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Abstract

Traditional distributed computing systems are typically complex to implement and costly 
to maintain. Furthermore, little comparative work has been done to understand the 
performance and usability of these systems for their own sake as well of that of new 
approaches that eventuate. The work presented herein addresses both of these problems
by describing the design and implementation of CompTorrent, a simple to implement and 
maintain decentralised peer-to-peer computing network, based on techniques used in other, 
non-computing peer-to-peer systems. This research also describes a new framework 
(WAN-DC) suitable for the comparison of wide area distributed computing systems. 
CompTorrent is compared with BOINC and Condor, two traditional distributed computing 
systems, using the WAN-DC framework on the same cluster hardware.

WAN-DC consists of a baseline to quantify the size of the cluster hardware 
followed by a set of well-known algorithms including calculations of the Mandelbrot set, a 
conversion of video formats (Transcode) and a ray-tracing of a benchmarking scene (POV-
Ray). Other experiments include determining the systems underlying overhead with work 
units of no load (No Work), as well as work units of ranging sizes in order to measure 
where a system becomes acceptably efficient. This last test, One Second, is particularly 
useful when comparing different systems and approaches.

Results show that CompTorrent maintains a performance range between that of 
BOINC and Condor for all cluster node sizes for the POV-Ray experiment. Transcode 
shows CompTorrent is between or better than BOINC and Condor in 50% of cases and, 
whilst worse in the other half of experiments, it was only by approximately 15% in the 
worst case. Mandelbrot showed results between both distributed systems and, similarly to 
POV-Ray, No Work behaves either between or better than the results of both BOINC and 
Condor. These, and other, results described within, show that that a distributed processing
system based on a decentralised, peer-to-peer network can provide similar results to 
distributed processing systems based on traditional client/server networking architectures.

This work demonstrates a convergence of peer-to-peer and distributed computing 
systems which while considered as certain as "death and taxes" (Foster & Iamnitchi 2003) 
has not, until now, been formally demonstrated in an academic setting for general purpose 
distributed computing where comparable systems exist based on a client-server approach. 
It is hoped that this work contributes to the further adoption of "Grassroots" distributed 
computing by bringing the ability to host and manage a distributed computing project to a 
much wider audience.
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Chapter One

“Dissent is the native activity of the scientist, and it has got him into a good deal of trouble in the last  
years. But if that is cut off, what is left will not be a scientist. And I doubt whether it will be a man.”

 -- The late, great Dr. Jacob Bronowski.

1.0 Introduction

This thesis shows that a distributed processing system based on a decentralised, peer-
to-peer network can provide similar results to distributed processing systems based 
on traditional client/server networking architectures. It describes the implementation 
of a new distributed processing platform (called CompTorrent) that achieves this 
level of result performance using a peer-to-peer network. CompTorrent is the first 
working system that demonstrates a convergence between hybrid peer-to-peer 
systems and distributed computing for general purpose distributed processing 
applications. 

CompTorrent brings several new ideas and new possibilities to wide area 
distributed computing. 

• Using a decentralised, ad hoc swarm as a processing resource for 
distributed computing

• Distribution of source and computed data sets concurrently with 
computation to enable participants to acquire both of the full data sets

• Using the acquisition of original and computed data sets as an incentive to 
join the computing swarm

• Minimising infrastructure requirements, in both network connectivity and 
server hardware, to a level approaching nothing for hosting a distributed 
computing project

The result is a similar level of performance to traditional distributed 
processing implementations with the added benefits of a decentralised, peer-to-peer 
architecture. This provides access to distributed processing resources that may not 
have been available to start up projects previously without the investment of time and 
resources to maintain a central server pool as required in a traditional client/server 
approach.

1.2 Motivation

Distributed computing has had several high profile successes from the 1990s 
onwards. Folding@Home (Larson et al 2003), since 2000, has been working on 
computing simulations for molecular dynamics to better understand certain diseases. 
Distributed.net (Haynes 1998) has spent the last 10 years answering challenges by 
RSA Security to encourage research into computational number theory. 
SETI@Home has had over 5.2 million participants processing data from the Arecibo 
radio telescope making it the largest distributed computing project over a wide area 
network to date (Anderson et al 2002). These projects, and others like them, are 
interesting, worthwhile and largely centralized in their control. This centralised 
approach has led to many processing participants, but relatively few distributed 
computing projects. This difference becomes particularly apparent when wide area 
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network distributed computing is compared to other distributed applications such as 
file sharing or instant messaging. There are potentially many more applications for 
raw computing power that could be realised should the overhead of centralised 
control be removed.

Another motivation has been the limited application of peer to peer 
techniques themselves and their individual suitability to some parts of distributed 
computing. File sharing has undoubtedly been the biggest, and most controversial, 
application of this technique and a large part of distributed computing is the 
distribution of data. Instant messaging and telephony has been successful with a 
peer-to-peer approach and the coordination of computing jobs has been a big part of 
wide area network distributed computing that has been managed centrally. Wide area 
network distributed computing requires significant computing resources just to 
centrally manage the computation. Peer-to-peer networking has produced large 
amounts of storage and computing power with minimal or no cost in terms of central 
resources. Denial of service attack, and other hacking attempts, have occurred 
several times on large centralised services (Vixie et al 2002) (ICANN 2007), 
including instances of public distributed computing projects (Kotadia 2004). Peer-to-
peer systems have proven extremely resilient in the face of a variety of disruptive 
attacks.     

This research has taken the first steps in showing that decentralised peer-to-
peer distributed computing is feasible and can provide the tools to bring distributed 
computing, as a general purpose computing tool, to a much larger audience.

1.3 Major Contributions

In addition to showing that a decentralised, peer-to-peer network can provide similar 
results for distributed computing applications compared to existing client/server 
architectures the following research contributions have been made:

● Applying the metadata concept to distributed computing
● A framework for the comparison of distributed computing architectures that 

consists of performance measurement and selection criteria
● A comparison of two existing distributed computing systems (BOINC and 

Condor) on the same hardware and network platform
● Having the sharing and dissemination of the original and computed data sets 

as incentives for participating in an open distributed computing project
● Sharing the original dataset, computed dataset and execution load 

concurrently
● The comparison of computing performance of this newly developed system 

with two other established distributed computing platforms. The 
experimentation utilised the same hardware and network to provide a fair 
comparison without needing to rely on simulation

1.4 Structure of this Thesis

Chapter two provides the necessary background for the reader by giving a 
description of distributed computing, peer-to-peer networks and the measurement 
and benchmarking of distributed systems. Chapter three surveys a range of large and 
small projects that bear relation to the system described in this thesis in chapters six, 
seven and eight. Chapter four provides criteria for the evaluation of distributed 
computing systems by first describing a  taxonomy of computing distributed systems 
and then a range of algorithms and techniques to enable a comparative analysis of 
existing and emerging systems. Chapter five presents an evaluation of the BOINC 

2



and Condor distributed computing systems using the criteria presented in Chapter 
four. Chapters six and seven describe the design and implementation of the 
CompTorrent distributed computing system. The design principles of CompTorrent 
are explained followed by the actual implementation details and some discussion of 
decisions made. Chapter eight provides a detailed evaluation of the CompTorrent 
protocol using the evaluation framework presented in chapter four. Chapter nine 
provides a discussion of further work that has been identified during this research 
and then concludes.
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Chapter Two

2.0 Distributed Computing, Peer-to-Peer Networks and 
Measuring the Performance of Computing Systems

This chapter presents an overview of the separate fields of distributed computing, 
peer-to-peer networking and measuring the performance of computing systems. It 
intends to give the reader the necessary technical background, of all three fields, to 
fully understand the rest of this thesis. This chapter concentrates on theoretical 
background and underlying concepts with examples only where necessary for 
explanation. The next chapter, chapter three, is where examples of these technologies 
are described. 

