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ABSTRACT 

This thesis presents theoretical results, a numerical model and simulation results for 

the control of the ion motion for a pre-formed field-reversed-configuration (FRC) 

using two counter-rotating magnetic fields (RMFs).  One RMF (denoted the (-) 

RMF) is applied first to entrain the electron fluid and maintain the plasma current.  In 

the absence of a mechanism for controlling the ion motion, if the confinement time is 

sufficiently large, the rotation of the ion fluid due to collisions with the electron fluid 

would diminish the plasma current and thus destroy the FRC equilibrium.  A second 

RMF (denoted the (+) RMF) is applied after the (-) RMF has penetrated the plasma, 

to entrain the ion fluid and maintain the equilibrium.   

It is shown that there exists a true steady state (the Clemente steady state), where the 

electron fluid rotates almost synchronously with the (-) RMF and the ion fluid rotates 

almost synchronously with the (+) RMF.  This allows the equilibrium to be 

maintained indefinitely.  Both RMFs penetrate much farther than a classical skin 

depth.  The accessibility of the Clemente steady states are examined theoretically and 

by simulation. 

A 1-D numerical model is developed to simulate the application of the RMF for two 

cases: 

1. A constant density model where the radial motion is constrained. 

2. A preformed FRC model with radial motion. 

For both cases it is demonstrated that the Clemente steady states are accessible from 

a small class of initial conditions.  The class of initial conditions may be broadened 

by allowing the frequency of the (+) RMF to vary.  The penetration and entrainment 

of the (+) RMF is shown to be highly non-linear (as is well known for the (-) RMF) 

and hence the magnitude of the (+) RMF required for accessibility of the steady state 



 iv

is much greater than that required to maintain the steady state.  It is also 

demonstrated that it is possible to increase the closed flux of the FRC by increasing 

the frequency of either RMF.   
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CHAPTER 1 INTRODUCTION   

 

1.1 Controlled Nuclear Fusion 

Controlled nuclear fusion requires heating a gas of low atomic number elements to high 

temperature and confining the plasma long enough for nuclear reactions to produce more 

energy than is consumed.  Conventional fusion approaches require the production of 

large driven plasma currents which both heat the plasma and provide containment.  The 

current produces a magnetic field around the plasma, thermally insulating the hot plasma 

from the wall.  The current also exerts a force radially inward, which opposes the plasma 

pressure.  The plasma is heated by Ohmic heating, resulting from an interaction between 

the current and the plasma resistivity. 

The main focus of controlled nuclear fusion research is the “tokamak” reactor, a toroidal 

vessel in which an electric current is made to flow in a contained closed plasma ring.  

External magnetic fields confine and stabilise the plasma by interaction with the current, 

which is induced by transformer action.  While the tokamak remains the most likely 

fusion reactor, inherent problems have been identified which suggest the benefit of 

alternative fusion research directions.  The tokamak has a low engineering β value (the 

ratio of plasma pressure to magnetic pressure) which gives a low power density.  The 

tokamak also has a large minimum size and is geometrically complex which means that 

the tokamak has a high capital cost. 

The efficiency of the tokamak can be maximised by decreasing the toroidal aspect ratio 

(thereby increasing the average plasma beta value).  In the limit this results in a 
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“compact torus” where the central hole is shrunk to zero and there are no internal 

material structures.  The production of compact torus configurations requires techniques 

where the coils do not link the plasma.  A compact torus consists of open and closed 

magnetic field lines, and may also have a toroidal field.  The separatrix may be 

spherical, oblate or prolate. 

 

1.2 Field-Reversed Configuration 

A field-reversed configuration (FRC) is a prolate compact torus with no appreciable 

toroidal field (Tuszewski, 1988).  A sketch of an FRC geometry is shown in Figure 1.1 

(Steinhauer, 1996) 

 

 

Figure 1.1. FRC Geometry 

A highly prolate FRC has an average β value determined by the ratio of the separatrix 

radius rs and the flux conserver radius rc, 

2

2
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Hence <β> has a minimum value of 0.5, and is typically greater than 0.8 (Steinhauer, 

1996). 

FRCs have several benefits that make them attractive for reactor design.  An FRC can be 

produced in a cylindrical vessel, making the engineering of a reactor simpler than a 

tokamak, as it has a natural exhaust channel.  This geometry also allows for the FRC to 

be easily translated to a separate burn chamber.  FRCs have a high power density, giving 

a high engineering beta value (near unity), and the low internal magnetic field of FRCs 

may also make possible the use of advanced fuels.  The minimum FRC reactor size 

would be significantly smaller than an advanced fuel tokamak reactor (Hoffman, 1995). 

The standard method of producing field reversal is the Field-Reversed Theta-Pinch 

(FRTP) (Slough & Hoffman, 1990).  A discharge tube is filled with neutral gas in the 

presence of an axial bias magnetic field.  The gas is ionised, freezing the bias field into 

the plasma.  The current in the theta-pinch coil is quickly reversed, producing a large 

inductive electric field, causing the plasma (and frozen bias field) to implode radially.  

The oppositely directed magnetic field lines connect near the ends of the theta-pinch 

coil, and magnetic tension at the ends of the FRC causes axial contraction to an 

equilibrium state.  An FRC can also be formed using counter-helicity merging of 

spheromaks (Ono et al, 1997), or by rotating magnetic fields (Jones and Knight, 1985). 

 

1.3 RMF Current Generation – The Rotamak 

A branch of fusion research investigates continuously driven plasma currents, which 

overcome the problems associated with the pulsed operation of an FRC.  A continuous 

current may be produced be means of a rotating magnetic field, allowing a steady state 

operation.  This idea was originally expressed by Blevin & Thonemann (1962), and has 

been a focus of research from 1977 at Flinders University.  The Rotamak is a compact 

torus device where the toroidal plasma current is generated and maintained by a rotating 

magnetic field (Jones, 1986a).   
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The physics of RMF current drive are greatly simplified if we consider an azimuthal 

current driven in an infinitely long plasma cylinder.  A plasma column is contained in a 

cylindrical discharge tube of radius a, in the presence of a steady axial field Ba, produced 

by an external solenoid (Figure 1.2).  A rotating magnetic field, of amplitude Bω, angular 

frequency ω, is applied by means of two perpendicular longitudinal loops carrying RF 

current.  A series of conducting rings is located exterior to the RF loops, and acts as an 

azimuthal conducting shell. 

 Axial field, Ba

      Rotating Field, Bω

 

Figure 1.2. Schematic of the magnetic fields associated with the Rotamak, showing the 

transverse RMF and axial bias field applied to a cylindrical plasma column. 

If the angular frequency of the RMF is between the electron and ion cyclotron 

frequencies (with respect to the RMF), and the electron cyclotron frequency is greater 

than the electron-ion collision frequency νei,  

e
ei

ei m
eB

m
eB

m
eB ωωω νω <<<<<< andi.e.

 

(1.1) 

where me and mi are the electron and ion masses, then the electrons are tied to the field 

lines of the RMF.  The electrons will thus rotate synchronously with the RMF (Jones, 
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1979a).  The presence of the externally applied bias field Ba does not affect the 

generation of azimuthal current. 

In order to produce a significant steady current in the plasma requires that the RMF to 

fully penetrate the plasma column.  An external time-varying magnetic field applied to 

the surface of a conducting medium has an amplitude which decreases exponentially 

with depth into the medium.  This is the classical skin effect, where the the 1/e depth in 

the medium is the skin depth, δ, 

 μω
ηδ 2

=
, 

(1.2) 

where η is the resistivity of the medium (Jackson, 1999). 

For the Rotamak concept to be viable requires that the RMF penetrate much farther than 

the classical skin depth.  In the fixed ion model where the plasma ions form a uniformly 

distributed immobile background, and electron inertia and pressure are neglected, the 

appropriate Ohm’s law for the electron fluid is, 

 ( )BJJE ×+=
ne
1η

.
 (1.3) 

The first term is the resistive term and the second is the Hall term.  The relative 

dominance of the Hall term with respect to the resistive term is determined by the ratio 

where ωce is the electron cyclotron frequency (with respect to the RMF) and νei is the 

electron-ion collision frequency.  The response of the plasma to the applied RMF is 

highly dependent on the relative influence of these terms (Jones and Hugrass, 1981).   

The RMF induces a time-varying axial electric field, Ez, in the plasma.  The resistive 

term hence produces an associated AC current density Jz, which acts as screening current 

reducing further penetration of the RMF into the plasma column.  The penetration of the 

RMF into the plasma for the case ων >>ei  is determined by the classical skin effect.  

 
ei

ce

ν
ω

,
 (1.4) 
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For plasmas in which the resistive term in equation (1.2) dominates, there will be no 

significant penetration of the RMF. 

The effect of the Hall term is to produce an azimuthal force with steady part, 

 ( ) rz BJ=× θBJ ,  (1.5) 

which acts on the electrons.  This provides a steady torque on the electron fluid, and 

hence produces a steady azimuthal current, Jθ.  The electron fluid has a steady value of 

the azimuthal velocity veθ, where the accelerating force in equation (1.4) is opposed by 

the retarding force due to collisions with the ion fluid.  Due to the azimuthal symmetry 

of the plasma column (or sphere) this Hall current does not produce charge separation 

and can thus be maintained (Jones, 1986b).   

The Hall term also provides an increased penetration of the RMF into the plasma 

column.  In the steady-state, the z-component of Ohm’s law can be rewritten in terms of 

an effective resistivity 

 zz JE *η= , (1.6) 

r
ve
ω

ηη
θ−

=
1

 where *

.

 (1.7) 

The effective resistivity is increased as the RMF amplitude is increased, hence allowing 

further penetration of the RMF since the screening current Jz is reduced.  The form of 

equation (1.6) suggests that when the electron fluid is rotating close to the RMF 

frequency, it is the Doppler shifted frequency of the RMF in the reference frame of the 

electron fluid that determines the screening current and hence the penetration of the 

RMF into the plasma.  The magnetic field penetration can be expressed in terms of an 

effective (Doppler shifted) skin depth (Hugrass, 1998) 
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For metallic conductors, the electron-ion collision frequency is very high (~1014 sec-1) 

and hence the Hall term can usually be neglected.  However, this value can be relatively 

small in plasma conductors suitable for fusion experiments (Jones, 1999), allowing the 

Hall term to dominate for significant RMF magnitudes.  As the magnitude of the RMF is 

increased, the effective skin depth also increases.  When the effective skin depth is 

greater than the plasma radius, there is complete penetration of the RMF, and a large 

azimuthal current may be generated (Hugrass and Grimm, 1981). 

Experimental (Jones, 1999) and numerical (Milroy, 2000) studies have shown that when 

the magnitude of the RMF is increased beyond a threshold value, there is increased 

penetration of the RMF into the plasma column and an increased azimuthal current for 

plasmas where the Hall term is large with respect to the resistive term.  Numerical 

simulations show that if the ion mass is infinite, a steady state is achieved where the 

electron fluid rotates almost synchronously with the applied RMF, with a maximum 

driven current given by 

 
renJ e ωθ −=

 

(1.9) 

While the ions are unaffected by the applied RMF if the conditions in equation (1.1) are 

satisfied, they will undergo momentum transfer collisions with the electron fluid.  This 

suggests that in the steady state, the ion fluid will rotate synchronously with the electron 

fluid unless a mechanism exists allowing the ion momentum to be relaxed to the 

surrounding environment.  For experiments with lifetimes longer than the relaxation 

time of the ion fluid requires an effective collision frequency, ν* exists to oppose the ion 

relaxation under collisions (Jones, 1986a) such that 
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(1.10)

If ion motion is introduced, the current will decrease with time unless a torque on the 

ions opposes the torque due to collisions with the electron fluid.  This torque may 

perhaps be provided by ion-neutral collisions, charge exchange or viscous effects 

(Hoffman, 2003).  If there is not a mechanism to overcome ion relaxation, the current 

will decay with the ion relaxation time.  The problem of current loss due to ion 

relaxation has not currently been observed (Jones,1999), possibly because the duration 

of the discharge was not long enough.   

 

1.4 RMF FRC Generation 

An FRC may be generated and sustained by using an RMF.  The steady driven 

azimuthal current generates an axial magnetic field component Bz(r), whose direction is 

determined by the sense of rotation of the RMF.  If the sense of rotation is chosen so that 

Bz(r) is in opposite direction to Ba, a sufficiently large driven current will produce a 

field-reversed configuration, where the steady part of the field has closed field lines 

(Hoffman et al, 2006).  The RMF method generates an FRC which is sustainable over a 

long time period.  RMFs can also be used to maintain an FRC formed by another 

method.  RMFs are being utilized to maintain FRC equilibria in the TCS (Translation, 

Confinement and Sustainment) experiment (Hoffman et al, 2005).  

The Rotamak experiments at Flinders University produced FRCs sustained for 40 ms 

using 200 kW of RMF power (Knight & Jones, 1990).  Continuous driven currents were 

produced, limited only by the applied RMF power.  RMF generation of FRCs provides a 

path to steady state reactor design, since the RMF can not only generate an FRC, but 

may sustain it in the steady state (Ohnishi & Ishida, 1996). 

The Translation, Confinement and Sustainment experiment (TCS) begun in 1996 

extended the LSX (Large s Experiment) at the University of Washington (Hoffmann et 

al, 2002).  This program aims to utilise an RMF to both generate and to maintain a 
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prolate FRC.  The program produced quasi steady state FRCs with densities of n = 1 – 3 

x 1019 m-3 which were maintained as long as RMF power was supplied (Guo et al, 

2002). 

While FRCs can be generated and sustained using the RMF alone in the TCS chamber, 

these FRCs have sub 100 eV temperatures.  Translation experiments have a hot FRC 

generated in the modified LSX equipment (LSX/mod) and transferred to a separate burn 

chamber (TCS), where the flux is maintained by an RMF (Hoffmann et al, 2002).   

 

1.5 The Clemente Scheme 

The plasma current generated by an RMF technique, or an FRC maintained by an RMF, 

will gradually decay over time.  This is due to the rotation of the ion fluid, which will be 

driven by collisions between the electron and ion fluid.  The plasma will eventually 

achieve a true steady state where both electron and ions rotate synchronously with the 

RMF, and the driven current is zero.  In order to provide RMF driven plasmas with 

lifetimes greater than the ion collision time, requires a method of controlling the ion 

motion.  It is possible that the steady state may be maintained by collisions of the ions 

with neutral species, wall interactions and diffusion effects (Hoffman, 2003). 

The Clemente scheme for steady state operation longer than the ion relaxation time 

utilises two counter-rotating RMFs (Clemente, 1998).  One RMF (the (-) RMF) entrains 

the electron fluid, which in the steady state rotates almost synchronously with the (-) 

RMF, and a second RMF (the (+) RMF) entrains the ion fluid.   

It has been shown that steady state solutions for the Clemente scheme exist.  (Hugrass, 

2000).  For the electron and ion fluids to be entrained in the steady state requires that the 

conditions 
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⎝
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+
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−
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(1.11)

be satisfied throughout the plasma, where  
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The Clemente scheme provides a true steady state, where the electron fluid rotates 

synchronously with the (-) RMF and the ion fluid rotates synchronously with the (+) 

RMF, providing a constant driven current.   

For the Clemente scheme to be feasible, requires that the (+) RMF penetrates much 

farther than a classical skin depth, and that the steady states for the ion fluid are 

accessible from reasonable initial conditions.  It is the purpose of this research to 

demonstrate the existence of global steady states where both RMFs penetrate much 

farther than the classical skin depth and entrain the electron and ion fluids.  This work 

will also investigate the accessibility of the steady states for the Clemente scheme from 

reasonable initial conditions.  

 

1.6 Outline of Thesis 

The objective of this thesis is to investigate the accessibility of the Clemente steady 

states in a preformed FRC by performing a transient analysis using a simplified 1-D two 

fluid numerical model.  The initial conditions from which the Clemente steady states are 

accessible are examined by means of numerical simulation. 

Chapter 2 describes a simplified two-fluid model for the Clemente scheme and derives 

equations of motion for this physical model.  Chapter 3 analyses the Clemente steady 

states for a single layer of the plasma, showing the conditions required for entrainment 

of the electron and ion fluids by the (-) and (+) RMF, respectively, and the conditions 

required so that the electrons remain entrained by the (-) RMF once the (+) RMF is 

applied.  Chapter 4 analyses the accessibility of the Clemente scheme, demonstrating the 

requirements for full penetration of the RMFs, and the existence of a global steady state 

at every layer of the plasma.  Chapter 5 presents results for a numerical model and 

simulation results for the Clemente scheme where the radial motion is suppressed.  In 

Chapter 6 the physical model for a preformed FRC is examined where radial motion of 
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the plasma is allowed, and simulation results presented.  Conclusions and further work 

are presented in Chapter 7. 
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CHAPTER 2 PHYSICAL MODEL AND EQUATIONS 

OF MOTION  

The time-dependent equations of motion describing the penetration of two RMFs into an 

infinitely long plasma column are derived.  A complete analysis should allow for radial 

motion of the plasma column.  For the problem of penetration of the RMF into the 

plasma column, the radial motion may be neglected.  The radial motion is thus 

suppressed in this initial model, but will be examined in Chapter 6 when the action of 

applied RMFs to a preformed FRCs is considered.   

Section 2.1 presents the physical model and assumptions.  In section 2.2 the transient 

equations of motion are developed for a single applied RMF where both electron and ion 

fluids are free to move in the z and θ directions.  Section 2.3 presents the equations of 

motion for two applied RMFs.  In Chapter 3 the derived equations of motion are used to 

analyse the steady states of the electron and ion fluids.  Chapter 4 examines the 

accessibility of the steady states and the enhanced penetration of the applied RMFs for 

this model 

 

2.1 Physical Model 

An infinitely long cylindrical plasma is considered with radius R, and flux conserving 

rings positioned at a radius b > R which are coaxial with the plasma column.  Firstly we 

consider the transient influence of a single RMF applied to the plasma.   
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Initially, only a steady axial bias field Ba, is present.  At t = 0, a transverse rotating 

magnetic field (RMF) having frequency ω, and magnitude Bω is applied to the plasma 

column.  The amplitude of the applied RMF rises in a time τr which is characteristic of 

the RF source used to generate the RMF. 

 ( ) ( ) ω
τ BetB rt

t
/1 −−=  (2.1) 

The total magnetic field will then consist of an axial magnetic field Bz(r) and a 

transverse rotating field.  The externally applied magnetic field can then be expressed in 

cylindrical coordinates as 

 ( )[ ] ( )[ ]{ } zθrB ˆˆexpˆexpRe zr BtjBtjB +−+−= θωθω θ , (2.2) 

where Br and Bθ are the complex phasors of the r and θ components of the magnetic 

field respectively. 

For the externally applied field to an infinitely long plasma column, in the steady state 

any physical quantity can be represented by a Fourier series expansion in (ω t − θ).  It 

was demonstrated by Hugrass (1982) that all the relevant physical quantities can be 

classified into two groups.  The first group consists of the transverse components of the 

electric field, the current density and fluid velocities, the number density, the pressure 

and the axial component of the magnetic fields.  A quantity of the first group has a 

constant (dc) part which does not depend on θ, and only even harmonics of (ωt − θ), 

 ( ) ( )θω −= ∑
∞

=

tmirQQ
m

m 2exp
0

2 . 
(2.3) 

The second group consists of the axial components of the electric field, the current 

density and fluid velocities and the transverse components of the magnetic field.  A 

quantity of the second group has only odd harmonics of (ω t − θ), 
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 ( ) ( )( )θω −+= ∑
∞

=
+ tmirQQ

m
m 12exp

0
12 . 

(2.4) 

The effects of the second and higher harmonics are very small and can be neglected 

(Milroy, 1999), and hence quantities of the first group are constant (dc) and quantities of 

the second group are ac and vary as exp[i(ω t − θ)].   

The ac quantities are represented by their (constant) complex phasors. Thus a quantity x 

of the second group is given by 

 { })(exp)(Re
(r))-tcos()(),,(

θω
ϕθωϑ

−=
−=
tirX

rxtrx o , 
(2.5) 

and is represented by the complex phasor X 
 

 (r))-(e)()( xo ixprxrX ϕ= . (2.6) 

The phasor for ∂x/∂ t is 

 )()(' rXirX ω= . (2.7) 

For quantities of the second group, 

 0=
∂
∂

−=
∂
∂

z
i

θ ,
 (2.8) 

and for quantities of the first group, 

 00 =
∂
∂

=
∂
∂

zθ
. 

(2.9) 

For the slowly varying transient states considered here, the dc quantities of the steady 

state as well as the complex phasors of the ac quantities vary slowly with time.  In 

particular, a quantity x of the second group is given by  

 { })(exp),(Re
))(-cos(),(),,(

θω
ϕθωθ
−=

−=
titrX

r, tttrxtrx xo , 
(2.10)

and is represented by the complex phasor X  
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 ))(-(e),(),( r,tixptrxtrX xo ϕ= . (2.11)

The phasor for ∂x/∂ t is 

 
t

trXtrXitrX
∂

∂
+=

),(),(),(' ω . 
(2.12)

The meaning of the term slowly here is that |(∂/∂t)| << |ω |.  This condition must be 

satisfied in order that we can still represent the ac quantities by their complex phasors. 

In the following analysis, the time dependant equation for the phasor X of a quantity x of 

the second group takes the form 

 ),(),(),( trXitrF
t

trX ω−=
∂

∂ , 
(2.13)

where the complex function F is obtained from the equation of motion for x.  For the 

slowly-varying steady states considered here 

 ,),(),( trX
t

trX ω<<
∂

∂  
(2.14)

and hence 

 ),(),(),(' trFtrXitrX ≅≅ ω . (2.15)

In the steady state of course 

 0),(
=

∂
∂

t
trX

,
 (2.16)

and hence 

 ),(),(),(' trFtrXitrX == ω . (2.17)

The approximation given in equation (2.15) could be made everywhere except in the 

time-dependent equation for x where one calculates the quantity ∂X(r,t)/∂t.  

The product of two quantities of the second group x and y has an average part 
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{ }YX

yxxy yxoo

Re
2
1

)cos(
2
1

=

−= ϕϕ
, 

(2.18)

where Y is the complex conjugate of Y.  In what follows we will not strictly follow the 

convention of using a lower case character for a quantity of the second group and the 

upper case character for its phasor.  We prefer to conform to the convention of using 

upper case A and B for the vector potential and the magnetic field.  For these quantities, 

the same upper case characters will be used to denote both the quantity and its complex 

phasor. The meaning of A and B will be always obvious from the context and we will 

not alert the reader on every occasion. 

The r-component of the plasma velocity is a quantity of the first group and is thus 

independent of θ.  It follows from the equation of continuity that vr must vanish in the 

steady state unless there is a source or sink on the axis.  A complete analysis of the 

transient behaviour of the plasma should allow for the motion of the plasma in the r 

direction and the consequent adjustment of the radial profile of the plasma pressure.  

These effects, however, are not essential for the study of the penetration of the RMF into 

the plasma and would introduce unnecessary complications.  The effect of the motion of 

the plasma in the radial direction will be considered in Chapter 5.   

