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Abstract

The cell pressure probe (CPP) is an apparatus used to measure membrane parameters
of cells, namely the hydraulic conductivity which indicates the permeability of the
membrane to water, the permeability coefficient which indicates the permeability of
the membrane to solutes, and the reflection coefficient which indicates the extent to
which water and solute transport across the membrane is coupled. This thesis is a
numerical exploration of the impact of unstirred layers on the measurement of these
parameters. Unstirred layers alter the effective concentration across the membrane,
and hence influence the calculation of the membrane parameters which are usually
obtained using the concentration value in the external bulk solution and assume a

homogeneous internal cell solution.

In CPP experiments, cell pressure dynamics are changed by imposing either: a) a
hydrostatic perturbation, where cell sap is injected into or removed from the cell, or b)
an osmotic perturbation, where permeable solutes are added to or removed from the
external solution. Outputs are pressure-time curves which are termed relaxation

curves.

Much of the CPP data has been obtained for Chara, a large-celled algae. The model
developed here will be applied to two sets of Chara data: one previously published,
and one unpublished and obtained from collaborators who freely contributed their
data to this study. Data from two types of CPP experiments were used to estimate
membrane parameters by fitting both the classical and unstirred layer (UL) models.
These were: hydrostatic pressure pulse experiments, and osmotic pressure pulse

experiments using permeable solutes.

This thesis comprises five chapters. Chapter 1 provides an introduction to the research
area, and gives an overview of the cell system, CPP experiments, and membrane
transport theory. In Chapter 2 an analysis of predictions and limitations using the
classical (i.e. usual) method of parameter estimation is made by applying it to

published data. This classical model makes simple assumptions about the system,



allows analytical solutions to the membrane transport equations, and does not include
unstirred layers. In Chapter 3, a model based upon the classical model but
incorporating unstirred layers, is outlined and its behaviour and predictions examined.
In Chapter 4, the unstirred layer model is applied to unpublished CPP data, its
predictions compared with those from the classical model, and the overall predictions
and behaviour of the unstirred layer model evaluated. Finally, in Chapter 5 an
assessment of usual practices and assumptions made in the parameter estimation
process using the CPP is carried out, and recommendations for future research are

given.

The UL model was found to reproduce the observed CPP data to a high degree of
accuracy, and reproduced subtle details in the observed data better than the classical
model. Estimated parameters from the two models differed significantly; the relative
difference in the parameters with respect to the UL model was up to 50% for osmotic
experiments and 5% for hydrostatic experiments. This shows that unstirred layers
have a significant impact on estimated parameters, and that the membrane parameters

commonly estimated using the classical model may be in error by up to 50%.

Data from three Chara cells were fit in Chapter 4. Significant inter-cell variation in
estimated parameters was found. Estimated parameters for experiments carried out
within the same cell were quite consistent, indicating that the UL model is predicting
the membrane parameters well since parameters are expected to characterise a cell
and its membrane. The behaviour of the UL model was also consistent with
expectations from the Kedem and Katchalsky theory for membrane transport,
suggesting that the UL model affects the estimated membrane parameters but not the

overall behaviour predicted by the membrane transport equations.

Cell pressure dynamics were found to be very sensitive to the thickness of the
unstirred layers in the system, so that estimated membrane parameters are dependent
on knowledge of the UL thicknesses. In Chapter 4, the UL model was used to
estimate the external UL thickness together with the membrane parameters, while the
internal UL thickness was fixed at a value effectively equivalent to assuming the
whole cell interior is a UL. The model estimated the external UL thickness to be in

the range of 30-50 um for fits to the unpublished data. Some variation in estimated



parameters between types of CPP experiments (e.g. hydrostatic or osmotic
experiments; experiments with positive or negative pressure perturbations) were
found, but the sample size was not sufficiently large for definite conclusions to be
made. The UL model did not predict polarity in the membrane parameters (i.e.
differences in parameters between positive and negative pressure perturbations). This
suggests that evidence of polarity found in the parameters is likely due to effects of a
composite membrane (e.g. presence of a tonoplast) or of dehydration of the

membrane, and not due to the presence of ULSs.

Data were also available from osmotic experiments where bubbles were used to
separate the new and old external solutions during the solution changeover. Fits to
experiments where bubbles are present were found to be more straightforward and to
give more accurate estimates of membrane parameters, as the time for solution
exchange was significantly shortened. Where bubbles were not present, the time for
solution exchange could not be as effectively incorporated into the model due to lack

of experimental data regarding the duration and shape of the solution changeover.

Results clearly showed that some common assumptions regarding the effects of ULs
on CPP experiments are incorrect. External ULs are often assumed to primarily
influence only the first few seconds of the relaxation curve, but the UL model shows
that internal and external ULs influence the cell dynamics throughout the entire
course of a CPP experiment. Furthermore, the extent of the influence on ULs on CPP
data can only be quantified numerically. Previous attempts at using solutions to
steady-state diffusion equations, or using steady-state equations relating permeability
across the membrane to permeability in the ULs to predict the impact of ULs on
estimated membrane parameters, are shown to be inaccurate. Published estimates of
membrane parameters for Chara are deemed to be in error, because even where
effects of ULs have been claimed to be taken into account, this has not been done
numerically. In addition, it is shown that relaxation curves can be fit using the
classical model (which does not incorporate ULs) despite the presence of unstirred
layers, because ULs do not change the fundamental shape of the relaxation curves,

and therefore the true effects of ULs are hidden.



It is recommended that the classical model no longer be used for parameter
estimation, and a more realistic model incorporating ULs be applied. This will lead to
a more accurate estimation of membrane parameters. The model developed in this
thesis, by taking into account effects of unstirred layers, can help to resolve the extent
to which ULs impact on estimated membrane parameters, and also the extent to which
ULs influence parameter variation among different types of experiments or
experimental conditions. Currently, further experimental data is necessary for a wider
application of the UL model and fuller assessment of its predictions. The UL model
may also be extended in the future for application to more complicated systems such

as root tissues.
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1 Introduction

1.1 Background to membrane transport parameters

Understanding cell membrane transport properties is central to our understanding of
water and pressure dynamics in cells and entire organisms. Physical properties of cell
membranes and walls can be described by parameters such as hydraulic conductivity and
solute permeability, which describe the extent to which water and solutes permeate the
cell membrane. These parameters govern the passive transport of water and solutes into
and out of cells, and thus control changes in cell pressure and volume. Solutes also cross
membranes via active transport of ions, however active transport is beyond the scope of

this study.

Determining and characterising membrane transport parameters, and understanding what
factors affect and influence them, aids in our understanding of how cells regulate the
transport of water and solutes into and out of their system, and how these dynamics may
be affected by changes in their environment. Understanding how a plant or animal cell
grows and interacts with its surroundings is fundamental to our understanding of biology

and all living organisms.

An accurate measurement of membrane transport parameters has, however, proven
difficult. Most of this research in plant cells has been carried out on Chara, a large-celled
pond water algae with typical length 30-130 mm and diameter 0.7-1 mm (Hertel and
Steudle, 1997). Membrane parameters in giant algal cells were originally determined
using intracellular perfusion and transcellular osmosis techniques, which were developed
in the 1950’s (Zimmermann and Steudle, 1978). Today, most current techniques for
measuring cell pressure and volume are either pressure relaxation or pressure clamp
methods (Ortega, 1993). In the former the volume is held constant while the cell pressure
change is measured, in the latter the pressure is held constant while changes in cell

volume are measured. Pressure relaxation experiments yield a plot of pressure with time,
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while the pressure clamp yields a plot of sap volume in the pipette with time (Murphy
and Smith, 1998).

The cell pressure probe (CPP) is an instrument designed to measure hydrostatic pressure
(turgor pressure) in cells. It uses a pressure relaxation technique which was developed in
the 1970’s to determine membrane transport parameters (hydraulic conductivity, solute
permeability, and reflection coefficient) and elasticities of plant cell walls (Steudle and
Zimmermann, 1974; Hisken et al. 1978; Steudle and Tyerman, 1983; Steudle et al. 1987;
Steudle, 1993; Henzler and Steudle, 1995; Ye et al. 2004). A related technique, the root
pressure probe, performs similar experiments on roots and the methods of parameter
estimation are also similar to that for the CPP (Steudle, 1994; Steudle, 1993).

The CPP is a widely used technique. However, unstirred layers (ULs) adjacent to the cell
wall or membrane have not adequately been taken into account in CPP analyses. The
importance of ULs on membrane transport have been well documented (Dainty, 1963;
Barry and Diamond, 1984; Kargol, 2000). Consideration of the impact of ULs on
membrane parameters in CPP experiments has been more qualitative than quantitative,
and calculations have largely been performed by applying transport equations on the
basis that the effects of ULs can be considered negligible (Heidecker et al. 2003).
Therefore, membrane parameters estimated by the CPP may, in fact, not reflect the true

membrane parameters of the cells.

Variations in measured membrane parameter values may be due to changes in the system
outside the membrane (e.g. effects of ULs, and external concentration levels), changes in
the system inside the membrane (effects of ULs, or more than one membrane in the cell
affecting the pressure dynamics), or changes in the physical properties of the membrane
caused by water and solute flow interaction (Zimmermann and Steudle, 1978; Kiyosawa
and Tazawa, 1973; Dainty and Ginzburg, 1964a). Most of these changes are not directly
observable by the CPP, and without proper quantitative analysis reasons for observed
parameter behaviour and identification of the variables affecting parameter estimation
can only be inferred.



The determination of membrane parameters with the CPP is based on a conceptual two-
compartment model of the cell, which shall be referred to here as the “classical model’
(Wendler and Zimmermann, 1985a). This views the system as a single membrane
separating two compartments, namely the inner and outer regions of the cell. These
compartments are sharply defined by the membrane, and are assumed to be homogeneous
with uniform solute concentrations, so that a step change in concentration occurs across
the membrane. In many plants cells, however, the vacuole occupies a large portion of the
interior so that the cell contains two membranes: the plasmalemma and the tonoplast, and
three compartments: the external region, the cytoplasm, and the vacuole. The
compartments are not homogeneous since ULs are present. The anatomy of a simple cell,

such as is exhibited in Chara, is illustrated in Fig. 1.1.

Cell wall

15

Tonoplast —
i

— Cytoplasm

Vacuole AN Plasmalemma

Fig. 1.1 Diagram of a simple cell, showing cell wall, plasmalemma (plasma membrane), cytoplasm,
tonoplast and vacuole (Molz and Ferrier, 1982).

Quantitative analysis of CPP experiments based on the classical model uses analytical
solutions of the transport equations to estimate the membrane parameters. It is argued
here that these analyses are limited by those assumptions in the model required for the
development of analytical solutions, and especially the assumption that there are no ULSs.
Further knowledge can be gained by using process-based numerical models which
implement differential equations to explore more complex conceptual models of the



system. To my knowledge no process-based numerical work on the classical model and
CPP experiments has been done, prior to Tyree et al. (2005). The aim of this study is to
develop a more realistic numerical model than the classical model, where the model
developed here has non-homogeneous compartments, with ULs adjacent to the
membrane. The well-known Kedem-Katchalsky (KK) equations for membrane transport
(Kedem and Katchalsky, 1963a,b,c; Katchalsky and Curran, 1967) on which current CPP
experimental analyses are based, and diffusional processes in the ULs, will be the
foundation for this model. This model will be used to examine the validity of the classical
model, by fitting real data with both models and comparing estimated parameters
between the two models.

A numerical study of measurements from a CPP experiment and the impact of ULs on
these is timely in light of the renewed interest in aquaporin (water channel) research, and
research into pathways of water and solute movement. Inhibition of water channel
activity and the resulting changes in the membrane parameters in the presence of certain
solutes have shown that some solutes pass through water channels and that water
channels are less selective than previously thought (Henzler and Steudle, 1995; Hertel
and Steudle, 1997; Ye et al. 2004). Experimental conclusions and the accuracy with
which parameter measurements reflect membrane pathways depend on understanding
those factors that may affect parameter measurements. For example, ULs may contribute
to low values for the reflection and permeability coefficients (Henzler and Steudle, 1995;
Henzler and Steudle, 2000). Hertel and Steudle (1997) and Henzler and Steudle (2000)
have considered various possible effects of ULs on their measurements and claimed that
the effects of ULs should not be significant. However, Hertel and Steudle (1997)
admitted that for conclusive results more precise parameter measurements are required
and the effects of ULs should be eliminated, which they added is difficult to carry out
experimentally. Numerical models that explore the effects of ULs more fully, therefore,

can be an important aid in the interpretation of these experimental results.



Application of the model in this thesis will be limited to data from CPP experiments on
Chara. Chara data is readily available, and the focus of the thesis is on development of

the model rather than the model’s general application.

However, the model developed in this thesis could be applied to experimental data from
other membrane systems to examine the impact of unstirred layers. For example, in
stopped flow spectrofluorimetry experiments on wheat root membrane vesicles, carried
out to examine the role and function of aquaporins (e.g. Niemietz and Tyerman, 1997),
effects of unstirred layers on the estimated parameters are predicted to be small. The
model in this thesis could be applied to these data to aid in the examination of the effects

of unstirred layers.

The model in this thesis could also be applied to experiments which have tried to estimate
the relative permeabilities of the tonoplast and the plasma membrane. Niemietz and
Tyerman (1997) measured the hydraulic conductivity of isolated membrane vesicles with
and without a plasma membrane, and found that the water permeability of the tonoplast
was higher than that of the plasma membrane. Zhang and Tyerman (1999) applied the
CPP to intact wheat root cells, and modelled pressure changes using the coupled
differential equations by Wendler and Zimmermann (1985) for a double membrane
(three-compartment) system. In contrast to Niemietz and Tyerman (1997), they found
that the water flow was dominated mostly by flow across the plasma membrane.
Application of the model in this thesis to these data could aid in the interpretation of these
results, as the CPP experiments are more likely to be affected by unstirred layers.

1.2 Cell Pressure Probe Experiments

The CPP measures the change in cell turgor pressure over time following a perturbation
of the cell from an equilibrium state. Turgor pressure is easily measured and is one of the
variables that describe the state of a cell. Cell volume also changes with pressure, but by
less than 1% of the total cell volume during a typical experiment, as the cell wall is fairly
rigid (Henzler and Steudle, 2000).



The CPP (Fig. 1.2) comprises a pressure chamber, at one end of which is a micrometer
device attached to a metal rod to adjust pressure in the chamber, and at the other a
micropipette which inserts into the cell. The pressure chamber and micropipette contain
silicon oil, which transmits cell pressure to the pressure transducer in the middle of the
chamber. The transducer consists of a membrane containing a wheatstone bridge which,
when the membrane is distorted, converts pressure into a voltage. The cell sits in a
separate chamber containing artificial pond water (APW, a nutrient solution comprised of
a mixture of impermeant solutes with an osmotic pressure of about 0.01 MPa) (Husken et
al. 1978; Steudle, 1993).

T NP

Fig. 1.2 The cell pressure probe (E. Steudle’s webpage).

During an experiment the micropipette is pushed into the cell. This causes sap to escape
from the cell into the micropipette, from which it is assumed that the tip of the pressure
probe is located in the vacuole of the cell (Zhang and Tyerman, 1999). Since the silicon
oil is immiscible with water a meniscus forms between the cell sap and the oil. The
bathing solution (APW) is kept flowing at a constant rate around the cell, and a constant

temperature is usually maintained throughout the experimental procedure.

The experimental procedure is slightly different for small and large cells. Since a slight

compressibility of the chamber exists, which is mostly due to the rubber seals and partly



due to the silicon oil, changes in the volume and pressure of small cells are not sufficient
to register a pressure in the transducer. Therefore, when measuring pressure changes in
small cells, the position of the meniscus is kept fixed during the course of an experiment,
and the volume of the chamber changed by adjusting the metal rod via a compensation
method. For a large cell, such as Chara, the meniscus does not need to be fixed (Husken
et al. 1978; Steudle, 1993; Tomos, 2000).

Two kinds of experiments (perturbations) are performed with the CPP. In a hydrostatic
pressure pulse (HPP) experiment cell sap is injected into (a positive pulse) or removed
from the cell (a negative pulse) via the micropipette. When the probe is first pushed into
the cell some sap escapes into the probe, and so a positive HPP experiment is first
performed, followed by a negative HPP experiment, and so on with positive and negative
pulses alternating. In an osmotic pressure pulse (OPP) experiment the external
concentration is changed via a rapid changeover of bathing solution, where a test solute
has been added to (a positive pulse) or omitted from (a negative pulse) the new solution.
Only one test solute is used at a time. Positive and negative OPP experiments are usually

carried out alternately.

The changeover of bathing solution in an OPP experiment does not occur
instantaneously, and it takes a few seconds for the external concentration to reach the
maximum perturbation level. The external concentration is said to “ramp up” (or “ramp
down”). A more rapid changeover can be made by inserting an air bubble between the
solutions, which will be described in more detail in Chapter 4. In the experiments of
Henzler et al. (2004), whose data is modelled in Chapters 2 and 3, no bubbles were used
intentionally during the solution changeover but occasionally bubbles were accidentally

present (Tyree, pers. comm.; Henzler, pers. comm.).

Different solutes with varying permeabilities have been used in CPP experiments.
However, those using very slow permeating solutes are less common. Full details of the
CPP technique can be found in Hisken et al. (1978), Steudle and Tyerman (1983), and
Steudle (1993).



Outputs from the CPP are plots of pressure over time (P-t curves), termed pressure
relaxations, for they chart the behaviour of the cell’s return to equilibrium pressure after a
perturbation. For both an HPP and for osmotic flows with impermeant solutes, the
pressure relaxation is an exponential increase or decrease to a new equilibrium (Fig.
1.3a). The rate of return to equilibrium is described by the halftime, which is inversely
proportional to the slope of a suitably log-transformed curve. In theory, the P-t curve is
exponential such that a semilog plot of the P-t curve will give a straight line, however in
reality only part of the curve is exponential and only a portion of the curve is log-
transformed (see 82.5.1a). Since some cell sap is added to or removed from the cell, the
osmotic pressure and concentration in the cell changes only very slightly following
perturbation, but the number of mol of solute changes more. Therefore the final

equilibrium pressure will be slightly different from the initial pressure.

For an OPP with permeant solutes, the pressure-time curves are biphasic (Fig. 1.3b).
Following perturbation a rapid water flow across the membrane occurs in the ‘water
phase’ bringing the pressure to a maximum or minimum, and thereafter a slow return to
equilibrium occurs due to both solute and water crossing the membrane in the ‘solute
phase’. Two halftimes, that of the water and solute phases, are associated with osmotic
flows. In theory, the equilibrium pressure should be equal to the initial pressure, however
experimentally this is often not the case. Although one expects that after a positive-
negative set of experiments the pressure should also return to its equilibrium value at the
start of the set, this is also not always observed.

The halftimes are determined from the relaxation curves, and from these the membrane
transport parameters are obtained.

Prior to applying pressure pulses, a separate set of experiments are also carried out to
determine the bulk elastic modulus ¢ of the cell wall, which controls how volume of the
cell changes with cell pressure. The parameter ¢ is directly measurable, in contrast to the
membrane parameters, and is required for the determination of these. To measure ¢, a few

pressure change steps are made in the cell in both positive and negative directions, and



covering the expected range of pressure change in the pressure pulse experiments (Fig.
1.4). This is done by moving the metal rod (Fig. 1.2) by various increments. From the
size of each increment and the rod diameter, the corresponding volume change AV qq in

the pressure chamber can be inferred.

The associated pressure changes of the system (recorded by the pressure transducer) are
plotted as a P-V graph. The slope of the P-V curve changes with pressure, however as ¢ is
determined using small pressure intervals locally the P-V curve tends to be linear
(Steudle et al. 1977). The slope of this line gives ¢ according to the formula

APIAV_, =¢&lV, (where Vj is the volume of the cell at equilibrium). If AV 4 is the

volume change of the pressure chamber, & combines the elasticity of the cell wall and that
of the CPP rubber seals. However, if AV, is the volume swept out by the meniscus

during the measurement of ¢then ¢is that of the cell wall.

In addition to exhibiting a pressure-dependence, ¢ has been shown to exhibit hysteresis
such that the value of & may differ depending on whether the cell is swelling or shrinking,
when measured over the same range of cell osmotic pressure. The cell wall has also been
shown to exhibit viscoelastic properties, where the value of ¢is not constant over time
and the measured value due to an “instantaneous’ volume change (as measured by the
CPP) is larger than the ‘stationary’ value measured following relaxation in the cell. The
instantaneous value of ¢also depends on the time it takes for the pressure and volume

change to be induced (Zimmermann and Hisken, 1979; Tyerman, 1982).

Electrical noise in the CPP limits the accuracy of pressure measurements for all
experiments to around = 0.0005 MPa (Tyree, unpublished data). The hydraulic
conductivity of the probe tip, which is usually high, is temperature dependent due to the
dependence of water viscosity on temperature, and the electrical noise can often be
related to a lower than ideal conductivity of the probe tip. Some operator error due to
vibrations during insertion of the micropipette would also be present, and may cause

leaking around the probe tip. However, Zimmermann and Husken (1979) found that the



cell forms an effective seal around the tip of the pipette and there is no loss of cell

pressure due to leakage during a typically successful experiment. They also found no

dependence of L, and ¢ measurements on the size of the cell puncture.
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Fig. 1.3 Relaxation curves for (a) a HPP experiment showing halftimes z,, and (b) a OPP experiment with

permeant solute ethanol showing halftimes z,, for the water phase and z; for the solute phase. Arrows

indicate approximate points where a perturbation (a HPP or OPP) is made. Data from Tyree (unpublished).
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Fig. 1.4 Experimental curves for determining membrane elasticity. In this experiment 4 pressure change
steps are taken in each direction. Data from Tyree (unpublished).

1.3 Membrane transport theory

1.3.1 The KK equations

Three main quantities can be used to describe the pressure and water dynamics in a cell:
the cell turgor pressure, internal cell volume, and quantity of solutes in the cell. Turgor
pressure refers to the hydrostatic pressure difference between the inside and outside of
the cell (Zimmermann and Steudle, 1978), and is due to a balance between hydrostatic
and osmotic pressure gradients. Flows across the cell membrane can be described by the
volume flow (made up of water and some solute flow, and otherwise known as ‘bulk’
flow), and the solute flow. These flows have been expressed as a pair of coupled
differential equations known as the Kedem-Katchalsky or KK equations (Kedem and
Katchalsky, 1963). The behaviour of these equations are governed by 3 main membrane
parameters, namely: the hydraulic conductivity L, reflection coefficient o, and solute
permeability ps. An additional parameter, the elastic modulus ¢, also governs cell wall

extensibility. These are discussed further below.
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The KK equations describe water and solute flows for a system of two aqueous solutions
separated by a homogeneous membrane. They have been one of the main tools in the
study of transport across biological and artificial membranes (Kargol, 2001). For passive
(non-electrolyte) transport, where the solutions contain impermeant solutes and a single
permeating uncharged solute, the KK equations for the volume flux density J, (m s™) and
solute flux density Js (mol m™? s™) are (Dainty, 1963; Kedem and Katchalsky, 1963;
Katchalsky and Curran, 1967):

1dv
‘JV = —KE: LP (AP—Aﬂ'I —O'Aﬂ's) (11)
1 dn —~
== 25 2 (1-6)Csd, + p.AC., 1.2
S A dt ( G) \% ps S ( )

where ns = amount of a particular permeant solute in the cell (mol), V = cell volume (m®),

A = cell surface area (m?), t = time (s), P = hydrostatic pressure (MPa), = = osmotic
pressure (MPa) , C = solute concentration (mol m™), C_s: mean solute concentration

across the membrane (mol m™®), L, = hydraulic conductivity (m s* MPa™), o = reflection
coefficient for a particular solute (dimensionless), ps = solute permeability (m s™), and A
= difference across the membrane. Fluxes are defined as positive for flows out of the cell.
The subscripts ‘i’ and ‘s’ indicate for an impermeant and permeant solute respectively.

The equations assume isothermal conditions.

The KK equations describe a linear relationship between forces and flows across a
membrane. They describe 4 processes: filtration (L, 4P) and osmosis (L, ¢ 47) in EQ.
(1.1), and convection (1—0)ESJV and passive diffusion (ps 4Cs) in Eq. (1.2) (Kargol and

Kargol, 2003). These processes are due to the simultaneous action of pressure and
osmotic gradients (forces), and the 3 membrane parameters (i.e. Ly, ps, o) govern the
behaviour of the volume and solute fluxes (flows) in response to these gradients. It is
assumed that the membrane parameters are independent of the driving forces.
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The hydraulic conductivity L, and solute permeability ps denote how permeable the
membrane is to water and solutes respectively. The reflection coefficient o describes the
extent to which permeable solute flow is coupled to bulk water flow, and how much the
permeant solutes contribute to the osmotic pressure difference Az. The convection term is
also known as the solvent drag term, because solutes are dragged along with water flow
arising from friction between the two. The case o=1 for a particular solute indicates that
the solute cannot significantly permeate the membrane or at most at a rate several orders
of magnitude less than water (i.e. the solute is effectively impermeant), and that the
solute contributes maximally to osmotic pressure and there is no water-solute coupling.
The case ¢=0 for a particular solute indicates the solute permeates the membrane as
efficiently as water, does not contribute to osmotic pressure, and there is complete water-
solute coupling. The solvent drag is usually small, comprising about 2% of total solute
flow (Henzler and Steudle, 2000). The value of ¢ can also be negative, e.g. when solutes

are more permeant than water across cell membranes.

Although the membrane parameters are measured independently, experimental data
suggests there is some correlation between them. For example, a higher (lower) ps tends
to be related to a lower (higher) ¢ (Kargol and Kargol, 2000). This is also predicted to be
correlated with a lower (higher) L, by the so-called frictional pore theory (Henzler and
Steudle, 1995).

All three membrane parameters are membrane-specific, and values of o and psare also
solute-specific. A detailed interpretation of the KK equations can be found in Kedem and
Katchalsky (1961), Kargol and Kargol (2000), and Kargol and Kargol (2003).

1.3.2 Non-ideal behaviour of membrane parameters

Application of the KK equations assumes the membrane is ideal, in the sense that the
membrane parameters are constant, independent of the driving forces such as pressure
and concentration changes, and independent of temperature. However, in reality

membranes are not ideal.
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Measured values of the membrane parameters change a little with temperature (Barry and
Diamond, 1984; Hertel and Steudle, 1997). Attempts are usually made to maintain the
CPP apparatus at a constant temperature, and in this study the temperature of the CPP is

assumed to be uniform and constant.

Significant changes in L, with P have been found for low pressures (P < 0.2MPa;
Zimmermann and Husken, 1979; Steudle and Zimmermann, 1974). This should not be an
issue here since cell pressures in CPP experiments do not drop below 0.2MPa.
Experiments have also found a slight dependence of membrane parameters on pressure
and concentration (and hence osmotic pressure) in higher pressure ranges (Dainty and
Ginzburg, 1964a,b; Steudle and Zimmermann, 1974; Zimmermann and Steudle,
1974a,b). However, this should also not impact greatly on the estimated parameters here
since the osmotic driving force is the same for each experiment, and hydrostatic pressure
perturbations involve small pressure changes. A theoretical study of how estimated
parameters may be influenced by changes in cell pressure and external concentration will

be conducted in Chapter 3.

The dependence of membrane parameters on pressure and concentration may also be due
to the fact that we are in reality dealing with a composite membrane (Kedem and
Katchalsky, 1963c). A composite membrane is where the membrane system comprises
components in series (e.g. there is more than one membrane in the system) or in parallel
(e.g. there is more than one pathway in the system). This will be discussed further in
82.1.

1.3.3 Application of the KK equations

The KK equations are based on the principles of “irreversible’ or ‘non-equilibrium’
thermodynamics. The system is described in terms of external macroscopic variables, and
the equations do not depend on the microscopic structure or internal workings of the
membrane (Zemansky and Dittman, 1981; Kargol et al. 2005). Direct use of the above

equations is confined to two-compartment membrane systems, for flows of solutions
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which are sufficiently diluted and well-stirred, and close to steady state (Katchalsky and
Curran, 1967; Kargol and Kargol, 2003).

The KK equations, however, have been adapted and applied to a wide range of membrane
transport problems. They have been applied to systems in non-steady state, for
thermodynamic theory assumes ideal quasi-static processes where “the system is at all
times infinitesimally near a state of thermodynamic equilibrium”, which does not mean
the processes must necessarily be in steady state (Zemansky and Dittman, 1981). The
equations have been adapted and generalised for systems where unstirred layers are
considered to be additional compartments (Kargol, 2000).

More interestingly, the equations have been applied to porous membranes, for although
the KK equations treat the membrane as a black box, the transport coefficients can
nevertheless provide information about the membrane porous structure (Kargol, 2001;
Kargol et al. 2005). In the formulation by Kargol et al. (2005), Jy is the volume flow per
unit effective area of the pores, L, depends on the ratio of the membrane surface area to
the total effective area of the pores, o is related to the ratio of the total cross-sectional
area of the semi-permeable pores (for which o=1, i.e. permeable only to water) to the
total cross-sectional area of the permeable pores (for which ¢=0), and ps is expressed in
terms of L, and o. Lipid-pore models involving frictional coefficients between solutes
and water in the pores have also been developed (Kedem and Katchalsky, 1961; Dainty
and Ginzburg, 1963).

1.4 Aims and motivation

The principal aims of this study are to develop a more realistic model of membrane
transport which incorporates ULs, and use this model to examine the classical model and
its associated method for estimating membrane parameters. The study is based on
numerical models developed from established membrane transport theory. This theory

also forms the backbone of the classical CPP model and experimental analyses. Raw data
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provided by experimentalists, as well as data taken from the literature, are used for
analysing the models.

In this study, models of water and solute transport into and out of a Chara cell are
formulated as coupled differential equations, and solved numerically using Matlab
(Version 7, MathWorks, Inc.). Model behaviour is explored, including the relative effects
of internal and external ULs, and different UL thicknesses, on cell water relations and
parameter calculations. Model predictions are also analysed, in particular how well the
models fit the data, and what they estimate the membrane parameters to be. Model
behaviours, predictions, and limitations are compared, in particular to assess the
adequacy of current CPP methods to draw conclusive statements about membrane

parameters when ULs may be present.

Motivation for this study includes the following questions: Does a more comprehensive
model give a better fit to data than the classical model? What are the implications for
current methods of parameter determination and experimental analyses based on the

classical model? Are there alternative methods of parameter estimation?

In Chapter 2, the classical model is described and applied to data using an analytical
solution for the pressure relaxation, and its behaviour and predictions are analysed.
Chapter 3 gives the theory of and background to ULs, reviews previous numerical models
with and without ULs, describes the new model developed in this study and outlines its
numerical implementation, applies the new model to data, and compares its behaviour
and predictions to that of the classical model. Chapter 4 builds on Chapter 3 by applying
the UL model to recently obtained data by Prof. Mel Tyree and Dr. Helen Bramley at
Adelaide University. The applicaton and analysis take into consideration sampling error,
and include further information regarding the time of impact of the pressure perturbation.
Chapter 5 concludes the findings of this study, discusses the implications of these on
parameter estimation using the CPP and the conduct of CPP experiments, and gives

various recommendations for further research.
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2 Classical model

2.1 Scope and assumptions of the model

2.1.1 Assumption of single membrane

The Classical two-compartment cell model outlined in §1.1, with a single membrane, is
the simplest possible model for a cell. The advantage of this simple conception is that it
allows transport equations to be easily applied to the membrane, and since these
equations are based on thermodynamic processes the internal structure of the membrane
can be ignored. However, the cell is actually a “composite membrane”, that is a system
comprised of an array of membranes either in series or parallel (Kedem and Katchalsky,
1963b,c). The two membranes in series are the tonoplast surrounding the vacuole, and the
plasmalemma at the cell wall (see Fig 1.1). With the exception of the studies by Wendler
and Zimmermann (1985a,b), Niemietz and Tyerman (1997) and Zhang and Tyerman
(1999), quantitative effects of the tonoplast and plasmalemma on CPP experiments seem
to have largely been ignored, and the classical model makes no provision for composite

membrane effects.

Within the framework of the Classical model, the tonoplast and plasmalemma are treated
as a single membrane, and the measured parameters can be regarded as those of the
combined membranes (Heidecker et al. 2003). However, a problem with this
interpretation is that the KK equations would be applying across both membranes,
implying there must be a pressure difference across both membranes which is not
possible, since a hydrostatic pressure difference cannot occur across the tonoplast
(Wendler and Zimmermann, 1985a). This is due to the fact that a membrane has no
mechanical strength, the pressure difference across the plasmalemma being due to the
presence of the cell wall, which supports the plasmalemma which is pushed against it

during nonzero turgor pressures. The two-compartment model, then, can only work if the



tonoplast has very little effect on the pressure dynamics observed by the CPP, i.e. if it has
a low resistance and high permeability to water and solute flow (ibid. 1985a).

Properties of the tonoplast, however, have been difficult to determine. Kiyosawa and
Tazawa (1973) removed the tonoplast of Chara cells, and concluded that the tonoplast is
much more permeable to water than the plasmalemma. This finding is supported by
Niemietz and Tyerman (1997) and Henzler and Steudle (2000). However, Wendler and
Zimmermann’s (1985a,b) theoretical study of the effects of the tonoplast on CPP
experiments found that the relative hydraulic conductivities of the tonoplast and
plasmalemma differed depending on the pressure range, and concluded that the tonoplast
L, is not large enough that its influence on relaxation curves can be neglected. Generally,
parameter estimation methods in CPP experiments (with the exception of Zhang and
Tyerman, 1999) do not explicitly take effects of the tonoplast into account, but simply
neglect the influence of the tonoplast on the hydraulic conductivity and account for only

the plasmalemma component in the analysis.

Other regions in the cell are not considered significant sites of resistance. Although the
cell wall in large algal cells is also a barrier to water and solute movement, studies
indicate that it has a higher hydraulic conductivity than the plasmalemma (Kiyosawa and
Tazawa, 1977). Since the two components can’t be separated experimentally, measured
properties of the plasmalemma may be considered properties of the plasmalemma/ cell
wall complex (Wendler and Zimmermann, 1985b). The cytoplasm, a solution of salts,
carbohydrates and proteins, has an osmotic concentration of about 250mM, and a
relatively high hydraulic conductivity (Wendler and Zimmermann, 1985a; Raven et al.,
1992; Tyree, pers. comm.). It moves slowly around the cell at a rate of about 4cm/hour
(Tyree et al. 1974) in “cytoplasmic streaming”. The vacuole typically occupies about
90% of the cell volume in a mature cell and contains a solution of the same osmolality as
the cytoplasm (since the tonoplast cannot support a pressure difference), but is richer in

salts and poorer in organic solutes (Raven et al. 1992).



Although the numerical model developed in this thesis is limited to a two-compartment
model based on the Chara cell, this conceptual model is relevant to other cell systems

and the numerical model can certainly be applied to other cell systems (see 81.1).

2.1.2 Other assumptions

The Chara cell is assumed to exhibit cylindrical symmetry, and the flow across the
membrane to be in the radial direction only. The cell is assumed to contain impermeant
(i.e. non-permeating) solutes only (Tyerman and Steudle, 1982). Although a cell contains
both permeant and impermeant solutes (solutes are continually being exchanged with the
environment), the permeability of test solutes are usually much higher than those of the
natural internal cell solutes so that these can be considered effectively impermeant.
Artificial pond water (APW) outside the cell is assumed to have a pressure equal to
atmospheric pressure. The volume external to the cell is considered to be of infinite size
in relation to the cell volume, and so for all intents and purposes the external region is
unchanging. The solute concentrations on either side of the membrane are assumed to be
uniform with space, and unstirred layers and influence of the expanding/ contracting
membrane on adjacent solute concentrations are assumed to be absent. The temperature

of the whole system is assumed to be uniform and constant.

The cell is assumed to be at equilibrium (i.e. J, = 0, Js = 0) for t<t,. At t= t; a hydrostatic
or osmotic perturbation to the system is made. The perturbations are assumed to impact
on the cell instantaneously.