2.1 Distributed Computing

Distributed computing refers to two or more computers networked together sharing 
the same computing work. The aim is that by sharing the job between multiple 
computers, the computing work will be completed more quickly than on one machine 
alone. 

2.1.1 On the Differences Between Distributed and Parallel 
Computing

Whilst there are many similarities between the goals, research problems and 
operation of Parallel Computing and Distributed Computing, there are several subtle 
differences. These two different terms are often, and incorrectly, used synonymously. 
This confusion is further compounded by the fact that these two areas of research are 
constantly undergoing significant change. Leopold (2001) provides perhaps the 
clearest summary on the difference between parallel and distributed computing:

“Parallel computing splits an application up into tasks that are 
executed at the same time, whereas distributed computing splits 
an application up into tasks that  are  executed  at  different  
locations, using different resources.”

Parallel computing typically refers to multiple processing elements existing within 
one machine with each processor being dedicated to the overall system at the same 
time. Distributed computing refers to a group of separate machines that each 
contributes processing cycles to the overall system, over a network, over time. 

Volunteer distributed computing was inspired by parallel computing systems 
yet driven by a lower cost solution of using cheaper individual machines 
interconnected by a local or wide-area network rather than specialist, expensive 
parallel hardware required to coordinate many processors within the same machine. 
Faster and cheaper networks have seen distributed systems emerge in the 1970s and 
1980s, grow significantly through the 1990s to now being relatively common in 
research institutions in the 2000s. Distributed computing is, at time of writing, 
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undergoing a convergence due to improvements in personal computing hardware and 
wide area network performance.    

This thesis is at all times concerned with distributed computing systems 
however several of the common characteristics will be explained. When the 
reference is to a parallel description, its is discussing the terms which are common to 
both parallel and distributed systems and algorithms. Otherwise, a distributed 
specific description, will refer to distributed computing systems and algorithms.

2.1.2 Characteristics of Distributed Computing Systems: Terms, 
Actors and Roles.

There are several elementary distributed computing terms and ideas which will first 
be defined for volunteer distributed computing. These notions are the computing job 
itself, the processing nodes and tasks being completed. 

A job relates to the overall computing work that needs to be done in order to 
solve the problem at hand. There are several different categories of computing jobs 
based on the underlying nature of the computation or algorithm itself. Some jobs are 
very parallel in nature. These can be easily split into smaller parts that each processor 
can work on independently. These are known as independently or embarrassingly 
parallel problems. Some jobs only have a relatively small parallel component and 
due to this much communication needs to take place between the different entities 
working on different parts of the problem. This describes a problem which requires 
much synchronisation between the different parts of the problem being processed. 
The term used here to describe how well a job can be parallelised is granularity. A 
coarse-grained algorithm allows the problem to be split into sizeable chunks 
allowing more useful processing time compared to the time spent with 
communication over a network. A fine-grained problem describes the opposite; the 
job can only be processed for a relatively short period of time before communication 
is required.

A node is an entity on the network that is able to perform computing tasks. In 
a conventional parallel system this would refer to a physical processor unit within the 
computer system. In the traditional distributed computing scenario this is more likely 
to refer to a computer that is a part of the network. The modern practical reality tends 
to be a combination of the two. Modern systems can have multiple CPUs per 
machine and two and four  processor systems are not unheard of in high-end personal 
computers. Since mid 2006, “dual core” or “multi core” processors have become the 
norm taking over from multiple discrete CPUs in a system. These are multiple 
independent CPUs that are housed in the one chip package; often on the same 
integrated circuit. This distinction is important as a discrete node on a distributed 
processing network might well internally be a parallel processor as well. 

A task is a logically discrete part of the overall processing job. Each task is 
distributed amongst different machines or processors on the network to work on 
different parts of the overall computation job at the same time.  It should be the 
overall aim of each distributed processing system to complete the computation work 
as efficiently as possible. In the literature, jobs are sometimes referred to as tasks and 
tasks referred to as subtasks. 

Now that there is an understanding of the network of nodes that are each 
working on a task in order to work towards completing the overall job, there needs to 
be a way to coordinate this overall process. To do this one of the different types of 
ways that nodes can be organised and coordinated, and the tasks themselves 
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managed, must be used. This will now be considered.

There is often ordering associated with the computation of tasks in an overall 
job. The ordering may be sequential where the output from one particular task may 
provide input for another task. Or perhaps a group of tasks sharing the same  data set 
may have shared data boundaries (or edges) where communication between tasks 
will need to occur for the job to be processed correctly. Also, whilst maintaining 
communication, these tasks need to be as evenly distributed as possible amongst 
nodes (or directed towards some and away from others) in order to maintain a 
balance. Maintaining synchronisation between nodes doing tasks in a dynamic 
environment is difficult as deadlocks1 and race conditions2 between different tasks 
and resources can occur. This calls for the need of synchronisation of tasks and is a 
feature of many distributed systems. Synchronisation can be centralised, with one 
node or agent in control of managing tasks, or decentralised with several or all nodes 
managing a part of the overall synchronisation control or a combination of both. 

Of course, managing these nodes and allocating tasks incurs a communication 
overhead beyond what would occur if the tasks were being executed sequentially, 
that is one after the other, on a single machine or processor. There are three broad 
categories of overhead here. The first two, bandwidth and latency, are mostly 
influenced by the network underlying the distributed computing system. The third is 
response time which is the administrative time taken for the system to respond.

Bandwidth refers to how much data can be passed over a communication 
channel in a finite period of time. This is a term that has been loaned from the field 
of radio communications where there it refers to the difference between the upper 
and lower frequencies of a communications channel. In computer networking it 
refers to the data rate, or the amount of data that pass through a communication 
channel over a given period of time3. In distributed computing, especially in a fine 
grained problem, the amount of communication that needs to take place between 
different nodes is crucial in the overall efficiency of the system. The bandwidth of 
the network often becomes far more critical than the speed of the processing nodes 
themselves.

Latency refers to the time between an action being initiated and the action 
actually having some effect. In terms of the underlying network, latency can be the 
time between the data being sent and the data actually being received. In terms of a 
task, one measure of latency is the time between a task being allocated to a node and 
the node actually beginning the processing task. So again there is one term referring 
to two different things in the same area. Network latency is a serious issue along with 
bandwidth in determining the overall effectiveness of a distributed processing 
system. In this thesis latency issues in the underlying network will be referred to as 
network latency and delays in the processing job being allocated and returned as 
response time.  Response time and network latency are often bundled together by the 
term parallel overhead. The time taken to create each task, start and stop threads of 
execution, wait for synchronisation cues and the network communication are all 
examples of issues that can significantly count towards overall execution time when 
compared to running the job on a single processor. 

1 A deadlock occurs where two or more tasks are waiting for the other to finish first so neither ever 
does.

2 A race condition describes a problem where the output result from a task changes based on the 
sequence or timing of other events.