 

2.2 Equations of Motion 

The equations of motion for the electron and ion fluids are 

where me is the electron mass, mi the ion mass, ve the electron velocity, vi the ion 

velocity, n is the number density, νei  is the electron ion collision frequency, Pe is the 

 ( ) ( )eieee
e vvBvEvv

v
−+∇−×+−=⎟

⎠
⎞

⎜
⎝
⎛ ∇•+

∂
∂

eieee nmPen
t

nm ν , 
(2.19)

 ( ) ( )ieiii
i vvBvEvv

v
−+∇−×+=⎟

⎠
⎞

⎜
⎝
⎛ ∇•+

∂
∂

eieii nmPen
t

nm ν , 
(2.20)
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electron pressure and Pi the ion pressure.  In these equations, quasi-neutrality is assumed 

so that ne = ni = n.   

Using Faraday’s law  

 
t∂

∂
−=×∇

BE , 
(2.21)

we obtain the following expression for the phasor of the z component of the electric field 

 
t
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t
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AiE z
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z
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∂

−−= ωω . 
(2.22)

The small term ∂Az/∂t is retained in equation (2.22) because its contribution to the time-

dependent equation for Az becomes large for certain values of the electron and ion slips 

as will become clear from equation (2.38) below.   

The derivation of the time-dependent equations is greatly simplified if we note that the 

phasor for the time derivative of vez ( ezV ′ ) is approximately related to the phasor for vez 

(Vez) by the equation 

 ezViV ω≈′ez , (2.23)

and similarly for the ion fluid 

 .iziz ViV ω≈′  (2.24)

Using equations (2.22) to (2.24), the z-components of the equations of motion can be 

written as 
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(2.25)
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(2.26)

Defining the slips of the electron and ion fluids with respect to the RMF 
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equations (2.25) and (2.26) then reduce to 
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Subtracting these two expressions provides an expression for the axial current density 
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(2.30)

Equations (2.28) and (2.29) are used to derive a generalised Ohm’s law for the z-

component of the electric field  
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where the effective resistivity ∗η  is the given by 
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(2.32)

the classical resistivity is given by 

 
ne

m

nemm
mm eieei

ie

ie
2

*

2
νν

η =
+

= , 
(2.33)

the reduced mass is given by 
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and 
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ξ eiv
=  

(2.35)

is the normalised collision frequency. 

The current density is also related to the magnetic field by Ampere’s law 
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Equations (2.31) and (2.37)are used to derive the time-dependant equation for Az 
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(2.38)

where the Laplacian of Az is given by 
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Note that the denominator in equation (2.39) becomes very small when  
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(2.40)

at a certain layer.  For the Clemente scheme, this occurs when Si is small and negative.  

At this particular layer, zA2

0

*

∇
μ
η  becomes almost equal to zAiω− .  The value of 

t
Az

∂
∂  

does not become large at this layer. 
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The steady part of the force density on the electron fluid in the θ -direction is determined 

by 

 reze BvenF −= . (2.41)

When the terms involving the time derivative of Az are neglected this leads to 
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where  
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Similarly, the steady part the of force density on the ion fluid in the θ -direction is 

 rizi BvenF = , (2.45)
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where  

 e
i

e

i

r
i m

m
m
Be

ζ
ω

ζ == .  
(2.47)

 

A time-dependant equation for Bz is obtained from the θ -component of the equation of 

motion of the electron fluid  
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 θθ ηJBvE rez +−= , (2.48)

and the θ -component of Faraday’s law  

 ( ) ( )θrE
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Assuming that the electron-ion collision frequency is constant, this provides 
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(2.50)

where the electron inertia terms are neglected.  If we consider the steady state behaviour 

of equation (2.50), in the absence of an externally applied field, this becomes a diffusion 

equation and hence the field will be spread evenly through the plasma giving zero driven 

current.  The presence of the externally applied field may provide a driven current in the 

steady state, given by 
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(2.51)

The θ -component of the plasma momentum density is given by 

 θθθ iiee nvmnvmP += . (2.52)

A time dependant equation for the θ -component of the plasma momentum density may 

be found from the θ -components of the equation of motion. 
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Adding equations (2.53) and (2.54) gives 

 rz BJ
t

P
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∂
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(2.55)

Since the θ -component of the current density is given by 
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 ( )θθθ ei vvneJ −= , (2.56)

the θ -components of the fluid velocities are then given by 
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The values of the slips may then be calculated from the θ -components of the fluid 

velocities. 

 

2.3 The Clemente Scheme 

The Clemente scheme requires the introduction of a second RMF.  The first RMF is 

given a frequency close to the electron rotational frequency and the second RMF has a 

frequency close to the ion rotational frequency.  For the scheme envisaged here (and for 

the application of the Clemente scheme to a preformed FRC) the two RMFs will be 

counter-rotating since the electron and ion fluids are counter-rotating.  The RMF which 

is applied to entrain the electron fluid is denoted the (-) RMF and the RMF which is 

applied to entrain the ion fluid is denoted the (+) RMF.  Quantities relating to the (+) and 

(-) RMF are denoted by the + and – superscripts, respectively.   

The externally applied total magnetic field then consist of an axial magnetic field Bz and 

two transverse rotating fields.  The total magnetic field is then given by 
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Under the influence of the two RMFs, the time-dependent equations are given by 
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Where the + and − superscripts refer to the (+), and (−) RMFs respectively.  The 

penetration of the RMF into the plasma is determined by the effective resistivity
±∗η  

with respect to each RMF, given by 
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where 

 
±

± =
ω

ξ eiv
, 

(2.68)

is the normalised collision frequency with respect to each RMF.   

In the Clemente scheme, either RMF may penetrate further than determined by the 

classical skin depth due to enhanced effective resistivity.  The (-) RMF may penetrate 

the plasma with enhanced skin depth since Se
- << 1 and the (+) RMF may penetrate the 
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plasma with enhanced skin depth since Si
+ << me/mi.  This effect will be further 

examined in Chapter 4. 

The steady part of the θ -component of the force density due to each RMF on the 

electron fluid is given by 

 ±±± −= reze BvenF , (2.69)
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The sign of the force density on the electron fluid is always in a direction of attempting 

to entrain the electron fluid to the frequency of the RMF (the sign of the force density on 

the electron fluid is determined by the sign of the electron slip with respect to the RMF).  

If the rotational frequency of the electron fluid is less than that of the RMF, the RMF 

provides an accelerating torque.  If the rotational frequency is greater than that of the 

RMF, the RMF provides a retarding torque on the electron fluid.   

Similarly, the steady part of the θ -component of the force density due to each RMF on 

the ion fluid is given by 

 ±±± −= rizi BenF v , (2.71)
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The sign of the force density on the ion fluid is always in a direction of attempting to 

entrain the ion fluid to the frequency of the RMF (the sign of the force density on the ion 

fluid is determined by the sign of the ion slip with respect to the RMF).  If the rotational 

frequency of the ion fluid is less than that of the RMF, the RMF provides an accelerating 

torque.  If the rotational frequency is greater than that of the RMF, the RMF exerts a 

retarding torque on the ion fluid.   
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CHAPTER 3 THE CLEMENTE STEADY STATES 

In this chapter the steady states relevant to the Clemente scheme are considered.  The 

Clemente steady states correspond to almost synchronous rotation of the electron fluid 

with the (-) RMF and almost synchronous rotation of the ion fluid with the counter-

rotating (+) RMF.  Hence we will be interested in the steady states with small values of 

Se
− and Si

+.  The steady states for a single layer of the plasma are examined for both the 

(-) and (+) RMF.  The accessibility of these local steady states is examined in Chapter 4.   

Section 3.1 describes the electron fluid steady states under the influence of a single 

applied RMF.  The requirements for the existence of a steady state with small electron 

slip and the method of determining operating points is discussed.  Section 3.2 extends 

these results for the case when two RMFs are applied and presents requirements for the 

existence the Clemente steady state for the electron fluid.  Section 3.3 outlines the steady 

states for the ion fluid when two RMFs are applied and conditions required for the 

existence of the small slip operating point.  Section 3.4 summarises the conditions 

required for the successful implementation of the Clemente scheme. 

 

3.1 Electron Fluid Steady States 

An external RMF can be used to generate or maintain a plasma current.  For a current 

generation scheme the current is initially zero (Se = Si = 1) and the RMF transfers 

angular momentum to the electron fluid.  In the steady state the electron fluid will rotate 

almost synchronously with the RMF (Se <<1).  The collision force between the electron 

and ion fluid has two main effects.  It provides a drag force opposing the RMF current 
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drive, and hence requires that the RMF magnitude be large enough to overcome this 

opposition.   The collision force also causes momentum transfer from the electron to the 

ion fluid providing a steady state where the ions will rotate synchronously with the 

electron fluid resulting in zero driven current.  Loss of current due to ion rotation has not 

currently been observed, possibly because the particle confinement time is not long 

enough in current experiments (Hoffman, 2003).  Conventional RMF current drive 

schemes may only be applicable for short confinement times without a method for 

controlling the loss of current due to ion rotation. 

 

3.1.1 An analogy to the induction motor 

The steady state solutions for a single applied RMF to a plasma column may be 

described using the analogy of a polyphase induction motor (Hugrass, 1985).  For the 

induction motor, a torque is exerted on the rotor by an RMF, which is opposed by a 

torque exerted by the mechanical load, both of which depend on the slip of the rotor with 

respect to the RMF.  The torque exerted by the RMF on the rotor is independent of the 

mechanical load, and the torque exerted by the mechanical load is independent of the 

RMF.  The steady states of the system, or operating points, occur when the torque 

exerted by the RMF is exactly balanced by the torque applied by the mechanical load, so 

that the net torque is zero, 

 0=+ loadRMF TT . (3.1) 

The steady state value of the slip of the rotor-load system is hence determined by the 

intersection of the curve representing the torque imparted by the RMF (TRMF) on the 

rotor and a load line representing the opposing torque exerted by the mechanical load (-

Tload). 

The induction motor and the current drive systems both involve the transfer of angular 

momentum by means of an RMF.  In the current drive scheme, the electron fluid is 

analogous to the rotor, and the ion fluid is analogous to the mechanical load.  For the 

case of an RMF applied to a plasma column, the plasma does not necessarily rotate as a 

rigid rotor, and hence we consider the force densities at a single layer of the plasma.  
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Since the electron and ion rotational velocities will be functions of radius, the slips of 

the electron and ion fluids will vary with radius.   

For the RMF current drive system, the steady states, or operating points, are determined 

by the intersection of the force density imparted by the RMF on a layer of the electron 

fluid and a load line.  For the current drive system, the load line represents the 

collisional force density exerted by the interaction of the electron fluid with the ion fluid.  

The steady states for the electron fluid under the application of a single RMF are hence 

solutions to  

 0=+ colle FF  (3.2) 

where Fe is the force density on exerted by the RMF on the electron fluid at this layer 

and Fcoll is the force density on the electron fluid due to collisions with the ion fluid at 

this layer.   

Each layer of the plasma may have different operating points.  Also for the plasma 

column, the RMF magnitude (and hence the force) will be a function of radius, since the 

local value of |Br| is determined by the penetration of the (+) RMF in the plasma.   

0 0.2 0.4 0.6 0.8 1
S e

F e

load line (-F coll )

RMF force (F e )

operating 
point

 

Figure 3.1. Method of determining operating points for RMF current drive (ξ = 0.2 and ζe = 1). 

Figure 3.1 shows an example of the method of determining operating points for the 

current drive scheme, showing the force density due to the RMF, the load line (-Fcoll) 
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and the operating point as the intersection of these two curves.  The operating point is 

determined for the case ξ = 0.2 and ζe = 1.  This diagram shows a single operating point 

for the electron fluid for a single layer of the plasma.  The curves are plotted against the 

slip of the electron fluid with respect to the applied RMF at this layer. 

The collision force density is determined by the relative velocities of the electron and 

ion fluids at this layer 

 ( )ieeiecoll nmF vv −= ν , (3.3) 

which can be represented in terms of the slip of the electron and ion fluid with respect to 

the RMF 

 ( )ieeiecoll SSrnmF −= ων . (3.4) 

Figure 3.1 is shown with the ion fluid stationary, hence Si = 1 

For a single RMF the force density on the electron fluid is given by equation (2.44) and 

hence the operating points are solutions to 
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(3.5) 

For a given value of the ion slip this equation is 3rd order in Se.  There are 3 solutions for 

Se, one of which is always real and two solutions which are either real or complex.  The 

operating points correspond to the real solutions of equation (3.5). 

Firstly we will analyse the operating points for typical curves showing the possible cases 

and then derive an approximate expression for the steady state corresponding to almost 

synchronous rotation of the electron fluid with the RMF.    

 

3.1.2 Analysis of operating points for the electron fluid 

The force densities can be represented in dimensionless units by dividing by the factor  
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 rnmF e
2

0 ω= ,  (3.6) 

which provides a dimensionless representation for the force density on the electron fluid 
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(3.7) 

and the collision force 

 ( )ie
coll SS

F
F

−= ξ
0

. 
(3.8) 

The relative magnitudes of the two forces at a given plasma layer are thus dependant 

upon the two dimensionless parameters ξ and ζe, and the rotational velocities of the two 

fluids. 

There may be either 1 or 3 operating points for the electron fluid.  The following figures 

show the three possible cases for the electron fluid operating points.  The figures show 

the dimensionless force densities where the ions are assumed stationary, and hence the 

force due to collisions is zero at Se = 1. 

Figure 3.2 shows the case for the existence of 1 operating point with Se << 1 where ξ = 

0.2 and ζe = 1.  The RMF magnitude is large enough so that the peak of the RMF force 

density on the electron fluid is greater than the force density due to collisions.  This 

operating point is often termed the synchronous rotation operating point, however since 

the electron slip is not zero, the electron fluid rotates at a frequency slightly less than 

that of the RMF.  The RMF exerts zero force on the electron fluid at Se = 0, and since the 

force due to collisions is non-zero at Se = 0. the electron fluid cannot rotate 

synchronously with the RMF. 
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Figure 3.2. Electron fluid operating points (ξ = 0.2 and ζe = 1).  

Figure 3.3 shows the case for ξ = 0.2 and ζe = 0.5.  The RMF magnitude is not large 

enough, and the peak of the force on the electron fluid due to the RMF is less than that 

due to collisions.  In this case there is no steady state corresponding to synchronous 

rotation.  The operating point corresponds to a very small driven current.   
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Figure 3.3. Electron fluid operating points (ξ = 0.2 and ζe = 0.5). 
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Figure 3.4 shows the case for ξ = 0.1 and ζe = 0.65.  There are three possible operating 

points.  All three operating points correspond to equilibria, where (1) and (3) are stable 

equilibria since small perturbations from the operating point provides a restoring force 

returning to the operating point.  Operating point (2) is unstable since the total force in 

this region is always away from the operating point and hence a small perturbation from 

the operating point provides a force away from the operating point.  The stable steady 

states for the electron fluid at this layer therefore correspond to operating points (1) and 

(3).  Operating point (1) corresponds to almost synchronous rotation of the electron fluid 

with the RMF and solution (3) to a very small driven current.  Which of the two stable 

steady states is accessed depends on the initial conditions. 

The scenarios shown are determined by the peak value and width of the RMF force 

density on the electron fluid and the magnitude of the force density due to collisions 

with the ion fluid.  For a current drive scheme where the initial condition is Se = 1 

requires a scenario outlined in Figure 3.2, since the steady state for almost synchronous 

rotation of the electron fluid is accessible from this initial condition.  The scenario 

shown in Figure 3.4 cannot be accessed from the initial condition Se = 1 and hence is 

only applicable for maintaining the plasma current and cannot be used for current 

generation. 
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Figure 3.4. Electron fluid operating points (ξ = 0.1 and ζe = 0.65). 
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3.1.3 The effect of ζe and ξ on operating points 

The peak of the RMF force density on the electron fluid occurs at 
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Hence the operating point where the electron fluid rotates almost synchronously with the 

(-) RMF is one with Se <ξ .  

If we assume  
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(3.10) 

the RMF force density has peak value  
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The width of the RMF force density curve can be described by the width at half-

maximum value 

 ξ32=Δ eS .  (3.12) 

The slip at which the RMF force density has peak value and the range of slip values over 

which the RMF has a significant effect is determined by the parameter ξ .  The peak 

value of the RMF force density is determined by the parameter ζe.  Hence these two 

dimensionless parameters  
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determine the number of operating points and their location, for a given value of Si.  The 

parameter ξ is a measure of the collisionality of the plasma.  The parameter ζe is 

determined by the magnitude of the external RMF. 

The effect of the value of ξ is shown by the set of RMF force density curves in Figure 

3.5 where ζe is held constant and the ion fluid is stationary (ζe = 0.5 and Si = 1 for all 

curves).  As ξ increases, the peak of the RMF force density occurs at larger values of Se, 

and the force density is significant over a larger range of values of Se (as demonstrated in 

equations (3.9) and (3.12) respectively). 

The effect of the value of ζe is shown by the set of RMF force density curves in Figure 

3.6 where ξ is held constant and the ion fluid is stationary (ξ  = 0.05 and Si = 1 for all 

curves).  As ζe increases the RMF force increases.  For low values of ζe there is no 

operating point with Se < ξ since collisions dominate in this region.  As ζe is increased, 

there are 3 operating points and hence 2 stable steady states, one with Se < ξ and one 

with Se ≅ 1.  The steady state obtained is determined by the initial conditions.  For large 

values of ζe, there is only one operating point corresponding to Se < ξ irrespective of 

initial conditions.   
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Figure 3.5. Effect of ξ on RMF force density (ζe = 0.5 and Si = 1 for all curves). 
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Figure 3.6. Effect of ζe on RMF force density (ξ  = 0.05 and Si = 1 for all curves). 

The existence of an operating point with the electron fluid rotating almost synchronously 

with the RMF (i.e. Se < ξ) is hence dependant on the relative magnitude of the applied 

RMF and the opposing force density due to collisions with the ion fluid.   

A requirement for the existence of a Se < |ξ| operating point is that the peak force density 

exerted by the RMF exceeds the force density due to collisions.  For a single RMF and 

stationary ion fluid (Si = 1), the force due to collisions with the ion fluid has an upper 

bound  

 eiecoll rnmF νω< ,  (3.14)

and hence we require 

 eie
ee rnm

rnm
νω

ζω
>

4

22

,  
(3.15)

providing a condition on the parameter ζe for the existence of this operating point. 

 ξζ 42 >e .  (3.16)

This relates the electron cyclotron frequency to the collision frequency and RMF 

frequency 
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 ωνω eice 42 > .  (3.17)

Hence the magnitude of the RMF must exceed a minimum value to provide a steady 

state corresponding to almost synchronous rotation of the electron fluid with the applied 

RMF, as demonstrated in Figure 3.6. 

In earlier RMF current drive literature (Blevin & Thoneman, 1962), it was assumed that 

the conditions required for the electron fluid to be entrained by the RMF, 

 eice νω >> ,  (3.18)

and 

 ωω >>ce .  (3.19)

Equation (3.17) is a less stringent condition on these parameters for RMF current drive.  

The value of ωce in equation (3.17) is to be calculated from the local value of Br, not the 

external value.   

Figures 3.2-3.4 presented earlier show the requirement of this condition.  The curves 

shown in Figure 3.2 (ξ = 0.2, ζe = 1.0) and Figure 3.4 (ξ = 0.1, ζe = 0.65) satisfy the 

condition in equation (3.16), and hence the Se < |ξ| operating point exists.  The curve 

shown in Figure 3.3 (ξ = 0.2, ζe = 0.5) does not satisfy the condition in equation (3.16), 

and hence there is no Se < ξ operating point. 
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3.1.4 Approximate solution for Se < ξ operating point 

We now derive an approximate expression for the electron fluid operating point with Se 

< ξ.  The collision force is again approximated by equation (3.8) which provides a 

second order equation for Se 
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The required small slip solution is then 
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corresponding to the stable Se < ξ operating point.  A comparison of the approximate 

operating points in the region of the peak of the RMF force, and the actual operating 

points is shown in Figure 3.7 (for the case ξ = 0.1 and ζe = 0.65).  The figure 

demonstrates that equation (3.21) is an upper bound for the steady state value of the slip, 

since the collision force is slightly overestimated in the region of the operating point.  

The existence of this small slip solution requires that equation (3.21) be real, again 

giving the condition in equation (3.16). 
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Figure 3.7. Approximate electron fluid small slip operating points (ξ = 0.1 and ζe = 0.65). 
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The case where the RMF force is much larger than the collision force, ξζ 42 >>e , 

provides a binomial approximation for the Se < ξ operating point 
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This expression shows that as the RMF magnitude is increased, the electron fluid rotates 

with smaller slip (is more tightly bound to the RMF), and as ξ increases the electron 

fluid rotates with larger slip (since the collision force density is larger).  This trend holds 

even when the condition ξζ 42 >>e  is not satisfied as the following figures 

demonstrates.  Figure 3.8 shows the operating points for two values of ξ when ζe is held 

constant (ζe = 0.5)  As ξ is increased, the operating point occurs at a larger value of Se.   
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Figure 3.8. Electron fluid operating points for two values of ξ (ζe = 0.5). 

Figure 3.9 shows the operating points for two values of ζe when ξ is held constant (ξ = 

0.2)  As ζe is increased, the operating point occurs at a smaller value of Se.   
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Figure 3.9. Electron fluid operating points for two values of ζe (ξ = 0.2). 

Again the figures shown in this section apply only to a layer of the plasma, and hence 

we are considering the local operating points from the local values of ξ(r) and ζe(r). 

 

3.2 Electron Fluid Steady States for 2 RMFs 

 

3.2.1 Method of determining operating points for 2 RMFs 

We now consider the operating points for the electron fluid for the case required for the 

Clemente scheme, where there are two counter-rotating RMFs.  The method of 

determining operating points described for a single applied RMF can be extended for 

two applied RMFs.  The operating points are the intersection of the net force density Fe
- 

+ Fe
+ and the collisional load line.  Since for the Clemente scheme, the RMFs are 

counter-rotating, the two RMF forces densities are opposite in sign.  We take ω− > 0 and 

ω+ < 0 and hence ξ− will be positive and ξ+will be negative.   

The steady states under the application of two external RMFs are thus solutions to the 

equation 
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 ( )−−−−+ −−=−=+ ieeiecollee SSrnmFFF ων . (3.23)

For the Clemente scheme, the ions are not stationary but rather will be rotating with a 

frequency close to the (+) RMF ( 0≅+
iS ), and hence  
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In determining the operating points in section 3.1.4, it was assumed that the ions were 

stationary.  When we allow the ions to be counter-rotating, this increases the collision 

force on the electron fluid, and will increase the electron slip at the operating point.   

If we consider the steady states for the electron fluid when the (-) RMF is applied, the 

second order equation for the electron slip in equation (3.20) is now given by 
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which has small slip solution 
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For ( )ξωωζ −+−>> 122
e , we have the expression 
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For the illustrative figures that follow we consider the case where the (+) RMF is equal 

in magnitude to the (-) RMF, and is counter-rotating with a frequency of equal 

magnitude.  So we have ω+ = - ω−, |Br
+|= |Br

−|, and it is assumed 2≅−
iS  in determining 

the load line. 
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Figure 3.10 shows the operating points for a layer of the electron fluid with the ion fluid 

counter-rotating when the (-) RMF is applied.  For the case shown here (ξ− = 0.2, ζe
− = 

2.0, Si
− = 2), there is only one operating point corresponding to almost synchronous 

rotation with the (-) RMF.  
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Figure 3.10. Operating points for the electron fluid for the (-) RMF (ξ− = 0.2, ζe
− = 2.0, Si

− = 2). 

