or shrinking, 

when measured over the same range of cell osmotic pressure. The cell wall has also been 

shown to exhibit viscoelastic properties, where the value of ε is not constant over time 

and the measured value due to an ‘instantaneous’ volume change (as measured by the 

CPP) is larger than the ‘stationary’ value measured following relaxation in the cell. The 

instantaneous value of ε also depends on the time it takes for the pressure and volume 

change to be induced (Zimmermann and Hüsken, 1979; Tyerman, 1982).  

 

Electrical noise in the CPP limits the accuracy of pressure measurements for all 

experiments to around ± 0.0005 MPa (Tyree, unpublished data). The hydraulic 

conductivity of the probe tip, which is usually high, is temperature dependent due to the 

dependence of water viscosity on temperature, and the electrical noise can often be 

related to a lower than ideal conductivity of the probe tip. Some operator error due to 

vibrations during insertion of the micropipette would also be present, and may cause 

leaking around the probe tip. However, Zimmermann and Hüsken (1979) found that the 
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cell forms an effective seal around the tip of the pipette and there is no loss of cell 

pressure due to leakage during a typically successful experiment. They also found no 

dependence of Lp and ε measurements on the size of the cell puncture.  

 
 

CPP experiments (raw data)
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Fig. 1.3  Relaxation curves for (a) a HPP experiment showing halftimes τw, and (b) a OPP experiment with 
permeant solute ethanol showing halftimes τw for the water phase and τs for the solute phase. Arrows 
indicate approximate points where a perturbation (a HPP or OPP) is made. Data from Tyree (unpublished).  
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Fig. 1.4  Experimental curves for determining membrane elasticity. In this experiment 4 pressure change 
steps are taken in each direction. Data from Tyree (unpublished).  

 
 

1.3 Membrane transport theory 
 

1.3.1 The KK equations 
 

Three main quantities can be used to describe the pressure and water dynamics in a cell: 

the cell turgor pressure, internal cell volume, and quantity of solutes in the cell. Turgor 

pressure refers to the hydrostatic pressure difference between the inside and outside of 

the cell (Zimmermann and Steudle, 1978), and is due to a balance between hydrostatic 

and osmotic pressure gradients. Flows across the cell membrane can be described by the 

volume flow (made up of water and some solute flow, and otherwise known as ‘bulk’ 

flow), and the solute flow. These flows have been expressed as a pair of coupled 

differential equations known as the Kedem-Katchalsky or KK equations (Kedem and 

Katchalsky, 1963). The behaviour of these equations are governed by 3 main membrane 

parameters, namely: the hydraulic conductivity Lp, reflection coefficient σ , and solute 

permeability ps. An additional parameter, the elastic modulus ε, also governs cell wall 

extensibility. These are discussed further below.  
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The KK equations describe water and solute flows for a system of two aqueous solutions 

separated by a homogeneous membrane. They have been one of the main tools in the 

study of transport across biological and artificial membranes (Kargol, 2001). For passive 

(non-electrolyte) transport, where the solutions contain impermeant solutes and a single 

permeating uncharged solute, the KK equations for the volume flux density Jv (m s-1) and 

solute flux density Js (mol m-2 s-1) are (Dainty, 1963; Kedem and Katchalsky, 1963; 

Katchalsky and Curran, 1967): 

 

1 (V P i
dVJ L P

A dt
)sπ σ π= − = Δ − Δ − Δ       (1.1) 

1 (1 )s
ss V s

dnJ C J
A dt

σ= − = − + Δ sp C ,      (1.2) 

 
where ns = amount of a particular permeant solute in the cell (mol), V = cell volume (m3), 

A = cell surface area (m2), t = time (s), P = hydrostatic pressure (MPa), π = osmotic 

pressure (MPa) , Cs = solute concentration (mol m-3), sC = mean solute concentration 

across the membrane (mol m-3), Lp = hydraulic conductivity (m s-1 MPa-1), σ = reflection 

coefficient for a particular solute (dimensionless), ps = solute permeability (m s-1), and Δ 

= difference across the membrane. Fluxes are defined as positive for flows out of the cell.  

The subscripts ‘i’ and ‘s’ indicate for an impermeant and permeant solute respectively. 

The equations assume isothermal conditions. 

 

The KK equations describe a linear relationship between forces and flows across a 

membrane. They describe 4 processes: filtration (Lp ΔP) and osmosis (Lp σ Δπ) in Eq. 

(1.1), and convection (1 ) s VC Jσ− and passive diffusion (ps ΔCs) in Eq. (1.2) (Kargol and 

Kargol, 2003). These processes are due to the simultaneous action of pressure and 

osmotic gradients (forces), and the 3 membrane parameters (i.e. Lp, ps, σ) govern the 

behaviour of the volume and solute fluxes (flows) in response to these gradients. It is 

assumed that the membrane parameters are independent of the driving forces.  
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The hydraulic conductivity Lp and solute permeability ps denote how permeable the 

membrane is to water and solutes respectively. The reflection coefficient σ describes the 

extent to which permeable solute flow is coupled to bulk water flow, and how much the 

permeant solutes contribute to the osmotic pressure difference Δπ. The convection term is 

also known as the solvent drag term, because solutes are dragged along with water flow 

arising from friction between the two. The case σ=1 for a particular solute indicates that 

the solute cannot significantly permeate the membrane or at most at a rate several orders 

of magnitude less than water (i.e. the solute is effectively impermeant), and that the 

solute contributes maximally to osmotic pressure and there is no water-solute coupling. 

The case σ=0 for a particular solute indicates the solute permeates the membrane as 

efficiently as water, does not contribute to osmotic pressure, and there is complete water-

solute coupling. The solvent drag is usually small, comprising about 2% of total solute 

flow (Henzler and Steudle, 2000). The value of σ can also be negative, e.g. when solutes 

are more permeant than water across cell membranes.  

 

Although the membrane parameters are measured independently, experimental data 

suggests there is some correlation between them.  For example, a higher (lower) ps tends 

to be related to a lower (higher) σ (Kargol and Kargol, 2000). This is also predicted to be 

correlated with a lower (higher) Lp by the so-called frictional pore theory (Henzler and 

Steudle, 1995). 

 

 All three membrane parameters are membrane-specific, and values of σ and ps are also 

solute-specific. A detailed interpretation of the KK equations can be found in Kedem and 

Katchalsky (1961), Kargol and Kargol (2000), and Kargol and Kargol (2003).   

 

1.3.2 Non-ideal behaviour of membrane parameters 
 

Application of the KK equations assumes the membrane is ideal, in the sense that the 

membrane parameters are constant, independent of the driving forces such as pressure 

and concentration changes, and independent of temperature. However, in reality 

membranes are not ideal.  
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Measured values of the membrane parameters change a little with temperature (Barry and 

Diamond, 1984; Hertel and Steudle, 1997). Attempts are usually made to maintain the 

CPP apparatus at a constant temperature, and in this study the temperature of the CPP is 

assumed to be uniform and constant.  

 

Significant changes in Lp with P have been found for low pressures (P < 0.2MPa; 

Zimmermann and Hüsken, 1979; Steudle and Zimmermann, 1974). This should not be an 

issue here since cell pressures in CPP experiments do not drop below 0.2MPa. 

Experiments have also found a slight dependence of membrane parameters on pressure 

and concentration (and hence osmotic pressure) in higher pressure ranges (Dainty and 

Ginzburg, 1964a,b; Steudle and Zimmermann, 1974; Zimmermann and Steudle, 

1974a,b). However, this should also not impact greatly on the estimated parameters here 

since the osmotic driving force is the same for each experiment, and hydrostatic pressure 

perturbations involve small pressure changes. A theoretical study of how estimated 

parameters may be influenced by changes in cell pressure and external concentration will 

be conducted in Chapter 3.  

 

The dependence of membrane parameters on pressure and concentration may also be due 

to the fact that we are in reality dealing with a composite membrane (Kedem and 

Katchalsky, 1963c). A composite membrane is where the membrane system comprises 

components in series (e.g. there is more than one membrane in the system) or in parallel 

(e.g. there is more than one pathway in the system). This will be discussed further in 

§2.1. 

1.3.3 Application of the KK equations 
 

The KK equations are based on the principles of ‘irreversible’ or ‘non-equilibrium’ 

thermodynamics. The system is described in terms of external macroscopic variables, and 

the equations do not depend on the microscopic structure or internal workings of the 

membrane (Zemansky and Dittman, 1981; Kargol et al. 2005). Direct use of the above 

equations is confined to two-compartment membrane systems, for flows of solutions 
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which are sufficiently diluted and well-stirred, and close to steady state (Katchalsky and 

Curran, 1967; Kargol and Kargol, 2003).  

 

The KK equations, however, have been adapted and applied to a wide range of membrane 

transport problems. They have been applied to systems in non-steady state, for 

thermodynamic theory assumes ideal quasi-static processes where “the system is at all 

times infinitesimally near a state of thermodynamic equilibrium”, which does not mean 

the processes must necessarily be in steady state (Zemansky and Dittman, 1981). The 

equations have been adapted and generalised for systems where unstirred layers are 

considered to be additional compartments (Kargol, 2000). 

 

More interestingly, the equations have been applied to porous membranes, for although 

the KK equations treat the membrane as a black box, the transport coefficients can 

nevertheless provide information about the membrane porous structure (Kargol, 2001; 

Kargol et al. 2005). In the formulation by Kargol et al. (2005), JV is the volume flow per 

unit effective area of the pores, Lp depends on the ratio of the membrane surface area to 

the total effective area of the pores, σ is related to the ratio of the total cross-sectional 

area of the semi-permeable pores (for which σ=1, i.e. permeable only to water) to the 

total cross-sectional area of the permeable pores (for which σ=0), and ps is expressed in 

terms of Lp and σ. Lipid-pore models involving frictional coefficients between solutes 

and water in the pores have also been developed (Kedem and Katchalsky, 1961; Dainty 

and Ginzburg, 1963). 

 

1.4 Aims and motivation  
 

The principal aims of this study are to develop a more realistic model of membrane 

transport which incorporates ULs, and use this model to examine the classical model and 

its associated method for estimating membrane parameters. The study is based on 

numerical models developed from established membrane transport theory. This theory 

also forms the backbone of the classical CPP model and experimental analyses. Raw data 
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provided by experimentalists, as well as data taken from the literature, are used for 

analysing the models. 

 

In this study, models of water and solute transport into and out of a Chara cell are 

formulated as coupled differential equations, and solved numerically using Matlab 

(Version 7, MathWorks, Inc.). Model behaviour is explored, including the relative effects 

of internal and external ULs, and different UL thicknesses, on cell water relations and 

parameter calculations. Model predictions are also analysed, in particular how well the 

models fit the data, and what they estimate the membrane parameters to be. Model 

behaviours, predictions, and limitations are compared, in particular to assess the 

adequacy of current CPP methods to draw conclusive statements about membrane 

parameters when ULs may be present.  

 

Motivation for this study includes the following questions: Does a more comprehensive 

model give a better fit to data than the classical model? What are the implications for 

current methods of parameter determination and experimental analyses based on the 

classical model? Are there alternative methods of parameter estimation?  

 

In Chapter 2, the classical model is described and applied to data using an analytical 

solution for the pressure relaxation, and its behaviour and predictions are analysed. 

Chapter 3 gives the theory of and background to ULs, reviews previous numerical models 

with and without ULs, describes the new model developed in this study and outlines its 

numerical implementation, applies the new model to data, and compares its behaviour 

and predictions to that of the classical model. Chapter 4 builds on Chapter 3 by applying 

the UL model to recently obtained data by Prof. Mel Tyree and Dr. Helen Bramley at 

Adelaide University. The applicaton and analysis take into consideration sampling error, 

and include further information regarding the time of impact of the pressure perturbation. 

Chapter 5 concludes the findings of this study, discusses the implications of these on 

parameter estimation using the CPP and the conduct of CPP experiments, and gives 

various recommendations for further research. 
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2 Classical model 
 

2.1 Scope and assumptions of the model 
 

2.1.1 Assumption of single membrane  
 

The Classical two-compartment cell model outlined in §1.1, with a single membrane, is 

the simplest possible model for a cell. The advantage of this simple conception is that it 

allows transport equations to be easily applied to the membrane, and since these 

equations are based on thermodynamic processes the internal structure of the membrane 

can be ignored. However, the cell is actually a “composite membrane”, that is a system 

comprised of an array of membranes either in series or parallel (Kedem and Katchalsky, 

1963b,c). The two membranes in series are the tonoplast surrounding the vacuole, and the 

plasmalemma at the cell wall (see Fig 1.1). With the exception of the studies by Wendler 

and Zimmermann (1985a,b), Niemietz and Tyerman (1997) and Zhang and Tyerman 

(1999), quantitative effects of the tonoplast and plasmalemma on CPP experiments seem 

to have largely been ignored, and the classical model makes no provision for composite 

membrane effects. 

 

Within the framework of the Classical model, the tonoplast and plasmalemma are treated 

as a single membrane, and the measured parameters can be regarded as those of the 

combined membranes (Heidecker et al. 2003). However, a problem with this 

interpretation is that the KK equations would be applying across both membranes, 

implying there must be a pressure difference across both membranes which is not 

possible, since a hydrostatic pressure difference cannot occur across the tonoplast 

(Wendler and Zimmermann, 1985a). This is due to the fact that a membrane has no 

mechanical strength, the pressure difference across the plasmalemma being due to the 

presence of the cell wall, which supports the plasmalemma which is pushed against it 

during nonzero turgor pressures. The two-compartment model, then, can only work if the 
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tonoplast has very little effect on the pressure dynamics observed by the CPP, i.e. if it has 

a low resistance and high permeability to water and solute flow (ibid. 1985a). 

 

Properties of the tonoplast, however, have been difficult to determine. Kiyosawa and 

Tazawa (1973) removed the tonoplast of Chara cells, and concluded that the tonoplast is 

much more permeable to water than the plasmalemma. This finding is supported by 

Niemietz and Tyerman (1997) and Henzler and Steudle (2000). However, Wendler and 

Zimmermann’s (1985a,b) theoretical study of the effects of the tonoplast on CPP 

experiments found that the relative hydraulic conductivities of the tonoplast and 

plasmalemma differed depending on the pressure range, and concluded that the tonoplast 

Lp is not large enough that its influence on relaxation curves can be neglected. Generally, 

parameter estimation methods in CPP experiments (with the exception of Zhang and 

Tyerman, 1999) do not explicitly take effects of the tonoplast into account, but simply 

neglect the influence of the tonoplast on the hydraulic conductivity and account for only 

the plasmalemma component in the analysis. 

 

Other regions in the cell are not considered significant sites of resistance. Although the 

cell wall in large algal cells is also a barrier to water and solute movement, studies 

indicate that it has a higher hydraulic conductivity than the plasmalemma (Kiyosawa and 

Tazawa, 1977). Since the two components can’t be separated experimentally, measured 

properties of the plasmalemma may be considered properties of the plasmalemma/ cell 

wall complex (Wendler and Zimmermann, 1985b). The cytoplasm, a solution of salts, 

carbohydrates and proteins, has an osmotic concentration of about 250mM, and a 

relatively high hydraulic conductivity (Wendler and Zimmermann, 1985a; Raven et al., 

1992; Tyree, pers. comm.). It moves slowly around the cell at a rate of about 4cm/hour 

(Tyree et al. 1974) in “cytoplasmic streaming”. The vacuole typically occupies about 

90% of the cell volume in a mature cell and contains a solution of the same osmolality as 

the cytoplasm (since the tonoplast cannot support a pressure difference), but is richer in 

salts and poorer in organic solutes (Raven et al. 1992).  
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Although the numerical model developed in this thesis is limited to a two-compartment 

model based on the Chara cell, this conceptual model is relevant to other cell systems 

and the numerical model can certainly be applied to other cell systems (see §1.1). 

 

2.1.2 Other assumptions  
 

The Chara cell is assumed to exhibit cylindrical symmetry, and the flow across the 

membrane to be in the radial direction only. The cell is assumed to contain impermeant 

(i.e. non-permeating) solutes only (Tyerman and Steudle, 1982). Although a cell contains 

both permeant and impermeant solutes (solutes are continually being exchanged with the 

environment), the permeability of test solutes are usually much higher than those of the 

natural internal cell solutes so that these can be considered effectively impermeant. 

Artificial pond water (APW) outside the cell is assumed to have a pressure equal to 

atmospheric pressure. The volume external to the cell is considered to be of infinite size 

in relation to the cell volume, and so for all intents and purposes the external region is 

unchanging. The solute concentrations on either side of the membrane are assumed to be 

uniform with space, and unstirred layers and influence of the expanding/ contracting 

membrane on adjacent solute concentrations are assumed to be absent. The temperature 

of the whole system is assumed to be uniform and constant.  

 

The cell is assumed to be at equilibrium (i.e. Jv = 0, Js = 0) for t<t0. At t= t0 a hydrostatic 

or osmotic perturbation to the system is made. The perturbations are assumed to impact 

on the cell instantaneously. 

 

2.2  Transport equations and their solution 
 
2.2.1 Transport equations 
 

The KK equations Eqs. (1.1) & (1.2) can be written in the more detailed form (assuming 

the external solution is at atmospheric pressure): 
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1 [ ( ) (V P g i ie g s
dVJ L P R T C C R T C C )]seA dt

σ= − = − − − −     (2.1) 

1 (1 ) ( )s
ss V s s se

dn
J C J p

A dt
σ= − = − + −C C ,      (2.2)  

  

where the subscripts ‘i’ denote impermeant solutes, ‘s’ permeant solutes, and ‘e’ external 

to the cell (Steudle and Tyerman, 1983). Eq. (2.1) uses the Van’t Hoff equation for ideal 

dilute solutions (Katchalsky and Curran, 1967): 

 
π = qCRgT ,          (2.3) 

 
where π = osmotic pressure, Rg = universal gas constant (8.3144 x 10-6 m3 MPa mol-1 K-

1), T = temperature (K), and q = sum of cation and anion valencies of a completely 

dissociated salt (Dalton et al., 1975), which is assumed to behave ideally. For non-

electrolytes (which we are assuming here) q = 1. Note also that C = n/V, where n is the 

molar quantity of solutes in the cell. 

 

For a full description of passive membrane transport, further expressions for π and P (the 

internal hydrostatic or turgor pressure of the cell) are required. The number of mol of 

impermeant solutes inside the cell remain a constant so that: 

 
0 0i

i
V

V
ππ = .          (2.4) 

 
The rate of change of cell volume with respect to a change in turgor pressure P is 

described by the bulk elastic modulus ε (Dainty, 1963), given by: 

 
dP
dV V

ε
= .          (2.5) 

 
In Eq. (2.5) it is often assumed that V=V0, where V0  (m3) is a constant reference volume 

taken at equilibrium (Molz and Ferrier, 1982; Steudle and Tyerman, 1983). It has been 

found that the increase of ε with P is generally greater at low pressures of less than about 
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0.3MPa (Steudle et al. 1977), and greater for larger cells where the ε-P relation is 

typically hyperbolic (Zimmermann and Steudle, 1974b). For some smaller cells ε has 

been found to be constant over a large pressure range, and volume-dependent (ibid. 

1974b). Experiments on other small cells have found that the value of ε changes with 

pressure depending on the direction of the pressure change, and that the value of ε also 

changes over time (Zimmermann and Hüsken, 1979; Tyerman, 1982; see §1.2). However, 

the time-dependence of ε has largely been ignored in the water-relations literature. In 

CPP experiments, ε is usually assumed to be constant over the small pressure range used 

in the experiments (see §1.2), and assumed to be constant over time. 

 

Eqs. (2.1)–(2.5) enable the KK equations to be solved numerically and, under certain 

assumptions, analytically. It can be shown that the same equations apply irrespective of 

the presence or absence of impermeant solutes in the external solution.  

 

2.2.2 Analytical solution 
 

The KK equations have been solved analytically by Steudle and Tyerman (1983) and 

Steudle et al. (1987) to give the temporal variation of P. The analytical solution forms the 

basis of the classical method of parameter estimation. It is summarized here, but for full 

details refer to these papers. 

 
In the derivation of the analytical solution the following assumptions are made:  

 
• cell surface area, A, is a constant 

• cell volume, V, in Eq. (2.5) is a constant 

• elastic modulus, ε, is a constant 

• the convection term in Eq. (2.2) is negligible compared to the diffusion term 

• solute concentrations on either side of the membrane are uniform with space.  

 

The second assumption regarding V is not a necessary condition for the attainment of an 

analytical solution, however it is an assumption made in the analytical solution used by 

CPP experimenters. The assumptions will be examined in §2.7.2. 
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For the case of impermeant solutes only (in either a hydrostatic or osmotic experiment), 

the analytical solution is: 

 
0( )

1( ) wk t t
E EP P P P e− −= + −                (2.6) 

         

where PE = final equilibrium turgor pressure and P1 = turgor pressure at time of 

perturbation (when t=t0). As noted in §1.2, 0EP P≠ where P0 is the initial equilibrium 

turgor pressure.  kw is the rate constant given by: 

 
0

0
0

( )P
w i

A L
k

V
ε π= + ,                (2.7) 

 

where the subscript ‘0’ denotes an initial equilibrium value. The halftime τw is related to 

kw by: 

 
ln 2

w
wk

τ = .                  (2.8) 

 
If permeant solutes are present (in an osmotic experiment), the analytical solution is a 

sum of two exponentials: 

 

00 ( ) ( )0 0

0 0

[
( )

w sp g se k t t k t t

w s

L A R T CV V P P e e
V V k k

0 ]
σ

ε
− − − −Δ− −

= = −
−

, (2.9) 

 
where P0 = initial equilibrium pressure (= pressure at time of perturbation), kw is the rate 

constant for the water phase, given by Eq. (2.7), and ks is the rate constant for the solute 

phase given by: 

 
0

0

s
s

p A
k

V
= .                 (2.10) 

 
The halftime τs is related to ks by: 
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ln 2
s

sk
τ = .                (2.11) 

 
 
Eq. (2.9) shows that as t , and ; that is the system returns to its initial 

equilibrium state. When permeant solutes are present the curve is biphasic, with the first 

term in Eq. (2.9) dominating in the water phase and the second dominating in the solute 

phase. If permeant solutes are not present then the relaxation curve is a single exponential 

with a halftime given by k

→ ∞ 0V V→ 0P P→

w. It is important to note that in Eqs. (2.6) & (2.9), kw and ks are 

always positive and the equations remain the same irrespective of the sign of the pressure 

perturbation. This is clear by the definition of kw and ks given above. According to the 

analytical solution, P-t curves due to similar positive and negative perturbations should 

be symmetrical about the line P = P0. 

 

2.3 Parameter estimation methods 
 

2.3.1 Characteristics of observed data 
 

Relaxation curves for HPP and OPP observed data are shown in Fig. 1.3. The curves 

begin at an initial equilibrium pressure, reach a maximum or minimum, and return to a 

final equilibrium pressure. The following values can thus be obtained from the observed 

data: the maximum or minimum point of the data (tm, Pm), and the initial and final 

equilibrium pressures P0 and PE. The halftimes τw and τs can also be obtained (by methods 

discussed in §2.3.2 and §2.3.3). These 4 sets of values partly characterise or describe the 

shape of the curve, and we may call them curve characteristics. 

 
Let (t0, P1) denote the time and pressure at perturbation for an HPP, and (t0, P0) denote 

the time and pressure at perturbation for an OPP. Relaxation curves for an HPP begin at 

the maximum or minimum of the data, for the model assumes the pressure perturbation 

occurs instantaneously. The curve characteristics of an HPP curve are therefore: {t0, P1, 

τw, PE,}. The curve characteristics of an OPP curve are: {t0, P0, tm, Pm, τw, τs, PE}. 
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Values of the curve characteristics depend on the membrane parameters, and are 

important quantities in the parameter estimation process. The analytical solution to the 

transport equations illustrates the relationship. For the HPP, increasing Lp decreases τw by 

Eqs. (2.7) & (2.8), and makes the P-t curve steeper. For the OPP, increasing Lp similarly 

decreases τw, and makes the slope of the water phase steeper so that tm decreases. 

Increasing ps decreases τs by Eqs. (2.10) & (2.11), and makes the slope of the solute phase 

steeper. Increasing σ also decreases Pm. Changes in any parameter also has smaller effects 

on the other curve characteristics.  

 

2.3.2 Classical method of parameter estimation 
 

The classical (traditional) method of parameter estimation utilizes the curve 

characteristics and analytical solution to apply appropriate transforms and equations to 

the observed data. The theory and equations given here are taken from Steudle and 

Tyerman (1983), Steudle et al. (1987), and Zhu and Steudle (1991).  

 
(a) Determination of  Lp  

 
The hydraulic conductivity Lp is most often obtained from hydrostatic experiments. 

Occasionally it may be obtained from osmotic experiments using impermeant solutes. A 

log transform of Eq. (2.6) gives: 

 
0ln( ) ( )E wP P K k t t− = − − ,                  (2.12) 

 
where the constant K = . A semilog plot of (P-P1ln( )EP P− E) vs. t then gives kw and hence 

Lp, since from Eq. (2.7): 

 
0

0 0( )
w

p
V kL

A ε π
=

+
.               (2.13) 

 
This is the expression for Lp based on the analytical solution to the KK equations. Note 

that for a negative pulse, PE>P, so a semilog plot of (PE-P) must be used in place of Eq. 

(2.12).  
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Although Eq. (2.12) is linear, the semilog plot for the observed data is nonlinear, the 

slope being generally steeper for smaller t values. The nonlinearity may be due to errors 

in determining P and PE, nonlinear properties of the plasmalemma, the dependence of ε 

on P (as expressed by Eq. (2.5)), presence of permeating solutes inside the cell, the 

contribution of the vacuole and tonoplast to the pressure relaxation, or effects of unstirred 

layers and solvent drag (Tyree et al. 2005; Wendler and Zimmermann, 1985b).  

It is generally not clear from the literature which region of the semilog plot is used to find 

Lp. However, since it has been observed here that for low values of t the semilog plot is 

usually steeper, and theory predicts that only the plasmalemma Lp should be important 

around t=0 (Wendler and Zimmermann, 1985a), it may be assumed that in CPP 

experiments only this initial steeper, almost-linear portion is used to give a value for kw. 

Since the semilog plot of this region still displays a slight nonlinearity, the calculated 

value of Lp is dependent upon the portion of the semilog plot used, as well as the value of 

PE.  

 
(b) Determination of  ps  
 
The permeability coefficient ps is obtained from the solute phase of an osmotic 

experiment using permeant solutes. Since it is usually the case that s wk k<< (i.e. the 

halftime of the solute phase is much larger than that of the water phase) we may assume 

the response for large t is dominated by ks, with very rapidly. Under this 

assumption a log transform of Eq. (2.9) gives:  

0wk te− →

 
0ln( ) ' ( )sP P K k t t− = − − 0 ,        (2.14) 

 

where the constant K’  = 0

0

ln
( )

p g se

w s

L A R TC
V k k

ε σ⎛ ⎞
⎜⎜ −⎝ ⎠

⎟⎟ . The semilog plot for observed data rises 

rapidly to a maximum value (corresponding to the time when Pm occurs) then decreases 

linearly. The slope of this linear portion taken at some time after the maximum gives ks. 

The parameter ps is then calculated using Eq. (2.10). This semilog plot is usually very 
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linear and the value of ps quite precise. As for Lp, a semilog plot of ln(P0-P) must be used 

for a negative pulse. 

 
(c) Determination of σ 

 
The reflection coefficient σ can be calculated directly from the osmotic experiment using 

permeant solutes. It requires the observed extreme values (tm, Pm). When dP/dt = 0 we 

have: 

 

m 0
1( ) ln

( )
w

w s s

kt t
k k k

⎛ ⎞
− = ⎜− ⎝ ⎠

⎟ .        (2.15) 

 
 
Pm  can then be found using Eq. (2.9), from which we also obtain an equation for σ: 

 

m 0(0 m

0( )
sk t t

g se g i

P P e
R T C R TC

)εσ
ε

− −−
=

Δ +
,       (2.16) 

 
where ks is given by Eq. (2.10). The value of σ can usually be determined quite precisely, 

provided that values for Pm and tm are accurate. 

 
(d) Determination of  Lp   from biphasic experiments 

 
It has been shown that all three parameters Lp, σ, and ps, can be obtained by carrying out a 

hydrostatic and an osmotic experiment in conjunction. It is desirable to obtain all three 

parameters from the one (osmotic) experiment, however the method of calculating Lp 

from biphasic OPP experiments is not clearly stated in the literature. It is not definite 

whether it can be determined by this means, and appears that Lp is usually only obtained 

from HPP experiments, as this is regarded as the most direct and accurate measurement 

of Lp (T. Henzler, pers. comm). However, Lp  for a biphasic osmotic experiment can be 

determined from the analytical solution by first determining ks and tm, and then 

numerically solving for kw in Eq. (2.15), and using Eq. (2.13) to calculate Lp.  
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The value of Lp should be the same for both hydrostatic and osmotic experiments (being a 

physical property of the membrane), but it has been found that in osmotic experiments it 

is strongly dependent on external stirring rates, suggesting its measurement is more 

affected by ULs than with hydrostatic experiments (Steudle and Tyerman, 1983). 

Measurements of Lp with the two types of experiments give similar results at high 

external stirring rates.  

 

The Classical method was applied by implementing the equations in Excel. 

 

2.3.3 Optimization methods  
 

More modern methods of calculating the membrane parameters use optimization methods 

to fit the observed data. This involves minimizing the residuals between observed and 

simulated data. Numerical algorithms are used to fit the relaxation curves to single or 

double exponential functions, and the rate constants kw and ks are obtained as results of 

the procedure. From the rate constants the membrane parameters can be calculated using 

the appropriate analytical solution equation. Optimization techniques have been used in 

recent years by CPP experimenters (Henzler and Steudle, 2000; Henzler et al. 2004).  

 

The optimization used here is to minimize the overall root-mean-square (RMS) error of 

the whole curve. The RMS is defined as: 

 

2

1
( *

N

i i
i

P P
RMS

N
=

−
=

∑ )
        (2.17) 

 
where Pi are the predicted P values, Pi* are the corresponding observed P values, N is the 

number of observations, and the summation is over all observations. Least-squares fitting 

is a maximum likelihood estimation of the fitted parameters, when the measurement 

errors are independent of each other, and normally distributed with constant standard 

deviations. These assumptions may be considered to hold here. In the case that standard 
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deviations for each measurement are not constant, a weighted least-squares formula 

called the chi-square is often used as a maximum likelihood estimate. 

 
For convenience, this method will be termed the ‘RMS method’. The minimization of the 

RMS was carried out using Excel Solver. 

  

2.4 Preliminary to results 
 

2.4.1 Determination of curve characteristics 
 

The curve characteristics are obtained for both the Classical and RMS methods of 

parameter estimation. Although curve characteristics are not required to fit the data in the 

RMS method, they are used as either inputs into the model or in an analysis of goodness 

of fit. Curve characteristics of the simulated data, where calculated, are done so using the 

same method as for the observed data.  

 

The halftimes τw and τs are obtained from the slopes kw and ks of semilog plots of the 

observed data. For τw in a HPP, semilog plots are taken during the initial portion of the 

curve. For τs, semilog plots are taken over the region t>2tm.  

 

Extreme values (tm, Pm) can be obtained by reading off the discrete data (t,P) values, or 

by interpolating between the data values to give a more accurate value. Here interpolation 

was used by fitting a second degree polynomial to a window around the extremum. The 

initial equilibrium pressure P0 and the final equilibrium pressure PE were obtained by 

averaging 10 or more observed values of P. 

 

The simulated relaxation curves are very sensitive to the time t0 at which the perturbation 

occurs. It is therefore important to determine an accurate value for t0, however this is not 

always possible. For an HPP, P1  was taken to be the maximum change in P from P0. The 

time t0 when this occurs can be read from the data, or chosen to be a point near that time 
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since there is often some noise around this point. For an OPP, there is some freedom in 

choosing t0 since it is unknown when exactly the perturbation pulse impacts on the cell. 

 

For an OPP, theory dictates that P0 = PE. Therefore in Eqs. (2.14) & (2.16) either the 

observed P0 or observed PE value can be used for P0  in the equations. However, in many 

data sets there is some variation from this, as the experiment may not have been run for 

long enough for a steady equilibrium to be attained, a long-term pressure drift was 

present in the data, or changes in the external solution occurred around t0. Therefore, 

using P0 in the equations will mean that PE  may not be predicted well by the model, and 

using PE will mean that P0  may not be predicted well by the model. Here it was chosen to 

use the observed P0 value. 

 

2.4.2 Error analysis 
 

The error in the estimation of each parameter or curve characteristic must be calculated 

for the model fits. The error is comprised of: a) numerical error in the model or 

optimization method, and b) experimental error in the observed data due to the 

measurement precision of the CPP. The experimental noise in the CPP has been found to 

have a standard deviation of ± 0.0003 MPa and a maximum of 0.0008MPa, so the error in 

P is taken to be about ± 0.0005 MPa (M. Tyree, unpublished). The experimental error in t 

is taken to be the time-resolution of the data (about ± 0.05s in Henzler et al. 2004). There 

may also be some error in the exact size of the pressure perturbation, however the 

magnitude of this error is unknown and should not be large, so is ignored in the present 

study. 

 

In the Classical method of parameter estimation, Eqs. (2.12)–(2.16) are used to determine 

the membrane parameters that reproduce the curve characteristics obtained from the 

observed data. The accuracy of this method depends on the accuracy of the analytical 

solution, and the accuracy to which the curve characteristics can be determined from 

observed data. Standard errors (SE) in the calculated parameters are derived from the 

errors in the curve characteristics of the observed data. The standard errors in the 
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estimated parameters were determined using a formula for propagation of errors (Young, 

1962). If Q = f(a,b,c), then the error δQ in Q is: 

 
2 2

2 2 2 .......Q QQ a b
a b

δ δ δ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
  ,      (2.18) 

 
where δa is the error in a, etc. For the HPP experiment, the error in the slope of the 

semilog plot of the observed data, kw, can be obtained from the linear regression. From 

this, the error in Lp is calculated using Eq. (2.13), and the SE in τw calculated using Eq. 

(2.18). The error in PE was derived by calculating the standard deviation of the last 10 

values of P of the observed data.  

 

For the OPP experiment, the error in ks was obtained from the error in the regression of 

the semilog plot of the solute phase. From the measurement error in tm and the error in ks, 

the error in kw can be determined using Eqs. (2.15) & (2.18). The errors in Lp, ps and σ 

can be determined using Eq. (2.18) and the previous parameter definitions given by Eqs. 

(2.10), (2.13) & (2.16).  

 

Standard errors in optimized or fitted parameters using the RMS method were calculated 

using the NonlinXL toolbox in Excel (P. Sands, unpublished). For the HPP, the SE in τw 

was also calculated from the SE in Lp by using Eqs. (2.7), (2.8) & (2.18). For the OPP, 

the percentage departure of the model curve characteristics from the data curve 

characteristics were also calculated. 

 

2.5 Application of model: Results 
 

The analytical solution for the classical model (i.e. Eqs. (2.1)–(2.5)) was implemented in 

Excel, and applied to simulate raw data obtained from Dr. Henzler and Mr. Ye, 

corresponding to published data in Henzler et al. (2004). The membrane parameters were 

obtained using both the Classical method and RMS method, and for comparison purposes 

curve characteristics and RMS values are given for results from both methods. 

Assumptions of the Classical model given in §2.2.2 apply. 
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The model was applied to data for a positive and negative hydrostatic pressure pulse 

(HPP), and a positive and negative osmotic pressure pulse (OPP) in the presence of 

permeant solutes (160mM acetone was added or removed from the external solution). 

The data corresponds to Fig. 2A in Henzler et al. (2004). The data is extracted for use in 

the model starting at a chosen value, and the time scale is then adjusted so that this value 

becomes 0. An optimized value of t0  is expressed relative to this zero value. 