3 With the advent of wireless computer networking, the borrowing of this term has become a bad 
idea. It is now possible to use the word bandwidth twice in a sentence with each occurrence 
referring to a different thing.
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Once the network of nodes is organised and the job is on its way to being 
computed and an understanding that there are delays and performance issues, there 
should exist a system that can be measured or at least a system where measurements 
would be a good thing to have. In distributed computing there are two elementary 
measures called speedup and efficiency that allows the practitioner to compare how 
the system is working against theoretical ideals.

Speedup is the ratio which describes how many times faster a job is running 
on  multiple processors rather than a single processor. It is derived by taking the 
running time of  a job running on one processor and dividing it by the running time 
of the same job running on two or more processors. This gives us a number that is a 
measure of how many processors the system is representing. Rarely is it the case that 
two processors will process the job exactly twice as fast as 1 processor due to the 
overheads already discussed that are inherent to distributed processing. This ideal 
measure is known as linear speedup and is often included on speedup graphs as a 
baseline for which the actual speedup measurements per number of processing 
elements is compared. Where speedup is on the y axis and and number of processors 
on the x axis, linear speedup will draw a straight line at 45∘ between the axes. The 
reality of course is that speedup will typically lag somewhat beneath the ideal and 
often the difference will increase as the number of processors does. 

Occasionally, super-linear speedup can be observed. This is where for 
example 2 processors working on the job will show more than 2 times speedup. This 
is usually explained by caching, where the job can run faster overall due to the 
accumulation of cache sizes of all the involved processors. So if only half of the 
dataset fits within the cache on one node, split between two equal nodes the whole 
dataset could be stored in faster cache memory, rather than half cache and half 
conventional memory. This could potentially produce a speedup greater than the sum 
of the processors involved - for a few multiples of nodes anyway depending on data 
and cache size.   

In parallel and distributed computing terms, efficiency is defined as the 
amount of speedup divided by the  number of processors being utilised. That is, 
speedup per processor. This is typically a real number between 0 and 1.

These measures of speedup and efficiency can quickly allow us to determine 
the scalability of the system or how well will it continue to perform as more nodes 
and tasks are added. A naïve approach to measuring a distributed system might lead 
one to think that the more processing nodes that can be added to a system the better. 
Amdahl's Law (Amdahl 1967) shows us that there will always be an upper bound to 
scalability in a distributed computing system so much so that eventually adding more 
processors to a job can make the overall execution time longer as the overhead of 
communication and management increases.

Amdahl's Law generally states that every computing job contains parts that 
are not able to be executed purely in parallel. That means that no matter how many 
processing nodes are available to the problem, the sequential only part of the job will 
provide an upper limit to the overall speedup achieved4. This is a limitation until one 
considers that a problem that is sufficiently large enough to be distributed will often 
lend itself to parallelisation through the nature of its own size. Therefore the serial 
limitation of the job does not have so large an effect and that many, many nodes can 
be involved without speedup decreasing. This effect is described by Gustafson-
Barsis' Law5 and simply states that any sufficiently large problem can be efficiently 

4 A Generalised formal definition for Amdahl's Law is given in Appendix B.
5 A Generalised formal definition for Gustafson-Barsis' Law is given in Appendix B.
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parallelised. 

This chapter will now move on to describe the different classifications of 
architectures and the different categories of problems that can be solved with 
distributed computing. 

2.1.3 Characteristics of Parallel Architectures

There are many different categorisations of parallel machines and problems. 
Considered here will be two broad categorisations, the classic classification of 
Flynn's taxonomy as well as common classifications used in grid and cluster 
literature. 

2.1.3.1 Architecture

Whilst there are many taxonomies in the literature for describing computer 
architectures, Flynn's Taxonomy has endured as the most general and useful for 
categorising existing and emerging architectures.

2.1.3.1.1 Flynn's Taxonomy

Flynn's taxonomy (Flynn 1972) is a classification of computer architectures that is 
also regularly used to classify algorithms as well.

Single 
Instruction

Multiple 
Instruction

Single
 Data SISD MISD

Multiple 
Data SIMD MIMD

Table 1: Flynn's Taxonomy shown as a matrix.

Single Instruction, Single Data refers to a architecture that consists of a single 
processing unit operating on a single stream of data without any parallelism 
whatsoever. This is analogous to an early personal computer or a classic Von 
Neumann architecture.

Single Instruction, Multiple Data is an architecture where a single stream of 
instructions are applied to multiple streams of data simultaneously. Examples would 
include a processor optimised for array based operations or a graphical processor.

Multiple Instruction, Single Data is an architecture where multiple streams of 
instructions are applied to a single stream of data. Of the taxonomy, this is the rarest 
seen applied, as only the most fault tolerant designs require separately developed 
systems operating to provide a consensus result. Examples are found in aerospace 
applications such as flight control systems.

Multiple Instruction, Multiple Data is an architecture of multiple operating 
processors working on multiple streams of data. Multi threaded programming is 
often MIMD and distributed systems, where asynchronous operations by multiple 
processors on separate data, are a clear example.

8



2.1.3.2 Characteristics of Parallel Problems

In distributed computing terms, algorithms can be placed into three general 
categories: No interprocess communication, interprocess communication and 
sequential problems.

2.1.3.2.1 No Interprocess Communication (Independent or “Embarrassingly” 
parallel) and Parametric Problems

As already alluded to in 2.1.2, an independently parallel or embarrassingly parallel 
problem is one that can be completely computed with no communication between 
processing nodes whatsoever during the computing process.  A purely 
embarrassingly parallel problem is one that includes no post processing of results.

Common examples of this class of algorithm would include a brute force 
search of a keyspace, calculating a fractal such as the Mandelbrot set or ray-tracing a 
graphical scene. Many classic wide area network distributed computing systems 
concentrate solely on this class of algorithm as the lack of communication allows for 
greater scalability.

No interprocess communication problems can be broken further down into 
two sub categories: parametric and data parallel problems. A parametric problem is 
an embarrassingly parallel problem that needs to be calculated multiple times with 
different parameters. For example a physical simulation may require the same 
calculations applied to the same data with different starting parameters as a problem 
set. After the multiple calculations have occurred, post processing may be required in 
order to chose the best fitting result or produce an aggregation of results. A data 
parallel problem is one where the data are evenly divided between processing nodes 
before the same algorithm is applied. The difference to plain embarrassingly parallel 
is that the computation amount may vary depending on which data are allocated. 
After computation has finished post processing is usually required to combine the 
result set.

2.1.3.2.2 Inter-process Communication (Coarse and Fine grained parallel  
problems) 

This category of problems consists of algorithms that, when divided amongst 
processors, requires communication between them in order to correctly compute the 
given data. Depending on the nature of the algorithm, some require much 
communication (fine grained) or communicate relatively infrequently (coarse 
grained). Still, in the case of distributed computing applications, any communication 
between processors is extremely expensive in terms of slowing down the overall 
computation.

The amount of data to be communicated transcends the coarse/fine distinction – 
some problems may have small amounts of data shared between processors but very 
frequently. Others may have large amounts of data infrequently transmitted. A heat 
transfer computation for example will often have data shared between nodes at the 
boundaries of each data set only.