Figure 3.11 shows the operating points for the electron fluid when two counter-rotating 

RMFs are applied (for the case ξ− = |ξ+| = 0.2, ζe
− = ζe

+ =  2.0, Si
− = 2).  There are now 

three operating points one of which (operating point 2) does not correspond to a stable 

steady state.  The two stable steady states are almost synchronous rotation with either the 

(-) RMF (operating point 1) or the (+) RMF (operating point 3).  The operating point 

obtained is dependant on the initial conditions.  For the Clemente scheme the (-) RMF is 

applied first, so that the initial condition before the (+) RMF is applied is that the 

electron fluid is at the Se
− < ξ−. operating point (operating point 1).  Hence the operating 

point obtained for the example curves shown will be almost synchronous rotation of the 

electron fluid with the (-) RMF.  For the case shown, the operating point for the electron 

fluid is not significantly affected by the application of the (+) RMF. 
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Figure 3.11. Operating points for the electron fluid, for two applied RMFs (ξ− = |ξ+| =  0.2, ζe
− = 

|ζe
+| = 2.0, Si

− = 2). 

 

3.2.2 A condition for the existence of Se
− < ξ− operating point.  

The existence of an operating point with Se
− < ξ− requires that the peak value of the net 

force due to the RMFs exceeds the force due to collisions.  The collision force is 

approximated by assuming the electron fluid rotates synchronously with the (-) RMF 

and the ion fluid rotates synchronously with the (+) RMF. 

 ( )+− −= ωων rnmF eiecoll  (3.28)

If we assume that the force density exerted by the (+) RMF in the region of the operating 

point for the electron fluid is negligible (|Fe
−| >> |Fe

+| in this region) the condition is 
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The condition for ζe
− required for the existence of a Se

− < ξ− operating point is then 

given by  
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This again relates the electron cyclotron frequency with respect to the (-) RMF to the 

collision frequency and RMF frequency 

 ( ) ( )+−− −> ωωνω eice 4
2

.  
(3.31)

If this expression is compared to equation (3.17), the effect of ion counter-rotation 

makes the restriction on the electron cyclotron frequency more restrictive, since the 

force density due to collisions will be greater.   

For the case where the RMF frequencies are equal in magnitude ω+ = -ω−, the condition 

on ζe
− is 

 ( ) −− > ξζ 8
2

e ,  (3.32)

and the condition on the electron cyclotron frequency for this case is  

 ( ) −− > ωνω eice 8
2

.  
(3.33)

This condition for the existence of an operating point requires a critical value of the field 

strength for the (-) RMF, which is dependant on the collision frequency.  For more 

collisional plasmas, the minimum RMF magnitude required for the existence of the Se
− < 

ξ− operating point must be greater.   
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3.2.3 Effect of (+) RMF on electron fluid operating points 

For the Clemente scenario to be viable, it is imperative that the application of the (+) 

RMF does not stop the electron fluid from rotating synchronously with the (−) RMF.  

The net force on the electron fluid under the application of two counter-rotating fields is 

now examined.  We consider firstly the case where the angular frequencies of (+) and (-) 

fields are equal in magnitude, but opposite in sign, ω+ = -ω−.  For this situation, the 

plasma current is maintained, provided that the condition |ξ+| <1 is satisfied.  In section 

3.6 we show that when the (+) field has a smaller frequency than the (-) field (|ω+| < ω−) 

the condition for maintaining the plasma current is less restrictive. 

Figure 3.10 demonstrated the operating point for the (-) RMF for the case ξ− = 0.2.  For 

the load line shown, there is only one possible operating point, which is almost 

synchronous rotation with the (-) RMF.  This steady state will be accessible irrespective 

of the initial conditions for the electron fluid.  In Figure 3.11, the operating points are 

shown when the (+) RMF is also applied.  This figure shows the case where the RMFs 

are equal in magnitude (|Br
−| = |Br

+|) and have frequencies of equal magnitude (ω+ = -

ω−).  There are now 3 possible operating points (one of which (2) is unstable).  The 

steady state is determined by the initial conditions.  Since the electron fluid was initially 

rotating almost synchronously with the (-) RMF, the operating point accessed will be (1) 

which corresponds to the Clemente steady state for the electron fluid.  The application of 

the (+) RMF increases the slip of the electron fluid operating point slightly, but does not 

stop the electron fluid from rotating almost synchronously with the (-) RMF with small 

slip, since Fe
+ is much smaller than Fe

- in this region.  This is the situation in general for 

the case |ξ+| < 1 when ω+ = -ω−, and |Br
−| = |Br

+|.  

Figure 3.12 shows the operating point for the (-) RMF for the case ξ− = 2.0 and ζe
− = 7.0.  

For the load line shown, there is again only one possible operating point, which is almost 

synchronous rotation with the (-) RMF.  In Figure 3.13, the operating points are shown 

when the (+) RMF is also applied (for the case ξ− = |ξ+| = 2.0, ζe
− = ζe

+ =  7.0, Si
− = 2).  

This figure again demonstrates the case where the RMFs are equal in magnitude (|Br
−| = 

|Br
+|) and have frequencies of equal magnitude (ω+ = -ω−).  There is now only one 
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possible operating point with large slip, which does not correspond to the Clemente 

steady state.  The application of the (+) RMF stops the electron fluid from rotating 

almost synchronously with the (-) RMF with small slip since Fe
+ is larger than Fe

− in this 

region.  This is the situation in general for the case |ξ+| > 1.   
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Figure 3.12. Operating points for the electron fluid under the (-) RMF with ξ− = 2.0 (ζe
− = 7.0, 

Si
− = 2). 

It is thus seen that the Clemente scheme cannot be implemented successfully (following 

the scenario described above) unless the criterion |ξ+| <1 is satisfied for the case ω+ = -

ω−.  This criterion does not apply to the case where the frequency of the (+) RMF 

significantly differs in magnitude from the (-) RMF.  
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Figure 3.13. Operating points for the electron fluid under 2 RMF with |ξ+| = ξ− = 2.0 (ζe
− = |ζe

+| = 

2.0, Si
− = 2). 

A condition required for the electron fluid to remain entrained by the (-) RMF when the 

(+) RMF is applied is that the peak value of Fe
− is greater in magnitude than Fe

+ at this 

point. 

 ( ) +− > ee FpeakF  (3.34)

The peak value of the force on the electron fluid due to the (-) RMF is given by 

 ( ) ( )
4

22 −−
− ≅ ee

e
rnm

peakF
ζω

.  
(3.35)

The force due to the (+) RMF in the region of the Se
− < ξ− operating point is given by the 

approximate expression, 
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which is an upper bound on the for force in this region.  If we assume an approximate 

expression for Se
+, 
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The requirement is given by; 
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providing a condition on ξ+  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
<

+

−

+

−
+

ω

ωξ 1
2
1

2

r

r

B

B .  
(3.39)

This condition can be expressed as a requirement on the collision frequency 
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If ω+ = -ω−, and  |Br
−| = |Br

+| then the condition reduces to 

 1<+ξ , (3.41)

or 

 −< ων ei . (3.42)

The Clemente scheme is therefore applicable to collisionless plasmas, where the 

collision frequency is smaller that the difference between the frequencies of the applied 

RMFs.  It should be emphasised that this condition is necessary but not sufficient for the 
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existence of a steady state corresponding to synchronous rotation of the electron fluid 

with the (-) RMF.  

This requirement in equation (3.39) for the existence of a steady state with Se
− < ξ− is 

more stringent when we require that the peak of the force curve due to the (-) RMF be 

greater in magnitude than the sum of the force due to collisions and the force exerted on 

the electron fluid by the (+) RMF.  The requirement is given by 

 ( ) +− +> ecolle FFpeakF ,  (3.43)

or 
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This places a condition on the electron cyclotron frequency with respect to the (-) RMF 
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The requirement that the right hand side of equation (3.45) be positive again shows the 

condition on the value of ξ+  for the existence of the Se
− < ξ− operating point. 
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For the case ω+ = -ω-, and +− = rr BB  
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 1<+ξ , (3.47)

and we see that the critical field strength for the (-) RMF required for the existence of a 

synchronous rotation operating point is greater when the (+) field is applied.  This places 

a condition on the electron cyclotron frequency with respect to the (-) RMF 
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for the case ω+ = -ω-, and +− = rr BB  
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e .  
(3.50)

The condition required for the existence of the Se
− < ξ−  operating point for the electron 

fluid in equation (3.16), and the more general condition of equation (3.30) are made 

more stringent by the application of the (+) RMF.   

 

3.2.4 Approximate solution for the Se
− < ξ− operating point for 2 RMFs 

The operating points are solutions to the equation 

 collee FFF −=+ +− . (3.51)

The operating point of interest is one where the electron fluid rotates almost 

synchronously with the (-) RMF.  Hence we may approximate the collision force by the 

expression 
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 ( )rnmF eiecoll
−+ −= ωων . (3.52)

Equation (3.51) is then given by 
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or in terms of dimensionless parameters only 
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This provides a second order equation for Se
− 

 ( )

( )

( ) 0

12

2

2

2

2
=+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

− −

−

+

+−

−

−

+

−

−
− ξ

ωω
ω

ω
ω

ζ r

r

e

e
e

B
B

S
S ,  

(3.55)

which has small slip solution 
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(3.56)

The existence of this solution (equation (3.56) is real) requires the condition that the 

peak of the force density due to the (-) RMF be larger than the sum of the force density 

due to collisions and the force density applied by the (+) RMF on the electron fluid in 

this region.  This condition is described in terms of the dimensionless parameters 
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again showing that the critical value of ζe
− required for the existence of the small slip 

operating point (in equation (3.30) for a single RMF) is increased by the application of 

the (+) RMF. 

The case where the (-) RMF force density is much larger than the effect of the collision 

force and the effect of (+) RMF in this region 
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provides a binomial approximation for the Se
−

 < ξ− operating point 
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The slip of the Se
− < ξ− operating point for the electron fluid is increased by the 

application of the (+) RMF.  As was demonstrated in Figure 3.7, the approximations 

used show that this is an upper bound for the steady state value of the slip.   

Equation (3.59) can be compared to the relation derived by Hugrass (2000), 
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where it was assumed that  
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The first of these conditions is not true in general for the Clemente scheme where the 

frequencies of the (-) and (+) RMFs are equal in magnitude.  The (+) RMF may exert a 

significant force on the electron fluid over a wide range of slips.  The range of slips over 

which the (+) RMF exerts a significant force is determined by the value of ξ+.  For small 

values of ξ+, the force due to the (+) RMF on the electron fluid is highly peaked, the 

magnitude being much smaller than the peak value in the region of the Se
−

 < ξ− operating 

point.  Hence the (+) RMF has negligible effect on the operating point if either the (+) 

RMF has a much smaller magnitude ( +− >> rr BB ), or if the force density curve due 

to the (+) RMF with slip is highly peaked ( 1<<+ξ ), and hence the magnitude of the 

force due to the (+) RMF in the region of the Se
−

 < ξ− operating point is significantly less 

than the peak value.   

 

3.2.5 Electron fluid operating points for the case ω− > |ω+|. 

In previous sections, it has been assumed that the RMFs are equal in magnitude 

( +− = rr BB ) and have frequencies of equal magnitude (ω+ = -ω−).  We now consider 

the case where the frequencies of the applied RMFs may have different magnitudes ω− > 

|ω+|.  In this case the curves are not symmetrical and hence may allow a small slip 

operating point for the electron fluid when |ξ+| > 1.  The full condition on ξ+ 
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(3.61)

shows that the requirement on ξ+ is less stringent when the magnitude of frequency of 

the (+) RMF is less than that of the (-) RMF.  The condition is also less stringent if 

+− > rr BB  since in this case the net force is dominated by Fe
−. 
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Figure 3.14 and Figure 3.15 demonstrate the same parameters presented in Figure 3.11 

(ξ− = 0.2, ζe
− = 2.0), and in Figure 3.13 (ξ− = 2.0, ζe

− =  7.0), respectively , but with ω+ 

= -0.1ω−.  The operating point for the electron fluid is not changed significantly by the 

application of the (+) RMF for either case.  Both situations allow a steady state where 

the electron fluid rotates synchronously with the (-) RMF after application of the (+) 

RMF.  Hence allowing the majority of the current to be carried by the electrons may 

allow access to the Clemente steady states for plasmas where +> ων ei . 
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Figure 3.14. Operating points for the electron fluid under 2 RMFs where ξ− = 0.2 and ω+ = -

0.1ω− (|ξ+| = 2, ζe
− = 2.0, Si

− = 2). 
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Figure 3.15. Operating points for the electron fluid under 2 RMF for ξ− = 2.0 , where ω+ = -

0.1ω−  (|ξ+| = 20, ζe
− = 7.0, Si

− = 2). 

 

3.2.6 Condition for the existence of multiple operating points 

In general, the steady states for the electron fluid are solutions to the cubic equation in 

Se
− 
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The determinant of the cubic equation with coefficients α0, α1, α2, α3  is given by 
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There are 3 real roots for the case Δ3 < 0.  For conventional current drive the initial 

condition for the ion fluid is Si
− = 1.  Using the condition for the existence of a small slip 

operating point  
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 ( ) −−− > ie Sξζ 2
2

,  (3.64) 

leads to the requirement for three real roots 

 )1(135.0 =< −−
iSξ  (3.65) 

For the Clemente scheme with ω+ = - ω− case we have Si
− = 2, the condition for the 

existence of a small slip operating point 

 ( ) −−− > ie Sξζ 4
2

,  (3.66) 

leads to the requirement for three real roots 

 )2(394.0 =< −−
iSξ .  (3.67) 

 

In general, the critical value of ξ− increases with Si
−, as shown in Figure 3.16. 
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Figure 3.16. Variation of ξc
− with ion slip. 

Hence the case of three operating points need only be considered for small values of ξ−.  

If ξ− < ξc
−, the steady state value of Se

− will depend on the initial conditions.  The 

number of operating points that exist will then be determined by the value of ζe
−.  If ξ−  

is sufficiently large (ξ− > ξc
−), there is only one operating point, and hence the steady 
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state value of Se
− will be independent of the initial conditions for the electron fluid.  The 

number of operating points that exist will then be determined by the value of ζe
−.   

 

3.3 Ion Fluid Steady States 

 

3.3.1 Method of determining operating points for the ion fluid 

The induction motor analogy and method of determining operating points for the 

electron fluid under a single RMF, is here applied to the case of the ion fluid under the 

action of two RMFs.  The ion fluid is now analogous to the rotor, and the electron fluid 

is now analogous to the mechanical load.  The operating points are determined by the 

intersection of the net force density imparted by the RMFs and a load line which is 

determined by the collisional force exerted by the interaction of the ion fluid with the 

electron fluid.   

An operating point for the ion fluid may thus be found by the intersection of the curve 

representing the steady part of the net force density on the ion fluid due to the two 

applied RMFs, and a load line representing the collisional drag from interaction with the 

electron fluid.  The operating points are thus the solutions to the equation 

 ( )+++−+ −=−=+ eiieicollii SSrnmFFF ων  (3.68)

Again the operating points are only applicable for a layer of the plasma fluid, and hence 

we consider the force densities at a layer of the plasma.  Chapter 4 will extend these 

results to the entire plasma. 
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Figure 3.17. Ion fluid operating points (ξ− = |ξ−| = 0.2, ζe
+ = |ζe

−| = 2.0, Si
− = 0.05, me/mi = 0.1). 

Figure 3.17 shows the method of determining operating points for a layer of the ion 

fluid.  For the curves shown, the electron fluid at this layer is assumed to be rotating 

almost synchronously with the (-) RMF and we again assume ω+ = -ω−, and 

+− = rr BB
 
for the purpose of this demonstration.  The force densities only have 

significant magnitudes in the region of small slip, and hence the net force density may 

be approximated by the (+) RMF force density when Si
+ is small.  For the purpose of 

demonstration, the force density curves are plotted for the case me/mi = 0.1, for physical 

values of me/mi the curve is much more sharply peaked, approaching a delta function.   

The steady part of the θ-component of the force density due to each RMF on the ion 

fluid was given as equation (2.72) 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

±±±±±

±±
±

2

222
111

2 ξξ
ζω

ii

e

ei

ii
i Sm

m
SS

rnm
F ,  

(3.69)

where ζi = e|Br|/ωmi. 
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The force density on the ion fluid due to either RMF has peak value at 
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with a half peak width of 

 ±±
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(3.71)

The force density on the ion fluid is only appreciable for ion slips in an extremely small 

range about Si
+ = (me/mi)|ξ+|.  Outside this very small range of ion slips, the motion of 

the ion fluid in the θ-direction is dominated by collisions with the electron fluid, the (+) 

RMF effectively transferring no angular momentum to the ion fluid.   

 

3.3.2 Effect of (-) RMF on ion fluid operating points 

We require that the (-) RMF exert negligible force on the ion fluid in the region of the 

peak of the (+) RMF force for the Clemente steady states to exist.  The force on the ion 

fluid due to either RMF is more strongly peaked than on the electron fluid, and hence the 

condition required is less stringent than that for the electron fluid.  

A condition required for the Clemente steady state for the ion fluid is that the peak value 

of Fi
+ is greater in magnitude than Fi

- at this point. 

 ( ) −+ > ii FpeakF  (3.72)

The peak value of the force on the ion fluid due to the (+) RMF is given by 

 ( )
4

22 ++
+ ≅ ee

i
rnm

peakF
ζω

.  
(3.73)

The force due to the (-) RMF in the region of the  operating point is approximated by 
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(3.74)

which is an upper bound on the force in this region.  If we assume an approximate 

expression for Si
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the requirement is given by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

>

−

+

−−−++

ω
ω

ξζωζω

12
4

22222

i

eeee

m

rnmrnm .  
(3.76)

This relation can be expressed in terms of the normalized collision frequency 
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or in terms of the collision frequency 
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If ω+ = -ω− and +− = rr BB  then the condition reduces to 
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(3.79)

or 

 −< ων
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i
ei m

m
. 

(3.80)

This condition is much less stringent for the (-) RMF than for the (+) RMF, since the 

force on the ion fluid is more strongly peaked than the force on the electron fluid by a 

factor of mi/me.  It should be emphasised that this condition is necessary but not 
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sufficient for the existence of a steady state corresponding to synchronous rotation of the 

ion fluid with the (+) RMF.  

 

3.3.3 Analysis of operating points for the ion fluid 

Since the force density due to the (-) RMF on the ion fluid is negligible in the region of 

the Clemente steady state for the ion fluid, we may consider only the (+) RMF in 

determining the operating points.  There are in general three cases for the ion fluid 

operating points, however only 2 cases are likely unless the collision frequency is 

extremely large.  There are either 1 or 3 operating points which correspond to the real 

solutions of the equation 

 collii FFF −=+ −+  (3.81)

Figure 3.18 demonstrates the case where the peak force density due to the (+) RMF is 

larger than the force density due to collisions.  In this case there are 3 real operating 

points, one of which (2) is unstable and does not correspond to a steady state for the ion 

fluid.  The steady states correspond to almost synchronous rotation with either the (+) 

RMF or the (-) RMF.  Since the peak of the (+) RMF force curve is at Si
+ = (me/mi)|ξ+|, 

the operating point of interest is at Si
+< (me/mi)|ξ+|.    

Figure 3.19 demonstrates the case where the peak value of the force density due to the 

(+) RMF is smaller than the force density due to collisions.  In this case there is only one 

operating point, where the ions rotate synchronously with the electron fluid. 
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Figure 3.18. Ion fluid operating points for ξ− = |ξ−| = 0.2, ζe
+ = |ζe

−| = 2.0, Si
− = 0.05, me/mi = 0.1. 
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Figure 3.19. Ion fluid operating point for ξ− = |ξ−| = 0.2, ζe
+ = |ζe

−| = 1.0, Si
− = 0.05, me/mi = 0.1. 

The requirement for the existence of the Si
+< (me/mi)|ξ+| operating point is that the force 

density exerted by the RMF on the ion fluid exceeds the force density due to collisions.   
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If we assume that |Fi
+| >> |Fi

−|, and approximate the collision force density by assuming 

synchronous rotation of the electron fluid with the (-) RMF and the ion fluid with the (+) 

RMF, the requirement is 
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which gives the condition 
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This again relates the electron cyclotron frequency to the collision and RMF frequencies 

 ( ) ( ) eice νωωω +−+ −> 4
2

.  
(3.84)

For the case ω+ = -ω-  

 ++ > ξζ 8
2

e ,  (3.85)

or 

 ( ) eice νωω ++ > 8
2

.  (3.86)

For the Clemente scheme, there is a similar requirement on ζe
+, for a small slip operating 

point to exist for the ion fluid, as was derived in section 3.1.4 for ζe
−, for a small slip 

operating point to exist for the electron fluid.  The magnitude of the (+) RMF must 

exceed a critical value (determined by ξ+) to provide the existence of a steady state 

corresponding to synchronous rotation of the ion fluid with the (+) RMF.   
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3.3.4 Approximate relation for the Si
+ < (me/mi)|ξ+| operating point 

The operating points for the ion fluid are solutions to the equation 

 collii FFF −=+ −+ . (3.87)

The operating point of interest is one where the ion fluid rotates almost synchronously 

with the (+) RMF.  Hence we may approximate the collision force by the expression 

 ( )rnmF eiecoll
+− −= ωων . (3.88)

As demonstrated in section 3.3.2, the effect of the (-) RMF on the operating points is 

negligible if +< ων
e

i
ei m

m
, hence we may assume that −+ > ii FF  in the region of the 

steady state corresponding to synchronous rotation. 

Equation (3.87) is then given by 
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This provides a second order equation for Si 
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which has small slip solution 
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The existence of this solution (equation (3.91) is real) requires the condition that the 

peak of the force due to the applied RMF be larger than the force due to collisions. 
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The case where the RMF force is much larger than the collision force  
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provides a binomial approximation 
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The approximations used show that this is an upper bound for the steady state value of 

the ion slip.   

This relation is in agreement with Hugrass (2000) where it was assumed that  
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It has been demonstrated that the first condition is true in general since the (-) RMF 

exerts a significant force on the ion fluid only over a very small range of slips.  The 

second condition has not been assumed, but it is a result of the approximation in 

equation (3.93).  The slip of the ion fluid at the operating point corresponding to almost 

synchronous rotation with the (+) RMF is smaller than the slip at which the peak of the 

force curve occurs.  Hence the synchronous rotation operating point is one with Si
+< 

(me/mi)|ξ+|.  As the (+) RMF magnitude is increased, the ion slip will become closer to 

zero for this operating point as the condition in (3.93) is satisfied.   
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3.4 Summary of conditions required for the existence of the 

Clemente steady states 

This chapter has outlined the conditions for the Clemente steady states to exist at a 

single layer of the plasma for both the electron and ion fluid.  The successful application 

of the Clemente scheme requires the following. 

(1) The existence of a small slip operating point for the electron fluid requires 

that the force density due to the (-) RMF must exceed the sum of the force 

density due to the (+) RMF and the force density due to collisions with the 

ion fluid in the region of the operating point.  This is an extension of the 

condition derived for the (-) RMF in the absence of the (+) RMF. 

