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Summary 

1.  The golden galaxias (Galaxias auratus Johnston 1883) is a threatened, non-diadromous 

galaxiid that is endemic to lakes Crescent and Sorell in central Tasmania, Australia. Similar to 

the lacustrine habitats of other threatened galaxiids in this region, the Crescent-Sorell system 

has altered hydrology and contains alien fishes. The objective of this study was to examine 

crucial aspects of the biology and life history of G. auratus (including age, growth, population 

structure, reproductive biology and recruitment dynamics) in these impounded highland lakes 

that are likely to be influenced by hydrology and lake management. An investigation of 

population monitoring methods for this species was also conducted. This work aimed to 

assess the vulnerability of G. auratus populations, and gain insight into the ecological 

attributes of other threatened galaxiids, threats to this family and other similar small-sized 

lentic species. 

 

2.  Analysis of a 5-year, monthly record of population and spawning attributes of both 

populations, along with detailed environmental data, including water levels and water 

temperatures, showed water levels and the access they provide to spawning habitat strongly 

limit the reproduction and recruitment of G. auratus in Lake Crescent. Detailed life history 

attributes of this species support these conclusions and further illustrate the vulnerability of 

this species to hydrological manipulations. 

 

3.  Gonad development began in mid-summer and spawning was spread over late autumn – 

early spring, peaking in winter. Demersal adhesive eggs (~1.5 mm diameter) were found on 

cobble substrates (c. 20-250 mm diameter) in littoral areas (c. 0.2-0.6 m deep). Patterns in 

larval emergence and abundance were associated with the timing of inundation of spawning 

habitats. In Lake Crescent, seasonal abundances of larvae were strongly related to the 
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magnitude of water level rises during spawning and egg incubation (i.e. May-September). 

Despite the occurrence of larvae in pelagic habitats in both lakes during winter, they did not 

grow until spring; thus, coupling of water level and water temperature regimes is important 

for recruitment. Galaxias auratus reached up to 240 mm in length and ~10 years of age; 

however, most grew to <130 mm and the 0+, 1+ and 2+ year classes dominated the age 

structure of both populations. There were more >2+ fish in Lake Crescent where predatory 

introduced salmonids were less abundant than in Lake Sorell. Growth of these larger fish was 

slower due to limited access to complex littoral habitats in Lake Crescent. 

 

4.  In a translocated population, fyke netting at night was the most effective sampling method 

owing to increased activity at night and cover-seeking behaviour by this species. In the lakes, 

monthly catches of G. auratus increased substantially during spawning, suggesting that 

knowledge of the reproductive biology of target species can aid population monitoring 

programs for other galaxiids. 

 

5.  Water level fluctuations play a key role in the life cycle of G. auratus which relies on 

access to complex littoral habitats for spawning, feeding and refuge. Seasonal hydrological 

cycles (i.e. rises during late autumn – winter) and a minimum water level of 802.20 m AHD 

in Lake Crescent during autumn (above which littoral areas of cobble substrate are inundated) 

are critical to G. auratus populations. Because many lacustrine galaxiids use littoral habitats 

during several life stages, alterations to water levels and seasonal hydrological regimes may 

impact on their populations by restricting access to these habitats at critical times. To assist 

the management of other threatened galaxiid species, further studies should identify habitats 

that limit populations based on species biology and examine ecological traits that provide 

resilience to major perturbations. 
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Dedication 

I hope the knowledge gained from this volume of work helps raise awareness of the 

uniqueness and imperilled status of small-sized inconspicuous freshwater fishes. I believe the 

naive and careless views expressed in the following quote* regarding European fishes still 

hold true today in several sectors; to the detriment of many species which are of little or no 

commercial or recreational value. 

 

‘There is also a little fish called a Stickleback: a fish without scales, but hath his body fenced 

with several prickles. I know not where he dwells in winter, nor what he is good for in 

summer, but only to make sport for boys and women-anglers, and to feed other fish that be 

fish of prey, as Trouts in particular, who will bite at him as at a Pink, and better, if your hook 

be rightly baited with him, for he may be so baited, as his tail turning like the sail of a wind-

mill will make him turn more quick than any Pink or Minnow can. For note, that the nimble 

turning of that or the Minnow is the perfection of Minnow-fishing.’ 

 

 

                                                 
*Taken from modern day reprint ‘Walton, I. (1995). The Complete Angler. London: J. M. Dent.’. This is the fifth 

edition of this classic angling companion which was first printed in 1676. Izaak Walton was a seventeenth-

century devotee of the art of angling, nostalgic royalist and friend of bishops. 
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Preface: Threatened fishes of the world: Galaxias auratus 

Johnston, 1883 (Galaxiidae)* 

 

*Published as Hardie S.A., Barmuta L.A. & White R.W.G. (2004) in Environmental Biology 

of Fishes 71, 126. 