2.2 Transport equations and their solution

2.2.1 Transport equations

The KK equations Egs. (1.1) & (1.2) can be written in the more detailed form (assuming

the external solution is at atmospheric pressure):



1dv

JV:—KIE:LJP—%TK;—QQ—J&T«%—CQ] (2.1)
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where the subscripts ‘i’ denote impermeant solutes, ‘s’ permeant solutes, and ‘e’ external
to the cell (Steudle and Tyerman, 1983). Eq. (2.1) uses the Van’t Hoff equation for ideal
dilute solutions (Katchalsky and Curran, 1967):

7= (CR,T, (2.3)

where 7 = osmotic pressure, Ry = universal gas constant (8.3144 x 10° m* MPa mol™* K°
1, T = temperature (K), and q = sum of cation and anion valencies of a completely
dissociated salt (Dalton et al., 1975), which is assumed to behave ideally. For non-
electrolytes (which we are assuming here) q = 1. Note also that C = n/V, where n is the

molar quantity of solutes in the cell.

For a full description of passive membrane transport, further expressions for z and P (the
internal hydrostatic or turgor pressure of the cell) are required. The number of mol of
impermeant solutes inside the cell remain a constant so that:
iV

o= 2.4

= (2.4)
The rate of change of cell volume with respect to a change in turgor pressure P is
described by the bulk elastic modulus ¢ (Dainty, 1963), given by:

dpP

&
i (2.5)

In Eq. (2.5) it is often assumed that V=V, where Vo (m°) is a constant reference volume
taken at equilibrium (Molz and Ferrier, 1982; Steudle and Tyerman, 1983). It has been
found that the increase of ¢ with P is generally greater at low pressures of less than about
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0.3MPa (Steudle et al. 1977), and greater for larger cells where the ¢-P relation is
typically hyperbolic (Zimmermann and Steudle, 1974b). For some smaller cells ¢ has
been found to be constant over a large pressure range, and volume-dependent (ibid.
1974b). Experiments on other small cells have found that the value of &£ changes with
pressure depending on the direction of the pressure change, and that the value of salso
changes over time (Zimmermann and Husken, 1979; Tyerman, 1982; see §1.2). However,
the time-dependence of ¢ has largely been ignored in the water-relations literature. In
CPP experiments, ¢is usually assumed to be constant over the small pressure range used

in the experiments (see §1.2), and assumed to be constant over time.

Egs. (2.1)-(2.5) enable the KK equations to be solved numerically and, under certain
assumptions, analytically. It can be shown that the same equations apply irrespective of

the presence or absence of impermeant solutes in the external solution.

2.2.2 Analytical solution

The KK equations have been solved analytically by Steudle and Tyerman (1983) and
Steudle et al. (1987) to give the temporal variation of P. The analytical solution forms the
basis of the classical method of parameter estimation. It is summarized here, but for full

details refer to these papers.

In the derivation of the analytical solution the following assumptions are made:

e cell surface area, A, is a constant

e cell volume, V, in Eq. (2.5) is a constant

e elastic modulus, ¢, is a constant

e the convection term in Eqg. (2.2) is negligible compared to the diffusion term

e solute concentrations on either side of the membrane are uniform with space.

The second assumption regarding V is not a necessary condition for the attainment of an
analytical solution, however it is an assumption made in the analytical solution used by

CPP experimenters. The assumptions will be examined in §2.7.2.



For the case of impermeant solutes only (in either a hydrostatic or osmotic experiment),

the analytical solution is:
P=P. +(P—-P.)e™th (2.6)

where Pe = final equilibrium turgor pressure and P; = turgor pressure at time of

perturbation (when t=t). As noted in §1.2, P. # P,where Py is the initial equilibrium

turgor pressure. ky, is the rate constant given by:

k :%(8+7zi0), (2.7)

w
0

where the subscript ‘0’ denotes an initial equilibrium value. The halftime z, is related to
kw by:

Ty=—. (2.8)

If permeant solutes are present (in an osmotic experiment), the analytical solution is a
sum of two exponentials:
V-V, P-B L/AcRTAC,

Ky (1)) Ak (t-ty)
= = g Y —g ST 2.9
Vo & Vo (ky, —K,) [ : 29)

where Py = initial equilibrium pressure (= pressure at time of perturbation), ki, is the rate
constant for the water phase, given by Eq. (2.7), and ks is the rate constant for the solute

phase given by:

k= Ph (2.10)

The halftime s is related to ks by:



T,=—0. (2.11)

Eqg. (2.9) shows thatas t —» «, V —V,and P — P,; that is the system returns to its initial

equilibrium state. When permeant solutes are present the curve is biphasic, with the first
term in Eq. (2.9) dominating in the water phase and the second dominating in the solute
phase. If permeant solutes are not present then the relaxation curve is a single exponential
with a halftime given by k. It is important to note that in Egs. (2.6) & (2.9), kyand ks are
always positive and the equations remain the same irrespective of the sign of the pressure
perturbation. This is clear by the definition of ky and ks given above. According to the
analytical solution, P-t curves due to similar positive and negative perturbations should

be symmetrical about the line P = Py,

2.3 Parameter estimation methods

2.3.1 Characteristics of observed data

Relaxation curves for HPP and OPP observed data are shown in Fig. 1.3. The curves
begin at an initial equilibrium pressure, reach a maximum or minimum, and return to a
final equilibrium pressure. The following values can thus be obtained from the observed
data: the maximum or minimum point of the data (tn, Pm), and the initial and final
equilibrium pressures Py and Pe. The halftimes z,, and zs can also be obtained (by methods
discussed in 82.3.2 and §2.3.3). These 4 sets of values partly characterise or describe the

shape of the curve, and we may call them curve characteristics.

Let (to, P1) denote the time and pressure at perturbation for an HPP, and (to, Po) denote

the time and pressure at perturbation for an OPP. Relaxation curves for an HPP begin at
the maximum or minimum of the data, for the model assumes the pressure perturbation
occurs instantaneously. The curve characteristics of an HPP curve are therefore: {to, Py,

7w, Pe,}. The curve characteristics of an OPP curve are: {to, Po, tm, Pm, 7w, 7s, Pe}-



Values of the curve characteristics depend on the membrane parameters, and are
important quantities in the parameter estimation process. The analytical solution to the
transport equations illustrates the relationship. For the HPP, increasing L, decreases z,, by
Egs. (2.7) & (2.8), and makes the P-t curve steeper. For the OPP, increasing L, similarly
decreases 7, and makes the slope of the water phase steeper so that t,, decreases.
Increasing ps decreases zs by Egs. (2.10) & (2.11), and makes the slope of the solute phase
steeper. Increasing o also decreases Pn,. Changes in any parameter also has smaller effects

on the other curve characteristics.

2.3.2 Classical method of parameter estimation

The classical (traditional) method of parameter estimation utilizes the curve
characteristics and analytical solution to apply appropriate transforms and equations to
the observed data. The theory and equations given here are taken from Steudle and
Tyerman (1983), Steudle et al. (1987), and Zhu and Steudle (1991).

(@) Determination of L,

The hydraulic conductivity L, is most often obtained from hydrostatic experiments.
Occasionally it may be obtained from osmotic experiments using impermeant solutes. A
log transform of Eq. (2.6) gives:

In(P-P.) =K -k, (t-t,), (2.12)

where the constant K =In(P, — P.) . A semilog plot of (P-Pg) vs. t then gives ky, and hence

Ly, since from Eq. (2.7):

Lo Voky (2.13)
P A (& + 1)

This is the expression for L, based on the analytical solution to the KK equations. Note
that for a negative pulse, Pe>P, so a semilog plot of (Pe-P) must be used in place of Eq.
(2.12).



Although Eg. (2.12) is linear, the semilog plot for the observed data is nonlinear, the
slope being generally steeper for smaller t values. The nonlinearity may be due to errors
in determining P and Pg, nonlinear properties of the plasmalemma, the dependence of ¢
on P (as expressed by Eg. (2.5)), presence of permeating solutes inside the cell, the
contribution of the vacuole and tonoplast to the pressure relaxation, or effects of unstirred
layers and solvent drag (Tyree et al. 2005; Wendler and Zimmermann, 1985b).

It is generally not clear from the literature which region of the semilog plot is used to find
L,. However, since it has been observed here that for low values of t the semilog plot is
usually steeper, and theory predicts that only the plasmalemma L, should be important
around t=0 (Wendler and Zimmermann, 1985a), it may be assumed that in CPP
experiments only this initial steeper, almost-linear portion is used to give a value for k.
Since the semilog plot of this region still displays a slight nonlinearity, the calculated
value of L, is dependent upon the portion of the semilog plot used, as well as the value of
Pe.

(b) Determination of ps

The permeability coefficient ps is obtained from the solute phase of an osmotic
experiment using permeant solutes. Since it is usually the case that k, <<k, (i.e. the
halftime of the solute phase is much larger than that of the water phase) we may assume

the response for large t is dominated by ks, with e ™' — 0 very rapidly. Under this

assumption a log transform of Eq. (2.9) gives:

In(P-R)) =K'=k (t-t,), (2.14)

£L AR TC,
VO (kw - ks)

where the constant K’ = In( & J The semilog plot for observed data rises

rapidly to a maximum value (corresponding to the time when P, occurs) then decreases
linearly. The slope of this linear portion taken at some time after the maximum gives ks.

The parameter ps is then calculated using Eq. (2.10). This semilog plot is usually very



linear and the value of ps quite precise. As for L, a semilog plot of In(Po-P) must be used
for a negative pulse.

() Determination of ¢

The reflection coefficient o can be calculated directly from the osmotic experiment using
permeant solutes. It requires the observed extreme values (tm, Pm). When dP/dt = 0 we
have:

t 1) =(k—ik)|n(t—vv) (2.15)

S

Pm can then be found using Eq. (2.9), from which we also obtain an equation for o:

PO B Pm — (C;O- _kS (tm —to)
R,TAC, (¢+R,TCy)

, (2.16)

where ks is given by Eqg. (2.10). The value of o can usually be determined quite precisely,

provided that values for P, and t, are accurate.
(d) Determination of L, from biphasic experiments

It has been shown that all three parameters L,, o, and ps, can be obtained by carrying out a
hydrostatic and an osmotic experiment in conjunction. It is desirable to obtain all three
parameters from the one (osmotic) experiment, however the method of calculating L,
from biphasic OPP experiments is not clearly stated in the literature. It is not definite
whether it can be determined by this means, and appears that Ly, is usually only obtained
from HPP experiments, as this is regarded as the most direct and accurate measurement
of Ly (T. Henzler, pers. comm). However, L, for a biphasic osmotic experiment can be
determined from the analytical solution by first determining ks and ty,, and then
numerically solving for ky in Eq. (2.15), and using Eq. (2.13) to calculate L.
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The value of L, should be the same for both hydrostatic and osmotic experiments (being a
physical property of the membrane), but it has been found that in osmotic experiments it
is strongly dependent on external stirring rates, suggesting its measurement is more
affected by ULs than with hydrostatic experiments (Steudle and Tyerman, 1983).
Measurements of L, with the two types of experiments give similar results at high

external stirring rates.

The Classical method was applied by implementing the equations in Excel.

2.3.3 Optimization methods

More modern methods of calculating the membrane parameters use optimization methods
to fit the observed data. This involves minimizing the residuals between observed and
simulated data. Numerical algorithms are used to fit the relaxation curves to single or
double exponential functions, and the rate constants k,, and ks are obtained as results of
the procedure. From the rate constants the membrane parameters can be calculated using
the appropriate analytical solution equation. Optimization techniques have been used in

recent years by CPP experimenters (Henzler and Steudle, 2000; Henzler et al. 2004).

The optimization used here is to minimize the overall root-mean-square (RMS) error of

the whole curve. The RMS is defined as:

(2.17)

where P; are the predicted P values, P;* are the corresponding observed P values, N is the
number of observations, and the summation is over all observations. Least-squares fitting
is a maximum likelihood estimation of the fitted parameters, when the measurement
errors are independent of each other, and normally distributed with constant standard

deviations. These assumptions may be considered to hold here. In the case that standard
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deviations for each measurement are not constant, a weighted least-squares formula

called the chi-square is often used as a maximum likelihood estimate.

For convenience, this method will be termed the ‘RMS method’. The minimization of the

RMS was carried out using Excel Solver.

2.4 Preliminary to results

2.4.1 Determination of curve characteristics

The curve characteristics are obtained for both the Classical and RMS methods of
parameter estimation. Although curve characteristics are not required to fit the data in the
RMS method, they are used as either inputs into the model or in an analysis of goodness
of fit. Curve characteristics of the simulated data, where calculated, are done so using the

same method as for the observed data.

The halftimes 7, and 7, are obtained from the slopes k,, and ks of semilog plots of the
observed data. For z, in a HPP, semilog plots are taken during the initial portion of the
curve. For 5, semilog plots are taken over the region t>2ty,.

Extreme values (tm, Pm) can be obtained by reading off the discrete data (t,P) values, or
by interpolating between the data values to give a more accurate value. Here interpolation
was used by fitting a second degree polynomial to a window around the extremum. The
initial equilibrium pressure Py and the final equilibrium pressure Pe were obtained by

averaging 10 or more observed values of P.

The simulated relaxation curves are very sensitive to the time t, at which the perturbation
occurs. It is therefore important to determine an accurate value for to, however this is not
always possible. For an HPP, P; was taken to be the maximum change in P from P,. The

time tp when this occurs can be read from the data, or chosen to be a point near that time
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since there is often some noise around this point. For an OPP, there is some freedom in
choosing to since it is unknown when exactly the perturbation pulse impacts on the cell.

For an OPP, theory dictates that Po= Pe. Therefore in EQs. (2.14) & (2.16) either the
observed P, or observed Pg value can be used for Py in the equations. However, in many
data sets there is some variation from this, as the experiment may not have been run for
long enough for a steady equilibrium to be attained, a long-term pressure drift was
present in the data, or changes in the external solution occurred around to. Therefore,
using Py in the equations will mean that Pe may not be predicted well by the model, and
using Pe will mean that P, may not be predicted well by the model. Here it was chosen to

use the observed Py value.

2.4.2 Error analysis

The error in the estimation of each parameter or curve characteristic must be calculated
for the model fits. The error is comprised of: a) numerical error in the model or
optimization method, and b) experimental error in the observed data due to the
measurement precision of the CPP. The experimental noise in the CPP has been found to
have a standard deviation of £ 0.0003 MPa and a maximum of 0.0008MPa, so the error in
P is taken to be about + 0.0005 MPa (M. Tyree, unpublished). The experimental error in t
is taken to be the time-resolution of the data (about = 0.05s in Henzler et al. 2004). There
may also be some error in the exact size of the pressure perturbation, however the
magnitude of this error is unknown and should not be large, so is ignored in the present

study.

In the Classical method of parameter estimation, Egs. (2.12)—(2.16) are used to determine
the membrane parameters that reproduce the curve characteristics obtained from the
observed data. The accuracy of this method depends on the accuracy of the analytical
solution, and the accuracy to which the curve characteristics can be determined from
observed data. Standard errors (SE) in the calculated parameters are derived from the

errors in the curve characteristics of the observed data. The standard errors in the

2-13



estimated parameters were determined using a formula for propagation of errors (Young,
1962). If Q = f(a,b,c), then the error 6Q in Q is:

o _(QY o2 (3QY .-
0Q _(aa) oa J{abj ob” +....... : (2.18)

where oa is the error in a, etc. For the HPP experiment, the error in the slope of the

semilog plot of the observed data, k,, can be obtained from the linear regression. From
this, the error in L, is calculated using Eq. (2.13), and the SE in =, calculated using Eq.
(2.18). The error in Pg was derived by calculating the standard deviation of the last 10

values of P of the observed data.

For the OPP experiment, the error in ks was obtained from the error in the regression of
the semilog plot of the solute phase. From the measurement error in t,, and the error in ks,
the error in ky can be determined using Egs. (2.15) & (2.18). The errors in Ly, ps and o
can be determined using Eq. (2.18) and the previous parameter definitions given by Egs.
(2.10), (2.13) & (2.16).

Standard errors in optimized or fitted parameters using the RMS method were calculated
using the NonlinXL toolbox in Excel (P. Sands, unpublished). For the HPP, the SE in z,,
was also calculated from the SE in L, by using Egs. (2.7), (2.8) & (2.18). For the OPP,
the percentage departure of the model curve characteristics from the data curve

characteristics were also calculated.

2.5 Application of model: Results

The analytical solution for the classical model (i.e. Egs. (2.1)—(2.5)) was implemented in
Excel, and applied to simulate raw data obtained from Dr. Henzler and Mr. Ye,
corresponding to published data in Henzler et al. (2004). The membrane parameters were
obtained using both the Classical method and RMS method, and for comparison purposes
curve characteristics and RMS values are given for results from both methods.

Assumptions of the Classical model given in 82.2.2 apply.
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The model was applied to data for a positive and negative hydrostatic pressure pulse
(HPP), and a positive and negative osmotic pressure pulse (OPP) in the presence of
permeant solutes (160mM acetone was added or removed from the external solution).
The data corresponds to Fig. 2A in Henzler et al. (2004). The data is extracted for use in
the model starting at a chosen value, and the time scale is then adjusted so that this value

becomes 0. An optimized value of t is expressed relative to this zero value.
2.5.1 HPP experiment

(@) Application of Classical method

The negative HPP data was fit first using Egs. (2.6) & (2.7). As mentioned in 82.3.1, the
curve characteristics for an HPP curve are {to, P1, 7w, Pg,}. In order to determine L, a
value for 7, must be obtained from the observed data. The semilog plot of the observed
P-Pe was found to be very slightly nonlinear (see Fig. 2.1, and refer to Tyree et al. 2005
for a discussion of possible reasons). The determination of k,, was indeterminate since
using the slope from different regions of the semilog plot would give different values for
kw, resulting in different values of z, which is very sensitive to k. Accordingly, slopes
from 2 different regions were trialed. A regression over 0-3 s gave z, = 1.62s, which
corresponds to a value near to that quoted by Henzler et al. (2004) (t, = 1.6s). A
regression over 0-8 s gave t,, = 1.99s, which corresponded to values of P where (P-Pg) >
0.002MPa. This critical value was used because Steudle and Tyerman (1983) state that
“the relaxation curves were well fitted by a single exponential down to pressure
differences...of about 0.02bar (R* > 0.98)”, suggesting a good fit for values where (P-Pg)
> 0.002MPa.

As mentioned in 82.4.1 the quality of the fits are sensitive to the value of (to, P1). A value
of to = 0 was first chosen near to, but not equal to, that when P; occurs, and then in order
to obtain the best fit ty was further adjusted by optimizing its value using Excel Solver
(refer to Table 2.1, where t, values are relative to the chosen point to = 0). The adjusted
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value of tp did not affect L, (since L, is obtained using a constant z, and Pg obtained from
the data, and the adjustment in to was very small), but was found to affect the RMS value
from the fit (by up to 20%). This justified the optimization of t, instead of taking to as the

point at which Py occurs.

Semilog plot for negative HPP (raw data)
0 2 4 6 8
O 1 1 1 ]
-2
o 4
a4 y=-0.3476x - 3.252
2
c R“=0.9909
-
-6 -
-8 4
Time (s)

Fig. 2.1 Semilog plot for 0-8 s of the negative HPP data from Henzler et al. (2004), with trendline.

It was found that using 7, = 1.62s to fit the negative HPP curve simulated the earlier data
points better (up to 4s, Fig. 2.2) and gave a lower RMS value (first column in Table 2.1).
Fitting to 7, = 1.99s simulated the later data points better (after about 10s, Fig. 2.2b), and
gave a higher RMS value (second column in Table 2.1). An L, based on a semilog plot
regression over 0-3 s gave the best fit for the Classical method, which concurs with the
inference that only the beginning parts of the semilog plots are used in the derivation of

L, when using the classical model.
A determination of the curve characteristics for the positive HPP curve found that it was

symmetrical to the negative HPP curve, with a data halftime z,, =1.67s lying within 1.62s

+ 2SE of the negative HPP. A semilog regression over 0-3 s, same as for the negative
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pulse, was used to derive z,. When the data was fit, it was found that the estimated L, was
not significantly different between the negative and positive HPP curves, the values
agreeing to within 2SE (Table 2.1).

Table 2.1 Model results for a HPP experiment using the Classical method of parameter estimation.
Errors are standard errors.

Negative HPP Positive HPP
*0-3s *0-8 s *0-3s
to (S) -0.08 +0.02 -0.08  +0.02 0.11  +0.03
L, (x 10°ms *MPa™) | 3.02 +0.05 246  +0.05 2.94 +0.04
T (S) 1.62 +0.03 1.99 +0.04 1.67 +0.02
Pe (MPa) 0.6409 +0.0001 0.6409 +0.0001 0.6421 +0.0001
RMS (x10% 7.6 15.8 8.3

* Time period over which regression of semilog plot was taken.

(b) Application of RMS method

The negative and positive HPP curves were fit by minimizing the RMS value given by
Eqg. (2.17). Although the RMS values were lower than those obtained with the Classical
method, the estimated values of L, were within 2SE of each other (Table 2.1 & Table
2.2). The main difference was in the values of Pg, where the RMS method underpredicted
Pe by 0.0005 MPa (compare Fig. 2.2 & Fig. 2.3; see Table 2.2). Considering the
measurement error of + 0.0005 MPa, however, this difference is not significant. For the
positive HPP, the fits and residuals between the Classical and RMS methods were also
similar, with the RMS method overestimating Pg by 0.0004 MPa.

Averaging results in Table 2.1 and Table 2.2 gives L,=3.03 £ 0.01 m s MPa* for the
negative HPP, and L, = 2.96 £ 0.02 m s MPa* for the positive HPP, where errors are
standard deviations. These L, values, although lying outside 2 standards deviations of
each other, do not differ significantly since the standard errors from the model
estimations are quite large (Table 2.1 and Table 2.2). This is in agreement with the
analytical solution to the KK equations, which predicts that the positive and negative

experiments should be symmetric about the t-axis.
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Fig. 2.2 P-t curves and residuals for a negative HPP, using the Classical method. Showing raw pressure

data (

) and model fit (——). (a) Using t,, = 1.62s, (b) using T, = 1.99s.
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Fig. 2.3 P-t curves and residuals for a negative HPP, using the RMS method. Showing raw pressure data (-
----) and model fit (——).

Table 2.2 Model results for a HPP experiment using the RMS method of parameter estimation.
Errors are standard errors.

Negative HPP Positive HPP
ty (s) -0.08  #0.02 0.11  +0.03
L, (x 10°m s * MPa™) 3.04 +0.06 297  +0.07
% (S) 1.62  +0.03 1.65  +0.04
Pe (MPa) 0.6404 +0.0001 0.6425 +0.0001
RMS (x 10% 6.5 7.6

Agreement of L, and 7, values between the two fitting methods, where a semilog
regression period of 0-3 s was used for the Classical method and the RMS method is
based on all the data (not just the points for t<3s), confirms the practice of using only the

initial region of the semilog plot of the observed data for fitting with the Classical
method.
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2.5.2 OPP experiment

(@) Application of Classical method

As mentioned in §2.3.1, the curve characteristics of an OPP curve are: {to, Po, tn, Pm, Tw,
75, Pe}. Of these, Pg is not important for fitting since the analytical solution gives Py = Pg,
and =, is also not important since 7, can be derived from to, t, and ks through Eqg. (2.15).
Thus the curve characteristics required for fitting an OPP curve are: {to, Po, tn Pm, 7}
These were obtained from the observed data by the methods described in §2.4.1.

The negative OPP was fit first using Egs. (2.9) and (2.10). A regression of the semilog
plot over the period 20-125 s was used for determining zs. Po and Pg were found to be the
same within experimental error (0.6361 MPa and 0.6360 MPa respectively) for this data

set.

A slight curvature was present in the data near t = 0, before P rises steeply (Fig. 2.4a).
We may call this period of curvature a “time-delay”, referring to a delay in the response
of P to the pressure perturbation, since the classical model supposes that the response
time is immediate and the perturbation instantaneous. The time-delay is usually of the
order of a few seconds at most, and is not evident when the full P-t curve is plotted (Fig.
2.4b). Because the Classical model does not predict a time-delay, the estimated

parameters and model fits will clearly depend on the choice of t,.

In order to examine the impact of ty on the estimated parameters, the negative OPP data
was fit using different values of t,. In addition to to = 0 the data was fit to: a) to = 0.73s,
obtained by fitting a piecewise linear continuous function (“broken stick” regression) to
points around to= 0; b) ty = 1.14s, the optimized value obtained by Excel Solver using the
analytical solution; ¢) to= 1.5s, a manually adjusted value made after the optimized t, was

obtained, which seemed to give the best fit and smallest residuals (Fig. 2.4c).

A comparison of how the estimated parameters vary with the choice of t; is given in

Table 2.3. L, increased with increasing to, o decreased slightly with increasing to, and ps
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was independent of the choice of to. These behaviours are as expected, since: a) L,
governs the water phase, which is relatively steeper for a smaller ty, - to; b) ps governs the
solute phase, for which the slope is not affected by a time-delay; c) o is calculated from
the analytical solution for P (Eqg. (2.9)), from which we see that as t, - to decreases, o
decreases slightly for a constant Py - Pr, and ks. The RMS values were lower, as expected,
when the time-delay in the observed data was better taken into account (i.e. RMS values
were lower for higher values of t;). The RMS errors were comparable for t; in the range
1.14-1.5 s. The choice of to mainly affected L, and the RMS error.

Table 2.3 Estimated parameters for the negative OPP curve, using the Classical method, for four
different values of ty. Errors are standard errors.

Negative OPP Positive OPP
to(s) 0 073 114 15 0.37
Lo (x10°ms “MPa™) [2.01 225 240 256 (£0.02)* | 2.30 £0.02
Ps (x 10°m s™) 443 443 443 443 (x0.01) | 454 #0.02
o 0.132 0.129 0.128 0.127 (x0.001) | 0.121 +0.001
RMS (x 10 195 106 6.1 6.5 8.5

* standard errors for the model fits to to = 1.5s, t; = 0.1s.

The positive OPP data was noisier than the negative OPP data in the first half of the
experiment, especially around the extremum (Fig. 2.5). zs was derived by taking a

regression of the semilog plot in the period 20-125 s, the same as for the negative pulse.

The data could not be fit using the value of Py derived from the data. The experiment had
been run for a shorter period of time and the pressure did not return to its initial
equilibrium value of 0.6384 MPa. A problem may have occurred during the experiment,
since the pressure had an upward trend prior to the perturbation and so was not at true
equilibrium. Since this value of Py is suspect an optimized value of Py = 0.6362 MPa,
obtained using Excel Solver for the classical model, was used for curve-fitting. This
value of Py is close to the values of Py and Pe for the negative OPP, and is likely to be

what Py should have been in the positive OPP experiment.
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Due to the adjustment of P, there was an absence of a real time-delay in the data. The
data was fit with an optimized value of t, = 0.37s, obtained using the RMS method. The
fit was found to be poorer than the fit for the negative OPP (with ty = 1.14s), with a

higher RMS error. This is probably due to the greater presence of noise in the data.
(b) Application of RMS method

The negative OPP was also fit to different values of t, using the RMS method. A similar
trend in the parameters with varying t, was observed as for the Classical method (Table
2.4), but with ps decreasing slightly with increasing to, due to t,, decreasing with higher
values of t,. (The value of t, does not change in the Classical method, since it is made to
equal ty of the observed data.) The changes in L, due to to were greater with the RMS
method than with the Classical method of fitting. As with the Classical method, the RMS
values were lower when the time-delay in the observed data was better taken into

account, and the time-delay mainly affected values of L, and the RMS value.

It is useful to examine what sort of information the RMS value gives about the fits.
Within the Classical method, although the fit with to= 1.14s gave the same RMS value as
the fit with to = 1.5s (Table 2.3), it was found that the water phase was not fit as well, and
the similar RMS values were a consequence of different distributions of the residuals in
the water phase where they are dependent on the value of to. Within the RMS method, the
fit with to = 1.14s gave the lowest RMS value (Table 2.4), but it was found that data

points around the extremum were not fit as well as the fit for to= 1.5s.

The fits with to = 1.5s had the most evenly distributed residuals, and on the basis of this
was deemed to be the best fit for both methods. The residuals were similar between the
fitting methods, with only a slight difference in the water phase and around the extremum
where the RMS method did not fit the points as well. The fits were not so good for small
t, but this is a natural consequence of using a larger value of to. For this value of ty, the
estimated parameters (Table 2.3 & Table 2.4) agreed closely between the two fitting

methods.
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The residuals for the second half of the solute phase were similar for all the fits, and were
larger in this region as more relative noise was present in the data for larger t (Fig.
2.4b,c). These larger residuals do not affect the fit of the curve since it was chosen to fit
to a 75 value based on 20-125 s of the semilog plot. Using this value of z; emphasises
fitting regions of the curve where the cell dynamics are faster, i.e. the water phase,

around the extremum, and the first half of the solute phase.

Table 2.4 Estimated parameters for the OPP curve, using the RMS method, for four different values
of to. Errors are standard errors.

Negative OPP Positive OPP
to(S) 0 0.73 1.14 1.5 0.37 +0.02
L, (x 10°m s * MPa™) 1.41 1.83 219 259 (+0.04)* | 2.82 +0.06
Ps(x 10°m s™) 4.66 4.54 447  4.41 (+0.03) 435 +0.03
c 0.132 0.129  0.127 0.126 (+0.001) | 0.120 =+0.001
T (S) 3.49 2.68 225 190 (1.6%)***| 1.74 (18.5%)
% (S) 29.7 30.6 31.0 315 (0.4%) 31.89 (4.3%)
Pmn (MPa) 0.6738 0.6749 0.6756 0.6761 (0.1%) | 0.5977 (0.1%)
tm (S) 12.2 11.0 10.3 9.7 (1.0%) 8.09 (11.9%)
Pe (MPa) 0.6361 0.6361 0.6361 0.6361 (0.0%) | 0.6362 (0.0%)
RMS (x 10 11.9 6.5 45 6.3 5.7

* standard errors (for a particular value of ty) obtained using SolverStat in Excel.
** relative % difference between model and data curve characteristics, for a particular value of t,.

The positive OPP was fit with an optimized value of t, (Table 2.4). There was a
significant difference in the estimated values of L, and ¢, and in the residuals, between
fits using the two fitting methods (Fig. 2.5). The difference was larger compared to the
two negative OPP fits using the optimized value of t, (Table 2.3 & Table 2.4). This was

due to the two methods fitting points around the noisy extremum differently (Fig. 2.5).

Averaging results from the two methods (for to = 1.5 s) in Table 2.3 & Table 2.4 gives
estimated parameters + SD for the negative OPP of : L,= 2.58 + 0.02 x 10° m s™ MPa™,
Ps = 4.42 +0.01 x 10° m s™, and o = 0.127 + 0.001. Estimated parameters + SD for the
positive OPP are: L,=2.56 £ 0.37 x 10° m s MPa™, p; =4.45+0.13x 10° ms™, and o
=0.121 £ 0.001. These parameters do not differ significantly from each other. The
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difference in o can be explained by the fact that Py was adjusted for, so that Py -Py, for the

positive pulse was less than for the negative pulse, resulting in a lower ¢ by Eq. (2.16).
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Fig. 2.4 P-t curve and residuals for a negative osmotic pressure pulse, showing raw pressure data (----) and
model fit (——). Using Classical method with to= 1.5s. (a) P-t curve for 0-50 s; (b) full P-t curve; (c)
residuals for full P-t curve. Data from Henzler et. al. (2004).
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Positive OPP (Fig. 2A)
Classical and RMS methods
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Fig. 2.5 P-t curves and residuals for a positive osmotic pressure pulse, showing raw pressure data (----) and
model fit (——). (a) Using Classical method with ty= 0.37s, (b) using RMS method with t;= 0.37s.
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Averaging results across the 4 fits to the positive and negative pulses, gives L,=2.99 +
0.05 m s MPa ™ for the HPP experiment, and L, = 2.57 + 0.21 m s™* MPa ™ for the OPP
experiment. These results show that the estimated L, for the OPP experiments is

significantly lower than L, for the HPP experiments.

2.6 Analysis of results

2.6.1 Correlation of parameters

Correlation tables between optimized parameters were obtained by NonlinXL for fits to a
negative HPP and negative OPP experiment. Table 2.5 shows that for the HPP
experiment, L, is strongly correlated with to and less so with Pe. This means small
changes in to will affect the value of L,, so it is important to optimize t, for the fits, and

that fits using the RMS method are likely to change Pe along with L.

Table 2.5 Parameters correlation table for a fit to a negative HPP experiment, with the RMS
method.

Pe Lp to
Pe 1 -0.41 -0.14
Lp -0.41 1 0.69
to -0.14 0.69 1

Table 2.6 Parameters correlation table for a fit to a negative OPP experiment, with the RMS
method. to = 1.14s.

I—p Ps o to
Lp 1 -0.52 -0.58 0.69
Ps -0.52 1 0.81 -0.18
o -0.58 0.81 1 -0.21
to 0.69 -0.18 -0.21 1

Table 2.6 shows that for the OPP experiment, ps and o are strongly correlated. This is

consistent with theory and the literature. Ly, is also correlated with ps and ¢, showing that
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all 3 membrane parameters are correlated. L, is strongly correlated with to whilst ps and ¢
aren’t, which is consistent with the results in §2.5.2.

2.6.2 Comparison of fitting methods

Results show that the Classical and RMS methods are both useful for fitting the data.
Fitting the OPP curve was a more a complex task than fitting the HPP curve, due to the
greater number of curve characteristics involved, and the greater impact of t, on the
model fits. The two fitting methods give different parameter estimates for the OPP
experiment, since they emphasise fitting different regions of the data. The Classical
method gives more weight to errors in ty,, P, and z; the RMS method gives equal weight
to errors in the observed P distributed across the whole data set. The difference between
the methods is highlighted by fits to the OPP experiment (Table 2.3 and Table 2.4).

The RMS method is an average error over all the data points, and therefore a large error
in predicting a few data points may not alter the overall RMS error by a significant
amount. Although this is an advantage as it balances a few erroneous data points with
many good ones, it is also a drawback when fitting OPP data since the period during
which the data returns to equilibrium is much longer than the period during which the
data reaches a maximum or minimum. This effectively gives a large weight towards
fitting values near the final equilibrium pressure compared to fitting values in the earlier
regions where the cell dynamics are changing rapidly or significantly. The RMS method
may fail to fit these earlier regions (such as points in the water phase and around the
extremum) if a long tail in the solute phase of OPP data is subject to relatively more
significant error. The earlier regions of the data may be fit better by weighting the RMS
value in these regions (so that minimising the residuals between observed and simulated
data in these regions is emphasised), although which points are given more weight is

subjective.

A drawback of the Classical method is that where there is significant noise in the data

around the curve characteristics, the latter cannot be determined very precisely, making it

2-27



difficult to determine a good fit. This was seen in fits to the positive OPP (Fig. 2.5),
which had significant noise around the extremum. Another factor affecting the fits and
adding to variability in the estimated parameters, is the regions of the curve used to
derive the halftimes for fitting. However, if the RMS error is reasonably low, and the data
is fit well with low overall residuals, we may conclude with some confidence that the
estimated parameters are the ones which govern the cell dynamics, insofar as the classical

model is correct.

Parameters estimated by the two methods may agree for a certain value of t; to give a
single set of estimated parameters. However this would not always be the case, and one
method should be chosen. Here the RMS method is chosen to fit subsequent data sets,
with tp an optimized parameter. This is because it is a more flexible method than the
Classical method, as it avoids issues of noisy locations in the data, and fits to specific
regions of the data can be improved by weighting the RMS value around these points.

The quality of the fit cannot be determined by the value of the RMS error alone, since it
does not uniquely characterise the quality of the fit. It merely serves as a guide to a good
fit, as better fits generally have lower RMS errors. The RMS value must be used in
conjuction with the overall residuals between the model and data, in order to judge
quality of fit. The “best fit” will be the fit with the lowest mean residual, most even
distribution of residuals, and a low bias and trend in the residuals. The RMS value may
be weighted around the extremum or other regions of the curve to give more even

residuals.