 

2.5.1 HPP experiment  
 
 
(a) Application of  Classical method  

 
The negative HPP data was fit first using Eqs. (2.6) & (2.7). As mentioned in §2.3.1, the 

curve characteristics for an HPP curve are {t0, P1, τw, PE,}. In order to determine Lp, a 

value for τw  must be obtained from the observed data. The semilog plot of the observed 

P-PE  was found to be very slightly nonlinear (see Fig. 2.1, and refer to Tyree et al. 2005 

for a discussion of possible reasons). The determination of kw was indeterminate since 

using the slope from different regions of the semilog plot would give different values for 

kw, resulting in different values of τw which is very sensitive to kw. Accordingly, slopes 

from 2 different regions were trialed. A regression over 0-3 s gave τw = 1.62s, which 

corresponds to a value near to that quoted by Henzler et al. (2004) (τw = 1.6s). A 

regression over 0-8 s gave τw = 1.99s, which corresponded to values of P where (P-PE) > 

0.002MPa. This critical value was used because Steudle and Tyerman (1983) state that 

“the relaxation curves were well fitted by a single exponential down to pressure 

differences...of about 0.02bar (R2 > 0.98)”, suggesting a good fit for values where (P-PE) 

> 0.002MPa.  

 

As mentioned in §2.4.1 the quality of the fits are sensitive to the value of (t0, P1). A value 

of t0 = 0 was first chosen near to, but not equal to, that when P1  occurs, and then in order 

to obtain the best fit t0 was further adjusted by optimizing its value using Excel Solver 

(refer to Table 2.1, where t0 values are relative to the chosen point t0 = 0). The adjusted 
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value of t0 did not affect Lp (since Lp is obtained using a constant τw and PE obtained from 

the data, and the adjustment in t0 was very small), but was found to affect the RMS value 

from the fit (by up to 20%). This justified the optimization of t0 instead of taking t0 as the 

point at which P1 occurs. 

 

 

Semilog plot for negative HPP (raw data) 

y = -0.3476x - 3.252
R2 = 0.9909

-8

-6

-4

-2

0
0 2 4 6 8

Time (s)

Ln
 (P

E
-P

)

 
 

Fig. 2.1  Semilog plot for 0-8 s of the negative HPP data from Henzler et al. (2004), with trendline. 
 

 

It was found that using τw = 1.62s to fit the negative HPP curve simulated the earlier data 

points better (up to 4s, Fig. 2.2) and gave a lower RMS value (first column in Table 2.1). 

Fitting to τw = 1.99s simulated the later data points better (after about 10s, Fig. 2.2b), and 

gave a higher RMS value (second column in Table 2.1). An Lp based on a semilog plot 

regression over 0-3 s gave the best fit for the Classical method, which concurs with the 

inference that only the beginning parts of the semilog plots are used in the derivation of 

Lp when using the classical model.  

 

A determination of the curve characteristics for the positive HPP curve found that it was 

symmetrical to the negative HPP curve, with a data halftime τw =1.67s lying within 1.62s 

± 2SE of the negative HPP. A semilog regression over 0-3 s, same as for the negative 
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pulse, was used to derive τw. When the data was fit, it was found that the estimated Lp was 

not significantly different between the negative and positive HPP curves, the values 

agreeing to within 2SE (Table 2.1).  

 

Table 2.1  Model results for a HPP experiment using the Classical method of parameter estimation. 
Errors are standard errors.  

 
 Negative HPP Positive HPP 
 *0-3 s *0-8 s *0-3 s 

t0 (s) -0.08 ±0.02 -0.08 ±0.02 0.11 ±0.03 
Lp (x 106 m s -1 MPa-1) 3.02 ±0.05 2.46 ±0.05 2.94 ±0.04 
τw (s) 1.62 ±0.03 1.99 ±0.04 1.67 ±0.02 
PE (MPa)   0.6409 ±0.0001 0.6409 ±0.0001 0.6421 ±0.0001 
RMS (x104) 7.6  15.8  8.3  

 
* Time period over which regression of semilog plot was taken. 
 

(b) Application of RMS method 

 
The negative and positive HPP curves were fit by minimizing the RMS value given by 

Eq. (2.17). Although the RMS values were lower than those obtained with the Classical 

method, the estimated values of Lp were within 2SE of each other (Table 2.1 & Table 

2.2). The main difference was in the values of PE, where the RMS method underpredicted 

PE by 0.0005 MPa (compare Fig. 2.2 & Fig. 2.3; see Table 2.2). Considering the 

measurement error of ± 0.0005 MPa, however, this difference is not significant. For the 

positive HPP, the fits and residuals between the Classical and RMS methods were also 

similar, with the RMS method overestimating PE by 0.0004 MPa. 

 
Averaging results in Table 2.1 and Table 2.2 gives Lp = 3.03 ± 0.01 m s-1 MPa-1 for the 

negative HPP, and Lp = 2.96 ± 0.02 m s-1 MPa-1 for the positive HPP, where errors are 

standard deviations. These Lp values, although lying outside 2 standards deviations of 

each other, do not differ significantly since the standard errors from the model 

estimations are quite large (Table 2.1 and Table 2.2). This is in agreement with the 

analytical solution to the KK equations, which predicts that the positive and negative 

experiments should be symmetric about the t-axis.  
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Negative HPP (Fig. 2A)
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Fig. 2.2  P-t curves and residuals for a negative HPP, using the Classical method. Showing raw pressure 
data (-----) and model fit (——). (a) Using τw = 1.62s, (b) using τw = 1.99s. 
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Negative HPP (Fig. 2A)
RMS method
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Fig. 2.3  P-t curves and residuals for a negative HPP, using the RMS method. Showing raw pressure data (-
----) and model fit (——).  

 
 
Table 2.2  Model results for a HPP experiment using the RMS method of parameter estimation. 
Errors are standard errors.  

 
Negative HPP Positive HPP 

t1 (s) -0.08 ±0.02 0.11 ±0.03 
Lp (x 106 m s -1 MPa-1) 3.04 ±0.06 2.97 ±0.07 
τw (s) 1.62 ±0.03 1.65 ±0.04 
PE (MPa)   0.6404 ±0.0001 0.6425 ±0.0001 
RMS (x 104) 6.5  7.6  

 
 

Agreement of Lp and τw values between the two fitting methods, where a semilog 

regression period of 0-3 s was used for the Classical method and the RMS method is 

based on all the data (not just the points for t<3s), confirms the practice of using only the 

initial region of the semilog plot of the observed data for fitting with the Classical 

method.  
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2.5.2 OPP experiment 
 
 
(a) Application of Classical method 

 
As mentioned in §2.3.1, the curve characteristics of an OPP curve are: {t0, P0, tm, Pm, τw, 

τs, PE}. Of these, PE is not important for fitting since the analytical solution gives P0 = PE, 

and τw is also not important since τw can be derived from t0, tm and ks through Eq. (2.15). 

Thus the curve characteristics required for fitting an OPP curve are: {t0, P0, tm, Pm, τs}. 

These were obtained from the observed data by the methods described in §2.4.1. 

 
The negative OPP was fit first using Eqs. (2.9) and (2.10). A regression of the semilog 

plot over the period 20-125 s was used for determining τs. P0  and PE were found to be the 

same within experimental error (0.6361 MPa and 0.6360 MPa respectively) for this data 

set.  

 

A slight curvature was present in the data near t = 0,  before P rises steeply (Fig. 2.4a). 

We may call this period of curvature a “time-delay”, referring to a delay in the response 

of P to the pressure perturbation, since the classical model supposes that the response 

time is immediate and the perturbation instantaneous. The time-delay is usually of the 

order of a few seconds at most, and is not evident when the full P-t curve is plotted (Fig. 

2.4b). Because the Classical model does not predict a time-delay, the estimated 

parameters and model fits will clearly depend on the choice of t0.   

 

In order to examine the impact of t0 on the estimated parameters, the negative OPP data 

was fit using different values of t0. In addition to t0 = 0 the data was fit to: a) t0 = 0.73s, 

obtained by fitting a piecewise linear continuous function (“broken stick” regression) to 

points around t0 = 0; b) t0 = 1.14s, the optimized value obtained by Excel Solver using the 

analytical solution; c) t0 = 1.5s, a manually adjusted value made after the optimized t0 was 

obtained, which seemed to give the best fit and smallest residuals (Fig. 2.4c).   

 

A comparison of how the estimated parameters vary with the choice of t0 is given in 

Table 2.3. Lp increased with increasing t0, σ decreased slightly with increasing t0, and ps 
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was independent of the choice of t0. These behaviours are as expected, since: a) Lp 

governs the water phase, which is relatively steeper for a smaller tm - t0; b) ps governs the 

solute phase, for which the slope is not affected by a time-delay; c) σ is calculated from 

the analytical solution for P (Eq. (2.9)), from which we see that as tm - t0 decreases, σ 

decreases slightly for a constant P0 - Pm and ks. The RMS values were lower, as expected, 

when the time-delay in the observed data was better taken into account (i.e. RMS values 

were lower for higher values of t0). The RMS errors were comparable for t0 in the range 

1.14–1.5 s. The choice of t0  mainly affected Lp and the RMS error.   

 

 
Table 2.3  Estimated parameters for the negative OPP curve, using the Classical method, for four 
different values of t0. Errors are standard errors. 

 
 Negative OPP Positive OPP 

t0 (s) 0 0.73 1.14 1.5  0.37  
Lp (x 106 m s -1 MPa-1) 2.01 2.25 2.40 2.56 (±0.02)* 2.30 ±0.02 
ps (x 106 m s-1) 4.43 4.43 4.43 4.43 (±0.01) 4.54 ±0.02 
σ 0.132 0.129 0.128 0.127 (±0.001) 0.121 ±0.001 
RMS (x 10-4) 19.5 10.6 6.1 6.5  8.5   

 

* standard errors for the model fits to t0 = 1.5s, t0 = 0.1s. 

 
 
The positive OPP data was noisier than the negative OPP data in the first half of the 

experiment, especially around the extremum (Fig. 2.5). τs was derived by taking a 

regression of the semilog plot in the period 20-125 s, the same as for the negative pulse. 

 

The data could not be fit using the value of P0  derived from the data. The experiment had 

been run for a shorter period of time and the pressure did not return to its initial 

equilibrium value of 0.6384 MPa. A problem may have occurred during the experiment, 

since the pressure had an upward trend prior to the perturbation and so was not at true 

equilibrium. Since this value of P0 is suspect an optimized value of P0 = 0.6362 MPa, 

obtained using Excel Solver for the classical model, was used for curve-fitting. This 

value of P0 is close to the values of P0 and PE  for the negative OPP, and is likely to be 

what P0 should have been in the positive OPP experiment.  
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Due to the adjustment of P0 there was an absence of a real time-delay in the data. The 

data was fit with an optimized value of t0 = 0.37s, obtained using the RMS method. The 

fit was found to be poorer than the fit for the negative OPP (with t0 = 1.14s), with a 

higher RMS error. This is probably due to the greater presence of noise in the data.  

 
(b) Application of RMS method 

 
The negative OPP was also fit to different values of t0 using the RMS method. A similar 

trend in the parameters with varying t0 was observed as for the Classical method (Table 

2.4), but with ps decreasing slightly with increasing t0, due to tm decreasing with higher 

values of t0. (The value of tm does not change in the Classical method, since it is made to 

equal tm of the observed data.) The changes in Lp due to t0 were greater with the RMS 

method than with the Classical method of fitting. As with the Classical method, the RMS 

values were lower when the time-delay in the observed data was better taken into 

account, and the time-delay mainly affected values of Lp  and the RMS value.  

 

It is useful to examine what sort of information the RMS value gives about the fits.  

Within the Classical method, although the fit with t0 = 1.14s gave the same RMS value as 

the fit with t0 = 1.5s (Table 2.3), it was found that the water phase was not fit as well, and 

the similar RMS values were a consequence of different distributions of the residuals in 

the water phase where they are dependent on the value of t0. Within the RMS method, the 

fit with t0 = 1.14s gave the lowest RMS value (Table 2.4), but it was found that data 

points around the extremum were not fit as well as the fit for t0 = 1.5s. 

  

The fits with t0 = 1.5s had the most evenly distributed residuals, and on the basis of this 

was deemed to be the best fit for both methods. The residuals were similar between the 

fitting methods, with only a slight difference in the water phase and around the extremum 

where the RMS method did not fit the points as well. The fits were not so good for small 

t, but this is a natural consequence of using a larger value of t0. For this value of t0, the 

estimated parameters (Table 2.3 & Table 2.4) agreed closely between the two fitting 

methods. 
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The residuals for the second half of the solute phase were similar for all the fits, and were 

larger in this region as more relative noise was present in the data for larger t (Fig. 

2.4b,c). These larger residuals do not affect the fit of the curve since it was chosen to fit 

to a τs value based on 20-125 s of the semilog plot. Using this value of τs emphasises 

fitting regions of the curve where the cell dynamics are faster, i.e. the water phase, 

around the extremum, and the first half of the solute phase. 

 

Table 2.4  Estimated parameters for the OPP curve, using the RMS method, for four different values 
of t0. Errors are standard errors. 

 
 Negative OPP Positive OPP 

t0 (s) 0 0.73 1.14 1.5  0.37 ±0.02 
Lp (x 106 m s -1 MPa-1) 1.41 1.83 2.19 2.59 (±0.04)* 2.82 ±0.06 
ps (x 106 m s-1) 4.66 4.54 4.47 4.41 (±0.03) 4.35 ±0.03 
σ 0.132 0.129 0.127 0.126 (±0.001) 0.120 ±0.001 
τw (s) 3.49 2.68 2.25 1.90 (1.6%)*** 1.74 (18.5%) 
τs (s) 29.7 30.6 31.0 31.5 (0.4%) 31.89 (4.3%) 
Pm (MPa) 0.6738 0.6749 0.6756 0.6761 (0.1%) 0.5977 (0.1%) 
tm (s) 12.2 11.0 10.3 9.7 (1.0%) 8.09 (11.9%) 
PE (MPa) 0.6361 0.6361 0.6361 0.6361 (0.0%) 0.6362 (0.0%) 
RMS (x 10-4) 11.9 6.5 4.5 6.3  5.7   

 
* standard errors (for a particular value of t0) obtained using SolverStat in Excel.  
** relative % difference between model and data curve characteristics, for a particular value of t0. 
 
 
The positive OPP was fit with an optimized value of t0 (Table 2.4). There was a 

significant difference in the estimated values of Lp and σ, and in the residuals, between 

fits using the two fitting methods (Fig. 2.5). The difference was larger compared to the  

two negative OPP fits using the optimized value of t0 (Table 2.3 & Table 2.4). This was 

due to the two methods fitting points around the noisy extremum differently (Fig. 2.5).  

 
Averaging results from the two methods (for t0 = 1.5 s) in Table 2.3 & Table 2.4 gives 

estimated parameters ± SD for the negative OPP of : Lp = 2.58 ± 0.02 x 10-6 m s-1 MPa-1, 

ps = 4.42 ± 0.01 x 10-6 m s-1, and σ = 0.127 ± 0.001. Estimated parameters ± SD for the 

positive OPP are: Lp = 2.56 ± 0.37 x 10-6 m s-1 MPa-1, ps = 4.45 ± 0.13 x 10-6 m s-1, and σ 

= 0.121 ± 0.001. These parameters do not differ significantly from each other. The 
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difference in σ can be explained by the fact that P0 was adjusted for, so that P0 -Pm for the 

positive pulse was less than for the negative pulse, resulting in a lower σ by Eq. (2.16).  
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Fig. 2.4  P-t curve and residuals for a negative osmotic pressure pulse, showing raw pressure data (----) and 
model fit (——). Using Classical method with t0 = 1.5s. (a) P-t curve for 0-50 s; (b) full P-t curve; (c) 
residuals for full P-t curve. Data from Henzler et. al. (2004).  
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Fig. 2.5  P-t curves and residuals for a positive osmotic pressure pulse, showing raw pressure data (----) and 
model fit (——). (a) Using Classical method with t0 = 0.37s, (b) using RMS method with t0 = 0.37s. 
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Averaging results across the 4 fits to the positive and negative pulses, gives Lp = 2.99 ± 

0.05 m s-1 MPa -1 for the HPP experiment, and Lp = 2.57 ± 0.21 m s-1 MPa -1 for the OPP 

experiment. These results show that the estimated Lp for the OPP experiments is 

significantly lower than Lp for the HPP experiments.  

 

2.6 Analysis of results 
 

2.6.1 Correlation of parameters 
 

Correlation tables between optimized parameters were obtained by NonlinXL for fits to a 

negative HPP and negative OPP experiment. Table 2.5 shows that for the HPP 

experiment, Lp is strongly correlated with t0 and less so with PE. This means small 

changes in t0 will affect the value of Lp, so it is important to optimize t0 for the fits, and 

that fits using the RMS method are likely to change PE along with Lp. 

 
Table 2.5  Parameters correlation table for a fit to a negative HPP experiment, with the RMS 
method. 

 
 PE Lp t0

PE 1 -0.41 -0.14 
Lp -0.41 1 0.69 
t0 -0.14 0.69 1 

  
 
Table 2.6  Parameters correlation table for a fit to a negative OPP experiment, with the RMS 
method. t0 = 1.14s. 

 
 Lp pS σ t0

Lp 1 -0.52 -0.58 0.69 
pS -0.52 1 0.81 -0.18 
σ -0.58 0.81 1 -0.21 
t0 0.69 -0.18 -0.21 1 

 
 

Table 2.6 shows that for the OPP experiment, ps and σ are strongly correlated. This is 

consistent with theory and the literature. Lp is also correlated with ps  and σ, showing that 
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all 3 membrane parameters are correlated. Lp is strongly correlated with t0 whilst ps and σ 

aren’t, which is consistent with the results in §2.5.2. 

 

2.6.2 Comparison of fitting methods 
 

Results show that the Classical and RMS methods are both useful for fitting the data. 

Fitting the OPP curve was a more a complex task than fitting the HPP curve, due to the 

greater number of curve characteristics involved, and the greater impact of t0 on the 

model fits. The two fitting methods give different parameter estimates for the OPP 

experiment, since they emphasise fitting different regions of the data. The Classical 

method gives more weight to errors in tm, Pm, and τs; the RMS method gives equal weight 

to errors in the observed P distributed across the whole data set. The difference between 

the methods is highlighted by fits to the OPP experiment (Table 2.3 and Table 2.4). 

 

The RMS method is an average error over all the data points, and therefore a large error 

in predicting a few data points may not alter the overall RMS error by a significant 

amount. Although this is an advantage as it balances a few erroneous data points with 

many good ones, it is also a drawback when fitting OPP data since the period during 

which the data returns to equilibrium is much longer than the period during which the 

data reaches a maximum or minimum. This effectively gives a large weight towards 

fitting values near the final equilibrium pressure compared to fitting values in the earlier 

regions where the cell dynamics are changing rapidly or significantly. The RMS method 

may fail to fit these earlier regions (such as points in the water phase and around the 

extremum) if a long tail in the solute phase of OPP data is subject to relatively more 

significant error. The earlier regions of the data may be fit better by weighting the RMS 

value in these regions (so that minimising the residuals between observed and simulated 

data in these regions is emphasised), although which points are given more weight is 

subjective.  

 

A drawback of the Classical method is that where there is significant noise in the data 

around the curve characteristics, the latter cannot be determined very precisely, making it 
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difficult to determine a good fit. This was seen in fits to the positive OPP (Fig. 2.5), 

which had significant noise around the extremum. Another factor affecting the fits and 

adding to variability in the estimated parameters, is the regions of the curve used to 

derive the halftimes for fitting. However, if the RMS error is reasonably low, and the data 

is fit well with low overall residuals, we may conclude with some confidence that the 

estimated parameters are the ones which govern the cell dynamics, insofar as the classical 

model is correct. 

 

Parameters estimated by the two methods may agree for a certain value of t0 to give a 

single set of estimated parameters. However this would not always be the case, and one 

method should be chosen. Here the RMS method is chosen to fit subsequent data sets, 

with t0 an optimized parameter. This is because it is a more flexible method than the 

Classical method, as it avoids issues of noisy locations in the data, and fits to specific 

regions of the data can be improved by weighting the RMS value around these points.  

 

The quality of the fit cannot be determined by the value of the RMS error alone, since it 

does not uniquely characterise the quality of the fit. It merely serves as a guide to a good 

fit, as better fits generally have lower RMS errors. The RMS value must be used in 

conjuction with the overall residuals between the model and data, in order to judge 

quality of fit. The “best fit” will be the fit with the lowest mean residual, most even 

distribution of residuals, and a low bias and trend in the residuals. The RMS value may 

be weighted around the extremum or other regions of the curve to give more even 

residuals. 

 

Estimated parameters for the positive and negative OPP curves may differ when the 

curves are fit separately. If consistency is desired, i.e. it is decided a priori that 

parameters estimated for both the positive and negative pulses should be the same, both 

curves can be simultaneously fitted using the RMS method. As an exercise, this was 

attempted with the positive OPP. However, since the fits to each curve were clearly a 

compromise in this instance, and fell far short of the best fit, the resulting estimated 

parameters added little knowledge to the likely parameters for these curves. 
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2.7 Discussion and limitations of the classical model 
 

2.7.1 Full numerical model 
 

The full transport equations for the classical model were solved numerically by 

implementing the model in Matlab. A numerical solution was required to provide more 

flexibility than the analytical solution, to analyse assumptions of the analytical solution, 

and to explore different perturbation conditions. Unstirred layers were also added to the 

model in Chapter 3. The implementation was verified by: (a) direct comparison with the 

analytical solution, where the results agreed to a high degree of accuracy, (b) 

demonstrating that the parameter values were recovered by applying the parameter 

estimation techniques of §2.3.2, and (c) application of the model to observed data from 

the literature. 

 

2.7.2 Numerical consequences of simplifying assumptions 
 

The numerical consequences on the P-t curve of the model assumptions listed in §2.2.2 

were explored using the Matlab implementation. That is, effects of incorporating variable 

A, variable V in Eq. (2.5), and variable ε on the solution were analysed, as well as the 

relative influence of the convection term in Eq. (2.2) compared to the diffusion term. 

 
ε was modelled as a function of P using the slope in ε vs. P taken from data published in 

Steudle et al. (1982). For the pressure range in the current data, this slope was calculated 

to be 33.3 (dimensionless). Taking the constant value of ε = 27.6 MPa used in the model 

fits of §2.5 as the median ε value, a variable ε over the P range of the data was obtained. 

 

For both HPP and OPP data, the incorporation of variable A, V and ε into the model was 

found to give relative errors of < 1% for the estimated parameters, and very small errors 

of <0.1% for the predicted P(t). The relative influence of the convection term in Eq. (2.2) 

was found to be negligible compared to the diffusion term (Fig. 2.6).    
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Fig. 2.6  Showing the contribution of solute drag to the total solute flux for simulated OPP data. 
 
 
 
2.7.3 Model fits 
 

Model fits to the HPP curves were generally good except for the region where P begins to 

level off (the bend or “shoulder” of the curve). This region could not be fit well by either 

of the fitting methods for the Classical model. Model fits to the OPP curves were 

generally good except for the initial curvature near t0, which could not be fit by the 

Classical model. In this section, explanations for these failings of the model, and methods 

for improving the model fits, are explored. 

 
(a) Fitting the HPP curve with a double exponential 

 
In §2.5.1 it was shown that HPP data could be fit with the Classical model only by using 

the initial region of the semilog plot of the observed data. This reveals a failure of the 

Classical model to fit data away from the initial portion, and indicates that the classical 

model is not incorporating some aspects of the cell dynamics. For example, it may be 

failing to taking into account the presence of the tonoplast, effects of which could be 

incorporated by expressing the cell pressure as a double rather than a single exponential 

(Wendler and Zimmermann, 1985a,b; Zhang and Tyerman, 1999). 
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To explore this, the negative and positive HPP curves were fit using 2 exponential terms, 

according to the equation: 

 
( ) (1 0 2 0( ) ( )

0 1 21 1k t t k t tP P p e p e− − − −= + − + − )       (2.19) 

 
where p1 and p2  represent general coefficients and k1 and k2 represent rate constants. 

These 4 parameters plus t0 were optimized using Excel Solver (i.e. the RMS method). It 

was found that the fits were much better than using Eq. (2.6) of the classical model, with 

RMS = 1.5 x 10-4 (compared to 6.5 x 10-4) for the negative HPP, and RMS = 6.5 x 10-4
 

(compared to 7.6 x 10-4) for the positive HPP (compare Fig. 2.2 & Fig. 2.7; refer to Table 

2.2). For both fits the first rate constant, k1, was found to be about 3 times larger than k2.   

 

(b) Effect of shape of input pulse on the OPP curve 

 
The failure of the Classical model to fit the curvature near t=0 in the OPP curve suggests 

something is missing from the model. One thing missing is the shape of the perturbation 

pulse, i.e. when and in what form the perturbation impacts on the cell. As mentioned in 

§1.2, it is known that the external concentration takes a short period of time to reach the 

maximum perturbation level (which is known as “ramping”). This is due to two effects: 

the shape of the front of the changeover solution, and the time it takes for the front to 

traverse the length of the cell.  

 

The time the external concentration takes to ramp up may be measured by electrical 

resistance methods (see §4.2.1). These measurements are not available for the present 

data set and therefore this ramp time is unknown. The spatial distribution of the external 

concentration during the ramp could be modelled on the basis of fluid dynamics for flow 

through a pipe (the pipe being the pressure chamber in the CPP, see Fig. 1.2). Since we 

are assuming radial and axial symmetry here, this is beyond the scope of the model. 

However, the change in external concentration at a point along the cell can be modelled 

for by making the simple assumption that it changes linearly over time to reach the  
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Fig. 2.7  P-t curves and residuals for fits to the HPP data, using 2 exponential terms. Showing raw pressure 
data (----) and model fit (——). (a) Negative HPP, RMS = 1.5 x 10-4, (b) positive HPP, RMS = 6.5 x 10-4. 
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perturbation level. This simple function does not necessarily reflect the true shape of the 

pulse and concentration distribution along the length of the cell following perturbation. 

However, it is easy to implement, and as a first approximation represents how inclusion 

of a ramp may affect the model fits. 

   

The time over which ramping occurs may be gauged from flow rates in the CPP. In 

Henzler et al. (2004) the flow rates were 0.15-0.2 m s-1 for cells of 50-150 mm in length, 

so that for a cell length of 50mm (which was used for the models in this chapter) the time 

for the exchanged solution to traverse the length of the cell is 0.25-0.33 s. The ramp time 

can then be said to be around 0.33s, which is somewhat shorter than the time-delay 

determined from the observed negative OPP data (at least 0.73s; see §2.5.2a). However, 

mixing between solutions during the changeover would cause the ramp time to be longer, 

and also since the time of impact of the osmotic perturbation on the cell is unknown, 

uncertainty in t0 has to be included in the uncertainty in the ramp time. 

 

The numerical model was fit to the negative OPP experiment, using the Classical method 

where tm is fit to within ± 0.05s. Two linear ramps (where the concentration in the 

external solution changes linearly with time) were included, both centered around 1.5s as 

this time-delay gave the best fit with the classical model. A ramp of 3s with t0 = 0 (where 

t0 is the start of the perturbation) was found to give a better fit than a ramp of 1.5s with t0 

= 0.75s. The model with a ramp fits the data extremely well, reproducing the time-delay, 

and giving a very low overall RMS error of 4.0 x 10 -4 (Table 2.7; compare Fig. 2.4a & 

Fig. 2.8). This model may be considered a “perfect fit” to the data within experimental 

and model error. Estimated parameters were similar to the previous fit with no ramp and 

t0 = 1.5s (Table 2.3). 
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Fig. 2.8  P-t curve and residuals for a classical model + ramp fit to a negative OPP curve. Showing raw 
pressure data (----) and model fit (——). Note that the time scale for the P-t curve and residuals are 
different. 

 

 
 
Table 2.7  Results for a fit to the negative OPP (Fig. 2A), using the classical model with external 
ramping (linear ramp) included. Errors are standard errors. 

 
Negative OPP 

ramp time (s) 3  
t0 (s) 0  
Lp (x 106 m s -1 MPa-1) 2.63 ±0.25 
ps (x 106 m s-1) 4.50 ±0.005 
σ 0.1274 ±0.0016 
RMS (x 10-4) 4.0  
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(c) Role of unstirred layers  

 
Unstirred layers (ULs) also contribute to the time-delay, since it takes some time for the 

solutes to diffuse through the external UL (ULe) to the membrane. Unstirred layers in 

general would slow down the diffusion of solutes through the membrane, and affect the 

whole relaxation curve. Since both external ramping and ULs contribute to the time-

delay, it is not possible to determine to what extent each factor contributes to the time-

delay unless there is an experimental method of determining the time it takes for the 

external solution to ramp up, or the time it takes for the solutes to move through the ULe. 

The latter is dependent on knowing the ULe thickness. However, a method of 

determining the ULe thickness in CPP experiments has not been reported in the literature. 

Due to the lack of experimental knowledge on ramping and ULs, and the fact that the 

shape of the input pulse and the shape of the ULe are modelled simplistically in this 

study, the impact of ramping and ULs can at present only be studied theoretically. 

Accordingly, the classical model with the addition of ULs will be the subject of Chapter 

3. 

 

2.8 Conclusions 
 
 
The classical model, based on the analytical solution, has been analysed and applied to 

raw CPP data obtained from Dr. Henzler and Mr. Ye. The analytical solution was 

validated, and the necessary simplifying assumptions were shown to be numerically 

justified. The model was implemented in Excel, and Excel Solver used as a tool to 

estimate membrane parameters from observed P-t data. Membrane parameters were 

estimated using 2 methods: (a) the Classical method, which uses curve characteristics to 

fit the data, and (b) the RMS method, which optimizes the parameters such that the 

overall RMS error is minimized. 

 

Results show that quite a good fit to observed P-t data can be obtained for the classical 

model with both fitting methods, for both HPP and OPP experiments. Although the 

methods are not mutually exclusive, they emphasise fitting different regions of the curve 
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and give different estimated parameters. The Classical method gives more weight to 

certain characteristics of the curve. Drawbacks are that its accuracy depends on how well 

curve characteristics from the data can be determined, and it does not fit noisy data well. 

The RMS method gives equal weight to all data points. A potential drawback is that 

regions where the cell dynamics are changing rapidly may not be fit well. However, this 

problem can be overcome by differentially weighting points in the minimized function 

(the RMS value) to improve the fit to the less well-fitted regions. The RMS method, 

therefore, will be used for subsequent data fits in this study. For comments on further use 

of curve characteristics, see §A.1 in appendix. While a low RMS error will be used as a 

guide to “best” fit, the RMS error does not uniquely determine a best fit, and the final 

decision will be made by making an analysis of the overall residuals between the model 

and data. 

 

Fits with the Classical method confirmed that only a short initial period of the semilog 

plot should be used to calculate τw for the HPP curve (0-3 s for the data set used). This is 

due to the non-linearity in the semilog plot. Although Ye et al. (2006) state that this non-

linearity is “an artefact” arising from measurement errors, using 2 additional values of PE  

(0.001 MPa above and 0.001 MPa below the calculated PE of the observed data) to 

calculate the slope of the semilog plot still revealed a slight nonlinearity (R2=0.997). 

Although this is statistically very close to linear, the semilog plot slopes for the 3 

different values of PE  still differed by about 10%, and the fact remains that Lp is very 

sensitive to the slope of the semilog plot. The results in §2.5.1 gave halftimes of 1.62s 

and 1.99s for semilog plot slopes which differed by 23%.  

 

The method by which Lp  from OPP experiments is estimated in other studies has not been 

described in the literature. In this study, Lp was determined numerically using an equation 

from the analytical solution to the KK equations. Using this method, it was found that the 

average Lp for the HPP experiments was 17% higher than Lp for the OPP experiment (Lp 

= 2.99 ± 0.05 m s-1 MPa -1 and Lp = 2.57 ± 0.21 m s-1 MPa -1 respectively). A higher Lp 

for HPP experiments agrees with results from Steudle and Tyerman (1983), who suggest 

that this behaviour is due to an external unstirred layer influencing the pressure dynamics 
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in OPP experiments. Estimated parameters for positive and negative pulses for both the 

HPP and OPP experiments did not differ significantly, although differences in the 

estimated Lp between positive and negative pulses have been observed in the literature 

(ibid. 1983). 

 

The classical model was found to predict the cell dynamics very well, despite the 

simplifying assumptions in the theory. The main drawbacks of the model are its inability 

to properly fit the shoulder of HPP relaxation curves, and the initial curvature and time 

delay in OPP relaxation curves. It was found that the first could be solved by fitting the 

HPP data with a double exponential, and the second could be solved by assuming a 

gradual rather than an instantaneous change in the external concentration.   

 

These results suggest that a single exponential does not accurately represent the cell 

dynamics in a HPP experiment. A likely explanation is that the influence of the tonoplast 

on cell dynamics is being ignored, thus illustrating the limitations to viewing the cell as a 

single membrane rather than a composite membrane. Models of HPP pressure relations in 

wheat root cells (Zhang and Tyerman, 1999) revealed that a double exponential function 

fit the data better when aquaporins were blocked, showing the inadequacy of using a 

single exponential function when the influence of the tonoplast and plasma membrane are 

both significant. The blocking of aquaporins may impact the hydraulic conductivity of 

the tonoplast and plasma membrane differently depending on the amount of aquaporins in 

each.  

 

A double exponential representation would mean that the expression for the hydraulic 

conductivity Lp in Eq. (2.13) no longer applies. This will not be explored here, but merely 

pointed out that the expression for Lp used in current practice may be incorrect, and 

impact on the accuracy to which Lp can be determined by current means. 

 

Although the ramp change in external concentration assumed in an OPP is unrealistic, the 

resulting improvement to the classical model shows that the time and form in which the 

external perturbation impacts on the cell is an important consideration. If ramping is not 
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included, t0 must be adjusted or optimized to obtain a good fit to the data. Lp in particular 

is very sensitive to the value of t0. 

 

The time-delay observed in the OPP data may, however, be attributed to a combination of 

ramping in the external concentration (see §1.2), and effects of an external unstirred layer 

which would delay the external solute from reaching the membrane. The classical model 

may be made more realistic by the incorporation of ULs, which would impact on the 

parameter estimation. (It may also be made more realistic by including the effects of the 

tonoplast, but that is beyond the scope of this study.) In Chapter 3 we will incorporate UL 

effects into the models, and explore their impact on the model fits and parameter 

estimation.  
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3 Model with Unstirred Layers: Description of model 
and analysis of behaviour 

 

3.1 Introduction to unstirred layers 

3.1.1  What is an unstirred layer? 
 
An unstirred layer (UL) is a still or slow-moving region of laminar flow adjacent to a 

solid boundary (in this case the membrane), within which there is no significant mixing 

of the solution (Dainty, 1963). For a cell there exist external (ULe) and internal (ULi) 

ULs (see schematic diagram in Fig. 3.1). The internal ULi may be considered to be the 

entire cell interior (Barry and Diamond, 1984), however in this study the possibility is 

allowed for a homogeneous region within the cell beyond the ULi. The dynamics in the 

region inside the cell, including the ULi, are governed only by the membrane and change 

in concentration across the membrane. The bulk solution which lies beyond the ULe is a 

region in which a constant flow of solution maintains the concentration at a constant 

value, and this region can be considered to be well-mixed and homogeneous.  

 

Although in the absence of stirring some mixing in the ULs may occur because of solute, 

water density, or temperature gradients, a UL may effectively be modelled as a region 

where solutes primarily move by diffusion (Barry and Diamond, 1984). A smaller 

convective component due to volume flow across the membrane also exists in the UL, 

which has been discussed in Barry and Diamond (1984), and included in equations by 

Kargol (2000). 

Fig. 3.1 depicts a positive osmotic perturbation, where the concentration in the bulk 

solution has been increased. As solutes diffuse through the ULe from the bulk solution, 

the concentration decreases toward the membrane, encounters a drop across the 

membrane due to the membrane resistance, and continues to decrease as the solutes move 

further inside the cell. Over a sufficient length of time an equilibrium level will be 

reached where the solute concentration is equal in all regions inside and outside the cell. 
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In Fig. 3.1 the non-membrane ULe and ULi boundaries are shown and treated as distinct 

entities. The model ignores mixing at these boundaries, and assumes that the 

concentration in the homogeneous regions remain constant so that there is a discontinuity 

in the concentration gradient at the outer ULe boundary. The concentration gradient is the 

same either side of the membrane. 

membrane

ΔC

ULi ULe

cell
interior

bulk
solution

 

 
Fig. 3.1  Schematic diagram showing a system with 1 membrane and an internal (ULi) and an external 
(ULe) unstirred layer. In the absence of unstirred layers the concentration inside and outside the cell are 
constant in time and space (orange line); with unstirred layers the concentration varies with time and space 
within the ULs (blue line). Unstirred layers change the concentration difference (ΔC) at the membrane. 