 

Common name: Golden galaxias. 

 

Conservation status: Rare – (Tasmanian Threatened Species Protection Act 1995); 

Endangered – (2003); Endangered – (Commonwealth Environment Protection and 

Biodiversity Conservation Act 1999). 

 

Identification: D 7-10, A 11-12, P 14-18, vertebral count 53-56 (McDowall & Frankenberg, 

1981). Small scaleless salmoniform fish, maximum size: 240 mm TFL, 130 g (Hardie, 2003). 

Colouration: golden to olive-green on dorsal surface and sides, silvery-grey on ventral 

surface. Back and sides are covered with round to oval black spots (McDowall & 

Frankenberg, 1981) (Fig. 1). 

 

 

Fig. 1.  Golden galaxias (Galaxias auratus). Drawing by Carol Kroger in Fulton (1990). 
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Distribution: Endemic to the interconnecting lakes Crescent and Sorell and their associated 

creeks and wetlands in the headwaters of the Clyde River catchment central Tasmania, 

Australia. Two translocated populations were established in farm dams in the Clyde River 

catchment, between 1996 and 1998. Currently, only four breeding populations exist including 

two natural and two translocated populations. 

 

Abundance: Natural populations in lakes Crescent and Sorell are currently abundant, 

although relative abundance differs significantly between the two with the Lake Crescent 

population being an order of magnitude greater than the Lake Sorell population. The two 

translocated populations of golden galaxias are currently abundant (Hardie, 2003). 

 

Habitat and ecology: A non-diadromous species preferring lentic waters. Adults frequently 

feed in the water column but tend to be benthic and prefer the shelter of rocky lake shores, in-

lake macrophyte beds and wetland habitat. The adult diet consists of aquatic and terrestrial 

insects, small crustaceans, molluscs and cannibalism of eggs and juvenile fish is common 

(Hardie, 2003). Juveniles are pelagic and feed on zooplankton and small insect larvae 

(Frijlink, 1999). 

 

Reproduction: Spawning takes place in late autumn – winter on rocky shores and possibly in 

wetland habitat when available (Hardie, 2003). Spawning occurs at approximately 4°C (range 

2-7°C) and appears to be triggered by rising lake levels. Fecundity ranges from 1000 to 

15 000 eggs. Fertilised eggs are ~1.5 mm in diameter, transparent and adhesive. Spawned 

eggs are scattered over cobble substrate or aquatic vegetation at a depth of 200-600 mm. 

Fertilized eggs are thought to incubate for 30-45 days in the wild. Larval hatching peaks 
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during late winter – early spring. Newly hatched larvae are 5-7 mm in length and are pelagic 

until 4-5 months of age (40 mm TFL). 

 

Threats: Low water levels in lakes Crescent and Sorell are the primary threat to natural 

populations of golden galaxias (Hardie, 2003). In Lake Crescent, low water levels can de-

water rocky shorelines which are a critical habitat for spawning and refuge. Competition and 

predation from introduced fish is also a significant threat. Four introduced species currently 

inhabit lakes Crescent and Sorell (Salmo trutta, Oncorhynchus mykiss, Cyprinus carpio and 

Galaxias maculatus). Brown trout are known to predate heavily on golden galaxias in both 

lakes (Stuart-Smith, 2001). 

 

Conservation action: The golden galaxias is protected under State legislation and may only 

be collected under permit. The findings of the recent work of Hardie (2003) have been 

incorporated into a water management planning process for lakes Crescent and Sorell and 

have also provided baseline data for future monitoring of populations. The translocated 

population of golden galaxias in the Jericho area has been formally reserved. 

 

Conservation recommendations: The significance of adjacent wetlands and in-flowing 

creeks and their associated wetlands needs to be determined. Wild and translocated 

populations of golden galaxias should continue to be monitored on an annual basis. 