Estimated parameters for the positive and negative OPP curves may differ when the
curves are fit separately. If consistency is desired, i.e. it is decided a priori that
parameters estimated for both the positive and negative pulses should be the same, both
curves can be simultaneously fitted using the RMS method. As an exercise, this was
attempted with the positive OPP. However, since the fits to each curve were clearly a
compromise in this instance, and fell far short of the best fit, the resulting estimated
parameters added little knowledge to the likely parameters for these curves.
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2.7 Discussion and limitations of the classical model

2.7.1 Full numerical model

The full transport equations for the classical model were solved numerically by
implementing the model in Matlab. A numerical solution was required to provide more
flexibility than the analytical solution, to analyse assumptions of the analytical solution,
and to explore different perturbation conditions. Unstirred layers were also added to the
model in Chapter 3. The implementation was verified by: (a) direct comparison with the
analytical solution, where the results agreed to a high degree of accuracy, (b)
demonstrating that the parameter values were recovered by applying the parameter
estimation techniques of §2.3.2, and (c) application of the model to observed data from

the literature.

2.7.2 Numerical consequences of simplifying assumptions

The numerical consequences on the P-t curve of the model assumptions listed in §2.2.2
were explored using the Matlab implementation. That is, effects of incorporating variable
A, variable V in Eq. (2.5), and variable ¢ on the solution were analysed, as well as the

relative influence of the convection term in Eq. (2.2) compared to the diffusion term.

¢ was modelled as a function of P using the slope in ¢ vs. P taken from data published in
Steudle et al. (1982). For the pressure range in the current data, this slope was calculated
to be 33.3 (dimensionless). Taking the constant value of ¢ = 27.6 MPa used in the model

fits of §2.5 as the median ¢ value, a variable & over the P range of the data was obtained.

For both HPP and OPP data, the incorporation of variable A, V and ¢ into the model was
found to give relative errors of < 1% for the estimated parameters, and very small errors
of <0.1% for the predicted P(t). The relative influence of the convection term in Eq. (2.2)

was found to be negligible compared to the diffusion term (Fig. 2.6).
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Fig. 2.6 Showing the contribution of solute drag to the total solute flux for simulated OPP data.

2.7.3 Model fits

Model fits to the HPP curves were generally good except for the region where P begins to
level off (the bend or “shoulder” of the curve). This region could not be fit well by either
of the fitting methods for the Classical model. Model fits to the OPP curves were
generally good except for the initial curvature near to, which could not be fit by the
Classical model. In this section, explanations for these failings of the model, and methods

for improving the model fits, are explored.
(@) Fitting the HPP curve with a double exponential

In 82.5.1 it was shown that HPP data could be fit with the Classical model only by using
the initial region of the semilog plot of the observed data. This reveals a failure of the
Classical model to fit data away from the initial portion, and indicates that the classical
model is not incorporating some aspects of the cell dynamics. For example, it may be
failing to taking into account the presence of the tonoplast, effects of which could be
incorporated by expressing the cell pressure as a double rather than a single exponential

(Wendler and Zimmermann, 1985a,b; Zhang and Tyerman, 1999).
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To explore this, the negative and positive HPP curves were fit using 2 exponential terms,

according to the equation:
P=P +p, (1—e"‘1“‘t°’)+ P, (1—e‘k2“‘t°)) (2.19)

where p; and p, represent general coefficients and k; and k, represent rate constants.
These 4 parameters plus tp were optimized using Excel Solver (i.e. the RMS method). It
was found that the fits were much better than using Eq. (2.6) of the classical model, with
RMS = 1.5 x 10" (compared to 6.5 x 10™) for the negative HPP, and RMS = 6.5 x 10
(compared to 7.6 x 10™) for the positive HPP (compare Fig. 2.2 & Fig. 2.7; refer to Table
2.2). For both fits the first rate constant, k;, was found to be about 3 times larger than k..

(b) Effect of shape of input pulse on the OPP curve

The failure of the Classical model to fit the curvature near t=0 in the OPP curve suggests
something is missing from the model. One thing missing is the shape of the perturbation
pulse, i.e. when and in what form the perturbation impacts on the cell. As mentioned in
81.2, it is known that the external concentration takes a short period of time to reach the
maximum perturbation level (which is known as “ramping”). This is due to two effects:
the shape of the front of the changeover solution, and the time it takes for the front to

traverse the length of the cell.

The time the external concentration takes to ramp up may be measured by electrical
resistance methods (see 84.2.1). These measurements are not available for the present
data set and therefore this ramp time is unknown. The spatial distribution of the external
concentration during the ramp could be modelled on the basis of fluid dynamics for flow
through a pipe (the pipe being the pressure chamber in the CPP, see Fig. 1.2). Since we
are assuming radial and axial symmetry here, this is beyond the scope of the model.
However, the change in external concentration at a point along the cell can be modelled

for by making the simple assumption that it changes linearly over time to reach the
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Fig. 2.7 P-t curves and residuals for fits to the HPP data, using 2 exponential terms. Showing raw pressure
data (----) and model fit (——). (a) Negative HPP, RMS = 1.5 x 10, (b) positive HPP, RMS = 6.5 x 10™.

2-32



perturbation level. This simple function does not necessarily reflect the true shape of the
pulse and concentration distribution along the length of the cell following perturbation.
However, it is easy to implement, and as a first approximation represents how inclusion

of a ramp may affect the model fits.

The time over which ramping occurs may be gauged from flow rates in the CPP. In
Henzler et al. (2004) the flow rates were 0.15-0.2 m s for cells of 50-150 mm in length,
so that for a cell length of 50mm (which was used for the models in this chapter) the time
for the exchanged solution to traverse the length of the cell is 0.25-0.33 s. The ramp time
can then be said to be around 0.33s, which is somewhat shorter than the time-delay
determined from the observed negative OPP data (at least 0.73s; see §2.5.2a). However,
mixing between solutions during the changeover would cause the ramp time to be longer,
and also since the time of impact of the osmotic perturbation on the cell is unknown,

uncertainty in tp has to be included in the uncertainty in the ramp time.

The numerical model was fit to the negative OPP experiment, using the Classical method
where tp, is fit to within £ 0.05s. Two linear ramps (where the concentration in the
external solution changes linearly with time) were included, both centered around 1.5s as
this time-delay gave the best fit with the classical model. A ramp of 3s with to =0 (where
to is the start of the perturbation) was found to give a better fit than a ramp of 1.5s with tg
= 0.75s. The model with a ramp fits the data extremely well, reproducing the time-delay,
and giving a very low overall RMS error of 4.0 x 10 * (Table 2.7; compare Fig. 2.4a &
Fig. 2.8). This model may be considered a “perfect fit” to the data within experimental
and model error. Estimated parameters were similar to the previous fit with no ramp and
to = 1.5s (Table 2.3).
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Fig. 2.8 P-t curve and residuals for a classical model + ramp fit to a negative OPP curve. Showing raw

pressure data (----) and model fit (——). Note that the time scale for the P-t curve and residuals are

different.

Table 2.7 Results for a fit to the negative OPP (Fig. 2A), using the classical model with external

ramping (linear ramp) included. Errors are standard errors.

Negative OPP
ramp time (s) 3
to (S) 0
L, (x 10°m s * MPa™) 2.63  +0.25
Ps (x 10°m s™) 450  #0.005
o 0.1274  +0.0016
RMS (x 10 4.0

2-34



(©) Role of unstirred layers

Unstirred layers (ULSs) also contribute to the time-delay, since it takes some time for the
solutes to diffuse through the external UL (ULe) to the membrane. Unstirred layers in
general would slow down the diffusion of solutes through the membrane, and affect the
whole relaxation curve. Since both external ramping and ULs contribute to the time-
delay, it is not possible to determine to what extent each factor contributes to the time-
delay unless there is an experimental method of determining the time it takes for the
external solution to ramp up, or the time it takes for the solutes to move through the ULe.
The latter is dependent on knowing the ULe thickness. However, a method of
determining the ULe thickness in CPP experiments has not been reported in the literature.
Due to the lack of experimental knowledge on ramping and ULs, and the fact that the
shape of the input pulse and the shape of the ULe are modelled simplistically in this
study, the impact of ramping and ULs can at present only be studied theoretically.
Accordingly, the classical model with the addition of ULs will be the subject of Chapter
3.

2.8 Conclusions

The classical model, based on the analytical solution, has been analysed and applied to
raw CPP data obtained from Dr. Henzler and Mr. Ye. The analytical solution was
validated, and the necessary simplifying assumptions were shown to be numerically
justified. The model was implemented in Excel, and Excel Solver used as a tool to
estimate membrane parameters from observed P-t data. Membrane parameters were
estimated using 2 methods: (a) the Classical method, which uses curve characteristics to
fit the data, and (b) the RMS method, which optimizes the parameters such that the

overall RMS error is minimized.
Results show that quite a good fit to observed P-t data can be obtained for the classical

model with both fitting methods, for both HPP and OPP experiments. Although the

methods are not mutually exclusive, they emphasise fitting different regions of the curve
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and give different estimated parameters. The Classical method gives more weight to
certain characteristics of the curve. Drawbacks are that its accuracy depends on how well
curve characteristics from the data can be determined, and it does not fit noisy data well.
The RMS method gives equal weight to all data points. A potential drawback is that
regions where the cell dynamics are changing rapidly may not be fit well. However, this
problem can be overcome by differentially weighting points in the minimized function
(the RMS value) to improve the fit to the less well-fitted regions. The RMS method,
therefore, will be used for subsequent data fits in this study. For comments on further use
of curve characteristics, see 8A.1 in appendix. While a low RMS error will be used as a
guide to “best” fit, the RMS error does not uniquely determine a best fit, and the final
decision will be made by making an analysis of the overall residuals between the model

and data.

Fits with the Classical method confirmed that only a short initial period of the semilog
plot should be used to calculate z, for the HPP curve (0-3 s for the data set used). This is
due to the non-linearity in the semilog plot. Although Ye et al. (2006) state that this non-
linearity is “an artefact” arising from measurement errors, using 2 additional values of Pg
(0.001 MPa above and 0.001 MPa below the calculated P of the observed data) to
calculate the slope of the semilog plot still revealed a slight nonlinearity (R?=0.997).
Although this is statistically very close to linear, the semilog plot slopes for the 3
different values of Pe still differed by about 10%, and the fact remains that L, is very
sensitive to the slope of the semilog plot. The results in 82.5.1 gave halftimes of 1.62s

and 1.99s for semilog plot slopes which differed by 23%.

The method by which L, from OPP experiments is estimated in other studies has not been
described in the literature. In this study, L, was determined numerically using an equation
from the analytical solution to the KK equations. Using this method, it was found that the
average L, for the HPP experiments was 17% higher than L, for the OPP experiment (L,
=2.99+0.05ms™ MPaandL,= 257 +0.21 ms™ MPa " respectively). A higher L,
for HPP experiments agrees with results from Steudle and Tyerman (1983), who suggest

that this behaviour is due to an external unstirred layer influencing the pressure dynamics
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in OPP experiments. Estimated parameters for positive and negative pulses for both the
HPP and OPP experiments did not differ significantly, although differences in the
estimated L, between positive and negative pulses have been observed in the literature
(ibid. 1983).

The classical model was found to predict the cell dynamics very well, despite the
simplifying assumptions in the theory. The main drawbacks of the model are its inability
to properly fit the shoulder of HPP relaxation curves, and the initial curvature and time
delay in OPP relaxation curves. It was found that the first could be solved by fitting the
HPP data with a double exponential, and the second could be solved by assuming a

gradual rather than an instantaneous change in the external concentration.

These results suggest that a single exponential does not accurately represent the cell
dynamics in a HPP experiment. A likely explanation is that the influence of the tonoplast
on cell dynamics is being ignored, thus illustrating the limitations to viewing the cell as a
single membrane rather than a composite membrane. Models of HPP pressure relations in
wheat root cells (Zhang and Tyerman, 1999) revealed that a double exponential function
fit the data better when aquaporins were blocked, showing the inadequacy of using a
single exponential function when the influence of the tonoplast and plasma membrane are
both significant. The blocking of aquaporins may impact the hydraulic conductivity of
the tonoplast and plasma membrane differently depending on the amount of aquaporins in

each.

A double exponential representation would mean that the expression for the hydraulic
conductivity L, in Eg. (2.13) no longer applies. This will not be explored here, but merely
pointed out that the expression for L, used in current practice may be incorrect, and

impact on the accuracy to which L, can be determined by current means.
Although the ramp change in external concentration assumed in an OPP is unrealistic, the

resulting improvement to the classical model shows that the time and form in which the

external perturbation impacts on the cell is an important consideration. If ramping is not
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included, to must be adjusted or optimized to obtain a good fit to the data. L, in particular

IS very sensitive to the value of to.

The time-delay observed in the OPP data may, however, be attributed to a combination of
ramping in the external concentration (see §1.2), and effects of an external unstirred layer
which would delay the external solute from reaching the membrane. The classical model
may be made more realistic by the incorporation of ULs, which would impact on the
parameter estimation. (It may also be made more realistic by including the effects of the
tonoplast, but that is beyond the scope of this study.) In Chapter 3 we will incorporate UL
effects into the models, and explore their impact on the model fits and parameter

estimation.
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3 Model with Unstirred Layers: Description of model

and analysis of behaviour

3.1 Introduction to unstirred layers

3.1.1 What is an unstirred layer?

An unstirred layer (UL) is a still or slow-moving region of laminar flow adjacent to a
solid boundary (in this case the membrane), within which there is no significant mixing
of the solution (Dainty, 1963). For a cell there exist external (ULe) and internal (ULi)
ULSs (see schematic diagram in Fig. 3.1). The internal ULi may be considered to be the
entire cell interior (Barry and Diamond, 1984), however in this study the possibility is
allowed for a homogeneous region within the cell beyond the ULi. The dynamics in the
region inside the cell, including the UL, are governed only by the membrane and change
in concentration across the membrane. The bulk solution which lies beyond the ULe is a
region in which a constant flow of solution maintains the concentration at a constant

value, and this region can be considered to be well-mixed and homogeneous.

Although in the absence of stirring some mixing in the ULs may occur because of solute,
water density, or temperature gradients, a UL may effectively be modelled as a region
where solutes primarily move by diffusion (Barry and Diamond, 1984). A smaller
convective component due to volume flow across the membrane also exists in the UL,
which has been discussed in Barry and Diamond (1984), and included in equations by
Kargol (2000).

Fig. 3.1 depicts a positive osmotic perturbation, where the concentration in the bulk
solution has been increased. As solutes diffuse through the ULe from the bulk solution,
the concentration decreases toward the membrane, encounters a drop across the
membrane due to the membrane resistance, and continues to decrease as the solutes move
further inside the cell. Over a sufficient length of time an equilibrium level will be

reached where the solute concentration is equal in all regions inside and outside the cell.
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In Fig. 3.1 the non-membrane ULe and ULi boundaries are shown and treated as distinct
entities. The model ignores mixing at these boundaries, and assumes that the
concentration in the homogeneous regions remain constant so that there is a discontinuity
in the concentration gradient at the outer ULe boundary. The concentration gradient is the

same either side of the membrane.

membrane

bulk
solution

cell

interior AC

ULi ULe

Fig. 3.1 Schematic diagram showing a system with 1 membrane and an internal (ULi) and an external
(ULe) unstirred layer. In the absence of unstirred layers the concentration inside and outside the cell are
constant in time and space (orange line); with unstirred layers the concentration varies with time and space
within the ULs (blue line). Unstirred layers change the concentration difference (AC) at the membrane.

3.1.2 Significance of ULs to CPP experiments

ULSs significantly affect the measurement of membrane-specific parameters. This is
because solute movement across a membrane may be partly rate-controlled by ULs and
not solely governed by the membrane (Barry and Diamond, 1984; Verkman, 2000). The
solute concentrations governing transport across a membrane are those immediately
adjacent to the membrane. These are not observable and are determined in part by the
dynamics of the ULs. Also, they are not equal to those in the bulk solution which are the

directly observed and measurable quantities (Dainty, 1963; Barry and Diamond, 1984;
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Kargol, 2000). UL effects also depend on the membrane geometry and surface area

(Verkman, 2000), and on the orientation of the membrane relative to the moving solution.

Direct effects of ULs cannot be observed. However, there is experimental evidence from

observed behaviour of the measured (classically-estimated) membrane parameters Ly, ps,

and o that ULs may be affecting fluxes of solutes and water across cell membranes. This

evidence includes:

(a)

(b)

A dependence of the classically-estimated parameters on external flow rate. In
osmotic experiments, the classically-estimated L, and ps have been found to
increase with increasing flow rates (Steudle and Tyerman, 1983). This behaviour
can be explained by examining the impact of ULs on the KK equations.
Increasing the external flow rate increases mixing in the external solution which
in turn reduces the size of external ULs. Eq. (2.1) expresses a direct linear
response between the volume flow Jy and the pressure gradients across the
membrane, related to each other by the constant L. If ULs are present, Jy may
change linearly with the pressure gradients across the membrane but not with the
pressure gradients in the bulk solution. Since the classical method uses pressure
gradients in the bulk solution to approximate those at the membrane, the
classically-estimated L, derived using Eq. (2.1) may no longer be constant if the
external UL thickness and thus pressure gradients at the membrane are changed.

As Eq. (2.2) is coupled to Eqg. (2.1), this would affect the values of ps and ¢ also.

A dependence of the classically-estimated parameters on external solute
concentration. In osmotic experiments (and hydrostatic experiments in the case of
L,), the classically-estimated L, and o have been found to decrease with
increasing external solute concentration (Steudle and Tyerman, 1983; Steudle and
Zimmermann, 1974). ULs may be expected to have a greater effect on membrane
parameters in the presence of higher external solute concentrations. This is
because, similar to (a), the classical method uses the concentrations in the bulk

solution to approximate the concentrations at the membrane in Egs. (2.1) & (2.2).



(c) An observed polarity in the classically-estimated membrane parameters, where
the parameters differ in magnitude between positive and negative perturbation
pulses. A polarity in Ly has been observed in both hydrostatic and osmotic
experiments, which is more marked at higher external solute concentrations
(Zimmermann and Steudle, 1978; Steudle and Tyerman, 1983; Steudle, 1993).
Polarity is where a change in direction of a pressure gradient (of the same
magnitude) causes not only a change in direction but a change in magnitude of the
flow as well (Kedem and Katchalsky, 1963c). If the ULi and ULe are of unequal
thickness, the cell pressure may respond differently to opposite flow directions

across the membrane.

Although the above observations may be explained by the presence of ULs, this
explanation in itself does not seem sufficient. In particular, the subject of polarity in L,
has been much debated, and the general consensus is that it is probably partly due to ULs
and partly due to properties of the membrane. Dainty (1963) has stated that a polar
permeability to water is not surprising in biological membranes, but also “the influence of
unstirred layers...[can] produc[e] a certain degree of apparent polar permeability to
water”. Polarity may also be related to the presence of a tonoplast, as Kedem and
Katchalsky (1963c) have predicted that polarity and non-linearity between forces and
flows should arise in composite membranes (and that therefore polarity in ps and o should
also arise, although there seems to be little mention of this in the experimental literature).
There is general agreement that ULs should cause an under-estimation of ps and ¢ in CPP
experiments (Henzler and Steudle, 1995; Barry and Diamond, 1984), however to what
extent is unclear. A numerical study on the effects of ULs, using a simple membrane
model, may therefore shed light on contributing factors to these experimental

observations.

3.1.3 How ULs affect cell pressure dynamics and the measurement of

membrane parameters

Diffusion in unstirred layers contributes a resistance in series with the membrane, and
slows the flow of solutes through the membrane (Barry and Diamond, 1984). Convection

(solvent drag) in the UL and the movement of the membrane also affect the concentration
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distribution by causing solutes to build up on one side of the membrane and decrease on
the other. ULs affect overall solute transport by reducing the effective concentration
gradient across the membrane, and by causing the solute concentration in the UL to
change with time and space (Dainty, 1963). The classical model outlined in Chapter 2
assumes complete mixing of the bulk solution and hence a uniform concentration with

space on either side of the membrane. By corollary this implies ULs are absent.

A detailed review of ULs has been written by Barry and Diamond (1984), in which they
identified two main effects of ULs on membrane parameters for systems in steady state

flux:

(@) A ‘gradient-dissipation effect’. This may occur when a significant fraction of the
concentration gradient occurs across a UL (such as occurs with thick ULSs), so that
the UL’s diffusional resistance is comparable to or greater than the membrane
resistance. As a result, classically-estimated values of ps and ¢ tend to
underestimate the actual membrane parameters (Barry and Diamond, 1984), as is

the case for L, (Wendler and Zimmermann, 1985b).

(b) A ‘sweep-away effect’ (or ‘concentration polarization’, ‘convective-flow effect’).
This may occur due to convection (solvent drag) in the UL, sweeping away
solutes from the membrane surface downstream from the water flow, and
concentrating solutes on the upstream side of the membrane. This reduces the
volume flow J, because the flow perturbs the solutes in a direction that opposes
Jy, .i.e. the outward convective solute movement is opposed by inward diffusion in
the UL. In steady state this can be described by the following equation from
Fick’s first law (Dainty, 1963):

JVC+DZ—$=O. (3.1)
Since there is a large diffusive component in the UL, these opposing flows cause
Jy to be lower than that in the absence of a UL, leading to an underestimation of
Ly, psand o (Dainty, 1963; Barry and Diamond, 1984; Steudle, 1993). ULs can



give rise to what has been termed *pseudo solvent drag’, where the measured or

observed solvent drag is not purely solvent drag (see Barry and Diamond, 1984).

In CPP experiments, gradient-dissipation (diffusional) effects in the UL are thought to be
more important than sweep-away effects, since volume flows through the cell membrane
are small (Henzler and Steudle, 2000; Hertel and Steudle, 1997; Steudle, 1993; Steudle

and Tyerman, 1983; Zimmermann and Steudle, 1978). Analysis of the classical model in
§2.7.2 confirmed this. The gradient-dissipation effect can be analysed by noting that 1/p;

is a resistance, and exploring effects on ps due to diffusion.

Forming an analogy with Kirchoff’s law for electrical circuits, which says that resistances
in series are additive, the total permeability pr across the membrane-UL system for the

cylindrical case can be expressed as:

i=i+R(—| R, i.ne} 62)
Pr Pa Db a D, R

(Steudle and Frensch, 1989; see also 8A.3 in appendix). In Eq. (3.2) D, is the diffusivity
for the region inside the cell, D is the diffusivity for the region outside the cell, py is the
membrane permeability, b is the radial distance to the boundary of the ULe, a is the radial
distance to the boundary of the ULI, and R is the radius of the cell.

If D,=D, =D, as is often assumed, then Eq. (3.2) becomes:

1 1 R (bj
Sl ERLAN 'Y el
pr P, D \a

which can be re-arranged as:

=R I (33)
PR /a2y
D
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Eqg. (3.3) shows that for large values of pp,

D

P = Rinb/a)’

where the apparent (measurable) permeability p. is dominated by diffusion in the ULs.

For small values of pm, where p,, — 0,
Pr = Pn-

The above analysis shows that for rapidly permeating solutes (with high py), the apparent
membrane permeability is partially rate-controlled by the ULs, so that the classically
measured permeability will underestimate pn,. For slowly permeating solutes, the apparent
permeability approaches the actual membrane permeability. That is, depending on the
size of pm, the overall resistance of the membrane-UL system may be dominated by either
the diffusional resistance of the membrane itself, or the diffusional resistance of the ULs
(Dainty, 1963; Barry and Diamond, 1984). ULs are predicted to have more effect on the

observed, total solute permeability p; for larger values of the membrane permeability pm.

Dainty (1963) considers a permeability “greater than a few times 10 m s™ suspect” to

UL errors. When no ULs are present, we have b—R, a —»R, and p; = p, .

It is important to note that Eq. (3.2) is strictly valid only for systems in steady state. The
equations may not hold for the models here since they deal with systems not in a steady

state.
3.1.4 Taking into account effects of ULs

In CPP experiments external ULs are minimized by vigorous stirring (Henzler et al.
2004, Henzler and Steudle, 2000; Tyerman and Steudle, 1984). Parameter measurements
from OPP experiments are dependent on the external flow rate, reflecting the presence of
ULSs since the actual permeability of the membrane should not depend on stirring rates
(Steudle and Tyerman, 1983; Verkman, 2000). Steudle and Tyerman (1983) varied the
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external flow rate between 5 and 44 cm s™, and found that their estimated membrane
parameters increased rapidly at first and then less rapidly at the higher rates. They
guessed the ULe in Chara corallina to be 50-100 um thick, and probably no more than
50um for a vigorously stirred system. Although some authors have described the external
flows as turbulent (Ye et al. 2006), the external flow is most likely laminar even for flow
rates of 44 cm s or more (Tyree et al. 2005).

The internal UL cannot be minimized, and has been guessed to be a few hundred
micrometers thick (Hertel and Steudle, 1997), and as large as the entire cell radius (Barry
and Diamond, 1984). Although the UL. thickness is significant, Hertel and Steudle
(1997) and Henzler and Steudle (2000) have claimed that since the interior of Chara is
“relatively well-stirred” by cytoplasmic streaming, and the cell has a cylindrical
geometry, effects of internal ULs should be minimal. However, a comprehensive study of
ULs by Barry and Diamond (1984) has shown that internal ULs may be more important
than external ULs, more problematic to deal with, and that the diffusional resistance of
the cytoplasm may be a dominating factor when measuring L, and other transport
parameters. It is doubtful that cytoplasmic streaming would contribute much to the radial
convection or diffusion of solutes, since it has a low velocity (~4 cm hr' = 0.0011 cm s™,
Tyree et al. 1974) and is parallel to the membrane surface. This flow rate is much slower
than the flowrates of > 15-20 cm s commonly used in CPP experiments to minimize
external ULs (Henzler et al. 2004). The vacuole is also largely water and is unstirred, so
that the entire cell interior could in fact be considered an unstirred compartment, with the

size and effects of internal ULs increasing with cell size (Barry and Diamond, 1984).

CPP experimenters have attempted to take ULs into account by correcting for UL effects
in parameter calculations (Steudle and Zimmermann, 1974; Steudle and Tyerman, 1983;
Henzler and Steudle, 1995; Hertel and Steudle, 1997). It is not clear, however, that
parameters determined by the above experimenters have actually been corrected for UL
effects. Firstly, the classical model on which calculations are based makes no provision
for this, and secondly, corrections have not been rigorous since claims regarding the
impact of ULs have mostly been qualitative. Hertel and Steudle (1997), and Henzler and
Steudle (2000), considered possible impacts of ULs and, by various arguments, declared
they are not “dominating” transport. Henzler and Steudle (2000) argued that diffusion is
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not a big limiter to solute permeation, since pressure-time curves could be “nicely fitted”
by single exponentials. They observed a wide range in permeability values for different
solutes with similar diffusion coefficients, which they concluded meant the parameters
should reflect the permeability of the membrane. Yet, even if it was the case that effects
of ULs are not “dominating” transport, this does not mean the effects of ULs are
negligible or do not have a hidden, systematic impact on permeability measurements. A
proper, quantitative study of the effects of ULs on CPP measurements does not appear to

have been carried out.

Some quantitative studies of the effects of diffusion in ULs on permeability coefficients
have been carried out for radioactive tracer and transcellular osmosis techniques in
Chara. In these experiments the effects of ULs were found to be considerable for very
permeant solutes (Dainty and Ginzburg, 1964c,d). Various CPP experimenters have
inferred that since results from both CPP and transcellular osmosis experiments appear to
be consistent, ULs in CPP experiments have a low impact (Dainty, 1976; Zimmermann
and Steudle, 1978; Henzler and Steudle, 1995; Henzler and Steudle, 2000). Yet this is
hardly conclusive, since it assumes the corrected values in Dainty and Ginzburg
(1964c,d) are the true values for the membrane, but Dainty and Ginzburg (1964c) state
that their analysis underestimates the impact of ULs. Steudle and Tyerman (1983) state
that while “a rather good agreement with Dainty and Ginzburg’s (1964c) values” may
indicate that effects of ULs in their experiments are small, at the same time they concede
that “unstirred layers are a problem” and that ps is “almost certainly underestimated as a
result of unstirred layers.” Any attempt to compare CPP results to that of transcellular
osmosis only reveals the shortcomings of existing analyses of CPP measurements. In
general, an objective analysis of the effects of ULs in CPP experiments is lacking, and
efforts have largely concentrated on dismissing the effects of ULs. However, there are
other experimenters who have little doubt that ULs affect parameter determinations, and
must be considered (Dainty, 1963; Dainty, 1976; Heidecker et al. 2003).

Apart from the lack of rigor, another disadvantage of previous “quantitative” studies
which have attempted to correct for the impact of ULs in CPP measurements, is that the
analyses have been valid only for systems in steady state. For example, using Eq. (3.3)
Steudle and Frensch (1989) derived an equation for the apparent reflection coefficient in
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the presence of ULs, however the equation only holds for a system in steady state. Hertel
and Steudle (1997) assumed an upper limit to the ULe of 50um, and argued that since the
time it takes for solutes to diffuse through the ULe is much smaller than the halftime z; of
equilibration of solutes, the influence of external ULs can be discarded. However, Hertel
and Steudle (1997) have failed to consider the temporal behaviour of ULs and its possible
impact on membrane transport, so their argument is not necessarily valid, as will be

shown in the present study.

In the present study the system is assumed to be in non-steady state. The result is a model
which more accurately reflects reality and thus should more accurately reflect the impact
of ULs on CPP measurements. This is an important difference between the present study

and previous studies of UL effects in the CPP.

It is argued here that ULs have an important impact on parameter measurements, and that
effects of ULs in CPP experiments require close examination. Although external ULs
may be minimized by stirring, neither external or internal ULs can be eliminated. Due to
the difficult nature of experimentally identifying the precise effects of ULs, modelling
can make a significant contribution by making a quantitative assessment of these impacts.
In this study a numerical approach is taken to examine the impact of ULs. There are two

main questions to answer, namely:

(@ How do the presence of ULs affect the pressure-change dynamics in the cell?
(b) How do the presence of ULs affect the parameter values determined by the

classical method?

3.2 The present model in the context of previous models

3.2.1 Brief review of numerical models

Many numerical models of membrane-UL systems have been developed by researchers
in various fields, where KK equations are applied across a membrane, and Fick’s

equations applied to the ULs. However, only a few models have been developed for plant
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cell or plant tissue systems. A couple of those relevant to the model or system in this

study are reviewed here.

Kargol (2000) derived generalised KK equations for transport through a planar
membrane-UL system. Expressions for concentration in the ULs were derived using
Fick’s diffusion-convection equations, and substituted into Kedem-Spiegler equations
(similar to the KK equations) for local fluxes at the membrane. The final linearized
equations express fluxes across the membrane-UL system in terms of the membrane
parameters, bulk concentration values, and UL thicknesses. The equations are for steady
state where fluxes are constant with space and time, and concentration profiles linear with
space. The equations do not solve for concentration at the membrane surface. In contrast
to Kargol (2000), the present study applies the much simpler classical KK equations at
the membrane. Concentration at the membrane surface is determined using Fick’s
diffusion-convection equation in the ULs, which is coupled to the KK equations at the
membrane. The cell is assumed to be cylindrical, and the equations are solved under non-
steady state conditions. Fluxes change over time, and concentration profiles in the ULs

are nonlinear with space.

Devireddy (2005) modelled water and solute transport in human ovarian tissue sections,
applying the KK equations in the membrane regions and Fick’s laws in the vascular
regions. Axial convection and radial diffusion were assumed, and outputs were solute
concentration vs. time in a tissue segment. The model was fit to data using nonlinear least
squares curve fitting, and membrane parameters and diffusion coefficients predicted at
different temperatures. In contrast to Devireddy (2005), in the present study transport is

assumed to be in the radial direction only, and outputs are pressure vs. time in a cell.

Murphy (1999) developed a model in the context of pressure clamp experiments. He
developed a numerical 2-compartment model of the root without ULs and examined the
response of the model to a pressure clamp. Equations for the overall volume flux across
the root were based on the KK equations. In contrast to Murphy (1999) the model

presented here is applied to pressure probe experiments on plant cells, and includes ULSs.
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The model in the present study combines elements of the above models. KK equations
and Fick’s equations are used in conjunction, and solved for non-steady state conditions.
Cell membrane parameters are estimated by fitting the model to data using nonlinear least
squares curve fitting. Pressure vs. time is predicted for a membrane-UL system in a
cylindrical cell where flow is assumed to be in the radial direction. The model is applied
to the conditions of a cell pressure probe experiment, and water dynamics in response to a

pressure probe are examined.

3.2.2 Description of present model

The Chara system is the same as described previously, with the addition of internal or
external ULs. The UL thicknesses duie and oy are unknown, and are varied to examine
the effects of different UL thicknesses on the pressure dynamics. The dye is chosen to be
in the range 0-200 pum, and the UL. is permitted to occupy the entire internal cell volume.
Standard diffusion theory, and Fick’s diffusion-advection equations, are applied to the
UL regions. The diffusivity D is assumed to be constant and the same for both ULs, and

equal to D for the solute in pure water taken from published chemistry tables.

It is assumed that standard KK theory applies to the cell membrane in the presence of
ULs, and that at the membrane the flow in the ULs equals the flow across the membrane
as given by the KK equations. The full KK equations, Egs. (2.1) & (2.2), are used in all
the models here so solute drag in the Js equation is not neglected, in contrast to the
classical model used in Chapter 2. Further, the cell volume V in the P-V equation (Eq.
(2.5)), and the cell surface area A, are assumed to be variable (c.f. §2.2.2) and determined

from the cell radius R. ¢ is assumed to be a constant.

It is assumed that in a CPP experiment the external solution flows past the cell in the
axial direction only. Although the cell does not usually lie such that its axis is parallel to
the walls of the CPP chamber, for modelling purposes it shall be assumed that this is so.
Following this, it is assumed that there is no flow of the external solution in the radial
direction and no flow into the cell, for although there is some flow into the ends of the
cell, the area of these regions comprises <1% of the total cell surface area and can

therefore be ignored. Flow of the solution into the ends of the cell could be significant if
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the hydraulic conductivity L, of these regions is larger than the L, of the rest of the cell
membrane, however, in this model L, is assumed to have a single value for the entire cell

membrane.

Water flow into and out of the cell is caused by hydrostatic and osmotic pressure
gradients across the membrane, and not by an external flow of solution into the cell.
Since both cell sap and APW are assumed to be incompressible, water flux across the
membrane does not give rise to convective movement inside or outside the cell.
However, a relative convection is present in the radial direction due to radial movement
of the system (the membrane and ULSs) through the external solution which is not moving
with r. That is, in the frame-of-reference of the cell membrane, the external solution is
“seen” to be moving with r, and therefore there exists a radial flow velocity which is

variable in space.

As the membrane moves due to cell expansion or contraction, conditions in the ULs
change accordingly. It is unknown whether the ULs move with the membrane, or whether
the UL boundaries remain stagnant as the membrane moves. Both scenarios, therefore,
will be modelled. However, it is important to note that the total radial movement of the
membrane is a very small fraction of the UL thickness, e.g. typically less than 5um

during a CPP experiment.

3.3 Derivation and interpretation of diffusion equations

The movement of the cell membrane, which forms one boundary of the ULe and UL, is a
moving boundary problem for diffusion in the ULs. This has important implications for
the application and solution of the diffusion equations. The ULs are divided into grids
which facilitate finite difference approximations to differentials, and since the membrane

moves volume elements in the ULs are variable in time and space.

Either Fick’s first or second law can be used to model diffusion in the ULs. For
theoretical interest both are given in this section, but for practical reasons only the first

law is used for the numerical solution in §3.5.
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3.3.1 Fick’s first law

We consider a cylindrical system with flux in the radial direction only. Fick’s first law for

the flux J(r,t) at any point is given by:

I(@r,t) :—D‘Z—ch (3.4)
r

where r = radial distance from the centre of the cell, D = diffusion coefficient (which
depends on the solute and solvent), C = solute concentration, and v= 1(r) is a radial

flow velocity (convection) at that point.