It is also noteworthy that some otherwise interprocess communication problems can 
be solved in an embarrassingly parallel way by recalculating some parts of the 
problem that would otherwise need to be shared.
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2.1.3.2.3 Ordered or Purely Sequential Problems

A sequential problem is one where each task in the overall job must be calculated 
one after the other in a strict order. Typically, data must also be handled in a strict 
order as well. Problems with a high level of  data dependency, when they occur, can 
render a problem unsuitable for parallelisation. However, as the size of the problem 
or the data set increases, generally there are opportunities for parallelisation. In 
practise, relatively few purely sequential problems exist. However an example of one 
would be the calculation of Fibonacci numbers. The dependence on the two 
preceding results removes the ability for the parallelism to increase enough (and still 
produce a Fibonacci sequence) for Gustafson-Barsis' Law to apply.

2.1.4 Synchronisation in Distributed Processing Systems

There are several models for communication between processing units in distributed 
computing or parallel computing systems. This inter-process communication is 
required for the management of the computing network as well as the 
synchronisation of computation as required by the algorithm being computed. There 
are many implementations of interprocess communication models in distributed 
computing, however they broadly fit into three underlying categories. These are 
message passing, shared memory or coordination models.

2.1.4.1 Message Passing

Message passing models rely on messages being sent and received between nodes 
working on a task over a network or bus. This is the only mode of communication so 
there is no shared memory between nodes. Message passing relies on the 
programmer to deal with all facets of the data distribution, scheduling and algorithm 
management. It requires a very low-level understanding of the message passing 
system being applied and multi-process programming beyond the domain knowledge 
required for the problem actually being solved itself.

The most common implementation of message passing is the Message 
Passing Interface (MPI). MPI is a language-independent communication protocol 
used for task synchronisation and is considered the de facto standard for distributed 
processing by message passing.

See Snir et al (1996) for a definitive guide to MPI.

2.1.4.2 Shared Memory

Shared memory models rely on all processing nodes having access to a shared, 
distributed memory store which is accessible to nodes working on a task. From a 
traditional point of view, shared memory programming can best be described as 
separate processing threads with a single process. Each thread executes 
independently of one another yet has a shared memory space that is visible, and 
editable, by all threads within the process. This greatly reduces the burden on the 
programmer, when compared to message passing, as individual threads need not 
know about other processing threads in order to carry out their task.

In a distributed environment, a distributed shared memory is maintained over 
physically separate machines, and hence separate memory spaces, yet access is 
typically available through an abstraction that looks like local memory. This allows 
for ease of programming at the significant cost of performance when access to 
memory is required from a non-local memory. Again, to draw from a traditional 

10



SISD architecture, distributed shared memory is analogous to virtual memory in an 
operating system. Memory fetches in physical ram (local storage) is much faster than 
a fetch that requires a page to be brought from the disk (remote machine).

There are a variety of distributed shared memory projects under way with 
OpenMP as the defacto standard. See Protić et al  for a comprehensive review of 
foundation concepts (Protić 1997) and the OpenMP official homepage (OpenMP 
2009) for OpenMP resources.

2.1.4.3 Coordination Models

Coordination Models are a type of either shared memory or message passing that 
differ enough from their underlying model to be considered a synchronisation model 
in their own right. Coordination models differ themselves, from shared memory or 
message passing, through the computation and  communication aspects of 
completing a task being completely separate from one another. This contrasts with 
the shared memory or message passing approaches where the communication is 
mixed with the computation from the developer's perspective. 

2.1.4.3.1 Tuple Spaces and Coordination Languages

Tuple spaces allow the coordination of a computation job through a distributed, 
associative shared memory which consists of objects called tuples. A tuple is an 
ordered list of values that is referenced by its content rather than its address. Any 
process can access any tuple in the tuple space.

Tuple spaces are a high level solution to coordinating processors in a 
distributed system whilst still remaining efficient relative to low-level solutions 
(Carriero and Gelernter 2006).

2.1.4.3.2 Channel Based

Channel based coordination models treat computation and communication separately 
by treating the output from one process as being the input for another. Processing 
elements communicate via message passing between one another over pre-
determined channels. There is no shared memory whatsoever and processing units 
are treated as black boxes. The communicating sequential processes model (Hoare 
1978) is the first significant channel based coordination model.

CSP is a very structured method of parallel programming. Programs are 
defined by parallel regions where processes are created and run until they terminate 
producing a set of outputs. These outputs can then be used as inputs for the next 
parallel region. In the simpler CSP case, processes identify each another by an 
explicit name and all read and write operations are synchronous and blocking.

The communicating sequential processes model also allows for the formal 
analysis of complex systems and prove them secure and free of defects such as 
deadlocks.

2.1.5 Problem Solving in Distributed Systems

In order to solve a problem concurrently, distributed and parallel systems decompose 
the overall job into smaller tasks that can be divided amongst numerous processing 
units or nodes in a processing network. The goal is to maximise the amount of 
processing whilst minimising the communication overhead. There are several 
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existing strategies in the literature to achieve this. Here will be described how a 
problem is commonly decomposed in a distributed processing system, how work is 
allocated and how subtask dependencies are managed. This is described with a focus 
on distributed architectures, and using that terminology, as there are many similar 
models such as data-parallel model (tasks are statically mapped onto processes, and 
the similar task is performed on different data), task-graph model (tasks are viewed 
via a task dependency graph), work-pool model (this involves dynamically mapping 
tasks onto processes for load balancing), master-slave model (one or more master 
processes generate work for other processes to do), producer-consumer model (a 
stream of data passes through numerous processes, and each one performs a task on 
it).

Sinnen describes the common methods by dividing them into the three overall 
categories of data decomposition, task decomposition and hybrid decomposition 
(Sinnen 2007).

2.1.5.1 Data Decomposition

Data decomposition is a common method of decomposing a problem for solving on a 
distributed computing system due to candidate problems often working with large 
datasets. The data are partitioned into subsets depending on the nature of the 
algorithm and distributed to nodes for processing. Input data, output data and 
intermediate datasets are all candidates for partitioning during the processing 
process. 

Data decomposition is also used with other decomposition methods (the so-
called hybrid decomposition) which is briefly explained in 2.1.5.3.

2.1.5.2 Task Decomposition

Task decomposition is used where concurrency can be found in the execution of 
tasks rather than the division of data. Common strategies include recursive, 
exploratory and speculative.

2.1.5.2.1 Recursive

This is the classical divide-and-conquer approach where a task is split into subtasks 
which form a tree structure. Each leaf of the tree represents an indivisible problem or 
a problem of suitable size for the processor's speed and communication overhead. 
Branches above leaves represent the sum of the dependent leaves below with the root 
being the solution to the problem.

2.1.5.2.2 Exploratory

Exploratory decomposition closely resembles data decomposition in the way that 
data are decomposed into a tree structure. However, it contrasts in the fact that not 
every node in the tree is computed as a solution. Decisions are made at each branch 
of the tree in order to come closer to the solution. 

As a part of the exploratory process, it is possible to make a wrong decision 
and backtracking back over the problem can be an additional overhead.

2.1.5.2.3 Speculative

Speculative decomposition is suitable where a problem includes a set of steps where 
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at each step there are a number of possible actions to take. This is analogous to the 
switch statement in the C language. In distributed terms this means that tasks are 
organised and then a decision is made and a single task executed with the rest 
discarded.

2.1.5.3 Hybrid Decomposition

Hybrid decomposition is the combination of two or more decomposition methods in 
order to extract concurrency from a problem. A combination of task and data 
decomposition is a common solution to a variation of problems.

2.1.6 Task Allocation in Distributed Systems

There are multiple ways that tasks, once divided, can be distributed and allocated to 
processors in a distributed system.