 

Remarks: Water level management, including the allocation of water to maintain base 

‘environmental’ levels in lakes Crescent and Sorell, is critical to the survival and health of 

natural populations of golden galaxias. 
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1.  General Introduction 

1.1.  Conservation of freshwater fishes 

Freshwater fishes are increasingly being considered threatened at regional (Bruton, 1990; 

Moyle, 1995; Fu et al., 2003) and international (Cambray & Giorgio Bianco, 1998) levels. In 

order to maintain their associated fishery resources, aquatic biodiversity, and the health of the 

systems which they inhabit, freshwater fish conservation has been recognised as an important 

action globally (Lowe-McConnell, 1990; Cowx & Collares-Pereira, 2002). A broad range of 

threats, which are mostly linked to anthropogenic impacts and biological invasions, increase 

the vulnerability of fishes (Bruton, 1995). Additionally, rare species which have restricted 

distributions, occur infrequently or have low abundances, are often at greater risk of 

extinction (Economidis, 2002; Fagan et al., 2002). Recent studies (Angermeier, 1995; Parent 

& Schriml, 1995; Duncan & Lockwood, 2001; Reynolds et al., 2005) have tried to determine 

if phylogeny and life history traits of freshwater fishes correlate with extinction risk; however, 

their results have been largely inconclusive. Whilst some biological and ecological attributes, 

such as small size (Reynolds et al., 2005) and diadromy (Angermeier, 1995), do increase the 

risk of extinction, identification of extrinsic factors which affect families or individual species 

is paramount to their conservation (Duncan & Lockwood, 2001). 

 

Strategies to manage threatened species take many forms and include population monitoring, 

risk assessments, habitat restoration and reservation, captive propagation, and translocation of 

taxa. Techniques to monitor wildlife populations are needed to estimate abundance and guide 

decisions regarding their management (Hauser et al., 2006). Additionally, knowledge of the 

biology and ecology of target species is essential to their conservation as these data underpin 

methods used to assess status (IUCN, 2003), identify threats and facilitate recovery. Recently, 

management of threatened taxa has shifted from the traditional single-species focus to multi-
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species approaches due to the inclusion of increasing numbers of taxa on threatened species 

lists, and the economic and resource constraints of management agencies. Species-specific 

biological understanding is often limited under multi-species recovery plans in comparison to 

those for single species (Clark & Harvey, 2002). However, data for well studied species can 

provide insight into the biological attributes and key threats of other closely related taxa, 

which have yet to be examined. 

 

Knowledge of population dynamics and relationships between species and their habitats is 

required to perform quantitative risk assessments (Lindenmayer & Burgman, 2005). Such 

data often exist prior to the decline of commercially exploited species, but for taxa like small-

sized freshwater fishes which are of no commercial or recreational value, these data are 

usually scarce. The life histories of many fishes rely on the spatial and temporal alignment of 

access to certain habitats. Therefore, the lack of favourable habitats for different life stages 

can have significant consequences for fish populations (Naiman & Latterell, 2005). In 

modified environments, this variability may be the primary threat to populations. Thus, 

identification of biology-habitat linkages can aid conservation efforts (Rosenfeld & Hatfield, 

2006). 

 

1.2.  Galaxiid fishes and the golden galaxias 

Fish of the salmoniform family Galaxiidae are relatively small (adults generally <300 mm 

long), scaleless and often cryptic (McDowall & Frankenberg, 1981). They occupy freshwater 

and estuarine environments in mostly cool temperate regions on several land masses in the 

Southern Hemisphere, but are particularly prominent in the freshwater fish faunas of southern 

Australia and New Zealand (McDowall & Fulton, 1996; McDowall, 2000). Members of the 

family, of which there are around 50 species, exhibit both diadromous and non-diadromous 
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life histories. This enables them to occupy a diverse range of habitats. Whilst some migratory 

species contribute to regional whitebait fisheries (McDowall & Fulton, 1996; McDowall, 

2000), most galaxiid species are not of recreational or commercial value and more than 50% 

of species are threatened (i.e. protected under legislation in their region(s) of occurrence or 

listed on conservation awareness lists) (McDowall, 2006). 

 

Despite the broad distribution of the family, particularly some species (e.g. Galaxias 

maculatus Jenyns (Waters & Burridge, 1999)), many non-diadromous species have highly 

restricted distributions. Several galaxiid species only occur in a single river system or a few 

lentic waters. Similar to many small-sized endangered fishes, galaxiids face threats from 

exotic species, particularly those associated with introduced salmonids which have been well 

documented (Tilzey, 1976; Crowl et al., 1992; Ault & White, 1994; McIntosh, 2000; 

McDowall, 2003). However, anthropogenic alterations of their habitats are also likely to have 

contributed to the decline of some galaxiids, and data regarding these impacts are limited 

(Hanchet, 1990; Eikaas & McIntosh, 2006). For example, impoundment can dramatically alter 

hydrological regimes and habitat landscapes in natural lentic waters that are occupied by 

lacustrine galaxiids. However, at present little is known of the roles of hydrological variables 

in the life histories of galaxiids or the strategies by which they use different habitats. 