(2) The existence of a small slip operating point for the ion fluid requires that the 

force density due to the (+) RMF must exceed the force density due to 

collisions with the electron fluid in the region of the operating point.  The 

force density due to the (-) RMF is negligible in this region. 

(3) The existence of a small slip operating point for the electron fluid requires an 

upper bound on the normalised collision frequency with respect to the (+) 

RMF. 

(4) The existence of a small slip operating point for the ion fluid requires an 

upper bound on the normalised collision frequency with respect to the (-) 

RMF.  However this is less restrictive by a factor me/mi than condition (3) 

These conditions can be expressed in terms of the dimensionless parameters. 
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(3) 
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These relations refer to only a layer of the plasma fluid.  The existence of operating 

points for the Clemente scheme is determined by the local values of ±
eζ  and ±ξ , and 

these conditions must be satisfied at every layer.  In order to determine whether an 

operating point exists for the entire fluid requires an analysis of the penetration of the 

RMFs.  We have also yet to consider the initial conditions from which these local steady 

states may be accessible.  The penetration of the RMFs into the plasma and the 

accessibility of the steady states will be examined in Chapter 4. 
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CHAPTER 4 ACCESSIBILITY OF THE CLEMENTE 

STEADY STATES 

Chapter 3 examined the existence of the Clemente steady states for a single layer of the 

plasma, and the local values of plasma and RMF parameters (ξ and ζe) required for their 

existence.  Since the local value of ζe is not determined solely by the external RMF 

magnitude, but also by the penetration of the RMF into the plasma, the external RMF 

magnitudes required for the successful application of the Clemente scheme cannot be 

deduced immediately from the results presented in section 3.4.  In this chapter, the 

accessibility of the Clemente steady states is examined.  The parameters required for 

complete penetration of the RMFs is described, and the initial conditions from which the 

steady states may be accessed are examined.   

Section 4.1 describes the enhanced penetration of the RMFs into the plasma in terms of 

effective resistivity and skin depth.  Section 4.2 examines the enhanced steady state 

penetration of the (-) RMF, and Section 4.3 the enhanced steady state penetration of the 

(+) RMF.  In both cases it is shown that the slips in the steady state provide the 

conditions required for enhanced penetration of the RMF.  The accessibility of the 

steady states for the electron fluid is considered in Section 4.4 and the accessibility of 

the steady states for the ion fluid is considered in Section 4.5.  A scenario for the 

application of the Clemente scheme with electrons and ions initially counter-rotating is 

outlined in Section 4.6 and the initial conditions required for the ion fluid.  We show that 

it is difficult for the (+) RMF to penetrate into the plasma and entrain the ion fluid if the 

ions initially rotate as a rigid body.  The penetration of the (+) RMF into the plasma is 

possible for a narrow class of initial conditions, namely that the initial rotational velocity 
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of the ion fluid varies with radius in a suitable manner, which may be induced during the 

transient phase of the (-) RMF.  A frequency modulation technique can allow access to 

the Clemente steady states without the need for an initial radial profile.   

 

4.1 Effective Resistivity and Effective Skin Depth 

 

4.1.1 Effective resistivity and skin depth for a single applied RMF 

We examine first the steady state behaviour when a single RMF is applied.  The vector 

potential under the application of a single RMF is described by the time-dependant 

equation  
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The steady state solutions for Az satisfy the diffusion equation 
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Equation (4.2) can be written as 
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For the special case where η* is a constant, equation (4.3) has the general solution 

 ( ) ( )crbKcraIAz 11 += , (4.4) 

where a and b are arbitrary constants, I1 is the modified Bessel function of order 1 of the 

first kind, K1 is the modified Bessel functions of order 1 of the second kind, and 



 68

 
*

02

η

ωμi
c = . 

(4.5) 

The modified Bessel  function K1 is not well behaved at r = 0.  The solution which is 

well behaved at r = 0 and satisfies the boundary condition at r = R (see equation (5.14)) 

is 
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where Aext(R) is the externally applied vector potential at r = R in the absence of the 

plasma, and I0 is the modified Bessel function of order zero of the first kind. 

The effective skin depth δ*, is defined by 
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For the special case cR >>1 (which is equivalent to δ* << R) one can use the asymptotic 

expansion of the modified Bessel functions (Abramawitz, 1964) to obtain the 

approximate expression 
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1 , 
(4.8) 

which is valid for the outer layers of the plasma (r ≅ R).  It is seen from equation (4.8) 

that the vector potential at the plasma surface is  

 ( ) ( )
cR

RA
RA ext

z = , 
(4.9) 

and hence 

 ( ) ( )RARA extz << . (4.10)

Also the vector potential decays inside the plasma as ( )( )*/exp δrR −− .  Hence the 

RMF will not penetrate into the plasma for R >> δ*.  If R is not much greater than δ*, the 
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expansion used to derive equation (4.8) is not valid, however the magnitude of the RMF 

inside the plasma will be much smaller than the externally applied field when R > δ*. 

For the special case cR <<1 (which is equivalent to δ* >> R) one can use the limiting 

form of the modified Bessel functions for small arguments (Abramawitz, 1964) to obtain 

the approximate expression 

 ( ) ( ) ( )rARA
R
rrA extextz == . 

(4.11)

Since the magnitude of the RMF (from equation (2.21)) is given by 

 ( ) ( )
r

riA
rB z

r = , 
(4.12)

the RMF fully penetrates the plasma for δ* >> R.  If R is not much smaller than δ*, the 

expansion used to derive equation (4.11) is not valid, however the magnitude of the 

RMF inside the plasma will not be much smaller the externally applied field when R < 

δ*. 

We are interested in the case where η* varies with r.  For this case the above analytical 

solutions are not valid, however one can assert that the RMF penetrates into the plasma 

if the local value of δ*, defined by equation (4.7), is everywhere larger than R. 

In the absence of plasma rotation ( 1== ie SS ), and electron inertia ( ων >>ei ) the 

effective skin depth is given by 

 δ
ωμ

ηδ ==
0

* 2 ,  
(4.13)

where δ  is the classical skin depth with respect to the RMF.  When the electron fluid is 

rotating (and assuming Se
 << (mi/me)Si) the effective skin depth is equal to the skin depth 

calculated at the Doppler-shifted frequency of the RMF, as observed in the frame of 

reference rotating with the electron fluid (Hugrass, 1998), 
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Hence the penetration of the RMF may be much greater than the classical skin depth δ, 

because  

 ηη >∗   when  ,1<−
eS   (4.15)

throughout the plasma. 

An important plasma parameter in determining RMF penetration is 

 
δ
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(4.16)

For λ >>1, we require δ* >> δ for the RMF to completely penetrate the plasma. 

 

4.1.2 Effective resistivity and skin depth for a two applied RMFs 

When two RMFs are applied, the steady state solutions for both RMFs satisfy a diffusion 

equation 
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and thus, in the steady state for constant 
±∗η , each RMF may penetrate the plasma with 

the vector potential given by, 
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where 
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The effective skin depth with respect to each RMF is given by, 
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Again we have the two limiting cases for constant effective resistivity throughout the 

plasma  

 ( ) ( ) ( ) RRAe
rRc

rA ext
rRc

z <<=
±±−−

±

± ± *for1 δ , 
(4.21)

and 

 ( ) ( ) RRA
R
rrA extz >>=

±±± *for δ . 
(4.22)

Both the (-) and (+) RMF can only penetrate the plasma if R/*±
δ  is sufficiently large.  

In the Clemente scheme, both RMFs may penetrate the plasma with enhanced skin 

depth.  The enhanced penetration can be described as an increase in the local effective 

resistivity, or as an increase in the local effective skin depth.  

For the case where both the electron and ion fluids are stationary ( 1== ±±
ie SS ), the 

effective resistivities are given by 
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⎠
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(4.23)

If this is compared with the effective resistivities with respect to each of the applied 

RMFs,  
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or 
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(4.25)

it is clear that the effective resistivity may be enhanced due to an increase in the first 

term on the right hand side of equation (4.25) for the case of small electron slip, and an 

increase in the second term due to small ion slip.  Either effect leads to an increased 

effective skin depth and enhanced penetration of the RMF.  The final term is the electron 

inertia which makes the effective resistivities in general complex.   

In the Clemente scheme the penetration of the (-) RMF into the plasma may be enhanced 

because ηη >
−∗  for ,1<−

eS  and the penetration of (+) RMF into the plasma may be 

enhanced because ηη >
+∗  for .

i

e
i m

mS <+

 

In the absence of plasma rotation ( 1== ±±
ie SS ), and electron inertia ( ±>> ων ei ) the 

effective skin depth is given by 

 ±
±

±
== δ

μω

ηδ
0

* 2 ,
 

(4.26)

where ±δ  the classical skin depth with respect to each applied RMF.  For the case 

where Se
− << 1, the effective skin depth with respect to the (-) RMF is given by 

 
−−

−
=

eS0

* 2
μω

ηδ .  
(4.27)

For the case where Si
+ << (me/mi) Se

+, the effective skin depth with respect to the (+) 

RMF is given by 
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In the Clemente scheme the penetration of the (-) RMF into the plasma may be enhanced 

because R>
−*δ  for ,1<−

eS  and the penetration of (+) RMF into the plasma may be 

enhanced because R>
+*δ  for .

i

e
i m

mS <+

 

The value of λ may be different for each applied RMF, since the RMFs may have 

frequencies of different magnitudes 

 
±

± =
δ

λ R . 
(4.29)

For ±λ  >>1, we require ±∗δ  >> ±δ  for the RMF to completely penetrate the plasma. 

The steady state values of the effective resistivity (and effective skin depth) are 

functions of the electron and ion slips.  For the RMFs to have enhanced penetration in 

the steady state, requires that the steady state values of 
±∗η  (and hence 

±∗δ ) must be 

much larger than η (and ±δ ).   

The ability for the (-) RMF to penetrate the plasma when R > δ− is a nonlinear 

phenomena since complete penetration requires almost synchronous rotation of the 

electron fluid with the RMF.  A global steady state for the electron fluid can be 

maintained when the steady state slip for synchronous rotation of the electron fluid with 

the RMF satisfies the condition for enhanced penetration of the RMF.   

It was demonstrated in section 3.1.3 that the existence of the steady state for the electron 

fluid is determined by the parameters ζe
− and ξ−.  The magnitude of the (-) RMF will be 

attenuated in the plasma determined by −∗δ , which will determine the local value of 

ζe
−(r) .  Hence the existence of operating point at any point in the plasma is determined 

by the penetration of the (-) RMF into the plasma column.  As has been observed by 

simulation (Hugrass and Grimm, 1981) and experiment (Hugrass et al, 1981), the ability 
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of the (-) RMF to maintain the steady state (once it has penetrated) is that the external 

magnitude of the (-) RMF exceed a critical value.  It will be shown in the next section 

the physical basis of this phenomenon.   

The ability of the (+) RMF to penetrate the plasma when R > δ+ requires synchronous 

rotation of the ion fluid.  This can be achieved and maintained when the steady state for 

synchronous rotation satisfies the condition for enhanced penetration.  For the ion fluid, 

the condition for enhanced penetration is more stringent (by a factor me/mi), however the 

ion fluid is more closely bound to the (+) RMF than the electron fluid is to the (-) RMF 

in the steady state.  The steady states value of Si
+ is in general much smaller than the 

steady state value of Se
− (by a factor me/mi).  It will be shown in the following section 

that the condition for enhanced penetration of the (+) RMF is satisfied by the steady 

state ion slip value for almost synchronous rotation.  For plasmas with 1>>±λ  we 

require that the steady states correspond to enhanced penetration of the applied RMFs. 

It was demonstrated in section 3.3.3 that the existence of the steady state for the ion fluid 

is determined by the parameters ζe
+ and ξ+.  The magnitude of the (+) RMF will be 

attenuated in the plasma determined by +∗δ , which will determine the local value of 

ζe
+(r) .  Hence the existence of operating point at any point in the plasma is determined 

by the penetration of the (+) RMF into the plasma column.  It will now be shown that the 

ability of the (+) RMF to maintain the steady state (once it has penetrated) is that the 

external magnitude of the (+) RMF exceed a critical value, in the same manner as for the 

(-) RMF.  

 

4.2 Enhanced steady state penetration of the (-) RMF 

The steady states for a layer of the electron fluid are now extended to a steady state for 

the entire fluid.  If we firstly consider the collision frequency to be constant throughout 

the fluid, then the steady states conditions derived in section 3.2 will be determined by 

the global parameter ξ−, and the local parameter ζe
−(r).  The value of ζe

−(r) is determined 

by the external magnitude of the (-) RMF and the effective skin depth at each layer. 
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It has been demonstrated that the penetration of the (-) RMF is not solely governed by 

the classical skin effect, and may be enhanced when the electron slip is small with 

respect to the (-) RMF.  This effect can be described in terms of an enhanced resistivity, 

or enhanced skin depth with respect to the (-) RMF.  Both these parameters are local 

parameters and hence are functions of radius.  A requirement for the existence of the 

Clemente steady states, for the case where λ−  >> 1, is that the effective resistivity with 

respect to the (-) RMF be large throughout the plasma.  In the steady state the effective 

resistivity (and effective skin depth) can be determined by the value of Se
− at the 

operating point.  It will be shown that when the electron fluid is rotating synchronously 

with the (-) RMF, the steady state values of Se
− correspond to the conditions required for 

enhanced penetration of the (-) RMF.  Hence in the steady state, the effective skin depth 

and effective resistivity are greatly enhanced, allowing for the existence of a steady state 

for the entire electron fluid.  Firstly we consider the enhanced penetration in the steady 

states for the application of the (-) RMF alone, and then consider the effect of the 

application of the (+) RMF in section 4.3.   

Numerical (Milroy 1999, Hugrass & Grimm 1981) and experimental (Jones, 1999) 

studies have demonstrated that enhanced penetration of a single applied RMF can be 

maintained when the dimensionless parameter 

 
ξ
ζ

γ e= ,  
(4.30)

is greater than some critical value, dependant on λ.  We now examine the physical basis 

for this behaviour, and extend the concept to the Clemente scheme.  Hence we will 

consider the parameters  

 ±
±

±

±
± ==

δ
λ

ξ
ζ

γ Re .  
(4.31)

These studies demonstrated that there is also a critical value of γ required for the RMF to 

access the steady states (which may be larger than the critical value required to maintain 

the steady state).  The accessibility of the global steady states will be examined in 

sections 4.4 (for the electron fluid) and 4.5 (for the ion fluid).   
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4.2.1 Steady state values of η∗−(r) and δ∗−(r) when the (-) RMF is applied 

The Se
− < ξ− steady state values for the electron fluid under one RMF (where they exist) 

are given by 
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(4.32)

The figures in this section show the case where the two RMFs have frequencies of equal 

magnitude (ω+ = -ω−).   

Figure 4.1 shows the value of Se
− at the Se

− < ξ− operating point (where it exists) for 3 

different values of ξ− against γ−.  The slip at the operating point is shown to decrease as 

γ− increases.  The plots are log-log and hence the linear region demonstrates that the 

power law approximation of equation (3.60) is valid for γ− >>1.  The steady state value 

of Se
− decreases as γ− increases.   
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Figure 4.1. Steady state values of Se
− . 

 



 77

Figure 4.2 presents the real part of the normalised effective resistivity with respect to the  

(-) RMF at the operating point, given by  
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(4.33)

against γ− at the Se
− < ξ− operating point for the electron fluid (where it exists).  The 

value of Se
− is given by equation (4.32).  The effective resistivity increases with γ−.  For 

large values of γ−, the effective resistivity may be orders of magnitude larger than the 

plasma resistivity in the steady state. 

The power law behaviour for γ− >> 1 in Figure 4.2, is consistent with the approximate 

expression 
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Figure 4.2. Steady state values of normalised effective resistivity. 

The (local) effective skin depth may be determined from the effective resistivity by 
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where η*− is given by equation (4.24).  The approximate expression of equation (4.34) 

does not show the weak dependence of ξ− on η*−.  Figure 4.3 shows the resultant values 

of the effective skin depth against γ− at the Se
− < ξ−operating point for the electron fluid 

(where it exists), normalised by the classical skin depth.  The effective skin depth 

increases linearly as the magnitude of the applied field is increased.  For large values of 

γ− (and small values of ξ−) the effective skin depth may be significantly larger than the 

classical skin depth in the steady state. 
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Figure 4.3. Steady state values of normalised effective skin depth. 

An approximate expression for the effective skin depth in the steady state can be 

obtained from the expression for the effective resistivity in equation (4.34) 
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The linear relationship of the effective skin depth with γ− in Figure 4.3 is then consistent 

with the approximate expression 
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Figures 4.2 and 4.3, and the approximate expressions, demonstrate that if the Se
− < ξ− 

steady state exists, there will be an enhanced penetration of the (-) RMF in the steady 

state.  The enhanced penetration may be characterised by an increase effective skin 

depth and effective resistivity.  In the steady state required for the Clemente scheme, the 

(-) RMF will penetrate much further than the classical skin depth.  There exists a 

“global” steady state where the (-) RMF fully penetrates the plasma and captures the 

entire electron fluid, even though the plasma radius may be much larger than the 

classical skin depth.  The effective resistivity scales with (γ−)2 and the effective skin 

depth increases linearly with γ−. 

Milroy (1999) in a numerical study showed that for a single RMF, with electrons and 

ions initially stationary and a uniform density profile, demonstrated that the steady states 

are accessible when the external RMF magnitude is increased past a critical value which 

becomes more restrictive for large λ. 
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However, the RMF magnitude required to maintain the steady state is always given by 

equation (4.38).  This was found by decreasing the RMF magnitude after full penetration 

had been achieved.  This is due to the existence of multiple operating points for 5.6>−λ  

(Hugrass, 1984) for a given value of γ−.  The critical value of γ− required to access the 

steady state is greater than that required to maintain it. 

The value of the constant of proportionality in equation (4.38) would be dependant on 

the ion and electron fluid initial conditions, and hence for the Clemente scheme, 

dependant on the frequency ratio of the RMFs.  If the ions are initially counter-rotating, 

the force due to collisions is larger than for the case where the ions are stationary.  
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Hence, it would be expected that the critical value γc
− would be larger for the case of 

counter-rotating ions. 

Complete penetration will require a critical value of 
−*δ .  If we assume that full 

penetration is achieved when R>
−*δ  then we require, 
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(4.40)

If we apply the approximate expression in equation (4.37), this provides a critical value 

of γ−, 
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(4.41)

which for the case considered by Milroy (ions stationary) provides. 

 −− ≈ λγ 2c  (4.42)

Which is in close agreement with the numerical result in equation (4.38).  Although the 

condition R>
−*δ for complete penetration is arbitrary, it is clear that the requirement of 

a critical value of the effective skin depth will lead to a linear relationship for the critical 

value of γ− with λ− for the steady state to be maintained. 

 

4.2.2 Effect of the (+) RMF on steady state values of η∗−(r) and δ∗−(r). 

A requirement for the successful application of the Clemente scheme is that the steady 

state for the (-) RMF, once obtained, continues to exist under the application of the (+) 

RMF.  We now examine the effective resistivity and effective skin depth when the (+) 

RMF is applied.  The Se
− < ξ− steady state values for the electron fluid for two applied 

RMFs (where they exist) are given by equation (3.56).  The figures in this section show 
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the case where the two RMFs are equal in magnitude ( +− = rr BB ) and have 

frequencies of equal magnitude (ω+ = -ω−).   

Figure 4.4 shows the value of Se
− at the Se

− < ξ− operating point (where it exists) for 3 

different values of ξ− when a (+) RMF of equal magnitude is applied.  The slip at the 

operating point is shown to decrease as γ− increases.  The steady state value of Se
− 

decreases as the magnitude of the (-) RMF is increased.  A comparison with Figure 4.1 

shows that the steady state value of Se
− is less affected by the (+) RMF for small values 

of ξ−.  There is significant departure from the power law approximation given in 

equation (3.60) since the (+) RMF has a significant effect on the steady state.   
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Figure 4.4. Steady state values of Se
− for 2 RMFs.  

Figure 4.5 presents the resultant values of the real part of the normalised effective 

resistivity with respect to the (-) RMF at the operating point, against γ− at the Se
− < 

ξ− operating point for the electron fluid (where it exists), when the (+) RMF of equal 

magnitude is applied.  The effective resistivity again increases as the magnitude of the 

applied field is increased, and the increase is most significant for smaller values of ξ− 

(since the force due to the (+) RMF is negligible in the region of the Se
− < ξ− operating 

point for |ξ+| << 1).  For large values of γ−, the effective resistivity may again be orders 
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of magnitude larger than the plasma resistivity in the steady state, however there is a 

significant departure from the power relation due to the application of the (+) RMF. 

1

10

100

1000

1 10 100
γ −

R
e (

η∗−
/η

) |ξ+|= ξ−  = 0.1

|ξ+|= ξ−  = 0.2

|ξ+|= ξ−  = 0.5

 

Figure 4.5. Steady state values of normalised effective resistivity for 2 RMFs. 
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Figure 4.6. Steady state values of normalised effective skin depth for 2 RMFs. 

Figure 4.6 shows the resultant values of the effective skin depth against γ− at the Se
− < 

ξ−operating point for the electron fluid (where it exists), normalised to the classical skin 

depth when the (+) RMF is applied.  The effective skin depth again increases as the 

magnitude of the applied field is increased and the increase is most significant for 
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smaller values of ξ−.  For large values of γ− (and small values of ξ−) the effective skin 

depth may be significantly larger than the classical skin depth in the steady state.   

For the Clemente scheme, there exists a steady state corresponding to almost 

synchronous rotation of the electron fluid with the (-) RMF, which also corresponds to 

enhanced penetration of the (-) RMF.  When the (+) RMF is applied, the enhanced 

penetration of the (-) RMF is effected, but the penetration may still be orders of 

magnitude larger than described by the classical skin depth for sufficiently large values 

of γ−.  The enhanced penetration of the (-) RMF may be characterised by the effective 

resistivity or the effective skin depth.  The enhanced penetration scales with the 

parameter γ− and is dependant on ξ+ when the (+) RMF is applied. 

 

4.2.3 Effect of ω− > ω+ on steady state values of η∗−(r) and δ∗−(r). 

The steady state value of the electron slip is also determined by the relative frequencies 

of the applied RMFs.  It was demonstrated in section 3.2.5 that if the (+) RMF has 

frequency much less than that of the (-) RMF, then the steady states are less affected by 

the application of the (+) RMF.  It is now shown that this results in an increased value of 

the effective resistivity (and effective skin depth) in the steady state.  Figures in this 

section show the case where the two RMFs are equal in magnitude ( +− = rr BB ), but 

may have different frequencies. 

Figure 4.7 shows the value of Se
− at the Se

− < ξ− operating point (where it exists) for 3 

different values of ω+/ω− for ξ− = 0.1.  The slip at the operating point is shown to 

decrease as |ω+/ω−| decreases.  The variation of Se
− with γ− more closely approaches the 

power law approximation (the (+) RMF has negligible effect) as the relative frequency 

of the (+) RMF is decreased. 
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Figure 4.7. Steady state values of Se
− for 2 RMFs.  
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Figure 4.8. Steady state values of normalised effective resistivity for 2 RMFs. 