Tree, crowd, economic and hybrid models will now be considered as 
examples of the major task allocation categories.

2.1.6.1 Tree

Tasks are allocated in a tree like structure by having a task start with a whole data 
set, then as another node joins, the set will be divided and a portion given to the new 
node. Should another node join, the task is divided again and so on.

This method of task allocation closely follows the channels of communication 
in the network of processors and closely relates to divide-and-conquer style of task 
decomposition.

2.1.6.2 Crowd

In contrast to tree computation, crowd allocation works by organising a pool of work 
and a separate pool of processing nodes and allowing the “crowd” of nodes to do the 
computation.

2.1.6.3 Economic

Some designs attempt to allocate a cost to each process in a computing network. See 
Rajkumar Buyya's PhD thesis for a comprehensive treatment of economy based task 
allocation (Buyya 2002).

Another variation on the economic theme is allocation based on reputation. 
Processing nodes may gain status and reputation through the amount of tasks 
satisfactorily completed. Here work may be allocated to nodes that are well regarded 
and reliable. Some systems may even lower the amount of double rechecking or re-
computation that needs to occur to well respected nodes in order to manage 
confidence in the computed dataset versus the amount of time for completion.

2.1.6.4 Hybrid

A hybrid approach is simply a combination of two or more of the aforementioned 
schemes being used in concert for a desired result. Crowd computation along with 
reputation is commonly used as is a mixture of tree and crowd computation. 
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2.1.7 Task Dependencies

In concert with task/data decomposition and task allocation, task dependencies, for 
certain classes of algorithms, are of prime importance. Inter-task and parent-child 
task dependencies often need to be satisfied in order for an overall job to be 
completed. Mapping an arbitrary number of sub tasks and dependencies across an 
arbitrary number of processors in the most efficient way is an NP-hard6 problem. 
(Garey & Johnson 1979).

There are several approaches to attempting to optimise this process. Here will 
be considered the common ones of task graphs, Petri Nets and heuristics.

2.1.7.1 Task Graph

Task graphs are typically directed acyclic graphs where each node represents a 
subtask that needs to be performed. Edges between nodes indicate order precedence 
and can have communication costs associated with them as well. 

Various heuristic algorithms exist that can be applied to the graph in order to 
maximise efficiency.

2.1.7.2 Petri Nets

Dependencies can also be modelled using Petri Nets which are an extension of the 
task graph idea. Petri Nets have the advantage over directed acyclic graphs that they 
support loops and the ability to make choices at an execution point. They do this by 
describing processes beyond just the tasks and their hierarchy of task graphs. Petri 
Nets can be represented graphically, as a flow chart, or can be mathematically 
represented in a language.

See Bratosin et al (2007) for more information.

2.1.7.3 Heuristics

Several  heuristic methods exist that, whilst quite effective in experimentation and 
practise, are not or have not been proven correct. Like all heuristics, these often 
provide good results when there is a large body of statistical analysis supporting the 
fitness of the heuristic to its particular application.

2.1.7.3.1 List Scheduling

List scheduling algorithms work on the idea of tasks being placed in different 
priority queues based on their importance. Importance may be measured by the 
number of other tasks that depend on this task being completed or the number of 
connected task that have already been scheduled and several other variations of this 
theme.

2.1.7.3.2 Graph Decomposition

The aim of graph decomposition is to identify sub graphs of tasks that correspond to 
an appropriate balance between processing time and communication overhead. It 
attempts to achieve an optimal grain-size for allocation of work to processing nodes 
(McCreary et al 1993).

6 “A problem is NP-hard if an algorithm for solving it can be translated into one for solving any NP-
problem (nondeterministic polynomial time) problem. NP-hard therefore means "at least as hard as 
any NP-problem," although it might, in fact, be harder.” (Weisstein 2009) 
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2.1.7.3.3 Critical Paths

Where costs have been associated with each processing node in the task graph, along 
with costs for communication along each connecting edge, a critical path is said to be 
the most expensive route from the root of the tree down to the bottom of the tree 
where the computation finishes. Critical path heuristics aim to shorten the critical 
path as much as possible by grouping adjacent nodes together; thereby removing the 
expensive communication links or edges in the graph. This produces groups of tasks 
which form a processing grain which can then be allocated to a processing node.

See Khan (Khan et al 1994) for an interesting comparison of five common 
multiprocessor scheduling heuristics, of the categories mentioned here, applied to a 
large set of program dependence graphs.

2.1.7.4 Genetic Algorithms

Genetic Algorithms are a specialised heuristic, based on the evolutionary processes 
of nature,  that allows a search space to be examined in a polynomial time (Holland 
1975). Searches are performed iteratively with information from previous searches 
being passed down the generations with random mutations in parameters along the 
way.

2.1.8 Using Distributed Computing for Large Problem Solving

Now that the major components and techniques of distributed computing are 
understood, the motivations behind projects using distributed computing over  some 
more traditional alternatives like a supercomputer will be discussed.

2.1.8.1 Advantages

A distributed computing cluster, especially those comprising of cheap or existing 
machines, provides access to computing power that is much cheaper per MFLOPS 
compared to a similarly powered supercomputer. As the field has progressed, and 
through the Internet, access to many more participants, distributed computing has 
ceased being  a lesser alternative and for many things has become the only feasible 
alternative. 

The sharing of resources and replication inherent in many distributed 
computing systems can be a desirable trait all by itself. This is especially prevalent in 
another sub field of distributed computing called grid computing and the newer, and 
more nebulous, cloud computing.

Even machines permanently dedicated to the task can often provide 
comparable performance than one dedicated parallel machine at a reduced cost. The 
nodes in the network can change over time with machines added or subtracted as 
budget or availability of resources dictates. 

Some problems are inherently parallel and/or inherently distributed. Some 
modelling, simulation and sensor systems require that their components be 
distributed. Robustness and availability is also in a similar vein.

Avoiding waste through the scavenging of computing cycles is fast becoming 
a consideration in recent times. These wasted cycles running an intensive screen 
saver7 can amount to carbon in the atmosphere. If the machine is on and consuming 
resources it should be doing something useful!

7 It's ironic considering it's no longer the screens that need saving when a computer is left on.
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2.1.8.2 Disadvantages

Distributed computing introduces many new problems that are not usually 
considered an issue in a single machine or dedicated computer cluster on a private 
network. Security is the main issue here. Can the computed data be trusted? Are all 
of the nodes well meaning and trustworthy?

As well as malfeasance, there is generally a higher level of failure of nodes 
than which is observed in a dedicated parallel machine. Nodes may come and go 
(this is known as churn). Nodes and their connections in the processing network will 
not be homogeneous. 

Some algorithms simply do not scale well over comparatively slower 
networks. Even gigabit speed networks pale in speed comparison to processors 
existing on a purpose built bus to say nothing about keeping all of the processing on 
chip on a fast processor. This limitation is known and measurable, as already 
discussed, and is a big consideration when designing a distributed computing project. 

Needing to know a lot about the nature of the computing job can be a 
significant problem. This again usually relates to the communication overhead where 
a fine grained problem with a lot of communication overhead can quickly render a 
distributed computing solution over a wide area network untenable. Indeed some 
problems will present too much overhead even if all of the participating machines are 
all on the same gigabit network.