The radial flow velocity v across the membrane is defined as:
v=J, /¢ (3.5)

where the flow-constriction factor ¢ denotes the fraction of the membrane area available
for volume flow (Barry and Diamond, 1984; Kargol, 2000). Since pores or water
channels in the membrane are not included in the model here, it is assumed the entire

membrane area is available for volume flow so that ¢ = 1, and v =J,, . It can readily be
shown that v = J,, =—dR/dt, where R is the radius of the cell, and reflects the fact that v

is a relative velocity due to the movement of the membrane, and not bulk flow of a
solution. The radial flow velocity in the ULs is given by:

v =—dr/dt (3.6)
where r is a radial point in the ULs.

3.3.2 Fick's second law

We consider a cylindrical shell with volume V and total surface area S. Let the flux J(r,t)
be in the radial direction through S, and C(r,t) the concentration at any point inside V.

The conservation of mass equation for the cylindrical shell is:
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d
Em C(r,t)dv =—|;ﬁ5(r’t)\](r,t).n ds (3.7)
where n is an outward normal vector.

If C(t) is the average concentration inside V , the mean value theorem can be applied to
the L.H.S to give:

%(CV) =—[[L(r‘t)\](r,t).n ds . (3.8)

Let A;(r1,t) and Ay(r,t) be the outer and inner surface areas of S respectively. If J; is the

flux across A; and J; is the flux across A,, integrating the R.H.S of Eq. (3.8) gives:

d
G CV=-(GA-1A), (39)
d€ __JA-J,A _Cdv (3.10)
dt \Y V dt
where C is the average concentration inside the cylindrical shell.
From Fick’s first law we have for the fluxes across areas A; and Ay:
5=-DL (o) (3.11)
8" r+Ar e
JZ:—D(Z—C; +(vC) . (3.12)

Taylor’s expansion of J; to first order gives:
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Ar+(vC)r+(v£Ar] +(CﬁAr] +0(Ar?)
) or . or ,

Ar +§(vC)rAr +0(Ar?). (3.13)

Applying Egs. (3.12) & (3.13), the first term in Eq. (3.10) is:

CLA-3,A, _ J27l(r+Ar)-J,27Lr

Y, z((r +Ar)* =r?)L
_ =J(r+Ar)+J,r
Ar(r+Ar/2)
o°C 0
) —(r+Ar)(J2—Dar2Ar+ar(vC)Arj+rJ2
- Ar(r+Ar/2)
2
23,+02C rran- 2 aeyr+ar -2 %C ar(r+ an)
_ or or or_or (3.14)
r+Ar/2

In the limit as Ar — 0, the variables and derivatives which strictly applied at values of r

on the shell boundaries apply in the middle of the shells. Eq. (3.10) becomes:

dC _,°C_ 9,y do _Cav

<L -200)

dt or or r V dt

o°C 0 1.0C vC CdVv

- 2wey+-p & X~
or? ar(v)

=D -
r or r V dt

—==—(rD -

dC 10 g)—lg(vrc) Cdv (3.15)
dt ror or or V dt
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using Eq. (3.12). Eq. (3.15) is the same as the usual Fick’s 2" law in polar coordinates,
but with an additional term dV/dt due to the moving boundaries of the volume elements.
Analytical solutions to the usual form of Fick’s 2" law, subject to different boundary
conditions, are detailed comprehensively in Crank (1975). Some solutions are also given
by Dworecki et al. (2000) and Dworecki et al. (2003) in their analysis of concentration
profiles in membrane boundary layers.

These expressions for Fick’s second law are of little advantage in the present model, and

therefore the application of Fick’s first law will be focussed on.

3.4 Numerical approach to solving the diffusion equations

3.4.1 Numerical approach

There are three ways the model can be numerically implemented:

1. Assume the outer ULe and inner ULi boundaries are fixed relative to the cell axis,
and the thickness of the ULs (6u.) and numerical grids change over time as the cell

expands or contracts;

2. Assume the outer ULe and inner ULi boundaries move in space with the membrane,

and the thickness of the ULs and numerical grids remain constant over time;

3. Assume that the outer ULe and inner ULi boundaries are fixed, and all the
numerical grids in the ULs are also fixed, except for the two immediately adjacent

to the membrane which change width over time.

The first two are more mathematically rigorous than the third, since the numerical
scheme should place no conditions on the relative width of the grids, for which Ar — 0
in the limit. However, as the third approach has been used elsewhere (Tyree et al. 2005)
this model is included here to check its results with a more rigorous approach. All three
schemes should give the same results, since the membrane moves only slightly during the
course of a CPP experiment and the change in volume of the cell (and UL) at any one
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time step is small relative to the total cell volume. However, a limitation of the second
approach is that the UL.i thickness is only able to come close to but not equal the entire
cell volume, for the center of the cell is fixed and cannot move. A limitation of the third
approach is that it may become numerically unstable when Ar is made sufficiently small

such that the membrane moves further than the width of a grid.

All three approaches were implemented, and found to give the same quantitative results.
Runtimes for a simple simulation of CPP dynamics were the same to within 3%.
Runtimes for parameter estimations, involving many simulation runs, varied between the

methods by differing amounts depending on the model conditions.

Implementation of the first 2 methods is described in §3.5. For ease of reference the first
method is named the “Varying 6y. method”, and the second method named the “Fixed

duL method”. Characteristics of each are that:

1. Varying éy. method: Non-membrane UL boundaries are fixed, oy, changes

over time. dr; /dt differs for each radial point rj in the UL. The shell spacing Ar

is dependent on t. Radial points r;, the surface area A;, and volume V; of the shells

change with time.

2. Fixed &y method: Non-membrane UL boundaries move with the membrane,

and Sy, remains constant over time. drj /dt = dR/dt where R is the cell radius. In

the frame-of-reference of the membrane the shells are fixed so that the shell
spacing Ar remains constant over time. Radial points r;, the surface area Aj, and

volume V; of the shells change with time.
3.4.2 Indexing
Let R be the radial distance to the membrane, R, be the radial distance to the inner ULi

boundary, and Ry, the radial distance to the outer ULe boundary. The ULs are segmented
into concentric shells of width Ar (i.e. denotes shell spacing), and which have the same
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cylindrical geometry as the cell. Let the number of shells in the ULe be m-1 and the
number of shells in the ULi be n-1.

The indexing was chosen to step inwards from the bulk solution towards the cell axis, in
both the ULe and UL, since in an OPP the perturbation occurs outside the cell and
propagates inwards. The midpoint of each ULe shell is at a distance r; from the center of
the cell, where j = 1:m. The index 1 corresponds to a point outside the ULe (in the bulk
solution), and the index m corresponds to the midpoint of the shell externally adjacent to
the membrane. This is illustrated in Fig. 3.2. Similarly, the midpoint of each UL.i shell is
at a distance rj from the center of the cell, where j = 1:n. The index 1 corresponds to the
midpoint of the shell internally adjacent to the membrane, and the index n corresponds to
a point outside the UL.i in the central region of the cell.

The j™ shell has volume V;, and inner and outer surface areas Aj+; and A, respectively.
The indexing of V; corresponds to that of r;. The volume of the bulk solution is assumed
to be infinite. The total number of A; values is m-1 for the ULe and n-1 for the UL, 1 less
than that for rj and V; in each of the ULe and UL.i regions.

cell core bulk solution
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Fig. 3.2 Indexing for the numerical UL model

The distance between the midpoint of 2 adjacent shells is equal to the width of a shell. C;
is the concentration at the midpoint of the shells (at each r;), and J; is the flux across the

shell boundaries (at each A;).

The numerical code was made compatible with the no-ULs case, by making m=1 when
no ULe is present, and n=1 when no UL. is present.

3.5 Numerical solution of the diffusion equations

Transport in the ULs may be solved by applying either Egs. (3.10) & (3.4), or Eq. (3.15),
since the latter is derived from the former. It was chosen to use Egs. (3.10) & (3.4), as
this avoids second derivatives, and the method of solution is more straightforward and
more numerically stable. Explicit finite differences based on Euler’s method (Ames,
1977) were used for the equations, and found to be sufficiently stable and accurate for the

problem.

The areas A;, fluxes J;, and velocities v; are solved at the UL shell boundaries, and the
concentrations C; and shell volumes V; are solved at the middle of the shells (see Fig.
3.2). A point at the center of a shell has radial coordinate r;, and a point on a shell
boundary has radial coordinate rg;. Time steps are denoted by the superscript ‘k’.

3.5.1 Main equations

For each j" shell in the UL, the flux Jj across a shell boundary is given by:

oC,,

J.=-D

]

+vCy (3.16)

Bj

where Cg; is the concentration at the shell boundary and determined by averaging the
concentration across 2 adjacent shells.
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From Eqg. (3.9), the mass balance equation for a shell is:

d V.)=JA A

a(cj j)_‘]j j_‘]j—l j—11 (3-17)
where Cj is determined at the center of the shells.

Eq. (3.17) can be expanded and then finite-differenced, however the indexing is clearer

when finite differences are made directly. This gives:

k+1y 7 k+ ky 7 k k Ak k k
CRaV T _Ch K = (3FAK -3 A" At

a1
Bl [QF A =I) AL )AL+ CIV (3.18)

J

where:

k _ k.
A =2rLlr;

k k 2 k2y .
VJ. =7zL(rBJ.71 — I );

and from Eq. (3.16):

J

Ar ! 2

J‘.( -_D (C:'(_l_cl'() +V|-( (C:'(_1+C:‘()
] .

The shell width, Ar, equals the thickness of the UL at each time step, divided by the
number of shells (which is a constant). For the Varying dy. method, Ar and r are time-

dependent and v = v(r), so these values will change with the new cell radius R at each

time-step. We have:

k+l_
Arkt :R—lRa in the ULi;
n_
_ k+1
Ar<t =% in the ULe;
m_
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k (er'+1 - rBlf) k
vi = —T , except at R, and R, where v=0 for all k.

For the Fixed &y method, Ar and r values are time-independent. As r moves together

with the cell radius R, v depends on R only. Therefore we have:

Ar€? = Ar';
Rk+l _ Rk
Veam .
At

For both methods,

k+1 _ L k+1 k+1
fy = Fg —Ar.

The ends of the cylindrical shells have been ignored in the equations for A;, since these
contribute a very small component to the area. In the expression for cell area the ends of

the cell have also been ignored.

3.5.2 Boundary equations
a) Atthe membrane

The boundary condition at the membrane is that the flux across the membrane due to the
KK equations equals the flux into or out of the UL due to diffusion-advection. For the

fluxes in the UL.i shell adjacent to the membrane:

Ji=3r for permeant solutes; and

J =0 for impermeant solutes.

For the fluxes in the ULe shell adjacent to the membrane:

Il
(&)
~

JX for permeant solutes; and
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JE=0 for impermeant solutes.

b) At the inner ULi and outer ULe boundaries

The boundary condition at the outer ULe boundary is that the concentration in the

external solution is a constant. l.e.:

cC=¢GC, at r=ry,

where Cy is a constant bulk concentration value.

In the homogeneous cell core, C;=C,, and as there is no flux across an inner shell
boundary, the mass balance equation becomes:

EYCUAR R (3.19)

Finite differencing Eqg. (3.19) gives

k+ k+ ky 7 k k k
CIV=CiVf =—J. Al At

Ot = e (AL OV, 3.20)
where:

AvL=27lrg

VnkJr:l = ﬂ-(ern—l)z L !

and  r¥ = constant for the Varying 5y method,

et =t — Ar** for the Fixed 5y, method.
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c) Atthe membrane in the absence of ULs

When no ULs are present, the concentration C inside the cell is given by an equation with
the same form as Eq. (3.20) but with A, V, and J (=Js) determined at the membrane. This

is because mass balance is now for a complete cylinder rather than a cylindrical shell.

3.5.3 Numerical stability and internal consistency

a) Numerical stability

For stability, a numerical solution of the diffusion equations with Euler’s method requires
that (Ames, 1977; also see 8A.2 in appendix):

At < (Ar)?/(2D). (3.21)

A numerical analysis was performed to determine values for Ar and At which optimized
runtime and accuracy. Simulated OPP data were generated using: a) a few values of Ar
ranging between 0.2-1.0 x 10° m, and b) a small value of Ar (0.15x10™ m) for which it
was assumed numerical errors would be small. The data from (b) was used as a reference
for evaluating the accuracy of data from (a). Runtimes for each of these runs, and RMS

errors between data from (a) compared with data from (b), were calculated. The analysis
was carried out using two criteria for At: At = (Ar)®/(2D) and At = (Ar)?/(4D), and for

2 systems: 1 ULi = 5x10° m, and 2 ULs where ULi = 3.6x10“*m and ULe = 1.0x10™* m,
all with D = 1.15x10° m? s, the diffusion coefficient for acetone in water.

It was verified that At < (Ar)?/(2D) was required for numerical stability, as when

At = (Ar)?/(2D) the results were unstable and the simulated curve did not return to
equilibrium for the system with 2 ULs and small values of Ar. The runtimes for the 1 UL.i
and 2UL systems were found to decrease exponentially with increased Ar, and the RMS
values (as defined in the previous paragraph) increase linearly with Ar (Fig. 3.3). A value

for Ar of 0.5x10™° m, corresponding to At = 0.005s, was considered a good choice which
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minimized the runtime without loss of numerical precision. The residual plot between the

corresponding P-t curve, and the P-t curve using Ar = 0.15x10°m and At = 0.0005s, is

shown in Fig. 3.4. Residual values are well within the measurement error in P of 0.0005

MPa.

@
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120 ~
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N
o

Runtime vs. Ar

0.0

RMS (MPa) G
= = N N w
o ol o al o
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o

0.4

0.6
AT (x107°m)

RMS vs. Ar

0.8
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0.6
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0.8

1.0

1.2

Fig. 3.3 Showing how runtime and RMS values (using simulated data) vary with Ar. Using At= Ar%/(4D)

for: @) 1 ULi = 5x10°m (——), and b) 2 ULs with ULi = 3.6x10™m and ULe = 1.0x10™*m (——).

As the size of At is very small, simulated P values were output at time intervals larger

than At (e.g. every few At) and these values were in turn interpolated to give P values
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corresponding to each data time t. These output intervals had to be small enough for the
interpolation to be accurate. An output interval was determined using the same method

detailed above, based on minimizing RMS errors between runs using a particular interval

Residual curve for plots using 2 different values of Ar,
for a system with 2ULs

0.002 -
_0.001 -
©
a
=3
g 0.000 e T T T
=] 40 80 120 160 200
>
T _0.001 |

-0.002 -

Time (s)

and runs using a small output interval. This analysis was carried out for an HPP
experiment, since HPP data is more sensitive to the size of the output interval. Storing P
at every 7,/10 was found to be sufficient. However, as the size did not appear to affect the

runtime of the code a smaller output interval of z,/30 was used.

Fig. 3.4 Residual plot for 2 simulated P-t curves, using Ar= 0.5x10°m and Ar= 0.15x10°m.

b) Internal consistency

The numerical solution of the model must satisfy conservation of mass across the

membrane-UL system. For the permeant solutes this requires:
DD CV =D IAAL=0. (3.22)
ko j k

The first term is across the whole membrane-UL system (with one or two ULS), and Cj;
and V; are the concentrations of permeant solutes and volumes of the j™ shell in the ULs,
including the central core of the cell. The second term is the number of mol of solute
entering the system up to any time t, where J; and A; are, respectively, the solute flux

across and surface area of the outermost shell (either the ULe or the cell membrane).
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The number of mol of impermeant solutes inside the cell remains constant, so that:
M= 2. CjV =0, (3.23)
ko

where njo is the number of mol of impermeant solutes in the cell at t=0, and C;; and V; are
the concentrations of impermeant solutes and volumes of the j™ shell in the UL,
including the central core of the cell. For the impermeant solutes outside the cell, Eq.

(3.22) is used with the first term summed over all the shells in the ULe only.

Where no ULs are present, the number of mol of permeant solutes in the cell must equal
the sum of the number of mol of permeant solutes crossing the membrane up to any time
t. The concentration of impermeant solutes in the cell changes with cell volume,
according to Eq. (2.4). The concentration of impermeant and permeant solutes outside the

cell remain constant.

From the principle of conservation of mass, the concentration gradient of permeant
solutes should also be the same on either side of the membrane — otherwise mass would
accumulate in the membrane, which should not happen. The gradients should be exactly
equal in steady state and approximately equal in non-steady state. That is, one should

have:
k k
% % =0  forallk (3.24)
i h

which says that the difference in the concentration gradients on either side of the
membrane (at the m" shell in the ULe and the 1% shell in the ULi ) should be zero at all

times.
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3.6 Examination of model behaviour

Fitting of the CPP data to obtain the membrane parameters will be carried out in Chapter
4. In this chapter the model is not fit to observed data, but different aspects of the model

are varied in order to analyse the behaviour of the model.

3.6.1 Implementation of model

The model was coded in Matlab such that modifications to the model could be made

through changing appropriate switches. Depending on the system and experiment:

e an external UL may or may not exist

e an internal UL may or may not exist

e the pressure perturbation is hydrostatic or osmotic

e the pressure perturbation is positive or negative

e permeant solutes are present or not present in the external solution

e an external ramp (where the external concentration reaches the final perturbation

value over a period of time, see §2.7.3b) does or does not exist.

It was verified that when dy.. and Jyi were set to 0 in the model, the relaxation curves
and RMS errors for observed vs. predicted data were the same as those for the classical
model and analytical solution. In addition, mass was conserved to within 1 part per

billion. This illustrated that the equations for a system without ULs were implemented

correctly.

When ULs were present in the model, the P-t curves were found to be log-linear and
exhibit the same shape as the data relaxation curves. This verified that the KK equations
still represent the cell dynamics in the presence of ULs, and that the classical method of

parameter determination may still be applied. Mass was conserved to within 1 ppb.
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The relative difference in the concentration gradient of permeant solutes on either side of
the membrane was plotted against time for the first 15s, using the normalized form of Eq.
(3.24) given by:

k k k k
[AAC:;”‘ - AAfil J / [(Afrs;m + if;l)/zj =0 forallk. (3.25)
m 1 1

m

The relative difference became close to zero after the first few seconds, and decreased
when Ar was decreased (Fig. 3.5). The non-zero value during the first few seconds is a
numerical manifestation due to possible inconsistencies in the initialization of the system
of equations, due to the largely arbitrary assignment of values within the finite difference

shells.

Difference hetween C gradients of permeabhle solutes
across membrane vs. time

Relative difference in C gradients

_|:|5 1 1 1 1 |
a

Fig. 3.5 Relative difference in the concentration gradients of permeant solutes on either side of the
membrane, vs. time. Relative difference is calculated using Eq. (3.25). ‘x’: with Ar=5x10°m, ‘x’: with
Ar=1x10"°m, *x’: with Ar=2x10"m.

Validation of the model with ULs will be carried out in Chapter 4 when the model is

applied to real data.
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3.6.2 Effects of ULs on the relaxation curve

The model was run using initial and perturbation conditions consistent with the HPP and
OPP data from Henzler et al. (2004) fitted in §2.5. A constant set of membrane
parameters were used with the ULe and UL.i thicknesses varying, namely: L, = 2.0 X 10°®
ms?MPa? ps=5.0x10°ms? and ¢ = 0.15.

P-t curves for a negative OPP experiment were plotted for 4 different ULe thicknesses
and 4 different ULi thicknesses (Fig. 3.6). The plots show that ULs have a clear effect on
the relaxation, damping the range of pressure changes, and slowing down the rate of
return to equilibrium and decreasing the gradient of the curves. Further examination of
effects of ULs on the P-t curves was performed by analysing changes in the curve
characteristics (identified later in Fig. 3.8). These were calculated using the same method
by which curve characteristics were derived for the observed data (see §2.4.1), with tn,
interpolated from the simulated values. It was found that as oye increases, Py, decreases,
while tn, 7w and 7 increase (Fig. 3.7a). As dyyi increases, Py, decreases, 7, increases, while
tm and z,, change little (Fig. 3.7b). The effect of a ULi on the P-t curve is less pronounced
than the effect of a ULe. Most of the influence of a ULi occurs within 1x10™ m from the

membrane, and for Sy ; > 2x10™ m the curve characteristics reach a stable value.

The ULe also causes a time-delay in the curve (Fig. 3.6c), due to the time taken for
solutes to pass through the ULe and reach the cell membrane. This effect is not observed
when only a UL. is present. The time-delay was calculated by fitting a straight line
regression through a few initial points (Fig. 3.8), with the time-delay given by the time at
which this line intersects the line P=P,. The time-delay was found to increase non-
linearly with dyLe (Fig. 3.9).
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() Showing how the P-t curve varies with ULe thickness
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Fig. 3.6 Showing how the simulated OPP curve varies with UL thickness. (&) With dy.; = 350um, and dy.e
=0 (—), 50um (— —), 100pm (—. —), 150um (-----). (b) With dy_e =50um, and dy; =0 (—),
100pum (— —), 200pum (—. —), 300um (-----). (c) Close-up of (a) illustrating the time-delay in the curve.
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(a) Curve characteristics vs. ULe thickness
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(b) Curve characteristics vs. ULi thickness
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Fig. 3.7 Showing how curve characteristics of the simulated OPP relaxation curve changes with UL
thickness, for: a) 1 ULe present, and b) 1 ULi present. Curve characteristics: Py, ( ), tm ( ), Tw (
). 7 (—). Calculation of z,, L, and ¢ include the time-delay.
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Fig. 3.8 Illustrating method for calculation of the time-delay, and showing locations of curve
characteristics, for a negative OPP (Fig. 2A) with 2 ULs.
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Fig. 3.9 Time-delay vs. ULe thickness for simulated OPP data.
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For an HPP experiment, a ULi also slows down the rate of return to equilibrium, and
hence increases =, (Fig. 3.10). After a certain value of oy the ULi has little additional
influence. The ULe has negligible effect since the external concentration of impermeant
solutes is very low. The effects of ULs are much smaller for an HPP experiment

compared to an OPP experiment.

Showing how the HPP curve varies with ULi thickness

L=l

fay]

g
T

Pressure (MPa)

5 10 15 20 25 30 35
Time (s}

0.59 :

Fig. 3.10 Showing how the simulated HPP curve varies with UL thickness. With dy.. = 50um and: a) dyy;
=0 (—), b) duui =100um (— —).

While ULs slow the rate of return to equilibrium, they do not change the final equilibrium
pressure. In accordance with the analytical solution to the KK equations, the model
predicts that for an HPP, Pe<P, for a negative pulse and Pe>P, for a positive pulse, and

Pe = P, for an OPP experiment.
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3.6.3 Concentration profiles in the ULs

The concentration of permeant solutes Cs in the ULs was plotted against r for a positive
OPP experiment (Fig. 3.11), using the same parameters and initial conditions as in §3.6.2.
It was chosen to plot concentration profiles for a positive pulse as concentration profiles
in the literature are often shown for this case. Concentration profiles for a negative pulse
take the form of those for the positive pulse reflected about the r-axis.

The profiles in Fig. 3.11 are similar to those in Crank (1975) for non-steady-state
diffusion through a cylinder, where the concentration profiles in the ULi correspond to
the case of variable surface concentration (the surface being the membrane), and the
concentration profiles in the ULe correspond to the case of constant surface concentration
(the “surface” being the outer boundary of the ULe). When ramps are present in the
model, concentration profiles in the ULe have a flatter gradient since the concentration at
the outer ULe boundary decreases from 160mM at t=0 to 0 during the period of the ramp
(Fig. 3.12).

The profiles in Fig. 3.11 are consistent with the diagram in Fig. 3.1 which shows how
ULs affect the concentration gradient at the membrane. Fig. 3.1 corresponds to the
concentration profiles given in Pedley (1983) for the steady-state solution to Fick’s
convection-diffusion equation (Eqg. (5.1)) for transport in two ULs separated by a
membrane, subject to the boundary conditions that beyond the ULs the concentrations are
constant. These profiles differ from the common diagram given in the literature (Fig. A.1

in appendix) for how ULs affect the concentration gradient at the membrane.

The profiles in Fig. 3.1 and Fig. 3.11 are a consequence of having a discontinuous
concentration difference both at the membrane and at the outer boundary of the ULe. The
latter arises because it is assumed that at t=0 the concentration in the bulk solution
changes instantaneously while the concentration in the ULe remains as it was, and then
changes due to diffusion when t>0. Only if the concentration in the ULe changes together

with the bulk solution at t=0, will the concentration profiles then look like Fig. A.1. This
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Fig. 3.11 Concentration profiles in the ULi and ULe for OPP data. Showing: a) a period of 0-10 s, lines at

0.5s intervals; b) a period of 10-330 s, lines at 20s intervals. Red lines indicate the initial concentration
profile at the beginning of the plot.
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Concentration profiles of permeable solutes in ULi and ULe, with ramp
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Fig. 3.12 Concentration profiles in the ULi and ULe for OPP data, when a 2s ramp is present in the
external solute concentration. Showing a period of 0-10 s, with lines at 0.5s intervals. Red lines indicate the
initial concentration profile at the beginning of the plot.

perturbation condition, however, is akin to having no ULe but diffusion occurring in the
bulk solution. Fig. A.1, therefore, does not accurately reflect the concentration profiles

across the membrane under the conditions of a CPP experiment.

The true concentration profiles are probably a combination of those in Fig. A.1 and those
in Fig. 3.11 or Fig. 3.12. This is because in the present model radial transport is modelled
at one axial point only, which can be taken to be a point mid-way along the length of the
cell, so that t=0 is when the external solution reaches this point. However, in reality as the
new solution traverses the length of the cell, the ULe concentration is perturbed at the
leading edge of the cell first, so that at t=0 in the model the ULe concentration mid-way
along the length of the cell has already changed.
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3.6.4 Effects of convection on pressure dynamics

The convective component to transport in the ULs can be removed by making v=0 in
Fick’s diffusion-advection equation (Eg. (3.4)), and keeping the areas A and volumes of
the UL shells constant (dV/dt=0) in the mass-balance equation (Eq. (3.10)). This was
done in a HPP and an OPP experiment, in order to explore the relative contribution of

convection to the pressure dynamics.

a) HPP experiment

In an HPP experiment there are no solutes permeating the membrane, and concentration
profiles in the ULs will be constant with r unless the concentration is perturbed due to the
membrane moving into the UL regions. The membrane increases the solute concentration
on the upstream side of the flow, and decreases it on the downstream side. In the frame-
of-reference of the cell a flow into the cell (for example) sweeps away the solutes from
the membrane, reducing the concentration at the inner membrane surface. Solutes are
concentrated at the outer membrane surface. This “sweep-away effect” (see §3.1.3b) due
to solute-drag is the main effect of ULs in an HPP experiment. When the terms
contributing to convection are removed, no effect of the ULs are seen because the
concentration distribution in the ULs have not been perturbed, and no fluxes due to

diffusion or convection are present.
b) OPP experiment

The presence or absence of convection in an OPP experiment makes a negligible
difference to the relaxation curves, concentration profiles in the ULs, and concentration
difference across the membrane. With permeant solutes, the convective component which
gives rise to the sweep-away effect is a much smaller component than diffusion which
gives rise to the gradient-dissipation effect (see 83.1.3). The convective component is

therefore relatively larger in an HPP than in an OPP experiment.
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3.6.5 Effects of ULs on measured membrane parameters

a) Estimation of membrane parameters

Since ULs affect the simulated relaxation curves, the classically-estimated parameters are
also affected. To examine how much ULs cause the classically-estimated membrane
parameters to differ from the actual parameters, the ratios of the classically-estimated
parameters (parameter.) over the corresponding membrane parameters (parametery,),
were plotted against UL thickness (Fig. 3.13). In this analysis parameter,, represents the
“true” membrane parameter (i.e. used in the KK equations to produce the simulated data),
and parameter. represents the “observed” membrane parameter (i.e. calculated from the
simulated data using the same technique as that applied to CPP data). A parameter ratio &

can be defined as:

_ parameter,

- . (3.26)
parameterm

It was found that for an OPP curve, a ULe causes the classically-estimated parameters to
underestimate the true parameters (Fig. 3.13a), and this effect increases with increasing
duLe. This underestimation of the true parameters is consistent with Fig. 3.6 where it was
shown that a UL “flattens” the P-t curve. The effect is much more marked for L, than ps
and . With increasing duui, the observed L, appears to slightly overestimate the true L,
and psand o are again underestimated (Fig. 3.13b). For a dy; > 200um, the ULI has little
additional effect on the parameter estimation. The estimation (measurement) of psand o
appear to be affected by ULs in a similar manner to each other, and this is similar for the
ULe and ULi. The effects of ULs on the measured L, is more marked, and do not appear
to be the same for the ULe and UL..

For an HPP curve, a ULe did not have any effect on the classically-estimated membrane
parameters, because the concentration of impermeant solutes in the external solution is
very small (e = 0.1 MPa) compared to the concentration of impermeant solutes inside
the cell (=i = 0.63 MPa). A ULi had only a small effect on the classically-estimated L,
slightly reducing it so that & = 0.96 for a dy.; > 100um. This is to be expected, since
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unlike the OPP experiment using permeant solutes, diffusion in the ULs is primarily due
to concentration changes at the moving membrane, and not changes in the bulk solution.
Concentration changes due to the moving membrane is much smaller than that due to

diffusion of permeant solutes across the membrane.

The results shown here indicate that the classically-estimated membrane parameters are
strongly dependent on the thickness of the ULe and UL.i. Results clearly demonstrate that
if the Classical method of estimating membrane parameters is applied to real data from
systems in which ULSs are present, the estimated parameters will generally underestimate
the true membrane parameters. This raises the question: By how much may the
classically-estimated membrane parameters underestimate the actual membrane
parameters? This will be explored when CPP data is fit in Chapter 4. It should be noted
that the magnitude of the effects in Fig. 3.13 will change if a different starting “true’
membrane parameter is used. For example, if the true Ps is very low then the ULs will
have no effect, but if the true Ps is larger than that used in Fig. 3.13 the effects of ULs

will be more (see §3.1.3).
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(a) Parameter ratio vs. ULe thickness (OPP expt)
1.5 -
e
o 1.0
<
3]
@
E 05
IS
a
0.0 T T T ]
0.0 0.5 1.0 15 2.0
ULe thickness (x10“m)
(b) Parameter ratio vs. Uli thickness (OPP expt)
154
pLe
o 1.0
‘@ \
o]
5]
§ 05
©
o
0.0 T T T 1
0.0 1.0 2.0 3.0 4.0
ULi thickness (x10%*m)

Fig. 3.13 Showing parameter ratios for simulated OPP data. L, (——), ps (—), and o (——) vs. (a) ULe
thickness, and (b) ULi thickness.

b) Polarity in membrane parameters

A polarity in L, has been observed in HPP experiments and in OPP experiments with
impermeant solutes (Dainty and Ginzburg, 1964a; Steudle and Zimmermann, 1974), and
in OPP experiments with permeant solutes (Steudle and Tyerman, 1983). Polarity may be
species-dependent, or dependent on the water flow across the membrane, as Steudle and
Tyerman (1983) did not observe a polarity in L, in HPP experiments. Polarity in L, may
also be due to the presence of ULs (Steudle and Tyerman, 1983).
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To test whether the UL model predicts polarity in the membrane parameters, the model
was used to predict and compare P-t curves for HPP experiments and for OPP
experiments with permeant solutes. Simulations using positive and negative pulses of the
same magnitude, using the same membrane parameters but a range of ULe and UL.i
thicknesses, were compared. It was found that positive and negative pulses produced P-t
curves which are symmetric about the t-axis, for both HPP and OPP experiments.

In order to test the experimental findings that polarity is increased with increasing
external concentration of impermeant solutes (Zimmermann & Steudle, 1978), the
analysis was repeated with the external osmotic pressure increased by 2 orders of

magnitude (=. = 1.0 MPa). No significant polarity in the measured parameters was

predicted for either an HPP or OPP experiment.

Finally, the analysis was repeated using different values of the diffusion coefficient for
the external and internal ULs (D = 1.15x10° m s™ for the ULe; D = 0.8x10° m? s for
the UL.i), and with varying UL thicknesses. Again no polarity in membrane parameters

was predicted by the model.

In summary, the present model does not predict that ULs introduce a polarity into

classically-estimated membrane parameters. Consequently, any polarity observed in the
classically-estimated parameters when the data is fit (Chapters 4 and 5), are due to other
experimental or physical conditions and not UL effects. It was pointed out in §2.2.2 that

the KK equations also do not predict polarity in the membrane parameters.

c) Effects of external concentration on membrane parameters

Experiments have found that measured L, values decrease when the external
concentration of impermeant solutes is increased (Zimmermann & Steudle, 1978). In the
absence of ULs the model did not predict any change in the classically-estimated
parameters when external concentration was changed. However, changes were predicted

in the classically-estimated parameters when ULs are present.

When the external osmotic pressure e Was varied over the range 0.01-1.0 MPa (7 je =

CRT) for duLe = 5x10™° m and y.i = 4x10™ m, the model predicted a decrease in L, with
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increased external concentration for an HPP experiment, but a non-monotonic change in
L, for an OPP experiment (Table 3.1). An influence of external concentration on L, is
expected since the ULs act to change the concentration gradient across the membrane,
which would also be affected by the amount of solutes in the external solution. This
behaviour is also expected by looking at the KK equations (Eq. (2.13)), which show that
changing = affects ky, (and thus L) through changing o (which is an equilibrium value

and thus dependent upon 7).

Table 3.1 Showing how the classically-estimated L, changes with differing external concentration of
impermeant solutes, for a negative HPP and negative OPP experiment.

mie (MPa) | L, (x10°m s *MPa™)
Neg HPP  Neg OPP
0.01 1.92 2.11
0.05 1.91 2.30
0.1 1.91 2.28
0.5 1.88 2.14
1 1.88 1.82

d) Effects of size of perturbation pulse on membrane parameters

Increasing the size of the pressure pulse increases the magnitude of J,, which causes a
larger sweep-away effect since dV/dt and the changes in volume are larger (Ye et al.
2006). The model runs for the negative OPP and negative HPP experiments were
repeated using a pressure pulse of twice the original magnitude. The classically
determined parameters were calculated for a few values of dy e and Jdy.; and compared

with those found previously.

It was found that there were no differences in the parameter values or behaviour of the P-
t curve due to changing the size of the pressure pulse. This is consistent with the KK
equations, which exhibit a linear relationship between ACs and P for the OPP (Eg. (2.9)),
and P; and P for the HPP (Eq. (2.6)), when the membrane parameters and initial

equilibrium conditions are kept constant.

3-43



The above results show that inclusion of ULs in the model doesn’t affect the overall
dynamics of the P-t curve, but does affect the actual values of parameters estimated using
the model.

3.6.6 Effects of D on pressure dynamics, and the permeability equation

a) Influence of D on the measured membrane parameters

When the membrane parameters are kept constant and the value of D is decreased, the
total permeability pr of the system should decrease by Eq. (3.2). This behaviour was
verified with the numerical UL model from simulations of OPP experiments, where D in
the ULi was varied and D in the ULe (1.15x10 ° m’s™) and the UL thicknesses were kept
constant (duLe = 5x10° m and dy,; = 3.5x10™ m). In this case pr is the classically-
estimated ps value, i.e. the value that would be measured for the membrane ps when ULs
are assumed to be absent. Decreasing D is equivalent to increasing the UL thickness, as
both slow down the diffusion of solutes. When different values of D are used for the ULi
and ULe in the model, the classically-estimated parameters should change in a manner
similar to those in Fig. 3.13, where the x-axis now represents decreasing D rather than
increasing UL thickness. E.g. when D in the ULi is decreased, &(Lp) should increase and
&(ps) and &(o) should decrease. This was indeed verified by the numerical UL model
(Table 3.2).

Table 3.2 Parameter ratios due to decreasing D in the ULi. Base value for D is 1.15x10° m?s™.