 

3.1.2 Significance of ULs to CPP experiments 

ULs significantly affect the measurement of membrane-specific parameters. This is 

because solute movement across a membrane may be partly rate-controlled by ULs and 

not solely governed by the membrane (Barry and Diamond, 1984; Verkman, 2000). The 

solute concentrations governing transport across a membrane are those immediately 

adjacent to the membrane. These are not observable and are determined in part by the 

dynamics of the ULs. Also, they are not equal to those in the bulk solution which are the 

directly observed and measurable quantities (Dainty, 1963; Barry and Diamond, 1984; 

 3-2



Kargol, 2000). UL effects also depend on the membrane geometry and surface area 

(Verkman, 2000), and on the orientation of the membrane relative to the moving solution.  

Direct effects of ULs cannot be observed. However, there is experimental evidence from 

observed behaviour of the measured (classically-estimated) membrane parameters Lp, ps, 

and σ that ULs may be affecting fluxes of solutes and water across cell membranes. This 

evidence includes:  

(a)  A dependence of the classically-estimated parameters on external flow rate. In 

osmotic experiments, the classically-estimated Lp and ps  have been found to 

increase with increasing flow rates (Steudle and Tyerman, 1983). This behaviour 

can be explained by examining the impact of ULs on the KK equations. 

Increasing the external flow rate increases mixing in the external solution which 

in turn reduces the size of external ULs. Eq. (2.1) expresses a direct linear 

response between the volume flow JV and the pressure gradients across the 

membrane, related to each other by the constant Lp. If ULs are present, JV  may 

change linearly with the pressure gradients across the membrane but not with the 

pressure gradients in the bulk solution. Since the classical method uses pressure 

gradients in the bulk solution to approximate those at the membrane, the 

classically-estimated Lp derived using Eq. (2.1) may no longer be constant if the 

external UL thickness and thus pressure gradients at the membrane are changed. 

As Eq. (2.2) is coupled to Eq. (2.1), this would affect the values of ps and σ also. 

(b) A dependence of the classically-estimated parameters on external solute 

concentration. In osmotic experiments (and hydrostatic experiments in the case of 

Lp), the classically-estimated Lp and σ  have been found to decrease with 

increasing external solute concentration (Steudle and Tyerman, 1983; Steudle and 

Zimmermann, 1974). ULs may be expected to have a greater effect on membrane 

parameters in the presence of higher external solute concentrations. This is 

because, similar to (a), the classical method uses the concentrations in the bulk 

solution to approximate the concentrations at the membrane in Eqs. (2.1) & (2.2). 
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(c)  An observed polarity in the classically-estimated membrane parameters, where 

the parameters differ in magnitude between positive and negative perturbation 

pulses. A polarity in Lp has been observed in both hydrostatic and osmotic 

experiments, which is more marked at higher external solute concentrations 

(Zimmermann and Steudle, 1978; Steudle and Tyerman, 1983; Steudle, 1993). 

Polarity is where a change in direction of a pressure gradient (of the same 

magnitude) causes not only a change in direction but a change in magnitude of the 

flow as well (Kedem and Katchalsky, 1963c). If the ULi and ULe are of unequal 

thickness, the cell pressure may respond differently to opposite flow directions 

across the membrane.  

Although the above observations may be explained by the presence of ULs, this 

explanation in itself does not seem sufficient. In particular, the subject of polarity in Lp  

has been much debated, and the general consensus is that it is probably partly due to ULs 

and partly due to properties of the membrane. Dainty (1963) has stated that a polar 

permeability to water is not surprising in biological membranes, but also “the influence of 

unstirred layers...[can] produc[e] a certain degree of apparent polar permeability to 

water”. Polarity may also be related to the presence of a tonoplast, as Kedem and 

Katchalsky (1963c) have predicted that polarity and non-linearity between forces and 

flows should arise in composite membranes (and that therefore polarity in ps and σ should 

also arise, although there seems to be little mention of this in the experimental literature).  

There is general agreement that ULs should cause an under-estimation of ps and σ in CPP 

experiments (Henzler and Steudle, 1995; Barry and Diamond, 1984), however to what 

extent is unclear. A numerical study on the effects of ULs, using a simple membrane 

model, may therefore shed light on contributing factors to these experimental 

observations. 

 

3.1.3 How ULs affect cell pressure dynamics and the measurement of 
membrane parameters 

 
Diffusion in unstirred layers contributes a resistance in series with the membrane, and 

slows the flow of solutes through the membrane (Barry and Diamond, 1984). Convection 

(solvent drag) in the UL and the movement of the membrane also affect the concentration 
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distribution by causing solutes to build up on one side of the membrane and decrease on 

the other. ULs affect overall solute transport by reducing the effective concentration 

gradient across the membrane, and by causing the solute concentration in the UL to 

change with time and space (Dainty, 1963). The classical model outlined in Chapter 2 

assumes complete mixing of the bulk solution and hence a uniform concentration with 

space on either side of the membrane. By corollary this implies ULs are absent. 

A detailed review of ULs has been written by Barry and Diamond (1984), in which they 

identified two main effects of ULs on membrane parameters for systems in steady state 

flux:  

(a) A ‘gradient-dissipation effect’. This may occur when a significant fraction of the 

concentration gradient occurs across a UL (such as occurs with thick ULs), so that 

the UL’s diffusional resistance is comparable to or greater than the membrane 

resistance. As a result, classically-estimated values of ps and σ tend to 

underestimate the actual membrane parameters (Barry and Diamond, 1984), as is 

the case for Lp (Wendler and Zimmermann, 1985b). 

(b) A ‘sweep-away effect’ (or ‘concentration polarization’, ‘convective-flow effect’). 

This may occur due to convection (solvent drag) in the UL, sweeping away 

solutes from the membrane surface downstream from the water flow, and 

concentrating solutes on the upstream side of the membrane. This reduces the 

volume flow Jv  because the flow perturbs the solutes in a direction that opposes 

Jv, .i.e. the outward convective solute movement is opposed by inward diffusion in 

the UL. In steady state this can be described by the following equation from 

Fick’s first law (Dainty, 1963): 

0v
dCJ C D
dr

+ = .        (3.1) 

Since there is a large diffusive component in the UL, these opposing flows cause 

Jv to be lower than that in the absence of a UL, leading to an underestimation of 

Lp, ps and σ (Dainty, 1963; Barry  and Diamond, 1984; Steudle, 1993). ULs can 
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give rise to what has been termed ‘pseudo solvent drag’, where the measured or 

observed solvent drag is not purely solvent drag (see Barry and Diamond, 1984).  

In CPP experiments, gradient-dissipation (diffusional) effects in the UL are thought to be 

more important than sweep-away effects, since volume flows through the cell membrane 

are small (Henzler and Steudle, 2000; Hertel and Steudle, 1997; Steudle, 1993; Steudle 

and Tyerman, 1983; Zimmermann and Steudle, 1978). Analysis of the classical model in 

§2.7.2 confirmed this. The gradient-dissipation effect can be analysed by noting that 1/ps 

is a resistance, and exploring effects on ps due to diffusion. 

Forming an analogy with Kirchoff’s law for electrical circuits, which says that resistances 

in series are additive, the total permeability pT  across the membrane-UL system for the 

cylindrical case can be expressed as: 

1 2

1 1 1 1ln ln
T m

R bR
p p D a D

⎛ ⎞
= + +⎜

⎝ ⎠R ⎟          (3.2) 

(Steudle and Frensch, 1989; see also §A.3 in appendix). In Eq. (3.2) D1 is the diffusivity 

for the region inside the cell, D2 is the diffusivity for the region outside the cell, pm is the 

membrane permeability, b is the radial distance to the boundary of the ULe, a is the radial 

distance to the boundary of the ULi, and R is the radius of the cell.  

 If , as is often assumed, then Eq. (3.2) becomes: 1 2D D D= =

1 1 ln
T m

R b
p p D a

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

, 

which can be re-arranged as:       

1 ln( /

m
T

m

pp p R b a
D

=
+ )

 .        (3.3) 
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Eq. (3.3) shows that for large values of pm,  

ln( / )T
Dp

R b a
≅ ,          

where the apparent (measurable) permeability Tp  is dominated by diffusion in the ULs.  

For small values of pm, where , 0mp →

T mp p→ .           

The above analysis shows that for rapidly permeating solutes (with high pm), the apparent 

membrane permeability is partially rate-controlled by the ULs, so that the classically 

measured permeability will underestimate pm. For slowly permeating solutes, the apparent 

permeability approaches the actual membrane permeability. That is, depending on the 

size of pm, the overall resistance of the membrane-UL system may be dominated by either 

the diffusional resistance of the membrane itself, or the diffusional resistance of the ULs 

(Dainty, 1963; Barry and Diamond, 1984). ULs are predicted to have more effect on the 

observed, total solute permeability Tp  for larger values of the membrane permeability pm. 

Dainty (1963) considers a permeability “greater than a few times 10-7 m s-1 suspect” to 

UL errors. When no ULs are present, we have b→R, a →R, and T mp p→ .  

It is important to note that Eq. (3.2) is strictly valid only for systems in steady state. The 

equations may not hold for the models here since they deal with systems not in a steady 

state. 

3.1.4 Taking into account effects of ULs 

In CPP experiments external ULs are minimized by vigorous stirring (Henzler et al. 

2004, Henzler and Steudle, 2000; Tyerman and Steudle, 1984). Parameter measurements 

from OPP experiments are dependent on the external flow rate, reflecting the presence of 

ULs since the actual permeability of the membrane should not depend on stirring rates 

(Steudle and Tyerman, 1983; Verkman, 2000). Steudle and Tyerman (1983) varied the 

 3-7



external flow rate between 5 and 44 cm s–1, and found that their estimated membrane 

parameters increased rapidly at first and then less rapidly at the higher rates. They 

guessed the ULe in Chara corallina to be 50-100 μm thick, and probably no more than 

50μm for a vigorously stirred system. Although some authors have described the external 

flows as turbulent (Ye et al. 2006), the external flow is most likely laminar even for flow 

rates of 44 cm s–1 or more (Tyree et al. 2005). 

The internal UL cannot be minimized, and has been guessed to be a few hundred 

micrometers thick (Hertel and Steudle, 1997), and as large as the entire cell radius (Barry 

and Diamond, 1984). Although the ULi thickness is significant, Hertel and Steudle 

(1997) and Henzler and Steudle (2000) have claimed that since the interior of Chara is 

“relatively well-stirred” by cytoplasmic streaming, and the cell has a cylindrical 

geometry, effects of internal ULs should be minimal. However, a comprehensive study of 

ULs by Barry and Diamond (1984) has shown that internal ULs may be more important 

than external ULs, more problematic to deal with, and that the diffusional resistance of 

the cytoplasm may be a dominating factor when measuring Lp and other transport 

parameters. It is doubtful that cytoplasmic streaming would contribute much to the radial 

convection or diffusion of solutes, since it has a low velocity (~4 cm hr-1 = 0.0011 cm s-1, 

Tyree et al. 1974) and is parallel to the membrane surface. This flow rate is much slower 

than the flowrates of  > 15-20 cm s-1 commonly used in CPP experiments to minimize 

external ULs (Henzler et al. 2004). The vacuole is also largely water and is unstirred, so 

that the entire cell interior could in fact be considered an unstirred compartment, with the 

size and effects of internal ULs increasing with cell size (Barry and Diamond, 1984).  

CPP experimenters have attempted to take ULs into account by correcting for UL effects 

in parameter calculations (Steudle and Zimmermann, 1974; Steudle and Tyerman, 1983; 

Henzler and Steudle, 1995; Hertel and Steudle, 1997). It is not clear, however, that 

parameters determined by the above experimenters have actually been corrected for UL 

effects. Firstly, the classical model on which calculations are based makes no provision 

for this, and secondly, corrections have not been rigorous since claims regarding the 

impact of ULs have mostly been qualitative. Hertel and Steudle (1997), and Henzler and 

Steudle (2000), considered possible impacts of ULs and, by various arguments, declared 

they are not “dominating” transport. Henzler and Steudle (2000) argued that diffusion is 
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not a big limiter to solute permeation, since pressure-time curves could be “nicely fitted” 

by single exponentials. They observed a wide range in permeability values for different 

solutes with similar diffusion coefficients, which they concluded meant the parameters 

should reflect the permeability of the membrane. Yet, even if it was the case that effects 

of ULs are not “dominating” transport, this does not mean the effects of ULs are 

negligible or do not have a hidden, systematic impact on permeability measurements. A 

proper, quantitative study of the effects of ULs on CPP measurements does not appear to 

have been carried out.  

Some quantitative studies of the effects of diffusion in ULs on permeability coefficients 

have been carried out for radioactive tracer and transcellular osmosis techniques in 

Chara. In these experiments the effects of ULs were found to be considerable for very 

permeant solutes (Dainty and Ginzburg, 1964c,d). Various CPP experimenters have 

inferred that since results from both CPP and transcellular osmosis experiments appear to 

be consistent, ULs in CPP experiments have a low impact (Dainty, 1976; Zimmermann 

and Steudle, 1978; Henzler and Steudle, 1995; Henzler and Steudle, 2000). Yet this is 

hardly conclusive, since it assumes the corrected values in Dainty and Ginzburg 

(1964c,d) are the true values for the membrane, but Dainty and Ginzburg (1964c) state 

that their analysis underestimates the impact of ULs. Steudle and Tyerman (1983) state 

that while “a rather good agreement with Dainty and Ginzburg’s (1964c) values” may 

indicate that effects of ULs in their experiments are small, at the same time they concede 

that “unstirred layers are a problem” and that ps is “almost certainly underestimated as a 

result of unstirred layers.” Any attempt to compare CPP results to that of transcellular 

osmosis only reveals the shortcomings of existing analyses of CPP measurements. In 

general, an objective analysis of the effects of ULs in CPP experiments is lacking, and 

efforts have largely concentrated on dismissing the effects of ULs. However, there are 

other experimenters who have little doubt that ULs affect parameter determinations, and 

must be considered (Dainty, 1963; Dainty, 1976; Heidecker et al. 2003).  

Apart from the lack of rigor, another disadvantage of previous “quantitative” studies 

which have attempted to correct for the impact of ULs in CPP measurements, is that the 

analyses have been valid only for systems in steady state. For example, using Eq. (3.3) 

Steudle and Frensch (1989) derived an equation for the apparent reflection coefficient in 
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the presence of ULs, however the equation only holds for a system in steady state. Hertel 

and Steudle (1997) assumed an upper limit to the ULe of 50μm, and argued that since the 

time it takes for solutes to diffuse through the ULe is much smaller than the halftime τs of 

equilibration of solutes, the influence of external ULs can be discarded. However, Hertel 

and Steudle (1997) have failed to consider the temporal behaviour of ULs and its possible 

impact on membrane transport, so their argument is not necessarily valid, as will be 

shown in the present study.  

In the present study the system is assumed to be in non-steady state. The result is a model 

which more accurately reflects reality and thus should more accurately reflect the impact 

of ULs on CPP measurements. This is an important difference between the present study 

and previous studies of UL effects in the CPP.  

It is argued here that ULs have an important impact on parameter measurements, and that 

effects of ULs in CPP experiments require close examination. Although external ULs 

may be minimized by stirring, neither external or internal ULs can be eliminated. Due to 

the difficult nature of experimentally identifying the precise effects of ULs, modelling 

can make a significant contribution by making a quantitative assessment of these impacts. 

In this study a numerical approach is taken to examine the impact of ULs. There are two 

main questions to answer, namely:  

(a) How do the presence of ULs affect the pressure-change dynamics in the cell? 

(b) How do the presence of ULs affect the parameter values determined by the 

classical method?  

3.2 The present model in the context of previous models 

3.2.1 Brief review of numerical models 

 
Many numerical models of membrane-UL systems have been developed by researchers 

in various fields, where KK equations are applied across a membrane, and Fick’s 

equations applied to the ULs. However, only a few models have been developed for plant 
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cell or plant tissue systems. A couple of those relevant to the model or system in this 

study are reviewed here.  

Kargol (2000) derived generalised KK equations for transport through a planar 

membrane-UL system. Expressions for concentration in the ULs were derived using 

Fick’s diffusion-convection equations, and substituted into Kedem-Spiegler equations 

(similar to the KK equations) for local fluxes at the membrane. The final linearized 

equations express fluxes across the membrane-UL system in terms of the membrane 

parameters, bulk concentration values, and UL thicknesses. The equations are for steady 

state where fluxes are constant with space and time, and concentration profiles linear with 

space. The equations do not solve for concentration at the membrane surface. In contrast 

to Kargol (2000), the present study applies the much simpler classical KK equations at 

the membrane. Concentration at the membrane surface is determined using Fick’s 

diffusion-convection equation in the ULs, which is coupled to the KK equations at the 

membrane. The cell is assumed to be cylindrical, and the equations are solved under non-

steady state conditions. Fluxes change over time, and concentration profiles in the ULs 

are nonlinear with space. 

Devireddy (2005) modelled water and solute transport in human ovarian tissue sections, 

applying the KK equations in the membrane regions and Fick’s laws in the vascular 

regions. Axial convection and radial diffusion were assumed, and outputs were solute 

concentration vs. time in a tissue segment. The model was fit to data using nonlinear least 

squares curve fitting, and membrane parameters and diffusion coefficients predicted at 

different temperatures. In contrast to Devireddy (2005), in the present study transport is 

assumed to be in the radial direction only, and outputs are pressure vs. time in a cell. 

Murphy (1999) developed a model in the context of pressure clamp experiments. He 

developed a numerical 2-compartment model of the root without ULs and examined the 

response of the model to a pressure clamp. Equations for the overall volume flux across 

the root were based on the KK equations. In contrast to Murphy (1999) the model 

presented here is applied to pressure probe experiments on plant cells, and includes ULs.  
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The model in the present study combines elements of the above models. KK equations 

and Fick’s equations are used in conjunction, and solved for non-steady state conditions. 

Cell membrane parameters are estimated by fitting the model to data using nonlinear least 

squares curve fitting. Pressure vs. time is predicted for a membrane-UL system in a 

cylindrical cell where flow is assumed to be in the radial direction. The model is applied 

to the conditions of a cell pressure probe experiment, and water dynamics in response to a 

pressure probe are examined. 

3.2.2 Description of present model 
 

The Chara system is the same as described previously, with the addition of internal or 

external ULs. The UL thicknesses δULe and δULi are unknown, and are varied to examine 

the effects of different UL thicknesses on the pressure dynamics. The δULe is chosen to be 

in the range 0-200 μm, and the ULi is permitted to occupy the entire internal cell volume. 

Standard diffusion theory, and Fick’s diffusion-advection equations, are applied to the 

UL regions. The diffusivity D is assumed to be constant and the same for both ULs, and 

equal to D for the solute in pure water taken from published chemistry tables. 

It is assumed that standard KK theory applies to the cell membrane in the presence of 

ULs, and that at the membrane the flow in the ULs equals the flow across the membrane 

as given by the KK equations. The full KK equations, Eqs. (2.1) & (2.2), are used in all 

the models here so solute drag in the Js equation is not neglected, in contrast to the 

classical model used in Chapter 2. Further, the cell volume V in the P-V equation (Eq. 

(2.5)), and the cell surface area A, are assumed to be variable (c.f. §2.2.2) and determined 

from the cell radius R. ε is assumed to be a constant.  

It is assumed that in a CPP experiment the external solution flows past the cell in the 

axial direction only. Although the cell does not usually lie such that its axis is parallel to 

the walls of the CPP chamber, for modelling purposes it shall be assumed that this is so. 

Following this, it is assumed that there is no flow of the external solution in the radial 

direction and no flow into the cell, for although there is some flow into the ends of the 

cell, the area of these regions comprises <1% of the total cell surface area and can 

therefore be ignored. Flow of the solution into the ends of the cell could be significant if 
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the hydraulic conductivity Lp of these regions is larger than the Lp of the rest of the cell 

membrane, however, in this model Lp is assumed to have a single value for the entire cell 

membrane. 

Water flow into and out of the cell is caused by hydrostatic and osmotic pressure 

gradients across the membrane, and not by an external flow of solution into the cell. 

Since both cell sap and APW are assumed to be incompressible, water flux across the 

membrane does not give rise to convective movement inside or outside the cell. 

However, a relative convection is present in the radial direction due to radial movement 

of the system (the membrane and ULs) through the external solution which is not moving 

with r. That is, in the frame-of-reference of the cell membrane, the external solution is 

“seen” to be moving with r, and therefore there exists a radial flow velocity which is 

variable in space.  

As the membrane moves due to cell expansion or contraction, conditions in the ULs 

change accordingly. It is unknown whether the ULs move with the membrane, or whether 

the UL boundaries remain stagnant as the membrane moves. Both scenarios, therefore, 

will be modelled. However, it is important to note that the total radial movement of the 

membrane is a very small fraction of the UL thickness, e.g. typically less than 5μm 

during a CPP experiment. 

 

3.3 Derivation and interpretation of diffusion equations 
 
The movement of the cell membrane, which forms one boundary of the ULe and ULi, is a 

moving boundary problem for diffusion in the ULs. This has important implications for 

the application and solution of the diffusion equations. The ULs are divided into grids 

which facilitate finite difference approximations to differentials, and since the membrane 

moves volume elements in the ULs are variable in time and space.  

Either Fick’s first or second law can be used to model diffusion in the ULs. For 

theoretical interest both are given in this section, but for practical reasons only the first 

law is used for the numerical solution in §3.5.  
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3.3.1 Fick’s first law 
 

We consider a cylindrical system with flux in the radial direction only. Fick’s first law for 

the flux J(r,t) at any point is given by: 

 
 

( , ) CJ r t D C
r

ν∂
= − +

∂
         (3.4) 

 
 
where r = radial distance from the centre of the cell, D = diffusion coefficient (which 

depends on the solute and solvent), C = solute concentration, and ν = ν(r)  is a radial 

flow velocity (convection) at that point. 

 

The radial flow velocity ν across the membrane is defined as: 

 
/Vv J ϕ=            (3.5) 

where the flow-constriction factor φ denotes the fraction of the membrane area available 

for volume flow (Barry and Diamond, 1984; Kargol, 2000). Since pores or water 

channels in the membrane are not included in the model here, it is assumed the entire 

membrane area is available for volume flow so that φ = 1, and Vv J= . It can readily be 

shown that /VJ dR dtν = = − , where R is the radius of the cell, and reflects the fact that ν 

is a relative velocity due to the movement of the membrane, and not bulk flow of a 

solution. The radial flow velocity in the ULs is given by:  

/dr dtν = −           (3.6) 

where r is a radial point in the ULs.    

3.3.2 Fick’s second law 
 

We consider a cylindrical shell with volume V and total surface area S. Let the flux J(r,t) 

be in the radial direction through S, and C(r,t) the concentration at any point inside V. 

The conservation of mass equation for the cylindrical shell is: 
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( , )
( , ) ( , ).    

V S r t

d C r t dV r t dS
dt

= −∫ ∫ J n ,      (3.7) 

        

where n is an outward normal vector. 

 

If C(t) is the average concentration inside V , the mean value theorem can be applied to 

the L.H.S to give: 

 

( , )
( ) ( , ).    

S r t

d CV r t dS
dt

= − ∫ J n .       (3.8) 

 
 
Let A1(r1,t) and A2(r2,t) be the outer and inner surface areas of S respectively. If J1 is the 

flux across A1 and J2 is the flux across A2, integrating the R.H.S of Eq. (3.8) gives: 

 

1 1 2 2( ) (d CV J A J A
dt

= − − ) ,        (3.9) 

 

1 1 2 2J A J AdC C dV
dt V V dt

−
= − −           (3.10) 

 
 
where C is the average concentration inside the cylindrical shell. 
 
 

From Fick’s first law we have for the fluxes across areas A1 and A2: 

 

( )1 r r
r r

CJ D C
r

ν
+Δ

+Δ

∂
= − +

∂
,        (3.11) 

( )2 .
r

r

CJ D C
r

ν∂
= − +

∂
        (3.12) 

 
 
Taylor’s expansion of J1 to first order gives: 
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Applying Eqs. (3.12) & (3.13), the first term in Eq. (3.10) is: 
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In the limit as , the variables and derivatives which strictly applied at values of r 

on the shell boundaries apply in the middle of the shells. Eq. (3.10) becomes: 

0rΔ →

 
2

2
2 ( ) JdC C C dVD C

dt r r r V dt
ν∂ ∂

= − − −
∂ ∂

     

 

      
2

2

1( )C C CD C D
r r r r r V d

νν∂ ∂ ∂
= − + − −

∂ ∂ ∂
C dV

t
,  

     
       

∴   ( )1 1( )dC C C dVrD vrC
dt r r r r r V dt

∂ ∂ ∂
= − −

∂ ∂ ∂
      (3.15) 
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using Eq. (3.12). Eq. (3.15) is the same as the usual Fick’s 2nd law in polar coordinates, 

but with an additional term dV/dt due to the moving boundaries of the volume elements. 

Analytical solutions to the usual form of Fick’s 2nd law, subject to different boundary 

conditions, are detailed comprehensively in Crank (1975). Some solutions are also given 

by Dworecki et al. (2000) and Dworecki et al. (2003) in their analysis of concentration 

profiles in membrane boundary layers.  

 

These expressions for Fick’s second law are of little advantage in the present model, and 

therefore the application of Fick’s first law will be focussed on.  

 
 

3.4 Numerical approach to solving the diffusion equations 

3.4.1 Numerical approach 
 

There are three ways the model can be numerically implemented: 

1. Assume the outer ULe and inner ULi boundaries are fixed relative to the cell axis, 

and the thickness of the ULs (δUL) and numerical grids change over time as the cell 

expands or contracts; 

2. Assume the outer ULe and inner ULi boundaries move in space with the membrane, 

and the thickness of the ULs and numerical grids remain constant over time;  

3. Assume that the outer ULe and inner ULi boundaries are fixed, and all the 

numerical grids in the ULs are also fixed, except for the two immediately adjacent 

to the membrane which change width over time. 

The first two are more mathematically rigorous than the third, since the numerical 

scheme should place no conditions on the relative width of the grids, for which  

in the limit. However, as the third approach has been used elsewhere (Tyree et al. 2005) 

this model is included here to check its results with a more rigorous approach. All three 

schemes should give the same results, since the membrane moves only slightly during the 

course of a CPP experiment and the change in volume of the cell (and UL) at any one 

0rΔ →
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time step is small relative to the total cell volume. However, a limitation of the second 

approach is that the ULi thickness is only able to come close to but not equal the entire 

cell volume, for the center of the cell is fixed and cannot move. A limitation of the third 

approach is that it may become numerically unstable when Δr is made sufficiently small 

such that the membrane moves further than the width of a grid.  

All three approaches were implemented, and found to give the same quantitative results. 

Runtimes for a simple simulation of CPP dynamics were the same to within 3%. 

Runtimes for parameter estimations, involving many simulation runs, varied between the 

methods by differing amounts depending on the model conditions.  

Implementation of the first 2 methods is described in §3.5. For ease of reference the first 

method is named the “Varying δUL method”, and the second method named the “Fixed 

δUL method”. Characteristics of each are that: 

1. Varying δUL method:  Non-membrane UL boundaries are fixed, δUL changes 

over time.   differs for each radial point r/jdr dt j in the UL. The shell spacing Δr 

is dependent on t. Radial points rj, the surface area Aj, and volume Vj of the shells 

change with time.  

 

2. Fixed δUL method:  Non-membrane UL boundaries move with the membrane, 

and δUL remains constant over time. /jdr dt dR dt/=  where R is the cell radius. In 

the frame-of-reference of the membrane the shells are fixed so that the shell 

spacing Δr remains constant over time. Radial points rj, the surface area Aj, and 

volume Vj of the shells change with time.  

 

3.4.2 Indexing  
 
 
Let R be the radial distance to the membrane, Ra be the radial distance to the inner ULi 

boundary, and Rb the radial distance to the outer ULe boundary. The ULs are segmented 

into concentric shells of width Δr (i.e. denotes shell spacing), and which have the same 
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cylindrical geometry as the cell. Let the number of shells in the ULe be m-1 and the 

number of shells in the ULi be n-1. 

The indexing was chosen to step inwards from the bulk solution towards the cell axis, in 

both the ULe and ULi, since in an OPP the perturbation occurs outside the cell and 

propagates inwards. The midpoint of each ULe shell is at a distance rj from the center of 

the cell, where j = 1:m. The index 1 corresponds to a point outside the ULe (in the bulk 

solution), and the index m corresponds to the midpoint of the shell externally adjacent to 

the membrane. This is illustrated in Fig. 3.2. Similarly, the midpoint of each ULi shell is 

at a distance rj from the center of the cell, where j = 1:n. The index 1 corresponds to the 

midpoint of the shell internally adjacent to the membrane, and the index n corresponds to 

a point outside the ULi in the central region of the cell.  

 The jth shell has volume Vj, and inner and outer surface areas Aj+1 and Aj respectively. 

The indexing of Vj corresponds to that of rj. The volume of the bulk solution is assumed 

to be infinite. The total number of Aj values is m-1 for the ULe and n-1 for the ULi, 1 less 

than that for rj and Vj in each of the ULe and ULi regions. 

rm r1r1rn

a bR

bulk solutioncell core

rj

A1An-1 A1Am-1

Cj

Vj

Jj

Δr

Aj
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Fig. 3.2  Indexing for the numerical UL model 

 

The distance between the midpoint of 2 adjacent shells is equal to the width of a shell. Cj 

is the concentration at the midpoint of the shells (at each rj), and Jj is the flux across the 

shell boundaries (at each Aj).  

The numerical code was made compatible with the no-ULs case, by making m=1 when 

no ULe is present, and n=1 when no ULi is present. 

 

3.5 Numerical solution of the diffusion equations 
 

Transport in the ULs may be solved by applying either Eqs. (3.10) & (3.4), or Eq. (3.15), 

since the latter is derived from the former. It was chosen to use Eqs. (3.10) & (3.4), as 

this avoids second derivatives, and the method of solution is more straightforward and 

more numerically stable. Explicit finite differences based on Euler’s method (Ames, 

1977) were used for the equations, and found to be sufficiently stable and accurate for the 

problem. 

 
The areas Aj, fluxes Jj, and velocities νj are solved at the UL shell boundaries, and the 

concentrations Cj and shell volumes Vj are solved at the middle of the shells (see Fig. 

3.2). A point at the center of a shell has radial coordinate rj, and a point on a shell 

boundary has radial coordinate rBj. Time steps are denoted by the superscript ‘k’. 

3.5.1 Main equations  
 

For each jth shell in the UL, the flux Jj across a shell boundary is given by:  
 

Bj
j Bj

Bj

C
J D C

r
ν

∂
= − +

∂
          (3.16) 

 
where CBj is the concentration at the shell boundary and determined by averaging the 

concentration across 2 adjacent shells. 
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From Eq. (3.9), the mass balance equation for a shell is: 
 

1 1( )j j j j j j
d C V J A J A
dt − −= − ,

Δ

        (3.17) 

 
where Cj is determined at the center of the shells. 
 
 
Eq. (3.17) can be expanded and then finite-differenced, however the indexing is clearer 

when finite differences are made directly. This gives: 

 
1 1

1 1( )k k k k k k k k
j j j j j j j jC V C V J A J A t+ +

− −− = −    
 

∴  1
1 11

1 ( )k k k k k
j j j j jk

j

C J A J A t C
V

+
− −+

⎡= − Δ +⎣
k k
j jV ⎤⎦      (3.18) 

 

where: 
 

2k k
j B jA Lrπ= ; 

 
2 2

1( )k k k
j B j B jV L r rπ −= − ; 

 

and from Eq. (3.16): 
 

1 1( ) (
2

k k k
j j jk k

j j

C C C C
J D

r
ν− −− +

= − +
Δ

)k
j . 

 
 
The shell width, Δr, equals the thickness of the UL at each time step, divided by the 

number of shells (which is a constant). For the Varying δUL method, Δr and r are time-

dependent and ν = ν(r), so these values will change with the new cell radius R at each 

time-step. We have: 

 
1

1

1

k
k aR Rr

n

+
+ −

Δ =
−

 in the ULi; 

1
1

1

k
k bR Rr

m

+
+ −

Δ =
−

 in the ULe; 
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1( )
  

k k
B j B jk

j

r r
t

ν
+ −

= −
Δ

,  except at Ra and Rb  where νk=0 for all k. 

 
 
 
For the Fixed δUL method, Δr and r values are time-independent. As r moves together 

with the cell radius R, ν depends on R only. Therefore we have: 

 
1k kr r+Δ = Δ ;     

 
1k k

k
j

R R
t

ν
+ −

= −
Δ

.  

 
 

For both methods, 

 
1 1

1
k k k

Bj Bjr r r+ +
+= − Δ 1+ . 

 

The ends of the cylindrical shells have been ignored in the equations for Aj, since these 

contribute a very small component to the area. In the expression for cell area the ends of 

the cell have also been ignored. 

 

3.5.2 Boundary equations  
 

a) At the membrane 

 
The boundary condition at the membrane is that the flux across the membrane due to the 

KK equations equals the flux into or out of the UL due to diffusion-advection. For the 

fluxes in the ULi shell adjacent to the membrane: 

 
1
k k

sJ J=   for permeant solutes;  and 
 

1 0kJ =    for impermeant solutes. 
 

For the fluxes in the ULe shell adjacent to the membrane: 

 
k k
m sJ J=   for permeant solutes;  and 
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0k

mJ =    for impermeant solutes. 
 
 
b) At the inner ULi and outer ULe boundaries 
 

The boundary condition at the outer ULe boundary is that the concentration in the 

external solution is a constant. I.e.: 

 
C = Co      at   r = r1, 

where C0 is a constant bulk concentration value. 
 
 

In the homogeneous cell core, Cj=Cn, and as there is no flux across an inner shell 

boundary, the mass balance equation becomes: 

 

1 1( )n n n n
d C V J A
dt − −= − .

Δ

         (3.19) 

 
 
Finite differencing Eq. (3.19) gives 
 

1 1
1 1

k k k k k k
j j j j n nC V C V J A t+ +

− −− = −  
 

(1
1 11

1k k k
n n nk

n

C J A t C
V

+
− −+= − Δ + )k k

n nV        (3.20) 

 

where: 
 

1 12k k
n BnA Lrπ− −= ; 

          
1 2

1( )k k
n BnV rπ+

−= L

1k +

; 
 

and  = constant for the Varying δ1
k

Bnr − UL method, 
 

1 1
1 2

k k
Bn Bnr r r+ +

− −= − Δ  for the Fixed δUL method. 
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c) At the membrane in the absence of ULs 
 
 
When no ULs are present, the concentration C inside the cell is given by an equation with 

the same form as Eq. (3.20) but with A, V, and J (=Js) determined at the membrane. This 

is because mass balance is now for a complete cylinder rather than a cylindrical shell. 

 

3.5.3 Numerical stability and internal consistency 
 

a) Numerical stability 
 

For stability, a numerical solution of the diffusion equations with Euler’s method requires 

that (Ames, 1977; also see §A.2 in appendix):  

2( ) /(2 )t r DΔ < Δ .         (3.21) 

A numerical analysis was performed to determine values for Δr and Δt which optimized 

runtime and accuracy. Simulated OPP data were generated using: a) a few values of Δr 

ranging between 0.2-1.0 x 10-5 m, and b) a small value of Δr (0.15x10-5 m) for which it 

was assumed numerical errors would be small. The data from (b) was used as a reference 

for evaluating the accuracy of data from (a). Runtimes for each of these runs, and RMS 

errors between data from (a) compared with data from (b), were calculated. The analysis 

was carried out using two criteria for Δt:  and , and for 

2 systems: 1 ULi = 5x10

2( ) /(2 )t r DΔ = Δ 2( ) /(4 )t r DΔ = Δ
-5 m, and 2 ULs where ULi = 3.6x10-4 m and ULe = 1.0x10-4 m, 

all with D = 1.15x10-9 m2 s-1, the diffusion coefficient for acetone in water. 