2.2 Peer-to-Peer networks

Peer-to-Peer networks are characterised by each node in the network (peer) being 
equivalent to each other node in the network. This contrasts to the client/server 
approach where servers provide services to separate clients which consume them or 
control clients outright. Client/server approaches tend to have the server and client 
applications separately and independently written. In a peer-to-peer approach the 
client and server software is the same application. Each node in a peer-to-peer 
network acts as both a client and a server, consuming resources whilst also providing 
them.

Peer-to-peer networks are gaining popularity due to their robust, decentralised 
nature, low cost through usage of existing resources and potential for providing vast 
resources of computation and storage. Peer-to-peer networks have been in operation, 
in one form or another, since the earliest days of the Internet and have recently 
proven popular as a platform for the sharing of files on wide area networks. Peer-to-
peer implementations also cover areas such as distributed communication, 
computation and storage.

2.2.1 Characteristics of Peer-to-Peer Networks

Peer-to-peer networks consist of a network of nodes that work together in order to 
provide services to users.

The network typically sits on top of the application level of the OSI model8. 
This is why many peer-to-peer networks, especially structured peer-to-peer designs, 
are known as overlay networks. Each network consists of a varying number of nodes. 

8 The Open Systems Interconnection Basic Reference Model (or as commonly referred to the OSI 
Model) is an abstract representation of the various layers of communication and hardware that 
represent modern network architecture. See the OSI reference model (ITU 1994) for a complete 
reference.
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Each node is typically an end user's computer connected over the Internet that is 
running the particular peer-to-peer application. In publicly accessible networks, 
nodes vary greatly between each other in terms of capabilities such as available 
computing power and underlying quality of their connection to the Internet (in terms 
of available bandwidth, latency and throughput). Each node provides resources to the 
network depending on the kind of peer-to-peer application it is. These resources 
usually include processing power, storage or disk space, provision of files, search or 
other services which together go towards providing an application to all users of the 
network. The nodes in the peer-to-peer network typically maintain the network by 
making a number of data connections with other nodes on forming the overlay.  

2.2.1.1 Basic Peer-to-Peer Network Structures

There are a variety of network structures which govern how nodes and resources are 
arranged though generally they fall into the two broad categories of structured and 
unstructured networks. A structured peer-to-peer network has an order to the 
arrangement of nodes and/or resources in the network. Connections between nodes 
can be directed in order to improve performance at the cost of extra overhead in the 
network maintenance. In an unstructured network nodes and resources are not 
purposely arranged by any governing algorithm so nodes can make connections with 
other nodes arbitrarily. As with most things, there is the third option between either 
extreme which can be defined here as a partially structured network. This is 
commonly expressed in peer-to-peer networks as a heuristic approach to limit some 
of the excesses of a completely unstructured approach. Common examples of this 
will be self arrangement of nodes based on their network connectivity (i.e. 
Conspiring to move slower nodes to the edges of the network) or active or passive 
attempts to remove obvious flaws in the overlay network arrangement such as cycles 
in the graph etc.

2.2.1.2 Centralisation

In addition to structure, peer-to-peer networks can be centralised, semi-decentralised 
or decentralised. A centralised peer-to-peer network will have one or more network 
services hosted on a centralised server separate from the rest of the nodes.  The 
decentralised network has no central elements. All network services are distributed 
across the nodes in the network. The notions of centralised and decentralised 
networks is an important classification for peer-to-peer networks. The centralisation 
of a peer-to-peer network refers to how many non-peer elements exist in the design. 
Totally decentralised networks require every single peer to have an equal role in the 
network without any central elements at all. A purely decentralised network is will 
have every node equivalent to another with no central or independent mechanisms. 
Completely decentralised peer-to-peer networks are rare with most having varying 
degrees of centralisation and imposed structure and/or roles.

2.2.1.3 Bootstrapping

Bootstrapping is where a system initially starts a simple process whose purpose is to 
start a much larger process. In peer-to-peer terms, bootstrapping often occurs where a 
node needs to join the overlay network. It usually consults a database of known 
nodes' IP and port details from previous connections or from known centralised 
repositories of node information. This is a classic causality dilemma (the proverbial 
chicken or egg problem), which in peer-to-peer terms always introduces at least a 
small part of centralisation in order to maintain this information. Practically however, 
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as networks grow, the centralisation becomes less of an issue as you have private 
databases of known nodes on the network and a multitude of online databases which 
are unlikely to all be compromised at the same time.

See Karbhari et al (2003) for a study of bootstrapping in peer-to-peer systems 
that includes a more detailed description.

2.2.2 Peer-to-Peer Network Architectures

Many early examples of peer-to-peer networks and protocols were never thought of 
in quite the same way that modern peer-to-peer systems are thought of. Even though 
connecting machines together not as clients and servers but as equal peers dates back 
to the original ARPANET, it wasn't until 1998 that an application (Napster) was 
written that is P2P in the modern sense (Magoules et al 2008). Between these two 
times, the mid 1960s and 1998, many applications were written that are quite peer-to-
peer in their nature. It may seem, with hindsight, that a P2P solution was a natural fit 
for some problems and solutions were written without much thought given about this 
being a new technique in itself. This is interesting when one considers that some of 
the most decentralised peer-to-peer examples are actually within these early systems. 
Such examples are covered further in the next chapter.

These early systems are actually represented in some classic Internet 
protocols as a kind of “store and forward”. These peer-to-peer systems were 
extremely popular and effective as they essentially batched communication between 
peers at certain times. The obvious example of this is the Usenet protocol NNTP. 
Each host acted as both client and server moving data over large capacity links at 
certain times of the day. This allowed for relatively efficient communication between 
peers and limiting the “uncontrolled” bandwidth usage to the edges of the network 
where a news client would connect. The edges of the network were client/server but 
the primary network is peer-to-peer.

This section focusses on the underlying techniques used by peer-to-peer 
systems to give an understanding of the current state of the art in both commercial 
and research systems. It covers the main four approaches of flooding systems, 
partially centralised, hybrid systems and highly structured systems based on 
distributed hash tables.

2.2.2.1 Flooding Systems

Flooding systems work by having nodes build their own network though means of 
needing to know of a connection point or existing node on the network in order to 
join. These connected nodes then form an overlay network over the Internet. A list of 
known nodes (also known as hosts) would be forwarded between nodes on the 
network as well as the payload data that the network was tasked with sharing. This 
required that a host joining the network would need to know of another existing host 
on the network in order to connect and obtain, and then add itself to, the host list (the 
so called bootstrap process). 

Smaller peer-to-peer systems have also relied on network discovery based on 
broadcast to bootstrap themselves onto the peer-to-peer network. A discovery 
broadcast message could be sent to all known machines on another service. 

Once a suitable peer-to-peer connection candidate has been established, the 
new node attempts to communicate with it. A handshake process is then undertaken 
where the nodes exchange messages to establish a peer-to-peer connection. These 
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messages typically consist of a connection request (“client” side), connection accept 
or connection refuse (“server” side). The nodes will often exchange information 
regarding other nodes that they are connected to, nodes that have been connected to 
previously, and other suitable information to allow the overall network to grow.

Once a connection has been established, in addition to application specific 
information being exchanged (such as search packets in a file sharing network), 
nodes will exchange keep-alive messages periodically to detect connection failure. 
These messages are sent at an interval as a trade off between the time difference 
between discovery of failed nodes and the bandwidth required for these messages. 
These systems often suffer scaling problems from the amount of bandwidth required 
and various strategies are undertaken to try to mitigate this obvious limitation at the 
expense of network purity.