D(x10°m’s™) |  §(Ly) &ps) §0)
1.15 1.16 0.60 0.62
1.05 1.18 0.59 0.61
0.95 1.21 0.57 0.60
0.85 1.25 0.55 0.58
0.75 1.30 0.53 0.57
0.65 1.34 0.51 0.55
0.55 1.40 0.49 0.53
0.45 1.47 0.46 0.50

Although it was assumed that D is the same outside and inside the cell (due to the

scarcity of information about D inside the cell), and equal to D = 1.15x10° m?s™ in
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water, it is likely that D is less inside the cell since the cell interior is more concentrated
than water and contains more suspended particles. This suggests that, in reality, the
under-estimation or over-estimation of the measured parameters will be even more than
that predicted by the UL model which assumes that D is the same for the ULi and ULe.
If, for a particular solute, the value of D inside the cell is much less than the value in
APW, then this will have a large impact on the estimated parameters. Table 3.2 shows
that the parameter ratios vary significantly from those for the reference value of D =
1.15x10°m?s™. However, this may be different when parameters are estimated for fits
to the data. This will be done in 84.8.4.

b) The permeability equation

The steady-state permeability equation (Eq. (3.2)) is sometimes used to predict the
influence of ULs on the classically-estimated membrane parameters (Ye et al. 2006;
Steudle and Frensch, 1989). Therefore, it is important to examine and compare
predictions of total permeability using Eq. (3.2) with predictions using the non-steady
state UL model. As mentioned above, pr is the classically-estimated ps. It was found that
the value of 1/ps predicted by Eq. (3.2) departed from the value of 1/ps using the classical
method of parameter estimation, by up to 30% for certain ranges of the UL thicknesses
(ULe and ULi were both varied between 0-200 um). This shows that Eq. (3.2) cannot be
used to quantify the effects of ULs for systems in non-steady state. That is, estimates of
ps using Eq. (3.2) would differ from that estimated by the UL model. When the true
membrane ps was changed by 10% for a typical set of ULe and UL.i values, this resulted
in a 6% difference in pr, which shows that a 30% error in the estimate of pr would

correspond to a much larger error in the estimate of the true membrane ps.

3.7 Conclusions

A model of water and solute transport across a membrane with unstirred layers (ULS),
coupling the KK equations and diffusion equations, has been described. A numerical
solution using Euler’s method was implemented in Matlab with provision for

accommodating a number of experimental conditions.
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Three approaches to implementing the UL model were discussed: one where the outer
ULe and inner ULi boundaries are fixed, one where the outer ULe and inner ULi
boundaries move together with the membrane, and one where all numerical grids except
those immediately adjacent to the membrane are fixed. The first method is recommended
since it is mathematically rigorous (in contrast to the third method) and the UL.i thickness
can be the entire cell volume (an advantage over the second method). Whether fixing the
non-membrane UL boundaries accurately reflects the physics of UL behaviour is
unimportant for modelling purposes, since the change in volume of the cell (and UL) at
any one time step is small relative to the total cell volume, and all three methods gave

consistent model predictions.

Simulation of an OPP relaxation curve (83.6.3) gave concentration profiles in the ULs
which were consistent with those given by the analytical solution to non-steady state
diffusion through a cylinder (Crank, 1975). These are not the same as the profiles often
encountered in the literature which aim to show how ULs affect the concentration near
the membrane. This is because the model used in this study assumes that for an OPP
perturbation the concentration in the bulk solution changes but the concentration in the
ULe doesn’t, so that there is a discontinuity at the outer ULe boundary. This is believed
to more accurately reflect the conditions of a CPP experiment and the physical nature of a
UL (a stagnant layer with primarily diffusional mixing).

An analysis of convection in the ULs revealed that this is a major component to transport
in the ULs for an HPP experiment, but a small component compared to diffusion in the
ULs for an OPP experiment with permeant solutes (83.6.4). This is consistent with
literature reports which have stated that ULs affect HPP experiments primarily through
sweep-away effects (Ye et al. 2006; Hertel and Steudle, 1997; Steudle, 1993).

The effect of ULs on the relaxation curves, curve characteristics, and measured
membrane parameters were examined. In Chapter 2 (82.3.1) it was shown that a decrease
in Ly results in an increased z, and ty, a decrease in ps results in an increased z;, and a
decrease in o results in an increased Py, In this Chapter it was shown that the addition of
ULs serve to retard the pressure response so that P, decreases, ty, increases, and the half-

times increase with increasing UL thickness (83.6.2). This means that ULs will generally
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cause the measured L, ps, and o (those determined from CPP data using the classical

method of parameter estimation) to underestimate the true parameters of the membrane
(83.6.5a). Estimation of the true membrane parameters is therefore not possible without
knowledge of the UL thickness. This will be demonstrated in Chapter 4 when the model

is fit to CPP data by directly modifying the membrane parameters.

Another effect of the ULe on the relaxation curve is that it causes a delay in the pressure
response immediately following a perturbation in the external concentration. This is
because it takes time for the solutes to pass through the ULe and reach the membrane.
This time-delay increases non-linearly with ULe thickness (83.6.2a). This will be further
examined in Chapter 4.

It was examined whether the model could reproduce the various parameter behaviours
which have been suggested might indicate the presence of ULs (see 83.1.2), namely: a
decrease in the classically-estimated parameters with increasing external solute
concentration, and a polarity in the classically-estimated parameters. The UL model did
not predict any polarity in the membrane parameters when the external concentration of
impermeant solutes was increased, or the value of the diffusion coefficient D inside the
cell was changed (83.6.5b). (The influence of external flow rate with L, could not be
examined since the flow rate is not a component of the model.) Causes of polarity in the
classically-estimated L, reported in the literature are thus likely to be due to composite
membrane effects and influences of the tonoplast, where theory predicts a polarity in L,
and ps for membranes arranged in series (Kedem and Katchalsky, 1963c), or other
physical effects of the membrane such as dehydrating one side of the membrane more
than the other (Dainty and Ginzburg, 1964a; Kiyosawa and Tazawa, 1973). Evidence of
polarity and other variations in the estimated parameters will be examined when the UL

model is fit to data in Chapter 4.

The model predicted a decrease in L, with increasing external solute concentration
(83.6.5¢), which is consistent with the literature (Zimmermann and Steudle, 1978).
However, it predicted that increasing the perturbation pulse has no effect on the measured
membrane parameters (83.6.5d), contrary to general expectations in the literature (Ye et
al. 2006).
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The above model predictions of no polarity, and of the effects of external concentration
and perturbation size, are all consistent with the behaviour predicted by the KK
equations. It is concluded that inclusion of ULs in the model doesn’t affect the overall
dynamics of the P-t curve, but affects the actual values of parameters estimated using the

model.

The model showed that while it is likely that the value of D for the ULi is less than that
for the ULe, this is likely to have only a small influence on the measured membrane
parameters. It also showed that diffusional resistances of the membrane and ULs are not
additive according to the permeability equation (Eqg. (3.2)) based on Kirchoff’s law of
resistances in series, and therefore use of Eg. (3.3) to estimate quantitatively the influence

of ULs on the estimated membrane parameters leads to large errors.

In Chapter 4, the UL model will be applied to raw CPP data collected by Dr. Helen
Bramley (University of Adelaide) and Prof. Mel Tyree (USDA Forest Service).
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4 Model with Unstirred Layers: Application to CPP
data

4.1 Introduction

In this chapter, the UL model described in §3.2.2 is used to fit raw data collected by
Dr. Helen Bramley (University of Adelaide) and Prof. Mel Tyree (USDA Forest
Service). Data for several OPP and HPP experiments from different Chara corallina
cells will be fit using the optimization method described in §2.3.3. Model validation
and evaluation of the UL model, analysis of estimated parameters from the model,
and a comparison with fits and predictions from the classical model, will be carried

out.

The results are split into 3 sections: a) fitting one HPP and one OPP data set with the
classical model, and UL model with 1 or 2 ULs, in a comparison of different UL
models; b) fitting several HPP and OPP data sets (no ramp) with the classical and UL
model with 2 ULs; c) fitting a few OPP data sets (with ramp) with the classical and
UL model with 2 ULs. Fits and estimated parameters will be compared between the
models, and between data sets from one cell (within-cell variation), and between cells

(between-cell variation).

It will be shown that models with unstirred layers and without unstirred layers
(classical model) can both reproduce the observed CPP relaxation curves. The
models, which represent different hypotheses on the transport processes driving
pressure changes in the cell, predict different sets of membrane parameters. Therefore,
membrane parameters deduced from CPP data are very much dependent on the model
used. This has implications on our current knowledge of membrane parameters and

current methods of parameter estimation.
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4.2 Description of experiments and experimental data

4.2.1 Description of CPP and conductivity experiments

Experiments were conducted by Dr. Helen Bramley and Prof. Mel Tyree at the
University of Adelaide. Simultaneously with the CPP experiments, the conductivity of
the external solution was measured in order to determine the time of osmotic
perturbation and the time when the perturbation impacts on the cell (observed as a
turgor pressure change). In addition, two methods of solution exchange (whereby a
new solution completely replaces the old) were used: a) one where the new solution
immediately followed the old, as in most CPP experiments, and b) one where a bubble
was inserted between the old and new solutions for a more instantaneous change in
solution. The bubble forces a slug movement of the new solution, where the front
flattens out against the air-fluid interface and greatly reduces the duration of the

solution exchange phase.

The CPP apparatus closely resembled that of Henzler et al. (2004). Solutions were
delivered to the cell by gravity-feed from two plastic beakers 30-50cm above the
Chara cell (Fig. 4.1). Stopcock valves at the bottom of the containers were used to
control the flowrate at 16-18 cm s, through tubing which had an inner diameter of 3
mm throughout. A second set of 3-way stopcocks (3WS) farther down the tubing were
used to open and close flow from the containers and to admit air into the tubing for a
distance of 10-12 cm below the stopcock. The length of the bubble ensured that the
bubble passed beyond the Y-junction and clearly separated the two solutions. This
differed from the apparatus used in Henzler et al. (2004) where only one 3WS was
located at the Y-junction. The mean time of solution exchange when bubbles were
present (based on 50 measurements on 4 cells) was 0.6 £ 0.1s. The mean time of
solution exchange when no bubble was present was 2.3 + 0.3s due to laminar flow

mixing (Tyree, pers. comm.).
Artificial pond water (APW, a dilute solution of the salts Na*, K*, Ca* and CI" with a

total ionic strength of ~3mM) was used as the external solution. Two Ag/AgCI

electrodes were placed about 5¢cm apart in the vicinity of the cell.
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The solution was changed from full APW to half-strength APW + 160mM EtOH in
positive OPP experiments, and vice-versa in negative OPP experiments. As the
electrolyte resistance of half-strength APW is half that of full APW, the timing and
speed of the solution exchange could be measured by monitoring the electrical
resistance and voltage change between the electrodes. In experiments without
bubbles, the voltage starts changing as soon as the solution reaches the first electrode,
and rises and becomes constant as it reaches and passes the second electrode (Fig.
4.2). In experiments with bubbles, the voltage rises to a maximum as the bubble
reaches the second electrode, as air is now present between the electrodes and there is
no current. VVoltage from the conductivity measurements was recorded using the data
acquisition and analysis software pPCLAMP-9 (Axon Instrument Inc, Union City, CA,
USA), and plotted simultaneously with the CPP voltage output from the data
acquisition and analysis software Pfloek (V.1.09, provided with the CPP).

Noise from the CPP apparatus was also measured on a 14-minute period of constant
turgor pressure (the plot of pressure against time gave a very low slope of =7x107,
with R?=0.0027). The plot exhibited discrete jumps in pressure of 0.0001-0.0002
MPa, which can be taken as the measuring resolution of the CPP. The plot had an
RMS of 0.0003 MPa about the mean with a maximum deviation of 0.0008 MPa from
the mean. The overall measurement error in the pressure can be taken to be around
0.0005 MPa, or about 2 standard deviations.

Measurements of the bulk modulus & were conducted prior to each course of
experiments. It was verified for one set of HPP experiments that & was the same
measured at the beginning and end of the set (over a 6 minute time-period). The
laboratory temperature was not measured, but could be assumed to be about 20° C

(Bramley, pers. comm.).
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Fig. 4.1 Set-up for CPP and conductivity experiments. Showing Chara cell fixed in place by a plastic
screw; 2 Ag/AgCl electrodes placed 5ecm apart (and 1cm from the end of the tube) for monitoring
change in electrolyte resistance; beakers, stopcock values and tubing for solution exchange (not drawn

to scale). (Tyree, unpublished)
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Fig. 4.2 Showing pressure (smooth black line) and conductivity measurements for OPP experiments
with and without bubbles. Full APW was exchanged for %2 APW + 160mM EtOH for both
experiments. Passage of a bubble can be observed (lower diagram) by a voltage rise to 0.43V and step-
wise change in electrolyte resistance. (Tyree, unpublished)

4.2.2 Data collected

a) CPP data

OPP and HPP experiments were carried out on 4 different Chara cells (Table 4.1).
Equal numbers of positive and negative pulses were carried out for each set. The cell

dimensions were measured by the experimenters, but I derived values for ¢ using the
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Pfloek software. For Cell 1 a concentration of 125mM ethanol was used for the OPP
perturbations. For the other 3 cells a concentration of 160mM ethanol was used.

Table 4.1 Cell dimensions, ¢ values, and type of experiments conducted on 4 Chara cells. L = cell
length, d = cell diameter, V = cell volume.

Cell | Dateofexpt [ L(mm) d(mm) V (mm3) & (MPa) Experiments
1 10-2-05 21 0.930 143 28.4+4.4* 8 OPP (4b**); 4 HPP
2 11-2-05 24 0.977 18.0 279+4.1 10 OPP (4b); 6 HPP
3 11-2-05 45 0.791 22.1 246+24 10 OPP (4b); 8 HPP
4 18-2-05 33 0.977 24.7 36.5+4.2 10 OPP (6b); 12 HPP

* includes measurement and operator error
** ‘nb’ indicates n experiments used bubbles during the solution exchange

b) Conductivity data

From the conductivity measurements one can obtain the time-delay (time between an
osmotic perturbation and when the perturbation impacts on the cell), and the exchange
time (time it takes for the external solution to be completely exchanged). The time for
solution exchange is the time it takes the external concentration to reach the final
perturbation value, and is the ramp time mentioned in previous chapters. Individual
time-delays and ramp times were recorded for each OPP experiment. An example of

these data is given in Table 4.2.

The UL model simulates radial flow at any point along the cell axis, and assumes
radial and axial symmetry. The time and place at which the perturbation impacts on
the cell was taken to be at an axial point midway along the length of the cell. The
time-delay tp was therefore defined as the time between the solution reaching the
middle of the cell and the time tp when the cell pressure is first observed to change.
For OPP experiments with a bubble, the measured time-delay (tpy) is the time between
the bubble reaching the second electrode and tp. tp was obtained by calculating tp =
tpr + 1o, Where t; is the time it takes for the solution to travel between the second
electrode and the center of the cell. For OPP experiments without a bubble, tp, is the
time between the solution reaching the first electrode and the cell pressure changing.
tp is obtained by calculating tp = tp, - t5, where t; is the time it takes for the solution
to travel between the first electrode and the center of the cell.



The ramp time is the time it takes for the external concentration to reach its final
perturbation value. The measured ramp time tg, (in experiments without bubbles), was
the time between the solution reaching the first electrode and the time when the
voltage reaches a constant value (indicating no more mixing or increase in external
concentration; see top diagram in Fig. 4.2). The ramp time tr is calculated by tgr = tg, -

t1, where t; is as defined above.

Table 4.2 Time-delay (tp) and ramp time (tg) data for Cell 4 of Table 4.1. N=bubble not present,
Y=bubble present.

Run no. | Bubble t5(s) tr (S)
1 N 0.92 2.34
2 N 0.50 1.37
3 N 0.80 2.14
4 N 0.55 1.60
5 Y 0.56
6 Y 0.42
7 Y 0.69
8 Y 0.42
9 Y 0.62
10 Y 0.44

As one can see from Table 4.2, the ramp times are 2-3 times as long as the time-
delays. This is because the ramp time is comprised of a transit time (the time it takes
for the front of the new solution to traverse the length of the cell), and the mixing time
(the time it takes for the region of partial mixing behind the front to traverse the cell,
before the solution is completely replaced). For OPP experiments with a bubble, the
ramp time may be considered negligible since there is no mixing time, and the transit
time for the 4 cells ranged from 0.01 to 0.26 s. These are very small ramp times
compared to the measured ramp times, and it can be concluded that the main

component of the ramp time is the mixing time.



4.3 Analysis and use of CPP data

4.3.1 Chosen subset of CPP data

A subset of the available data was chosen for fitting (Table 4.3). In order to examine
within-cell variation in parameters, and differences in parameters between fits to
experiments with and without bubbles, all the data for Cell 4 was fit. Cell 4 was
chosen as there were 6 smooth OPP curves with bubbles, and more available HPP
data for this cell. In order to examine between-cell variation in parameters, a positive
and negative OPP and HPP set was fit for Cells 2 and 3. Data for Cell 1 was not fit as

it was a noisier data set.

Table 4.3 Subset of the data that will be fit by the models.

Cell Experiments
2 4 OPP with bubble; 4 HPP
3 4 OPP with bubble; 4 HPP
4 6 OPP with bubble, 4 OPP without bubble; 10 HPP

4.3.2 Resolution of CPP data

The time resolution of the Pfloek data was about 0.02-0.2 s, giving around 3000-6000
data points for OPP experiments, and around 500-800 data points for HPP
experiments. Use of all the data points in a parameter estimation via Matlab
optimization runs was impractical because of excess computer runtimes (which could
take an hour or more) and therefore the data was culled. To this aim, the effects of
culling on parameter values estimated using the classical model were analysed. For an
OPP data set with 520 points in the water phase and 2127 points in the solute phase,
points in both phases were culled by selecting every i point, where i varied between
2 and 10. When the data was culled by the same amount in both water and solute
phases, the parameters differed by <1% for fits between the unculled and most greatly
culled data. This behaviour was verified on another OPP data set. While there was

little change in the parameters, the SE’s for the estimated parameters increased with



decreasing data resolution. However, the magnitude of the SE’s when every 10" point
was retained was found to be acceptable (Table 4.4), and it was decided to use this
data resolution for all OPP data sets, i.e. every 10" data point in the pfloek output was

retained during parameter estimation.

A similar analysis on two HPP data sets revealed that retaining every 10" point did
not alter the estimated parameters, but did increase the SE in L. It was chosen to
retain every 2™ point for the HPP data sets, since there are far fewer points as
compared to OPP data and the optimization is still efficient. This brings the size of the
culled HPP data sets down to that of the culled OPP data sets, and the SE in L,to 0.01

x 10°% m st MPa™.

Table 4.4 Showing parameters estimated with the classical model and their standard errors, for
two OPP data sets. A data resolution of 1/10™ has been used, giving a total of 265 points for the
negative OPP and 272 points for the positive OPP data sets.

Negative OPP Positive OPP
L, (x 10°m s * MPa™) 1.30 +0.01 1.49 +0.01
Ps(x 10°m s™) 3.92 +0.02 3.84 +0.02
o 0.273 +0.001  0.262 +0.001
to (s) 1.04  +0.02 0.73 +0.02

It must be noted that when a different data resolution is used between the water and
solute phases in the OPP data, points in the water and solute phases are differentially
weighted, which affects the estimated parameters. It was found that the estimated
parameters differed by 2-8% for fits between the unculled data and most greatly
culled data — where every point in one phase was retained while every 10" point in the
other phase was retained. The above results show that as long as the same data
resolution is used for the whole data set, there is little effect on the estimated

parameters.

The time interval that resulted from using every 10" data point generally ranged
between 0.5 and 1.5 s. The data could also be culled based on time intervals, e.g.

retaining points every 0.5s apart. An exploration of this was not carried out.



4.3.3 Analysis of CPP equilibrium pressures

Initial and final equilibrium pressures were determined over periods of about 20s,
depending on the amount of noise in the data. It was observed that the final
equilibrium pressure often overshot the initial equilibrium pressure for the OPP
experiments. An analysis of equilibrium values revealed a consistent pattern where Pg
was slightly lower than Pq for the negative OPP, and Pg was slightly higher than Py
for the positive OPP (Table 4.5; Fig. 4.3a). The APW change from full to half-
strength, or vice-versa, was suspected to be the cause of this overshoot. This was
confirmed when OPP experiments were later conducted on another Chara cell
without the APW change (Cell 5), as no overshooting of Pg occurred for this cell, but
instead a consistent slight undershooting was observed (Table 4.5). Possible reasons

for this will be outlined in a later discussion.

Table 4.5 Mean differences between initial equilibrium pressures Py and final equilibrium
pressures Pe observed in the OPP data, for cells 2 to 5. Errors given are standard errors.

Mean Pg - Pe values
Cell Positive OPP Negative OPP
2 -0.0020 +0.0005 0.0028 +0.0003
3 -0.0012 +0.001 0.0031 +0.0005
4 -0.0013 +0.0006 0.0006 +0.0008
5 0.0013 +0.0001 -0.0014 +0.0003

Sensitivity of cell turgor to the external concentration was also confirmed in the
models, where the APW change had to be incorporated into the perturbation (initial)
conditions in order to give a reasonable fit to the Pe values of the data. As shown in
82.2.2, the standard KK equations without an APW change predict that Pg returns to
the original equilibrium pressure Po, and the value of Pg is not changed by the
presence of ULs (83.6.2).

A long-term drift in the equilibrium pressures was observed for cells 2-4 (e.g. Fig.
4.3b). Cells 2 and 3 showed a downward drift, and Cell 4 showed an upward drift. No
significant drift was observed for Cell 5, which may be due to it being a larger cell
(volume = 31.2 mm?®) with more stable turgor pressures. It is possible that the lack of
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an overshoot in Pg and long-term drift for Cell 5 are both related to the absence of an

APW change, however this could not be determined from the data available.

Although Py was determined individually for each experiment, a constant cell volume
Vo and cell radius rp were used for all experiments on the one cell, corresponding to
the measured values at the beginning of all the experiments. These values were not
adjusted to correspond to Py, since the corresponding changes in Vo and ry are so

small as to make negligible impact on the fits, which are more sensitive to the value

of Po.

(a) P - Pg values for Cell 2
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Fig. 4.3 Showing (a) differences in initial and final equilibrium pressures, and (b) a gradual downward
drift in P (——) and Pg ( ), for OPP experiments for Cell 2.
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For the HPP experiments, it is expected that Pg < Py for the positive pulses, and vice-
versa for the negative pulses (82.2.2). There was some difference in the magnitude of
Pe - Po between the positive and negative pulses, however these cannot be said to be
significant since the standard errors for the mean values of Pg - Po were quite high
(Table 4.6). The HPP data was generally not as smooth as the OPP data, and for some
data sets the equilibrium pressure would rise or drop before the perturbation so that
there was uncertainty surrounding Po. In the example in Fig. 4.4, Py is steady for a
few seconds then rises by 0.01 MPa before the perturbation, remaining at the new
value for a couple of seconds. In this case the pressure values just before the
perturbation were used to calculate Py as they were closer to the final perturbation
pressure. However, in other cases it seemed more appropriate to calculate Py using the
pressure values a few seconds before the perturbation, depending on which value was

closer to the final equilibrium pressure, which was usually quite steady.

Table 4.6 Mean differences between initial equilibrium pressures Py and final equilibrium
pressures Pe observed in the HPP data, for Cells 2 to 4. Errors given are standard errors.

Mean P, - Pe values (MPa)

Cell Positive HPP Negative HPP
2 -0.0005 % 0.0003 0.0017 + 0.0009
3 -0.0009 +0.0003 0.0012 + 0.0002
4 -0.0004 +0.0002 0.0008 + 0.0004

Data relaxation curve for HPP Run 3 of Cell 4
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Fig. 4.4 Showing a rise in initial equilibrium pressure before the perturbation in an HPP experiment
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4.3.4 Analysis of perturbation pressures in HPP data

It was observed that the “instantaneous” perturbation from Py to P, in an HPP
experiment typically took 0.3-0.8 s. Moreover, the region around the maximum or
minimum pressure of the data and the point at which the simulations begin, is often
not well-defined. In some data sets this region exhibited a kink in the data following
the extremum point (e.g. Fig. 4.5a) or during the perturbation itself (e.g. Fig. 4.5b),
where the pressure dynamics seemed to suddenly change. In other data sets the
extremum point was slightly rounded (e.g. Fig. 4.5¢). These variations may be
attributed to the manual operation of the CPP, where the operator adjusts the metal
rod by manually rotating a screw to inject or withdraw sap from the cell (see §1.2).
These variations will have implications on fitting HPP data in §4.5.3 and 84.6. Data

sets which are very noisy around the extremum were not used here.

4.4 Analysis and use of conductivity data

4.4.1 Data patterns

Variation in the measured ramp times and time-delays were different for each cell
(Table 4.7). This was often due to time-delays and ramp times being shorter for the
negative OPP experiments than the positive OPP experiments, particularly for cell 4.
The large variation in measurements for cell 4 may be partly due to a blip in pressure
just before the water phase for 4 positive OPP runs (Fig. 4.6). By disturbing the
equilibrium pressure, this blip may be causing the water phase to occur later that it
would otherwise, increasing the time-delay. It is thought that blips in pressure may be
from switching flow on and off to change solutions, and appears to be cell-dependent

occurring in extremely sensitive cells (Bramley, pers. comm.).

Table 4.7 Mean time-delay and ramp time measurements for each cell. Ramp times for Cell 1
were not obtained.

Time-delay (s) Ramp time (s)
Cell Bubble No bubble
1 0.48 +£0.07 0.55 +0.10
2 0.37 £0.07 0.57 £0.12 2.01 £0.01
3 0.56 +0.03 0.73 £0.16 2.17 £0.10
4 0.52 £0.12 0.70 +0.20 1.87 +0.45
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(a) Data relaxation curve for HPP Run 1 of Cell 3
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Fig. 4.5 Showing region of pressure perturbations for 3 HPP data sets from Cell 3.
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Data relaxation curve for OPP Run 5 of Cell 4
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Fig. 4.6 Showing a blip in pressure before the water phase for an OPP relaxation curve.

4.4.2 Use of conductivity data

a) Time-delay measurements

The time-delay measurements for the OPP experiments were used to determine to, the
time when the osmotic perturbation occurred. A value of tp (the time when the cell
pressure starts changing) was obtained from the unculled data by taking a linear
regression of points in the first 1/3-1/2 of the water phase (see Fig. 3.8). From the
time-delay tp, we have:

to=1tp - 1tp. (41)

One may ask: does the measured time-delay give information about the ULe thickness
present in an OPP experiment? In 83.6.2 it was demonstrated that, in simulated data, a
relationship exists between the ULe thickness dyLesim and the time-delay tpsim. This
suggests that a relationship may also exist between the measured time-delay tp and
the ULe thickness dy e presentin an OPP experiment. If there is a consistent tp vs.

JuLe relationship, then tp can be used to infer a value of dye.
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Since the value of dy_ e is unknown, the relationship between tp and dy e cannot be
examined directly. It may then be asked whether the simulated data can be used

instead to infer dy_e in an OPP experiment. However, this will only be possible if:

a) the simulated curve fits the initial curvature and water phase of the observed
data exactly (i.e. tpsim = tp)
b) the relationship between the ULe thickness and the time-delay in both

observed and simulated data are consistent across different cells.

It may be shown that (a) is rarely achieved and that (b) is false, thus limiting the
usefulness of tp as a general predictive tool for the ULE thickness. To show this, the
relationships between tpsim and oy esim, and between tp and dyygsim, for fits to two OPP
data sets from different cells, were examined. dyiesim In this case is used as a
hypothetical proxy for due. JduLesim Was fixed at different values, the data fitted by
optimizing Ly, ps, o and to, and tpsim and tp calculated. to must be optimized since tp is
affected by duLesim, and tp in Eq. (4.1) changes by a lesser amount than t, for fits to the
data.

It was found that for a small range of duLesim Values (3-7 x 10°°m), the duLesim VS. to
and JuLesim VS. tosim relationships for fits to two data sets from different cells were
linear (Fig. 4.7). However, the slope of these relationships differed between dygsim
vS. tp and duiesim VS. tosim (in €ach Fig. 4.7b and Fig. 4.7¢), as predicted, due to
differences in the slopes of the water phases between simulated and observed data.
The slope of these relationships also differed between the two data sets (Fig. 4.7b &
Fig. 4.7c). The duLesim VS. tosim relationship for simulations where the data is not fitted
but different values of dy_g were chosen and used to generate different relaxation
curves (Fig. 4.7a), was linear but with a different slope again.

These results confirm that (a) and (b) above are not true and that there is no method
for inferring the ULe thickness in CPP experiments from available data. Therefore,
JuLe should be treated as an additional parameter to be optimized for fits using the
UL model. Use of the measured time-delay was limited to determination of t, for OPP

experiments.
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Fig. 4.7 Showing time-delay vs. ULe thickness (du_esim) relationships. (a) For simulated curves which
change with dy_gsim. In (b) and (c), the pink line indicates dyesim plotted against t, for observed OPP
data, and the blue line indicates dy, esim plotted against tpg, for fits to the observed OPP data.
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b) Ramp time measurements

The relationship between the ramp time and time-delay was examined by imposing a
ramp in the external solute concentration in simulated OPP data and calculating the
time-delay from the output P-t curve. The model showed a correlation between the
ramp time and time-delay, as expected since they are both dependent on t; (Fig. 4.8).
However, as the main component of the ramp time is the mixing time (84.2.2b) which
may vary between runs and have no relation to t, this correlation would not

necessarily be observed in the observed data.

When measured ramp times and time-delays were plotted for the observed data (Fig.
4.9), it was found that only cell 4 exhibited a correlation between these two factors.
For cells 2 and 3 the ramp times were similar for each OPP run (Table 4.7).

Considering these patterns in the measured ramp times, the latter was not suitable for
use as an input into the model. It was decided that for model fits to OPP experiments
without a bubble (e.g. for Cell 4), the ramp time will be considered a free parameter to
be optimized along with the membrane parameters (in a similar way that the ULe
thickness was considered an additional free parameter for OPP experiments with
bubbles). Since the ramp time and ULe thickness can’t be simultaneously optimized
due to their correlation (the ramp time is correlated with the time-delay which in turn
is dependent on the ULe thickness), the ULe thickness will be fixed at average values
found for fits to the OPP experiments with a bubble, and the ramp times then
estimated using the model. This is because for a given cell geometry and the same
external flow rate and external solution, one would expect the ULe thickness to be

more or less a constant value for each cell.

There is a lack of sufficient information available on how the external concentration
changes over time. The conductivity data in Fig. 4.2 suggests that the change in
external concentration (or shape of the concentration exchange function) is non-linear
and is not actually a ramp. Consequently, different representations for this exchange

function (linear and exponential) will also be explored (see §4.7).
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Ramp time vs. time-delay for OPP simulations
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Fig. 4.8 Showing a correlation between ramp times and time-delays for simulated OPP data using the
UL model.
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Fig. 4.9 Ramp times vs. time-delays for observed OPP data for Cell 2 (A), Cell 3(m), and Cell 4 (¢).

4.5 Fits to data: Comparison of model options

4.5.1 Choice of model option

In order to compare influences of a ULe and UL.i on the relaxation curves and

estimated membrane parameters, an OPP and an HPP experiment were fit with
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different model options incorporating 0, 1, or 2 ULs. It can be noted that the UL
model with ULs excluded reverts to the classical model.

A runtime of 400s was used for the OPP data, and a runtime of 40s used for the HPP
data. Pe was calculated using the last 20s for OPP data and the last 5s for HPP data.
For all fits to subsequent data sets, the same time periods of the data and method of
calculating Pe will be used, as the optimized parameters depend a little on the extent
of the data fit.

As the thicknesses of the ULs are unknown, they are considered free parameters
which may be optimized. However, as shown in 83.6.2 the P-t curve and curve
characteristics change little after a certain ULi thickness (duvi), that is for sy, > 2x10™
m the model is insensitive to dyi. During parameter optimization the value of dyy;
often fell in this range where the model is insensitive to it, which suggests that the
optimum value for oy ; as determined by the model is large. However, since the model
cannot optimize Jyy; in this region where it is insensitive, for subsequent analyses du.
is assigned a value instead of being optimized. As one may reasonably assume that
the whole cell interior is a ULi it was chosen to fix du.; at 3x10™m, a value close to
but not equal to the whole cell interior, since larger values have negligible impact on
the pressure dynamics and estimated parameters (see 83.6.2). Where a ULe is present,

JuLe Was optimized.

For the OPP data, both a ULe and a ramp may contribute to the time-delay following
the time of perturbation (see §2.7.3c). For the Classical model the fit to the initial
points also depends on the value of to (see 8§2.5.2). When a ULe is not present, a ramp
must be included or ty optimized in order to fit the initial data points. The ULe
thickness, to and ramp time are strongly correlated, and therefore these 3 values were
fit independently of each other, according to the model options in Table 4.8.

For the HPP data, a ULe has little influence on the pressure dynamics (see §3.6.2),
and therefore the data was fit with and without a ULi only. It was found that, in
particular for the negative pulses, the data could not be fit well unless Pg was fit in
addition to Ly, as otherwise the model kept overpredicting Pg for the negative HPP.
As the CPP software Pfloek also fits the HPP data by fitting Pg, fitting P seemed a

reasonable approach to take for comparing the UL model fits to the Classical model
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fits. Pe is an output of the simulation and so cannot be directly fit, but the quantity ;e
is determined by the experimenter and this affects Pe. If zj; is the osmotic pressure in
the cell at the time of perturbation, then at equilibrium Pg = 7j; - 7. Therefore to fit
Pe, 7ip was optimised. We may assume that zje is a constant since the external
solution is constantly being replaced. Model options and parameters used to fit the
HPP data are shown in Table 4.8.

Table 4.8 Showing the different model options and their estimated parameters used to fit OPP
and HPP data.

OPP data Fitted parameters HPP data Fitted parameters
0 ULs (Classical) | Ly, ps, 0, to 0 ULs (Classical) | L,
0 ULs with ramp Lo, ps, 0, IR 0 ULs (Classical) | Ly, 7io
1ULe Ly, Ps, 0, duLe 1 ULi Lo
1 ULi with ramp Ly, ps, 0, tr 1 ULi Ly, 7io
2 ULs Ly, Ps, 0, dute

When comparing fits, the RMS, bias and trend of the residuals will be given. The bias
is the arithmetic mean residual, and indicates by how much the average residual
departs from 0. The trend is the slope of a regression line through the residuals, and

indicates how even the spread of the residuals are.

The temperature used in the model is 293K (20° C). It was found that a 2 degree
change in the temperature makes <1% difference to the estimated parameters, so that
any slight variation in the laboratory temperature (which is usually quite constant)
would have little impact on the estimated parameters. A diffusivity of D = 1.28x10°m

is used for the permeant solute ethanol.
4.5.2 Results for an OPP
The 5 model options in Table 4.8 were fit to a positive OPP experiment, OPP run 9 of

Cell 3. In order to obtain a uniform distribution of residuals, it was chosen to fit P, to

within + 0.001 MPa, which is also twice the measurement error in P. In order to
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achieve this, for some fits the RMS was weighted in a window around the extremum

(using a weight of 2), based on 10% of the maximum pressure change in the data.

Improving the fit to the extremum was also considered important since the RMS

method often fails to fit this region where there is significant noise in the data as P

approaches Pg (see §2.6.2).

All 5 model options were found to give similar fits to the data. The RMS values were

slightly better for the UL models, however the residuals were comparable with all

having a low bias and trend (Table 4.9; Fig. 4.10). All of the fits returned the same

value of Pg (as expected), which slightly over-estimated the data Pg of 0.4338 MPa by

0.001.

Table 4.9 Estimated parameters + SE for the 5 model options (listed in Table 4.8) used to fit
negative OPP data (OPP run 9 in Cell 3): 1. Classical model with optimized t; 2. Classical model
with ramp; 3. UL model with 1 ULe; 4. UL model with 2 ULs; 5. UL model with 1 ULi and ramp.

1. 2. 3. 4, 5.