It was verified that  was required for numerical stability, as when 

 the results were unstable and the simulated curve did not return to 

equilibrium for the system with 2 ULs and small values of Δr. The runtimes for the 1 ULi 

and 2UL systems were found to decrease exponentially with increased Δr, and the RMS 

values (as defined in the previous paragraph) increase linearly with Δr (Fig. 3.3). A value 

for Δr of 0.5x10

2( ) /(2 )t r DΔ < Δ

2( ) /(2 )t r DΔ = Δ

-5 m, corresponding to Δt = 0.005s, was considered a good choice which 
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minimized the runtime without loss of numerical precision. The residual plot between the 

corresponding P-t curve, and the P-t curve using Δr = 0.15x10-5m and Δt = 0.0005s, is 

shown in Fig. 3.4. Residual values are well within the measurement error in P of 0.0005 

MPa. 
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Fig. 3.3  Showing how runtime and RMS values (using simulated data) vary with Δr. Using Δt= Δr2/(4D) 
for: a) 1 ULi = 5x10-5m  (——), and b) 2 ULs with ULi = 3.6x10-4m and ULe = 1.0x10-4m (——). 
 

 

As the size of Δt  is very small, simulated P values were output at time intervals larger 

than Δt (e.g. every few Δt) and these values were in turn interpolated to give P values 
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corresponding to each data time t. These output intervals had to be small enough for the 

interpolation to be accurate. An output interval was determined using the same method 

detailed above, based on minimizing RMS errors between runs using a particular interval 

and runs using a small output interval. This analysis was carried out for an HPP 

experiment, since HPP data is more sensitive to the size of the output interval. Storing P 

at every τw/10 was found to be sufficient. However, as the size did not appear to affect the 

runtime of the code a smaller output interval of τw/30 was used. 

Residual curve for plots using 2 different values of Δr, 
for a system with 2ULs
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Fig. 3.4  Residual plot for 2 simulated P-t curves, using Δr= 0.5x10-5m and Δr= 0.15x10-5m. 

 
 
b) Internal consistency 
 
The numerical solution of the model must satisfy conservation of mass across the 

membrane-UL system. For the permeant solutes this requires: 

1 1 0k k k k
sj j

k j k
C V J A t− Δ∑∑ ∑ = .        (3.22) 

The first term is across the whole membrane-UL system (with one or two ULs), and Csj 

and Vj are the concentrations of permeant solutes and volumes of the jth shell in the ULs, 

including the central core of the cell. The second term is the number of mol of solute 

entering the system up to any time t, where J1 and A1 are, respectively, the solute flux 

across and surface area of the outermost shell (either the ULe or the cell membrane). 
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The number of mol of impermeant solutes inside the cell remains constant, so that: 

0 0k k
i ij j

k j
n C V− ∑∑ = ,           (3.23) 

where ni0 is the number of mol of impermeant solutes in the cell at t=0, and Cij and Vj are 

the concentrations of impermeant solutes and volumes of the jth shell in the ULi, 

including the central core of the cell. For the impermeant solutes outside the cell, Eq. 

(3.22) is used with the first term summed over all the shells in the ULe only. 

Where no ULs are present, the number of mol of permeant solutes in the cell must equal 

the sum of the number of mol of permeant solutes crossing the membrane up to any time 

t. The concentration of impermeant solutes in the cell changes with cell volume, 

according to Eq. (2.4). The concentration of impermeant and permeant solutes outside the 

cell remain constant. 

From the principle of conservation of mass, the concentration gradient of permeant 

solutes should also be the same on either side of the membrane – otherwise mass would 

accumulate in the membrane, which should not happen. The gradients should be exactly 

equal in steady state and approximately equal in non-steady state. That is, one should 

have: 

1

1

0
k k
sem s
k k

m

C C
r r

Δ Δ
− =

Δ Δ
 for all k,       (3.24) 

which says that the difference in the concentration gradients on either side of the 

membrane (at the mth shell in the ULe and the 1st shell in the ULi ) should be zero at all 

times. 
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3.6 Examination of model behaviour 

Fitting of the CPP data to obtain the membrane parameters will be carried out in Chapter 

4. In this chapter the model is not fit to observed data, but different aspects of the model 

are varied in order to analyse the behaviour of the model. 

 
 
 

3.6.1 Implementation of model 
 

The model was coded in Matlab such that modifications to the model could be made 

through changing appropriate switches. Depending on the system and experiment: 

• an external UL may or may not exist 

• an internal UL may or may not exist 

• the pressure perturbation is hydrostatic or osmotic 

• the pressure perturbation is positive or negative 

• permeant solutes are present or not present in the external solution 

• an external ramp (where the external concentration reaches the final perturbation 

value over a period of time, see §2.7.3b) does or does not exist. 
 

It was verified that when δULe and δULi were set to 0 in the model, the relaxation curves 

and RMS errors for observed vs. predicted data were the same as those for the classical 

model and analytical solution. In addition, mass was conserved to within 1 part per 

billion. This illustrated that the equations for a system without ULs were implemented 

correctly.  

 

When ULs were present in the model, the P-t curves were found to be log-linear and 

exhibit the same shape as the data relaxation curves. This verified that the KK equations 

still represent the cell dynamics in the presence of ULs, and that the classical method of 

parameter determination may still be applied. Mass was conserved to within 1 ppb.  
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The relative difference in the concentration gradient of permeant solutes on either side of 

the membrane was plotted against time for the first 15s, using the normalized form of Eq. 

(3.24) given by: 

 

1 1

1 1

( ) /
k k k k
sem s sem s
k k k k

m m

C C C C
r r r r

⎛ ⎞ ⎛Δ Δ Δ Δ
− +⎜ ⎟ ⎜Δ Δ Δ Δ⎝ ⎠ ⎝

2 0
⎞

=⎟
⎠

   for all k.    (3.25) 

The relative difference became close to zero after the first few seconds, and decreased 

when Δr was decreased (Fig. 3.5). The non-zero value during the first few seconds is a 

numerical manifestation due to possible inconsistencies in the initialization of the system 

of equations, due to the largely arbitrary assignment of values within the finite difference 

shells.  

 

 
Fig. 3.5  Relative difference in the concentration gradients of permeant solutes on either side of the 
membrane, vs. time. Relative difference is calculated using Eq. (3.25). ‘x’: with Δr=5x10-6m, ‘x’: with 
Δr=1x10-6m, ‘x’: with Δr=2x10-7m. 
 

 

Validation of the model with ULs will be carried out in Chapter 4 when the model is 

applied to real data. 
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3.6.2 Effects of ULs on the relaxation curve 
 
The model was run using initial and perturbation conditions consistent with the HPP and 

OPP data from Henzler et al. (2004) fitted in §2.5. A constant set of membrane 

parameters were used with the ULe and ULi thicknesses varying, namely: Lp = 2.0 x 10-6 

m s-1 MPa-1, ps = 5.0 x 10-6 m s-1, and σ = 0.15.  

 

P-t curves for a negative OPP experiment were plotted for 4 different ULe thicknesses 

and 4 different ULi thicknesses (Fig. 3.6). The plots show that ULs have a clear effect on 

the relaxation, damping the range of pressure changes, and slowing down the rate of 

return to equilibrium and decreasing the gradient of the curves. Further examination of 

effects of ULs on the P-t curves was performed by analysing changes in the curve 

characteristics (identified later in Fig. 3.8). These were calculated using the same method 

by which curve characteristics were derived for the observed data (see §2.4.1), with tm 

interpolated from the simulated values. It was found that as δULe increases, Pm decreases, 

while tm, τw and τs increase (Fig. 3.7a). As δULi increases, Pm decreases, τs increases, while 

tm and τw change little (Fig. 3.7b). The effect of a ULi on the P-t curve is less pronounced 

than the effect of a ULe. Most of the influence of a ULi occurs within 1x10-4 m from the 

membrane, and for δULi > 2x10-4 m the curve characteristics reach a stable value. 

 

The ULe also causes a time-delay in the curve (Fig. 3.6c), due to the time taken for 

solutes to pass through the ULe and reach the cell membrane. This effect is not observed 

when only a ULi is present. The time-delay was calculated by fitting a straight line 

regression through a few initial points (Fig. 3.8), with the time-delay given by the time at 

which this line intersects the line P=P0. The time-delay was found to increase non-

linearly with δULe (Fig. 3.9). 
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Fig. 3.6  Showing how the simulated OPP curve varies with UL thickness. (a) With δULi = 350μm, and δULe  
= 0 (——), 50μm (— —), 100μm (—. —), 150μm (-----). (b) With δULe  = 50μm, and δULi = 0 (——), 
100μm (— —), 200μm (—. —), 300μm (-----). (c) Close-up of (a) illustrating the time-delay in the curve. 
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Curve characteristics vs. ULe thickness
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Fig. 3.7  Showing how curve characteristics of the simulated OPP relaxation curve changes with UL 
thickness, for: a) 1 ULe present, and b) 1 ULi present. Curve characteristics: Pm (——), tm (——), τw (——
), τs (——). Calculation of τw, Lp, and σ include the time-delay.  
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Fig. 3.8  Illustrating method for calculation of the time-delay, and showing locations of curve 
characteristics, for a negative OPP (Fig. 2A) with 2 ULs. 
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Fig. 3.9 Time-delay vs. ULe thickness for simulated OPP data. 
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For an HPP experiment, a ULi also slows down the rate of return to equilibrium, and 

hence increases τw (Fig. 3.10). After a certain value of δULi the ULi has little additional 

influence. The ULe has negligible effect since the external concentration of impermeant 

solutes is very low. The effects of ULs are much smaller for an HPP experiment 

compared to an OPP experiment. 

 
 

 
Fig. 3.10  Showing how the simulated HPP curve varies with ULi thickness. With δULe  = 50μm and: a) δULi 
= 0 (——), b) δULi ≥ 100μm (— —).  
 

 

While ULs slow the rate of return to equilibrium, they do not change the final equilibrium 

pressure. In accordance with the analytical solution to the KK equations, the model 

predicts that for an HPP, PE<P0 for a negative pulse and PE>P0 for a positive pulse, and 

PE = P0 for an OPP experiment. 
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3.6.3 Concentration profiles in the ULs 

The concentration of permeant solutes Cs in the ULs was plotted against r for a positive 

OPP experiment (Fig. 3.11), using the same parameters and initial conditions as in §3.6.2. 

It was chosen to plot concentration profiles for a positive pulse as concentration profiles 

in the literature are often shown for this case. Concentration profiles for a negative pulse 

take the form of those for the positive pulse reflected about the r-axis. 

 

The profiles in Fig. 3.11 are similar to those in Crank (1975) for non-steady-state 

diffusion through a cylinder, where the concentration profiles in the ULi correspond to 

the case of variable surface concentration (the surface being the membrane), and the 

concentration profiles in the ULe correspond to the case of constant surface concentration 

(the “surface” being the outer boundary of the ULe). When ramps are present in the 

model, concentration profiles in the ULe have a flatter gradient since the concentration at 

the outer ULe boundary decreases from 160mM at t=0 to 0 during the period of the ramp 

(Fig. 3.12). 

 
 
The profiles in Fig. 3.11 are consistent with the diagram in Fig. 3.1 which shows how 

ULs affect the concentration gradient at the membrane. Fig. 3.1 corresponds to the 

concentration profiles given in Pedley (1983) for the steady-state solution to Fick’s 

convection-diffusion equation (Eq. (5.1)) for transport in two ULs separated by a 

membrane, subject to the boundary conditions that beyond the ULs the concentrations are 

constant. These profiles differ from the common diagram given in the literature (Fig. A.1 

in appendix) for how ULs affect the concentration gradient at the membrane. 

 

The profiles in Fig. 3.1 and Fig. 3.11 are a consequence of having a discontinuous 

concentration difference both at the membrane and at the outer boundary of the ULe. The 

latter arises because it is assumed that at t=0 the concentration in the bulk solution 

changes instantaneously while the concentration in the ULe remains as it was, and then 

changes due to diffusion when t>0. Only if the concentration in the ULe changes together 

with the bulk solution at t=0, will the concentration profiles then look like Fig. A.1. This  
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Fig. 3.11  Concentration profiles in the ULi and ULe for OPP data. Showing: a) a period of 0-10 s, lines at 
0.5s intervals; b) a period of 10-330 s, lines at 20s intervals. Red lines indicate the initial concentration 
profile at the beginning of the plot. 
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Fig. 3.12  Concentration profiles in the ULi and ULe for OPP data, when a 2s ramp is present in the 
external solute concentration. Showing a period of 0-10 s, with lines at 0.5s intervals. Red lines indicate the 
initial concentration profile at the beginning of the plot. 
 

 

 
perturbation condition, however, is akin to having no ULe but diffusion occurring in the 

bulk solution. Fig. A.1, therefore, does not accurately reflect the concentration profiles 

across the membrane under the conditions of a CPP experiment.  

The true concentration profiles are probably a combination of those in Fig. A.1 and those 

in Fig. 3.11 or Fig. 3.12. This is because in the present model radial transport is modelled 

at one axial point only, which can be taken to be a point mid-way along the length of the 

cell, so that t=0 is when the external solution reaches this point. However, in reality as the 

new solution traverses the length of the cell, the ULe concentration is perturbed at the 

leading edge of the cell first, so that at t=0 in the model the ULe concentration mid-way 

along the length of the cell has already changed.  
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3.6.4 Effects of convection on pressure dynamics 
 

The convective component to transport in the ULs can be removed by making ν=0 in 

Fick’s diffusion-advection equation (Eq. (3.4)), and keeping the areas A and volumes of 

the UL shells constant (dV/dt=0) in the mass-balance equation (Eq. (3.10)). This was 

done in a HPP and an OPP experiment, in order to explore the relative contribution of 

convection to the pressure dynamics. 

 

a) HPP experiment 
 

In an HPP experiment there are no solutes permeating the membrane, and concentration 

profiles in the ULs will be constant with r unless the concentration is perturbed due to the 

membrane moving into the UL regions. The membrane increases the solute concentration 

on the upstream side of the flow, and decreases it on the downstream side. In the frame-

of-reference of the cell a flow into the cell (for example) sweeps away the solutes from 

the membrane, reducing the concentration at the inner membrane surface. Solutes are 

concentrated at the outer membrane surface. This “sweep-away effect” (see §3.1.3b) due 

to solute-drag is the main effect of ULs in an HPP experiment. When the terms 

contributing to convection are removed, no effect of the ULs are seen because the 

concentration distribution in the ULs have not been perturbed, and no fluxes due to 

diffusion or convection are present.  

 
b) OPP experiment 
 

The presence or absence of convection in an OPP experiment makes a negligible 

difference to the relaxation curves, concentration profiles in the ULs, and concentration 

difference across the membrane. With permeant solutes, the convective component which 

gives rise to the sweep-away effect is a much smaller component than diffusion which 

gives rise to the gradient-dissipation effect (see §3.1.3). The convective component is 

therefore relatively larger in an HPP than in an OPP experiment.  
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3.6.5 Effects of ULs on measured membrane parameters 

a) Estimation of membrane parameters 
 

Since ULs affect the simulated relaxation curves, the classically-estimated parameters are 

also affected. To examine how much ULs cause the classically-estimated membrane 

parameters to differ from the actual parameters, the ratios of the classically-estimated 

parameters (parameterc) over the corresponding membrane parameters (parameterm), 

were plotted against UL thickness (Fig. 3.13). In this analysis parameterm  represents the 

“true” membrane parameter (i.e. used in the KK equations to produce the simulated data), 

and parameterc   represents the “observed” membrane parameter (i.e. calculated from the 

simulated data using the same technique as that applied to CPP data). A parameter ratio ξ 

can be defined as: 

 

c

m

parameter
parameter

ξ = .         (3.26) 

 

It was found that for an OPP curve, a ULe causes the classically-estimated parameters to 

underestimate the true parameters (Fig. 3.13a), and this effect increases with increasing 

δULe. This underestimation of the true parameters is consistent with Fig. 3.6 where it was 

shown that a UL “flattens” the P-t curve. The effect is much more marked for Lp than ps 

and σ. With increasing δULi, the observed Lp appears to slightly overestimate the true Lp, 

and ps and σ are again underestimated (Fig. 3.13b). For a δULi > 200μm, the ULi has little 

additional effect on the parameter estimation. The estimation (measurement) of ps and σ 

appear to be affected by ULs in a similar manner to each other, and this is similar for the 

ULe and ULi. The effects of ULs on the measured Lp is more marked, and do not appear 

to be the same for the ULe and ULi.  

 

For an HPP curve, a ULe did not have any effect on the classically-estimated membrane 

parameters, because the concentration of impermeant solutes in the external solution is 

very small (πie = 0.1 MPa) compared to the concentration of impermeant solutes inside 

the cell (πi  = 0.63 MPa). A ULi had only a small effect on the classically-estimated Lp, 

slightly reducing it so that ξ = 0.96 for a δULi ≥ 100μm. This is to be expected, since 
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unlike the OPP experiment using permeant solutes, diffusion in the ULs is primarily due 

to concentration changes at the moving membrane, and not changes in the bulk solution. 

Concentration changes due to the moving membrane is much smaller than that due to 

diffusion of permeant solutes across the membrane. 

 

The results shown here indicate that the classically-estimated membrane parameters are 

strongly dependent on the thickness of the ULe and ULi. Results clearly demonstrate that 

if the Classical method of estimating membrane parameters is applied to real data from 

systems in which ULs are present, the estimated parameters will generally underestimate 

the true membrane parameters. This raises the question: By how much may the 

classically-estimated membrane parameters underestimate the actual membrane 

parameters? This will be explored when CPP data is fit in Chapter 4. It should be noted 

that the magnitude of the effects in Fig. 3.13 will change if a different starting ‘true’ 

membrane parameter is used. For example, if the true Ps is very low then the ULs will 

have no effect, but if the true Ps is larger than that used in Fig. 3.13 the effects of ULs 

will be more (see §3.1.3). 
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Fig. 3.13  Showing parameter ratios for simulated OPP data. Lp (——), ps (——), and σ (——) vs. (a) ULe 
thickness, and (b) ULi thickness. 

 

b) Polarity in membrane parameters 
 

A polarity in Lp has been observed in HPP experiments and in OPP experiments with 

impermeant solutes (Dainty and Ginzburg, 1964a; Steudle and Zimmermann, 1974), and 

in OPP experiments with permeant solutes (Steudle and Tyerman, 1983). Polarity may be 

species-dependent, or dependent on the water flow across the membrane, as Steudle and 

Tyerman (1983) did not observe a polarity in Lp in HPP experiments. Polarity in Lp may 

also be due to the presence of ULs (Steudle and Tyerman, 1983). 
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To test whether the UL model predicts polarity in the membrane parameters, the model 

was used to predict and compare P-t curves for HPP experiments and for OPP 

experiments with permeant solutes. Simulations using positive and negative pulses of the 

same magnitude, using the same membrane parameters but a range of ULe and ULi 

thicknesses, were compared. It was found that positive and negative pulses produced P-t 

curves which are symmetric about the t-axis, for both HPP and OPP experiments.  

 

In order to test the experimental findings that polarity is increased with increasing 

external concentration of impermeant solutes (Zimmermann & Steudle, 1978), the 

analysis was repeated with the external osmotic pressure increased by 2 orders of 

magnitude (πie = 1.0 MPa). No significant polarity in the measured parameters was 

predicted for either an HPP or OPP experiment. 

 

Finally, the analysis was repeated using different values of the diffusion coefficient for 

the external and internal ULs (D = 1.15x10-9 m s-1 for the ULe; D = 0.8x10-9 m2 s-1 for 

the ULi), and with varying UL thicknesses. Again no polarity in membrane parameters 

was predicted by the model. 

 
In summary, the present model does not predict that ULs introduce a polarity into 

classically-estimated membrane parameters. Consequently, any polarity observed in the 

classically-estimated parameters when the data is fit (Chapters 4 and 5), are due to other 

experimental or physical conditions and not UL effects. It was pointed out in §2.2.2 that 

the KK equations also do not predict polarity in the membrane parameters.  

 
c) Effects of external concentration on membrane parameters 
 

Experiments have found that measured Lp values decrease when the external 

concentration of impermeant solutes is increased (Zimmermann & Steudle, 1978). In the 

absence of ULs the model did not predict any change in the classically-estimated 

parameters when external concentration was changed. However, changes were predicted 

in the classically-estimated parameters when ULs are present.  

When the external osmotic pressure πie was varied over the range 0.01-1.0 MPa (π ie = 

CRT) for δULe = 5x10-5 m and δULi = 4x10-4 m, the model predicted a decrease in Lp with 
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increased external concentration for an HPP experiment, but a non-monotonic change in 

Lp for an OPP experiment (Table 3.1). An influence of external concentration on Lp is 

expected since the ULs act to change the concentration gradient across the membrane, 

which would also be affected by the amount of solutes in the external solution. This 

behaviour is also expected by looking at the KK equations (Eq. (2.13)), which show that 

changing πie affects kw (and thus Lp) through changing πi0 (which is an equilibrium value 

and thus dependent upon πie).  

 
 
Table 3.1  Showing how the classically-estimated Lp changes with differing external concentration of 
impermeant solutes, for a negative HPP and negative OPP experiment.  

 
π ie (MPa) Lp (x 106 m s -1 MPa-1) 

 Neg HPP Neg OPP 
0.01 1.92 2.11 
0.05 1.91 2.30 
0.1 1.91 2.28 
0.5 1.88 2.14 
1 1.88 1.82 

 
 
 
d) Effects of size of perturbation pulse on membrane parameters 
 

Increasing the size of the pressure pulse increases the magnitude of Jv, which causes a 

larger sweep-away effect since dV/dt and the changes in volume are larger (Ye et al. 

2006). The model runs for the negative OPP and negative HPP experiments were 

repeated using a pressure pulse of twice the original magnitude. The classically 

determined parameters were calculated for a few values of δULe  and δULi and compared 

with those found previously.  

It was found that there were no differences in the parameter values or behaviour of the P-

t curve due to changing the size of the pressure pulse. This is consistent with the KK 

equations, which exhibit a linear relationship between ΔCse and P for the OPP (Eq. (2.9)), 

and P1 and P for the HPP (Eq. (2.6)), when the membrane parameters and initial 

equilibrium conditions are kept constant. 
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The above results show that inclusion of ULs in the model doesn’t affect the overall 

dynamics of the P-t curve, but does affect the actual values of parameters estimated using 

the model. 

3.6.6 Effects of D on pressure dynamics, and the permeability equation  
 

a) Influence of D on the measured membrane parameters 
 

When the membrane parameters are kept constant and the value of D is decreased, the 

total permeability pT of the system should decrease by Eq. (3.2). This behaviour was 

verified with the numerical UL model from simulations of OPP experiments, where D in 

the ULi was varied and D in the ULe (1.15x10 -9 m2s-1) and the UL thicknesses were kept 

constant (δULe = 5x10-5 m and δULi = 3.5x10-4 m). In this case pT is the classically-

estimated ps value, i.e. the value that would be measured for the membrane ps when ULs 

are assumed to be absent. Decreasing D is equivalent to increasing the UL thickness, as 

both slow down the diffusion of solutes. When different values of D are used for the ULi 

and ULe in the model, the classically-estimated parameters should change in a manner 

similar to those in Fig. 3.13, where the x-axis now represents decreasing D rather than 

increasing UL thickness. E.g. when D in the ULi is decreased, ξ(Lp) should increase and 

ξ(ps) and ξ(σ) should decrease. This was indeed verified by the numerical UL model 

(Table 3.2). 

 
 
Table 3.2  Parameter ratios due to decreasing D in the ULi. Base value for D is 1.15x10-9 m2 s-1. 

 
D(x10-9m2 s-1) ξ(Lp) ξ(ps) ξ(σ) 

1.15 1.16 0.60 0.62 
1.05 1.18 0.59 0.61 
0.95 1.21 0.57 0.60 
0.85 1.25 0.55 0.58 
0.75 1.30 0.53 0.57 
0.65 1.34 0.51 0.55 
0.55 1.40 0.49 0.53 
0.45 1.47 0.46 0.50 

 

Although it was assumed that D is the same outside and inside the cell (due to the 

scarcity of information about D inside the cell), and equal to D = 1.15x10-9 m2 s-1 in 
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water, it is likely that D is less inside the cell since the cell interior is more concentrated 

than water and contains more suspended particles. This suggests that, in reality, the 

under-estimation or over-estimation of the measured parameters will be even more than 

that predicted by the UL model which assumes that D is the same for the ULi and ULe. 

If, for a particular solute, the value of D inside the cell is much less than the value in 

APW, then this will have a large impact on the estimated parameters. Table 3.2 shows 

that the parameter ratios vary significantly from those for the reference value of D = 

1.15x10-9 m2 s-1.   However, this may be different when parameters are estimated for fits 

to the data. This will be done in §4.8.4. 

 
b) The permeability equation  
 

The steady-state permeability equation (Eq. (3.2)) is sometimes used to predict the 

influence of ULs on the classically-estimated membrane parameters (Ye et al. 2006; 

Steudle and Frensch, 1989). Therefore, it is important to examine and compare 

predictions of total permeability using Eq. (3.2) with predictions using the non-steady 

state UL model. As mentioned above, pT  is the classically-estimated ps. It was found that 

the value of 1/ps predicted by Eq. (3.2) departed from the value of 1/ps using the classical 

method of parameter estimation, by up to 30% for certain ranges of the UL thicknesses 

(ULe and ULi were both varied between 0-200 μm). This shows that Eq. (3.2) cannot be 

used to quantify the effects of ULs for systems in non-steady state. That is, estimates of 

ps using Eq. (3.2) would differ from that estimated by the UL model. When the true 

membrane ps was changed by 10% for a typical set of ULe and ULi values, this resulted 

in a 6% difference in pT, which shows that a 30% error in the estimate of pT would 

correspond to a much larger error in the estimate of the true membrane ps.    

 

3.7 Conclusions 

A model of water and solute transport across a membrane with unstirred layers (ULs), 

coupling the KK equations and diffusion equations, has been described. A numerical 

solution using Euler’s method was implemented in Matlab with provision for 

accommodating a number of experimental conditions.  
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Three approaches to implementing the UL model were discussed: one where the outer 

ULe and inner ULi boundaries are fixed, one where the outer ULe and inner ULi 

boundaries move together with the membrane, and one where all numerical grids except 

those immediately adjacent to the membrane are fixed. The first method is recommended 

since it is mathematically rigorous (in contrast to the third method) and the ULi thickness 

can be the entire cell volume (an advantage over the second method). Whether fixing the 

non-membrane UL boundaries accurately reflects the physics of UL behaviour is 

unimportant for modelling purposes, since the change in volume of the cell (and UL) at 

any one time step is small relative to the total cell volume, and all three methods gave 

consistent model predictions. 

 

Simulation of an OPP relaxation curve (§3.6.3) gave concentration profiles in the ULs 

which were consistent with those given by the analytical solution to non-steady state 

diffusion through a cylinder (Crank, 1975). These are not the same as the profiles often 

encountered in the literature which aim to show how ULs affect the concentration near 

the membrane. This is because the model used in this study assumes that for an OPP 

perturbation the concentration in the bulk solution changes but the concentration in the 

ULe doesn’t, so that there is a discontinuity at the outer ULe boundary. This is believed 

to more accurately reflect the conditions of a CPP experiment and the physical nature of a 

UL (a stagnant layer with primarily diffusional mixing). 

 

An analysis of convection in the ULs revealed that this is a major component to transport 

in the ULs for an HPP experiment, but a small component compared to diffusion in the 

ULs for an OPP experiment with permeant solutes (§3.6.4). This is consistent with 

literature reports which have stated that ULs affect HPP experiments primarily through 

sweep-away effects (Ye et al. 2006; Hertel and Steudle, 1997; Steudle, 1993). 

 

The effect of ULs on the relaxation curves, curve characteristics, and measured 

membrane parameters were examined. In Chapter 2 (§2.3.1) it was shown that a decrease 

in Lp results in an increased τw and tm, a decrease in ps results in an increased τs, and a 

decrease in σ results in an increased Pm. In this Chapter it was shown that the addition of 

ULs serve to retard the pressure response so that Pm decreases, tm increases, and the half-

times increase with increasing UL thickness (§3.6.2). This means that ULs will generally 
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cause the measured Lp, ps, and σ (those determined from CPP data using the classical 

method of parameter estimation) to underestimate the true parameters of the membrane 

(§3.6.5a). Estimation of the true membrane parameters is therefore not possible without 

knowledge of the UL thickness. This will be demonstrated in Chapter 4 when the model 

is fit to CPP data by directly modifying the membrane parameters. 

 

Another effect of the ULe on the relaxation curve is that it causes a delay in the pressure 

response immediately following a perturbation in the external concentration. This is 

because it takes time for the solutes to pass through the ULe and reach the membrane. 

This time-delay increases non-linearly with ULe thickness (§3.6.2a). This will be further 

examined in Chapter 4.  

 

It was examined whether the model could reproduce the various parameter behaviours 

which have been suggested might indicate the presence of ULs (see §3.1.2), namely: a 

decrease in the classically-estimated parameters with increasing external solute 

concentration, and a polarity in the classically-estimated parameters. The UL model did 

not predict any polarity in the membrane parameters when the external concentration of 

impermeant solutes was increased, or the value of the diffusion coefficient D inside the 

cell was changed (§3.6.5b). (The influence of external flow rate with Lp could not be 

examined since the flow rate is not a component of the model.) Causes of polarity in the 

classically-estimated Lp reported in the literature are thus likely to be due to composite 

membrane effects and influences of the tonoplast, where theory predicts a polarity in Lp 

and ps for membranes arranged in series (Kedem and Katchalsky, 1963c), or other 

physical effects of the membrane such as dehydrating one side of the membrane more 

than the other (Dainty and Ginzburg, 1964a; Kiyosawa and Tazawa, 1973). Evidence of 

polarity and other variations in the estimated parameters will be examined when the UL 

model is fit to data in Chapter 4. 

 

The model predicted a decrease in Lp with increasing external solute concentration 

(§3.6.5c), which is consistent with the literature (Zimmermann and Steudle, 1978). 

However, it predicted that increasing the perturbation pulse has no effect on the measured 

membrane parameters (§3.6.5d), contrary to general expectations in the literature (Ye et 

al. 2006).  
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The above model predictions of no polarity, and of the effects of external concentration 

and perturbation size, are all consistent with the behaviour predicted by the KK 

equations. It is concluded that inclusion of ULs in the model doesn’t affect the overall 

dynamics of the P-t curve, but affects the actual values of parameters estimated using the 

model. 

The model showed that while it is likely that the value of D for the ULi is less than that 

for the ULe, this is likely to have only a small influence on the measured membrane 

parameters. It also showed that diffusional resistances of the membrane and ULs are not 

additive according to the permeability equation (Eq. (3.2)) based on Kirchoff’s law of 

resistances in series, and therefore use of Eq. (3.3) to estimate quantitatively the influence 

of ULs on the estimated membrane parameters leads to large errors. 

 

In Chapter 4, the UL model will be applied to raw CPP data collected by Dr. Helen 

Bramley (University of Adelaide) and Prof. Mel Tyree (USDA Forest Service).   
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4  Model with Unstirred Layers: Application to CPP 
data  

 
 

4.1 Introduction 

  
In this chapter, the UL model described in §3.2.2 is used to fit raw data collected by 

Dr. Helen Bramley (University of Adelaide) and Prof. Mel Tyree (USDA Forest 

Service). Data for several OPP and HPP experiments from different Chara corallina 

cells will be fit using the optimization method described in §2.3.3. Model validation 

and evaluation of the UL model, analysis of estimated parameters from the model, 

and a comparison with fits and predictions from the classical model, will be carried 

out.  

The results are split into 3 sections: a) fitting one HPP and one OPP data set with the 

classical model, and UL model with 1 or 2 ULs, in a comparison of different UL 

models; b) fitting several HPP and OPP data sets (no ramp) with the classical and UL 

model with 2 ULs; c) fitting a few OPP data sets (with ramp) with the classical and 

UL model with 2 ULs. Fits and estimated parameters will be compared between the 

models, and between data sets from one cell (within-cell variation), and between cells 

(between-cell variation).  

 

It will be shown that models with unstirred layers and without unstirred layers 

(classical model) can both reproduce the observed CPP relaxation curves. The 

models, which represent different hypotheses on the transport processes driving 

pressure changes in the cell, predict different sets of membrane parameters. Therefore, 

membrane parameters deduced from CPP data are very much dependent on the model 

used. This has implications on our current knowledge of membrane parameters and 

current methods of parameter estimation. 
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4.2 Description of experiments and experimental data 
 
 
4.2.1 Description of CPP and conductivity experiments 
 

Experiments were conducted by Dr. Helen Bramley and Prof. Mel Tyree at the 

University of Adelaide. Simultaneously with the CPP experiments, the conductivity of 

the external solution was measured in order to determine the time of osmotic 

perturbation and the time when the perturbation impacts on the cell (observed as a 

turgor pressure change). In addition, two methods of solution exchange (whereby a 

new solution completely replaces the old) were used: a) one where the new solution 

immediately followed the old, as in most CPP experiments, and b) one where a bubble 

was inserted between the old and new solutions for a more instantaneous change in 

solution. The bubble forces a slug movement of the new solution, where the front 

flattens out against the air-fluid interface and greatly reduces the duration of the 

solution exchange phase. 

 

The CPP apparatus closely resembled that of Henzler et al. (2004). Solutions were 

delivered to the cell by gravity-feed from two plastic beakers 30-50cm above the 

Chara cell (Fig. 4.1). Stopcock valves at the bottom of the containers were used to 

control the flowrate at 16-18 cm s-1, through tubing which had an inner diameter of 3 

mm throughout. A second set of 3-way stopcocks (3WS) farther down the tubing were 

used to open and close flow from the containers and to admit air into the tubing for a 

distance of 10-12 cm below the stopcock. The length of the bubble ensured that the 

bubble passed beyond the Y-junction and clearly separated the two solutions. This 

differed from the apparatus used in Henzler et al. (2004) where only one 3WS was 

located at the Y-junction. The mean time of solution exchange when bubbles were 

present (based on 50 measurements on 4 cells) was 0.6 ± 0.1s. The mean time of 

solution exchange when no bubble was present was 2.3 ± 0.3s due to laminar flow 

mixing (Tyree, pers. comm.).  

 

Artificial pond water (APW, a dilute solution of the salts Na+, K+, Ca+2 and Cl- with a 

total ionic strength of ~3mM) was used as the external solution. Two Ag/AgCl 

electrodes were placed about 5cm apart in the vicinity of the cell. 
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The solution was changed from full APW to half-strength APW + 160mM EtOH in 

positive OPP experiments, and vice-versa in negative OPP experiments. As the 

electrolyte resistance of half-strength APW is half that of full APW, the timing and 

speed of the solution exchange could be measured by monitoring the electrical 

resistance and voltage change between the electrodes. In experiments without 

bubbles, the voltage starts changing as soon as the solution reaches the first electrode, 

and rises and becomes constant as it reaches and passes the second electrode (Fig. 

4.2). In experiments with bubbles, the voltage rises to a maximum as the bubble 

reaches the second electrode, as air is now present between the electrodes and there is 

no current. Voltage from the conductivity measurements was recorded using the data 

acquisition and analysis software pCLAMP-9 (Axon Instrument Inc, Union City, CA, 

USA), and plotted simultaneously with the CPP voltage output from the data 

acquisition and analysis software Pfloek (V.1.09, provided with the CPP).  