2.2.2.2 Partially Centralised Systems

As discussed previously, flooding of packets as the main purpose of an overlay 
network to fulfil its requirements, is inefficient and limited in scalability. An obvious 
solution, is to partially centralise the overall system in order to remove the flooding 
aspect. Peer-to-peer file exchange networks that have two main functions, search and 
file exchange, have moved the search and node discovery functionality to a 
centralised index whilst leaving the file exchange to be between peers.  

Partial centralisation will solve many of the problems associated with 
completely centralised peer-to-peer systems at the expense of the associated costs it 
brings such as a necessary investment in infrastructure and a single point of failure.

2.2.2.3 Hybrid Systems

Hybrid systems attempt to have the best of both worlds when it comes to pure 
decentralised peer-to-peer and partially centralised peer-to-peer. Most systems try to 
work well without a centralised organisation element, but work better with one. Also, 
they are designed so the centralised elements are non-specific and more of a protocol 
rather than a single installation. That way, swarming hybrid systems can rely on 
many different single centralised servers or on several different ones at once.

2.2.2.4 Distributed Hash Tables

Of the very structured and decentralised peer-to-peer networks, the distributed hash 
table approach is still where most research efforts are concentrated. 

A hash table is a data structure that associates keys with data. This means that 
a piece of data can be placed into memory and can be later recalled using the key that 
it was associated with. Data is recalled later through a lookup function which usually 
takes the key as a single parameter and returns the earlier stored value. A variety of 
algorithms exist for arranging the data within memory so that keys can efficiently 
and uniquely recall data. A distributed hash table (DHT) extends the process a step 
further to allow the hash table to be distributed over a network of nodes yet still 
allowing for the simple lookup interface of a traditional hash table. This is achieved 
by a technique known as keyspace partitioning. This means that each node on the 
distributed network becomes responsible for a range of keys within the keyspace of 
the hashing algorithm. So that when a lookup is called it must first be determined 
which node is responsible for the key before doing the last lookup step of the 
traditional hash table. This means that nodes in the network will be arranged in such 
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a way that the key can address both the node as well as the item in the hash table. 
This is usually achieved through the use of a routing table so that a search for an item 
by key will result in a traversal of the network, each step coming closer to the node 
that actually holds the correct key. This results in a reasonable certainty of failure 
and search time that was so lacking from the flooding techniques in second 
generation P2P networks.

DHTs can be implemented using a variety of algorithms. The examples given 
here are the three most popular variants based on trees, skiplists and the Cartesian 
coordinate space.

2.2.2.4.1 Trees

Distributed hash table based peer-to-peer systems have been based on several 
different tree variants for their general organisation structure. Binary trees, B-Trees 
and Plaxton trees have all been used to organise search spaces and/or 
communication.

Binary trees, and their common variants (See Sedgewick (1990) for a 
resource on tree implementations), are used to organise a hierarchy of nodes and data 
keys to maintain an overall logical network A Plaxton tree (or mesh), is an 
interesting tree variant where a property of the tree structure is that every node is also 
a root of its own tree (Plaxton et al 1997). 

2.2.2.4.2 Skiplist

A Skiplist is a probabilistic structure that essentially consists of several layers of 
ordered lists. It has roughly the same insertion times as a B-Tree implementation yet 
is simpler to implement and maintain for certain tasks (Pugh 1990). There has been 
much interest in peer-to-peer research with several projects basing their 
implementations on skip lists or skip graphs.

2.2.2.4.3 Cartesian Coordinate Space

Another variant for maintaining a DHT is the Cartesian coordinate space approach. 
Here the hash table is spread over a geometric area with each node being responsible 
for an area of the graph.

2.2.2.4.4 DHT Summary

DHTs are an active research area with several new systems emerging each year along 
with further study and refinement of earlier proposed systems based on the 
underlying algorithms mentioned here. There are other systems based on rings, 
butterfly networks and de Bruijn graphs, however the three general approaches of 
trees, skiplists and Cartesian Coordinate Spaces provide enough background for this 
thesis. See Risson and Moors (2004) for research leads on these extra systems. 
Chapter three of this thesis will examine a number of implemented examples of DHT 
based peer-to-peer systems.

2.2.3 Advantages of a Peer-to-Peer Approach

Avoiding financial cost is a major factor in favour of peer-to-peer networks. 
Immense storage is available and evenly distributed amongst participating nodes 
rather than being concentrated to a few powerful servers. Also the costs of bandwidth 
are spread over the network. P2P distribution networks deliver vast amounts of 
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bandwidth that would, if implemented using FTP on a single site, cost a significant 
amount for necessary hardware and network service. The motivation of this thesis, 
and of several other recent contributions, has been to leverage this power for 
computation. Decentralised P2P computing has already proven itself to provide an 
immense amount of ongoing processing cycles for a fraction of the cost of dedicated 
systems.

Capacity automatically increases with popularity. Well designed P2P systems 
allow the overhead of extra users to be mitigated with the extra resources they 
provide.  This contrasts to a centralised system where there is a finite server capacity 
and that every extra user consumes part of this resource without giving any back.

Centralised systems also present a single point of failure and weakness to 
attack. A distributed system has the potential to be a robust system as load and risk 
can be spread relatively evenly over the entire network. 

2.2.4 Disadvantages of a Peer-to-Peer Approach

Distributed systems have their own set of vulnerabilities too especially in regards to 
scalability and security. Many P2P systems suffer from design problems. As already 
discussed, central elements critical to a P2P design have shown that a system with 
millions of users can be brought to a halt by an external issue that is not a design or 
operational fault (ie. legal action). It has also been discussed that some systems that 
have relied on flooding queries have been shown to be ultimately infeasible as the 
network load increases.

Security is a problem of general concern for any network; in the case of P2P 
it is especially so. Depending on the application, issues of non-repudiation and trust 
are especially important and difficult to implement correctly in a dynamic 
environment. Conversely, in other applications anonymity is the greatest concern, 
and like non-repudiation, difficult to implement efficiently and correctly. Attacks 
also form a problem. In most P2P networks denial of service (DOS) and flooding 
attacks are common. Bad nodes can flood another node with many superfluous 
messages or connections in order to consume the target node's resources and weaken 
the network at that point. In file sharing networks, poisoning is also a problem. Files 
containing misrepresented data are often left on the network. Another user may 
download one of these decoys only to find the file contents are not what they had 
expected. This consumes network resources and affects a user's trust in the system. 
These are just some of the security issues that need to be considered when designing 
and implementing a P2P system. 

2.3 Benchmarking and Evaluation

Benchmarks are standardised programs, methods or specifications designed to assess 
the performance of a system. In computing, there are several different types of 
benchmarks such as a micro-benchmark, kernel, synthetic and application. Each of 
these can be applied to a system to gain insight into its operation compared to other 
similarly tested systems. A micro-benchmark is used to assess a basic component of 
the system such as speed of a particular class of instructions or a mix of different 
instructions. A kernel benchmark is based on what previous researches have 
considered to be useful or common workload for computing systems. Sorting, matrix 
operations and searching algorithms require a mix of instructions that can better 
assess a system's usability over just the speed of some individual instructions alone. 
A synthetic benchmark is typically a program made up of instructions derived from a 
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statistical analysis of what the computing system is doing during real work in a 
variety of applications. And, finally, an application benchmark is one that is based on 
commonly used applications that provide a useful comparative metric. Operations 
times in common business applications have proven popular as have more modern 
examples such as frame rates in popular video games, time to compile widely 
available code bases or render a ray tracing scene. In each case an application 
benchmark takes advantage of both an application's nature of computing usage and 
it's ubiquity. 