The island of Tasmania, southern Australia, has a diverse galaxiid fauna, with 16 species, of 

which 11 are endemic. Seven endemic non-migratory species occur in discrete populations in 

highland lakes and lagoons in the central highland district known as the Tasmanian Central 

Plateau (TCP). Six of these species occur in lakes that have been impounded during the past 

century for hydro-electric power generation and municipal and agricultural water storage 

purposes. Despite conservation efforts under multi-species recovery plans (Crook & Sanger, 

1997; Threatened Species Section, 2006), some Tasmanian lacustrine species (e.g. Galaxias 



General Introduction 

 4 

pedderensis Frankenberg (Hamr, 1995) and Paragalaxias mesotes McDowall and Fulton 

(Threatened Species Section, 2006)) in impounded lakes have recently undergone significant 

declines. Whilst there is conjecture surrounding the reasons for this, a lack of biological and 

ecological data and effective population monitoring methods for these and other local species 

make management and recovery of their populations difficult. 

 

The golden galaxias, Galaxias auratus Johnston, is a typical example of a localised lacustrine 

galaxiid (Fig. 1). This species is endemic to the interconnected Lake Crescent and Lake Sorell 

(Fig. 2) in the south-east of the TCP in the upper reaches of the Clyde River catchment 

(McDowall & Fulton, 1996). These shallow lakes (mean depths <3.5 m) are very similar 

chemically and physically and have been impounded for agricultural and municipal water 

storage purposes. Since being described over 120 years ago (Johnston, 1883), the biology of 

G. auratus has remained largely unstudied. In Australia, this species is listed under State and 

national threatened species legislation, but unlike many threatened galaxiids, and despite 

predation from introduced salmonids (Stuart-Smith et al., 2004), wild populations of 

G. auratus are abundant and juvenile and adult fish are reasonably easy to collect (Fig. 3). 

Two translocated ‘refuge’ populations of G. auratus have also recently been established in 

nearby, small off-stream agricultural water storages (Hardie, 2003), one of which is also 

relatively abundant. For these reasons, G. auratus is a good model species to use to 

investigate population monitoring methods for threatened lacustrine galaxiids and the biology 

and ecology of these fishes in waters that have altered hydrology. 
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Fig. 1.  Female Galaxias auratus (183 mm fork length). This individual has well developed 

gonads; thus, the abdominal wall is reasonably distended. 

 

 

Fig. 2.  View from a north-western shore of Lake Sorell looking south towards Table 

Mountain during 2000. 
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Fig. 3.  Hauling a catch of Galaxias auratus in a fine-meshed fyke net in Lake Sorell during 

2000 (samplers: Scott Hardie (left), Brett Mawbey (right)). Overnight fyke netting was the 

main technique used to sample juvenile and adult fish in this study. 

 

1.3.  Lakes, littoral habitats and hydrology 

Water level fluctuations are an important hydrological variable in lacustrine systems, 

particularly as they control the availability and condition of habitats in littoral areas (Gasith & 

Gafny, 1990). Many lacustrine fishes use littoral habitats at some stage of their life cycle (e.g. 

for spawning or during a juvenile phase (Winfield, 2004a)); therefore, access to these areas 

can greatly influence fish production (Gafny et al., 1992; Rowe et al., 2002b). Anthropogenic 

manipulation of water levels in impounded natural lentic waters (i.e. natural lakes that have 

been dammed for water storage purposes) can alter the timing, magnitude, duration and 

periodicity of fluctuations. For these reasons, alterations to hydrological regimes are likely to 

be a major threat to some freshwater fishes. Additionally, fish play important ecological roles 

in lake ecosystems, particularly as many species pass through a zooplanktivorous stage during 

their ontogeny (Winfield, 2004b). Their ontogenetic habitat shifts can link different areas of 
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lakes by providing pathways for energy flow between habitats (Schindler & Scheuerell, 2002; 

Vander Zanden & Vadeboncoeur, 2002). Therefore, if fish are reliant upon certain 

hydrological conditions and the habitats they provide to complete their life cycle, lake 

hydrology may also indirectly control connectivity between littoral, pelagic and benthic 

habitats. 

 

Lakes high in the local hydrological landscape (e.g. highland lakes) often have relatively 

small catchments and, thus, receive a greater proportion of their water from precipitation than 

lakes lower in the hydrological landscape (Warren & French, 2001). Because the hydrology of 

these systems depends heavily on local climatic conditions, these waters can be greatly 

influenced by climatic extremes, such as droughts. Whilst some researchers have documented 

the affects of droughts on riverine fishes (Matthews & Marsh-Matthews, 2003), few have 

investigated the response of lacustrine fishes to these events. In southern Australia, one of the 

main drivers of climatic variability is the El Niño Southern Oscillation (ENSO) (Kershaw et 

al., 2003). The periodic occurrence of El Niño-induced droughts causes high temporal 

variability in the hydrological regimes of rivers in the region (McMahon & Finlayson, 2003). 