 

Noise from the CPP apparatus was also measured on a 14-minute period of constant 

turgor pressure (the plot of pressure against time gave a very low slope of –7x10-5, 

with R2 = 0.0027). The plot exhibited discrete jumps in pressure of 0.0001-0.0002 

MPa, which can be taken as the measuring resolution of the CPP. The plot had an 

RMS of 0.0003 MPa about the mean with a maximum deviation of 0.0008 MPa from 

the mean. The overall measurement error in the pressure can be taken to be around 

0.0005 MPa, or about 2 standard deviations.  

 

Measurements of the bulk modulus ε were conducted prior to each course of 

experiments. It was verified for one set of HPP experiments that ε was the same 

measured at the beginning and end of the set (over a 6 minute time-period). The 

laboratory temperature was not measured, but could be assumed to be about 20o C 

(Bramley, pers. comm.). 
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Fig. 4.1  Set-up for CPP and conductivity experiments. Showing Chara cell fixed in place by a plastic 
screw; 2 Ag/AgCl electrodes placed 5cm apart (and 1cm from the end of the tube) for monitoring 
change in electrolyte resistance; beakers, stopcock values and tubing for solution exchange (not drawn 
to scale). (Tyree, unpublished) 
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Fig. 4.2  Showing pressure (smooth black line) and conductivity measurements for OPP experiments 
with and without bubbles. Full APW was exchanged for ½ APW + 160mM EtOH for both 
experiments. Passage of a bubble can be observed (lower diagram) by a voltage rise to 0.43V and step-
wise change in electrolyte resistance. (Tyree, unpublished) 

 

 

4.2.2 Data collected 
 
a) CPP data 

 
OPP and HPP experiments were carried out on 4 different Chara cells (Table 4.1). 

Equal numbers of positive and negative pulses were carried out for each set. The cell 

dimensions were measured by the experimenters, but I derived values for ε using the 
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Pfloek software. For Cell 1 a concentration of 125mM ethanol was used for the OPP 

perturbations. For the other 3 cells a concentration of 160mM ethanol was used.  

 

Table 4.1  Cell dimensions, ε values, and type of experiments conducted on 4 Chara cells. L = cell 
length, d = cell diameter, V = cell volume.  

 
Cell Date of expt L (mm) d (mm) V (mm3) ε (MPa) Experiments 

1 10-2-05 21 0.930 14.3 28.4 ± 4.4* 8  OPP (4b**); 4 HPP 
2 11-2-05 24 0.977 18.0 27.9 ± 4.1 10 OPP (4b); 6 HPP 
3 11-2-05 45 0.791 22.1 24.6 ± 2.4 10 OPP (4b); 8 HPP 
4 18-2-05 33 0.977 24.7 36.5 ± 4.2  10 OPP (6b); 12 HPP 

 
* includes measurement and operator error 
** ‘nb’ indicates n experiments used bubbles during the solution exchange 
 
 

b) Conductivity data 

 
From the conductivity measurements one can obtain the time-delay (time between an 

osmotic perturbation and when the perturbation impacts on the cell), and the exchange 

time (time it takes for the external solution to be completely exchanged). The time for 

solution exchange is the time it takes the external concentration to reach the final 

perturbation value, and is the ramp time mentioned in previous chapters. Individual 

time-delays and ramp times were recorded for each OPP experiment. An example of 

these data is given in Table 4.2.  

 

The UL model simulates radial flow at any point along the cell axis, and assumes 

radial and axial symmetry. The time and place at which the perturbation impacts on 

the cell was taken to be at an axial point midway along the length of the cell. The 

time-delay tD was therefore defined as the time between the solution reaching the 

middle of the cell and the time tP when the cell pressure is first observed to change. 

For OPP experiments with a bubble, the measured time-delay (tDr) is the time between 

the bubble reaching the second electrode and tP. tD was obtained by calculating tD = 

tDr + t2, where t2 is the time it takes for the solution to travel between the second 

electrode and the center of the cell. For OPP experiments without a bubble, tDr is the 

time between the solution reaching the first electrode and the cell pressure changing. 

tD is obtained by calculating tD = tDr - t1, where t1 is the time it takes for the solution 

to travel between the first electrode and the center of the cell.  
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The ramp time is the time it takes for the external concentration to reach its final 

perturbation value. The measured ramp time tRr (in experiments without bubbles), was 

the time between the solution reaching the first electrode and the time when the 

voltage reaches a constant value (indicating no more mixing or increase in external 

concentration; see top diagram in Fig. 4.2). The ramp time tR is calculated by tR = tRr - 

t1, where t1 is as defined above. 

 

Table 4.2  Time-delay (tD) and ramp time (tR) data for Cell 4 of Table 4.1. N=bubble not present, 
Y=bubble present. 

 
Run no. Bubble tD (s) tR (s) 

1 N 0.92 2.34 
2 N 0.50 1.37 
3 N 0.80 2.14 
4 N 0.55 1.60 
5 Y 0.56   
6 Y 0.42   
7 Y 0.69   
8 Y 0.42   
9 Y 0.62   

10 Y 0.44   
 

 

As one can see from Table 4.2, the ramp times are 2-3 times as long as the time-

delays. This is because the ramp time is comprised of a transit time (the time it takes 

for the front of the new solution to traverse the length of the cell), and the mixing time 

(the time it takes for the region of partial mixing behind the front to traverse the cell, 

before the solution is completely replaced). For OPP experiments with a bubble, the 

ramp time may be considered negligible since there is no mixing time, and the transit 

time for the 4 cells ranged from 0.01 to 0.26 s. These are very small ramp times 

compared to the measured ramp times, and it can be concluded that the main 

component of the ramp time is the mixing time. 
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4.3 Analysis and use of CPP data 
 

4.3.1 Chosen subset of CPP data 
 
A subset of the available data was chosen for fitting (Table 4.3). In order to examine 

within-cell variation in parameters, and differences in parameters between fits to 

experiments with and without bubbles, all the data for Cell 4 was fit. Cell 4 was 

chosen as there were 6 smooth OPP curves with bubbles, and more available HPP 

data for this cell. In order to examine between-cell variation in parameters, a positive 

and negative OPP and HPP set was fit for Cells 2 and 3. Data for Cell 1 was not fit as 

it was a noisier data set. 

 

Table 4.3  Subset of the data that will be fit by the models. 

 

Cell Experiments 
2 4 OPP with bubble; 4 HPP  
3 4 OPP with bubble; 4 HPP  
4 6 OPP with bubble, 4 OPP without bubble; 10 HPP 

 

 

4.3.2 Resolution of CPP data 
 

The time resolution of the Pfloek data was about 0.02-0.2 s, giving around 3000-6000 

data points for OPP experiments, and around 500-800 data points for HPP 

experiments. Use of all the data points in a parameter estimation via Matlab 

optimization runs was impractical because of excess computer runtimes (which could 

take an hour or more) and therefore the data was culled. To this aim, the effects of 

culling on parameter values estimated using the classical model were analysed. For an 

OPP data set with 520 points in the water phase and 2127 points in the solute phase, 

points in both phases were culled by selecting every ith point, where i varied between 

2 and 10. When the data was culled by the same amount in both water and solute 

phases, the parameters differed by <1% for fits between the unculled and most greatly 

culled data. This behaviour was verified on another OPP data set. While there was 

little change in the parameters, the SE’s for the estimated parameters increased with 

 4-8



decreasing data resolution. However, the magnitude of the SE’s when every 10th
  point 

was retained was found to be acceptable (Table 4.4), and it was decided to use this 

data resolution for all OPP data sets, i.e. every 10th data point in the pfloek output was 

retained during parameter estimation.  

 

A similar analysis on two HPP data sets revealed that retaining every 10th
  point did 

not alter the estimated parameters, but did increase the SE in Lp. It was chosen to 

retain every 2nd
 point for the HPP data sets, since there are far fewer points as 

compared to OPP data and the optimization is still efficient. This brings the size of the 

culled HPP data sets down to that of the culled OPP data sets, and the SE in Lp to 0.01 

x 10-6 m s-1 MPa-1. 

 

Table 4.4  Showing parameters estimated with the classical model and their standard errors, for 
two OPP data sets. A data resolution of  1/10th has been used, giving a total of 265 points for the 
negative OPP and 272 points for the positive OPP data sets.  

 

  Negative OPP Positive OPP 
Lp (x 10-6 m s -1 MPa-1) 1.30 ±0.01 1.49 ±0.01 
ps (x 10-6 m s-1) 3.92 ±0.02 3.84 ±0.02 
σ 0.273 ±0.001 0.262 ±0.001 
t0 (s) 1.04 ±0.02 0.73 ±0.02 

 

 

It must be noted that when a different data resolution is used between the water and 

solute phases in the OPP data, points in the water and solute phases are differentially 

weighted, which affects the estimated parameters. It was found that the estimated 

parameters differed by 2-8% for fits between the unculled data and most greatly 

culled data – where every point in one phase was retained while every 10th point in the 

other phase was retained. The above results show that as long as the same data 

resolution is used for the whole data set, there is little effect on the estimated 

parameters. 

 

The time interval that resulted from using every 10th data point generally ranged 

between 0.5 and 1.5 s. The data could also be culled based on time intervals, e.g. 

retaining points every 0.5s apart. An exploration of this was not carried out.  
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4.3.3 Analysis of CPP equilibrium pressures 
 

Initial and final equilibrium pressures were determined over periods of about 20s, 

depending on the amount of noise in the data. It was observed that the final 

equilibrium pressure often overshot the initial equilibrium pressure for the OPP 

experiments. An analysis of equilibrium values revealed a consistent pattern where PE 

was slightly lower than P0 for the negative OPP, and PE was slightly higher than P0 

for the positive OPP (Table 4.5; Fig. 4.3a). The APW change from full to half-

strength, or vice-versa, was suspected to be the cause of this overshoot. This was 

confirmed when OPP experiments were later conducted on another Chara cell 

without the APW change (Cell 5), as no overshooting of PE occurred for this cell, but 

instead a consistent slight undershooting was observed (Table 4.5). Possible reasons 

for this will be outlined in a later discussion. 

 

Table 4.5  Mean differences between initial equilibrium pressures P0 and final equilibrium 
pressures PE observed in the OPP data, for cells 2 to 5. Errors given are standard errors. 

 
  Mean P0 - PE values 

Cell Positive OPP Negative OPP 
2 -0.0020  ±0.0005 0.0028  ±0.0003 
3      -0.0012  ±0.001 0.0031  ±0.0005 
4 -0.0013  ±0.0006 0.0006  ±0.0008 
5 0.0013   ±0.0001 -0.0014  ±0.0003 

 

 

Sensitivity of cell turgor to the external concentration was also confirmed in the 

models, where the APW change had to be incorporated into the perturbation (initial) 

conditions in order to give a reasonable fit to the PE values of the data. As shown in 

§2.2.2, the standard KK equations without an APW change predict that PE returns to 

the original equilibrium pressure P0, and the value of PE is not changed by the 

presence of ULs (§3.6.2).  

 

A long-term drift in the equilibrium pressures was observed for cells 2-4 (e.g. Fig. 

4.3b). Cells 2 and 3 showed a downward drift, and Cell 4 showed an upward drift. No 

significant drift was observed for Cell 5, which may be due to it being a larger cell 

(volume = 31.2 mm3) with more stable turgor pressures. It is possible that the lack of 
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an overshoot in PE and long-term drift for Cell 5 are both related to the absence of an 

APW change, however this could not be determined from the data available.  

  

Although P0 was determined individually for each experiment, a constant cell volume 

V0 and cell radius r0 were used for all experiments on the one cell, corresponding to 

the measured values at the beginning of all the experiments. These values were not 

adjusted to correspond to P0, since the corresponding changes in V0 and r0  are so 

small as to make negligible impact on the fits, which are more sensitive to the value 

of P0. 

 

P 0 - P E  values for Cell 2
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Fig. 4.3  Showing (a) differences in initial and final equilibrium pressures, and (b) a gradual downward 
drift in P0 (——) and PE (——), for OPP experiments for Cell 2. 
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For the HPP experiments, it is expected that PE < P0 for the positive pulses, and vice-

versa for the negative pulses (§2.2.2). There was some difference in the magnitude of 

PE - P0 between the positive and negative pulses, however these cannot be said to be 

significant since the standard errors for the mean values of PE - P0 were quite high 

(Table 4.6). The HPP data was generally not as smooth as the OPP data, and for some 

data sets the equilibrium pressure would rise or drop before the perturbation so that 

there was uncertainty surrounding P0. In the example in Fig. 4.4, P0 is steady for a 

few seconds then rises by 0.01 MPa before the perturbation, remaining at the new 

value for a couple of seconds. In this case the pressure values just before the 

perturbation were used to calculate P0  as they were closer to the final perturbation 

pressure. However, in other cases it seemed more appropriate to calculate P0 using the 

pressure values a few seconds before the perturbation, depending on which value was 

closer to the final equilibrium pressure, which was usually quite steady. 

 

Table 4.6  Mean differences between initial equilibrium pressures P0 and final equilibrium 
pressures PE observed in the HPP data, for Cells 2 to 4. Errors given are standard errors. 

 

  Mean P0 - PE values (MPa) 
Cell Positive HPP Negative HPP 

2 -0.0005  ± 0.0003 0.0017  ± 0.0009 
3 -0.0009   ± 0.0003 0.0012  ± 0.0002 
4 -0.0004  ± 0.0002 0.0008  ± 0.0004 

 

 

Data relaxation curve for HPP Run 3 of Cell 4
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Fig. 4.4  Showing a rise in initial equilibrium pressure before the perturbation in an HPP experiment 
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4.3.4 Analysis of perturbation pressures in HPP data 
 

It was observed that the “instantaneous” perturbation from P0 to Pm in an HPP 

experiment typically took 0.3-0.8 s. Moreover, the region around the maximum or 

minimum pressure of the data and the point at which the simulations begin, is often 

not well-defined. In some data sets this region exhibited a kink in the data following 

the extremum point (e.g. Fig. 4.5a) or during the perturbation itself (e.g. Fig. 4.5b), 

where the pressure dynamics seemed to suddenly change. In other data sets the 

extremum point was slightly rounded (e.g. Fig. 4.5c). These variations may be 

attributed to the manual operation of the CPP, where the operator adjusts the metal 

rod by manually rotating a screw to inject or withdraw sap from the cell (see §1.2). 

These variations will have implications on fitting HPP data in §4.5.3 and §4.6. Data 

sets which are very noisy around the extremum were not used here. 

 

4.4 Analysis and use of conductivity data 
 

4.4.1 Data patterns 
 

Variation in the measured ramp times and time-delays were different for each cell        

(Table 4.7). This was often due to time-delays and ramp times being shorter for the 

negative OPP experiments than the positive OPP experiments, particularly for cell 4. 

The large variation in measurements for cell 4 may be partly due to a blip in pressure 

just before the water phase for 4 positive OPP runs (Fig. 4.6). By disturbing the 

equilibrium pressure, this blip may be causing the water phase to occur later that it 

would otherwise, increasing the time-delay. It is thought that blips in pressure may be 

from switching flow on and off to change solutions, and appears to be cell-dependent 

occurring in extremely sensitive cells (Bramley, pers. comm.). 

 

Table 4.7  Mean time-delay and ramp time measurements for each cell. Ramp times for Cell 1 
were not obtained. 
 

  Time-delay (s) Ramp time (s) 
Cell Bubble No bubble   

1 0.48  ± 0.07 0.55  ± 0.10     
2 0.37  ± 0.07 0.57  ± 0.12 2.01  ± 0.01 
3 0.56  ± 0.03 0.73  ± 0.16 2.17  ± 0.10 
4 0.52  ± 0.12 0.70  ± 0.20 1.87  ± 0.45 
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Data relaxation curve for HPP Run 1 of Cell 3
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Fig. 4.5  Showing region of pressure perturbations for 3 HPP data sets from Cell 3. 
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Data relaxation curve for OPP Run 5 of Cell 4
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Fig. 4.6  Showing a blip in pressure before the water phase for an OPP relaxation curve. 

 

 

4.4.2 Use of conductivity data 
 

a) Time-delay measurements 

 
The time-delay measurements for the OPP experiments were used to determine t0, the 

time when the osmotic perturbation occurred. A value of tP (the time when the cell 

pressure starts changing) was obtained from the unculled data by taking a linear 

regression of points in the first 1/3-1/2 of the water phase (see Fig. 3.8). From the 

time-delay tD, we have: 

 
t0 = tP - tD.          (4.1) 

 

One may ask: does the measured time-delay give information about the ULe thickness 

present in an OPP experiment? In §3.6.2 it was demonstrated that, in simulated data, a 

relationship exists between the ULe thickness δULEsim and the time-delay tDsim. This 

suggests that a relationship may also exist between the measured time-delay tD and 

the ULe thickness δULE  present in an OPP experiment. If there is a consistent tD vs. 

δULE  relationship, then tD can be used to infer a value of δULE. 
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Since the value of δULE is unknown, the relationship between tD and δULE  cannot be 

examined directly. It may then be asked whether the simulated data can be used 

instead to infer δULE in an OPP experiment. However, this will only be possible if:  

 

a) the simulated curve fits the initial curvature and water phase of the observed 

data exactly (i.e. tDsim = tD) 

b) the relationship between the ULe thickness and the time-delay in both 

observed and simulated data are consistent across different cells. 

 

It may be shown that (a) is rarely achieved and that (b) is false, thus limiting the 

usefulness of tD as a general predictive tool for the ULE thickness. To show this, the 

relationships between tDsim and δULEsim, and between tD and δULEsim, for fits to two OPP 

data sets from different cells, were examined. δULEsim in this case is used as a 

hypothetical proxy for δULE.  δULEsim  was fixed at different values, the data fitted by 

optimizing Lp, ps, σ and t0, and tDsim and tD calculated. t0 must be optimized since tD is 

affected by δULEsim, and tP in Eq. (4.1) changes by a lesser amount than t0 for fits to the 

data.  

 

It was found that for a small range of δULEsim values (3-7 x 10-5m), the δULEsim  vs. tD 

and δULEsim  vs. tDsim relationships for fits to two data sets from different cells were 

linear (Fig. 4.7). However, the slope of these relationships differed between δULEsim  

vs. tD and δULEsim vs. tDsim (in each Fig. 4.7b and Fig. 4.7c), as predicted, due to 

differences in the slopes of the water phases between simulated and observed data. 

The slope of these relationships also differed between the two data sets (Fig. 4.7b & 

Fig. 4.7c). The δULEsim vs. tDsim relationship for simulations where the data is not fitted 

but different values of δULE were chosen and used to generate different relaxation 

curves (Fig. 4.7a), was linear but with a different slope again. 

 

These results confirm that (a) and (b) above are not true and that there is no method 

for inferring the ULe thickness in CPP experiments from available data. Therefore, 

δULE  should be treated as an additional parameter to be optimized for fits using the 

UL model. Use of the measured time-delay was limited to determination of t0 for OPP 

experiments.  
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For OPP Run 9 of Cell 3

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7

Ti
m

e-
de

la
y 

(s
)

(b)

For OPP Run 9 of Cell 4

0.0

0.4

0.8

1.2

1.6

3 4 5 6 7

Simulated ULe thickness (x10-5 m)

Ti
m

e-
de

la
y 

(s
)

(c)

For simulated OPP curves which vary depending
on ULe thickness 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3 4 5 6 7

Si
m

ua
lte

d 
tim

e-
de

la
y 

(s
)

(a)

 
Fig. 4.7  Showing time-delay vs. ULe thickness (δULEsim) relationships. (a) For simulated curves which 
change with δULEsim. In (b) and (c), the pink line indicates δULEsim plotted against tD  for observed OPP 
data, and the blue line indicates δULEsim plotted against tDsim for fits to the observed OPP data. 
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b) Ramp time measurements 

 
The relationship between the ramp time and time-delay was examined by imposing a 

ramp in the external solute concentration in simulated OPP data and calculating the 

time-delay from the output P-t curve. The model showed a correlation between the 

ramp time and time-delay, as expected since they are both dependent on t0 (Fig. 4.8). 

However, as the main component of the ramp time is the mixing time (§4.2.2b) which 

may vary between runs and have no relation to t0, this correlation would not 

necessarily be observed in the observed data.  

 

When measured ramp times and time-delays were plotted for the observed data (Fig. 

4.9), it was found that only cell 4 exhibited a correlation between these two factors. 

For cells 2 and 3 the ramp times were similar for each OPP run (Table 4.7).  

 

Considering these patterns in the measured ramp times, the latter was not suitable for 

use as an input into the model. It was decided that for model fits to OPP experiments 

without a bubble (e.g. for Cell 4), the ramp time will be considered a free parameter to 

be optimized along with the membrane parameters (in a similar way that the ULe 

thickness was considered an additional free parameter for OPP experiments with 

bubbles). Since the ramp time and ULe thickness can’t be simultaneously optimized 

due to their correlation (the ramp time is correlated with the time-delay which in turn 

is dependent on the ULe thickness), the ULe thickness will be fixed at average values 

found for fits to the OPP experiments with a bubble, and the ramp times then 

estimated using the model. This is because for a given cell geometry and the same 

external flow rate and external solution, one would expect the ULe thickness to be 

more or less a constant value for each cell.  

 

There is a lack of sufficient information available on how the external concentration 

changes over time. The conductivity data in Fig. 4.2 suggests that the change in 

external concentration (or shape of the concentration exchange function) is non-linear 

and is not actually a ramp. Consequently, different representations for this exchange 

function (linear and exponential) will also be explored (see §4.7).  
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Ramp time vs. time-delay for OPP simulations
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Fig. 4.8  Showing a correlation between ramp times and time-delays for simulated OPP data using the 
UL model. 
 

 

Ramp time vs. Time-delay for 3 cells
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Fig. 4.9  Ramp times vs. time-delays for observed OPP data for Cell 2 (▲), Cell 3(■), and Cell 4 (♦). 

 

 
4.5 Fits to data: Comparison of model options 
 
 
4.5.1 Choice of model option 
 
In order to compare influences of a ULe and ULi on the relaxation curves and 

estimated membrane parameters, an OPP and an HPP experiment were fit with 
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different model options incorporating 0, 1, or 2 ULs. It can be noted that the UL 

model with ULs excluded reverts to the classical model.  

 

A runtime of 400s was used for the OPP data, and a runtime of 40s used for the HPP 

data. PE was calculated using the last 20s for OPP data and the last 5s for HPP data. 

For all fits to subsequent data sets, the same time periods of the data and method of 

calculating PE will be used, as the optimized parameters depend a little on the extent 

of the data fit.  

 

As the thicknesses of the ULs are unknown, they are considered free parameters 

which may be optimized. However, as shown in §3.6.2 the P-t curve and curve 

characteristics change little after a certain ULi thickness (δULi), that is for δULi > 2x10-4 

m the model is insensitive to δULi. During parameter optimization the value of δULi 

often fell in this range where the model is insensitive to it, which suggests that the 

optimum value for δULi as determined by the model is large. However, since the model 

cannot optimize δULi in this region where it is insensitive, for subsequent analyses δULi 

is assigned a value instead of being optimized. As one may reasonably assume that 

the whole cell interior is a ULi it was chosen to fix δULi at 3x10-4m, a value close to 

but not equal to the whole cell interior, since larger values have negligible impact on 

the pressure dynamics and estimated parameters (see §3.6.2). Where a ULe is present, 

δULe was optimized. 

For the OPP data, both a ULe and a ramp may contribute to the time-delay following 

the time of perturbation (see §2.7.3c). For the Classical model the fit to the initial 

points also depends on the value of t0 (see §2.5.2). When a ULe is not present, a ramp 

must be included or t0 optimized in order to fit the initial data points. The ULe 

thickness, t0 and ramp time are strongly correlated, and therefore these 3 values were 

fit independently of each other, according to the model options in Table 4.8. 

For the HPP data, a ULe has little influence on the pressure dynamics (see §3.6.2), 

and therefore the data was fit with and without a ULi only. It was found that, in 

particular for the negative pulses, the data could not be fit well unless PE was fit in 

addition to Lp, as otherwise the model kept overpredicting PE for the negative HPP. 

As the CPP software Pfloek also fits the HPP data by fitting PE, fitting PE seemed a 

reasonable approach to take for comparing the UL model fits to the Classical model 
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fits. PE is an output of the simulation and so cannot be directly fit, but the quantity πie 

is determined by the experimenter and this affects PE. If πi1  is the osmotic pressure in 

the cell at the time of perturbation, then at equilibrium PE  = πi1 - πie. Therefore to fit 

PE,  πi1 was optimised. We may assume that πie is a constant since the external 

solution is constantly being replaced. Model options and parameters used to fit the 

HPP data are shown in Table 4.8. 

 

 
Table 4.8  Showing the different model options and their estimated parameters used to fit OPP 
and HPP data. 

 
OPP data Fitted parameters HPP data Fitted parameters 

0 ULs (Classical) Lp, ps, σ, t0 0 ULs (Classical) Lp

0 ULs with ramp Lp, ps, σ, tR 0 ULs (Classical) Lp, πi0

1 ULe Lp, ps, σ, δULe 1 ULi Lp

1 ULi with ramp Lp, ps, σ, tR 1 ULi Lp, πi0

2 ULs Lp, ps, σ, δULe   

 

 

When comparing fits, the RMS, bias and trend of the residuals will be given. The bias 

is the arithmetic mean residual, and indicates by how much the average residual 

departs from 0. The trend is the slope of a regression line through the residuals, and 

indicates how even the spread of the residuals are. 

 

The temperature used in the model is 293K (20o C). It was found that a 2 degree 

change in the temperature makes <1% difference to the estimated parameters, so that 

any slight variation in the laboratory temperature (which is usually quite constant) 

would have little impact on the estimated parameters. A diffusivity of D = 1.28x10-9m 

is used for the permeant solute ethanol.  

 

4.5.2 Results for an OPP 
 

The 5 model options in Table 4.8 were fit to a positive OPP experiment, OPP run 9 of 

Cell 3. In order to obtain a uniform distribution of residuals, it was chosen to fit Pm to 

within ± 0.001 MPa, which is also twice the measurement error in P. In order to 
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achieve this, for some fits the RMS was weighted in a window around the extremum 

(using a weight of 2), based on 10% of the maximum pressure change in the data. 

Improving the fit to the extremum was also considered important since the RMS 

method often fails to fit this region where there is significant noise in the data as P 

approaches PE (see §2.6.2). 

 

All 5 model options were found to give similar fits to the data. The RMS values were 

slightly better for the UL models, however the residuals were comparable with all 

having a low bias and trend (Table 4.9; Fig. 4.10). All of the fits returned the same 

value of PE (as expected), which slightly over-estimated the data PE of 0.4338 MPa by 

0.001.  

 

Table 4.9  Estimated parameters ± SE for the 5 model options (listed in Table 4.8) used to fit 
negative OPP data (OPP run 9 in Cell 3): 1. Classical model with optimized t0,; 2. Classical model 
with ramp; 3. UL model with 1 ULe; 4. UL model with 2 ULs; 5. UL model with 1 ULi and ramp. 

 
  

  

1.   
0 ULs 

  

2.        
 0 ULs with ramp
 

3.   
1 ULe 

 

4.   
2 ULs 

 

5. 
1 ULi with ramp 

 
t0 (s) 0.74 ±0.012 0  0  0  0  
ramp time (s) 0  1.45 ±0.03 0  0  1.49 ±0.02
δULi (x 10-5 m) 0  0  0  30.0  30.0  
δULe (x 10-5 m) 0  0  4.88 ±0.06 4.80 ±0.06 0  
Lp (x 10-6 m s -1 MPa-1) 2.88 ±0.02 2.88 ±0.03 3.16 ±0.04 2.33 ±0.02 2.20 ±0.02
ps (x 10-6 m s-1) 3.77 ±0.01 3.83 ±0.01 4.37 ±0.02 6.46 ±0.03 5.29 ±0.02
σ 0.257 ±0.001 0.260 ±0.001 0.299 ±0.001 0.444 ±0.002 0.364 ±0.003
tm (s)* 9.30   9.31  9.09  9.31  9.40  
Pm (MPa) 0.3508   0.3503  0.3501  0.3494  0.3496  
PE (MPa)** 0.4348   0.4348  0.4348  0.4348  0.4348  
RMS (x 10-4 MPa) 7.26   6.94  6.55  6.14  6.01  
Bias (x 10-4 MPa) 3.93  4.55  3.79  3.25  2.92  
Trend (x 10-4 MPa s-1) 3.50   3.63  3.68  3.17  3.30  

 
* For the observed data, tm = 9.49s, Pm = 0.3502 MPa, PE = 0.4338 ± 0.0001 MPa. 

** SE for PE = 1x10-5 MPa 
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Relaxation curves for the 2 UL model fit to OPP run 9, Cell 3 

  

Fig. 4.10  Results from fitting the UL model with 2 ULs to OPP run 9 of cell 3, showing raw pressure 
data (-----) and model fit (——). (a) Showing 0-40s of the curve, (b) showing the full simulated 
relaxation curve, (c) showing residual plot, with trendline (——). Curves and residual patterns were 
very similar for all 5 model options. 
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Parameter values were found to be the same for the two classical model options 

(Table 4.9; Fig. 4.11). With the UL model, including a ULe caused all 3 membrane 

parameters to increase slightly, while including a ULi caused ps and σ to increase and 

Lp to decrease. Changes in ps and σ due to ULs were strongly correlated. The ULi had 

a far greater effect on the estimated parameters than did the ULe, and differences in 

the membrane parameters between the UL model and the classical model were 

greatest when 2 ULs were present (Fig. 4.11, Table 4.10). These results are in 

accordance with the parameter analysis carried out in §3.6.5a. 

 
 

ig. 4.11  Showing how estimated Lp, ps and σ vary between the 5 OPP model options. Model option 

able 4.10  Relative percentage differences in parameters estimated using the UL model and the 

  `1 Ule 2 ULs ULi with ramp 

Estimated parameters for the OPP model options

0

1

2

3
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7
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Model option 

L p
 (x

10
-6

), 
p s

 (x
10

-6
), 

σ

L p

p S

σ

 
F
number refers to the model options shown in Table 4.9. 
 
 
 
T
classical model with a ramp. Percentage differences are relative to the classical model values. 

 

Lp (x 10-6 m s -1 MPa-1) 10% -19% -23% 
ps (x 10-6 m s-1) 14% 69% 38% 
σ 15% 71% 40% 

 

It is interesting to observe that optimized ramp times for the 0 ULs and 1 ULi model 

ULe

ffect 

options were similar, and optimized δ  values for the 1 ULe and 2 ULs model 

options were also similar (Table 4.9). This is probably because a ULe and ramp a
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points around t=0 but a ULi does not (a ULi does not introduce a time-delay, see 

§3.6.2).  

 

4.5.3 Model results for an HPP 
 
The 4 model options for HPP data in Table 4.8 were fit to a negative HPP experiment, 

HPP run 8 of Cell 3. Fits using all 4 model options showed the same residual pattern 

(Fig. 4.12c), with differences in the magnitude of residuals (Table 4.11). It was found 

that for fits where πi1 (and therefore PE) was optimized, RMS values were lower and 

fits to the shoulder of the curve (between 5-15 s) better (Table 4.11, Fig. 4.12a,b). For 

these fits PE underpredicted the data PE value of 0.4296 ± 0.0002 MPa. For fits where 

πi1 were non-optimized the data PE was overpredicted.  

 

Fits using the UL model fit the shoulder of the curve better than the classical model, 

as suggested by the lower maximum residuals (Table 4.11). Lp values were higher and 

RMS values lower for the UL model fits compared to those predicted by the classical 

model. This parameter behaviour is in accordance with the parameter analysis carried 

out in §3.6.5a. The relative difference in the estimated parameters between the UL 

and 0 ULs models, where πi1 was optimized, was 5%. 

 

Table 4.11  Results from fitting the negative HPP experiment (run 8 of Cell 3), with and without 
a ULi, and with and without optimizing πi1. 

 
   πi1 non-optimized πi1 optimized 
  0 ULs 1 ULi 0 ULs 1 ULi 
δULi (x 10-5 m) 0  30  0  30  
πi1 (MPa) 0.4379  0.4379  0.4365 ±0.0001 0.4367 ±0.0001
Lp (x 10-6 m s -1 MPa-1) 3.28 ±0.03 3.48 ±0.03 3.53 ±0.03 3.71 ±0.02 
PE (MPa)* 0.4303  0.4303  0.4289  0.4291  
RMS (x 10-4 MPa) 14.13  11.75  9.57  7.63  
Bias (x 10-4 MPa) 6.16  5.45  -1.18  -0.88  
Trend (x 10-4 MPa s-1) 0.29  0.26  -0.20  -0.16  
Max. residual (x 10-4 MPa)** 25.79  21.78  19.88  16.27  
 
* PE of the data was 0.4296 ± 0.0002 MPa. Standard errors for PE are all ≤ 1x10-5 MPa 
** Maximum residuals occurred in the shoulder of the curve (5-15 s).  
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The HPP fits were found to be very sensitive to the value of P1, the perturbation 

pressure. In Table 4.11 the fits begin at the extremum point of the data, such that (t0, 

P1) = (tm, Pm), but as mentioned in §4.3.4 there is some uncertainty in the value of Pm. 

When (t0, P1) was chosen to be a point about 0.1s after the extremum, lower RMS and 

estimated Lp values were obtained for both the classical and UL models. πi1 and PE 

values remained the same. Results for the UL model are shown in Table 4.12 (Lp and 

RMS values changed by the same amount for the classical model). It is clear that 

changing P1 by only 0.001 MPa may significantly affect Lp and alter the quality of the 

fit. This sensitivity and possible variation in the estimated Lp must be taken into 

account when comparing values of Lp between data sets.  

 

Table 4.12  Comparing Lp and RMS values between 2 fits using different values of (t0, P1). Results 
are for those using the UL model with 1 ULi, with πi1 optimized. 

 
P1 (MPa) 0.3833 0.3855 
Lp (x 10-6 m s -1 MPa-1) 3.71 ± 0.02 3.63 ± 0.02 
RMS (x 10-4 MPa) 7.63  7.22  

 
 
 
Although the HPP and OPP data come from experiments carried out on the same cell, 

the estimated Lp values between the data sets differed significantly. Lp values were 

higher for the HPP data even when a variation of 0.1 in Lp (due to sensitivity to P1) is  

taken into account. From Table 4.9 and Table 4.11, for the classical model Lp was 

3.28–3.53 x 10-6 m s-1 MPa-1
 for the HPP data compared with 2.88 ± 0.03 x 10-6 m s-1 

MPa-1
 for the OPP data. For the models with a ULi, Lp was 3.48–3.71 x 10-6 m s-1 

MPa-1
 for the HPP data compared with 2.2–2.33 x 10-6 m s-1 MPa-1 for the OPP data. 

Refer to discussions in §4.6.2b and §4.8.3b on differences in estimated parameters 

between OPP and HPP experiments. 
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Relaxation curves for the 1 ULi model fit to HPP Run 8, Cell 3 
 
 

 
 
Fig. 4.12  Results from fitting the UL model with 1 ULi to a negative HPP experiment (HPP run 8 in 
Cell 3. (a) and (b), showing raw pressure data (-----) and model fit (——). (c), residual plot for 
relaxation curves in (b), with trendline (——). 
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4.5.4 Effects of ULs on cell pressure dynamics  
 

The above comparison of fits using different models shows that the UL model is 

capable of fitting CPP data as well as or better than the Classical model, for both OPP 

and HPP data. If the UL model is assumed to accurately represent transport across a 

membrane in the presence of ULs, then the above results suggest that for an OPP, the 

classical method of parameter estimation (using the Classical model) may 

overestimate Lp by up to 19%, underestimate ps by up to 71%, and underestimate σ by 

up to 73% (Table 4.10). These figures were obtained by comparing the parameters 

between the Classical model and the UL model with 2 ULs. For an HPP, the classical 

method of parameter estimation may underestimate Lp by 6%. 

 

These differences are quite large. CPP experimenters have asserted that the ULs 

should have limited effect on the membrane parameters, since the time it takes for 

solutes to move through a UL is generally much shorter than the halftimes for the 

water or solute phases (Steudle and Tyerman, 1983; Hertel and Steudle, 1997). 

Although the experimental observation is true – the solute concentration in the ULs 

for an OPP experiment reaches a constant value within a few seconds compared to 

halftimes of around 30s (see the UL concentration profiles in Fig. 3.11) – a closer 

examination of the assertion is warranted. An analysis of the effects of ULs over the 

course of a CPP experiment can be made by plotting the difference in concentration 

across the membrane over time. When this was done for different model fits to OPP 

and HPP data (Fig. 4.13), the results clearly showed that a UL affects the 

concentration difference at the membrane for all time t. Thus, ULs affect the pressure 

dynamics for all time t.  
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Fig. 4.13  Change in concentration across the membrane (ΔC) over time. (a) Showing fits to a 
positive OPP experiment (Dataset: OPP run 9, Cell 3), incorporating 0 ULs (——), 1 ULe (——), 

he effects of ULs on the time-course of ΔC are different for HPP and OPP 

ig. 

se 

and 2 ULs (——).  (b) Showing fits to a negative HPP experiment (Dataset: HPP run 8, Cell 3), 
incorporating 0 ULs (——), and 1 ULi (——). 