0 ULs 0 ULs with ramp 1ULe 2 ULs 1 ULi with ramp
to (S) 0.74 £0.012| O 0 0 0
ramp time (s) 0 145 +0.03 0 0 1.49 +0.02
SuLi (x 10° m) 0 0 0 30.0 30.0
SuLe (X 10° m) 0 0 488 +0.06 | 4.80 +0.06 0
Lo (x10°ms *MPa?) | 2.88 +0.02 | 2.88 +0.03 | 3.16 +0.04 | 2.33 +0.02 | 2.20 =0.02
ps (x 10°m s 3.77 £0.01| 3.83 +0.01 | 437 +0.02 | 6.46 *0.03 | 5.29 +0.02
el 0.257 +0.001]0.260 +0.001 | 0.299 +0.001| 0.444 +0.002| 0.364 +0.003
tm (S)* 9.30 9.31 9.09 9.31 9.40
Pm (MPa) 0.3508 0.3503 0.3501 0.3494 0.3496
Pe (MPa)** 0.4348 0.4348 0.4348 0.4348 0.4348
RMS (x 10 MPa) 7.26 6.94 6.55 6.14 6.01
Bias (x 10 MPa) 3.93 4.55 3.79 3.25 2.92
Trend (x 10*MPas™) | 3.50 3.63 3.68 3.17 3.30

* For the observed data, t,, = 9.49s, P,, = 0.3502 MPa, P = 0.4338 + 0.0001 MPa.
** SE for Pg = 1x10®° MPa
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Relaxation curves for the 2 UL model fit to OPP run 9, Cell 3
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Fig. 4.10 Results from fitting the UL model with 2 ULs to OPP run 9 of cell 3, showing raw pressure
data (-----) and model fit ( ). (a) Showing 0-40s of the curve, (b) showing the full simulated
relaxation curve, (c) showing residual plot, with trendline (——). Curves and residual patterns were
very similar for all 5 model options.
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Parameter values were found to be the same for the two classical model options
(Table 4.9; Fig. 4.11). With the UL model, including a ULe caused all 3 membrane
parameters to increase slightly, while including a UL caused ps and ¢ to increase and
L, to decrease. Changes in ps and o due to ULs were strongly correlated. The ULi had
a far greater effect on the estimated parameters than did the ULe, and differences in
the membrane parameters between the UL model and the classical model were
greatest when 2 ULs were present (Fig. 4.11, Table 4.10). These results are in

accordance with the parameter analysis carried out in 83.6.5a.

Estimated parameters for the OPP model options

P

Lidd

Model option

Lp (x10°), ps (x10°), &
O P N W N O OO N

Fig. 4.11 Showing how estimated L,, ps and o vary between the 5 OPP model options. Model option
number refers to the model options shown in Table 4.9.

Table 4.10 Relative percentage differences in parameters estimated using the UL model and the
classical model with a ramp. Percentage differences are relative to the classical model values.

"1 Ule 2ULs ULiwith ramp
L, (x 10°m s *MPa™) 10% -19% -23%
ps (x 10°m s™) 14% 69% 38%
o 15% 71% 40%

It is interesting to observe that optimized ramp times for the 0 ULs and 1 ULi model
options were similar, and optimized Jy.e values for the 1 ULe and 2 ULs model

options were also similar (Table 4.9). This is probably because a ULe and ramp affect
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points around t=0 but a ULi does not (a ULi does not introduce a time-delay, see
83.6.2).

45.3 Model results for an HPP

The 4 model options for HPP data in Table 4.8 were fit to a negative HPP experiment,
HPP run 8 of Cell 3. Fits using all 4 model options showed the same residual pattern
(Fig. 4.12c), with differences in the magnitude of residuals (Table 4.11). It was found
that for fits where 7;; (and therefore Pg) was optimized, RMS values were lower and
fits to the shoulder of the curve (between 5-15 s) better (Table 4.11, Fig. 4.12a,b). For
these fits Pe underpredicted the data Pg value of 0.4296 + 0.0002 MPa. For fits where

min were non-optimized the data Pg was overpredicted.

Fits using the UL model fit the shoulder of the curve better than the classical model,
as suggested by the lower maximum residuals (Table 4.11). L, values were higher and
RMS values lower for the UL model fits compared to those predicted by the classical
model. This parameter behaviour is in accordance with the parameter analysis carried
out in 83.6.5a. The relative difference in the estimated parameters between the UL

and 0 ULs models, where 7j; was optimized, was 5%.

Table 4.11 Results from fitting the negative HPP experiment (run 8 of Cell 3), with and without
a ULi, and with and without optimizing z;,.

7y hon-optimized 7 optimized
0 ULs 1 ULi 0 ULs 1 ULi
SuLi (x 10° m) 0 30 0 30
i (MPa) 0.4379 0.4379 0.4365 +0.0001 0.4367 +0.0001
L, (x 10°m s * MPa™) 3.28 +0.03 3.48 +0.03| 3.53 +0.03 3.71 +0.02
Pe (MPa)* 0.4303 0.4303 0.4289 0.4291
RMS (x 10™MPa) 14.13 11.75 9.57 7.63
Bias (x 10 MPa) 6.16 5.45 -1.18 -0.88
Trend (x 10*MPa s™) 0.29 0.26 -0.20 -0.16
Max. residual (x 10 MPa)** | 25.79 21.78 19.88 16.27

* P: of the data was 0.4296 + 0.0002 MPa. Standard errors for Pg are all < 1x10™° MPa
** Maximum residuals occurred in the shoulder of the curve (5-15 s).
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The HPP fits were found to be very sensitive to the value of P4, the perturbation
pressure. In Table 4.11 the fits begin at the extremum point of the data, such that (to,
P1) = (tm, Pm), but as mentioned in 84.3.4 there is some uncertainty in the value of P,
When (to, P1) was chosen to be a point about 0.1s after the extremum, lower RMS and
estimated L, values were obtained for both the classical and UL models. zi; and Pge
values remained the same. Results for the UL model are shown in Table 4.12 (L, and
RMS values changed by the same amount for the classical model). It is clear that
changing P, by only 0.001 MPa may significantly affect L, and alter the quality of the
fit. This sensitivity and possible variation in the estimated L, must be taken into
account when comparing values of L, between data sets.

Table 4.12 Comparing L, and RMS values between 2 fits using different values of (to, P;). Results
are for those using the UL model with 1 UL, with z;; optimized.

P, (MPa) 0.3833 0.3855
L, (x 10°m s * MPa™) 371 +0.02 3.63 +0.02
RMS (x 10™ MPa) 7.63 7.22

Although the HPP and OPP data come from experiments carried out on the same cell,
the estimated L, values between the data sets differed significantly. L, values were
higher for the HPP data even when a variation of 0.1 in L, (due to sensitivity to P1) is
taken into account. From Table 4.9 and Table 4.11, for the classical model L, was
3.28-3.53 x 10°® m s MPa™ for the HPP data compared with 2.88 + 0.03 x 10° m s™
MPa* for the OPP data. For the models with a UL, L, was 3.48-3.71 x 10® m s
MPa* for the HPP data compared with 2.2-2.33 x 10° m s™* MPa™* for the OPP data.
Refer to discussions in §4.6.2b and §4.8.3b on differences in estimated parameters

between OPP and HPP experiments.

4-26



Relaxation curves for the 1 ULi model fit to HPP Run 8, Cell 3
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Fig. 4.12 Results from fitting the UL model with 1 ULi to a negative HPP experiment (HPP run 8 in
Cell 3. (a) and (b), showing raw pressure data (-----) and model fit ( ). (c), residual plot for
relaxation curves in (b), with trendline (——).
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4.5.4 Effects of ULs on cell pressure dynamics

The above comparison of fits using different models shows that the UL model is
capable of fitting CPP data as well as or better than the Classical model, for both OPP
and HPP data. If the UL model is assumed to accurately represent transport across a
membrane in the presence of ULs, then the above results suggest that for an OPP, the
classical method of parameter estimation (using the Classical model) may
overestimate L, by up to 19%, underestimate ps by up to 71%, and underestimate o by
up to 73% (Table 4.10). These figures were obtained by comparing the parameters
between the Classical model and the UL model with 2 ULs. For an HPP, the classical

method of parameter estimation may underestimate L, by 6%.

These differences are quite large. CPP experimenters have asserted that the ULs
should have limited effect on the membrane parameters, since the time it takes for
solutes to move through a UL is generally much shorter than the halftimes for the
water or solute phases (Steudle and Tyerman, 1983; Hertel and Steudle, 1997).
Although the experimental observation is true — the solute concentration in the ULs
for an OPP experiment reaches a constant value within a few seconds compared to
halftimes of around 30s (see the UL concentration profiles in Fig. 3.11) — a closer
examination of the assertion is warranted. An analysis of the effects of ULs over the
course of a CPP experiment can be made by plotting the difference in concentration
across the membrane over time. When this was done for different model fits to OPP
and HPP data (Fig. 4.13), the results clearly showed that a UL affects the
concentration difference at the membrane for all time t. Thus, ULs affect the pressure
dynamics for all time t.
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Temporal variation of the concentration difference across the membrane

(a) AC vs. time for 3 model fits to a positive OPP experiment
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Fig. 4.13 Change in concentration across the membrane (AC) over time. (a) Showing fits to a
positive OPP experiment (Dataset: OPP run 9, Cell 3), incorporating 0 ULs (—), 1 ULe (——),
and 2 ULs (——). (b) Showing fits to a negative HPP experiment (Dataset: HPP run 8, Cell 3),
incorporating 0 ULs (—), and 1 ULi (—).

The effects of ULs on the time-course of AC are different for HPP and OPP
experiments. With ULs AC is biphasic for both OPP and HPP experiments (Fig.
4.13). However, for an HPP an increase in the magnitude of AC precedes a decrease
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in the magnitude of AC such that the return of C to equilibrium is in an opposite
direction to that when no ULs are present. This is due to the primary influence of
convection in the ULs in an HPP experiment (see §3.6.4a), which acts in the opposite
direction to diffusion (see 83.1.3). For an OPP experiment, diffusion dominates in the
ULs (see §3.6.4b). The magnitude of AC for the HPP is also much smaller than that
for the OPP, illustrating the smaller effect of ULs on an HPP experiment. These
findings are consistent with statements in the literature regarding the primary roles of
sweep-away (convection) in HPP experiments and diffusion in OPP experiments
(Steudle and Tyerman, 1983).

455 Comments on optimization of the ULi thickness

Practical difficulties in optimizing the ULi thickness were explored by optimizing duL;
for an HPP fit (with zi» non-optimized). Although the value of L, was found to be the
same as the fit in Table 4.8 for a fixed oyyj, the SE for dy.; was very large, with oy =
32.91 + 615 x 10° m. This is indicative of the fact that small changes in su.; make
little difference to the RMS value, so that an optimum dy. cannot be achieved.

4.6 Fits to data: Estimation of parameters for 3 cells

Since in reality there are both internal and external ULs, fits to data sets in the next
two sections will use the classical model (without a ramp, since a ramp makes little
difference), and the UL model with 2 ULs. This will be done by first fitting OPP data
from experiments with bubbles, where the ULi thickness is fixed at 3.0 x 10°m (a
value larger than this makes negligible difference to the estimated parameters, see
83.6.2) and the ULe thickness is found by optimization. No ramp is included in the
fits, since only a transit time is present for OPP experiments without bubbles
(84.2.2b), where the time for the solution to travel the length of the cell is at most
0.26s. A ramp time of 0.13s introduced into the models has very little effect on the

pressure dynamics. Optimized parameters for the OPP fits will thus be: Ly, ps, o, dute.

Although a ULe has negligible influence on HPP experiments, for consistency a ULe
will be used in model fits to HPP data, with dy.e fixed at the average value found for
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the cell in the OPP fits. This is because one would expect the thickness of the ULe to
be approximately the same size for each cell under the same external conditions.

Optimized parameters for the HPP fits will be: L, and ;.

In 84.6.1 results from the classical and UL model incorporating 2 ULs will be
compared. The remaining sections will primarily concentrate on results obtained from
the UL model, since these are considered to be more representative of the membrane

parameters in Chara.

4.6.1 Fit results using the classical model vs. UL model
a) Predicted P-t curves

The UL model was generally found to fit the data well. For the OPP experiments,
RMS values for fits using the UL model were lower than those using the classical
model for all 6 data sets. On a whole the fit statistics for the UL model were better.
The main regions of the relaxation curve where the UL model fits showed

improvement were in the water phase and first part of the solute phase.

Table 4.13 Fit statistics for 4 OPP experiments with bubble, Cell 4. P¢' and P,," are data
equilibrium pressures and data extremum pressures respectively.

Run 7 (pos) Run 6 (neg) Run 9 (pos) Run 10 (neg)
UL model
RMS (x10'4MPa) 6.94 9.64 7.21 6.94
Bias (x10™MPa) 2.1 3.7 2.5 2.1
Trend (x10° MPa) 3.3 5.7 3.7 2.4
Largest residual (x10™ MPa) 15.7 -24.2 -15.3 -18.1
Pe - Pg' 0.0009 -0.0020 0.0010 -0.0010
Pm- P’ -0.0004 0.0002 -0.0002 0.0004
Classical model
RMS (x10“MPa) 8.27 11.67 8.98 7.47
Bias (x10™MPa) 2.3 -3.9 2.7 -2.6
Trend (x10° MPa) 5.1 7.5 5.4 -3.2
Largest residual (x10*MPa) | -18.9 -34.8 -19.0 -31.0
Pe - PE' 0.0010 -0.0022 0.0011 -0.0011
Pm - Pm' 0.0003 -0.0008 0.0005 -0.0007
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Table 4.13 summarises details of fits to OPP experiments for Cell 4. The UL model
fits generally had lower RMS values, residuals, and trends in the residuals than the
classical model. For Run 6 Pg was markedly underpredicted, resulting in a larger
magnitude (given by the RMS value), bias and trend of the residuals. This was also
the case for Run 8 (not shown in Table 4.13). A contributing factor in why Pg was
underpredicted for these two runs may be the comparatively small difference between
the initial and final equilibrium pressures, since the change from half to full-strength
APW results in a greater difference between Ppand Pe (see 84.3.3). When APW was
kept at full-strength in the model, the data was fit better with a RMS of 5.80 MPa and
Pe-Pe' = 0.0006 MPa. See further discussion in §4.8.6.

For fits to OPP experiments for Cell 2, RMS values for fits using the UL model were
lower than or equal to those using the classical model for 3 out of 4 data sets, and for

Cell 3 the proportion was 2 out of 4 (data not shown).

For the HPP experiments, the UL model fit the data better than the classical model for
all data sets fit in Cells 2-4, with consistently lower RMS values (e.g. Table 4.14).
The main improvement was in the first half of the data from t, to the end of the
shoulder of the curve. However, the shoulder of the curve usually could not be fit as

well as other regions of the curve.

For Cell 4 the negative HPP data were more difficult to fit than the positive HPP data,
with RMS values in the range 4.59-7.02 MPa for the 5 negative pulses compared with
3.48-4.93 MPa for the 5 positive pulses for fits with the UL model (Table 4.14). The
difference between z;; and rjp was also generally higher for the negative pulses in this
cell, with z;; - 7ip being in the range 0.0007-0.0015 MPa compared with <0.0006 MPa
for the positive pulses. These patterns were not generally observed for Cells 2 and 3,
although the Cell 2 fits also displayed a significant difference in values of zj; - 7o
between positive and negative pulses. There seems to be no underlying reason for this
difference in fits between positive and negative pulses. Differences between Py and Pg

were not different for Cell 4 compared to the other cells (Table 4.6).
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For Cell 4, experiments were carried out in two sets of 6 HPP experiments, separated
by two or more OPP experiments. The nature of the fits did not seem to vary between

the sets (Table 4.14).

Table 4.14 Fit statistics for 4 HPP experiments (out of 10 fit altogether), for Cell 4. P¢' is the

data equilibrium pressure.

Run 11 (pos) Run 12 (neg) Run 1 (pos) Run 2 (neq)
UL model
RMS (x10'4MPa) 4.93 5.06 3.48 5.98
Bias (x10“MPa) 1.2 -0.9 0.5 1.2
Trend (x10° MPa) 3.7 0.9 3.7 2.1
Largest residual (x10™ MPa) 12.8 10.9 -7.1 -10.8
Pe - P¢' 0.0003 -0.0003 0.0003 -0.0004
TTi1 - TTio 0.0005 -0.0012 -0.0002 -0.0006
Classical model
RMS (x10“MPa) 5.66 6.06 4.30 6.93
Bias (x10™MPa) 1.4 -1.1 0.7 -1.4
Trend (x10° MPa) -3.3 -1.6 45 2.7
Largest residual (x10™ MPa) 14.0 12.4 75 -12.2
Pe - P¢' 0.0004 -0.0004 0.0004 -0.0005
TTi1 - TTio 0.0006 -0.0014 -4.86E-06 -0.0008

b) Estimated parameters

The parameter ratio ¢ is defined as: (classically-estimated parameter)/ (parameter
estimated using the UL model). It was found that for fits to the OPP experiments
values of & were similar for each run on a given cell, but differed between cells (Table
4.15). The classically-estimated L, was consistently greater than that predicted by the
UL model, whilst the classically-estimated ps and o values were consistently less than
that predicted by the UL model. Results suggest that for OPP experiments, the
classically-estimated L, may over-estimate the true membrane L, by up to 50%, and
the classically-estimated ps and o may under-estimate the true membrane ps and o by
up to 50%.

The parameter ratio &(L,) for fits to the HPP experiments deviated much less from 1.0,
and were similar between cells (Table 4.15). The classically-estimated L, was
consistently less than that predicted by the UL model. Results suggest that for HPP

4-33



experiments the classically-estimated L, may under-estimate the true membrane L, by
up to 5%.

Table 4.15 Parameter ratios for OPP experiments with bubbles and HPP experiments.

OPP expts HPP expts
Cell2 Cell3 Cell4 | Cell2 Cell3 Cell4
sample size 4 4 6 4 4 9
¢ (Lp) 149 125 125 | 097 095  0.97
¢ (ps) 049 0.60 0.67
& (o) 0.49 0.60 0.67

A direct comparison of these findings with those in Chapter 3 is not possible as
parameter ratios were not obtained for the UL model with 2 ULs in Chapter 3.
However, these findings are broadly consistent with those in §3.6.5 where, keeping in
mind that the ULi has more influence on the pressure dynamics than the ULe, it was
predicted that for OPP experiments the classical model is likely to underpredict ps and

o and overpredict L, by 30% or more (Fig. 3.13).

4.6.2 Parameter variation (UL model)
a) Within-cell variation

A previous examination of the conductivity data showed that measured time-delay
values tp vary within each cell, in particular between positive and negative pulses
(Table 4.7). This suggests that the predicted oy would vary within each cell, which
indeed was found in model fits to the data (Table 4.16) where values for dye varied
by 0.4-1.5 x 10™° m between positive and negative OPP experiments conducted on the
same cell. For Cell 4, where the differences in measured time-delays between positive
and negative experiments was greatest (84.4.1), the difference in estimated Jy. values

between positive and negative experiments was also greatest.

However, it is doubtful whether dy e would in reality differ between positive and
negative experiments. The pattern was also inconsistent, with dye larger for the

positive experiments in Cells 3 and 4, and vice-versa for Cell 2 (although for the latter
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the difference in dyLe was not significant). One would expect the ULe thickness to be
the same for all OPP experiments on the same cell, under the same external
conditions. It is probable that the variation of dy_e between positive and negative
experiments is due to experimental or measurement errors. Sometimes bubbles may
get stuck in the tube, affecting flow and causing variation in the time-delay (Bramley,
pers. comm.). It is interesting, however, that the range of ULe thickness values
predicted for the data are in the range of the values estimated in the literature, i.e. 30-

50 um.

Table 4.16 Estimated parameters = SD from the UL model, for OPP experiments from Cells 2-4.
L = cell length, d = cell diameter.

Cell 2 Cell 3 Cell 4
L (mm) 24 45 33
d (mm) 9.77 7.91 9.77
£ (MPa) 27.9 24.6 36.5

Pos Neg Pos Neg Pos Neg

sample size 2 2 2 2 3 3
e (Xx10° m) 3.05 +0.15 3.46 +0.29 | 4.89 +0.13 4.25 +0.00 | 5.01 *0.39 3.48 +0.06
L,(x10°ms* MPa™)| 1.38 +0.01 1.16 +0.03 | 2.77 +0.62 2.19 #0.12 | 1.28 +0.04 1.36 %0.03
ps (x10°m s™) 7.76 +0.19 8.93 +0.05 | 6.17 +0.42 6.22 +0.21 | 4.15 +0.04 3.88 +0.2
o 0.490 +0.004 0.573 +0.01 |0.416+0.04 0.419 +0.03 | 0.438 +0.01 0.433+0.01

A difference in estimated parameters between positive and negative pulses was
observed for all 3 cells (Table 4.16). However, a significant difference was only
observed for Cell 2, and furthermore there was no consistent pattern in the magnitude
or direction of the differences. For example, L, for the negative pulses was less than
L, for the positive pulses for Cells 2 and 3, but vice-versa for Cell 4 (Table 4.17). The
sample size of 7 positive and 7 negative OPP experiments was not sufficiently large
for definitive conclusions regarding polarity in the parameters to be drawn. There
were large standard deviations for the estimated L, and ps for Cell 3 (Table 4.16),
which was due to estimated parameters for one of the positive experiments differing
significantly from those for the other 3 experiments fitted for that cell. The strength
and direction of the polarity also depended on the type of model fit to the data (Table
4.17).
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Table 4.17 Ratios of estimated parameters from positive OPP experiments to corresponding
parameters estimated from negative OPP experiments.

Cell2 Cell 3 Cell 4
sample size 4 4 6
UL model

SuLe 0.88 1.15 1.44

Lp 1.19 1.27 0.93

Ps 0.87 0.99 1.07

o 0.85 099 1.01

Classical model

L, 1.17 1.18 0.91

Ps 0.97 1.00 1.01

o 0.94 0.99 0.96

It is possible that differences in estimated dy. values are contributing to differences

in the estimated parameters between positive and negative experiments. However, for

Cell 4, where the difference in estimated oy values between positive and negative

experiments was greatest, the difference in estimated parameters between positive and

negative experiments was not more than that for Cells 2 and 3 (Table 4.16). This

suggests that oy . values are not strongly influencing the estimated parameters. This

will be further examined in 84.8.1.

For the HPP data, there was also no evidence that a polarity in estimated L, values

exists. For Cell 4, where the sample size was largest, L, was similar for positive and

negative experiments (Table 4.18). Although there was a significant difference in L,

between positive and negative pulses for Cell 3, two of the data sets were difficult to

fit, and the RMS values exhibited the widest range for this cell (a range of 4.5MPa).

Table 4.18 Estimated L, = SD from the UL model, for HPP experiments from Cells 2 to 4. L =
cell length, d = cell diameter.

Cell 2 Cell 3 Cell 4
L (mm) 24 45 33
d (mm) 9.77 7.91 9.77
g (MPa) 27.9 24.6 36.5
Pos Neg Pos Neg Pos Neg
sample size 2 2 2 2 5 5
L, (x10°m s MPa™) [1.56 +0.01 1.61+0.043.47 +0.03 3.72 +0.12| 1.49 +0.05 1.51 +0.05
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b) Between-cell variation

For the OPP experiments, estimated membrane parameters were found to differ
between cells (Table 4.19). A significant difference was observed in ps, where the
value was twice as large for Cell 2 as for Cell 4. A significant difference was also

observed in Ly, where the value was almost twice as large for Cell 3 as for Cell 2.

It was observed that the average estimated ULe thickness for each cell was correlated
with cell length (Table 4.19). This could be because dyie is not constant along the
length of the cell, but is thinner at the leading edge (upstream of the flow) and thickest
at the trailing edge (Pedley, 1983). The model uses a constant oy, and is effectively
taking an average of the varying oy along the cell length. If it is assumed the
maximum Jyy. is reached after the same distance from the leading edge for all cells,
the average oy would be larger for a longer cell, where the maximum Jy.e would

occupy a higher proportion of the cell length compared to for a shorter cell.

Table 4.19 Average estimated parameters = SD for OPP expts, for each cell, using the UL model.

Cell 2 Cell 3 Cell 4
Cell geometry
L (mm) 24 45 33
d (mm) 9.77 7.91 9.77
£ (MPa) 27.9 24.6 36.5
sample size 4 4 6
Parameters
SuLe (x10°m) 3.26 £0.30 4,57 £0.38 4.25 +0.87
Ly (x10°m s MPa™) 1.27 +0.13 2.48 0.15 1.32 +0.06
Ps (x10°m s 8.34 +0.68 | 6.19 *0.27 | 4.01 +0.19
o 0.532 +0.05 | 0.418 +0.03 | 0.436 +0.01

Table 4.20 Average estimated L, + SD for HPP expts, for each cell, using the UL model.

Cell 2 Cell 3 Cell 4
sample size 4 4 10
L, (x10°m s*MPa™) | 1.58 #0.04 3.59 #0.16 1.50 +0.05
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For the HPP experiments, estimated L, values were similar for Cells 2 and 4 but
markedly larger for Cell 3 (Table 4.20), which is the same pattern as observed in the
OPP experiments (Table 4.19).

It was observed that L, values were 14-45% higher for the HPP experiments as
compared to the OPP experiments. In the literature it has been found that L, for HPP
experiments is higher than that for OPP experiments, which has been attributed to the
greater influence of the ULe on OPP experiments since the estimated L, values were
found to converge at high stirring rates (Steudle and Tyerman, 1983). It is interesting
that this difference in L, values between HPP and OPP experiments was observed in
the model results here, since the model takes ULs into account so that one would
expect the L, values to be the same. Possible reasons for this will be discussed in
§4.8.3b.

4.7 Fits to data: OPP experiments with ramps (UL model)

4.7.1 Exploration of exchange function

The effect of the shape of the external concentration C(t) of permeant solutes as a
function of time (exchange function) on parameter estimation was explored by
representing it as a linear ramp, and as 2 different exponential functions. If C; the
final concentration of permeant solutes in the bulk solution after ramping, Co the
concentration of permeant solutes in the bulk solution at t=0, and tz the ramp time,

then these functions are:
Linear function:

(Cl — Co)

R

C(t)=C, + t, 0<t<tq (4.1)

Bounded exponential function 1:

C(t)=%[l—em“]+co, O<t<tr (4.2)
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Bounded exponential function 2:

C(t)=C,+(C,-C)e", 0<t< . (4.3)
1 0 1

Egs. (4.1) & (4.2) reach the final concentration at tg, and Eq. (4.3) reaches 2/3 of the
final concentration at tz and approaches C;as t — « (see Fig. 4.14).

Ramping functions
160 -
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Fig. 4.14 Plots for different ramping functions, used for fits to the positive OPP experiment, Run 1 in
Cell 4. Functions used: a) linear (——) with tg = 0.8s, b) bounded exponential 1 (——) with tg = 0.95s,
c) bounded exponential 2 (——) with tg = 0.42s, d) bounded exponential 2 (——) with tz = 0.6s.

Membrane parameters and ramp times were optimized for one positive OPP
experiment in Cell 4, using the different exchange functions. The ULe thickness dye
was fixed at 5.03 x 10” m (the average value found for fits to positive OPP
experiments with bubbles). The optimizations returned different ramp times tz but the
same membrane parameters for each of the exchange functions (Table 4.21), and
optimized membrane parameters appeared to be independent of the shape of the

exchange function when tg is optimized.
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Table 4.21 Optimized parameters using different exchange functions for OPP Run 1 (positive
pulse) for Cell 4. Ramp times tz were also optimized. Standard errors from optimization are
similar to those in Table 4.17.

Linear Exponential 1 Exponential 2
tr (S) 0.8 0.95 0.42
L,(x10°m s™ MPa™) | 1.20 1.20 1.21
s (x10°m s 3.93 3.93 3.93
o 0.448 0.448 0.446
RMS (MPa) 5.81 5.75 5.57

4.7.2 Influence of exchange function on membrane parameters

4 OPP data sets for Cell 4 (runs 1-4) were fit using Eqg. (4.1) as the exchange function.
During optimization of tg it was found that the simulated data and RMS values were
insensitive to small changes in tz. Therefore a best tg was found by fixing tz at 3 or 4
different values, optimizing the membrane parameters for each tg, and interpolating
plots of tg, Ly, ps, and o vs. RMS values to obtain values of tg, Ly, ps, and o which
corresponded to a minimum RMS. It was found that the estimated L, and ps were
consistently lower and o consistently higher than the corresponding values for OPP
experiments with bubbles (Table 4.22). As L, is correlated with tr through the effect
of a ULe on the water phase (83.6.2), if a ramp time is not included at all (i.e. tr = 0)
the estimated L, from OPP experiments without a bubble would be even less than that
estimated from OPP experiments with a bubble (where dy. is the same).

Table 4.22 Average optimized parameters + SD for Cell 4, for OPP experiments with bubbles
(runs 5-10) and without bubbles (runs 1-4). For experiments without bubbles, ramp times are
fixed and the membrane parameters are optimized.

Pos Neg
SuLe (x10° m) 5.01 +0.39 3.48 +0.06
With bubble

sample size 3 3
L, (x10°m s™ MPa™) 1.28 +0.04 1.36 +0.03
s (x10°m s 415 +0.04 3.88 0.2
o 0.438 +0.01 0.433  +0.01]

Without bubble
sample size 2 2
tr (S) 0.71 +0.13 0.67 +0.29
L, (x10°m s™ MPa™) 1.14 +0.08 1.17 +0.04
s (x10°m s 3.90 +0.04 3.87 +0.18
o 0.443 +0.007 0.447 +0.011]
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The membrane parameters, however, should be the same since the experiments are all
conducted on the same cell. When runs 1 and 2 were fit using Eq. (4.3) as the
exchange function and tr fixed (at some arbitrary value), the data was fit quite well
and the estimated L, values (Table 4.23) were much closer to the estimated values
from OPP experiments with bubbles (Table 4.22), although ps was still low. The
improved consistency in L, is probably because the initial slope of this exchange
function is now similar to the slope of the linear function (Fig. 4.14d), at least for Run
1, and may be closer to the actual exchange function for the experiment. It is
encouraging that when the voltage data in Fig. 4.2 was digitized, a bounded
exponential function of the form of Eq. (4.3) fit it well, suggesting that Eq. (4.3) may

be an appropriate function for representing the change in external concentration.

Table 4.23 Optimized membrane parameters using exponential function 2 for the ramp, for a
positive and a negative OPP run. Ramp times t are fixed at approximately the averaged values
for fits in Table 4.20.

Run 1 (pos) Run 2 (neg)
SuLe (x10°m) 5.03 3.49
tr (S) 0.6 0.5
L, (x10°m s™ MPa™) 1.27 1.29
ps (x10°m s™) 3.89 3.69
c 0.443 0.432

The above analysis shows that knowledge of an appropriate exchange function for the
data is necessary in order to estimate membrane parameters for OPP experiments
without a bubble. Since the duration and shape of the exchange function may differ
between experiments, a different function may be required for each experiment. The
definition of the measured exchange time must also be the same as that used in the
models. The measured ramp times of 1.37-2.34 s for Cell 4 (Table 4.2) are much
larger than the fixed ramp times used in Table 4.22, but the measured tg are defined as
being the time it takes for the external concentration to approximately reach the final
concentration, which is different from the definition of tz in Eq. (4.3). At present, a
consistent set of membrane parameters for all the OPP data for Cell 4 is not possible

due to lack of knowledge about the exchange time and function.
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4.8 Discussion of some predictions of the UL model

4.8.1 How estimated parameters vary with ULe thicknesses

Analysis of results from OPP experiments revealed no strong correlation between the
estimated Jy.e and estimated membrane parameters within each cell (Fig. 4.15).
Within each cell the estimated parameters were fairly consistent. This was
particularly so for Cell 4, where the estimated parameters were quite constant over a
large range of dy.e values. A consistent estimate of the membrane parameters for
each cell, which is independent of dy_e, is a good sign since the estimated parameters,
if they are accurately reflecting those of the membrane, should be constant for a cell

and not dependent on external factors.

Fig. 4.15 shows that scatter in the estimated membrane parameters for each cell was
less than the variation in membrane parameters between cells. The results clearly
show that membrane parameters between cells can differ significantly. For example,
for Cells 2 and 3 the between-cell difference in parameters was much greater than the
within-cell differences, so that they formed two separate clusters on the plot where

the ranges of dy. for each cell did not overlap.

Results from the 3 cells together may appear to show a correlation between dy.e and
the membrane parameters (Fig. 4.15). However, this is largely due to the fact that
results from Cells 2 and 3 occupy separate regions of the plot. There should be no
reason for a correlation between oy and the membrane parameters, since estimation
of the membrane parameters has taken oy, into account. Data from a larger cell

sample size would be unlikely to show a correlation.
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Parameters vs. ULe thickness for Cells 2-4
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Fig. 4.15 Estimated L, (blue), ps (red), and o(green) vs. estimated ULe thickness, for fits to individual
OPP experiments from Cell 2 (#), Cell 3 (m), and Cell 4 (A).

4.8.2 Sensitivity of estimated ULe thickness to measured time-delay

In order to examine the extent to which the experimental time-delay and estimated

parameters vary with the estimated ULe thickness, some individual model fits to OPP

data were identified for comparison.

In 84.4.2 it was shown that a relationship generally exists between the estimated ULe

thickness and the experimental time-delay. However, this relationship was not always

observed in fits to OPP data. For example, in one case the experimental time-delay

was the same for very different values of dy. predicted by the model (Table 4.24). In

another case, the experimental time-delays were very different but the model

estimated similar values of dyLe (Table 4.25).

Table 4.24 Estimated ULe thickness and parameters + SE for a positive and negative OPP run
from Cell 3. Results are from using the UL model, and for when the experimental time-delay is
the same but the estimated ULe thicknesses are different.

Run 9 (pos) Run 10 (neg)
Time-delay (s) 0.58 0.58
Suie (x10° m) 480 +0.06 4.25 +0.20
L,(x10°m s™ MPa™)| 2.33 $0.02 210 #0.02
ps (x10°m s™) 6.46 x0.03  6.37 £0.07
o 0.444 +0.002 0.442 +0.005
RMS (x10™ MPa) 6.14 6.43
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Table 4.25 Estimated ULe thickness and parameters + SE for 2 positive OPP runs from Cell 4.
Results are from using the UL model, and for when the estimated ULe thicknesses are similar but
the experimental time-delays are different.

Run 5 (pos) Run 7 (pos)
Time-delay (s) 0.56 0.69
e (x10° m) 5.22 #0.07 5.25 +0.06
L,(x10°m s*MPa™)| 1.32 #0.01  1.27 20.01
s (x10°m s 410 #0.01 4.18 +0.01
o 0.444 +0.001 0.442 +0.001
RMS (x10™ MPa) 5.46 6.94

Variation in dye also affects all 3 membrane parameters (see Fig. 4.15; not evident
from Table 4.24). It was observed that where values of dy . were similar between
runs with the same magnitude and direction of the perturbation pulse, the estimated
parameters were usually quite similar (e.g. Table 4.25). However, for one case the
values of oy, were the same but a degree of variation in the membrane parameters
was observed (e.g. ps and ¢ in Table 4.26).

Table 4.26 Estimated ULe thickness and parameters + SE for 2 negative OPP runs from Cell 2.
Results are from using the UL model, showing the case for when the estimated ULe thicknesses

are the same, the experimental time-delays are similar, but the estimated parameters quite
different.

Run 8 (neg) Run 10 (neg)
Time-delay (s) 0.52 0.58
SuLe (x10°m) 425 +0.16  4.25 +0.20
L, (x10°m s™ MPa™)| 2.27 %0.02 2.10 +0.02
ps (x10°m s™) 6.07 +0.08 6.37 +0.07
o 0.397 +0.004 0.442 +0.005
RMS (x10™* MPa) 4.92 6.43

It was suggested previously (84.6.2a) that since the measured time-delay generally
influences the estimated dy.e and perhaps the membrane parameters, the polarity
observed in the estimated membrane parameters (i.e. estimated parameters sometimes
differed between positive and negative pulses of the same magnitude) may not
actually reflect that of the system but may be due to errors in the measured time-
delay. However, results in this section show that differences in estimated parameters
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between positive and negative pulses cannot solely be attributed to differences in the
measured time-delay, and thus the estimated Jy. between positive and negative
pulses. Tables 4.24-4.26 show that the degree of parameter variation would not
necessarily be different if consistent values of to and dyL. were used in the fits to OPP
data. The estimated parameter values (as well as the large variation in standard errors
between the fits) in Tables 4.24-4.26 show that due to some variation in parameters
estimated with the model, it is necessary to estimate parameters for several
experiments so that parameters can be averaged and more conclusive relationships

between the parameters can be drawn.