Figure 4.8 presents the real part of the normalised effective resistivity at the Se
− < 

ξ−operating point (where it exists) for 3 different values of ω+/ω− for ξ− = 0.1.  The ions 

are assumed to be rotating synchronously with the (+) RMF and hence we take 
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The effective resistivity at the operating point is shown to increase as |ω+/ω−| decreases.  

The variation of the effective resistivity with γ− more closely approaches the power law 

approximation (the (+) RMF has insignificant effect) as the relative frequency of the (+) 

RMF is decreased. 

Figure 4.9 shows the normalised effective skin depth at the Se
− < ξ−operating point 

(where it exists) for 3 different values of ω+/ω− for ξ− = 0.1.  The effective skin depth at 

the operating point is shown to significantly increase as |ω+/ω−| decreases.  The variation 

of the effective resistivity with γ− more closely approaches the linear approximation (the 

(+) RMF has insignificant effect) as the relative frequency of the (+) RMF is decreased. 
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Figure 4.9. Steady state values of normalised effective skin depth for 2 RMFs. 

It is seen that the penetration of the (-) RMF in the steady state may be enhanced by 

having the frequency of the (+) RMF smaller relative to the (-) RMF.  As the ratio 

|ω+/ω−| decreases, the penetration increases, as shown by an increase in the effective 

resistivity and effective skin depth.   
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The Clemente steady state for the electron fluid requires that when the (+) RMF is 

applied, the small slip steady state for the electron fluid continues to exist, and 

corresponds to enhanced penetration of the (-) RMF.  This is shown to be true, although 

the enhanced penetration is limited by the application of the (+) RMF.  The effect of the 

(+) RMF on the Clemente steady state for the electron fluid can be reduced by making 

the frequency of the (+) RMF much smaller in magnitude than the (-) RMF.  

 

4.3 Enhanced steady state penetration of the (+) RMF 

The penetration of the (+) RMF is not solely governed by the classical skin effect, and 

may be enhanced when the ion slip is very small.  This can be described in terms of an 

enhanced resistivity, or enhanced skin depth with respect to the (+) RMF.  Both these 

parameters are local parameters and hence are functions of radius.  A requirement for the 

existence of the Clemente steady states for the case where λ+  >> 1, is that the effective 

resistivity with respect to the (+) RMF be large throughout the plasma.  In the steady 

state the effective resistivity (and effective skin depth) can be determined by the value of 

Si
+ at the operating point.  It will be shown that when the ion fluid is rotating almost 

synchronously with the (+) RMF, the steady state values of Si
+ correspond to the 

conditions required for enhanced penetration of the (+) RMF.  Hence, in the steady state, 

the effective skin depth and effective resistivity are greatly enhanced allowing the 

existence of a steady state for the entire ion fluid.   

 

4.3.1 Steady state values of η∗+(r) and δ∗+(r)  

The Si
+ < (me/mi)|ξ +| steady state values for the ion fluid (where they exist) are given by 
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Figure 4.10 presents the value of Si
+ at the Si

+ < ξ+ operating point for 3 different values 

of ξ+.  The two RMFs are equal in magnitude ( +− = rr BB ) and have frequencies of 

equal magnitude (ω+ = -ω-).  The slip at the operating point is shown to decrease as 

γ+  increases.  Note that the power law approximation of equation (3.94) is valid as γ+ 

becomes large.  The steady state values of the ion slips are in general smaller than that 

for the electron slips by a factor me/mi.   
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Figure 4.10. Steady state values of Si
+. 

Figure 4.11 shows the real part of the normalised effective resistivity with respect to the 

(+) RMF at the operating point, given by  
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against γ− at the Si
+ < (me/mi)|ξ+| operating point for the ion fluid (where it exists).  The 

electrons are assumed to be rotating synchronously with the (-) RMF and hence Se
+ = 2 

as ω+ = -ω−.  The effective resistivity increases as the magnitude of the applied field is 

increased.  The increase is most significant for smaller values of ξ+.  For large values of 

γ+, the effective resistivity may be orders of magnitude larger than the plasma resistivity 

in the steady state. 
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Figure 4.11. Steady state values of normalised effective resistivity for the (+) RMF. 

The power law behaviour is consistent with the approximate expression (using equation 

(3.94)) 
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The (local) effective skin depth may be determined from the effective resistivity by 
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where η*− is given by equation (4.24).   

Figure 4.12 presents the resultant values of the effective skin depth (with respect to the 

(+) RMF) against γ+ at the Si
+ < (me/mi)|ξ+| operating point for the ion fluid (where it 

exists), normalised to the classical skin depth.  The effective skin depth increases as the 

magnitude of the applied field is increased.  For large values of γ+ (and small values of 

ξ+) the effective skin depth may be significantly larger than the classical skin depth in 

the steady state. 
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Figure 4.12. Steady state values of normalised effective skin depth for the (+) RMF. 

An approximate expression for the effective skin depth can be obtained from the 

expression for the effective resistivity. 
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The linear relationship with γ− is then consistent with the approximate expression 
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If the Si
+ < (me/mi)|ξ+| steady state exists, there will be an enhanced penetration of the (+) 

RMF in the steady state.  The enhanced penetration is characterised by an increase 

effective skin depth and effective resistivity.  

Section 4.3 demonstrated the existence of the Clemente steady state for the electron 

fluid, where the (-) RMF penetrates much farther than the classical skin depth in the 

steady state.  The Clemente steady states also exist for the ion fluid, and correspond to 

enhanced penetration of the (+) RMF in the steady state.  The conditions required for the 

global steady states to exist are determined by 
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The existence of a global steady state for ±λ >> 1 requires that the local effective skin 

depth with respect to each RMF must be significantly larger than the classical skin 

depth. 

Complete penetration will require a critical value of +*δ .  If we assume that full 

penetration is achieved when R>
+*δ  then we require, 
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(4.51)

If we apply the approximate expression in equation (4.49), this provides a critical value 

of γ+ for the case where Se
+ = 2 
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For the case where ω+ = -ω−  provides 

 ++ > λγ 2 . (4.53)

As for the electron fluid, the steady states for the ion fluid can be maintained if the 

external magnitude of the (+) RMF is sufficiently large.  The magnitude required for the 

(+) RMF to maintain the steady state is the same as for the (-) RMF when ω+ = |ω−|.  

Although the condition R>
+*δ for complete penetration is arbitrary, it is clear that the 

requirement of a critical value of the effective skin depth will lead to a linear 

relationship for the critical value of γ+ with λ+ for the steady state to be maintained. 
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4.3.2 Steady state values of η∗+(r) and δ∗+(r) for the ion fluid with ω− > |ω+| 

It has been demonstrated in section 3.3.2 that the (-) RMF exerts an insignificant force 

on the ion fluid steady state.  The steady state values will vary for the ion fluid since the 

value of Se
+ is determined by the relative magnitudes of the RMF frequencies. 

Figure 4.13 shows the value of Si
+ at the Si

+ < (me/mi)|ξ+| operating point (where it exists) 

for 3 different values of ω+/ω− for ξ+ = 0.1.  The electrons are assumed to be rotating 

synchronously with the (-) RMF and hence we take 
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Figure 4.13. Steady state values of Si
+ . 

The slip at the operating point is shown to decrease as |ω+/ω−| increases.  Figure 4.14 

shows the value of real part of the effective resistivity at the Si
+ < (me/mi)|ξ+| operating 

point for 3 different values of ω+/ω− for |ξ+| = 0.1.  The effective resistivity at the 

operating point is shown to decrease as |ω+/ω−| decreases.   
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Figure 4.14. Steady state values of normalised effective resistivity for the (+) RMF. 
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Figure 4.15. Steady state values of normalised effective skin depth for the (+) RMF. 

Figure 4.15 presents the normalised effective skin depth at the Si
+ < (me/mi)|ξ+| operating 

point for 3 different values of ω+/ω− for |ξ+| = 0.1.  The effective skin depth at the 

operating point is shown to decrease as |ω+/ω−| decreases.   

These results would appear to demonstrate that the penetration of the (+) RMF is less 

effective for the case ω− > ω+.  However, when the value of ω+ is decreased, then the 

value of λ+ is also decreased (by a factor (ω+)½) which compensates for the decrease in 
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the effective skin depth (by a factor (ω+)½).  There is hence no net effect on the (+) RMF 

penetration in the steady state by decreasing the frequency of the (+) RMF.  As 

demonstrated in section 4.2.3, the important effect of ω− > |ω+| is that the steady states 

for the electron fluid are less affected by the application of the (+) RMF (the effect of the 

(-) RMF on the ion fluid steady states is negligible).  Hence having ω− > |ω+| may be a 

useful technique for employing the Clemente scheme. 

 

4.4 Accessibility of the Electron Fluid Steady states 

Sections 4.2 and 4.3 have demonstrated that the Clemente steady states correspond to 

enhanced penetration of both the (-) and the (+) RMFs.  This allows for the existence of 

the Clemente steady states with 1>>±λ .  It is required that these steady states be 

accessible from the initial conditions.  This section investigates the initial conditions 

allowing accessibility of the Clemente steady states for the electron fluid, and section 4.5 

investigates the accessibility of the steady states for the ion fluid. 

 

4.4.1 Initial conditions for the accessibility of the electron fluid steady 
states.  

Figures 3.2 - 3.4 in section 3.2.1 demonstrated the 3 cases for the operating points for a 

layer of the electron fluid.  We now consider the range of initial conditions leading to 

each operating point.  Since the Clemente scheme involves entrainment of the (-) RMF 

before the (+) RMF is applied, we need only consider the (-) RMF to determine the 

accessibility of the steady state for the electron fluid.  If the steady state for the electron 

fluid still exists after the (+) RMF is applied, the accessibility of the two-RMF operating 

point for the electron fluid will be trivial. 

The accessibility of the three cases for steady states of the electron fluid considered in 

section 3.2.1 can be demonstrated in terms of the potential function for the electron 

fluid.  The potential function for the electron fluid Ue is defined by 
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where the normalised net force is determined by the derivative of the potential function.  

The time-evolution of the system will always be from high to low potential.  The 

operating points for the electron fluid are hence the local minima and maxima of the 

potential.  The local minima correspond to stable operating points and local maxima 

correspond to the unstable operating point.   

The electron potential has approximate solution 
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The 3 cases for the potential function with Si
− = 2 and ξ− = 0.1 are presented in Figures 

4.15 – 4.17. 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.1 0.4 0.9 1.4 1.9 2.4
S e

-

U e

operating point(1)

 

Figure 4.16. Potential function for the electron fluid with ξ− = 0.1, ζe
− = 3. 

Figure 4.16 presents the case for ξ− = 0.1, ζe
− = 3 where there is only one operating 

point, corresponding to almost synchronous rotation of the electron fluid with the (-) 

RMF.  If the slip is initially greater than the operating point, the net force density will be 

positive (the RMF force is greater than the force load line), and hence the (-) RMF will 
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drive the electron fluid toward the operating point.  If the slip is initially less than the 

operating point, the net force density will be negative (the RMF force density is less than 

the collisional load line), and hence collisions with the ion fluid will relax the electron 

fluid toward the operating point.  For this case then, the initial conditions are irrelevant, 

and this situation may be used for either maintaining a driven current, or producing 

current drive. 

Figure 4.17 shows the case for ξ− = 0.1, ζe
− = 1.2 where there are three operating points.  

In this situation the steady state achieved is determined by the initial conditions.  If the 

initial slip is less than operating point (1) collisions dominate, which drives the electron 

fluid toward (1).  If the initial slip is greater than (1) but less than (2), the (-) RMF force 

density dominates which drives the electron fluid toward (1).  If the initial slip is less 

than (2) but greater than (3), collisions dominate, driving the electron fluid toward (3).  

If the initial slip is greater than (3), the RMF dominates, driving the electron fluid 

toward (3),  The meaning of initial condition in this context is the slip at the time when 

the local value of ζe
− becomes large enough for the existence of operating point (1).   
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Figure 4.17. Potential function for the electron fluid with ξ− = 0.1, ζe
− = 1.2. 
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For this case there are three classes of initial conditions, or basins of attraction for the 

three operating points.  If the initial slip is less than that of the (unstable) operating point 

(2) (region 1, the basin of attraction of operating point (1)) then the steady state achieved 

is operating point (1).  If the initial slip is greater than that of operating point (2) (region 

3, the basin of attraction of operating point (3)) then the steady state achieved is 

operating point (3).  The basin of attraction of the operating point (2) consists only of the 

operating point itself.  This situation can only be used for maintaining a driven current, 

since the operating point (1) cannot be accessed from the initial condition Se
− = 1.  The 

meaning of initial condition in this context is the slip at the time when the local value of 

ζe
− becomes large enough for the existence of operating point (1).  The value of ξ− = 0.1 

was specifically chosen for the figures presented in this section.  As was shown in 

section 3.2.6 , for ξ− > 0.394 there is always only one operating point and hence the 

situation shown in Figure 4.17 cannot occur. 

Figure 4.18 shows the case for ξ− = 0.1, ζe
− = 0.5, where there is now no small slip 

operating point.  The net force density is always toward the zero current operating point 

(3), regardless of initial condition. 
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Figure 4.18. Potential function for the electron fluid with ξ− = 0.1, ζe
− = 0.5. 

For the Clemente scheme, the (+) RMF is applied after the (-) RMF has already 

penetrated and entrained the electron fluid.  If the application of the (+) RMF does not 
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remove the existence of the operating point (1), then the electron fluid will remain 

entrained by the (-) RMF when the (+) RMF is applied (with slightly increased slip). 

The situations shown in Figures 4.16-4.18 apply locally.  For the case  λ− >> 1 the initial 

penetration of the (-) RMF is significantly affected by the classical skin effect.  If the 

classical skin effect were to dominate in the steady state, we would expect that only 

outer layers of the plasma would be captured, since the condition required for the 

existence of the Se
− < ξ− operating point,  
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and hence entrainment of the electron fluid, would be satisfied only in the outer layers.   

There are two cases to consider for ξ− > 0.394.  Firstly, the external magnitude of the (-) 

RMF may be too low, so that the boundary value of ζe
− does not satisfy equation (4.57).  

This situation corresponds to Figure 4.18 at every layer and hence the electron fluid will 

not be captured, the only possible steady state being (3).  Since the (-) RMF will be 

initially attenuated, the initial value of ζe
−(R) will be less than ζe

−(ext).   

Secondly, the external magnitude of the (-) RMF may be sufficiently large so that the 

boundary value of ζe
− satisfies equation (4.57).  The initial penetration is determined by 

the classical skin effect, and hence ζe
− will be large in outer layers, but small at inner 

layers.  Outer layers will correspond to the situation shown in Figure 4.16 where the local 

value of ζe
− is large enough to allow the existence of operating point (1).  Since there is 

only one operating point at these layers, a steady state will be achieved with small slip.  

The inner layers will correspond to the situation shown in Figure 4.18 where the local 

value of ζe
− is small and hence only operating point (3) exists.  The initial capture of 

outer layers gives a small slip.  As seen in section 4.1.1 this leads to a large increase in 

the (local) effective resistivity and the (local) effective skin depth in this layer.  This will 

allow the (-) RMF to penetrate further in the plasma, increasing ζe
− at successive layers 

where the situation in Figure 4.16 is achieved, where the only possible operating point is 

(1).  In this manner, the criterion required for complete penetration of the (-) RMF and 
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entrainment of the electron fluid can be achieved successively as it penetrates the 

plasma.   

Hence if ξ− sufficiently large, we require no special initial conditions for the electron 

fluid.  The only requirement is that the external magnitude of the (-) RMF exceed some 

critical value.  This critical value may be larger than that required to maintain the steady 

state, due to initial attenuation of the RMF.  Since the attenuation increases with λ− (as 

the plasma radius becomes much larger than the skin depth), the critical value of γ− 

required to access the steady state can be much larger than the critical value required to 

maintain the steady state when λ− is large.  Even if ξ− is below the critical value for three 

operating points, the external RMF magnitude can be made large enough so that only 

one operating point exists.  It would be expected that a (larger) critical value of γ− would 

allow access to the Se
− < ξ− steady state for this case from any initial condition.   

 

4.5 Accessibility of the Ion Fluid Steady states 

Sections 4.2 and 4.3 have demonstrated that the Clemente steady states correspond to 

enhanced penetration of both the (-) and the (+) RMFs.  This allows for the existence of 

the Clemente steady states with 1>>±λ .  It is required that these steady states be 

accessible from the initial conditions.  This section investigates the initial conditions 

allowing accessibility of the Clemente steady states for the ion fluid. 

The accessibility of the two cases for steady states of the ion fluid considered in section 

3.3.1 can also be demonstrated in terms of the potential function for the ion fluid.  The 

potential function for the ion fluid Ui is defined by 
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where the normalised net force is determined by the derivative of the potential function.  

The time-evolution of the system will always be from high to low potential.  The 

operating points for the ion fluid are hence the local minima and maxima of the 
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potential.  The local minima correspond to stable operating points and local maxima 

correspond to the unstable operating point.   

The ion potential has approximate solution 
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The two cases for the potential function with Se
+ = 2 and ξ+ = 0.1 are shown in Figures 

4.18 & 4.19 with me/mi = 0.00055. 

Figure 4.19 shows the case for ξ+ = 0.5, ζe
+ = 20, where there are three operating points.  

In this situation the steady state achieved is determined by the initial conditions.  If the 

initial ion slip is less than operating point (1) collisions dominate, which drives the ion 

fluid (slowly) toward (1).  If the initial ion slip is greater than (1) but less than (2), the 

(+) RMF force density dominates which drives the ion fluid toward (1) (this is a very 

small region for the ion fluid).  If the initial slip is less than (2) but greater than (3), 

collisions dominate, driving the ion fluid toward (3).  The meaning of initial condition in 

this context is the slip at the time when the local value of ζe
+ becomes large enough for 

the existence of operating point (1).   
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Figure 4.19. Potential function for the ion fluid for ξ+ = 0.5, ζe
+ = 20 showing net force density. 
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Figure 4.20 shows the case for ξ+ = 0.5, ζe
+ = 1, where there is now no small slip 

operating point.  The net force density is always toward the zero current operating point 

(3), regardless of initial condition. 

For the ion fluid, if the small slip operating point exists, there will be 3 operating points, 

and hence the operating point (1) can only be accessed from initial conditions in region 

1.  The only suitable initial condition for the ion fluid is that all layers of the ion fluid are 

in region 1, hence Si
+ < 0.   
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Figure 4.20. Potential function for the ion fluid for ξ+ = 0.5, ζe
+ = 1 showing net force density. 

The situations shown in Figures 4.19 and 4.20 apply locally.  For the case  λ+ >> 1 the 

initial penetration of the (+) RMF is significantly affected by the classical skin effect.  If 

the classical skin effect were to dominate in the steady state, we would expect that only 

outer layers of the plasma would be captured, since the condition required for the 

existence of operating point (1) 
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and hence entrainment, would only be satisfied only in the outer layers.   
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For the ion fluid there are two cases to consider.  Firstly, the external magnitude of the 

(+) RMF may be too low, so that the boundary value of ζe
+ does not satisfy equation 

(4.60).  This situation corresponds to Figure 4.20 at every layer and hence the ion fluid 

will not be captured, the only possible steady state being (3).  Since the (+) RMF will be 

initially attenuated, the initial value of ζe
+(R) will be less than ζe

+(ext).   

Secondly, the external magnitude of the (+) RMF may be sufficiently large so that the 

boundary value of ζe
+ satisfies equation (4.60).  The initial penetration is determined by 

the classical skin effect, and hence ζe
+ will be large in outer layers, but small at inner 

layers.  Outer layers will correspond to the situation shown in Figure 4.19 where the local 

value of ζe
+ is large enough to allow the existence of operating point (1).  Since there is 

only one operating point at these layers, a steady state will be achieved with small slip.  

The inner layers will correspond to the situation shown in Figure 4.20 where the local 

value of ζe
+ is small and hence only operating point (3) exists.  The initial capture of 

outer layers a leads to a large increase in the effective resistivity (with respect to the (+) 

RMF) and the effective skin depth in this layer.  This will allow the (+) RMF to 

penetrate further in the plasma, increasing ζe
+ at successive layers where the situation in 

Figure 4.19 is achieved, where the operating point (1) exists.  If the local value of Si
+ at 

this layer is in region (1), then operating point (1) can be accessed allowing for further 

penetration of the (+) RMF.  In this manner, the criterion required for complete 

penetration of the (+) RMF and entrainment of the ion fluid can be achieved 

successively as it penetrates the plasma.  However, since the operating point (1) for the 

ion fluid is not unique (unless the magnitude of the (+) RMF is extremely large), the 

initial conditions for the ion fluid are essential for enhanced penetration of the (+) RMF.  

While an initial condition of Si
+ < 0 (region 1) is suitable for capture of the outer layers 

of the ion fluid, it does not guarantee accessibility of the steady state for the inner layers, 

since they may have relaxed to region 3 before the local value of ζe
+ is large enough to 

allow the existence of operating point (1).   
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4.6 Initial Conditions for the Clemente Scheme 

RMF current drive has been applied as both current generation and confinement 

schemes.  The (-) RMF can be used to drive an electron current when the initial current 

is zero for sufficiently large values of γ−.  However it is not possible for the (+) RMF to 

drive an ion current when the initial ion current is zero, since the force density on the ion 

fluid is only significant for a very small region about ( )iei mmS ++ ≅ ξ , (the (+) RMF 

applies negligible force when Si
+ = 1).  The Clemente scheme is therefore only 

applicable to confinement (although variation of either frequency may allow control of 

driven current). 

The most likely scenario for the practical application of the Clemente scheme would 

involve the following sequence: 

• A hot Field Reversed Configuration (FRC) is generated. 

• The FRC is translated to a separate chamber. 

• The (−) RMF is applied to the plasma to maintain the plasma current (and hence 

maintain the flux). 

• The (+) RMF is applied to the plasma to entrain the ion fluid and prevent it from 

being dragged by the electron fluid through momentum transfer collisions. 

When the Clemente Scheme is applied to a preformed FRC, since the electron and ion 

fluids are pre-rotating, the only requirement is to maintain the rotation of the two fluids.  

The RMFs may be applied so that the conditions required for enhanced penetration are 

satisfied by the initial conditions.  The applied RMFs should be slightly smaller in 

frequency than the initial rotational frequency of the electron and ion fluids.  This is a 

much less restrictive requirement than to begin with a non-rotating plasma.   

It is not necessary that the ion fluid carry a significant amount of the current and the (+) 

and (-) RMFs need not be equal in magnitude.  Having the electron fluid carry the 

majority of the current may be a useful initial condition for the Clemente scheme, since 

it minimises the effect of the (+) RMF on the electron fluid steady states.  Since the 
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accessibility of the Clemente steady states will be strongly determined by the 

accessibility of the steady states for the ion fluid, we now consider possible initial 

conditions for the ion fluid in detail. 

 

4.6.1 Rigid Rotor Initial Condition 

The condition ( )iei mmS ++ ≅ ξ  is required for the effective resistivity with respect to 

the (+) RMF to become large.  This condition must be satisfied for each layer of the ion 

fluid to allow capture by the (+) RMF. It is therefore necessary to start from suitable 

initial conditions where the ions rotate slightly faster than the (+) RMF, ie. the initial 

value for Si+ is small and negative. One possible initial condition is for the ion fluid to 

be initially rotating as a rigid rotor slightly faster than the (+) RMF, so that Si
+ is initially 

small, negative and constant with r. 