 

 

T

experiments. With ULs ΔC is biphasic for both OPP and HPP experiments (F

4.13). However, for an HPP an increase in the magnitude of ΔC precedes a decrea
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in the magnitude of ΔC such that the return of C to equilibrium is in an opposite 

direction to that when no ULs are present. This is due to the primary influence of

convection in the ULs in an HPP experiment (see §3.6.4a), which acts in the oppos

direction to diffusion (see §3.1.3). For an OPP experiment, diffusion dominates in the 

ULs (see §3.6.4b). The magnitude of ΔC for the HPP is also much smaller than that 

for the OPP, illustrating the smaller effect of ULs on an HPP experiment. These 

findings are consistent with statements in the literature regarding the primary role

sweep-away (convection) in HPP experiments and diffusion in OPP experiments 

(Steudle and Tyerman, 1983). 

 

 

ite 

s of 

.5.5 Comments on optimization of the ULi thickness 

ractical difficulties in optimizing the ULi thickness were explored by optimizing δULi 

4.6 Fits to data: Estimation of parameters for 3 cells 

ince in reality there are both internal and external ULs, fits to data sets in the next 

a 

 

ost 

 

e.  

lthough a ULe has negligible influence on HPP experiments, for consistency a ULe 

will be used in model fits to HPP data, with δULe  fixed at the average value found for 

4
 
P

for an HPP fit (with πi1 non-optimized). Although the value of Lp was found to be the 

same as the fit in Table 4.8 for a fixed δULi, the SE for δULi was very large, with δULi  = 

32.91 ± 615 x 10-5 m. This is indicative of the fact that small changes in δULi make 

little difference to the RMS value, so that an optimum δUL cannot be achieved.  

 

 

S

two sections will use the classical model (without a ramp, since a ramp makes little 

difference), and the UL model with 2 ULs. This will be done by first fitting OPP dat

from experiments with bubbles, where the ULi thickness is fixed at 3.0 x 10-5 m (a 

value larger than this makes negligible difference to the estimated parameters, see 

§3.6.2) and the ULe thickness is found by optimization. No ramp is included in the

fits, since only a transit time is present for OPP experiments without bubbles 

(§4.2.2b), where the time for the solution to travel the length of the cell is at m

0.26s. A ramp time of 0.13s introduced into the models has very little effect on the

pressure dynamics. Optimized parameters for the OPP fits will thus be: Lp, ps, σ, δUL

 

A
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the cell in the OPP fits. This is because one would expect the thickness of the ULe to 

be approximately the same size for each cell under the same external conditions. 

Optimized parameters for the HPP fits will be: Lp and πi1. 

 

In §4.6.1 results from the classical and UL model incorporating 2 ULs will be 

ompared. The remaining sections will primarily concentrate on results obtained from 

brane 

ing the classical model vs. UL model 

lly found to fit the data well. For the OPP experiments, 

MS values for fits using the UL model were lower than those using the classical 

 

4.13  Fit statistics for 4 OPP experiments with bubble, Cell 4. PE' and Pm' are data 
uilibrium pressures and data extremum pressures respectively. 

eg) 

c

the UL model, since these are considered to be more representative of the mem

parameters in Chara. 

 

4.6.1 Fit results us
 
a) Predicted P-t curves 

 
The UL model was genera

R

model for all 6 data sets. On a whole the fit statistics for the UL model were better.

The main regions of the relaxation curve where the UL model fits showed 

improvement were in the water phase and first part of the solute phase.  

 
 
Table 
eq

 
  Run 7 (pos) Run 6 (neg) Run 9 (pos) Run 10 (n

UL model         
RMS (x10-4MPa) 6.94 9.64 7.21 6.94 
Bias (x10-4 MPa) 2.1 -3.7 2.5 -2.1 
Trend (x1 3.3 -5.7 3.7 -2.4 0-6 MPa) 
Largest residual (x10-4 MPa) 15.7 -24.2 -15.3 -18.1 
PE - PE' 0  -0 0.0010 -0.0009 .0020 .0010 
Pm- Pm' -0 -0 0.0004 .0004 0.0002 .0002 

Classical model        
RMS (x10-4MPa) 8.27 11.67 8.98 7.47 
Bias (x10-4 MPa) 2.3 -3.9 2.7 -2.6 
Trend 5.1 -7.5 5.4 -3.2  (x10-6 MPa) 
Largest residual (x10-4 MPa) -18.9 -34.8 -19.0 -31.0 
PE - PE' 0  -0 0.0011 -0.0010 .0022 .0011 
Pm - Pm' 0  -0 0.0005 -0.0003 .0008 .0007 
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Table 4.13 summarises details of fits to OPP experiments for Cell 4. The UL model 

ts generally had lower RMS values, residuals, and trends in the residuals than the 

 

n 

h 

 

its using the UL model were 

wer than or equal to those using the classical model for 3 out of 4 data sets, and for 

r than the classical model for 

ll data sets fit in Cells 2-4, with consistently lower RMS values (e.g. Table 4.14). 

The main improvement was in the first half of the data from t0 to the end of the 

shoulder of the curve. However, the shoulder of the curve usually could not be fit as 

well as other regions of the curve. 

 

For Cell 4 the negative HPP data were more difficult to fit than the positive HPP data, 

with RMS values in the range 4.59–7.02 MPa for the 5 negative pulses compared with 

3.48–4.93 MPa for the 5 positive pulses for fits with the UL model (Table 4.14). The 

difference between πi1 and πi0 was also generally higher for the negative pulses in this 

cell, with πi1 - πi0 being in the range 0.0007–0.0015 MPa compared with <0.0006 MPa 

for the positive pulses. These patterns were not generally observed for Cells 2 and 3, 

although the Cell 2 fits also displayed a significant difference in values of πi1 - πi0 

between positive and negative pulses. There seems to be no underlying reason for this 

difference in fits between positive and negative pulses. Differences between P0 and PE 

were not different for Cell 4 compared to the other cells (Table 4.6).  

 

fi

classical model. For Run 6 PE was markedly underpredicted, resulting in a larger 

magnitude (given by the RMS value), bias and trend of the residuals. This was also 

the case for Run 8 (not shown in Table 4.13). A contributing factor in why PE was

underpredicted for these two runs may be the comparatively small difference betwee

the initial and final equilibrium pressures, since the change from half to full-strengt

APW results in a greater difference between P0 and PE  (see §4.3.3). When APW was 

kept at full-strength in the model, the data was fit better with a RMS of 5.80 MPa and

PE -PE'  = 0.0006 MPa. See further discussion in §4.8.6. 

 

For fits to OPP experiments for Cell 2, RMS values for f

lo

Cell 3 the proportion was 2 out of 4 (data not shown).  

 

For the HPP experiments, the UL model fit the data bette

a
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For Cell 4, experiments were carried out in two sets of 6 HPP experiments, separated 

by two or more OPP experiments. The nature of the fits did not seem to vary betwe

the sets (Table 4.14). 

 
 

en 

4.14  Fit statistics for 4 HPP experiments (out of 10 fit altogether), for Cell 4. PE'  is the 
ata equilibrium pressure.  

Table 
d

 
  Run 11 (pos) Run 12 (neg) Run 1 (pos) Run 2 (neg)

UL model         
RMS (x10-4MPa) 4.93 5.06 3.48 5.98 
Bias (x10-4 MPa) 1.2 -0.9 0.5 -1.2 
Trend (x10-6 MPa) -3.7 -0.9 3.7 -2.1 
Largest residual (x10-4 MPa) 12.8 10.9 -7.1 -10.8 
PE - PE' 0.0003 -0.0003 0.0003 -0.0004 
πi1 - πi0 0.0005 -0.0012 -0.0002 -0.0006 

Classical model       
RMS (x10-4MPa) 5.66 6.06 4.30 6.93 
Bias (x10-4 MPa) 1.4 -1.1 0.7 -1.4 
Trend (x10-6 MPa) -3.3 -1.6 4.5 -2.7 
Largest residual (x10-4 MPa) 14.0 12.4 -7.5 -12.2 
PE - PE' 0.0004 -0.0004 0.0004 -0.0005 
πi1 - πi0 0.0006 -0.0014 -4.86E-06 -0.0008 

 

 

b) Estimated parameters 

he parameter ratio ξ is defined as: (classically-estimated parameter)/ (parameter 

alues of ξ were similar for each run on a given cell, but differed between cells (Table 

4.15). The classically-estimated s

U he classically-es d ps and es were consistently less than 

that predicted by the UL model. Results suggest that for OPP experiments, th

cl ver-e te the true L up to 50 d 

the classically-estimated ps and σ m er-esti  true m e p y 

up to 50%.  

 
T  ξ(Lp) for fits to PP exper ts deviate uch less from 1.0, 

and were sim he c ally-esti d Lp wa

consistently less than that predicted by th sults s that  

 
T

estimated using the UL model). It was found that for fits to the OPP experiments 

v

 Lp was consi tently greater than that predicted by the 

L model, whilst t timate σ valu

e 

assically-estimated Lp may o stima  membrane p by %, an

ay und mate the embran s and σ b

he parameter ratio the H imen d m

ilar between cells (Table 4.15). T lassic mate s 

e UL mo edel. R u t gges for HPP
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ex  the classically-estima ay under-estimate t m

p to 5%.  

able 4.15  Parameter ratios for OPP experiments with bubbles and HPP experiments. 

periments ted Lp m he true me brane Lp by 

u

 
 
T

 
 OPP expts HPP expts 
  Cell 2 Cell 3 Cell 4 Cell 2 Cell 3 Cell 4 
sample size 4 4 6 4 4 9 
ξ (Lp) 1.49 1.25 1.25 0.97 0.95 0.97 
ξ (ps) 0.49 0.60 0.67    
ξ (σ) 0.49 0.60 0.67    

 
 
 
A direct comparison of these findings with those in Chapter 3 is not possible as 

parameter ratios were not obtained for the UL model with 2 ULs in Chapter 3. 

owever, these findings are broadly consistent with those in §3.6.5 where, keeping in 

 ps and 

Parameter variation (UL model) 

 previous amination of the conductivity data showed red time-delay 

values tD vary within each  l een positive and negative pulses        

(Table 4.7). This suggests that the predicted   would vary within each cell, which 

indeed was found in model  t a e 4.1  where alues f  δULe varied 

y 0.4-1.5 x  between positive and negative OPP experiments conducted on the 

me cell. For Cell 4, where the differences in measured time-delays between positive 

alues 

negative experiments. The pattern was also inconsistent, with δULe larger for the 

positive experiments in Cells 3 and 4, and vice-versa for Cell 2 (although for the latter 

H

mind that the ULi has more influence on the pressure dynamics than the ULe, it was 

predicted that for OPP experiments the classical model is likely to underpredict

σ and overpredict Lp by 30% or more (Fig. 3.13). 

 
 
4.6.2 
 
a) Within-cell variation 

 

A ex  that measu

 cell, in particu ar betw

δULe

 fits to he dat (Tabl 6) v or

 10-5 mb

sa

and negative experiments was greatest (§4.4.1), the difference in estimated δULe v

between positive and negative experiments was also greatest. 

 

However, it is doubtful whether δULe would in reality differ between positive and 
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the difference in δULe was not significant). One would expect the ULe thickness to be 

the same for all OPP experiments on the same cell, under the same external 

onditions. It is probable that the variation of δULe between positive and negative 

ment errors. Sometimes bubbles may 

et stuck in the tube, affecting flow and causing variation in the time-delay (Bramley, 

ng, however, that the range of ULe thickness values 

redicted for the data are in the range of the values estimated in the literature, i.e. 30-

  

c

experiments is due to experimental or measure

g

pers. comm.). It is interesti

p

50 μm.  

 

Table 4.16  Estimated parameters ± SD from the UL model, for OPP experiments from Cells 2-4. 
L = cell length, d = cell diameter.  

 
Cell 2  Cell 3   Cell 4 

24  45  33 L (mm)  
9.77 7.91 9.77  d (mm)  

ε (MPa )  36.5  27.9  24.6  
   Pos Neg Pos Neg Pos Neg
sample size 2  2  2  2  3  3  
δULe (x10-5 3.48 ±0.06 m) 3.05 ±0.15 3.46 ±0.29 4.89 ±0.13 4.25 ±0.00 5.01 ±0.39 
Lp (x10-6 m 1.36 ±0.03  s-1 MPa-1) 1.38 ±0.01 1.16 ±0.03 2.77 ±0.62 2.19 ±0.12 1.28 ±0.04 
ps (x10-6 m 3.88 ±0.2  s-1) 7.76 ±0.19 8.93 ±0.05 6.17 ±0.42 6.22 ±0.21 4.15 ±0.04 
σ ±0.01 0.490 ±0.004 0.573 ±0.01 0.416 ±0.04 0.419 ±0.03 0.438 ±0.01 0.433

 

 

A difference in estimated parameters between positive and negative pulses was 

observed for all 3 cells (Table 4.16). However, a significant difference was only 

observed for Cell 2, and furthermore there was no consistent pattern in the magnitud

or direction of the differences. For example, L  for the negative pulses was less than 

L  for the positive pulses for Cells 2 and 3, but vice-versa for Cell 4 (Table 4.17). The 

sample size of 7 positive and 7 negative OPP experiments was not sufficiently large 

for definitiv

e 

e conclusions regarding polarity in the parameters to be drawn. There 

ations for the estimated Lp and ps for Cell 3 (Table 4.16), 

 those for the other 3 experiments fitted for that cell. The strength 

and direction of the polarity also depended on the odel fit to the data  

4.17). 

 

p

p

were large standard devi

which was due to estimated parameters for one of the positive experiments differing 

significantly from

 type of m  (Table
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Table 4.17  Ratios o timated para ters from p ve OPP expe ents to corresponding  
meters es d e p

e

f es me ositi rim
para timate  from n gative OPP ex eriments.  

 
  Cell 2 C ll 3 Cell 4

sample size 4 4 6 
      UL model 

δULe 0.88 1.15 1.44 
Lp 1.19 1.27 0.93 
ps 0.87 0.99 1.07 
σ 0.85 0.99 1.01 

Classical model      
Lp 1.17 1.18 0.91 
ps 0.97 1.00 1.01 
σ 0.94 0.99 0.96 

 

 

It is possible that differences in estimated δULe values are contributing to differences

in the estimated parameters between positive and negative experiments. However, f

Cell 4, where the difference in estimated δ

 

or 

d 

δULe values are not strongly influencing the estimated parameters. This 

ill be further examined in §4.8.1. 

ere was also no evidence that a polarity in estimated Lp values 

exists. For Cell 4, where the sample size was larges or positive and 

negative experiments (T lthough ere w a sig icant difference in Lp 

between positive and negative pulses for C two e ets were difficult to 

fit, and the RMS values exhib d the wide ge f s cell (a range of 4.5MPa).  

 

Table 4.18  Estimated Lp model r HPP e perim ts from Cells 2 to 4. L = 
cell length, d = cell diameter. 

 
  Cell 2  Ce Cell 4 

ULe values between positive and negative 

experiments was greatest, the difference in estimated parameters between positive an

negative experiments was not more than that for Cells 2 and 3 (Table 4.16). This 

suggests that 

w

 

For the HPP data, th

t, Lp was similar f

able 4.18). A  th as nif

ell 3,  of th  data s

ite st ran or thi

± SD from the UL , fo x en

ll 3   
L mm)  24  45  33  (
d mm)  9.77 7.91 9.77   (

27.9  24.6  36.5  ε (MPa )  
Pos Neg Pos Neg Pos Neg   

sample size 2  2  2  2  5  5  
Lp (x10-6 m s-1 MPa-1) 1.56 ±0.01 1.61 ±0.04 3.47 ±0.03 3.72 ±0.12 1.49 ±0.05 1.51 ±0.05
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b) Between-cell variation 

 

For the OPP experiments, estimated membrane parameters were found to differ 

between cells (Table 4.19). A significant difference was observed in ps, where the 

e for Cell 2 as for Cell 4. A significant difference was also 

 

t 

t the trailing edge (Pedley, 1983). The model uses a constant δULe and is effectively 

fter the same distance from the leading edge for all cells, 

e average δULe would be larger for a longer cell, where the maximum δ

 a higher proportion o  cell length comp  to for a shorter cel

verage estim aram  SD fo ach cell, using the UL l.  

  Cell 2 Cell 3 Cell 4 

value was twice as larg

observed in Lp, where the value was almost twice as large for Cell 3 as for Cell 2.  

 

It was observed that the average estimated ULe thickness for each cell was correlated

with cell length (Table 4.19). This could be because δULe is not constant along the 

length of the cell, but is thinner at the leading edge (upstream of the flow) and thickes

a

taking an average of the varying δULe along the cell length. If it is assumed the 

maximum δULe is reached a

th ULe would 

occupy f the ared l. 

 

Table 4.19  A a  pted et  ±ers r P exptsOP , for e  m deo

 

Cell geometry             
L (mm) 24 45 33 
d (mm) 9.77 7.91 9.77 
ε (MPa ) 27.9 24.6 36.5 

sample size 4 4 6 
Parameters        

δULe (x10-5 m) 3.26 ±0.30 4.57 ±0.38 4.25 ±0.87 
Lp (x10-6 m s-1 MPa-1) 1.27 ±0.13 2.48 ±0.15 1.32 ±0.06 
ps (x10-6 m s-1) 8.34 ±0.68 6.19 ±0.27 4.01 ±0.19 
σ 0.532 ±0.05 0.418 ±0.03 0.436 ±0.01 

 

 
Table 4.20  Average estimated Lp ± SD for HPP expts, for each cell, using the UL model.  

 
  Cell 2 Cell 3 Cell 4 

sample size 4 4 10 
Lp (x10-6 m s-1 MPa-1) 1.58 ±0.04 3.59 ±0.16 1.50 ±0.05 

 
 
 

 4-37



For the HPP experiments, estimated Lp values were similar for Cells 2 and 4 but 

markedly larger for Cell 3 (Table 4.20), which is the same pattern as observed in the 

PP experiments (Table 4.19).  

p

compared to the OPP experiments. I terature i een foun p for HPP 

experiments is higher than that for OPP experim nts, which has been attributed to the 

greater in of the ULe on OPP experiments since the estimate alues were 

found to converge at high stirring rates (Steudle and Tyerman, 1983  interesting 

that this differ lues etween H  and PP exp riments was observed in 

the mode  sinc  the l L  t s uld 

expect th e the sam ea o il d in 

§4.8.3b. 

l) 

4.7.1 Exploration of exchange function 

he effect of the shape of the external concentration C(t) of permeant solutes as a 

nction of time (exchange function) on parameter estimation was explored by 

0

t=0, and tR  the ramp time, 

O

 
L  values were 14-45% higher for the HPP experiments as It was observed that 

n the li t has b d that L

e

fluence d Lp v

). It is

ence in Lp va  b PP O e

l results here, e mode  takes U s into accoun o that one wo

e Lp values to b e. Possible r sons f r this w l be discusse

 

4.7 Fits to data: OPP experiments with ramps (UL mode
 

 

T

fu

representing it as a linear ramp, and as 2 different exponential functions. If C1 the 

final concentration of permeant solutes in the bulk solution after ramping, C  the 

concentration of permeant solutes in the bulk solution at 

then these functions are: 

 
Linear function: 
 

1 0
0

( )( )
R

C CC t C t
t
−

= + ,   0 < t < tR       (4.1) 

 
Bounded exponential function 1: 
 

/1 0( )( ) 1
1

Rt tC CC t e C−− ⎡ ⎤ 01e−= −⎣ ⎦−
R+ ,  0 < t < t      (4.2) 
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oun d exponential function 2: B

 
de

/
1 0 1( ) ( ) Rt tC t C C C e−= + − , 0 < t <  ∞ .     (4.3) 

 
 

Eqs. (4.1) & (4.2) reach the final concentration at tR, and Eq. (4.3) reaches 2/3 o

final concentration at t

f the 

ctions, used for fits to the positive OPP experiment, Run 1 in 
 tR = 0.8s, b) bounded exponential 1 (——) with tR = 0.95s, 

 bounded exponential 2 (——) with tR = 0.42s, d) bounded exponential 2 (——) with tR = 0.6s. 
 

nge fu  thickness δULe 

as fixed at 5.03 x 10-5 m (the average value found for fits to positive OPP 

xperiments with bubbles). The optimizations returned different ramp times tR  but the 

ame membrane parameters for each of the exchange functions (Table 4.21), and 

optimized membrane parameters appeared to be independent of the shape of the 

exchange function when tR  is optimized. 

 

 

 

R and approaches C1 as t → ∞  (see Fig. 4.14). 

 

 
 

Ramping functions
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Fig. 4.14  Plots for different ramping fun
Cell 4. Functions used: a) linear (——) with
c)

 
 
 
Membrane parameters and ramp times were optimized for one positive OPP 

experiment in Cell 4, using the different excha nctions. The ULe

w

e

s
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Table 4.21  Optimiz ve 
pulse) for Cell 4. tion are 
similar to thos

 

ed parameters using different exchange functions for OPP Run 1 (positi
 Ramp times tR were also optimized. Standard errors from optimiza

e in Table 4.17. 

  Linear Exponential 1 Exponential 2 
tR (s) 0.8 0.95 0.42 
Lp (x10-6 m s-1 MPa-1) 1.20 1.20 1.21 
ps (x10-6 m s-1) 3.93 3.93 3.93 
σ 0.448 0.448 0.446 
RMS (MPa) 5.81 5.75 5.57 

 

 
4.7.2 

 

re 

sensitive to small changes in tR. Therefore a best tR was found by fixing tR at 3 or 4 

ifferent values, optimizing the membrane parameters for each tR, and interpolating 

ich 

r OPP 

0) 

 that 

ubble (where δULe is the same).  

able 4.22  Average optimized parameters ± SD for Cell 4, for OPP experiments with bubbles 
 5-10) and without bubbles (runs 1-4). For experiments without bubbles, ramp times are 

xed and the membrane parameters are optimized.  

Influence of exchange function on membrane parameters 
 
4 OPP data sets for Cell 4 (runs 1-4) were fit using Eq. (4.1) as the exchange function.

During optimization of tR it was found that the simulated data and RMS values we

in

d

plots of tR, Lp, ps, and σ vs. RMS values to obtain values of tR, Lp, ps, and σ wh

corresponded to a minimum RMS. It was found that the estimated Lp and ps were 

consistently lower and σ consistently higher than the corresponding values fo

experiments with bubbles (Table 4.22). As Lp is correlated with tR through the effect 

of a ULe on the water phase (§3.6.2), if a ramp time is not included at all (i.e. tR = 

the estimated Lp from OPP experiments without a bubble would be even less than

estimated from OPP experiments with a b

 

T
(runs
fi

 
  Pos Neg 
δULe (x10-5 m) 5.01 ±0.39 3.48 ±0.06 

With bubble         
sample size 3  3 
Lp (x10-6 m s-1 MPa-1) 1.28 ±0.04 1.36 ±0.03 
ps (x10 m s ) -6 -1 3.88 2 4.15 ±0.04 ±0.
σ 0.438 ± 0.433 .010.01 ±0

Without bubble      
sample size   2 2 
tR (s) 0.71 ± 0.67 9 0.13 ±0.2
Lp (x10-6 m s-1 MPa-1) 1.14 ±0.08 1.17 ±0.04 
ps (x10-6 m s-1) 3.90 ±0.04 3.87 ±0.18 
σ 0.443 ±0.007 0.447 ±0.011
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The membrane parameters, however, should be the same since the experiments are all 

un 

Table 4.23  Optimized membrane parameters using exponential function 2 for the ramp, for a 

  Run 1 ) Run 2 (

conducted on the same cell. When runs 1 and 2 were fit using Eq. (4.3) as the 

exchange function and tR  fixed (at some arbitrary value), the data was fit quite well 

and the estimated Lp values (Table 4.23) were much closer to the estimated values 

from OPP experiments with bubbles (Table 4.22), although ps was still low. The 

improved consistency in Lp is probably because the initial slope of this exchange 

function is now similar to the slope of the linear function (Fig. 4.14d), at least for R

1, and may be closer to the actual exchange function for the experiment. It is 

encouraging that when the voltage data in Fig. 4.2 was digitized, a bounded 

exponential function of the form of Eq. (4.3) fit it well, suggesting that Eq. (4.3) may 

be an appropriate function for representing the change in external concentration.  

 

positive and a negative OPP run. Ramp times tR are fixed at approximately the averaged values 
for fits in Table 4.20. 

 

 (pos neg) 
δULe (x10-5 m) 5.03 3.49 
tR 0.6 0.5  (s) 
Lp (x10-6  MPam s-1 -1) 1.27 1.29 
ps (x10-6 m s-1) 3. 389 .69 
σ 0.4 043 .432 

 

 

The above ana hows that knowledg n priate

data is necessa e eters for OPP experiments 

without a bubb . Since the duration and xch u may differ 

etween experiments, a different function may be required for each experiment. The 

ch 

s 

al 

 a 

le 

lysis s e of a  appro  exchange function for the 

ry in o er t  estimate mrd o mbrane param

le  shape of the e ange f nction 

b

definition of the measured exchange time must also be the same as that used in the 

models. The measured ramp times of 1.37–2.34 s for Cell 4 (Table 4.2) are mu

larger than the fixed ramp times used in Table 4.22, but the measured tR are defined a

being the time it takes for the external concentration to approximately reach the fin

concentration, which is different from the definition of tR  in Eq. (4.3). At present,

consistent set of membrane parameters for all the OPP data for Cell 4 is not possib

due to lack of knowledge about the exchange time and function. 
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4.8 Discussion of some predictions of the UL model 
 
 
4.8.1 How estimated parameters vary with ULe thicknesses 

 

ated δULe and estimated membrane parameters within each cell (Fig. 4.15). 

Within each cell the estimated paramet y his was 

particularly so for C the estimated parameters were quite constant over a 

large range of δULe  estim f the me ne parameters for 

each cell, which is δULe, is a good sign since the estimated parameters, 

ing those of the membrane, should be constant for a cell 

as 

he 

e 

 

ere should be no 

etween δULe and the membrane parameters, since estimation 

 cell 

ple size would be unlikely to show a correlation.  

 

Analysis of results from OPP experiments revealed no strong correlation between the

estim

ers were fairl  consistent. T

ell 4, where 

 values. A consistent ate o mbra

 i dependent of n

if they are accurately reflect

and not dependent on external factors. 

 

Fig. 4.15 shows that scatter in the estimated membrane parameters for each cell w

less than the variation in membrane parameters between cells. The results clearly 

show that membrane parameters between cells can differ significantly. For example, 

for Cells 2 and 3 the between-cell difference in parameters was much greater than t

within-cell differences, so that they formed two separate clusters on the plot wher

the ranges of δULe for each cell did not overlap.  

 

Results from the 3 cells together may appear to show a correlation between δULe and

the membrane parameters (Fig. 4.15). However, this is largely due to the fact that 

results from Cells 2 and 3 occupy separate regions of the plot. Th

reason for a correlation b

of the membrane parameters has taken δULe into account. Data from a larger

sam
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Fig. 4.15  Estimated Lp (blue), ps (red), and σ(green) vs. estimated ULe thickness, for fits to individual 
OPP experiments from Cell 2 (♦), Cell 3 (■), and Cell 4 (▲).  

 

d 

e individual model fits to OPP 

ata were identified for comparison. 

rally exists between the estimated ULe 

ental time-delay. However, this relationship was not always 

bserved in fits to OPP data. For example, in one case the experimental time-delay 

as the same for very different values of δULe predicted by the model (Table 4.24). In 

ental time-delays were very different but the model 

estimated similar values of δULe (Table 4.25).  

 
Table 4.24  Estimated ULe thickness and parameters ± SE for a positive and negative OPP run 
from Cell 3. Results are from using the UL model, and for when the experimental time-delay is 
the same but the estimated ULe thicknesses are different. 

 
  Run 9 (pos) Run 10 (neg) 

 
 

4.8.2 Sensitivity of estimated ULe thickness to measured time-delay 
 
In order to examine the extent to which the experimental time-delay and estimate

parameters vary with the estimated ULe thickness, som

d

 
In §4.4.2 it was shown that a relationship gene

thickness and the experim

o

w

another case, the experim

Time-delay (s) 0.58   0.58   
δULe (x10-5 m) 4.80 ±0.06 4.25 ±0.20 
Lp (x10-6 m s-1 MPa-1) 2.33 ±0.02 2.10 ±0.02 
ps (x10-6 m s-1) 6.46 ±0.03 6.37 ±0.07 
σ 0.444 ±0.002 0.442 ±0.005 
RMS (x10-4 MPa) 6.14   6.43   

Parameters vs. ULe thickness for Cells 2-4

8
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Table 4.25  om Cell 4. 
Results ar similar but 
the experimental 

 

Estimated ULe thickness and parameters ± SE for 2 positive OPP runs fr
e from using the UL model, and for when the estimated ULe thicknesses are 

time-delays are different. 

  Run 5 (pos) Run 7 (pos) 
Time-delay (s) 0.56   0.69   
δULe (x10-5 m) 5.22 ±0.07 5.25 ±0.06 
Lp (x10-6 m s-1 MPa-1) 1.32 ±0.01 1.27 ±0.01 
ps (x10-6 m s-1) 4.10 ±0.01 4.18 ±0.01 
σ 0.444 ±0.001 0.442 ±0.001 
RMS (x10-4 MPa) 5.46   6.94   

 
 
 

ariation in δ  also affects all 3 membrane parameters (see Fig. 4.15; not evident 

 of δULe were similar between 

e magnitude and direction of the perturbation pulse, the estimated 

eters were usually quite similar (e.g. Table 4.25). However, for one case the 

 

arameters ± SE for 2 negative OPP runs from Cell 2. 
 are from using the UL model, showing the case for when the estimated ULe thicknesses 

V ULe

from Table 4.24). It was observed that where values

runs with the sam

param

values of δULe were the same but a degree of variation in the membrane parameters

was observed (e.g. ps and σ in Table 4.26).  

 
 

Table 4.26  Estimated ULe thickness and p
Results
are the same, the experimental time-delays are similar, but the estimated parameters quite 
different. 

 
  Run 8 (neg) Run 10 (neg) 
Time-delay (s) 0.52   0.58  
δULe (x10-5 m) 4.25 ±0.16 4.25 ±0.20 
Lp (x10-6 m s-1 MPa-1) 2.27 ±0.02 2.10 ±0.02 
ps (x10-6 m s-1) 6.07 ±0.08 6.37 ±0.07 
σ 0.397 ±0.004 0.442 ±0.005
RMS (x10 MPa) 4.92   6.43  -4 

 

 

It was suggested previously (§4.6.2a) that since the measured time-delay generally 

fluences the estimated δULe and perhaps the membrane parameters, the polarity 

observed in the e rane p e. e eters sometimes 

differed between ve  s de) may not 

actually reflect t  but m  er easured time-

delay. However, tion fe ated parameters 

in

stimated memb arameters (i. stimated param

 positive and negati  pulses of the ame magnitu

hat of the system ay be due to rors in the m

 results in this sec  s  how that dif r sence  in estim
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between positive and negative pulses cannot solely be attributed to differences in the 

 degree of parameter variation would not 

ecessarily be different if consistent values of t0 and δULe were used in the fits to OPP 

data. The estima alues ( e la  in standard errors 

between the fits) 4–4. 6 s h  to ion in parameters 

estimated with t ecessa  p r several 

experiments so that param ers can be  m e relationships 

etween the parameters can be drawn.  

 
 

erimental uncertainty surrounding these 

ated Lp is very sensitive to the value of the initial 

ity of Lp to P1 was analysed using the UL model to estimate the 

parameters for an HPP data set. Lp and mized for 6 different values of P1 

corresponding to value of wee  0s ter  extreme pressure 

Pm. It was found that using values of P t  decreases the estimated value of 

Lp for both posit ulse  

measured time-delay, and thus the estimated δULe between positive and negative 

pulses. Tables 4.24–4.26 show that the

n

ted parameter v as wel s thl a rge variation

in Tables 4.2 2 how t at due  some variat

he model, it is n ry to estimate arameters fo

et  averaged and ore conclusiv

b

 
 
4.8.3 Estimated Lp values 
 
a) Sensitivity of  Lp to P1  in HPP expts  

Simulations of HPP data can be initialised at any observed (t,P), but is usually at the

perturbation values corresponding to the extremum (tm, Pm) of the data. It has 

previously been shown that there is some exp

values (§4.3.4), and that the estim

(perturbed) pressure P1 used in the model (§4.5.3). Therefore the impact on the 

estimated Lp due to selecting a different initial (t0, P1) point is explored here. 

 

The sensitiv

π1 were opti

t bet n  and 1.07s af the time t ofm  

1 less han Pm

ive and negative p s . (Fig  4.1 ). 6
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P 1  vs. L p  for HPP Run 5, Cell 4
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Fig. 4.16  Lp vs. P1  for fits to HPP Run 5, Cell 4. This is a positive pulse where the maximum pressure 

m = 0.5425MPa. 

was 

or 

 s  MPa ), and corresponds to a fit to the later regions of the 

 

 

 

 

 

 

 

 

 

P
 
 
 
 
In §4.6.2b it was found that estimated Lp values from HPP experiments were higher 

than that from OPP experiments for fits using the UL model with 2 ULs (Table 4.19 

and Table 4.20). For the data set fit here, when (t0, P1) = (tm, Pm) the estimated Lp was 

1.52 m s-1 MPa-1. However, when (t0, P1) = (tm +1.07, 0.5328), the estimated Lp 

1.29 m s-1 MPa-1. This value is close to the average estimated Lp for the OPP data f
-1 -1Cell 4 (of 1.31 m

observed HPP data (Fig. 4.17). One may hypothesise that Lp for both HPP and OPP 

experiments are in fact the same for the same cell, but that the model has trouble 

fitting the initial steeper region. Lp as defined by the KK equations may govern the 

later portion of the HPP curve and not the first 2-3 s.  
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ig. 4.17  Fit to an HPP data set using the UL model, where the fit begins at a point after (tm, Pm,) = (0, 
.5425), namely (t0, P1,) =  (1.07, 0.5328). Showing raw pressure data (-----) and model fit (——). 

r 

 

han 

• Limitations in the applicability of the KK equations. Evidence includes 

difficulties in fitting the shoulder of the HPP curve (§4.5.3, §4.6.1) and the 

superior fit given by a double exponential (§2.7.3a). A double exponential was 

also fit to an HPP curve for the data used in this chapter, and found to give a 

superior fit. 

• Neglect of other dynamics in the experiment, such as possible pressure 

changes during the perturbation pulse, presence of some permeant solutes in 

the cell in HPP experiments (§4.8.6), influence of the tonoplast on the pressure 

 

F
0

 
 

b) Differences in Lp between HPP and OPP experiments 

 

The parameters Lp, ps and σ, being properties of the membrane, should be constant fo

each cell, assuming that there are no external factors affecting the parameters such as 

temperature changes or leaks in the apparatus. The results above in §4.8.3a lend

weight to this claim for the case of Lp. Differences observed between HPP and OPP 

experiments in the present study may be due to inadequacies in the model rather t

a real physical difference in the parameters. Inadequacies may include: 
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dynamics, and influence of different values of D between APW and the 

cytoplasm (§4.8.4) 

 

 
e as 

that f used 

fo

param

 

Mem
-9 

2 -1 -9 2 -1

DULi by 1% resulted in a 0.7% change in Lp, a 1.2% change in ps, and a 

 D for the cell interior 

portant in parameter estimation. Using an incorrect value of D for the ULi may 

ere 

e no current available data on the value of D for the interior of Chara, so 

the actual ex

 

As in §3.6.6, predictions

(Eq. (3.2)) were also calculated (Tab

significantly from m  s  given by the classical model, for which ps 

= pT. This confirm  again that Eq. (3.2) cannot be used to infer the membrane 

permeability p  (= p ) based upon an estimated value of p  obtained using the 

classical m

4.8.4 Impact of different D values on estimated parameters 

It has been assumed that the diffusion coefficient D for the cell interior is the sam

or APW. In fact it is likely to be less, and the extent to which values of D 

r the ULi may impact on the estimated parameters for fits to the data, using the UL 

model, are examined here. This analysis differs from that in §3.6.6 in that here 

eters are estimated by fitting the model to observed data.  

brane parameters were estimated for an OPP experiment (OPP Run 8 of Cell 2) 

for 3 different values of D in the ULi (DULi), where DULi = 0.9, 1.1, and 1.28 x 10

m  s . D for the ULe (DULe) was kept constant at 1.28 x 10  m  s . It was found that 

the estimated membrane parameters varied significantly with DULi (Fig. 4.18). 