4.8.3 Estimated L, values
a) Sensitivity of L, to Py in HPP expts

Simulations of HPP data can be initialised at any observed (t,P), but is usually at the
perturbation values corresponding to the extremum (ty,, Pn) of the data. It has
previously been shown that there is some experimental uncertainty surrounding these
values (84.3.4), and that the estimated L, is very sensitive to the value of the initial
(perturbed) pressure P, used in the model (84.5.3). Therefore the impact on the

estimated L, due to selecting a different initial (to, P1) point is explored here.

The sensitivity of L, to P, was analysed using the UL model to estimate the
parameters for an HPP data set. L, and z; were optimized for 6 different values of P,
corresponding to value of t between 0s and 1.07s after the time t,, of extreme pressure
Pm. It was found that using values of P; less than P, decreases the estimated value of
L, for both positive and negative pulses (Fig. 4.16).
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P, vs. Lp for HPP Run 5, Cell 4
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Fig. 4.16 L,vs. P, for fits to HPP Run 5, Cell 4. This is a positive pulse where the maximum pressure
P, = 0.5425MPa.

In 84.6.2b it was found that estimated L, values from HPP experiments were higher
than that from OPP experiments for fits using the UL model with 2 ULs (Table 4.19
and Table 4.20). For the data set fit here, when (to, P1) = (tm, Pm) the estimated L, was
1.52 m s MPa™*. However, when (to, P1) = (t +1.07, 0.5328), the estimated L, was
1.29 m s MPa™. This value is close to the average estimated L, for the OPP data for
Cell 4 (of 1.31 m s> MPa™), and corresponds to a fit to the later regions of the
observed HPP data (Fig. 4.17). One may hypothesise that L, for both HPP and OPP
experiments are in fact the same for the same cell, but that the model has trouble
fitting the initial steeper region. L, as defined by the KK equations may govern the

later portion of the HPP curve and not the first 2-3 s.
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2UL model fit to HPP Run 5, Cell 4, with P?‘:Pm
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Fig. 4.17 Fit to an HPP data set using the UL model, where the fit begins at a point after (t,, Pm,) = (0,
0.5425), namely (to, P1,) = (1.07, 0.5328). Showing raw pressure data (-----) and model fit ( ).

b) Differences in L, between HPP and OPP experiments

The parameters L, ps and o, being properties of the membrane, should be constant for
each cell, assuming that there are no external factors affecting the parameters such as
temperature changes or leaks in the apparatus. The results above in §4.8.3a lend
weight to this claim for the case of L. Differences observed between HPP and OPP
experiments in the present study may be due to inadequacies in the model rather than
a real physical difference in the parameters. Inadequacies may include:

e Limitations in the applicability of the KK equations. Evidence includes
difficulties in fitting the shoulder of the HPP curve (84.5.3, 84.6.1) and the
superior fit given by a double exponential (82.7.3a). A double exponential was

also fit to an HPP curve for the data used in this chapter, and found to give a
superior fit.

e Neglect of other dynamics in the experiment, such as possible pressure
changes during the perturbation pulse, presence of some permeant solutes in

the cell in HPP experiments (84.8.6), influence of the tonoplast on the pressure
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dynamics, and influence of different values of D between APW and the
cytoplasm (84.8.4)

4.8.4 Impact of different D values on estimated parameters

It has been assumed that the diffusion coefficient D for the cell interior is the same as
that for APW. In fact it is likely to be less, and the extent to which values of D used
for the ULi may impact on the estimated parameters for fits to the data, using the UL
model, are examined here. This analysis differs from that in §3.6.6 in that here

parameters are estimated by fitting the model to observed data.

Membrane parameters were estimated for an OPP experiment (OPP Run 8 of Cell 2)
for 3 different values of D in the ULi (DyL;), where Dy, = 0.9, 1.1, and 1.28 x 10°°
m? s, D for the ULe (DyLe) was kept constant at 1.28 x 10° m?s™. It was found that
the estimated membrane parameters varied significantly with Dy,; (Fig. 4.18).
Changing Dy by 1% resulted in a 0.7% change in L,, a 1.2% change in ps, and a
1.2% change in o. These results indicate that quantification of D for the cell interior
is important in parameter estimation. Using an incorrect value of D for the ULi may
also be a contributing factor to the finding that L, values were higher for the HPP
experiments as compared to the OPP experiments (84.6.2b, 84.8.3b), as ULs have a
greater influence on the parameter estimation in OPP experiments than HPP
experiments (84.6.1b). For OPP experiments, Fig. 4.18 reveals that a lower value of
D for the UL. leads to a lower value of L, and results from the analysis in §3.6.6a
suggests a monotonic decrease of L, with decreasing D for the ULi. However, there
appears to be no current available data on the value of D for the interior of Chara, so
the actual extent of the influence of D for the ULi cannot be verified.

As in 83.6.6, predictions of the total permeability pr using the permeability equation
(Eqg. (3.2)) were also calculated (Table 4.27). It was found that values of pr differed
significantly from that of 4.16 x 10°m™ s™ given by the classical model, for which ps
= pr. This confirms again that Eq. (3.2) cannot be used to infer the membrane
permeability pm (= ps) based upon an estimated value of pr obtained using the

classical model, as is a common practice in the literature. The large differences
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between ps and pr in Table 4.27 also indicates that the permeability of the ULs are

strongly limiting transport across the membrane for this cell.
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Fig. 4.18 Plots of L, (——), ps(—), and ¢ (——)vs. D in the UL, for fits to OPP Run 8 of Cell 2.

Table 4.27 Membrane permeability ps and total permeability py for 3 different values of Dy ;.

For OPP Run 8 of Cell 2.

Dy (x10°m?*s™) | 1.28 1.10 0.90
ps (x10°m s™) 8.89 1041  14.78
pr (x10° m s™) 2.56 2.22 1.84

4.8.5 Impact of different £ values on estimated parameters

The impact of ¢ on estimated parameters was analysed for an HPP and OPP

experiment from Cell 2, where ¢ was independently estimated to be 27.9 + 4.1 MPa.

Membrane parameters were estimated for the two ¢ values at either end of this range,

using the classical and UL models. Differences between estimated parameters using &

= 27.9 MPa were calculated (Table 4.28). It was found that the value of ¢ impacted

strongly on the estimated L, and had negligible effect on ps and o. Therefore,

experimental errors in ¢ may introduce a large error in the estimated L, of 10-20%.
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Table 4.28 Showing relative changes in estimated parameters due to using 2 different values of ¢
as compared to using ¢ = 27.9 MPa.

OPP Run 8 HPP Run 1
£ (MPa) 23.8 32 23.8 32

Classical model
L,(x10°m s™* MPa™) 16.92% -12.31% | 18.39% -12.64%

ps (x10°m s™) 0.00%  0.00%
c 0.30%  -0.22%
UL model
L, (x10°m s™ MPa™)| 16.84% -13.01% | 18.13% -13.74%
ps (x10°m s™) 0.33%  -0.24%
o 0.61%  -0.47%

In 81.2 it was mentioned that the value of ¢ is not constant over time due to
viscoelastic properties of the cell wall. The measured value of ¢ due to an
‘instantaneous’ volume change is generally larger than the “stationary’ value
measured following a period of relaxation in the cell. Using an ‘instantaneous’ value
of ¢in the parameter estimation process may therefore introduce an error in the
estimated parameters, for example an overestimation of £ may lead to an
underestimation of L, (by Eq. 2.13). If the value of & is measured prior to HPP
experiments on Chara, then errors in the estimated L, from the HPP experiments
resulting from the use of this value are unlikely as it was found that the measured
values of ¢ before and after one set of HPP experiments (6 experiments over a
duration of approximately 6 minutes) was the same within measurement error. HPP
experiments were usually conducted immediately after the measurement of &.
However, errors in the estimated parameters from OPP experiments resulting from
using an ‘instantaneous’ measurement of ¢ are more likely as the duration of the
course of experiments were 1 to 2 hours. This error cannot be quantified for the

present data due to a lack of available data on &.

It was also found that the product L, was approximately constant between the fits to
each data set, where the same model was used. In the context of the classical model,
constancy of ¢L,, is expected because of Eq. (2.7) linking €L, and the rate constant ky,
of the water phase. As mentioned previously (83.6.5c,d), the behaviour of the
estimated parameters and variables predicted by the analytical solution to the KK

equations, on which the classical model is based, seem to carry over to the UL model.
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This is probably because the ULs change the concentration difference at the
membrane, but not the transport processes across the membrane, which are still

governed by the KK equations.

4.8.6 Equilibrium pressures

It has been mentioned that in the OPP experiments analysed in this chapter, the
observed final equilibrium pressure Pe usually doesn’t equal the observed initial
pressure Py due to the APW change from full to half-strength or vice-versa (84.3.3).
Although the magnitude of Pg - Py differs between experiments, in most cases the
classical and UL models were capable of predicting the tail of the OPP well, at least
up to 400s.

In a few cases, however, the simulated data could not fit Pg or the tail of the observed
data. For some data sets the best fit was obtained when the APW was not changed
from full to half-strength (or vice-versa) (84.6.1a). It is not clear what these
inconsistent differences in initial and final equilibrium pressures are due to. Possible
reasons (Tyree, pers. comm.) may be that the ethanol is affecting cell turgor dynamics
by chemically or physically changing the membrane properties, or changing the
osmotic pressure inside the cell due to molecular interactions with the cell contents.
However, why this should vary between experiments is not clear. A more likely
explanation is that the cell is reacting to the perturbations, and the reaction varies
between experiments. Chara cells are not typically exposed to ethanol in nature, and
the cells could be using active transport to get rid of the ethanol via ion channels in
the membrane. Both permeant and impermeant solutes may be affected by the above
disturbances to membrane properties or concentration of solutes in the cell, especially

if the latter are only relatively impermeant as compared to the permeant solutes used.

It was found that following negative HPP experiments, the observed P is usually
lower than that predicted by the models. To accommodate this, the internal
concentration zj; at the time of perturbation was changed, and changed for all fits to
HPP data for consistency. Changes in zj; may be occurring due to the presence of
some permeant solutes inside the cell (“impermeant” solutes are only relatively

impermeant) affecting the internal concentration at time of perturbation. If permeant
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solutes present inside the cell are leaking out during perturbation, or during the course
of the experiment via passive or active transport in negative HPP experiments, this

would cause the equilibrium pressure to fall short of the predicted equilibrium.

Another possibility is that water exchange occurring during the perturbation (the
perturbation is not strictly instantaneous) is affecting the internal concentration at time
of perturbation. An examination of HPP experiments reveals that it takes about 0.5s
for the pressure to rise or fall to a maximum or minimum value. During this change in
pressure some water exchange would be occurring with the external medium, so that
for negative HPP experiments zj; < 7o, and for positive HPP experiments zi; > 7jo,
rather than zj; = mjp as is usually assumed for an instantaneous pressure change. This
would cause Pg to return to a lower or higher value than that predicted by the models

for a negative and positive HPP respectively.

Although it is not known whether changes in the internal concentration at time of
perturbation are in fact occurring, this is considered the most likely explanation. The
external concentration is constant as it is continually being replaced, and differences
in the perturbation pressure P; used in the models do not affect the predicted Pge
(84.8.3a). However, it is also possible that ethanol from a previous OPP experiment
may be left in the cell, affecting the concentration of solutes inside the cell by adding

some permeant solutes to an HPP experiment.

None of the above factors, however, explains why P was more poorly predicted by
the models for negative HPP experiments as compared to positive HPP experiments.
This pattern seems to indicate an asymmetrical behaviour, or polarity in, the response
of the cell to hydrostatic pressure perturbations. For a small proportion of the HPP
data fit in this chapter, the choice of Py was unclear (see §4.3.3), and the value of Pgy
used affects the fits and predicted Pe. However, when a different value of Py was used
for a couple of these fits, the fits were not altered much so the original choice of Py
was maintained. This uncertainty in Py may affect the estimated parameters for a
couple of the HPP fits, but would not be the reason for general differences in fits

between positive and negative experiments.

4-52



4.9 Comparison of estimated parameters with those in the
literature

Estimated parameters averaged over all data sets examined in this study were
compared with average parameter values in the literature. It was found that
classically-estimated membrane parameters in the present study are consistent with
those from Henzler et al. (2004) and Hertel and Steudle (1997) (compare Table 4.29
& Table 4.30).

Table 4.29 Average estimated parameters for OPP and HPP experiments, using the UL and
classical models, for 3 Chara cells. Errors are standard deviations.

UL model Classical model
OPP HPP OoPP HPP
L,(x10°m s™ MPa™)  1.69 +0.68 2.23+1.2 2.22 +0.78 214 1.1
ps (x10°m s™) 6.18 +2.16 3.51+0.73
o 0.462 +0.06 0.267 +0.02

Table 4.30 Average estimated parameters from existing literature, for Chara corallina where
ethanol was used as the permeant solute. L, is obtained from HPP experiments.

a b c d d
No. of cells not stated 6 15 (ps), 4 (0)
L, (x10°m s™ MPa)| 2.0%0.8 1.6 +0.7
ps (x10°m s™) 3.5%0.3 2.8+0.4  2.36+0.28 1.97+0.1 2.82+0.31
o 0.21+0.02 0.36 +0.05 0.4 +0.06

a Henzler et al. (2004)

b Hertel and Steudle (1997)

¢ Steudle and Tyerman (1983)

d Dainty and Ginzburg (1964c), theoretical predictions using analytical equation
d' Dainty and Ginzburg (1964c), value corrected for unstirred layers.

Dainty and Ginzburg (1964c) carried out a theoretical prediction of membrane
parameters using analytical equations, and corrected for ULs by solving the diffusion
equation for the planar case. They predicted ps may be underestimated by 30% if not
corrected for ULs (Table 4.31). In order to compare their results with those in this
study, parameter ratios & of classically-estimated/ non-classically estimated
parameters (Table 4.31) were calculated using the averaged parameter values in Table

4.30. These results suggest that for an OPP experiment, the classical model may over-
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estimate L, by 31% and underestimate ps and ¢ by 43%. Since Dainty and Ginzburg
(1964c) stated that their corrected values will “underestimate the effect of diffusion
resistances on the permeability”, due to their application of equations for planar
geometry, the results for ps drawn from Table 4.31 are consistent with the predictions
of Dainty and Ginzburg (1964c) since the numerical model in this study solves the
diffusion equation for cylindrical geometry.

Table 4.31 Parameter ratios for values in Table 4.29.

OPP HPP
No. of cells 3 3
& (Lp) 1.31 0.96
¢ (ps) 0.57
& (o) 0.58

The parameter ratios calculated for each individual cell in 84.6.1b (Table 4.15)
showed that for an OPP experiment the classical model may over-estimate L, by up to
50% and underestimate ps and o by up to 50%. The difference between these values
and those stated in the preceding paragraph shows that while parameters averaged
over a few cells indicate the extent to which classically-estimated average parameters
may be affected by ULs, they do not indicate the full impact unstirred layers may
have on classically-estimated parameters. This is due to the significant inter-cell
variation in the estimated membrane parameters, as can be seen from the large
standard deviations in Table 4.29 and Table 4.30, and the large range in estimated
parameters shown in Fig. 4.15.

4.10 Conclusions

A model incorporating unstirred layers (UL model), developed in Chapter 3, was
applied in this chapter to CPP data obtained by Dr. Helen Bramley and Prof. Mel
Tyree. Data from 3 Chara cells were analysed using both a model with 2 ULs and the
classical model. It was found that the UL model reproduced the observed CPP
relaxation curves as well as, and often better, than the classical model. For fits to OPP

data, the UL model generally improved fits to the water phase and first part of the
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solute phase, and for fits to HPP data the UL model improved fits to the first half of
the data, from t, to the end of the shoulder of the curve (84.6.1a).

It was shown that the UL model does not just influence the first few seconds of the
relaxation curves, as often assumed in the literature (Hertel and Steudle, 1997), but
influences the pressure dynamics throughout the course of an HPP or OPP experiment
(84.5.4).

It was found that estimated parameters differed significantly between the UL and
classical models. Parameters estimated using the UL model, being a more accurate
model, can be viewed as being closer to the true values for the membrane. Compared
to these, the classical model underestimated ps and o by up to 50% and overestimated
L, by up to 50%. For the HPP experiments, the classical model underestimated L, by
up to 5% (84.6.1b).

The UL model also gave estimates for the ULe thickness duie in OPP experiments in
the range of 30-50 um. One would expect dy.e to be the same between positive and
negative OPP experiments conducted on the same cell. However, estimated values for
duLe varied by 4-15 um between positive and negative OPP experiments conducted on
the same cell. This pattern was observed for all 3 cells (84.6.2a) and was partly
dependent on the extent to which the measured time-delay differed between positive
and negative pulses (84.6.2a, 84.8.2). It is considered that apparent differences in dye
between positive and negative experiments are likely to be due to measurement errors,
and to a greater extent differences in pressure dynamics between experiments
(84.8.2).

Some difference was observed in estimated parameters between fits to positive and
negative OPP data from the same cell. However, definitive conclusions could not be
drawn about the presence or absence of polarity in the parameters, since the direction
and magnitude of the polarity was inconsistent between the cells, and the sample size
was small. A polarity in L, was also not observed in fits to HPP data. Although there
was some difference in L, between positive and negative experiments for two of the
cells, a difference was absent for Cell 4 where the sample size was largest. This is also

interesting considering that for Cell 4 fits to negative HPP data were worse than fits to
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positive HPP data, which seems to suggest some asymmetry (polarity) in the pressure
dynamics (84.6.21a). However, it is unclear what this asymmetry may be due to
(84.8.6).

Differences were found in estimated L, values between OPP and HPP experiments,
where L, for HPP experiments were 14-45% higher than the L, for OPP experiments
(84.6.2a). However, it is possible that the L, values are the same, but difficulties in
fitting the first 2-3 s of the HPP data and in determining initial conditions for HPP
simulations may be causing a difference in L, between HPP and OPP experiments
(84.8.3). A larger sample size is again required for more conclusive results. In
addition, more accurate HPP data could be obtained by using a mechanical system for
adjusting the metal rod in the CPP. This would likely remove some of the variation

observed during the HPP perturbations.

In OPP experiments where a bubble is not used to separate the old and new external
solutions, the exchange time must be included as this affects the estimated parameters.
However, the solution exchange acts over a different time scale to unstirred layers, i.e.
only during the first few seconds of a relaxation. Optimization of the exchange time is
not recommended, as changes in the relaxation curve are not very sensitive to small
changes in it. Optimized parameters also appear to be independent of the form of the
exchange function used, but are affected by the duration. Therefore, it is
recommended that the exchange time is fixed in the model, based on a known
exchange function. However, as this information is currently not available, it was
difficult to compare estimated parameters between OPP experiments where a bubble
is present during the solution changeover to OPP experiments where a bubble is not

present.

Estimated membrane parameters between cells were found to differ by as much as a
factor of 2 (84.6.2b, Fig. 4.15). The intra-cell variation in estimated parameters was
less than the inter-cell variation, and within each cell the estimated parameters were
fairly consistent (84.8.1, Fig. 4.15). This suggests that the UL model is predicting the
membrane parameters well, and these should be consistent within a cell as they are
intrinsic properties of the membrane. Some correlation of oy with cell length was
also observed (84.6.2b).
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Studies elsewhere in the literature have also found significant inter-cell variation in
estimated membrane parameters (84.9). It is well established that a wide range of L,
values exist in plant cells, and that this probably reflects a property of the membranes
(Maurel, 1997). Averaging estimated parameters over all cells leads to different
conclusions regarding the extent to which ULs influence estimated parameters, as
compared to averaging estimated parameters within each cell. This must be noted
when comparing results from studies which aim to evaluate the impact of ULs on
estimated parameters, where parameters are usually averaged across cells, with results

from the present study.

Estimated parameters were shown to be sensitive to the value of the diffusivity D for
the cell interior (84.8.4). 1t was shown that the value of D used for the internal UL can
significantly affect the membrane parameters estimated using the numerical model.
Simulations in Chapter 3 suggest that using a value of D for the ULi which is nearer
to the actual value may result in an even greater difference between the estimated
parameters using the UL and classical models, particularly for L, (83.6.6a). In
addition it was shown that estimated parameters are sensitive to the value of the
elastic modulus ¢ of the membrane (84.8.5). These factors must be considered when
comparing estimated parameters between experiments. However, a present lack of
data on the likely range of D and ¢ values for Chara means that the impact of these

factors on the estimated parameters cannot be fully explored.

Hertel and Steudle (1997) have found that there is also a strong correlation between
temperature and L, in Chara over a temperature range of 10-35°C, and the effects of
temperature on the estimated L, using the UL model could be explored in future
studies. The temperature was not changed during the CPP experiments from which
data was obtained, however the UL model was used to show that a 2 degree change in

temperature in the model made <1% difference to the estimated parameters.

Predictions of the total permeability using the equation analagous to Kirchoff’s laws
for electrical resistances in series (Eq. (3.2) were examined (84.8.4). A large
difference was found between the membrane parameters estimated using the UL

model and the total permeability predicted by this equation. This shows that ULs are
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strongly limiting transport across the membrane. Predictions of total permeability

from this equation also differed significantly from the total permeability predicted by

the classical model, showing that predictions using this equation and the classical

model cannot be compared.

The results in this chapter are based on an examination of a small set of experimental

data. Despite this, the analysis has produced interesting results. Further, it has

highlighted what additional details about the experimental system are required for a

more definitive estimation of membrane parameters. These include:

a)

b)

Direct and accurate measurement of the time of perturbation in an OPP
experiment. This affects the estimation of the ULe thickness, and can be
obtained from simultaneous recording of changes in cell pressure and
conductivity of the external solution. These data, although recorded, were not

made available for the present study.

Information about how the external concentration changes during an osmotic
perturbation. Estimation of the membrane parameters and the ULe thickness in
OPP experiments where a bubble is not present in the solution changeover, is
problematic without knowledge of the exchange function. This has meant that
in the present study only results from OPP experiments with a bubble could be

compared.

More knowledge of what is happening during the pressure perturbation in HPP
experiments. Changes in the concentration or pressure during this phase affect
the model inputs and hence the estimated parameters, and may be an important
missing element in the model. This can be mediated to an extent by adjusting
the initial conditions in the model, i.e. values of P and C at t=t;. However, it is
important to understand the realistic physical processes in order to know what
appropriate changes to make in the model. A mechanical system for adjusting
the metal rod in the CPP would also provide for more accurate HPP data, and

is recommended for future studies.
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d) Better replication to enable more conclusive results of within-cell and
between-cell variation in membrane parameters to be drawn. More CPP data
would also remove the influence of other variables such as differences in
equilibrium pressures between the beginning and end of an OPP experiment
(84.3.3, 84.8.6), and drifts in equilibrium pressures over the course of a few
OPP experiments, by fitting only those experiments for which these variations

do not occur.
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5 Conclusion

5.1 Overview of implications of UL model

A model of pressure dynamics during a CPP experiment has been developed and
applied. This model incorporates unstirred layers (ULS), in contrast to the classical
model traditionally used to estimate membrane parameters from CPP experiments. It
was found that the UL model was able to reproduce the observed CPP relaxation
curves better than the classical model. Membrane parameters estimated with the two
models differ significantly, and this study proposes that the classically-estimated
parameters (i.e. estimated using the classical model) are not a true representation of
the membrane parameters. Rather, the UL model developed in this study is a more
accurate and comprehensive representation of transport across a cell membrane in
CPP experiments, and parameters estimated by this model are likely to be nearer to
the true membrane parameters. Results from applying the model suggest that the
classical model may underestimate ps and ¢ and overestimate L, in an OPP
experiment by up to 50%, and underestimate L, in an HPP experiment by up to 5%
(84.6.1Db).

The ability of the classical model to reproduce observed pressure relaxations does not
negate the presence of ULs. While both models can be made to fit the data,
differences in the model fits are subtle and important. The classical model, for
instance, does not reproduce the initial curvature in the OPP data following the
osmotic perturbation. It fits the water phase only by adjusting the time of perturbation
to, which must be later than the actual t (82.5.2). The UL model, by contrast,
automatically reproduces the initial curvature in the OPP data (Fig. 3.6; Fig. 4.10). In
HPP experiments, the UL model consistently fits the shoulder of the data curve more

closely than the classical model (84.6.1a).

This study has unequivocally shown that ULs are an important factor in cell pressure
dynamics, and impact on all parts of the OPP and HPP relaxation curves. ULs should

be included in all models used to fit CPP data as they have a significant impact on the



estimated membrane parameters. With the exception of Tyree et al. (2005), no
process-based model including ULs has been developed to model transport across a
cell membrane in a CPP experiment. The UL model developed here thus provides a

better and alternative model for membrane parameter estimation.

Although this model includes ULs in a realistic manner, other features of cells that
affect pressure dynamics have not been included, e.g. influences of the tonoplast on
water and solute transport, and pressure dynamics during the period of an HPP
perturbation. However, the model does provide a means for estimating membrane
parameters more accurately. Further, the study highlights that current experimental
protocols, methods of parameter estimation, and how unstirred layers are treated in
the literature, must be re-assessed. The study shows that membrane parameters for

Chara given in the literature are not the true values for the membrane.

5.2 Critique of current methods for dealing with unstirred
layer effects on estimated parameters

A brief review of how ULs have been considered in the CPP literature was given in
83.1.4a. In this section, claims in the literature will be addressed in detail, in light of

the findings of this study.

a) Claim that ULs take a while to form during a relaxation, and have little
influence during certain periods

It has been suggested (Henzler and Steudle, 2000) that internal and external ULs take
a while to form during a relaxation, and that through the process of internal diffusion
the thickness of ULs increase over time during the solute phase of a CPP experiment.
It has been claimed (Hertel and Steudle, 1997) that if experiments are conducted when
ULs have not reached their maximum thickness, e.g. if membrane parameters such as
o are measured at times before the internal unstirred layer has completely formed, the
effects of ULs would be less and the measurement of membrane parameters would be

relatively unaffected by ULS).



These suggestions, however, are inconsistent with the concept and definition of an
unstirred layer. A ULe forms as a result of fluid flowing past a solid body, in this case
a cell (Barry and Diamond, 1984). The ULe would be well-established within the first
few seconds of switching on the flow in a CPP experiment, and remain at a constant
thickness as long as the external solution is flowing at a constant rate. Since
equilibrium is established prior to any experiment, a ULe would already be at its
maximum thickness during an experiment. The ULi would also not change in
thickness since there is little stirring within the cell and no outside forces acting on it.
Since water is incompressible, and cell sap and APW are mostly water, fluid flowing
into the cell would not disturb the bulk of the cell solution but merely add to the cell
volume by flowing into the region near the membrane (83.2.2). See 8A.4 in appendix

for further comments.

b) Claim that a ULe only affects the initial few seconds

It has been suggested (Hertel and Steudle, 1997) that effects of external ULs should
be negligible if the time it takes for solutes to traverse the ULe is small compared to
the halftime of the solute phase. For example, it has been stated that for an external
UL of no more than 50um, the effect of external ULs should not be significant since a
solute molecule would take a couple of seconds to diffuse from the bulk solution to
the membrane surface, which is much smaller than the half-times of 15-100 s required

for the equilibration of solutes.

The results of this thesis do not support this suggestion. A behavioural analysis of the
UL model has shown that ULs affect both the pressure dynamics in these few seconds
following the perturbation and also the concentration difference at the membrane
(which drives cell pressure dynamics) for the entire course of an HPP and OPP
experiment (83.6.2, 83.6.3, 84.5.4). Furthermore, if the exchange time of the external
solution (up to 3s) is not taken into consideration, an additional error is introduced in
the estimation of membrane parameters since the exchange time affects the relaxation
curves (84.7). The influence of the exchange time on CPP experiments does not seem
to have been fully explored in the literature, where it appears no bubbles have been

used to separate new and old solutions during the solution changeover.



c) Claim that sweep-away effects in HPP experiments should be negligible due to
small volume flows

It has been suggested (Hertel and Steudle, 1997; Zimmermann and Steudle, 1974a)
that sweep-away effects in HPP experiments should be small or negligible because the
amount of water moved across the membrane is small. However, the UL model in this
thesis has shown that sweep-away effects in HPP experiments can affect the estimated
membrane parameters by up to 5% (84.6.1b). While this may be a small effect in
some circumstances, the effects of ULs should nevertheless not be discounted in

general.

d) Claim that fitting the solute phase by a single exponential shows effects of ULs
in OPP experiments are small

It has been suggested that the influence of ULs in OPP experiments should be evident
from their effects on relaxation curves. For example, Hertel and Steudle (1997) have
stated that the ULi could be a few hundred micrometers thick, but that the effects of a
ULi on OPP experiments would be insubstantial since otherwise rate constants
measured during the solute phase would decrease continuously during the formation
of the internal unstirred layer. This implies that it should not be possible to determine
a single rate constant (determined from fitting a single exponential) for the solute
phase. This conclusion is reinforced by Henzler and Steudle (2000) who state that
“solute phases could be nicely fitted by a single exponential which would not be true

in the presence of a limitation by diffusion within the cell.”

Results of this thesis, however, do not support this suggestion. It has been shown that
the classical and the unstirred layer models fit the solute phase of the relaxation curve
equally well (84.5.2). The presence of ULs do not change the fundamental shape of
the curve, and the solute phase remains essentially an exponential decay with a

different time constant to that for the classical model.



e) Claim that KK equations correct for ULs

Some papers in the literature (Steudle and Tyerman, 1983; Henzler and Steudle, 1995;
Hertel and Steudle, 1997) claim to have corrected for unstirred layers in their
parameter estimation. This claim rests on the argument that Eq. (2.16) corrects for

solute flow and unstirred layers because the term [exp(p, At /V,)] in the equation

reduces A to the true value across the membrane, thereby incorporating the effects

of ULs on tyin and ps .

However, Eq. (2.16) is obtained from the analytical solution to the KK equations at
the point (tm, Pm). It has been shown here that the KK equations by themselves do not
incorporate effects of ULs, as evidenced by the fact that the classical model based on
the KK equations estimates very different parameters to that of the UL model. Steudle
and Tyerman (1983), Henzler and Steudle (1995), and Hertel and Steudle (1997)
applied the classical model and used the bulk concentration values in the KK
equations. Eq. (2.16) is simply a more accurate determination of ¢ in relation to a
previous equation used to determine ¢ (Eq. (4) in Tyerman and Steudle, 1982) which

applies for slowly permeating solutes only.

f) Claim that steady-state equations can be used to estimate the ULe thickness and
its influence on membrane parameters

Some papers in the literature (Steudle and Tyerman, 1983; Ye et al. 2006) have
applied steady state equations to determine the effects of external unstirred layers on
HPP experiments. The following steady state equation has often been used, which
relates the solute concentration at the membrane (Cp,) to that in the bulk solution (Cy)
(Dainty, 1963):

C,=C, exp(—Ll?“’j. (5.1)

It has been assumed that a ULe in an HPP experiment is formed by water extruded
instantaneously from the cell (Steudle and Tyerman, 1983; Ye et al. 2006). Based
upon the maximum change in the cell radius and volume during the relaxation, the

maximum thickness dy.. of the ULe has been estimated to be 0.2-0.3 um. Eq. (5.1)
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has then been applied to estimate that the effects of sweep away due to ULs would be
small, e.g. “less than a 0.7% reduction of the driving force” (Steudle and Tyerman,
1983). Dainty (1963) also used Eq. (5.1) to estimate that for oy . = 10um the assumed
driving force (and measured L) would be 2% less than the true driving force (and

membrane Lp).

Although sweep away (due to convection) arises due to movement of the cell
membrane and changes in volume of the cell (83.2.2), this thesis suggests that the
above method of estimating dy.. cannot be applied, and that emphasis should not be
put upon quantitative estimates resulting from Eq. (5.1). In regards to the first point, it
was mentioned in (b) above that a ULe does not form due to fluid flowing across the
cell membrane but forms due to fluid flowing past the cell, which establishes a ULe
prior to a CPP perturbation. In regards to the second point, even if the value of dy e is
known, the use of Eq. (5.1) as a quantitative measure of the influence of a ULe should
be cautioned against, as a relaxation is time-dependent. Steady state equations can
only provide “best guesses” for effects of unstirred layers and cannot truly or fully

quantify their effects.

g) Claim that the steady state permeability equation gives an upper bound to the
thickness and contribution of ULs

The permeability equation (Eq. (3.2)) is another steady state equation that is
sometimes used to quantify the effects of ULs on the membrane parameters. Ye et al.
(2006) obtained rate constants ks from the slope of semilog plots of the solute phase,
used Eq. (2.10) to determine the total permeability pr, and then used Eq. (3.2) to
estimate a maximum UL. thickness. To do this, they assumed that the membrane is
not limiting transport, i.e. that ps in Eq. (3.2) is large. Thereafter, they appear to put
back the estimated UL.i thickness into Eq. (3.2) to estimate the membrane
permeability and thus the contribution of ULs (by calculating the resulting difference

between the membrane and total permeabilities).

Results of this thesis do not support the use of Eq. (3.2) for estimating effects of ULs
on membrane parameters. It was demonstrated that the permeability equation (Eq.
(3.2)) relating the membrane permeability to the total permeability across the

membrane-UL system cannot be used to correct for ULs in the classical model (see
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83.6.6b, 84.84). It was also shown that predictions based on the steady-state
permeability equation and the non-steady state UL model do not agree. Furthermore,
the assumption in Ye et al. (2006) that the value of p; is very large so that 1/ps — 0
corresponds to a totally different system, where a membrane is not present in the
region of diffusion. Both transport at the membrane and in the ULs govern transport
across the system, and both are essential to the pressure dynamics.

In actual fact, the application of Eq. (3.2) to the conditions of a CPP experiment is
inappropriate. As a— 0, which corresponds to the entire internal region of the cell
being unstirred, the term containing a goes to infinity which is non-sensical. This
arises from the inadequate internal boundary condition which itself arises from the
assumption of steady state, whereas in reality C=f(t) at the internal boundary r=a (see
8A.3 for derivation). Eq. (3.2), therefore, cannot be applied to determine bounds for

UL thicknesses or limits for the contribution of ULSs.

h) Claim that variation in membrane permeability values reflect a small influence
of ULs

In the literature, measured ps values have been found to range over 2 orders of
magnitude for different solutes which have similar values of the diffusion coefficient
D (Henzler and Steudle, 2000). It has been suggested that this shows that membrane
transport is not controlled by diffusion in the ULs but is dominated by the membrane
permeability; otherwise ps values should all be similar due to the similar values of D
(ibid. 2000). It has also been found that the permeability of heavy water is strongly
affected by blocking water channels, from which it has been concluded that ULs are
not significantly affecting solute transport and the measured permeability largely
reflects that of the membrane (Hertel and Steudle, 1997).

Results of this thesis do not support these views. The converse of the above scenario
suggests that if ps of the membrane is changed by using different solutes or blocking
water channels, and ULs are strongly influencing transport, changes in ps will not be
evident in the pressure dynamics. However, it has been shown using the UL model
that if the membrane permeability is changed, the observed pressure dynamics will
change, and so will the classically-estimated parameters. ULs do not make the

membrane permeability irrelevant to the transport processes, which the above
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suggestions imply, but act in conjunction with transport through the membrane. The
KK equations still govern transport across the membrane in the presence of ULs,
which is evident from the fact that the relationship between parameters and variables
predicted by the KK equations still hold in the presence of ULs (see §3.6.5d; §4.8.5).
This thesis has shown that internal ULs may significantly limit transport across the

membrane, while significantly affecting the estimated membrane parameters.

i) Claim that agreement between parameter estimates based on different
experimental techniques implies that ULs have a low impact in CPP
experiments

It has sometimes been suggested (Henzler and Steudle, 2000; Zimmermann and
Steudle, 1978) that agreement between estimated parameters using the CPP, and
results from other experimental techniques conducted by Dainty and Ginzburg

(1964c,d), show that ULs in CPP experiments probably have a low impact.