Coupled with increasing demands for water resources, El Niño-induced droughts may 

represent a significant threat to the freshwater fish fauna of southern Australia. Therefore, 

knowledge of the processes by which these events affect fish populations is needed, 

particularly for species with restricted distributions where refuge habitats may be scarce or 

unavailable. 

 

1.4.  Research objectives and approach 

The objective of this thesis was to examine the crucial aspects of the biology and ecology of 

G. auratus that are likely to be vulnerable to the two main anthropogenic disturbances in lakes 
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Sorell and Crescent: (1) changes in habitat quality and quantity that are associated with 

altered water levels, and (2) predation and competition from introduced salmonids. By 

studying this species, I hoped to gain insight into the ecological attributes of other threatened 

galaxiids, threats to this family and other similar small-sized lentic species. 

 

I focused on the likely stages of this species’ life cycle and their habitat associations using 

data for other lacustrine galaxiids as a guide (Fig. 4). A field-based (rather than a laboratory-

based) approach that involved examining all five suspected life stages of G. auratus (see 

Fig. 4) was taken by studying wild populations in lakes Crescent and Sorell. Over a temporal 

scale of several years (up to 5 years for some data), G. auratus populations were subject to 

seasonal hydrological and climatic cycles which allowed the roles of these factors to be 

explored. However, at a smaller spatial and temporal scale, a translocated population of 

G. auratus in an agricultural water storage was used to evaluate methods to monitor 

populations as this small closed system enabled more robust comparisons to be made. 

 

The approach I used for this research followed a logical series of steps which helped develop 

the concepts for each chapter of this thesis. Firstly, due to a lack of information regarding the 

Tasmanian galaxiid fauna, I reviewed its status and identified threats and knowledge gaps 

using existing literature (Chapter 2). This highlighted the lack of data regarding the life cycles 

and habitat requirements of the Tasmanian fauna and illustrated the significance of the non-

migratory species which inhabit highland lakes on the TCP. Secondly, because several 

population sampling methods are routinely used to monitor galaxiid populations in lentic 

waters but none had been formally evaluated, I conducted a study to do this using a 

translocated population of G. auratus (Chapter 3). Thirdly, I focused on the wild G. auratus 

populations in lakes Crescent and Sorell and sampled them intensively (i.e. principal sampling 
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at monthly intervals) over 2.5 years, to examine: i) seasonal variation in catches (Chapter 4), 

ii) age and growth, and population structure (Chapter 5), iii) reproduction (Chapter 6) and its 

associated mortality (Chapter 7), and iv) recruitment dynamics (Chapter 8). During this time, I 

also identified and surveyed the littoral spawning habitats of G. auratus in Lake Crescent 

which have a limited extent. This exercise showed that the availability of this critical habitat 

is heavily influence by water level fluctuations in Lake Crescent, whereas in Lake Sorell, 

access to this habitat is not reliant upon hydrology. Because of these findings, I continued to 

monitor the recruitment of these populations for a further 2.5 years (5 breeding seasons in 

total) to examine the roles of hydrology and habitat availability (Chapter 8). 

 

1.5.  Thesis structure and format 

The structure of this thesis reflects the logical approach followed for this research. 

Consequently, chapters are presented in a sequence which allows them to build upon the 

findings of previous ones and, in some cases, investigate previously posed questions. All 

chapters, which vary in length, have been prepared as papers for publication in scientific 

journals; some have been published, accepted or submitted for publication and others have not 

yet been submitted. Because of this formatting and the multiple use of sampled material (i.e. 

fish specimens) and other data (e.g. water levels), there is some repetition within the chapters. 

However, each chapter has a unique focus and seeks to address a different set of aims which 

relate to the conservation biology of G. auratus. 
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Littoral-benthic Epibenthic Pelagic

1. Eggs 2. Larvae

3. Juveniles

4. Adults

5. Spawning

 

Fig. 4.  Five typical stages in the life cycle of a non-diadromous lacustrine galaxiid and the 

main habitats used during each stage based on published data for other similar species 

(Pollard, 1971; Humphries, 1989; Rowe & Chisnall, 1996a; Barriga et al., 2002; Rowe et al., 

2002a; Morgan, 2003). The relative proportion of time each life stage occupies the three 

habitats is represented by the position of the horizontal bars. 
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