Changing 

1.2% change in σ. These results indicate that quantification of

is im

also be a contributing factor to the finding that Lp values were higher for the HPP 

experiments as compared to the OPP experiments (§4.6.2b, §4.8.3b), as ULs have a 

greater influence on the parameter estimation in OPP experiments than HPP 

experiments (§4.6.1b). For OPP experiments, Fig. 4.18 reveals that a lower value of 

D for the ULi leads to a lower value of Lp, and results from the analysis in §3.6.6a 

suggests a monotonic decrease of Lp with decreasing D for the ULi. However, th

appears to b

tent of the influence of D for the ULi cannot be verified. 

 of the total permeability pT using the permeability equation 

le 4.27). It was found that values of pT differed 

 that of 4.16 x 10-6 -1 -1

s

m s T

odel, as is a common practice in the literature. The large differences 
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betwee

strongl

 

1  

Ta

n ps and pT in Table 4.27 also indicates that the permeability of the ULs are 

y limiting transport across the membrane for this cell.  

 

Fig. 4. 8  Plots of Lp (——), ps (——), and σ (——)vs. D  in the ULi, for fits to OPP Run 8 of Cell 2. 

 
 
 

ble 4.27  Membrane permeability ps and total permeability pT for 3 different values of DULi. 
For OPP Run 8 of Cell 2. 

 
DULi (x10-9 m2 s-1) 1.28 1.10 0.90 
ps (x10-6 m s-1) 8.89 10.41 14.78 
pT (x10-6 m s-1) 2.56 2.22 1.84 

 
 
 

of different ε values on estimated parameters 

The impact of ε on estimated parameters was analysed for an HPP and OPP 

experiment from Cell 2, where ε was independently estimated to be 27.

4.8.5 Impact 
 

9 ± 4.1 MPa. 

brane parameters were estimated for the two ε values at either end of this range, 

%. 

Mem

using the classical and UL models. Differences between estimated parameters using ε 

= 27.9 MPa were calculated (Table 4.28). It was found that the value of ε impacted 

strongly on the estimated Lp and had negligible effect on ps and σ.  Therefore, 

experimental errors in ε may introduce a large error in the estimated Lp of 10-20

 

How estimated membrane parameters change with D

0.0
0.9 1.0 1.1 1.2 1.3 1.4

D in the ULi (x10-9 m2 s-1)

0

0.2L p
 

2

4 p s0.4

0.6

0.8

1.0

1.2

1.4

(x
10

-6
 m

 s
-1

 M
Pa

1 ), 
σ

 

6

8

10

12

14

16

 (x
10

-6
 m

 s
-1

)

 4-49



Table 4.28  Showing relative changes in estimated parameters due to using 2 different values of
ompared to using ε = 27.9 MPa. 

 

 ε 
as c

  OPP Run 8 HPP Run 1 
ε (MPa) 23.8 32 23.8 32 

Classical model         
Lp (x10-6 m s-1 MPa-1) 16.92% -12.31% 18.39% -12.64% 
ps (x10-6 m s-1) 0.00% 0.00%   
σ 0.30% -0.22%   

UL model     
Lp (x10-6 m s-1 MPa-1) 16.84% -13.01% 18.13% -13.74% 
ps (x10-6 m s-1) 0.33% -0.24%   
σ 0.61% -0.47%   

 

 

In §1.2 it was m

m

of ε in the param ter estimation process may therefore introduce an error in the 

ated parameters, for example an overestimation of ε may lead to an 

ation of L  (by Eq. 2.13). If the value of ε  is measured prior to HPP 

then errors in the estimated Lp from the HPP experiments 

sulting from the use of this value are unlikely as it was found that the measured 

values of ε  before a  H pe  (6 iments over a 

duration of approxim s) wa sam hin ent error. HPP 

ents were usually conducted immediately after the measurement of ε. 

 

sing an ‘instantaneous’ measurement of ε are more likely as the duration of the 

he 

 

ant kw 

stimated parameters and variables predicted by the analytical solution to the KK 

equations, on which the classical model is based, seem to carry over to the UL model. 

entioned that the value of ε is not constant over time due to 

viscoelastic properties of the cell wall. The measured value of ε due to an 

‘instantaneous’ volume change is generally larger than the ‘stationary’ value 

easured following a period of relaxation in the cell. Using an ‘instantaneous’ value 

e

estim

underestim p  

experiments on Chara, 

re

nd after one set of PP ex riments  exper

ately 6 minute s the e wit measurem

experim

However, errors in the estimated parameters from OPP experiments resulting from

u

course of experiments were 1 to 2 hours. This error cannot be quantified for t

present data due to a lack of available data on ε. 

 

It was also found that the product εLp was approximately constant between the fits to 

each data set, where the same model was used. In the context of the classical model,

constancy of εLp is expected because of Eq. (2.7) linking εLp and the rate const

of the water phase. As mentioned previously (§3.6.5c,d), the behaviour of the 

e
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This is probably because the ULs change the concentration difference at the 

membrane, but not the transport processes across the membrane, which are still 

governed by the KK equations.  

 
4.8.6 Equi
 
It has been m tioned that in the O er nalysed in this chapter, the 

observed fina r a ’ e  initial 

pressure P0 d e chang ul -stren th or vic versa (§4.3.3). 

lthough the magnitude of PE - P0 differs between experiments, in most cases the 

lassical and UL models were capable of predicting the tail of the OPP well, at least 

bserved 

o. Possible 

amics 

. 

ed. 

 was found that following negative HPP experiments, the observed P  is usually 

 

nt 

librium pressures 

en PP exp iments a

l equilibrium pressu e PE usu lly doesn t equal th  observed

ue to th  APW e from f l to half g e-

A

c

up to 400s.  

 

In a few cases, however, the simulated data could not fit PE or the tail of the o

data. For some data sets the best fit was obtained when the APW was not changed 

from full to half-strength (or vice-versa) (§4.6.1a). It is not clear what these 

inconsistent differences in initial and final equilibrium pressures are due t

reasons (Tyree, pers. comm.) may be that the ethanol is affecting cell turgor dyn

by chemically or physically changing the membrane properties, or changing the 

osmotic pressure inside the cell due to molecular interactions with the cell contents

However, why this should vary between experiments is not clear. A more likely 

explanation is that the cell is reacting to the perturbations, and the reaction varies 

between experiments. Chara cells are not typically exposed to ethanol in nature, and 

the cells could be using active transport to get rid of the ethanol via ion channels in 

the membrane. Both permeant and impermeant solutes may be affected by the above 

disturbances to membrane properties or concentration of solutes in the cell, especially 

if the latter are only relatively impermeant as compared to the permeant solutes us

 

It E

lower than that predicted by the models. To accommodate this, the internal 

concentration πi1 at the time of perturbation was changed, and changed for all fits to 

HPP data for consistency. Changes in πi1 may be occurring due to the presence of 

some permeant solutes inside the cell (“impermeant” solutes are only relatively

impermeant) affecting the internal concentration at time of perturbation. If permea
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solutes present inside the cell are leaking out during perturbation, or during th

of the experiment via passive or active transport in negative HPP experiments, th

would cause the equilibrium pres

e course 

is 

sure to fall short of the predicted equilibrium.  

hange occurring during the perturbation (the 

t time 

5s 

 

at 

i1 = πi0  as is usually assumed for an instantaneous pressure change. This 

ould cause PE to return to a lower or higher value than that predicted by the models 

e of 

ing 

ata fit in this chapter, the choice of P0 was unclear (see §4.3.3), and the value of P0 

sed 

e of P0 

 

Another possibility is that water exc

perturbation is not strictly instantaneous) is affecting the internal concentration a

of perturbation. An examination of HPP experiments reveals that it takes about 0.

for the pressure to rise or fall to a maximum or minimum value. During this change in

pressure some water exchange would be occurring with the external medium, so th

for negative HPP experiments πi1 < πi0,  and for positive HPP experiments πi1 > πi0, 
rather than π

w

for a negative and positive HPP respectively.  

 

Although it is not known whether changes in the internal concentration at tim

perturbation are in fact occurring, this is considered the most likely explanation. The 

external concentration is constant as it is continually being replaced, and differences 

in the perturbation pressure P1 used in the models do not affect the predicted PE 

(§4.8.3a). However, it is also possible that ethanol from a previous OPP experiment 

may be left in the cell, affecting the concentration of solutes inside the cell by add

some permeant solutes to an HPP experiment. 

 

None of the above factors, however, explains why PE was more poorly predicted by 

the models for negative HPP experiments as compared to positive HPP experiments. 

This pattern seems to indicate an asymmetrical behaviour, or polarity in, the response 

of the cell to hydrostatic pressure perturbations. For a small proportion of the HPP 

d

used affects the fits and predicted PE. However, when a different value of P0 was u

for a couple of these fits, the fits were not altered much so the original choic

was maintained. This uncertainty in P0 may affect the estimated parameters for a 

couple of the HPP fits, but would not be the reason for general differences in fits 

between positive and negative experiments. 
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4.9 Comparison of estimated parameters with those in the 
literature 

 

Estimated parameters averaged over all data sets examined in this study were 

compared with average parameter values in the literature. It was found that 

classically-estimated membrane parameters in the present study are consistent with 

those from Henzler et al. (2004) and Hertel and Steudle (1997) (compare Table 4.29 

& Table 4.30).  

 

Table 4.29  Average estimated parameters for OPP and HPP experiments, using the UL and 
classical models, for 3 Chara cells. Errors are standard deviations. 

 
  UL model  Classical model  
  OPP HPP OPP HPP 
Lp (x10-6 m s-1 MPa-1) 1.69 ±0.68 2.23 ±1.2 2.22 ±0.78 2.14 ±1.1 
ps (x10-6 m s-1) 6.18 ±2.16  3.51 ±0.73   
σ 0.462 ±0.06   0.267 ±0.02   
 
 

Table 4.30  Average estimated parameters from existing literature, for Chara corallina where 
ethanol was used as the permeant solute. Lp is obtained from HPP experiments. 

 
  a b c d d' 
No. of cells not stated 6 15 (ps), 4 (σ)    
L       p (x10-6 m s-1 MPa-) 2.0 ±0.8 1.6 ±0.7 
ps (x10-6 m s-1) 3.5 ±0.3 2.8 ±0.4 2.36 ±0.28  1.97 ±0.1 2.82 ±0.31 
σ 0.21 ±0.02  0.36 ±0.05 0.4 ±0.06     
 
a Henzler et al. (2004) 
b Hertel and Steudle (1997) 
c Steudle and Tyerman (1983) 
d Dainty and Ginzburg (1964c), theoretical predictions using analytical equation 
d' Dainty and Ginzburg (1964c), value corrected for unstirred layers. 
 

 

Dainty and Ginzburg (1964c) carried out a theoretical prediction of membrane 

parameters using analytical equations, and corrected for ULs by solving the diffusio

equation for the planar case. They predicted p

n 

ot 

 

/ non-classically estimated 

arameters (Table 4.31) were calculated using the averaged parameter values in Table 

4.30. These results suggest that for an OPP experiment, the classical model may over-

s may be underestimated by 30% if n

corrected for ULs (Table 4.31). In order to compare their results with those in this

study, parameter ratios ξ of classically-estimated

p
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estim e Lat

(1964c) stated that their corrected values will “underestimate the effect of diffusion 

sistances on the permeability”, due to their application of equations for planar 

ictions 

es the 

4.31  Parameter ratios for values in Table 4.29. 

p by 31% and underestimate ps and σ by 43%. Since Dainty and Ginzburg 

re

geometry, the results for ps  drawn from Table 4.31 are consistent with the pred

of Dainty and Ginzburg (1964c) since the numerical model in this study solv

diffusion equation for cylindrical geometry. 

 

Table 

 
  OPP HPP 
No. of cells 3 3 
ξ (Lp) 1.31 0.96 
ξ (ps 0.57  ) 
ξ (σ) 0.58  

 

The parameter ratios calculated for each individual cell in §4.6.1b  (Table 4.15) 

owed that for an OPP experiment the classical model may over-estimate Lp by up to 

s averaged 

ver a few cells indicate the extent to which classically-estimated average parameters 

cted by ULs, they do not indicate act u tirred lay ay 

es ara is is due to the signif

riation in the estim r ters, as can be seen from the large 

in Table 4.29 and Table 4.30, and the large range in estimated 

4.15. 

.10 Conclusions 

s 

 

sh

50% and underestimate ps and σ by up to 50%. The difference between these values 

and those stated in the preceding paragraph shows that while parameter

o

may be affe  the full imp ns ers m

have o cla ically-n ss timated p meters. Th icant inter-cell 

va ated memb ane parame

standard deviations 

parameters shown in Fig. 

4
 

A model incorporating unstirred layers (UL model), developed in Chapter 3, wa

applied in this chapter to CPP data obtained by Dr. Helen Bramley and Prof. Mel 

Tyree. Data from 3 Chara cells were analysed using both a model with 2 ULs and the

classical model. It was found that the UL model reproduced the observed CPP 

relaxation curves as well as, and often better, than the classical model. For fits to OPP 

data, the UL model generally improved fits to the water phase and first part of the 
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solute phase, and for fits to HPP data the UL model improved fits to the first half of 

the data, from t0  to the end of the shoulder of the curve (§4.6.1a). 

It was shown that the UL model does not just influence the first few seconds of the 

relaxation curves, as often assumed in the literature (Hertel and Steudle, 1997), but 

influences the pressure dynamics throughout the course of an HPP or OPP experiment 

4.5.4).  

 was found that estimated parameters differed significantly between the UL and 

classical models. Parame rs estimated usin  UL , being a more accurate 

model, can be viewed as being closer to the true values for the membrane. Compared 

to these, the classical mo erestimated d σ by up to 50% and overestimated 

p  by up to 50%. For the HPP experiments, the classical model underestimated Lp by 

up to 5% (§4.6.1b).  

for 

ive 

n δULe 

rs, 

s in pressure dynamics between experiments 

(§4.8.2).  

ome difference was observed in estimated parameters between fits to positive and 

be 

on 

there 

lso 

interesting considering that for Cell 4 fits to negative HPP data were worse than fits to 

(§

It

te g the model

del und  ps an

L

 

The UL model also gave estimates for the ULe thickness δULe in OPP experiments in 

the range of 30-50 µm. One would expect δULe to be the same between positive and 

negative OPP experiments conducted on the same cell. However, estimated values 

δULe varied by 4-15 µm between positive and negative OPP experiments conducted on 

the same cell. This pattern was observed for all 3 cells (§4.6.2a) and was partly 

dependent on the extent to which the measured time-delay differed between posit

and negative pulses (§4.6.2a, §4.8.2). It is considered that apparent differences i

between positive and negative experiments are likely to be due to measurement erro

and to a greater extent difference

 

S

negative OPP data from the same cell. However, definitive conclusions could not 

drawn about the presence or absence of polarity in the parameters, since the directi

and magnitude of the polarity was inconsistent between the cells, and the sample size 

was small. A polarity in Lp was also not observed in fits to HPP data. Although 

was some difference in Lp between positive and negative experiments for two of the 

cells, a difference was absent for Cell 4 where the sample size was largest. This is a
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positive HPP data, which seems to suggest some asymmetry (polarity) in the pressure

dynamics (§4.6.21a). However, it is unclear what this asymmetry m

 

ay be due to 

(§4.8.6). 

However, it is possible that the Lp values are the same, but difficulties in 

fitting the first 2-3 s of the HPP data and in determining initial conditions for HPP 

 OPP experiments where a bubble is not used to separate the old and new external 

. 

e. 

f the 

ubble 

uring the solution changeover to OPP experiments where a bubble is not 

resent.  

 

Differences were found in estimated Lp values between OPP and HPP experiments, 

where Lp for HPP experiments were 14-45% higher than the Lp for OPP experiments 

(§4.6.2a). 

simulations may be causing a difference in Lp between HPP and OPP experiments 

(§4.8.3). A larger sample size is again required for more conclusive results. In 

addition, more accurate HPP data could be obtained by using a mechanical system for 

adjusting the metal rod in the CPP. This would likely remove some of the variation 

observed during the HPP perturbations. 

 

In

solutions, the exchange time must be included as this affects the estimated parameters

However, the solution exchange acts over a different time scale to unstirred layers, i.

only during the first few seconds of a relaxation. Optimization of the exchange time is 

not recommended, as changes in the relaxation curve are not very sensitive to small 

changes in it. Optimized parameters also appear to be independent of the form o

exchange function used, but are affected by the duration. Therefore, it is 

recommended that the exchange time is fixed in the model, based on a known 

exchange function. However, as this information is currently not available, it was 

difficult to compare estimated parameters between OPP experiments where a b

is present d

p

 

Estimated membrane parameters between cells were found to differ by as much as a 

factor of 2 (§4.6.2b, Fig. 4.15). The intra-cell variation in estimated parameters was 

less than the inter-cell variation, and within each cell the estimated parameters were 

fairly consistent (§4.8.1, Fig. 4.15). This suggests that the UL model is predicting the 

membrane parameters well, and these should be consistent within a cell as they are 

intrinsic properties of the membrane.  Some correlation of δULe with cell length was 

also observed (§4.6.2b).   
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Studies elsewhere in the literature have also found significant inter-cell variation 

estimated 

in 

membrane parameters (§4.9). It is well established that a wide range of Lp 

alues exist in plant cells, and that this probably reflects a property of the membranes 

lts 

r 

at the value of D used for the internal UL can 

gnificantly affect the membrane parameters estimated using the numerical model. 

t of these 

re on the estimated Lp using the UL model could be explored in future 

udies. The temperature was not changed during the CPP experiments from which 

 

bility predicted by this equation. This shows that ULs are 

v

(Maurel, 1997). Averaging estimated parameters over all cells leads to different 

conclusions regarding the extent to which ULs influence estimated parameters, as 

compared to averaging estimated parameters within each cell. This must be noted 

when comparing results from studies which aim to evaluate the impact of ULs on 

estimated parameters, where parameters are usually averaged across cells, with resu

from the present study.  

 

Estimated parameters were shown to be sensitive to the value of the diffusivity D fo

the cell interior (§4.8.4). It was shown th

si

Simulations in Chapter 3 suggest that using a value of D for the ULi which is nearer 

to the actual value may result in an even greater difference between the estimated 

parameters using the UL and classical models, particularly for Lp (§3.6.6a). In 

addition it was shown that estimated parameters are sensitive to the value of the 

elastic modulus ε of the membrane (§4.8.5). These factors must be considered when 

comparing estimated parameters between experiments. However, a present lack of 

data on the likely range of D and ε values for Chara means that the impac

factors on the estimated parameters cannot be fully explored. 

 

Hertel and Steudle (1997) have found that there is also a strong correlation between 

temperature and Lp in Chara over a temperature range of 10-35°C, and the effects of 

temperatu

st

data was obtained, however the UL model was used to show that a 2 degree change in

temperature in the model made <1% difference to the estimated parameters.  

 

Predictions of the total permeability using the equation analagous to Kirchoff’s laws 

for electrical resistances in series (Eq. (3.2) were examined (§4.8.4). A large 

difference was found between the membrane parameters estimated using the UL 

model and the total permea
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strongly limiting transport across the membrane. Predictions of total permeability 

 

al 

a 

a) Direct and accurate measurement of the time of perturbation in an OPP 

t 

otic 

ess in 

at 

e 

P 

 

rtant 

 

w what 

appropriate changes to make in the model. A mechanical system for adjusting 

from this equation also differed significantly from the total permeability predicted by

the classical model, showing that predictions using this equation and the classical 

model cannot be compared.  

 

The results in this chapter are based on an examination of a small set of experiment

data. Despite this, the analysis has produced interesting results. Further, it has 

highlighted what additional details about the experimental system are required for 

more definitive estimation of membrane parameters. These include: 

 

experiment. This affects the estimation of the ULe thickness, and can be 

obtained from simultaneous recording of changes in cell pressure and 

conductivity of the external solution. These data, although recorded, were no

made available for the present study. 

 

b) Information about how the external concentration changes during an osm

perturbation. Estimation of the membrane parameters and the ULe thickn

OPP experiments where a bubble is not present in the solution changeover, is 

problematic without knowledge of the exchange function. This has meant th

in the present study only results from OPP experiments with a bubble could b

compared.  

 

c) More knowledge of what is happening during the pressure perturbation in HP

experiments. Changes in the concentration or pressure during this phase affect

the model inputs and hence the estimated parameters, and may be an impo

missing element in the model. This can be mediated to an extent by adjusting

the initial conditions in the model, i.e. values of P and C at t=t1. However, it is 

important to understand the realistic physical processes in order to kno

the metal rod in the CPP would also provide for more accurate HPP data, and 

is recommended for future studies.  
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d) Better replication to enable more conclusive results of within-cell and 

between-cell variation in membrane parameters to be drawn. More CPP data 

would also remove the influence of other variables such as differences in 

equilibrium pressures between the beginning and end of an OPP experiment 

(§4.3.3, §4.8.6), and drifts in equilibrium pressures over the course of a few 

OPP experiments, by fitting only those experiments for which these variations 

do not occur. 

  

 4-59



5 Conclusion 
 

5.1 Overview of implications of UL model 
 

A model of pressure dynamics during a CPP experiment has been developed and 

applied. This model incorporates unstirred layers (ULs), in contrast to the classical 

model traditionally used to estimate membrane parameters from CPP experiments. It 

was found that the UL model was able to reproduce the observed CPP relaxation 

curves better than the classical model. Membrane parameters estimated with the two 

models differ significantly, and this study proposes that the classically-estimated 

parameters (i.e. estimated using the classical model) are not a true representation of 

the membrane parameters. Rather, the UL model developed in this study is a more 

accurate and comprehensive representation of transport across a cell membrane in 

CPP experiments, and parameters estimated by this model are likely to be nearer to 

the true membrane parameters. Results from applying the model suggest that the 

classical model may underestimate ps and σ and overestimate Lp  in an OPP 

experiment by up to 50%, and underestimate Lp in an HPP experiment by up to 5% 

(§4.6.1b).  

 

The ability of the classical model to reproduce observed pressure relaxations does not 

negate the presence of ULs. While both models can be made to fit the data, 

differences in the model fits are subtle and important. The classical model, for 

instance, does not reproduce the initial curvature in the OPP data following the 

osmotic perturbation. It fits the water phase only by adjusting the time of perturbation 

t0, which must be later than the actual t0 (§2.5.2). The UL model, by contrast, 

automatically reproduces the initial curvature in the OPP data (Fig. 3.6; Fig. 4.10). In 

HPP experiments, the UL model consistently fits the shoulder of the data curve more 

closely than the classical model (§4.6.1a).  

This study has unequivocally shown that ULs are an important factor in cell pressure 

dynamics, and impact on all parts of the OPP and HPP relaxation curves. ULs should 

be included in all models used to fit CPP data as they have a significant impact on the 
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estimated membrane parameters. With the exception of Tyree et al. (2005), no 

process-based model including ULs has been developed to model transport across a 

cell membrane in a CPP experiment. The UL model developed here thus provides a 

better and alternative model for membrane parameter estimation. 

Although this model includes ULs in a realistic manner, other features of cells that 

affect pressure dynamics have not been included, e.g. influences of the tonoplast on 

water and solute transport, and pressure dynamics during the period of an HPP 

perturbation. However, the model does provide a means for estimating membrane 

parameters more accurately. Further, the study highlights that current experimental 

protocols, methods of parameter estimation, and how unstirred layers are treated in 

the literature, must be re-assessed. The study shows that membrane parameters for 

Chara given in the literature are not the true values for the membrane. 

 

5.2 Critique of current methods for dealing with unstirred 
layer effects on estimated parameters  

 
A brief review of how ULs have been considered in the CPP literature was given in 

§3.1.4a. In this section, claims in the literature will be addressed in detail, in light of 

the findings of this study.  

a) Claim that ULs take a while to form during a relaxation, and have little 
influence during certain periods  

 

It has been suggested (Henzler and Steudle, 2000) that internal and external ULs take 

a while to form during a relaxation, and that through the process of internal diffusion 

the thickness of ULs increase over time during the solute phase of a CPP experiment. 

It has been claimed (Hertel and Steudle, 1997) that if experiments are conducted when 

ULs have not reached their maximum thickness, e.g. if membrane parameters such as 

σ are measured at times before the internal unstirred layer has completely formed, the 

effects of ULs would be less and the measurement of membrane parameters would be 

relatively unaffected by ULs).  
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These suggestions, however, are inconsistent with the concept and definition of an 

unstirred layer. A ULe forms as a result of fluid flowing past a solid body, in this case 

a cell (Barry and Diamond, 1984). The ULe would be well-established within the first 

few seconds of switching on the flow in a CPP experiment, and remain at a constant 

thickness as long as the external solution is flowing at a constant rate. Since 

equilibrium is established prior to any experiment, a ULe would already be at its 

maximum thickness during an experiment. The ULi would also not change in 

thickness since there is little stirring within the cell and no outside forces acting on it. 

Since water is incompressible, and cell sap and APW are mostly water, fluid flowing 

into the cell would not disturb the bulk of the cell solution but merely add to the cell 

volume by flowing into the region near the membrane (§3.2.2). See §A.4 in appendix 

for further comments. 

b)  Claim that a ULe only affects the initial few seconds 
 

It has been suggested (Hertel and Steudle, 1997) that effects of external ULs should 

be negligible if the time it takes for solutes to traverse the ULe is small compared to 

the halftime of the solute phase. For example, it has been stated that for an external 

UL of no more than 50μm, the effect of external ULs should not be significant since a 

solute molecule would take a couple of seconds to diffuse from the bulk solution to 

the membrane surface, which is much smaller than the half-times of 15-100 s required 

for the equilibration of solutes.  

The results of this thesis do not support this suggestion. A behavioural analysis of the 

UL model has shown that ULs affect both the pressure dynamics in these few seconds 

following the perturbation and also the concentration difference at the membrane 

(which drives cell pressure dynamics) for the entire course of an HPP and OPP 

experiment (§3.6.2, §3.6.3, §4.5.4). Furthermore, if the exchange time of the external 

solution (up to 3s) is not taken into consideration, an additional error is introduced in 

the estimation of membrane parameters since the exchange time affects the relaxation 

curves (§4.7). The influence of the exchange time on CPP experiments does not seem 

to have been fully explored in the literature, where it appears no bubbles have been 

used to separate new and old solutions during the solution changeover.  
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c) Claim that sweep-away effects in HPP experiments should be negligible due to 
small volume flows 

 
It has been suggested (Hertel and Steudle, 1997; Zimmermann and Steudle, 1974a) 

that sweep-away effects in HPP experiments should be small or negligible because the 

amount of water moved across the membrane is small. However, the UL model in this 

thesis has shown that sweep-away effects in HPP experiments can affect the estimated 

membrane parameters by up to 5% (§4.6.1b). While this may be a small effect in 

some circumstances, the effects of ULs should nevertheless not be discounted in 

general. 

d) Claim that fitting the solute phase by a single exponential shows effects of ULs 
in OPP experiments are small 

 

It has been suggested that the influence of ULs in OPP experiments should be evident 

from their effects on relaxation curves. For example, Hertel and Steudle (1997) have 

stated that the ULi could be a few hundred micrometers thick, but that the effects of a 

ULi on OPP experiments would be insubstantial since otherwise rate constants 

measured during the solute phase would decrease continuously during the formation 

of the internal unstirred layer. This implies that it should not be possible to determine 

a single rate constant (determined from fitting a single exponential) for the solute 

phase. This conclusion is reinforced by Henzler and Steudle (2000) who state that 

“solute phases could be nicely fitted by a single exponential which would not be true 

in the presence of a limitation by diffusion within the cell.” 

Results of this thesis, however, do not support this suggestion. It has been shown that 

the classical and the unstirred layer models fit the solute phase of the relaxation curve 

equally well (§4.5.2). The presence of ULs do not change the fundamental shape of 

the curve, and the solute phase remains essentially an exponential decay with a 

different time constant to that for the classical model.  
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e) Claim that KK equations correct for ULs  
 

Some papers in the literature (Steudle and Tyerman, 1983; Henzler and Steudle, 1995; 

Hertel and Steudle, 1997) claim to have corrected for unstirred layers in their 

parameter estimation. This claim rests on the argument that Eq. (2.16) corrects for 

solute flow and unstirred layers because the term [ 0 0exp( / )s mp A t V ] in the equation 

reduces Δπse to the true value across the membrane, thereby incorporating the effects 

of ULs on tmin and ps . 

However, Eq. (2.16) is obtained from the analytical solution to the KK equations at 

the point (tm, Pm). It has been shown here that the KK equations by themselves do not 

incorporate effects of ULs, as evidenced by the fact that the classical model based on 

the KK equations estimates very different parameters to that of the UL model. Steudle 

and Tyerman (1983), Henzler and Steudle (1995), and Hertel and Steudle (1997) 

applied the classical model and used the bulk concentration values in the KK 

equations. Eq. (2.16) is simply a more accurate determination of σ in relation to a 

previous equation used to determine σ (Eq. (4) in Tyerman and Steudle, 1982) which 

applies for slowly permeating solutes only. 

f) Claim that steady-state equations can be used to estimate the ULe thickness and 
its influence on membrane parameters 

 

Some papers in the literature (Steudle and Tyerman, 1983; Ye et al. 2006) have 

applied steady state equations to determine the effects of external unstirred layers on 

HPP experiments. The following steady state equation has often been used, which 

relates the solute concentration at the membrane (Cm) to that in the bulk solution (Cb) 

(Dainty, 1963): 

exp V ULe
m b

JC C
D
δ⎛= −⎜

⎝ ⎠
⎞
⎟ .       (5.1) 

It has been assumed that a ULe in an HPP experiment is formed by water extruded 

instantaneously from the cell (Steudle and Tyerman, 1983; Ye et al. 2006). Based 

upon the maximum change in the cell radius and volume during the relaxation, the 

maximum thickness δULe of the ULe has been estimated to be 0.2-0.3 μm. Eq. (5.1) 
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has then been applied to estimate that the effects of sweep away due to ULs would be 

small, e.g. “less than a 0.7% reduction of the driving force” (Steudle and Tyerman, 

1983). Dainty (1963) also used Eq. (5.1) to estimate that for δULe = 10μm the assumed 

driving force (and measured Lp) would be 2% less than the true driving force (and 

membrane Lp).  

Although sweep away (due to convection) arises due to movement of the cell 

membrane and changes in volume of the cell (§3.2.2), this thesis suggests that the 

above method of estimating δULe cannot be applied, and that emphasis should not be 

put upon quantitative estimates resulting from Eq. (5.1). In regards to the first point, it 

was mentioned in (b) above that a ULe does not form due to fluid flowing across the 

cell membrane but forms due to fluid flowing past the cell, which establishes a ULe 

prior to a CPP perturbation. In regards to the second point, even if the value of δULe is 

known, the use of Eq. (5.1) as a quantitative measure of the influence of a ULe should 

be cautioned against, as a relaxation is time-dependent. Steady state equations can 

only provide “best guesses” for effects of unstirred layers and cannot truly or fully 

quantify their effects. 

g) Claim that the steady state permeability equation gives an upper bound to the 
thickness and contribution of ULs 

 

The permeability equation (Eq. (3.2)) is another steady state equation that is 

sometimes used to quantify the effects of ULs on the membrane parameters. Ye et al. 

(2006) obtained rate constants ks from the slope of semilog plots of the solute phase, 

used Eq. (2.10) to determine the total permeability pT, and then used Eq. (3.2) to 

estimate a maximum ULi thickness. To do this, they assumed that the membrane is 

not limiting transport, i.e. that ps in Eq. (3.2) is large. Thereafter, they appear to put 

back the estimated ULi thickness into Eq. (3.2) to estimate the membrane 

permeability and thus the contribution of ULs (by calculating the resulting difference 

between the membrane and total permeabilities). 

Results of this thesis do not support the use of Eq. (3.2) for estimating effects of ULs 

on membrane parameters. It was demonstrated that the permeability equation (Eq. 

(3.2)) relating the membrane permeability to the total permeability across the 

membrane-UL system cannot be used to correct for ULs in the classical model (see 
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§3.6.6b, §4.84). It was also shown that predictions based on the steady-state 

permeability equation and the non-steady state UL model do not agree. Furthermore, 

the assumption in Ye et al. (2006) that the value of ps is very large so that 1/ps → 0 

corresponds to a totally different system, where a membrane is not present in the 

region of diffusion. Both transport at the membrane and in the ULs govern transport 

across the system, and both are essential to the pressure dynamics.  

In actual fact, the application of Eq. (3.2) to the conditions of a CPP experiment is 

inappropriate. As a→ 0, which corresponds to the entire internal region of the cell 

being unstirred, the term containing a goes to infinity which is non-sensical. This 

arises from the inadequate internal boundary condition which itself arises from the 

assumption of steady state, whereas in reality C=f(t) at the internal boundary r=a (see 

§A.3 for derivation). Eq. (3.2), therefore, cannot be applied to determine bounds for 

UL thicknesses or limits for the contribution of ULs.  

h) Claim that variation in membrane permeability values reflect a small influence 
of ULs 

 

In the literature, measured ps values have been found to range over 2 orders of 

magnitude for different solutes which have similar values of the diffusion coefficient 

D (Henzler and Steudle, 2000). It has been suggested that this shows that membrane 

transport is not controlled by diffusion in the ULs but is dominated by the membrane 

permeability; otherwise ps values should all be similar due to the similar values of D 

(ibid. 2000). It has also been found that the permeability of heavy water is strongly 

affected by blocking water channels, from which it has been concluded that ULs are 

not significantly affecting solute transport and the measured permeability largely 

reflects that of the membrane (Hertel and Steudle, 1997). 

Results of this thesis do not support these views. The converse of the above scenario 

suggests that if ps of the membrane is changed by using different solutes or blocking 

water channels, and ULs are strongly influencing transport, changes in ps will not be 

evident in the pressure dynamics. However, it has been shown using the UL model 

that if the membrane permeability is changed, the observed pressure dynamics will 

change, and so will the classically-estimated parameters. ULs do not make the 

membrane permeability irrelevant to the transport processes, which the above 
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suggestions imply, but act in conjunction with transport through the membrane. The 

KK equations still govern transport across the membrane in the presence of ULs, 

which is evident from the fact that the relationship between parameters and variables 

predicted by the KK equations still hold in the presence of ULs (see §3.6.5d; §4.8.5). 

This thesis has shown that internal ULs may significantly limit transport across the 

membrane, while significantly affecting the estimated membrane parameters.  

i) Claim that agreement between parameter estimates based on different 
experimental techniques implies that ULs have a low impact in CPP 
experiments 

 

It has sometimes been suggested (Henzler and Steudle, 2000; Zimmermann and 

Steudle, 1978) that agreement between estimated parameters using the CPP, and 

results from other experimental techniques conducted by Dainty and Ginzburg 

(1964c,d), show that ULs in CPP experiments probably have a low impact.  

This thesis proposes that this comparison is not an accurate one. Dainty and Ginzburg 

(1964c) used equations which apply to the planar case only, which has been shown to 

underestimate the impact of ULs on estimated parameters (§4.9). Also, in one paper 

(Steudle and Zimmermann, 1974) a correction for unstirred layers (based on steady 

state equations) was necessary to bring values of σ into closer agreement with Dainty 

and Ginzburg (1964c).  

In summary, this thesis suggests that a process-based model incorporating unstirred 

layers is the only means by which effects of ULs on estimated parameters can be 

quantified. In the absence of this, analysis of the potential effects of ULs are largely 

guesses based on analogies, assumptions, and application of equations which do not 

strictly apply to the system being studied. This thesis has demonstrated that the effects 

of ULs in CPP experiments can be subtle, such that a significant influence of ULs on 

the concentration difference at the membrane during the course of an experiment 

cannot be observed from relaxation curves.  
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5.3 Some results from the UL model in relation to the 

literature 
 
 
It was summarised in §3.1.2 that some evidence in the literature show that effects of 

ULs include a polarity in Lp, an increase in Lp with external flow rate, and a decrease 

in Lp with increasing external solute concentration. Polarity is where the estimated Lp 

is different between positive and negative pulses of the same magnitude. 