The initial penetration of the (+) RMF will be limited by the classical skin depth, hence 

the outer layers of the plasma will correspond to Figure 4.19 and the inner layers to 

Figure 4.20.  Since the initial condition is in region 1, the outer layers of the ion fluid 

will relax collisionally to operating point (1), and be entrained by the (+) RMF.  

However by this time, the inner layers may have relaxed collisionally past the narrow 

slip range required for capture in this time to a slip greater than operating point (2).  Due 

to the small value of Si
+, which produces an increase in the effective resistivity and 

hence an increase in the effective skin depth in the outer layers, the (+) RMF will now 

penetrate further to the inner layers, but since the inner layers of the ion fluid have 

already relaxed to region 3, these layers will eventually relax to operating point (3), 

rotating synchronously with the electron fluid and the (-) RMF.  In order to entrain the 

entire ion fluid, every layer of the fluid must be in region 1 when the local value of ζe
+ 

becomes large enough to provide for the existence of the operating point (1). 

The (+) RMF penetration is not complete and is limited by the classical skin depth for 

the case where  λ+ >> 1 for a rigid rotor initial condition for the ion fluid when the (-) 

RMF has already penetrated (although not necessarily for the case where there is a rigid 
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rotor initial condition for both electron and ion fluid before the (-) RMF is applied, as 

will be discussed below).  In the steady state, all but the outer layers of the ion fluid will 

rotate synchronously with the (−) RMF and hence the driven current will decay and the 

plasma equilibrium is lost.   

 

4.6.2 Radial Profile Initial Condition 

Another possible initial condition is to allow the initial ion slip to have a radial profile, 

where the slip increases with r.  This allows each layer of the ion fluid to correspond to 

region (1) in Figure 4.19, when the local value of ζe
+ becomes large enough, and thus 

each layer successively passes the penetration criterion and attains the steady state 

operating point (1).   

The condition ( )iei mmS ++ ≅ ξ  must be satisfied for each successive layer of the ion 

fluid. Since the relaxation of the ions slip (through collisions with the electrons) may 

change the value of Si+ in the inner layers before the (+) RMF penetrates, it is required 

to choose a suitable radial profile for the initial value of Si
+  to allow complete 

penetration and capture of all layers.  Successive layers of the ion fluid become 

entrained by the (+) RMF as they relax (by momentum-transfer collisions with the 

electrons) to the favourable value of the slip ++ ≅ ξ)/( iei mmS .  

It should be noted here that the particular form of the initial ion slip profile is not 

critical. The ion fluid is entrained by the (+) RMF for any radial profile which allows 

each layer to successively relax through the very narrow range of slip where the force 

density on the ion fluid is appreciable, after the (+) RMF has already diffused up to this 

layer.  If the (+) RMF diffuses to a layer after the ions have relaxed through this narrow 

slip range, the ions in this layer will not be captured, inhibiting further field penetration. 

It is important to distinguish a difference between an initial condition for the ion fluid 

before the (-) RMF has penetrated, and an initial condition for the ion fluid after the (-) 

RMF has penetrated.  While the steady states cannot be accessed if the ion fluid is 

rotating as a rigid rotor once the (-) RMF has penetrated (for λ+ >>1), a radial profile is 
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induced in the ion fluid by the act of penetration of the (-) RMF.  If both the electron and 

ion fluid are initially rotating as a rigid rotor and the (-) RMF is applied first, then the 

outer layers of the electron fluid will be entrained first, with the inner layers relaxing 

significantly to the ion fluid.  Since the ion fluid relaxation rate is proportional to (viθ - 

veθ) the ion fluid relaxation rate will increase with r.  This will have the effect of 

inducing a small radial profile on the ion fluid (with the inner layers rotating faster), 

which may allow complete entrainment of the ion fluid by the (+) RMF from the rigid 

rotor initial condition.  When the plasma density is constant with r, once the (-) RMF has 

fully penetrated, the relaxation rate will now be constant with radius, and all layers of 

the ion fluid will be relaxing at the same rate.  The layers will thus pass the favourable 

region for entrainment by the (+) RMF in sequence, thus allowing each layer to reach 

this region at a point when the local value of the magnitude of the (+) RMF is large 

enough to overcome the force due to collisions.   

Since the penetration time of the (-) RMF increases with λ−, this effect will be most 

pronounced when the plasma radius is much greater than the classical skin depth.  This 

effect may be most important where the density is not constant with r.  In this case, since 

the relaxation rate is proportional to n(r)(viθ - veθ), the variation of the velocity term is 

required to overcome the variation of the density term.  The case of non-uniform density 

will be considered in Chapter 6.   

 

4.6.3 Frequency Modulation 

In practice, it may be extremely difficult to form an FRC with the profile of the ion 

rotational velocity tailored to suit the Clemente scheme. A more feasible alternative may 

involve decreasing the frequency of the (+) RMF gradually as it diffuses in and thus 

allowing the ion slip to remain small in each successive layer (Visentin, 2003).  By 

decreasing the frequency of the (+) RMF, the value of Si
+ is decreased, and the 

favourable condition ( )iei mmS ++ ≅ ξ  may thus be reobtained.   
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For the case where ω is allowed to vary with time, quantities of the first group can be 

represented as a superposition of odd harmonics of ( )( )∫ −θω dtt  

 ( ) ( ) ( )( )∫∑ −+=
∞

=
+ θω dttmirQQ

m
m

0
12 12exp

.
 

(4.61)

Quantities of the second group can be represented as a superposition of a steady part (m 

= 0) and even harmonics of ( )( )∫ −θω dtt , 

 ( ) ( )( )∫∑ −=
∞

=

θω dttmirQQ
m

m
0

2 2exp
,
 

(4.62)

where the effect of second and higher harmonics is small and may be neglected.  Hence 

quantities of the first group are assumed to be functions of r only and quantities of the 

second group vary as  

 ( ) ( )( )∫ −θω dttirf exp  (4.63)

For quantities of the second group, 
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z
ii

t θ
ω  
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These relations are the same as for the case where ω is constant, and hence equations 

derived in sections 2.2 and 2.3 apply for the case where the frequency of either RMF is 

allowed to vary.   

Consider the initial condition for the ion fluid to be initially rotating as a rigid rotor 

slightly faster than the (+) RMF, so that Si
+ is initially small, negative and constant with 

r, but now allow the frequency of the (+) RMF to decrease. The initial penetration of the 

(+) RMF will again be limited by the classical skin depth, so that the outer layer 

corresponds to region (1) in Figure 4.19, and inner layers to Figure 4.20.  The outer layers 

will be entrained (operating point 1), and the (+) RMF penetrates further, increasing the 

local value of ζe
+ so that the next layer corresponds to Figure 4.19.  During the time 

required for the (+) RMF to penetrate, the next layer will have relaxed to point (3).  By 
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decreasing the frequency of the (+) RMF, the slip is returned to region 1, and the layer 

can attain the operating point 1.  Continuing to decrease the frequency of the (+) RMF 

allows each successive layer to be returned to region 1 and attain the operating point (1).   

This allows the entire ion fluid to be entrained by the (+) RMF, at which point the 

frequency is held constant to maintain the plasma current.  The frequency of the (+) 

RMF should decrease at a rate greater than the ion relaxation time to allow complete 

penetration. 

Frequency modulation once the Clemente steady states have been established may also 

allow the plasma current to be controlled.  Increasing the frequency of either RMF 

increases the plasma current so long as both fluids remained entrained.   

 

4.7 Summary of conditions required for the accessibility of the 

Clemente steady states  

This chapter has outlined the conditions for the complete penetration of both the (-) and 

(+) RMF .  The accessibility of the Clemente steady states requires the following. 

(1) The penetration of the RMFs requires that the effective skin depth becomes 

sufficiently large for each RMF.  It is demonstrated that the entrained steady 

states correspond to a greatly increased effective skin depth, and hence 

enhanced penetration of both the (-) and (+) RMF in the steady state.  The 

enhanced penetration is decreased for the (-) RMF when the (+) RMF is 

applied, although having ω− > ω+ minimises this effect. 

(2) For the steady states to be maintained requires critical values of ±γ  (the 

external magnitude of the RMFs must exceed a critical value).  This critical 

value scales linearly with ±λ  for both RMFs.   

(3) No special initial conditions are required for the electron fluid, since the 

steady state may be accessed from any initial condition if the external 

magnitude of the (-) RMF is sufficiently large.  The critical value of γ− 
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required to access the steady state for the electron fluid may be larger than 

that required to maintain it.  The initial conditions for the ion fluid is that Si
+ 

< 0 and that there is a radial profile on the ion slip (Si
+ increases with radius).  

This initial condition may be overcome by allowing the frequency of the (+) 

RMF is decreased as it penetrates or by inducing a radial profile on the ion 

fluid by the application of the (-) RMF. 
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CHAPTER 5 PENETRATION OF THE RMFS AND 

ENTRAINMENT OF THE ELECTRON AND ION 

FLUIDS 

In Chapter 3, it was demonstrated that there exist steady states where the electron and 

ion fluid rotate with small slips with respect to the (-) and (+) RMFs respectively.  In 

Chapter 4, it was demonstrated that these steady states are possible for the entire plasma, 

where both the RMFs may penetrate much further than the classical skin depth.  These 

“global” steady states are accessible by satisfying the conditions for entrainment layer 

by layer.  It was also suggested that the accessibility of the steady states may be more 

easily achieved for the (-) RMF than for the (+) RMF, since the penetration of the (+) 

RMF is more sensitive to the initial conditions.  We now present a numerical model of 

the Clemente scheme, analysing the accessibility of the steady states by simulation.  

Simulation results will be presented showing that the Clemente steady states are 

accessible, analysing the transient behaviour of the plasma, and outlining the initial 

conditions and RMF magnitudes required for accessibility of the steady states for both 

the (-) and (+) RMFs. 

In this section the penetration and entrainment of the electron and ion fluids is 

considered for a model in which the radial motion is suppressed.  The effect of radial 

motion is included in Chapter 6, where a preformed FRC model will be considered.  

Section 5.1 outlines the physical model and equations of motion, section 5.2 the 

numerical method employed, section 5.3 presents the initial conditions and in section 5.4 

the boundary conditions are considered.  Simulation results are presented in sections 5.5 
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and 5.6, for the penetration of the (-) RMF and the (+) RMF, respectively.  Section 5.7 

summarises the simulation results presented in this chapter. 

5.1 Physical model and equations of motion 

The physical model considered is that outlined in section 2.1.  The r-component of the 

plasma velocity is a quantity of the first group, and hence it must vanish in the steady 

state.  This is a result of the continuity equation (equation (6.17)) which shows that for 

the density to be constant requires that vr vanishes if there are no sources or sinks.  A 

complete analysis of the transient behaviour of the plasma should allow for the motion 

of the plasma in the r-direction and the consequent adjustment of the radial profile of the 

plasma pressure. These effects, however, are not essential for the study of the 

penetration of the RMF into the plasma and would introduce unnecessary complications.  

Hence the simulations presented here have the radial motion of the plasma suppressed.  

The motion of the plasma in the radial direction will be introduced in Chapter 6 in the 

study of the Clemente scheme applied to an FRC.  

The equations of motion to be numerically modelled are those given as equations (2.60) 

to (2.66) in section 2.3. 
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5.2 Numerical Method 

Equations (5.1) to (5.3) are solved numerically using a semi-implicit finite difference 

approximation with a variable time step.  The divergence of equation (5.1), when 
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is overcome by decreasing the time step whenever this relation becomes small.  This 

does not mean that the time derivative of the vector potential becomes large, but rather 
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 when the condition in equation (5.9) occurs. 

The results are expressed in terms of the dimensionless parameters 
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The driven current is presented as the dimensionless parameter α, the ratio of the driven 

current per unit length to the maximum possible steady state current, which is 

synchronous rotation with the RMFs. 
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Since the Clemente steady states correspond to small slips of the electron and ion fluid 

with respect to the (-) and (+) RMF respectively, for the Clemente steady states α will 

by slightly less than one. 
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Equations (5.1) to (5.3) are solved numerically using a finite difference scheme on a 

one-dimensional grid.  The value of Bz at grid point i and time t + Δt for example, 

(denoted Bz(i, t + Δt)) is approximated by 

 ( ) ( ) ( ) ( )tti
dt

dBtti
dt

dBttiBttiB zz
zz Δ+Δ+Δ+=Δ+ ,

2
1,

2
1,, . 

(5.12)

The derivatives at t + Δt are to be evaluated in terms of the yet unknown values of the 

variables at t + Δt.  The numerical scheme would be fully implicit if the resulting set of 

simultaneous equations could be solved for the updated values of the variables.  This 

cannot be easily performed however, since the equations are nonlinear.  We solve these 

equations approximately by simple iteration.  Equations (5.1) to (5.8) are iterated until 

an error function is less than a given tolerance.  The error function is determined by 
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Where ′
zA  and ′

zB are the values from the previous iteration.  The iteration is found to 

converge to any desired accuracy provided that the time step Δt is not too large.  Radial 

derivatives are calculated using a 3-point centred approximation at general points, 

except near the boundary where non-centred derivates are used. 

 

5.3 Boundary Conditions 

The boundary condition for the vector potential for this physical model (Hugrass & 

Grimm, 1981) is: 
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where Aext is the phasor of the externally applied RMF at r = R, and R is the radius of the 

plasma column. 
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In the presence of flux conserving rings the boundary condition for Bz is determined 

from the conservation of magnetic flux, with flux-preserving rings at radial distance b.  

At t = 0, there is a constant axial field Bz(r, θ, 0) = Ba, giving an initial axial flux 
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After the RMF has been applied, the axial flux is given by 
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Conservation of flux provides a boundary condition for Bz, 
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Since Bz is an even function, and Az an odd function with r,   

 0
0

=
∂

∂
r

Bz  
(5.18)

 ( ) 00 =±
zA  (5.19)

The boundary values of Az and Bz and their derivates are determined from three point 

non-centred difference on the uniform grid.   
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Outside plasma the current density is zero (no charge carriers) hence 

 0=×∇ B  and 02 =∇ zA  Rr ≥ .  (5.25)

 

5.4 Initial conditions 

The plasma is initially rotating before the RMFs are applied.  The initial rotational 

velocities are chosen so that the initial rotational frequency of both electron and ion fluid 

are slightly larger than the RMF frequencies.  As shown in Chapter 4, the initial 

condition of negative slip is essential for the (+) RMF, although not for the (-) RMF.  

Hence the initial current will be larger than the current for the Clemente steady states.  

The initial current therefore has α slightly larger than 1. 

The (-) RMF is applied first to entrain the electron fluid.  After a suitable time delay, tD 

the (+) RMF is applied.  The externally applied RMFs rise exponentially with rise times 

τr
− and τ r

 + (determined by the source used to generate the RMFs)  After both RMFs 

have fully penetrated the plasma (delay time td), the external magnitudes may be 

decreased.  The standard results presented use the initial condition that the ions counter-

rotate with the initial current evenly distributed between electron and ions, hence ωe
  = -

ωi , and the rotation frequency is constant with radius for both the electron and ion 

fluids.  We also choose the RMF frequencies to be equal in magnitude,⏐ω+⏐= ω−, for 

the majority of simulations presented in this chapter.   

Typical plasma parameters are: 

R = 10 cm 

b = 15 cm 

n = ne = ni = 1 x 1018 m-3 

ωe
  = -ωi = 5.5 MHz (= 1.1ω− ) 

Se
− = -0.1 
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Si
+ = -0.1 

η = 1 x 10-4 Ω m-1  

νei
 =2.81 x 106 Hz 

me/mi = 5.45 x 10-4 

Typical RMF parameters are 

τr
− = τ r

 + = 1 μs   

tD = 10 μs  

td = 100 μs  

ω−  = -ω+ = 5 MHz 

Bω
- = Bω

+ = 10 G  

λ− = λ+ =17.7 

ξ− = ξ+ = 0.56 

γ− = γ+ = 50 

The dimensionless parameter ±λ  is varied by changing the value of η, while keeping n 

constant.  This is equivalent to changing the plasma temperature.  The dimensionless 

parameter ±γ is varied by changing the value of ±
ωB .  Typical values used for the 

numerical method are: Δt = 1 x 10-10 s, ε = 1 x 10-10. 

 

5.5 Simulation Results – (-) RMF 

We first consider the standard case where one RMF is applied.  It is well known 

(Hugrass, 1985) that this RMF penetrates into the plasma when γ− is larger than a certain 

critical value γc
− which depends on λ−.  If there is no applied RMF, the driven current 

decays with the electron relaxation time.  If the (-) RMF is applied with γ− > γc
−, the 

initial driven current decays during the transient phase as the (-) RMF penetrates the 

plasma.  A quasi-steady state is then established where the electron fluid rotates 

synchronously with the (-) RMF.  The driven current then decays approximately with the 

ion relaxation time.  The time for the current to decay is also effected by the field 
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momentum relaxation.  Figure 5.1 shows α against time for these two cases, for λ− = 

17.7, γ− = 50.  
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Figure 5.1. α against time for (i) no applied RMFs and (ii) (-) RMF applied with γ > γc. 

Figure 5.2 shows a series of plots of Bz and Jθ against r/R at various time intervals where the 

(-) RMF is applied at t = 0, with λ− = 17.7, γ− = 50 (Bω
− = 20 G).  At t = 0, the initial 

conditions are shown, where there is a driven current which in the absence of an applied 

RMF would decay through collisions.  At t = 10 μs, the current has begun to decay, since 

the magnitude of the (-) RMF is not yet large enough to capture the inner layers of the 

electron fluid, the Jθ plot demonstrating that the driven current is mainly in the outer layers, 

which have been entrained by the (-) RMF.  By t = 50 μs, the entire electron fluid is rotating 

synchronously with the (-) RMF, returning to a state similar to the initial conditions.  The Jθ 

curve demonstrates that the driven current is through all layers.  At t = 0.1 ms there is little 

change, and hence a quasi steady state has been achieved which is maintained over a time 

scale smaller than the ion relaxation time.  At t = 0.5 ms there is a significant decay of the 

total driven current, with Jθ  showing that the current decay is uniform throughout the 

plasma.  By t = 2 ms, the driven current has completely decayed, with now both the electron 

and ion fluid rotating synchronously with the (-) RMF.  This is the true steady state for a 

single applied RMF. 
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Figure 5.2. Bz and Jθ against r/R at selected time intervals for one applied RMF (λ− = 17.7, γ− = 

50) where γ− > γc
−. 
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Figure 5.3. Local values of γ−, Se
− and Si

− against r/R at selected time intervals for one applied 

RMF (λ− = 17.7, γ− = 50) where γ− > γc
−. 
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Figure 5.3 shows plots of the local value of γ−, and the slips of the electron and ion fluids 

(with respect to the (-) RMF) against r/R at various time intervals, for the same 

simulation as in Figure 5.2 (λ− = 17.7, γ− = 50, Bω
− = 20 G).  At t = 0, the plots show the 

initial conditions, where the external value of Bω
− is zero, and hence γ− is everywhere 

zero.  The electron and ion slips have initial values of Se
− = -0.1, and Si

−  = 2.1.  At t = 10 

μs the penetration of the (-) RMF is limited to outer layers, and the electron fluid has 

relaxed at inner layers where the local value of γ−  is small.  By t = 50 μs, the (-) RMF 

has fully penetrated, with the local value of γ− approaching the maximum value 

everywhere.  The entire electron fluid now rotates almost synchronously with the (-) 

RMF at all layers (with small slip), returning to a state similar to the initial conditions  

The t = 0.1 ms plots show little change apart from saturation of  γ−, and hence a quasi 

steady state has been achieved which is maintained over a time scale smaller than the ion 

relaxation time.  The t = 0.5 ms shows that while the penetration of the (-) RMF is 

maintained, the ion fluid has relaxed significantly.  By t = 2 ms the true steady state has 

been achieved, where both the electron and ion fluid now rotate almost synchronously 

with the (-) RMF.   

The other case of interest for a single applied RMF is when the magnitude of the (-) 

RMF is not sufficient to entrain the electron fluid, where γ− < γc
−.  Figure 5.4 shows a 

series of plots of Bz and Jθ against r/R at various time intervals, where λ− = 17.7, γ− = 25 

(Bω
− = 10 G).  At t = 0, the plots show the initial conditions, where there is a driven 

current which in the absence of an applied RMF would decay through collisions.  At t = 

10 μs, the current has begun to decay, since the penetration of the (-) RMF is not large 

enough to capture the inner layers of the electron fluid, the Jθ plot demonstrating that the 

driven current is only in the outer layers.  By t = 50 μs, the driven current has almost 

completely decayed, with only a small driven current in outer layers.  The steady state 

where the electrons rotate synchronously with the ion fluid has been achieved on a time 

scale of the electron relaxation time when γ− < γc
−. 
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Figure 5.4. Bz and Jθ against r/R at selected time intervals for one applied RMF (λ− = 17.7, γ− = 

25) where γ− < γc
−. 
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Figure 5.5. Local values of γ−, Se
− and Si

− against r/R at selected time intervals for one applied RMF 

where γ− < γc
−. 
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Figure 5.5 shows plots of the local value of γ−, and the slips of the electron and ion fluids 

(with respect to the (-) RMF) against r/R at various time intervals, for λ− = 17.7, γ− = 25 

(Bω
− = 10 G).  At t = 0, the plots show the initial conditions, where the external value of 

Bω
− is zero, and hence γ− is everywhere zero.  At t = 10 μs the penetration of the (-) RMF 

is limited to outer layers, and the electron fluid has relaxed at inner layers where the 

local value of is γ− small.  By t = 50 μs, the (-) RMF has failed to penetrate, with the 

local value of γ− highly attenuated.  The electron fluid now rotates almost synchronously 

with the ion fluid at all layers with 2≈−
eS , except in the very outer layers where it is 

affected by the (-) RMF.  The penetration of the (-) RMF is highly attenuated and limited 

to outer layers and the electron fluid rotates synchronously with the ion fluid.  The 

steady state has been achieved on a time scale of the electron relaxation time when γ− < 

γc
−, except in the very outer layers, where the driven current decays with the ion 

relaxation time. 

The above results demonstrate the existence of a critical value, γc
−, above which the 

electron fluid will be entrained by the (-) RMF.  As demonstrated in section 4, this 

critical value required to entrain the electron fluid is dependant on λ−, and also on the 

initial conditions for the ions, since the collisional force which the (-) RMF must oppose 

is proportional to (ωi – ωe).  As the Clemente scheme requires that the ions are initially 

in motion, the dependence of γc on initial ion slip should be considered when choosing a 

suitable value for the magnitude of the (-) RMF.  For the initial condition considered 

here (ωi = -ωe) we expect that the critical value γc
− to be larger than that for the case 

when the ions are initially stationary for the same value of ωe.  The effect of the ion 

initial condition on the penetration of the (-) RMF is most easily seen if we constrain the 

ion motion by setting mi = ∞.   