This thesis proposes that this comparison is not an accurate one. Dainty and Ginzburg
(1964c) used equations which apply to the planar case only, which has been shown to
underestimate the impact of ULs on estimated parameters (84.9). Also, in one paper
(Steudle and Zimmermann, 1974) a correction for unstirred layers (based on steady
state equations) was necessary to bring values of ¢ into closer agreement with Dainty
and Ginzburg (1964c).

In summary, this thesis suggests that a process-based model incorporating unstirred
layers is the only means by which effects of ULs on estimated parameters can be
quantified. In the absence of this, analysis of the potential effects of ULs are largely
guesses based on analogies, assumptions, and application of equations which do not
strictly apply to the system being studied. This thesis has demonstrated that the effects
of ULs in CPP experiments can be subtle, such that a significant influence of ULs on
the concentration difference at the membrane during the course of an experiment

cannot be observed from relaxation curves.



5.3 Some results from the UL model in relation to the
literature

It was summarised in 83.1.2 that some evidence in the literature show that effects of
ULs include a polarity in Ly, an increase in L, with external flow rate, and a decrease
in L, with increasing external solute concentration. Polarity is where the estimated L,

is different between positive and negative pulses of the same magnitude.

The extent to which an observed polarity in L, is due to either properties of the
membrane or to unstirred layer effects has been a subject of much debate (Steudle,
1993; Dainty, 1963). Polarity in L, has been found to increase at higher external
concentrations (Steudle and Zimmermann, 1974), suggesting an influence of ULs due
to sweep-away effects (Dainty and Ginzburg, 1964a). However, Dainty and Ginzburg
(1964a) have concluded that an absence of sweep-away effects would not result in an
absence of observed polarity, and polarity in L, may be largely an intrinsic property of
the membrane (plasmalemma) in some Characeae species due to a differential
dehydration of the membrane (Dainty and Ginzburg, 1964a; Kiyosawa and Tazawa,
1973). It is also possible that polarity arises due to combined effects of the tonoplast
and the plasmalemma, i.e. is due to a composite membrane (Zimmermann and
Steudle, 1978; Kedem and Katchalsky, 1963c).

Use of the present UL model to estimate membrane parameters may potentially help
resolve whether and by how much the presence of ULs contribute to observed polarity
in the membrane parameters. It was shown (83.6.5b) that the presence of an UL does
not induce polarity in the parameters. Since the model explicitly takes the influence of
ULs on the estimated parameters into account, any polarity in the parameters must
therefore be due to other factors affecting the cell pressure dynamics and not ULSs.
When the UL model was applied to observed data, the present study found no
evidence of polarity in L, in HPP experiments (84.6.2a), and some but no conclusive
evidence of polarity in membrane parameters for OPP experiments (84.6.2a). The
former result is in agreement with results of Steudle and Tyerman (1983) who did not
observe polarity in L, for HPP experiments in Chara corallina, although Steudle and

Tyerman (1983) observed polarity in L, for OPP experiments (with permeant solutes).
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Unfortunately, due to the small sample size, polarity in membrane parameters could
not be fully explored in the present study.

The UL model could be used to determine whether changes in the estimated
parameters due to differing external solute concentrations or external flow rates are
influenced by ULs. Unfortunately, these variables were not changed in the
experiments analysed here. However, it was shown that the UL model predicts the
classically-estimated L, from HPP experiments will decrease marginally with
increasing external concentration (83.6.5c), and that the classically-estimated L, from

OPP experiments will be more affected by increasing the external concentration.

A difference in the classically-estimated L, between HPP and OPP experiments
observed in the literature (and confirmed in the present study) is considered by CPP
experimenters to be due to effects of a ULe. In the literature it has been found that in
OPP experiments with ethanol as the permeating solute, L, reached a saturation level
for flow rates above 25 cm s™* where its value was similar to L, in HPP experiments
(Steudle and Tyerman, 1983). This observation suggests that the ULe thickness for
OPP experiments at higher flow rates has been reduced significantly, since a ULe has
little effect on L, in HPP experiments. The difference in L, between HPP and OPP
experiments found using the UL model is therefore surprising, since this takes effects
of ULs on the estimated parameters explicitly into account. However, the difference
may be due to inadequacies of the model in fitting the initial 2-3 s of HPP data
(84.8.3a,b).

5.4 Suggestions for, and comments on, the parameter
estimation process

Here an outline of the parameter estimation process carried out in this study is given,
together with important things to consider when fitting CPP data and estimating

parameters.
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5.4.1 OPP experiments

a) Importance of initial conditions

The observed final equilibrium pressure (Pg) in OPP experiments is not always well
predicted by the models. This is because Pg for OPP experiments often differs from
the initial value Py, where theory predicts they should be the same when the external
osmotic pressure s is constant (82.2.2, 83.6.2). Therefore the degree to which the tail
of the observed OPP data is fitted by the model depends very much on the value of Py
used in the model. If 7 is not constant throughout the experiment, the predicted Pg
will differ from Py, but not necessarily by the amount observed in the data (84.3.3,
§4.5.1a).

Therefore, model predictions are very sensitive to values of Py and 7 used in the
model, and it is important that these values are accurate and consistent with
experimental data. Py must be determined individually for each cell, but the initial cell
volume Vy and cell radius ro need not be since the pressure dynamics are not so
sensitive to these, and the same values of V, and ry can be used for all OPP
experiments on the same cell (84.3.3). If the values of Py and 7 are accurate but Pg is
not well predicted, some other factor in the experiment must be affecting the pressure
dynamics which is not included in the model. In particular, drifts in equilibrium
pressure for a series of experiments on the same cell (84.3.3) would affect model
predictions of OPP data. This was the case for the 3 cells examined in Chapter 4.

It is important to use an accurate value for the time of osmotic perturbation to. As
there is a correlation between the experimental time-delay and the estimated ULe
thickness, accurate estimation of the ULe thickness depends upon how accurately to
can be determined (84.4.2, 84.6.2a). to should be able to be determined accurately by
simultaneously recording the cell pressure change and conductivity of the external
solution, and plotting these on the same time-axis. The error from the application of t,
will then be confined to how it is used in the model, which assumes that t, is when the
solution front reaches the middle of the cell.
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b) Incorporation and estimation of unstirred layers and exchange times

Both internal (ULi) and external (ULe) unstirred layers should be included in the
model, since both are present in the physical system. Inclusion of one UL alone is
meaningless, as each UL has a different and significant effect on the estimated
parameters (84.5.2). The internal UL thickness dyy; is assumed to equal the whole cell
interior, but can be fixed at 3x10™* m since larger values have negligible impact on the

pressure dynamics and estimated parameters (83.6.2).

The external ULe thickness dyie can be estimated by optimising dyie along with the
membrane parameters L, ps and o for OPP experiments where a bubble is used to
separate the new and old solutions. Applying the model to estimate oy is self-
consistent with the data (84.4.2), and is a better method than using an experimental
time-delay to determine a value of dy.. to use in the model. The time-delay vs. duLe
relationship varies between cells and is subject to measurement errors in the time-

delay, and cannot be used as a general predictive tool for estimating dy_e.

Parameter estimation using OPP experiments where a bubble is not used to separate
the new and old solutions, is more difficult. In this case the exchange time of the
external solution must be incorporated into the model, but it is not possible to use the
model to predict both dy.. and the exchange time, since these are correlated (82.7.3c,
84.4.2). Predictions of oy are best obtained from OPP experiments where a bubble is
present, as the exchange time is much smaller and can be ignored (84.6). The
predicted values of oy Obtained from these experiments on the same cell can then be
used as fixed values when the model is fit to OPP experiments where a bubble is not
present (84.4.2b). The exchange time of the external solution can then be optimized
together with the 3 membrane parameters (84.4.2b). However, this would not give
consistent or accurate predictions of the membrane parameters unless the exchange
function appropriate for each OPP experiment is known and obtained from
experimental data. If this information is available, the exchange could be explicitly

included in the model instead and dy. optimized.

At present, not enough experimental data are available on the exchange times in OPP

experiments. In the present study, it was found that estimated parameters for OPP
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experiments where a bubble is present, compared to those for OPP experiments where
a bubble is not present, differ significantly (84.7.2). It is therefore suggested that a
bubble always be used in the solution exchange in OPP experiments. The exchange
time can then be removed from the estimation process. Since CPP experimenters do
not routinely do this, their estimated parameters would not properly reflect the true
membrane parameters because effects of the exchange time on them cannot be

quantified.

5.4.2 HPP experiments

The final equilibrium pressure Pg in HPP experiments also cannot always be well
predicted by the models. The predicted Pe for HPP experiments depends on the
perturbation values used in the model, namely the hydrostatic perturbation pressure Py
and the osmotic pressure 7, in the cell at time of perturbation. There is experimental
uncertainty in these values as the perturbation is not instantaneous, and detailed
knowledge of the processes affecting the cell during the perturbation is lacking
(84.3.4).

It is recommended, therefore, that z;; be optimized together with L, to obtain the best
fit to the data. This does not give a more consistent L, but significantly improves the
fits (84.5.1) to the P-t curve. There should also be some flexibility in choosing an
appropriate Py, and datasets which exhibit a lot of noise around the perturbed pressure
should not be used for parameter estimation. Although a point after the perturbation
pressure can be used for (t1, P1), using a point too far after the perturbation pressure
greatly affects the estimated parameters, because the time interval of the data used is
different (84.8.3a). Therefore these estimated parameters cannot be compared with

those for other data sets.

The external osmotic concentration zie should be a constant for all HPP experiments.
However, one should also be aware that errors in the value of 7. used in the model

will affect the quality of model fits to the data.

A ULe has little influence on an HPP experiment (83.6.2), and therefore dy. cannot

be estimated by fitting to HPP data. HPP data can be simulated by incorporating a
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ULi only. However, because a dye is present, it is recommended that both a ULe and
a UL be incorporated when fitting HPP data. The average Jy.. obtained from fits to
OPP data on the same cell should be used for the HPP data, because dy.e should be

the same for the two types of experiment.

5.4.3 Comparison of fits and determination of best fit

It is best to use the same CPP runtimes when estimating parameters and comparing
fits between experiments, as estimated parameters are dependent on the quality of the
fit, which is in turn dependent on the temporal range of the data used. Where the same
quantity is determined for observed and simulated data (e.g. calculation of Pg), the
same method based on the same number of points should be used in both cases. An
adequate sample size of at least 5 positive and 5 negative experiments is also

recommended for each experiment type (HPP or OPP).

Minimization of the root-mean-square error (RMS) of the residuals is a simple,
objective means of fitting CPP data. Goodness-of-fit is best measured by analysing
residuals between observed and simulated data. Calculation of the RMS, bias in
residuals, trend in residuals, largest residual, residual in Pg, and residual in the
extreme pressure Py, give a comprehensive set of values by which fits can be
compared (84.5.1, 84.5.2, 84.6.1a). To obtain a uniform distribution of residuals it is
suggested fitting Py, to within £ 0.001 MPa, which can be done by weighting the RMS
error around the extremum, using a window based on 10% of the maximum pressure

change in the data. A weight of 2-3 is sufficient.

5.4.4 Other recommendations

It is recommended that the temperature of the apparatus be monitored and maintained
at a constant temperature to within + 2°C, as temperature affects the estimated
parameters (84.10).
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5.5 Suggestions for further research

This study has been a preliminary investigation of the impact of ULs on parameter
estimation using data obtained from CPP experiments. In this section some
suggestions for further research are made based on the findings of this study. Further
research is required for validation of the UL model, examination of the model
behaviour, and for more conclusive results regarding the presence of and reasons for

parameter variation in the UL model.

5.5.1 Experiments

a) Exchange times

A more consistent and precise measurement of the exchange time (or ramp time if the
exchange function is linear) of the external solution is required. This is necessary for
parameter estimation in OPP experiments where bubbles are not used during the
solution changeover. It was shown that the exchange time affects the estimated
parameters by a significant amount (84.7); however the exchange time is rarely
considered in CPP experiments. Determining the influence of the exchange time on
the estimated parameters is therefore important as it would reveal to what extent
parameters estimated in previous studies may be inaccurate due to neglect of the

exchange time.

It is unclear from the data used in the present study if the exchange time usually varies
or is usually consistent between experiments. Exchange times varied greatly for Cell 4
where there was a strong relationship between the time-delay and the exchange time,
but for Cells 2 and 3 the exchange times were quite consistent between experiments
and independent of the time-delay (84.4.2b). It is recommended that the exchange
time of the external solution be recorded for each experiment, and a function fitted to
the conductivity data to give an exchange function for input into the model.

b) External flow rates

External flow rates should be varied, in a range similar to that used in Steudle and
Tyerman (1983) of between 5 and 44 cm™. This will physically change the ULe
thickness and allow the examination of the impact of different ULe thicknesses on
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parameters estimated for a single cell. This will be an important validation of the UL
model because it takes the influence of ULs into account, and hence the estimated
parameters for a single cell should be consistent and independent of the ULe
thickness. If differences in the estimated L, between HPP and OPP experiments
change depending on stirring rates, this would suggest that some other factor in the
pressure dynamics are changing due to higher stirring rates, or more likely, that the

UL model is not adequately taking the effects of ULSs into account.

c) External concentration

It is suggested that experiments be conducted where the external concentration is
varied. On the basis of the behavioural analysis of the UL model (83.6.5c¢), this is
expected to change the estimated L, since the external concentration affects the rate
constant governing water flow across the membrane in the KK equations. Many CPP
experimenters have observed a change in the classically-estimated L, with external
concentration, which they consider to be largely due to sweep-away in the ULs
(Zimmermann and Steudle, 1978). It would be worthwhile to see if and how L,
estimated with the UL model differs from this, as it may help decide if there really is a
change in L, with concentration, or evaluate the contribution of ULs to this

observation.

d) OPP experiments with impermeant solutes

It is suggested that experiments be conducted for OPP experiments using impermeant
solutes, where estimated values of L, could be compared with those from HPP
experiments. This may suggest reasons for the differences in the non-classically
estimated L, between HPP and OPP experiments, since the relaxation curves for OPP
experiments using impermeant solutes are similar to that for HPP experiments (i.e.
monophasic, see 82.2.2). Differences in the polarity in L, found between OPP
experiments using impermeant and permeant solutes have also been observed (Steudle
and Tyerman, 1983), and it would be interesting to see if polarity in the non-
classically estimated L, gives similar results. OPP experiments with impermeant
solutes should also be conducted using different external flow rates (as in (b) above).
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e) Using different solutes

OPP experiments should also be conducted using a wide range of different solutes
which might have differing permeabilities across the membrane. This will allow an
examination of whether the observed variations and differences in the estimated
membrane parameters for ethanol agree with those observed for other solutes. This
will also reveal whether the quality of fits to the data depend on the solute used, and
by how much differences between the classically-estimated and non-classically
estimated parameters vary depending on the solute used. ULs are expected to have
more effect on the classically-estimated parameters for rapidly permeating solutes, i.e.
those with a higher ps (83.1.3).

Furthermore, these experiments will provide information about the solute-dependence
of the parameters, i.e. how ps and ¢ change with the solute used, whether L, changes
with the solute used (it is not expected to change on the basis of the present study),
and how the parameters are correlated. This will further differentiate effects of the
membrane from effects of the solute on ps and &, which are solute and membrane

dependent.

f) HPP experiment with the cell in still water

It is suggested that an HPP experiment be conducted where the cell sits in still water,
and the concentration of the external solution monitored for any change due to leaking
of cell contents into the solution. This could be done by monitoring changes in
conductivity of the external solution during an HPP experiment, including the period
of the perturbation. These experiments may provide a clue as to whether the internal
concentration of impermeant solutes in the cell is changing during an HPP experiment
(84.8.6). They may also provide information to help resolve the asymmetrical
pressure dynamics between positive and negative HPP pulses, where it was found that
negative HPP pulses were in general more difficult to fit with the UL model (84.6.1a,
84.8.6).

g) Experiments without an APW change

The change from full to half-strength APW (or vice-versa) in an OPP experiment
results in a distinct difference between the initial and final equilibrium pressures

(84.3.3). At times this difference was much lower than expected, so that the tail of the
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data could not be fit well (84.5.1, 84.8.6). At the time of this study, the experimenters
(Bramley and Tyree) were making preparations to conduct OPP experiments with
mannitol added to the external solution during the change from full to half-strength
APW, so that the concentration of impermeant solutes in APW remains the same but
the conductivity of the external solution can still be measured. This will result in
smaller and hopefully more consistent differences between initial and final

equilibrium pressures, which can be fitted more consistently by the model.

h) Diffusivity coefficient D for the interior of Chara

If possible, experiments should be conducted to measure the value of D for typical
test solutes and impermeant ions in the interior of Chara. This would contribute to the
accuracy of the estimated parameters using the numerical model, since the value of D
can significantly affect the parameters (83.6.6a, 84.8.4). It is not known at present
how this could be done. However, Nitsche et al. (2004) has estimated the diffusivity
of 3 dyes in cytoplasm, and found that the value for D in cytoplasm was 12-68%
lower (depending on the dye) than the value for D in water, at a temperature of 25°C.
This suggests that the value of D in Chara for typical test solutes used in CPP
experiments may be affected to a similar degree (although the vacuole occupies most
of the volume of a Chara cell it comprises a solution of the same osmolality as the

cytoplasm, see §2.1.1).

i) Time-dependence of ¢

It was shown in 84.8.5 that it is important to determine the elastic modulus & of the
membrane as accurately as possible, as its value contributes significantly to the error
in Lp. It was also discussed in §4.8.5 that the measured value of & changes over time
and this may introduce an error into the estimated membrane parameters. It is
recommended that in future experiments, & be measured a few times during a series of
CPP experiments (which include OPP experiments), so that the extent to which &
changes over time for CPP experiments on Chara can be quantified. This would allow
the impact of time-variable behaviour of & on the estimated membrane parameters to

be estimated.
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5.5.2 UL models

Results from this study suggest that an important process is missing in the UL models
for HPP experiments. In general, the shoulder of the HPP curve could not be fitted by
either the UL or classical models, and negative HPP experiments were generally more
difficult to fit than positive HPP experiments (84.6.1a, 84.8.6). However, a double
exponential function gave a remarkably good fit to HPP relaxation curves (82.7.3a).
As the solution to the KK equations for OPP experiments in the presence of permeant
solutes is a double exponential function (Eq. (2.9) in 82.2.2), it is suggested that the
UL model be extended to allow for the possibility of a small amount of permeant
solutes in an HPP experiment. This would involve solving the KK equations for an
OPP experiment (with permeant solutes) with perturbation conditions for an HPP. It is
also suggested that changes during the HPP perturbation be modelled explicitly.
Apart from potentially fitting the data better and providing more accurate parameter
estimation, these model extensions may help determine the reasons why L, for HPP
experiments appear to be higher than those for OPP experiments using the UL model.

Or, the L, values may end up being the same.

If it is possible to obtain an estimate of D inside the cell for the test solutes used in
this thesis, then the UL model should be applied to fit experimental data using
different D values inside the cell, for both HPP and OPP experiments. Alternatively,
further numerical research could be done by treating D inside the cell as an additional
free parameter which could be optimized in model fits using the UL model under
different assumptions. For example, it could be assumed that the value of L, obtained
from OPP and HPP experiments are the same, or the parameters obtained from
positive and negative pulses are the same, and the numerical model then run to
optimize the value of D inside the cell. If the numerical model can fit the data well
using a reasonable value of D for the ULI, then it could be concluded that uncertainty

in D may be a key factor contributing to some of the patterns observed in this thesis.

Reducing the data resolution by selecting CPP data at regular time intervals rather
than at every so many points should be examined (84.3.2). It was found that RMS
values were insensitive to small changes in the exchange time (84.7). This may have

been due to having relatively few points in the period of the exchange time, as a
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consequence of culling the data. Selecting the data based at regular time intervals may
give more points for the initial few seconds of the data, thus allowing for better
optimization of the exchange time for fits to OPP experiments without bubbles. It may
also give more points during the periods when the pressure is changing most rapidly,
e.g. in the water phase and around the extremum during an OPP relaxation, which
would be desirable and may enable the RMS method to fit the model to the data

without weighting these points.

The UL model could also be extended to 3 dimensions by including axial flow and
axial variation in the external concentration. Appropriate scaling could be used to
develop an expression for how the thickness of the ULe changes with axial distance
along the cell (see Pedley, 1983). This extension would allow for more accurate
representation of the exchange function, and hence a more realistic consideration of
the temporal impact of the osmotic perturbation on the cell. However, the added
complexity will make the model very numerically intensive, and hence difficult to

optimize for parameter estimation.

The model can be extended and applied to data from root pressure probe (RPP)
experiments. Although the composite nature of the root has been considered (Steudle,
2000), the RPP apparatus and method of parameter estimation is similar to that for the
CPP, and is based upon a model of the root as a two-compartment system (Steudle,
1994; Steudle, 1993; Steudle and Frensch, 1989). Estimated membrane parameters for
roots may therefore also be in error due to ignoring effects of unstirred layers. Many
roots have a similar length and diameter to Chara and should have an external UL of
a similar thickness when placed in the pressure probe (Tyree et al. 2005). However, in
roots the endodermis is usually considered to be the main barrier to transport, and
therefore the entire region external to the endodermis (i.e. the cortex plus the region
external to the root) may be considered an unstirred layer (Steudle and Frensch,
1989). Unstirred layers in roots may therefore have a more significant impact on the
estimated membrane parameters for the root system (Tyree et al. 2005). In other
studies on roots, the CPP and RPP have been used in conjunction to measure
membrane parameters in the cortical cells and for the entire root (Frensch et al. 1996;
Zhu and Steudle, 1991; Steudle and Jeschke, 1983), and for these studies effects of
ULs on both the CPP and RPP data must be considered. The root system is a very
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complex composite membrane system with elements in series and parallel, and
conclusions about membrane parameters drawn from pressure probe experiments may

be subject to alternative interpretations (Tyree, 2003).

The UL model may be extended to include active transport, following the theory of
Kedem and Katchalsky (1963a), and the examples of Fiscus (1975) and Dalton et al.
(1975) who developed models of water and solute transport through plant roots. The
presence of active transport may contribute to observed nonlinear behaviour between
the volume flux and pressure gradients (Fiscus, 1975), and similarly to ULs may
cause the classically-estimated L, to change with the external flow rate or applied
pressure (see 83.1.2a). An active transport component can be introduced into the
membrane transport equations in the CPP models, to assess what impact this has on

the cell pressure dynamics.

The UL model may also be extended and applied to research on aquaporins (water
channels), where membrane parameters estimated using CPP experiments are used to
infer the pathways of water and solutes through the membrane, and the selectivity of
water channels to water (Henzler and Steudle, 1995; Hertel and Steudle, 1997,
Niemietz and Tyerman, 1997; Maurel, 1997; Zhang and Tyerman, 1999; Ye et al.
2004). In 82.7.3a of this thesis it was found that a double exponential function fit
some HPP data better than the single exponential function from using the classical
model. It would be interesting to apply the classical and UL models to experiments on
Chara cells which involve the blocking of aquaporins, which may shed light on the
relative hydraulic conductivities of the tonoplast and the plasma membrane (e.g.
similar to CPP experiments carried out on wheat root cells in Zhang and Tyerman,
1999). However, research in this area requires further theoretical exploration on the
applicability and implementation of the KK equations to composite membranes where
elements are in parallel (Curry et al. 2001), before appropriate numerical models can
be developed.
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5.6 Final comments

This study has shown that a numerical process-based model aids in qualifying and
quantifying the impact of ULs on relaxation curves and estimated parameters. Hertel
and Steudle (1997) have commented that to help them reach conclusive results, they
require that “effects of internal unstirred layers be eliminated” but “this, however, is
hard to carry out experimentally”. A model which explicitly takes ULs into account
during parameter estimation can take into account effects of ULs on the estimated
parameters so that the estimated values are truly characteristic of the membrane. It is
not only a useful tool, but a necessary tool for experimentalists attempting to

determine the membrane parameters of cells.

This study has revealed the limitations of the classical and UL models, pointed out
what experimental information is needed for more accurate parameter estimation, and
the potential error in current estimates of membrane parameters where ULs are not
properly taken into account. From the results of this study, it is suggested that the
current parameter estimation process based on the classical model should be
abandoned, and replaced by a model which incorporates ULs. Many equations and
methods currently used to quantify or infer the impact of ULs on the estimated

parameters are wrong and should also be abandoned.

Further experimental data is required for a thorough analysis of the effects of ULs on
estimated membrane parameters, and for a more accurate estimation of membrane
parameters and ULe thicknesses. At present, estimated parameters depend on
experimental values such as the time the pressure perturbation is made, the shape and
duration of the external exchange function, and whether one assumes that the UL
thickness is the same for all experiments on the one cell. Further development of the
UL model is also recommended, in conjunction with further knowledge of the

physical processes occurring in the cells during CPP experiments.

With further development and application, the UL model developed in this study can
be a valuable tool for shedding light on some observed membrane parameter
behaviour, such as differences in estimated parameters between positive and negative

pulses, between HPP and OPP experiments, and effects of external concentration on
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estimated parameters. With further research a comprehensive analysis of the
quantitative effects of ULs can be achieved.
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A Appendices

A.l1 Fitting the data using curve characteristics

In 82.3 two methods of parameter estimation were applied with the classical model. One
is the classical method, where the estimated membrane parameters L,, ps, and o are
obtained from curve characteristics of the data by applying appropriate analytical
equations (82.3.3). The other is the RMS method, where membrane parameters are

estimated using least-squares optimization (82.3.3).

With the UL model, where no analytical equations are available to solve for pressure vs.
time, the RMS method was used to estimate the membrane parameters. However, the
parameters can also be estimated using curve characteristics, where the relaxation curves
are fit with the following criteria: t,, Py, and z of the simulated OPP data must agree with
tm, Pm, and z5 of the observed OPP data to within a certain degree of accuracy, and 7, and
Pe of the simulated HPP data must agree with z,, and Pg of the observed HPP data to
within a certain degree of accuracy. The logic behind this is that if the simulated curves
begin at the same P value, reach the same maximum or minimum value, rise or fall at the
same rate, and finish at the same P value as the observed curves, the simulated data
should fit the observed data well.

The process of fitting involves finding empirical relationships between the membrane
parameters and curve characteristics. This is done by using the model to generate data
using known parameters and UL thicknesses, determining the curve characteristics from
the data, and finding an equation which relates the membrane parameters and the curve
characteristics. The parameters are then optimized so that the curve characteristics of the
simulated and observed data agree. This method, like the RMS method, can fit the data
very well and is the method of fitting used in Tyree et al. (2005).



A.2 Derivation of stability criteria for Euler’'s method for finite
differences

The stability condition for a numerical solution of the diffusion equation using Euler’s

method is easiest to derive for cartesian coordinates, where the diffusion equation is:

2
§:D£ (A.1)

ot ox*
In finite difference notation, Taylor’s expansion of C as a function of t, to first order,

gives:

Cit=Cf +At§;
ot

ckt—ck
oC _ &, j (A.2)
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where j represents a spatial step and k represents a temporal step.

Taylor’s expansion of C as a function of x, to second order, gives:

which upon addition results in
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Putting (A.2) and (A.3) into (A.1) gives
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Ci*=Ci+a(Cj,—-2C{+C{,) (A4)

j+1

DAt

where o =—-.
X

(A.4) is Euler’s finite-difference method for the solution of the diffusion equation.

Using a Fourier stability analysis, an initial condition is represented by the sinusoid

K AKAiA
Ck = Al
where A is some function of t, and i is the complex number ~/~1.

Substituting into (A.4) gives

AkHgiisx _ Akaiiax o nk (ei(j+l)Ax _ 2giitx +ei(j—l)AX)
Ak+1 — Ak [1+a(eiAx +e—iAx _ 2)]
= A[1+a(2cos Ax—2)] .

For stable convergence to a solution, it is required that

Ak +1

o <1

=[1+2a(cos Ax-1)| <1
= [1-4asin® (Ax/ 2)| <1

using a trigonometric identity. We then have

~1<1-4asin®(Ax/2) <1
= 4asin®(Ax/2) < 2
= a<1/2.
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A.3 Derivation of permeability equation (for cylindrical
geometry)

Fick’s second law for the steady state diffusion equation in cylindrical coordinates,

ﬁ(m@j _o0, (A5)
or or

has the solution
C=A+BiInr, (A.6)

where A and B are constants, C is the solute concentration, r is the radius from the center
of the cell, and D is the diffusivity coefficient (Crank, 1975).

Let the system by comprised of 2 unstirred layer (UL) regions separated by a cell
membrane (assumed to have an infinitesimal thickness) located at r=R. The boundary of
the inner UL is located at r=a, where a<R, and the boundary of the outer UL is located at
r=b, where b>R. Region 1 is the area inside the cell for which 0<r<R, and region 2 is the
area outside the cell for which r>R. C; is the concentration in region 1, and C; is the

concentration in region 2.

From Eg. (A.6), we have

x_B

o r

From Fick’s first law for diffusion (Eq. (3.1)), it follows that for the solute flux Js:

Js(r)z—Dﬁz—DE. (A7)
or r

Js(R) at the membrane is also given by the expressions

Js(R) = P (C,(R) - C,(R))

(A.8)
=Py (Cl (a) - Cz (b))
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where pp, is the permeability of the membrane, and pr is the measured permeability based
on using the bulk concentration values. From Eq. (A.7) & Eq. (A.8),

1 C(a)-C,(b) R R
—=——"—2"=-C,(a) —+C,(b A9
pT ‘]s(R) l(a) DlBl+ 2( )DZBZ ( )
1 C,(R)-C,(R) R R
— =2/ =2 _C(R)—+C,(R : A.10
pm ‘JS(R) 1( )DlBl+ 2( )DZBZ ( )
Combining Eq. (A.9) and Eq. (A.10), and using Eq. (A.6),
1 1 1
—-—=—"—[C,(a)-C,(b)-C,(R)+C,(R)]
prop, (R TR T
___R (A+B/Ina—A-B/InR)+ R (A,+B,Inb-A,-B,InR)
= DlBl | A DZBZ 2 2
=—£(Ina—InR)+—£(lnb—lnR)
D, ,
.-.i:i+5m(i)+im(2j | (A11)
pT pm Dl a D2 R

This equation expresses the total permeability across the system in terms of the
membrane permeability and the permeability in the ULs. If D; = D,, Eq. (A.11) reduces

to
izii.n(ﬁj | (A12)
pr P, D \a

Eq. (A.12) applies for steady-state only. For non-steady state A and B (determined from
the boundary conditions at r=a and r=b) are not constants, since the boundary conditions
are: C=f(t) at r=a and C=C, at r=b where Cy is a constant. Eq. (A.12) reduces to Eq.
(A.15) for sufficiently thin ULs.
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A.4 Operational definition of the UL thickness

The view that the UL thickness changes during diffusion probably arises from an
incorrect usage and interpretation of a definition of the UL thickness given in the
literature. For planar geometry, an operational definition of the UL thickness ¢ is given
by (Barry and Diamond, 1984; Pedley, 1983; Dainty, 1963):

C,-C, _oC
) ol

(A.13)

where C,, is the concentration in the bulk solution, C, the concentration at the membrane,
and r the radius from the center of the cell. Eq. (A.13) estimates ¢ based on the
concentration gradient at the membrane (see Pedley, 1983), and gives a linear
concentration distribution in the ULs. Fig. A.1 shows a typical diagram given in the
literature of how ULSs affect the concentration difference at the membrane, which also
shows how ¢ is defined by Eq. (A.13).

Outside (region 1) " Inside (region 2)
i)
\t"
A\
\
- = - Rt Tt
{Acs}bulk [AJC‘}rncmb
\\——1
| ;
________ nh e, S e el e
i sam s

Fig A.1 Showing how ULSs are expected to affect the concentration difference at membrane, and
how ¢ is often defined (Dainty, 1963).



The definition of 6 by Eq. (A.13) may be valid for a system in steady-state. However, if
Eq. (A.13) is applied to a system in non-steady state, as diffusion proceeds the
concentration gradient at the membrane decreases, and correspondingly ¢ will change.
However, an unstirred layer does not change thickness as diffusion proceeds. It is
important to realise that Eq. (A.13) and Fig. A.1 do not reflect the actual behaviour of
ULs. As Dainty (1963) points out, ¢ given by Eq. (A.13) is “not the actual thickness but

rather an operational thickness. ”

Incidentally, ¢ as defined by Eq. (A.13) can be related to the permeability ps in the UL
by:

3.(r) = b €| _D(C,-C,)
or |, 5

=P (A.14)

since J,(r) = p,;(C, —C,,), where Js is the solute flux in the UL due to diffusion only, and

D = coefficient of diffusivity of the solute in the UL (Dainty, 1963; Barry and Diamond,

1984). Eq. (A.14) suggests that the UL may be considered to be a type of membrane with
a permeability inversely proportional to the UL thickness (Dainty, 1963), and leads to the
permeability equation based on Kirchoff’s law of resistances in series for the planar case:

Lt a9

(A.15)
pT pm Dl D2

(Dainty, 1963).

Clearly, Eq. (A.15) only holds if the system is in steady state, so that the concentration
gradient in Eqg. (A.5) is a constant and the concentration profiles are linear. Eq. (A.15),
like Egs. (A.13) and (A.14), does not reflect the actual behaviour of ULs or give
information on the actual UL thickness. This is a commonly used unstirred layer model,
which, as Pedley (1983) notes, “is not to be taken literally.”
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A.5 List of acronyms and symbols

Table A1 List of acronyms

Acronym Meaning

CPP cell pressure probe
HPP hydrostatic pressure pulse
OPP osmotic pressure pulse
UL unstirred layer

ULi internal unstirred layer
ULe external unstirred layer
APW artificial pond water
KK Kedem-Katchalsky
RMS root mean square

SE standard error

3WS 3-way stopcock

EtOH ethanol

Table A.2 List of frequently used symbols

Symbol Units Definition

J, ms? volume flux density

Js mol m?s™ solute flux density

J mol m?s* radial flux

t S time

v mol m?sec™ radial flow velocity

P MPa hydrostatic (turgor) pressure of cell

Pe MPa equilibrium pressure

T MPa osmotic pressure

T MPa osmotic pressure due to impermeable solutes

Ts MPa osmotic pressure due to permeable solutes

Ns mol (M) number of mol of permeable solutes in cell

C mol m™ solute concentration

Ci mol m™? concentration of impermeable solutes in cell

Cs mol m™ concentration of permeable solutes in cell

Cie mol m™ concentration of impermeable solutes in bulk solution
Cee mol m concentration of impermeable solutes in bulk solution
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Duti (or Dy)
Dute (or Dy)

Ti1

tp
to
tr
Tw

mol m

ms* MPa*!
dimensionless
ms*

MPa mol* K™
K

MPa

m?s?

m®s?

m®s?
dimensionless
ms*

ms*

w N

33333333333

w unu unu un

MPa

average concentration of permeable solutes across membrane

hydraulic conductivity of membrane
reflection coefficient of membrane

solute permeability coefficient of membrane
universal (ideal) gas constant

absolute temperature

bulk elastic modulus
diffusion coefficient

diffusion coefficient inside cell
diffusion coefficient outside cell
parameter ratio

true solute permeability of membrane

measured (total) solute permeability of membrane, which
includes effects of ULs

surface area of cell

cell volume

cell length

cell diameter

radial distance from center of cell

cell radius

radial distance to boundary of internal unstirred layer
radial distance to boundary of external unstirred layer
unstirred layer thickness

thickness of internal unstirred layer

thickness of external unstirred layer

time at which perturbation pulse occurs

initial equilibrium pressure in cell

initial cell volume at equilibrium

initial cell surface area at equilibrium

initial cell osmotic pressure (due to impermeable solutes)
at equilibrium

solute concentration in bulk solution

cell pressure at t; in an HPP

osmotic pressure inside the cell (due to impermeable solutes)
at toin an HPP

time at which cell pressure starts changing

time-delay

ramp time

halftime of pressure relaxation in an HPP or in the water
phase of an OPP

halftime of solute phase

rate constant for solute phase

rate constant for water phase
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Prin MPa minimum value of P

Prnax MPa maximum value of P

Pm MPa I:)min or I:’max

timin S value for t at which Py, is reached
tmax S value for t at which P, is reached
tm S tmin or 1:max
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