The extent to which an observed polarity in Lp is due to either properties of the 

membrane or to unstirred layer effects has been a subject of much debate (Steudle, 

1993; Dainty, 1963). Polarity in Lp has been found to increase at higher external 

concentrations (Steudle and Zimmermann, 1974), suggesting an influence of ULs due 

to sweep-away effects (Dainty and Ginzburg, 1964a). However, Dainty and Ginzburg 

(1964a) have concluded that an absence of sweep-away effects would not result in an 

absence of observed polarity, and polarity in Lp may be largely an intrinsic property of 

the membrane (plasmalemma) in some Characeae species due to a differential 

dehydration of the membrane (Dainty and Ginzburg, 1964a; Kiyosawa and Tazawa, 

1973). It is also possible that polarity arises due to combined effects of the tonoplast 

and the plasmalemma, i.e. is due to a composite membrane (Zimmermann and 

Steudle, 1978; Kedem and Katchalsky, 1963c).  

Use of the present UL model to estimate membrane parameters may potentially help 

resolve whether and by how much the presence of ULs contribute to observed polarity 

in the membrane parameters. It was shown (§3.6.5b) that the presence of an UL does 

not induce polarity in the parameters. Since the model explicitly takes the influence of 

ULs on the estimated parameters into account, any polarity in the parameters must 

therefore be due to other factors affecting the cell pressure dynamics and not ULs. 

When the UL model was applied to observed data, the present study found no 

evidence of polarity in Lp in HPP experiments (§4.6.2a), and some but no conclusive 

evidence of polarity in membrane parameters for OPP experiments (§4.6.2a). The 

former result is in agreement with results of Steudle and Tyerman (1983) who did not 

observe polarity in Lp for HPP experiments in Chara corallina, although Steudle and 

Tyerman (1983) observed polarity in Lp for OPP experiments (with permeant solutes). 
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Unfortunately, due to the small sample size, polarity in membrane parameters could 

not be fully explored in the present study. 

The UL model could be used to determine whether changes in the estimated 

parameters due to differing external solute concentrations or external flow rates are 

influenced by ULs. Unfortunately, these variables were not changed in the 

experiments analysed here. However, it was shown that the UL model predicts the 

classically-estimated Lp from HPP experiments will decrease marginally with 

increasing external concentration (§3.6.5c), and that the classically-estimated Lp from 

OPP experiments will be more affected by increasing the external concentration.  

A difference in the classically-estimated Lp between HPP and OPP experiments 

observed in the literature (and confirmed in the present study) is considered by CPP 

experimenters to be due to effects of a ULe. In the literature it has been found that in 

OPP experiments with ethanol as the permeating solute, Lp reached a saturation level 

for flow rates above 25 cm s-1 where its value was similar to Lp in HPP experiments 

(Steudle and Tyerman, 1983). This observation suggests that the ULe thickness for 

OPP experiments at higher flow rates has been reduced significantly, since a ULe has 

little effect on Lp in HPP experiments. The difference in Lp between HPP and OPP 

experiments found using the UL model is therefore surprising, since this takes effects 

of ULs on the estimated parameters explicitly into account. However, the difference 

may be due to inadequacies of the model in fitting the initial 2-3 s of HPP data 

(§4.8.3a,b).  

5.4 Suggestions for, and comments on, the parameter 
estimation process  

 

Here an outline of the parameter estimation process carried out in this study is given, 

together with important things to consider when fitting CPP data and estimating 

parameters. 
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5.4.1 OPP experiments 

a) Importance of initial conditions 
 

The observed final equilibrium pressure (PE) in OPP experiments is not always well 

predicted by the models. This is because PE for OPP experiments often differs from 

the initial value P0, where theory predicts they should be the same when the external 

osmotic pressure πse is constant (§2.2.2, §3.6.2). Therefore the degree to which the tail 

of the observed OPP data is fitted by the model depends very much on the value of P0 

used in the model. If πse is not constant throughout the experiment, the predicted PE 

will differ from P0, but not necessarily by the amount observed in the data (§4.3.3, 

§4.5.1a). 

Therefore, model predictions are very sensitive to values of P0 and πse used in the 

model, and it is important that these values are accurate and consistent with 

experimental data. P0 must be determined individually for each cell, but the initial cell 

volume V0 and cell radius r0 need not be since the pressure dynamics are not so 

sensitive to these, and the same values of V0 and r0 can be used for all OPP 

experiments on the same cell (§4.3.3). If the values of P0 and πse are accurate but PE is 

not well predicted, some other factor in the experiment must be affecting the pressure 

dynamics which is not included in the model. In particular, drifts in equilibrium 

pressure for a series of experiments on the same cell (§4.3.3) would affect model 

predictions of OPP data. This was the case for the 3 cells examined in Chapter 4.  

It is important to use an accurate value for the time of osmotic perturbation t0. As 

there is a correlation between the experimental time-delay and the estimated ULe 

thickness, accurate estimation of the ULe thickness depends upon how accurately t0 

can be determined (§4.4.2, §4.6.2a). t0 should be able to be determined accurately by 

simultaneously recording the cell pressure change and conductivity of the external 

solution, and plotting these on the same time-axis. The error from the application of t0 

will then be confined to how it is used in the model, which assumes that t0 is when the 

solution front reaches the middle of the cell.  
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b) Incorporation and estimation of unstirred layers and exchange times 
 

Both internal (ULi) and external (ULe) unstirred layers should be included in the 

model, since both are present in the physical system. Inclusion of one UL alone is 

meaningless, as each UL has a different and significant effect on the estimated 

parameters (§4.5.2). The internal UL thickness δULi is assumed to equal the whole cell 

interior, but can be fixed at 3x10-4 m since larger values have negligible impact on the 

pressure dynamics and estimated parameters (§3.6.2).  

The external ULe thickness δULe can be estimated by optimising δULe along with the 

membrane parameters Lp, ps and σ for OPP experiments where a bubble is used to 

separate the new and old solutions. Applying the model to estimate δULe is self-

consistent with the data (§4.4.2), and is a better method than using an experimental 

time-delay to determine a value of δULe to use in the model. The time-delay vs. δULe 

relationship varies between cells and is subject to measurement errors in the time-

delay, and cannot be used as a general predictive tool for estimating δULe.  

Parameter estimation using OPP experiments where a bubble is not used to separate 

the new and old solutions, is more difficult. In this case the exchange time of the 

external solution must be incorporated into the model, but it is not possible to use the 

model to predict both δULe and the exchange time, since these are correlated (§2.7.3c, 

§4.4.2). Predictions of δULe are best obtained from OPP experiments where a bubble is 

present, as the exchange time is much smaller and can be ignored (§4.6). The 

predicted values of δULe obtained from these experiments on the same cell can then be 

used as fixed values when the model is fit to OPP experiments where a bubble is not 

present (§4.4.2b). The exchange time of the external solution can then be optimized 

together with the 3 membrane parameters (§4.4.2b). However, this would not give 

consistent or accurate predictions of the membrane parameters unless the exchange 

function appropriate for each OPP experiment is known and obtained from 

experimental data. If this information is available, the exchange could be explicitly 

included in the model instead and δULe optimized.  

At present, not enough experimental data are available on the exchange times in OPP 

experiments. In the present study, it was found that estimated parameters for OPP 
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experiments where a bubble is present, compared to those for OPP experiments where 

a bubble is not present, differ significantly (§4.7.2). It is therefore suggested that a 

bubble always be used in the solution exchange in OPP experiments. The exchange 

time can then be removed from the estimation process. Since CPP experimenters do 

not routinely do this, their estimated parameters would not properly reflect the true 

membrane parameters because effects of the exchange time on them cannot be 

quantified. 

 

5.4.2 HPP experiments 
 
The final equilibrium pressure PE in HPP experiments also cannot always be well 

predicted by the models. The predicted PE for HPP experiments depends on the 

perturbation values used in the model, namely the hydrostatic perturbation pressure P1 

and the osmotic pressure πi1 in the cell at time of perturbation. There is experimental 

uncertainty in these values as the perturbation is not instantaneous, and detailed 

knowledge of the processes affecting the cell during the perturbation is lacking 

(§4.3.4). 

It is recommended, therefore, that πi1  be optimized together with Lp to obtain the best 

fit to the data. This does not give a more consistent Lp, but significantly improves the 

fits (§4.5.1) to the P-t curve. There should also be some flexibility in choosing an 

appropriate P1, and datasets which exhibit a lot of noise around the perturbed pressure 

should not be used for parameter estimation. Although a point after the perturbation 

pressure can be used for (t1, P1), using a point too far after the perturbation pressure 

greatly affects the estimated parameters, because the time interval of the data used is 

different (§4.8.3a). Therefore these estimated parameters cannot be compared with 

those for other data sets. 

The external osmotic concentration πie should be a constant for all HPP experiments. 

However, one should also be aware that errors in the value of πie used in the model 

will affect the quality of model fits to the data.  

A ULe has little influence on an HPP experiment (§3.6.2), and therefore δULe cannot 

be estimated by fitting to HPP data. HPP data can be simulated by incorporating a 
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ULi only. However, because a δULe is present, it is recommended that both a ULe and 

a ULi be incorporated when fitting HPP data. The average δULe obtained from fits to 

OPP data on the same cell should be used for the HPP data, because δULe should be 

the same for the two types of experiment. 

5.4.3 Comparison of fits and determination of best fit 

It is best to use the same CPP runtimes when estimating parameters and comparing 

fits between experiments, as estimated parameters are dependent on the quality of the 

fit, which is in turn dependent on the temporal range of the data used. Where the same 

quantity is determined for observed and simulated data (e.g. calculation of PE), the 

same method based on the same number of points should be used in both cases. An 

adequate sample size of at least 5 positive and 5 negative experiments is also 

recommended for each experiment type (HPP or OPP).  

Minimization of the root-mean-square error (RMS) of the residuals is a simple, 

objective means of fitting CPP data. Goodness-of-fit is best measured by analysing 

residuals between observed and simulated data. Calculation of the RMS, bias in 

residuals, trend in residuals, largest residual, residual in PE, and residual in the 

extreme pressure Pm, give a comprehensive set of values by which fits can be 

compared (§4.5.1, §4.5.2, §4.6.1a). To obtain a uniform distribution of residuals it is 

suggested fitting Pm to within ± 0.001 MPa, which can be done by weighting the RMS 

error around the extremum, using a window based on 10% of the maximum pressure 

change in the data. A weight of 2-3 is sufficient.  

5.4.4 Other recommendations 

It is recommended that the temperature of the apparatus be monitored and maintained 

at a constant temperature to within ± 2˚C, as temperature affects the estimated 

parameters (§4.10). 
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5.5 Suggestions for further research  

This study has been a preliminary investigation of the impact of ULs on parameter 

estimation using data obtained from CPP experiments. In this section some 

suggestions for further research are made based on the findings of this study. Further 

research is required for validation of the UL model, examination of the model 

behaviour, and for more conclusive results regarding the presence of and reasons for 

parameter variation in the UL model.  

5.5.1 Experiments 

a) Exchange times 
 
A more consistent and precise measurement of the exchange time (or ramp time if the 

exchange function is linear) of the external solution is required. This is necessary for 

parameter estimation in OPP experiments where bubbles are not used during the 

solution changeover. It was shown that the exchange time affects the estimated 

parameters by a significant amount (§4.7); however the exchange time is rarely 

considered in CPP experiments. Determining the influence of the exchange time on 

the estimated parameters is therefore important as it would reveal to what extent 

parameters estimated in previous studies may be inaccurate due to neglect of the 

exchange time. 

It is unclear from the data used in the present study if the exchange time usually varies 

or is usually consistent between experiments. Exchange times varied greatly for Cell 4 

where there was a strong relationship between the time-delay and the exchange time, 

but for Cells 2 and 3 the exchange times were quite consistent between experiments 

and independent of the time-delay (§4.4.2b). It is recommended that the exchange 

time of the external solution be recorded for each experiment, and a function fitted to 

the conductivity data to give an exchange function for input into the model. 

b) External flow rates 
 
External flow rates should be varied, in a range similar to that used in Steudle and 

Tyerman (1983) of between 5 and 44 cm–1. This will physically change the ULe 

thickness and allow the examination of the impact of different ULe thicknesses on 
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parameters estimated for a single cell. This will be an important validation of the UL 

model because it takes the influence of ULs into account, and hence the estimated 

parameters for a single cell should be consistent and independent of the ULe 

thickness. If differences in the estimated Lp between HPP and OPP experiments 

change depending on stirring rates, this would suggest that some other factor in the 

pressure dynamics are changing due to higher stirring rates, or more likely, that the 

UL model is not adequately taking the effects of ULs into account.  

c) External concentration 
 
It is suggested that experiments be conducted where the external concentration is 

varied. On the basis of the behavioural analysis of the UL model (§3.6.5c), this is 

expected to change the estimated Lp since the external concentration affects the rate 

constant governing water flow across the membrane in the KK equations. Many CPP 

experimenters have observed a change in the classically-estimated Lp with external 

concentration, which they consider to be largely due to sweep-away in the ULs 

(Zimmermann and Steudle, 1978). It would be worthwhile to see if and how Lp 

estimated with the UL model differs from this, as it may help decide if there really is a 

change in Lp with concentration, or evaluate the contribution of ULs to this 

observation.  

d) OPP experiments with impermeant solutes 
 
It is suggested that experiments be conducted for OPP experiments using impermeant 

solutes, where estimated values of Lp could be compared with those from HPP 

experiments. This may suggest reasons for the differences in the non-classically 

estimated Lp between HPP and OPP experiments, since the relaxation curves for OPP 

experiments using impermeant solutes are similar to that for HPP experiments (i.e. 

monophasic, see §2.2.2). Differences in the polarity in Lp found between OPP 

experiments using impermeant and permeant solutes have also been observed (Steudle 

and Tyerman, 1983), and it would be interesting to see if polarity in the non-

classically estimated Lp gives similar results. OPP experiments with impermeant 

solutes should also be conducted using different external flow rates (as in (b) above). 
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e) Using different solutes 
 
OPP experiments should also be conducted using a wide range of different solutes 

which might have differing permeabilities across the membrane. This will allow an 

examination of whether the observed variations and differences in the estimated 

membrane parameters for ethanol agree with those observed for other solutes. This 

will also reveal whether the quality of fits to the data depend on the solute used, and 

by how much differences between the classically-estimated and non-classically 

estimated parameters vary depending on the solute used. ULs are expected to have 

more effect on the classically-estimated parameters for rapidly permeating solutes, i.e. 

those with a higher ps (§3.1.3). 

Furthermore, these experiments will provide information about the solute-dependence 

of the parameters, i.e. how ps and σ change with the solute used, whether Lp changes 

with the solute used (it is not expected to change on the basis of the present study), 

and how the parameters are correlated. This will further differentiate effects of the 

membrane from effects of the solute on ps and σ, which are solute and membrane 

dependent. 

f) HPP experiment  with the cell in still water 
 
It is suggested that an HPP experiment be conducted where the cell sits in still water, 

and the concentration of the external solution monitored for any change due to leaking 

of cell contents into the solution. This could be done by monitoring changes in 

conductivity of the external solution during an HPP experiment, including the period 

of the perturbation. These experiments may provide a clue as to whether the internal 

concentration of impermeant solutes in the cell is changing during an HPP experiment 

(§4.8.6). They may also provide information to help resolve the asymmetrical 

pressure dynamics between positive and negative HPP pulses, where it was found that 

negative HPP pulses were in general more difficult to fit with the UL model (§4.6.1a, 

§4.8.6).  

g) Experiments without an APW change 
 
The change from full to half-strength APW (or vice-versa) in an OPP experiment 

results in a distinct difference between the initial and final equilibrium pressures 

(§4.3.3). At times this difference was much lower than expected, so that the tail of the 
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data could not be fit well (§4.5.1, §4.8.6). At the time of this study, the experimenters 

(Bramley and Tyree) were making preparations to conduct OPP experiments with 

mannitol added to the external solution during the change from full to half-strength 

APW, so that the concentration of impermeant solutes in APW remains the same but 

the conductivity of the external solution can still be measured. This will result in 

smaller and hopefully more consistent differences between initial and final 

equilibrium pressures, which can be fitted more consistently by the model. 

h) Diffusivity coefficient  D for the interior of Chara 
 
If possible, experiments should be conducted to measure the value of D  for typical 

test solutes and impermeant ions in the interior of Chara. This would contribute to the 

accuracy of the estimated parameters using the numerical model, since the value of D 

can significantly affect the parameters (§3.6.6a, §4.8.4). It is not known at present 

how this could be done. However, Nitsche et al. (2004) has estimated the diffusivity 

of 3 dyes in cytoplasm, and found that the value for D in cytoplasm was 12-68% 

lower (depending on the dye) than the value for D in water, at a temperature of 25°C. 

This suggests that the value of D in Chara for typical test solutes used in CPP 

experiments may be affected to a similar degree (although the vacuole occupies most 

of the volume of a Chara cell it comprises a solution of the same osmolality as the 

cytoplasm, see §2.1.1). 

i) Time-dependence of ε  
 
It was shown in §4.8.5 that it is important to determine the elastic modulus ε of the 

membrane as accurately as possible, as its value contributes significantly to the error 

in Lp. It was also discussed in §4.8.5 that the measured value of ε  changes over time 

and this may introduce an error into the estimated membrane parameters. It is 

recommended that in future experiments, ε  be measured a few times during a series of 

CPP experiments (which include OPP experiments), so that the extent to which ε  

changes over time for CPP experiments on Chara can be quantified. This would allow 

the impact of time-variable behaviour of ε  on the estimated membrane parameters to 

be estimated. 
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5.5.2 UL models 

Results from this study suggest that an important process is missing in the UL models 

for HPP experiments. In general, the shoulder of the HPP curve could not be fitted by 

either the UL or classical models, and negative HPP experiments were generally more 

difficult to fit than positive HPP experiments (§4.6.1a, §4.8.6). However, a double 

exponential function gave a remarkably good fit to HPP relaxation curves (§2.7.3a). 

As the solution to the KK equations for OPP experiments in the presence of permeant 

solutes is a double exponential function (Eq. (2.9) in §2.2.2), it is suggested that the 

UL model be extended to allow for the possibility of a small amount of permeant 

solutes in an HPP experiment. This would involve solving the KK equations for an 

OPP experiment (with permeant solutes) with perturbation conditions for an HPP. It is 

also suggested that changes during the HPP perturbation be modelled explicitly.  

Apart from potentially fitting the data better and providing more accurate parameter 

estimation, these model extensions may help determine the reasons why Lp for HPP 

experiments appear to be higher than those for OPP experiments using the UL model. 

Or, the Lp values may end up being the same. 

If it is possible to obtain an estimate of D inside the cell for the test solutes used in 

this thesis, then the UL model should be applied to fit experimental data using 

different D values inside the cell, for both HPP and OPP experiments. Alternatively, 

further numerical research could be done by treating D inside the cell as an additional 

free parameter which could be optimized in model fits using the UL model under 

different assumptions. For example, it could be assumed that the value of Lp obtained 

from OPP and HPP experiments are the same, or the parameters obtained from 

positive and negative pulses are the same, and the numerical model then run to 

optimize the value of D inside the cell. If the numerical model can fit the data well 

using a reasonable value of D for the ULi, then it could be concluded that uncertainty 

in D may be a key factor contributing to some of the patterns observed in this thesis. 

Reducing the data resolution by selecting CPP data at regular time intervals rather 

than at every so many points should be examined (§4.3.2). It was found that RMS 

values were insensitive to small changes in the exchange time (§4.7). This may have 

been due to having relatively few points in the period of the exchange time, as a 

 5-19



consequence of culling the data. Selecting the data based at regular time intervals may 

give more points for the initial few seconds of the data, thus allowing for better 

optimization of the exchange time for fits to OPP experiments without bubbles. It may 

also give more points during the periods when the pressure is changing most rapidly, 

e.g. in the water phase and around the extremum during an OPP relaxation, which 

would be desirable and may enable the RMS method to fit the model to the data 

without weighting these points. 

The UL model could also be extended to 3 dimensions by including axial flow and 

axial variation in the external concentration. Appropriate scaling could be used to 

develop an expression for how the thickness of the ULe changes with axial distance 

along the cell (see Pedley, 1983). This extension would allow for more accurate 

representation of the exchange function, and hence a more realistic consideration of 

the temporal impact of the osmotic perturbation on the cell. However, the added 

complexity will make the model very numerically intensive, and hence difficult to 

optimize for parameter estimation.  

The model can be extended and applied to data from root pressure probe (RPP) 

experiments. Although the composite nature of the root has been considered (Steudle, 

2000), the RPP apparatus and method of parameter estimation is similar to that for the 

CPP, and is based upon a model of the root as a two-compartment system (Steudle, 

1994; Steudle, 1993; Steudle and Frensch, 1989). Estimated membrane parameters for 

roots may therefore also be in error due to ignoring effects of unstirred layers. Many 

roots have a similar length and diameter to Chara and should have an external UL of 

a similar thickness when placed in the pressure probe (Tyree et al. 2005). However, in 

roots the endodermis is usually considered to be the main barrier to transport, and 

therefore the entire region external to the endodermis (i.e. the cortex plus the region 

external to the root) may be considered an unstirred layer (Steudle and Frensch, 

1989). Unstirred layers in roots may therefore have a more significant impact on the 

estimated membrane parameters for the root system (Tyree et al. 2005). In other 

studies on roots, the CPP and RPP have been used in conjunction to measure 

membrane parameters in the cortical cells and for the entire root (Frensch et al. 1996; 

Zhu and Steudle, 1991; Steudle and Jeschke, 1983), and for these studies effects of 

ULs on both the CPP and RPP data must be considered. The root system is a very 
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complex composite membrane system with elements in series and parallel, and 

conclusions about membrane parameters drawn from pressure probe experiments may 

be subject to alternative interpretations (Tyree, 2003). 

The UL model may be extended to include active transport, following the theory of 

Kedem and Katchalsky (1963a), and the examples of Fiscus (1975) and Dalton et al. 

(1975) who developed models of water and solute transport through plant roots. The 

presence of active transport may contribute to observed nonlinear behaviour between 

the volume flux and pressure gradients (Fiscus, 1975), and similarly to ULs may 

cause the classically-estimated Lp to change with the external flow rate or applied 

pressure (see §3.1.2a). An active transport component can be introduced into the 

membrane transport equations in the CPP models, to assess what impact this has on 

the cell pressure dynamics.  

The UL model may also be extended and applied to research on aquaporins (water 

channels), where membrane parameters estimated using CPP experiments are used to 

infer the pathways of water and solutes through the membrane, and the selectivity of 

water channels to water (Henzler and Steudle, 1995; Hertel and Steudle, 1997; 

Niemietz and Tyerman, 1997; Maurel, 1997; Zhang and Tyerman, 1999; Ye et al. 

2004). In §2.7.3a of this thesis it was found that a double exponential function fit 

some HPP data better than the single exponential function from using the classical 

model. It would be interesting to apply the classical and UL models to experiments on 

Chara cells which involve the blocking of aquaporins, which may shed light on the 

relative hydraulic conductivities of the tonoplast and the plasma membrane (e.g. 

similar to CPP experiments carried out on wheat root cells in Zhang and Tyerman, 

1999). However, research in this area requires further theoretical exploration on the 

applicability and implementation of the KK equations to composite membranes where 

elements are in parallel (Curry et al. 2001), before appropriate numerical models can 

be developed. 
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5.6 Final comments 

This study has shown that a numerical process-based model aids in qualifying and 

quantifying the impact of ULs on relaxation curves and estimated parameters. Hertel 

and Steudle (1997) have commented that to help them reach conclusive results, they 

require that “effects of internal unstirred layers be eliminated” but “this, however, is 

hard to carry out experimentally”. A model which explicitly takes ULs into account 

during parameter estimation can take into account effects of ULs on the estimated 

parameters so that the estimated values are truly characteristic of the membrane. It is 

not only a useful tool, but a necessary tool for experimentalists attempting to 

determine the membrane parameters of cells.  

This study has revealed the limitations of the classical and UL models, pointed out 

what experimental information is needed for more accurate parameter estimation, and 

the potential error in current estimates of membrane parameters where ULs are not 

properly taken into account. From the results of this study, it is suggested that the 

current parameter estimation process based on the classical model should be 

abandoned, and replaced by a model which incorporates ULs. Many equations and 

methods currently used to quantify or infer the impact of ULs on the estimated 

parameters are wrong and should also be abandoned.  

Further experimental data is required for a thorough analysis of the effects of ULs on 

estimated membrane parameters, and for a more accurate estimation of membrane 

parameters and ULe thicknesses. At present, estimated parameters depend on 

experimental values such as the time the pressure perturbation is made, the shape and 

duration of the external exchange function, and whether one assumes that the UL 

thickness is the same for all experiments on the one cell. Further development of the 

UL model is also recommended, in conjunction with further knowledge of the 

physical processes occurring in the cells during CPP experiments. 

With further development and application, the UL model developed in this study can 

be a valuable tool for shedding light on some observed membrane parameter 

behaviour, such as differences in estimated parameters between positive and negative 

pulses, between HPP and OPP experiments, and effects of external concentration on 
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estimated parameters. With further research a comprehensive analysis of the 

quantitative effects of ULs can be achieved.  
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A   Appendices 
 
 

A.1 Fitting the data using curve characteristics 
 
 
In §2.3 two methods of parameter estimation were applied with the classical model. One 

is the classical method, where the estimated membrane parameters Lp, ps, and σ are 

obtained from curve characteristics of the data by applying appropriate analytical 

equations (§2.3.3). The other is the RMS method, where membrane parameters are 

estimated using least-squares optimization (§2.3.3). 

 

With the UL model, where no analytical equations are available to solve for pressure vs. 

time, the RMS method was used to estimate the membrane parameters. However, the 

parameters can also be estimated using curve characteristics, where the relaxation curves 

are fit with the following criteria: tm, Pm, and τs of the simulated OPP data must agree with 

tm, Pm, and τs of the observed OPP data to within a certain degree of accuracy, and τw and 

PE of the simulated HPP data must agree with τw and PE of the observed HPP data to 

within a certain degree of accuracy. The logic behind this is that if the simulated curves 

begin at the same P value, reach the same maximum or minimum value, rise or fall at the 

same rate, and finish at the same P value as the observed curves, the simulated data 

should fit the observed data well.  

 

The process of fitting involves finding empirical relationships between the membrane 

parameters and curve characteristics. This is done by using the model to generate data 

using known parameters and UL thicknesses, determining the curve characteristics from 

the data, and finding an equation which relates the membrane parameters and the curve 

characteristics. The parameters are then optimized so that the curve characteristics of the 

simulated and observed data agree. This method, like the RMS method, can fit the data 

very well and is the method of fitting used in Tyree et al. (2005).  
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A.2 Derivation of stability criteria for Euler’s method for finite  
differences 

 
 
The stability condition for a numerical solution of the diffusion equation using Euler’s 

method is easiest to derive for cartesian coordinates, where the diffusion equation is: 

2

2

C D
t x

∂ ∂
=

∂ ∂
C  .         (A.1)  

In finite difference notation, Taylor’s expansion of C as a function of t, to first order, 

gives: 
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where j represents a spatial step and k represents a temporal step. 

 

Taylor’s expansion of C as a function of x, to second order, gives: 
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which upon addition results in 
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Putting (A.2) and (A.3) into (A.1) gives 
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1
1( 2k k k k k
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+= + − + 1)−  ,      (A.4) 

where 2

D t
x

α Δ
=
Δ

. 

 

(A.4) is Euler’s finite-difference method for the solution of the diffusion equation. 

Using a Fourier stability analysis, an initial condition is represented by the sinusoid  

k k ij
jC A e Δ= x  

where A is some function of t, and i is the complex number 1− . 

 

Substituting into (A.4) gives 
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For stable convergence to a solution, it is required that 
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using a trigonometric identity. We then have 
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A.3 Derivation of permeability equation (for cylindrical 
geometry) 

 
 
Fick’s second law for the steady state diffusion equation in cylindrical coordinates,  
 

0CrD
r r
∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠

,         (A.5) 

 
has the solution 
 
C = A + B ln r ,         (A.6) 
 
where A and B are constants, C is the solute concentration, r is the radius from the center 

of the cell, and D is the diffusivity coefficient (Crank, 1975). 

 

Let the system by comprised of 2 unstirred layer (UL) regions separated by a cell 

membrane (assumed to have an infinitesimal thickness) located at r=R. The boundary of 

the inner UL is located at r=a, where a<R, and the boundary of the outer UL is located at 

r=b, where b>R. Region 1 is the area inside the cell for which 0<r<R, and region 2 is the 

area outside the cell for which r>R. C1 is the concentration in region 1, and C2 is the 

concentration in region 2. 

 
From Eq. (A.6), we have 
 

C B
r r

∂
=

∂
. 

 
From Fick’s first law for diffusion (Eq. (3.1)), it follows that for the solute flux Js: 
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Js(R) at the membrane is also given by the expressions 
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where pm is the permeability of the membrane, and pT  is the measured permeability based 

on using the bulk concentration values. From Eq. (A.7) & Eq. (A.8), 
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Combining Eq. (A.9) and Eq. (A.10), and using Eq. (A.6), 
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This equation expresses the total permeability across the system in terms of the 

membrane permeability and the permeability in the ULs. If D1 = D2,  Eq. (A.11) reduces 

to 

 
1 1 ln

T m

R b
p p D a
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 .        (A.12) 

 

 
Eq. (A.12) applies for steady-state only. For non-steady state A and B (determined from 

the boundary conditions at r=a and r=b) are not constants, since the boundary conditions 

are: C=f(t) at r=a and C=C0 at r=b where C0 is a constant. Eq. (A.12) reduces to Eq. 

(A.15) for sufficiently thin ULs.  
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A.4 Operational definition of the UL thickness 
 
 
The view that the UL thickness changes during diffusion probably arises from an 

incorrect usage and interpretation of a definition of the UL thickness given in the 

literature. For planar geometry, an operational definition of the UL thickness δ is given 

by (Barry and Diamond, 1984; Pedley, 1983; Dainty, 1963): 

b m

m

C C C
rδ

− ∂
=
∂

,            (A.13) 

where Cb is the concentration in the bulk solution, Cm the concentration at the membrane, 

and r the radius from the center of the cell. Eq. (A.13) estimates δ based on the 

concentration gradient at the membrane (see Pedley, 1983), and gives a linear 

concentration distribution in the ULs. Fig. A.1 shows a typical diagram given in the 

literature of how ULs affect the concentration difference at the membrane, which also 

shows how δ is defined by Eq. (A.13). 

 

Fig A.1   Showing how ULs are expected to affect the concentration difference at membrane, and 
how δ is often defined (Dainty, 1963). 
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The definition of δ by Eq. (A.13) may be valid for a system in steady-state. However, if 

Eq. (A.13) is applied to a system in non-steady state, as diffusion proceeds the 

concentration gradient at the membrane decreases, and correspondingly δ will change. 

However, an unstirred layer does not change thickness as diffusion proceeds. It is 

important to realise that Eq. (A.13) and Fig. A.1 do not reflect the actual behaviour of 

ULs. As Dainty (1963) points out, δ given by Eq. (A.13) is “not the actual thickness but 

rather an operational thickness. ”  

 

Incidentally, δ as defined by Eq. (A.13) can be related to the permeability pδ in the UL 

by: 

( )( ) b m
s

m

D C CCJ r D
r δ

−∂
= =

∂
 

       Dpδ δ
⇒ = ,         (A.14) 

 
since ( ) ( )s b mJ r p C Cδ= − , where Js is the solute flux in the UL due to diffusion only, and 

D = coefficient of diffusivity of the solute in the UL (Dainty, 1963; Barry and Diamond, 

1984). Eq. (A.14) suggests that the UL may be considered to be a type of membrane with 

a permeability inversely proportional to the UL thickness (Dainty, 1963), and leads to the 

permeability equation based on Kirchoff’s law of resistances in series for the planar case: 

1

1 2

1 1

T mp p D D
2δ δ

= + +          (A.15) 

(Dainty, 1963).  

 

Clearly, Eq. (A.15) only holds if the system is in steady state, so that the concentration 

gradient in Eq. (A.5) is a constant and the concentration profiles are linear. Eq. (A.15), 

like Eqs. (A.13) and (A.14), does not reflect the actual behaviour of ULs or give 

information on the actual UL thickness. This is a commonly used unstirred layer model, 

which, as Pedley (1983) notes, “is not to be taken literally.”  
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A.5 List of acronyms and symbols 
 
 
Table A.1  List of acronyms 

 

Acronym Meaning 
CPP cell pressure probe 
HPP hydrostatic pressure pulse 
OPP osmotic pressure pulse 
UL unstirred layer 
ULi internal unstirred layer 
ULe external unstirred layer 
APW artificial pond water 
KK  Kedem-Katchalsky 
RMS root mean square 
SE standard error 
3WS 3-way stopcock 
EtOH ethanol 
 
 

Table A.2   List of frequently used symbols 

 

Symbol Units Definition 
  

Jv m s-1 volume flux density 
Js mol m-2 s-1 solute flux density 
J mol m-2 s-1 radial flux 
t s time 
ν mol m-2 sec-1 radial flow velocity 

  
P MPa hydrostatic (turgor) pressure of cell 
PE MPa equilibrium pressure 
π MPa osmotic pressure 
πi   MPa osmotic pressure due to impermeable solutes 
πs MPa osmotic pressure due to permeable solutes 
ns mol (M) number of mol of permeable solutes in cell 
C mol m-3 solute concentration 
Ci mol m-3 concentration of impermeable solutes in cell 
Cs mol m-3 concentration of permeable solutes in cell 
Cie mol m-3 concentration of impermeable solutes in bulk solution 
Cse mol m-3 concentration of impermeable solutes in bulk solution 
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 sC  mol m-3 average concentration of permeable solutes across membrane 

  
Lp m s-1 MPa-1 hydraulic conductivity of membrane 
σ dimensionless reflection coefficient of membrane 
ps m s-1 solute permeability coefficient of membrane 
Rg MPa mol-1 K-1 universal (ideal) gas constant 
T K absolute temperature 
ε MPa bulk elastic modulus 
D m2 s-1 diffusion coefficient 
DULi (or D1) m2 s-1 diffusion coefficient inside cell 
DULe (or D2) m2 s-1 diffusion coefficient outside cell 
ξ dimensionless parameter ratio 
pm m s-1 true solute permeability of membrane 
pT m s-1 measured (total) solute permeability of membrane, which   

   includes effects of ULs 
  

A m2 surface area of cell 
V m3 cell volume 
L                  m cell length 
d m cell diameter 
r m radial distance from center of cell 
R m cell radius 
a m radial distance to boundary of internal unstirred layer 
b m radial distance to boundary of external unstirred layer 
δUL m unstirred layer thickness 
δULi m thickness of internal unstirred layer 
δULe m thickness of external unstirred layer 

  
t0 s time at which perturbation pulse occurs 
P0 MPa initial equilibrium pressure in cell 
V0 m3 initial cell volume at equilibrium 
A0 m2 initial cell surface area at equilibrium 
πi0 MPa initial cell osmotic pressure (due to impermeable solutes)  

   at equilibrium 
C0 mol m-3 solute concentration in bulk solution 
P1 MPa cell pressure at t0 in an HPP 
πi1 MPa osmotic pressure inside the cell (due to impermeable solutes) 

   at t0 in an HPP 
  

tP s time at which cell pressure starts changing 
tD s time-delay 
tR s ramp time 
τw s halftime of pressure relaxation in an HPP or in the water  

   phase of an OPP 
τs s halftime of solute phase 
ks MPa rate constant for solute phase 
kw s rate constant for water phase 
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Pmin MPa minimum value of P  
Pmax MPa maximum value of P  
Pm MPa Pmin or Pmax

tmin s value for t at which Pmin is reached 
tmax s value for t at which Pmax is reached 
tm s tmin or tmax
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