Figure 5.6 shows the steady state value of the normalised current per unit length (αss) 

plotted against γ−  for two cases of the ion rotation (i) Si
− = 1.1 (the ions have a rotation 

rate one tenth of the electron rotation rate) and (ii) Si
− = 2 (the ions have a rotation rate 

equal in magnitude electron rotation rate) with λ− = 5.61.  For the initial condition Si
− = 

1.1, the observed value of γc
− ≈ 7 is slightly larger than for earlier studies of the fixed-ion 
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model for the same value of λ− (Milroy, 1999).  For the ion fluid counter-rotating with 

the same frequency magnitude as the electron fluid, γc
− ≈ 10 is significantly larger, as 

expected due to the larger ion drag on the electron fluid, which must be opposed by the 

(-) RMF.   
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Figure 5.6. The steady state value of the normalised current per unit length αss plotted against γ− 

for (i) Si
− = 1.1 and (ii) Si

− = 2 with λ− = 5.61. 

The critical value of γ− is dependent on λ−.  For λ− > 6, there are two critical values of 

γ− (Hugrass, 1985).  γc
−(a) is the magnitude required to access the steady state, while 

γc
−(b)  is the magnitude required to maintain the steady state (hence ( ) ( )ab cc

−− ≤ γγ ).  

The second critical value is found by decreasing the magnitude of the (-) RMF once it 

has completely penetrated the plasma.  The RMF magnitude required to access the 

steady state is greater than that required to maintain the steady state.  Figure 5.7 shows 

the steady state value of α, (αss) for two values of λ− (λ− = 5.61 and λ− = 12.5) where ωi 

= -ωe (Si
− = 2) where the ions are fixed (mi = ∞).  For the case λ− = 5.61, there is only 

one critical value, the (-) RMF cannot be reduced below γc
−(a) once the RMF has fully 

penetrated.  However, for λ− = 12.5, there are two critical values, the magnitude of the (-

) RMF may be significantly reduced once entrainment of the electron fluid is achieved.  
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These values are larger than that found by previous studies, for the case of no ion 

rotation. 
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Figure 5.7. The steady state value of the normalised current per unit length αss plotted against γ− 

for (i) λ− = 5.61, and (ii) λ− = 12.5. 

Figure 5.8 shows the scaling of the two critical values of γ− with λ−, for the case ωi = -ωe 

(Si
− = 2) where the ions are fixed (mi = ∞)..  For low values of λ−, the critical value 

required for field penetration is the same as that for expulsion.  For λ− > 6, the critical 

value required for field expulsion is greater than that for penetration.  This demonstrates 

that the magnitude of the (-) RMF required to maintain the steady state becomes much 

less than that required to access the steady state.  The study by Milroy (1999) found that 

( ) −− = λγ 12.1bc for expulsion when there is no ion motion, Figure 5.8 shows that the 

critical value is larger when the ions are initially counter-rotating.  This is expected since 

the force due to collisions is proportional to (ωe – ωi), which the (-) RMF must 

overcome to access the steady state.  For large values of λ−, the magnitude of the (-) 

RMF may be significantly reduced once the electron fluid is entrained.  

The effect of the initial conditions on the ion fluid is to increase both the critical value of 

γ− required to access the steady state for the electron fluid, γc
−(a), and the critical value 
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required to maintain the steady state, γc
−(b).  This is equivalent to rescaling the definition 

of λ− in terms of (ω−- ωi) rather than ω−.  
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Figure 5.8. Critical values of γc
− for complete penetration, γc

−(a) and expulsion, γc
−(b) against λ−. 

 

5.6 Simulation Results – (+) RMF 

Now we consider the case where the (+) RMF is applied.  It has been demonstrated in 

Chapter 4 that there will be a critical value of γ+ for entrainment of the ion fluid.  Firstly 

we consider a case where the ions are initially rotating as a rigid rotor (i.e. the slip with 

respect to the (+) RMF is initially constant with radius).  The (-) RMF is applied first to 

entrain the electron fluid.  The (+) RMF is applied after a short time delay (tD = 50 μs) 

during which time the outer layers of the electron fluid are entrained and the (-) RMF 

partially penetrates the plasma. 

Figure 5.9 shows the driven current against time for three cases for λ− = λ+ = 17.7.  

Firstly, if there is no applied RMF, the current decays due to collisions in the electron 

relaxation time.  The steady state achieved is the electron fluid rotating synchronously 

with the ion fluid.  If the (-) RMF is applied only (with γ− > γc
−), then the electron fluid 
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will be entrained by the (-) RMF.  However the current now decays with the ion 

relaxation time, since the ion fluid relaxes due to collisions with the electron fluid and 

under the force due to the (-) RMF on the ion fluid.  If both the (-) and (+) RMFs are 

applied (with γ > γc, for both RMFs) the current may be maintained indefinitely. 
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Figure 5.9. Normalised current, α against time for (i) no applied RMFs, (ii) (-) RMF applied 

with γ > γc and (iii) 2 applied RMFs with ±± > cγγ . (λ− = λ+ = 17.7, γ− = γ+ = 312). 

Figure 5.10 shows a series of plots of Bz and Jθ against r/R at various time intervals, 

where λ+ = λ− = 17.7, γ+ = γ− = 312 (Bω
+ = Bω

− = 50 G).  At t = 0, the initial conditions 

are shown, where there is a driven current which in the absence of an applied RMF 

would decay through collisions.  At t = 10 μs, the (-) RMF has entrained the outer layers 

of the electron fluid, but has not yet captured the inner layers.  By t = 50 μs, the entire 

electron fluid is rotating synchronously with the (-) RMF, returning to a state similar to 

the initial conditions.  The Jθ curve demonstrates that the driven current is through all 

layers.  At t = 0.1 ms there is little change, and hence a quasi steady state has been 

achieved which is maintained over a time scale smaller than the ion relaxation time.  At t 

= 0.5 ms the total driven current has been maintained, since the (+) RMF has entrained 

the ion fluid.  Subsequent plots show that a true steady state has been achieved, with the 
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driven current being maintained indefinitely.  The Clemente steady states have been 

accessed since γ− > γc
− and γ+ > γc

+. 
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Figure 5.10. Bz and Jθ against r/R at selected time intervals for two applied RMFs (λ− = λ+ = 17.7, γ− = 

γ+ = 312) where γ+ > γc
+. 
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Figure 5.11 shows plots of the local values of γ− and γ+, and the slips of the electron and 

ion fluids (with respect to the (-) RMF) against r/R at various time intervals, for λ+ = λ− 

= 17.7, γ+ = γ− = 312 (Bω
+ = Bω

− = 50 G).  At t = 0, the plots show the initial conditions, 

where the external values of Bω
− and Bω

+ are zero, and hence γ− and γ+ are everywhere 

zero.  The electron and ion slips are have initial values of Se
− = -0.1, and Si

−  = 2.1.  At t 

= 10 μs the penetration of the (-) RMF is limited to outer layers, and the electron fluid 

has relaxed at inner layers where the local value of is γ− small.  By t = 50 μs, the (-) RMF 

has fully penetrated, with the local value of γ− approaching the maximum value 

everywhere.  The (+) RMF (which is applied at t = 10 μs) is approaching full 

penetration.  The entire electron fluid now rotates almost synchronously with the (-) 

RMF at all layers (with small slip), returning to a state similar to the initial conditions  

The t = 0.1 ms plots show little change apart from saturation of  γ−, and γ+ has also 

almost reached saturation at all layers, with the ion fluid entrained at all layers.  The 

following plots show that a true steady state has been achieved with the electron fluid 

rotating almost synchronously with the (-) RMF and the ion fluid rotating almost 

synchronously with the (+) RMF.  The electron motion is largely unaffected by the 

application of the (+) RMF, and the electrons continue to rotate synchronously with the 

(-) RMF.  For γ− > γc
− and γ+ > γc

+ the local value of γ for either RMF approaches the 

value defined by the external value of Bω at all layers.  Once accessed, this steady state 

can be maintained indefinitely. 

For the (+) RMF to entrain the outer layers of the ion fluid, requires that these layers 

pass through the very small slip region where the force on the ion fluid due to the (+) 

RMF is large.  The radial profile induced by the (-) RMF as it penetrates is vital to allow 

complete penetration of the (+) RMF.  Since the outer layers of the electron fluid are 

entrained first, with the inner layers relaxing under collisions, the value of (ve - vi) will 

be largest in the outer layers of the plasma, and smaller in the inner layers.  Since the 

relaxation rate for the ions is proportional to (ve - vi), the outer layers of the ion fluid will 

relax faster while the (-) RMF is penetrating.  The effect of the penetration of the (-) 

RMF on the ion fluid is therefore to induce a small radial profile on the ion fluid, so that 

the inner layers are rotating slightly faster.   
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Figure 5.11. Local values of γ−, γ+, Se
− and Si

− against r/R at selected time intervals for two applied 

RMFs (λ− = λ+ = 17.7, γ− = γ+ = 312) where γ > γc for both RMFs. 
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When the (+) RMF is applied, the layers of the ion fluid will pass the very small slip 

region required for enhanced penetration in sequence, allowing accessibility to the 

Clemente steady states for this initial condition.  However, the magnitude of the (+) 

RMF required to access this steady state is very much larger than for the (-) RMF.  The 

value of Bω
+ may be significantly decreased once the ion fluid is fully entrained (as will 

be demonstrated in Figure 5.16, below). 

The other case to consider for the (+) RMF is when γ− > γc
− but γ+ < γc

+.  Figure 5.12 

shows a series of plots of Bz and Jθ against r/R at various time intervals, where λ+ = λ− = 

17.7, γ+ = γ− = 62.5 (Bω
+ = Bω

− = 25 G).  At t = 0, the initial conditions are shown, where 

there is a driven current which in the absence of an applied RMF would decay through 

collisions.  At t = 10 μs, the (-) RMF has entrained the outer layers of the electron fluid, 

but has not yet captured the inner layers.  By t = 50 μs, the entire electron fluid is 

rotating synchronously with the (-) RMF, returning to a state similar to the initial 

conditions.  The Jθ curve demonstrates that the driven current is through all layers.  At t 

= 0.1 ms there is little change, and hence a quasi steady state has been achieved which is 

maintained over a time scale smaller than the ion relaxation time.  By this time, the (+) 

RMF has partially penetrated, maintaining the driven current in outer layers, while the 

driven current at inner layers has begun to decrease.  At t = 0.5 ms the total driven 

current has decreased considerably in the inner layers of the plasma, while being 

maintained in the outer layers, the (+) RMF failing to penetrate the plasma column fully.  

Subsequent plots show that a true steady state for these parameters is that the driven 

current in the outer layers will be maintained by the (+) RMF, but the current is zero in 

inner layers.  The Clemente steady states have not been accessed for the entire plasma 

column since γ+ < γc
+. 
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Figure 5.12. Bz and Jθ against r/R at selected time intervals for two applied RMFs (λ− = λ+ = 17.7, γ− = 

γ+ = 62.5) where γ+ < γc
+. 
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Figure 5.13 shows plots of the local values of γ− and γ+, and the slips of the electron and 

ion fluids (with respect to the (-) RMF) against r/R at various time intervals, for λ+ = λ− 

= 17.7, γ+ = γ− = 62.5 (Bω
+ = Bω

− = 50 G).  At t = 0, the plots show the initial conditions, 

where the external values of Bω
− and Bω

+ are zero, and hence γ− and γ+ are everywhere 

zero.  The electron and ion slips are have initial values of Se
− = -0.1, and Si

−  = 2.1.  At t 

= 10 μs the penetration of the (-) RMF is limited to outer layers, and the electron fluid 

has relaxed at inner layers where the local value of is γ− small.  By t = 50 μs, the (-) RMF 

has fully penetrated, with the local value of γ− approaching the maximum value 

everywhere.  The (+) RMF (which is applied at t = 10 μs) is highly attenuated, and 

hence only has significant magnitude in the outer layers of the plasma.  The entire 

electron fluid now rotates almost synchronously with the (-) RMF at all layers (with 

small slip), returning to a state similar to the initial conditions.  The outer layers of the 

ion fluid have been entrained by the (+) RMF, but the inner layers have begun to decay 

through collisions.  The t = 0.1 ms plots show saturation of  γ−, while γ+ is still very 

small except in the outer layers.  While the electron fluid remains entrained, the ion fluid 

is only entrained in the outer layers.  The following plots show that a true steady state 

has not been achieved.  While the electron fluid rotating almost synchronously with the 

(-) RMF, only the outer layers of the ion fluid rotate almost synchronously with the (+) 

RMF, with inner layers rotating synchronously with the (-) RMF by t = 2 ms.  For γ− > 

γc
− and γ+ < γc

+ the local value of γ+ is highly attenuated, and the entrainment of the ion 

fluid by the (+) RMF limited to outer layers of the plasma.   
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Figure 5.13. Local values of γ−, γ+, Se
− and Si

− against r/R at selected time intervals for two applied 

RMFs (λ− = λ+ = 17.7, γ− = γ+ = 62.5) where γ+ < γc
+. 
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As for the (-) RMF, the (+) RMF may be decreased once the ion fluid has been 

entrained, maintaining the steady state.  Figure 5.14 shows the steady state value of α, 

when two RMFs are applied (where γ− > γc
−(a) and ωe

  = -ωi), for λ+ = .17.7  This figure 

demonstrates that there are two critical values of γ+.  γc
+(a) is the magnitude required to 

access the steady state, while γc
+(b)  is the magnitude required to maintain the steady 

state.  The second critical value is found by decreasing the magnitude of the (+) RMF 

once it has penetrated.  The RMF magnitude required to access the steady state is greater 

than that required to maintain the steady state. 
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Figure 5.14. Steady state value of α plotted against γ+ for λ+ = 17.7. 

While the Clemente steady states may be accessed from a rigid rotor initial condition for 

both fluids before either RMF is applied, the value of γc
+(a) required is large in 

comparison to γc
−(a).  The small radial profile induced on the ion fluid by the transient 

phase of the application of the (-) RMF is only a small effect.  The large value of γc
+ for 

this case suggests that the time taken for the relaxation of a layer past the critical region 

required for capture is not larger than the diffusion time of the (+) RMF.  The value of 

γc
+(a) required may be decreased by employing one of two techniques (1) having a 

significant radial profile on the ions as an initial condition before either RMF is applied, 

or (2) allowing the frequency of the (+) RMF to decrease as it penetrates.   
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Figure 5.15 compares the steady state driven current against γ+ for (a) no radial profile 

and (b) an initial radial profile of  ωi = (1.3 - 0.2r/R)ω+ for γ+ = (with γ− > γc
−(a) and 

ωe
  = -ωi) for λ+ = 12.5.   
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(a) ωi(t = 0) = 1.1ω+ 
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(b) ωi(t = 0) = (1.3 - 0.2r/R)ω+ 

Figure 5.15. Steady state α against γ+ for (a) no radial profile and (b) radial profile, for λ+ = 

12.5. 
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The critical value of γ+ required for entrainment of the ion fluid γc
+(a), is significantly 

reduced when a radial profile is employed as an initial condition.  The details of the 

small radial profile of the initial ion rotational velocity are not critical as long as the (+) 

RMF has sufficient time to diffuse to successively deeper layers before the rotational 

velocity at these layers decreases past the critical region ++ ≅ ξ)/( iei mmS .   

Consider the two cases presented in Figure 5.15 where γ+ = 50.  In both cases, the 

electrons are initially entrained by the (−) RMF. The (+) RMF penetration is not 

complete and is limited by the classical skin depth for case (a). The outer ions are caught 

by this field, as they satisfy the criterion ++ ≅ ξ)/( iei mmS , but the inner ions slow down 

by collisions with the electrons before the (+) RMF diffuses in, and hence they fail to be 

entrained by the (+) RMF and do not allow further penetration. In the steady state, both 

the electron and the ion fluids rotate synchronously with the (−) RMF and hence the 

driven current vanishes and the plasma equilibrium is lost. The loss of the plasma 

equilibrium is not observed in our results because we do not consider the radial motion 

of the plasma.  The (+) RMF does not exert appreciable force on the ions at any layer 

unless the slip (at this layer) becomes very small. The slip of the ions at inner layers 

would become too large to allow the (+) RMF to exert an appreciable force before it 

diffuses to these layers. For case (b), the (+) RMF penetrates into the plasma much 

farther than the classical skin depth. Successive layers of the ion fluid become entrained 

by the (+) RMF as they relax (by momentum-transfer collisions with the electrons) to 

the favourable value of the slip ++ ≅ ξ)/( iei mmS .  The electron motion is largely 

unaffected by the (+) RMF and the electrons continue to rotate synchronously with the 

(−) RMF.  

It was reported in two previous papers (Visentin 2003) and (Visentin and Hugrass, 2003) 

that the steady states were not accessible from the rigid rotor initial condition.  The 

results presented had γ+ < γc
+ for the rigid rotor initial condition, but γ+ > γc

+ for a radial 

profile, or use of the frequency modulation scheme.  The magnitude of the (+) RMF was 

not large enough to entrain the ion fluid for the rigid rotor initial condition, and hence 

the accessibility of the steady states was not observed for the rigid rotor initial condition.  
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The Clemente steady states may be accessed for the rigid rotor initial condition for the 

parameters presented in these papers, but requires a much larger external magnitude of 

the (+) RMF than was attempted. 

Since the penetration time of the (-) RMF is critical to the amount of radial profile 

induced in the ion fluid, we can most easily examine the critical values of γ+ required for 

accessing and maintaining the Clemente steady states by using a radial profile initial 

condition.  These results should be seen as the minimum value of γc
+(a) while the value 

of γc
+(b) is of course independent of the ion fluid initial conditions.  Figure 5.16 shows a 

plot of the two critical values of γ+ against λ+ for the radial profile initial condition.  The 

critical values of γ+ are of the similar magnitude to the values of γc
−(a) and γc

−(b) found 

for the (-) RMF for the same value of λ.   
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Figure 5.16. Critical values of γc
+ for complete penetration, γc

+(a) and expulsion, γc
+(b) against λ+ 

for simulations using a radial profile on the ion fluid. 

An alternative to inducing a radial profile on the ion fluid as an initial condition is to 

allow the frequency of the (+) RMF to decrease slightly with time.  This frequency 

modulation of the (+) RMF will allow the favourable value of the slip to be re-

established at each layer of the plasma as the (+) RMF penetrates.   
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The (-) RMF is applied at t = 0, the (+) RMF is applied at t = 3 μs, at which time the (-) 

RMF has partially penetrated the plasma and entrained the electron fluid.  The initial slip 

of the ion fluid is constant with r, and has value Si
+ = -0.1.  After another time delay, the 

frequency of the (+) RMF is allowed to decrease linearly at t = 4 μs.  A number of 

simulations were performed for λ+ = λ− = 5.02, γ+ = γ− = 12.5 (Bω
+ = Bω

− = 20 G), where 

the frequency of the (+) RMF decreases linearly from ω+(t = 0) = 5 MHz to ω+ = 4.95 

MHz, with different rates of change of ω+.  A comparison of these frequency changes is 

shown in Figure 5.17.  The total frequency change in each case is thus 1% of the initial 

value. 
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Figure 5.17. Time variation of frequency of the (+) RMF for 6 simulations (i) to (vi).  (vii) Time 

variation of ion rotational frequency ωi
+ under collisions with the electron fluid for the case Se

+ - 

Si
+ = 2. 

Results for the profiles shown in Figure 5.17 fall into two groups.  Where the frequency 

change is too slow (curves (iv) to (vi) in Figure 5.17), the penetration of the (+) RMF is 

limited by the classical skin depth.  Only outer layers are initially captured by the (+) 

RMF, and in the steady state the ion fluid rotates synchronously with the (-) RMF.  The 

layers initially captured are not maintained since the relaxation of the inner layers 

(which are eventually entrained by the (-) RMF) reduces the magnitude of the local 

value of γ+ in the outer layers below that required for synchronous rotation of the ion 
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fluid.  Where the frequency change is fast enough (curves (i) to (iii) in Figure 5.17), the 

(+) RMF fully penetrates the plasma, capturing the ion fluid, which rotates 

synchronously with the (+) RMF in the steady state.  The critical value of the rate of 

change of ω+ is determined by the relaxation rate of the ion rotational frequency due to 

collisions with the electron fluid, which is given by 

 ( )+++ −=
∂

∂
eiie

i SS
t

ων
ω

. 
(5.26)

Curve (vii) in Figure 5.17 shows this expression for the case where the electrons are 

rotating synchronously with the (-) RMF and the ions are rotating synchronously with 

the (+) RMF (i.e. Se
+ - Si

+ = 2). 

In order to completely entrain the ion fluid, the rate of change of the frequency of the (+) 

RMF must be greater than the ion relaxation time, due to collisions with the electron 

fluid, expressed as curve (vii) in Figure 2.  Results presented are for the case of a 1% 

variation in ω+, however, the total change in ω+ is not critical. 

Results presented above are for the case of a rigid rotor initial condition on the ions, 

which is chosen arbitrarily as an example of the broadening of the class of initial 

conditions on the ion fluid.  By allowing the frequency of the (+) RMF to vary linearly 

allows the access of the Clemente steady states for smaller values of γ+.  A linear 

frequency change also allows penetration of the (+) RMF and entrainment of the ion 

fluid, for cases where the ion fluid has a small initial radial profile, where Si
+ either 

increases or decreases with radius.  The frequency modulation method is thus not limited 

to the case of a constant initial value of Si
+.  The prescribed frequency variation would 

have to be determined for each case of initial radial profile of the ion slip. 

 

5.7 Summary of Simulation Results 

It was demonstrated in this section that: 

(1) The penetration of the (-) RMF for this model is consistent with previous studies 

(Hugrass & Grimm, 1981 and Milroy, 1999).  The critical value of γ− required to 
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maintain the steady state is linear with λ−.  The critical value of γ− required to 

access the steady state may be much larger than that required to maintain it.  

Hence the external magnitude of the (-) RMF may be decreased once full 

penetration has been achieved.  This nonlinearity of the (-) RMF penetration 

increases with λ−.  The critical values of γ− are dependant on the ion rotation.  If 

the ions are counter-rotating, the critical values of γ− are increased for a given 

value of λ−, since the collisional force which must be opposed by the (-) RMF is 

larger for this case.  This effect of ion rotation on the accessibility of the steady 

states has not previously been considered in theoretical work for the application 

of a single RMF to a preformed FRC.   

(2) The steady states for the electron fluid are maintained when the (+) RMF is 

applied.  If the (-) RMF is allowed to be at least partially entrained before the (+) 

RMF is applied, then the electron fluid continues to rotate almost synchronously 

with the (-) RMF. 

(3) The penetration of the (+) RMF has a similar behaviour to the (-) RMF.  There is 

a critical value of γ+ required to maintain the steady state, which scales linearly 

with λ+.  The critical value of γ+ required to access the steady state may be much 

larger than that required to maintain it.  Hence the external magnitude of the (+) 

RMF may be decreased once full penetration has been achieved.  This 

nonlinearity of the (+) RMF penetration increases with λ+.  The ion fluid steady 

states may only be accessed form the Si
+ < 0 initial condition. 

(4) The critical value of γ+ required to access the steady state is dependant on the 

initial conditions for the ion fluid.  It is required that the (+) RMF have a radial 

profile where Si
+ increases with radius (and is everywhere negative).  The 

penetration of the (-) RMF (which is applied first) induces a small radial profile 

on the ion fluid, which allows accessibility of the steady states.  The (+) RMF 

may fully penetrate the plasma for smaller values of γ+ when either (a) the ions 

have a radial profile as an initial condition, or (b) the frequency of the (+) RMF 

is allowed to decrease slowly with time. 
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CHAPTER 6 MAINTAINING A FIELD-REVERSED 

CONFIGURATION  

In Chapter 5 the radial motion of the plasma has been suppressed, and the initial 

conditions were not representative of real equilibria.  This chapter investigates the 

accessibility of the Clemente steady states for a preformed FRC.  The radial motion of 

the plasma is included so that pressure balance is always maintained.  The number 

density (and hence the collision frequency) is not uniform in an FRC. This makes it even 

more difficult to satisfy the stringent conditions required for the penetration of the (+) 

RMF at all layers. The numerical simulations demonstrate the accessibility of the 

Clemente steady states provided that: a) the preformed FRC equilibrium has the 

experimentally observed rotational motion (Tuszewski, 1988) b) the (+) RMF has 

sufficiently large magnitude and c) it is applied at a suitable time.  

Section 5.1 outlines the physical model and derives equations of motion where radial 

motion of the plasma is considered.  In section 5.2 the boundary and initial conditions 

corresponding to a preformed FRC are described.  The numerical model is outlined in 

section 5.3, simulation results described in section 5.4 and section 5.5 provides 

discussion and conclusions. 

 

6.1 Physical model and equations of motion 

Two RMFs are applied to a preformed infinitely long FRC. The axial magnetic flux is 

maintained by means of flux preserving rings located at radius b > R, where R is the 

plasma radius.  Thus the flux-conserving boundary required by the FRC equilibrium is 
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provided and the two RMFs can be generated by means of polyphase currents in an array 

of coils located outside the flux conserving surface.  It is well known (Tuszewski, 1988) 

that FRCs are observed to rotate (in the direction of the ion diamagnetic current) and are 

eventually destroyed by the n =2 rotational instability, unless suitable quadrupole fields 

are applied.  So in a preformed FRC the electron fluid rotates in one direction and the 

ion fluid rotates in the opposite direction.  In the simulations presented in this chapter, 

the (-) RMF is applied to the preformed FRC with a short rise time to entrain the 

electron fluid.  The (+) RMF is applied with a longer rise time to allow a suitable time 

delay for complete penetration of the (-) RMF and entrainment of the electron fluid 

before the magnitude of the (+) RMF becomes large.  When the (+) RMF is applied, it 

does not prevent the electron fluid from rotating synchronously with the (-) RMF 

provided that certain conditions are satisfied.   

In chapter 5 the radial motion of the plasma was neglected since we aimed at 

investigating the penetration of the RMFs in the plasma and assumed, without rigorous 

justification, that the radial motion would not influence this process.  In this chapter the 

equation of motion in the radial direction is included, so that the pressure balance is 

maintained when Jθ and Bz change.  The simulations presented justify the assumption 

that the radial motion does not influence the penetration of the RMF into the plasma.  

Satisfying the pressure balance equation however necessitates the variation of the 

plasma parameters with radius.  This makes it more difficult to satisfy the conditions 

required for the penetration of the RMFs into the plasma at all layers.   

We now present the derivation of equations of motion for the case where the plasma is 

allowed to move in the radial direction.  Some of the equations presented in this section 

also appear in the same form in Chapter 2 for the case where the radial motion is 

suppressed, but are included here for convenience.  As for the case of no radial motion, 

in the steady state, all the relevant physical quantities can be classified in two groups 

(Hugrass, 1982).  Quantities of one group can be expanded as Fourier series with odd 

harmonics of (ωt - θ) and quantities of the second group can be expanded as Fourier 

series with even harmonics of (ωt - θ) where the effect of the second and higher 

harmonics is small and may be neglected (Milroy, 1999).  Hence quantities of the 
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second group are functions of r only, and quantities of the first group can be 

conveniently represented by complex phasors and have derivatives, 

 0=
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(6.1) 

 

When we study time-varying configurations which change in time scales much larger 

than the period of the RMF, this classification is still valid, with quantities of the second 

group real functions of r and t, while the phasors for quantities of the first group are 

complex functions of r and t such that ωω <<∂
∂<<∂

∂
rt rv and . These relations also 

hold for the case where ω is allowed to vary slowly with time. 

The equations of motion for the electron and ion fluids are 
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Faraday’s law and equation (6.1) provide the following expression for the phasor of the 

z-component of the electric field, 
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The derivation of the time-dependent equations is greatly simplified if we note as in 

section 2.2 that the phasor for the time derivative of vez ( ezV ′ ) is approximately related to 

the phasor for vez (Vez) by the equation 

 ±±±±±± ≈
∂
∂

+=′ ezezez ViV
t

ViV ωωez . 
(6.5) 

and similarly for the ion fluid 

 .iziz
±±± ≈′ ViV ω  (6.6) 
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We will always neglect the partial derivatives of the phasors of quantities of the first 

group as we did in equations (6.5) and (6.6) except in situations when we want to 

evaluate such derivatives in order to update the values of these phasors in the finite 

difference equations.  The derivatives of the phasor of the vector potentials are retained 

in equation (6.4) above for this reason. 

Using equations (6.2) to (6.6) and assuming that ±<<
∂
∂

≈
∂
∂ ω

trrv , the z-components of 

the equations of motion can be written as: 
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Equations (6.7) and (6.8) can be used to derive a generalised Ohm’s law for the z-

component of the electric field 
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The partial derivative of the vector potential with respect to time is a small quantity and 

could be neglected in equation (6.9), but it is retained because this equation is used to 

evaluate this derivative in order to update the value of the vector potential in the finite 

difference approximation of equation (6.10) below. 

The time-dependent equation for Az is obtained with the help of equations (6.4) and (6.9) 
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It is evident from equation (6.10) that the steady state solutions for ±
zA  satisfy the 

equation 

 02

0
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(6.11)

and thus, in the steady state, ±
zA  penetrate the plasma with enhanced skin depth. The 

penetration of −
zA into the plasma is enhanced because ηη >

−∗  for ,1<−
eS  and the 

penetration of +
zA into the plasma is enhanced because ηη >

+∗  for .
i

e
i m

mS <+  

In order to derive an expression for the force density on both the electron and ion fluids 

we require an expression for the axial components of the fluid velocities.  The phasors of 

the axial-components of the fluid velocities can be found from equations (6.7) to (6.9),  
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The small partial derivatives of ±
zA  are neglected compared to ±±

zAω .  We only retain 

these derivatives if the equation is used to evaluate them for the purpose of updating the 

variables in the finite difference approximation. 

The θ-component of the force densities on the electron and ion fluids then have steady 

parts 
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A time dependent equation for Bz is obtained from the θ-component of the equation of 

motion of the electron fluid and Faraday’s law. 
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The first term in the right hand side of equation (6.16) is the normal resistive diffusion 

term.  The second term is the effect of non-uniform resistivity on the diffusion process.  

The third term shows the effect of the RMF is to oppose the field diffusion and maintain 

the current.  The fourth term shows that the magnetic field is frozen to the plasma and is 

carried with it. 

The continuity equation for the number density is, 
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The plasma temperature is assumed constant as it is observed in most experiments 

(Tuszewski, 1988) and we do not have a valid model for energy transport. We assume 

also that the plasma current varies in a time scale much longer than the radial Alfven 

time and hence radial pressure balance (quasi-equilibrium) is always maintained, hence  
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Differentiating this expression gives 
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Using equations (6.16), (6.17) and (6.19) we obtain 
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The resistivity in equation (6.20) is the classical resistivity given by 
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The dependence of the Coulomb logarithm on n is neglected as usual and we choose Λ = 

20.  Since the temperature is constant, the resistivity is also constant and equation (6.20) 

becomes   
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Equations (6.10), (6.22) and (6.26) (below) are solved numerically using a finite 

difference scheme on a moving one-dimensional grid.  The grid points follow the radial 

motion of the plasma.  The value of Bz at grid point i and time t + Δt for example, 

(denoted Bz(i, t + Δt)) is approximated by 
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2
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2
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(6.23)

Note that the derivatives at t + Δt are to be evaluated in terms of the yet unknown values 

of the variables at t + Δt.  The numerical scheme would be fully implicit if the resulting 

set of simultaneous equations could be solved for the updated values of the variables.  

This cannot be easily performed however, since the equations are nonlinear.  We solve 

these equations approximately by simple iteration.  The iteration is found to converge to 

any desired accuracy provided that the time step Δt is not too large. 

The radial velocity of the plasma (and the computational grid) is obtained from 

equations (6.17) and (6.19).  
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The number density is determined from the pressure balance condition of equation 

(6.18) 
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The azimuthal momentum density Pθ is obtained using the equation 
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The azimuthal components of the fluid velocities are determined from the following 

equations. 
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The components of the current density are obtained from the z components of the 

magnetic field and vector potential using Ampere’s law. 
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6.2 Initial and Boundary Conditions 

FRCs are known to spin up until an n = 2 rotational instability destroys the equilibrium 

(Tuszewski, 1998). Hence, in the simulations we consider, the RMFs are applied to a 

preformed FRC where the electrons and ions are initially counter-rotating.  Assuming 

that the rotational velocity of the ion fluid is smaller than the ion thermal velocity, the 

centrifugal force can be ignored and the equilibrium satisfies the equation 

 P∇=× BJ . (6.31)

We note that the plasma pressure P is a quantity of the second group. It consists of a 

slowly varying function of t and r as well as even harmonics in ( )θω −t . As mentioned 

earlier, the effects of the second and higher harmonics can be neglected and hence P as 

well as grad P are slowly varying functions of t and r.  Similarly the right hand side of 

equation (6.31) consists of a slowly varying part as well as the even harmonics terms 

which are neglected. The slowly varying part consists of JθBz and the average part of 

JzBθ.  The average part of JzBθ is very small and can be neglected because Jz and Bθ are 

almost 90° out of phase.  It follows that the plasma pressure can be evaluated using the 

steady axial magnetic field.  The RMFs make no contribution to the plasma equilibrium.  

This assumption was first used by Storer (1981) to compute Rotamak equilibria.  In a 

later paper Storer (1983) showed that these equilibria agreed well with the plasma 

pressure measurements made independently of the magnetic field measurements.  Since 

the plasma equilibrium equation has no reference to the RMF, we can employ the 

standard terminology used to describe FRC configurations.  The terms closed flux and 

separatrix are used in this sense and they refer to the steady component of the magnetic 

field.  The fact that the lines of the total magnetic field (including the RMF) are not 

closed is irrelevant for our purpose. 

We assume that initially the electron fluid rotates as a rigid rotor with angular frequency 

ωe while the ion fluid rotates as a rigid rotor with angular frequency ωi. Equation (6.31) 

can then be reduced to 
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Equation (6.32) can be solved to obtain the initial distribution of the number density and 

axial component of the magnetic field 
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where R0 is the field null radius, ( )00 Rnn =  is the peak number density and 
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For an FRC we impose the condition: n(R) = n(0), where R is the radius of the 

separatrix, and hence the radius of the FRC is given by 

 02RR = . (6.36)

The ratio of the boundary density to the peak density n(R)/n0, determines the value of the 

constant g. 
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The boundary condition for Bz is determined from the conservation of magnetic flux, 

with flux-preserving rings at radial distance b. 
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The boundary condition for Az for this physical model is given by Hugrass & Grimm 

(1981). 
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where Aext
±  is the phasor of the vector potential for each externally applied RMF at r = 

R. 

Equations (6.10), (6.22) and (6.26) are solved numerically using a semi-implicit finite 

difference approximation with variable time step as in Chapter 5.  The grid points now 

move with the radial motion of the plasma.  Hence time-derivatives are determined by 

 
r
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(6.40)

 

6.3 Results  

The results presented are for numerical simulations with the following initial parameters 

for the FRC:  me/mi = 5.45 x 10-4 , R = 10 cm, Te = 20 eV, Ti = 60 eV, n0 = 2 x 1018 m-3, 

n(R)/n0 = 0.2, and the flux conserver  radius is b = 1.5 R(0) = 15 cm.  

The electrons and ions are initially counter-rotating.  We present simulations with |ω+| < 

ω- since the initial conditions have the electron fluid carrying the majority of the current 

ωe(0) = 9.07 MHz |ωi(0)│= 0.89 MHz.  The applied RMFs have frequencies of ω- = 

8.16 MHz and ω+ = 0.58 MHz and hence λ- = 21.1, λ+ = 5.63.  FRC equilibria are 

observed to spin with increasing angular velocity until the n = 2 instability destroys this 

configuration (Tuszewski, 1988).  When the (-) RMF is applied, the rotation of the FRC 

would slow down and eventually, in the absence of a (+) RMF, rotate with the (-) RMF.  

Hence the current diminishes and the configuration is destroyed.  The initial conditions 

presented in this chapter conform to the initial stages of a preformed FRC. 

Both the (-) and (+) RMFs are applied at t = 0.  The rise time for the (-) RMF is smaller 

than for the (+) RMF. (τr
− = 1 μs and τr

 + = 10 μs).  This is to satisfy the condition ωτ > 

1 for both RMFs, and also allows the electron fluid to be partially entrained by the (-) 

RMF before the external magnitude of the (+) RMF becomes large.  After the (-) RMF 

has penetrated into the plasma and entrained the electron fluid, it is possible to decrease 

the magnitude of the RMF to levels much lower than is required for penetration and the 
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(-) RMF maintains complete penetration into the plasma with the electron fluid entained 

by it (Hugrass, 1985). Our simulations show that the same is true for the (+) RMF.  The 

results presented in this section have RMF magnitudes of 60 G (for both the (+) and (-) 

RMF) unless stated otherwise. The RMF magnitudes are decreased once both fluids are 

entrained, with time constant τ = 10 μs to a value of 10 G (for both the (+) and (-) RMF).   

Figure 6.1 shows the variation of the driven current with time for: (i) no RMFs are 

applied, (ii) when the (-) RMF alone is applied, (iii) when both RMFs are applied.  The 

driven current is shown as the dimensionless parameter α, defined as 
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where the bottom line of equation (6.41) is the current when both the electron and ion 

fluid rotate with the (-) and (+) RMF respectively.   
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Figure 6.1. Driven current per unit length (as dimensionless parameter α) against time for (i) the 

(-) RMF applied only and (ii) Both (-) and (+) RMFs applied. 
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When there are no external RMFs, the current decays with the electron relaxation time, 

eventually reaching a steady state where the electron fluid rotates synchronously with 

the ion fluid.  When only the (-) RMF is applied, the current decays with the ion 

relaxation time, eventually reaching a steady state where both electrons and ions rotate 

synchronously with the (-) RMF.  When both RMFs are applied a true steady state is 

achieved, with the electrons and the ions rotating synchronously with the (-) and (+) 

RMFs respectively. 
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Figure 6.2. Driven current per unit length (as dimensionless parameter α) against the magnitude 

of the applied (+) RMF, Bω
+. 

The nonlinear nature of the penetration of the (-) RMF in the plasma is well known 

(Jones, 1999). The penetration of the (+) RMF is also strongly nonlinear as can be seen 

from Figure 2. For small values of Bω
+  the (+) RMF is restricted to the outer layers of 

the plasma due to the skin effect. The ions in these outer layers are entrained by the (+) 

RMF while the ions in the inner regions are eventually dragged by the electron fluid, 

which results in the observed reduction in the steady state current. For values of Bω
+  

above a certain threshold value, the (+) RMF fully penetrates into the plasma and 

entrains the ion fluid.  The magnitude of the (+) RMF required to access the steady state 

is much larger than that required to maintain the steady state.  The magnitude of the (+) 

RMF (and the (-) RMF) may be decreased significantly below the threshold value 

required for penetration (in the results presented, to a value of 10 G). 
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Figure 6.3. Driven current (as dimensionless parameter α) against time when both the (-) and (+) 

RMF are applied, for two different rise times of the (+) RMF (i) 10 μs, and (ii) 20 μs. 

The penetration of the (+) RMF into the plasma also requires suitable timing for the 

application of the (+) RMF.  In the simulations presented, both RMFs are applied at the 

same time, but the magnitude of the (+) RMF is kept small in initial stages of the 

simulation by having a longer rise time for the (+) RMF.  If the magnitude of the (+) 

RMF is not large enough at the correct time (longer rise time of 20 μs shown in Figure 

3), it may fail to penetrate into the plasma and entrain the ion fluid even though its 

magnitude is sufficiently large at later times.  This phenomenon can be explained by 

examining equation (6.15) (the ion force as function of slip).  The force applied by the 

(+) RMF on the ion fluid is very small except for a small range of values of the slip.  

This force is not sufficient to bring the motion of the ion fluid into synchronous rotation 

with the (+) RMF.  The rotational velocity of the ion fluid must change under the 

influence of collisions until the slip of the ion fluid is such that the (+) RMF exerts 

sufficient force on the ion fluid and entrainment thus occurs.  For the longer rise time of 

20 μs shown in Figure 6.3, the ion fluid has already relaxed past the small range of slip 

values required for entrainment before the magnitude of the (+) RMF becomes large 

enough to allow the existence of a small slip operating point for the ion fluid.  Similar 

results are produced if the application of the (+) RMF is significantly delayed.  The 
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steady state achieved is hence determined by the plasma initial conditions, the timing 

and rise time of the (+) RMF, and its frequency. 

Increasing the frequency of either the (-) or (+) RMF once both fluids are entrained also 

allows the total driven current and the closed flux to be increased.  Figure 4(a) 

demonstrates the increase of the closed flux as the angular frequency of the (-) RMF is 

increased.  The closed flux is given by 

 ∫=
0

0

R

z drrBφ  
(6.42)

where R0 is the field null radius.  The lines of the total magnetic field (including the 

RMF) are open, but the RMF does not contribute to the pressure balance equation. By 

closed flux, we mean the magnetic flux excluding the RMF.  The closed flux is constant 

once the steady state has been achieved with the (-) RMF entraining the electron fluid 

and the (+) RMF entraining the ion fluid.  When the (-) RMF frequency is increased, the 

closed flux increases.  Figure 4(b) shows that there is a corresponding increase in the 

plasma radius and the total driven current (here α is defined with respect to the initial 

values of the RMF frequencies). 
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Figure 6.4. (i) Closed flux φ , and (ii) frequency of (-) RMF, ω - (normalised to initial values) 

against time. 
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Figure 6.5. (i) Plasma radius R (normalised to initial value), and (ii) α against time. 

 

6.4 Conclusions 

It has been demonstrated that a preformed FRC can be sustained using two counter-

rotating magnetic fields.  The Clemente steady states, where the electron and ion fluids 

rotate synchronously with the (-) and (+) RMF, respectively, are accessible for the case 

where the electrons carry the majority of the current.  The penetration of the (+) RMF is 

enhanced in this case due to a significant increase in the classical skin depth for the (+) 

RMF while the skin depth is decreased slightly for the (-) RMF.  The conditions required 

for enhanced penetration of the (+) RMF are more restrictive than for the (-) RMF. 

The conditions required for the (+) RMF to penetrate the plasma and entrain the ion fluid 

are very restrictive.  One has to acknowledge that these conditions would not be easily 

achieved in the laboratory, although observations of ion rotation in FRCs demonstrate 

that the ion rotation is essentially a rigid rotor (Tuszewski, 1988), although the rotation 

may be smaller at inner layers (Hoffman, 2003).  This type of ion rotation would provide 

the required initial condition for the Clemente scheme.  The need to resort to such an 

elaborate scheme has not been established as the predicted spin-up of the ion fluid has 

not been observed so far. On the other hand, it is highly likely that the ion spin-up will 
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be the limiting factor for the use of the RMF technique to sustain reactor-grade FRC 

equilibria with large particle confinement time. The Clemente scheme would allow the 

FRC equilibria to be sustained indefinitely. It may also be possible to control the length 

and radius of the FRC as well as the closed flux by changing the frequency of the RMFs 

and the magnitude of the axial magnetic field.  Obviously we have not investigated the 

possibility of controlling the length of the FRC, since the model we have presented is for 

an infinitely long plasma column.   

In this chapter we presented simulations for the penetration of counter-rotating magnetic 

fields into infinitely long FRCs. Further work is required to investigate the penetration 

of the counter-rotating magnetic fields into preformed FRCs with finite length. Many of 

the simplifying assumptions utilised in this work would not be applicable for the case of 

finite-length FRCs and the analysis would be much more complex. The simulation 

would also require considerable computing resources.  
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

This thesis has demonstrated a simplified model for RMF current drive, and analysed the 

conditions required for the existence of local steady states for the Clemente scheme.  

This was then extended to the conditions required for the existence of a global steady 

state for the entire plasma, and the conditions required for the accessibility of the steady 

states analysed.  A numerical model was produced which demonstrated the accessibility 

of the Clemente steady states, and the initial conditions and plasma parameters required 

to access them.  Finally, it was demonstrated by simulation that a preformed FRC can be 

maintained indefinitely by the Clemente scheme.   

The penetration of the (+) RMF has been shown to follow a similar process as for the (-) 

RMF.  The steady states where the ion fluid rotates synchronously may be maintained 

when the external magnitude of the (+) RMF is sufficiently large.  The critical value of 

γ+ required to maintain the steady state scales with λ+.  As for the (-) RMF, the 

penetration of the (+) RMF is highly nonlinear, hence the critical value of γ+ required to 

access the steady state may be larger than that required to maintain it.   

The difference between the penetration of the (+) RMF and the (-) RMF is the initial 

conditions which lead to enhanced penetration.  While the (-) RMF may fully penetrate 

the plasma column and entrain the electron fluid from any initial conditions if the 

external magnitude of the (-) RMF is sufficiently large, complete penetration of the (+) 

RMF and entrainment of the ion fluid is dependant on the initial conditions for the ion 
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fluid.  The initial conditions for the ion fluid is that Si
+ < 0 and that there is either a 

radial profile of the ion slip (Si
+ increases with radius) or the frequency of the (+) RMF 

is decreased as it penetrates.  This radial profile may be induced by the application of the 

(-) RMF.  The requirement of special initial conditions for the ion fluid provides the 

most serious problem for the successful application of the Clemente scheme.  

Observations of ion rotation in FRCs demonstrate that the ion rotation is essentially a 

rigid rotor (Tuszewski, 1988), although the rotation may be smaller at inner layers (The 

TCS Program, 2003).  This type of ion rotation would provide the required initial 

condition for the Clemente scheme. 

The Clemente scheme may be used to indefinitely maintain a preformed FRC, with the 

steady states being accessible from initial conditions relevant to translation and 

confinement techniques.  However, the accessibility requires correct timing of the 

application of the (+) RMF, and since the rotational motion of the ion fluid is not known 

to sufficient accuracy, the accessibility of the steady states may be very difficult to 

achieve in an experiment.   

 

7.2 Future Work 

In this thesis we presented simulations for the penetration of counter-rotating magnetic 

fields into infinitely long plasmas.  Further work is required to investigate the 

penetration of the counter-rotating magnetic fields into preformed FRCs with finite 

length. Many of the simplifying assumptions utilised in this work would not be 

applicable for the case of finite-length FRCs and the analysis would be much more 

complex.  The simulation would also require considerable computing resources.  

Since the penetration of the (+) RMF is dependant on the ion fluid initial conditions 

when the (+) RMF is applied, successful application of the Clemente scheme requires 

knowledge of the ion rotation in FRCs.  Before this scheme can be seriously considered, 

a more complete observation of the ion motion is required.   
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