Here will be examined the major areas of evaluation of computer systems, in 
particular, those techniques that apply to distributed and parallel systems. Section 3.3 
will discuss specific projects,  limiting the discussion to the underlying techniques 
starting with the foundations of machine performance, then measurement techniques 
for distributed systems and finally an examination of methods applicable specifically 
to peer-to-peer systems.

2.3.1 Machine Performance

Machine performance consists of several different areas and techniques. This section 
begins by examining the historically important ones based on instructions and 
floating point operations per second, benchmarks and simulation. 

2.3.1.1 IPS and FLOPS

Early computer measurements were often based on the number of instructions per 
second (IPS) that a machine was capable of. Whilst useful for selling computers 
(“this machine does 500 more instructions per second than our closest competitor”), 
it doesn't provide much of a metric for evaluation. Similarly a more modern example 
would be to compare processors of different manufacture by clock speed alone. 

Instruction mixes soon appeared which are statistical approximations of the 
kinds of instructions that a machine would do over a period of time. A mix could 
then be derived and ran on a machine in order to gain an insight into how it could 
work with a real workload. Mixes were required as it was common for instructions to 
have vastly different cycle times, or indeed number of cycles required, between 
machines of different manufacture. Without a standard mix, it would be easy to 
contrive a test to unfairly exploit a small advantage one machine may have whilst 
covering its many disadvantages.

For many scientific applications, floating point operations tend to be almost 
exclusively used, so a measure of floating point operations per second (FLOPS) was 
considered enough of a measure for these generally expensive operations. 

2.3.1.2 Benchmarks

Benchmarks are a set of standardised trials, usually in the form of software packages, 
that are executed on a computer to assess its overall performance. They can also be 
expanded to apply to software or hardware testing in order to test for correctness of 
implementation. Ideally a benchmark should be open, standardised and 
independently verifiable. Still, care needs to be taken in the selection of a benchmark 
with an understanding of the hardware being measured. Modern pipelined systems 
may not perform well on synthetic benchmarks. 

Benchmarks themselves fall into a number of separate categories that will 
now be examined in turn.
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2.3.1.2.1 Synthetic

These benchmarks closely correspond to the mixes discussed previously. A statistical 
analysis of a machine's operation is taken over a period of time to gather data on the 
percentage of each instructions usage whilst under load. An application is then 
written to perform these instructions in the same proportions.

2.3.1.2.2 Kernel

Rather than just the individual operations of the synthetic benchmark, a kernel 
benchmark looks to the algorithms that are commonly used in order to gauge a 
machine's performance. Mathematical subroutines such as linear algebra are often 
used as a basis for performance measurement.

2.3.1.2.3 Component and I/O

Component benchmarks individually measure the performance of each part of a 
computer system. Synthetic and Kernel benchmarks will often concentrate only on 
processor speed. A component benchmark will also assess the speed of associated 
hardware such as memory, cache, register speed and so on. Input / Output (I/O) 
benchmarks will also assess networking and storage devices. 

2.3.1.2.4 Real Software

Software applications are often used as de facto benchmarks for modern computer 
systems. The number of frame rates that a video game can display per second, can be 
a good approximation of graphics and processor performance. Compiling a large, 
widely available code base can also give a good indication of processor, memory and 
disk performance. Commonly available business applications often serve as a good 
benchmark due to their load and especially their ubiquity allowing for ad hoc 
measurements to be applied without installation of specialised software.

2.3.1.3 Simulation

Simulation is used to assess performance where the system being measured is still in 
design or where it is not practically feasible to reproduce that actual environment in 
order to perform an actual test. Many modern systems based on distributed 
processors or that operate over wide area networks or load of many thousands or 
even millions of discrete users, make actual testing difficult if not impossible. 
Applications are therefore written to produce a simulated load or simulate the system 
itself that is to be tested.

The February 2002 issue of IEEE Computer (IEEE 2002) is a special issue 
dedicated to performance simulation and provides many quality leads to further 
information.

2.3.2 Distributed and Parallel Systems

Benchmarking and evaluation of distributed and parallel systems use combinations 
of all of the techniques presented in machine performance in the previous section. 
However, there are a few variations specific to distributed and parallel systems; 
especially wide area network distributed systems.
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2.3.2.1 Speedup and Efficiency

As already discussed in 2.1.2, speedup and efficiency are two common goals of 
distributed and parallel systems. It is not unusual to expect then that these form the 
base measure of many benchmarks for distributed systems. The actual benchmarks 
themselves will be a suite of kernel or synthetic benchmark applications however the 
addition of speedup and efficiency as the application scales over the processors  is 
often of equal interest. This is especially the case to designers of new overlay 
networks where the speedup is the primary way of evaluating a new design.

2.3.2.2 Statistics and Leaderboards

A wide area network peculiarity is the so called leaderboards that occur for 
contributors to large distributed computing projects. Performance of user's machines 
(or clusters of machines) are displayed on public leaderboards. These often show the 
number of work units completed and are an indicator of individual node performance 
as a part of the computing cloud or grid. 

2.3.3 Peer-to-Peer

Peer-to-peer benchmarking is still in its infancy. There has been some work done in 
this area yet it still has a long way to go before any standards emerge. What 
benchmarks do exist are primarily based around what would be considered, in other 
performance measurement areas,  application benchmarks. When considered 
carefully, this should not really be surprising considering that the vast majority of 
peer-to-peer implementations are generally at the application layer of the OSI model. 
So, that being said, the following section will consider several of the areas of peer-to-
peer that have had some performance measurement applied across implementations 
before looking at some specific examples in chapter three. Chapter Four endeavours 
to  make some new additions to benchmarking of peer to peer systems by 
considering several issues that have not been addressed by the available literature.

2.3.3.1 Search Performance

Many peer-to-peer applications rely on finding keys. DHT based designs are 
keyspaces partitioned over nodes. Finding who owns a particular key differs greatly 
depending on the underlying algorithm chosen and its implementation.

2.3.3.2 Replication

Decentralised systems rely on replication in order to deal with node churn. Different 
algorithms will have a marked difference on the amount of time and bandwidth 
consumed to find and maintain replicas of data.

2.3.3.3 Overlay Performance

Managing and maintaining the overlay will again differ by the choice of underlying 
algorithm and the implementation between systems. The amount of bandwidth 
consumed by keeping the network together and performing housekeeping tasks has 
been the subject of analysis in the literature. It hasn't gotten as far as being 
incorporated into any kind of comprehensive suite, however some individual metrics 
have been identified. Examples of these metrics are discussed in section 3.4.6.  
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2.4 Chapter Summary

This chapter has reviewed the separate areas of distributed computing, peer-to-peer 
networking and measuring the performance of computing systems. It concentrated on 
the theoretical background and underlying concepts with examples only where 
necessary for explanation. Chapter Three continues by showing where examples of 
these technologies are used. 
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Chapter Three

3.0 Related Work

This chapter builds on the overview of technologies discussed in the previous chapter 
by presenting a survey of some representative systems that best provide context for 
the contributions of the remainder of this thesis.  The chapter is divided into three 
sections covering peer-to-peer networks, distributed computing systems and previous 
work in the benchmarking of distributed computing systems and peer-to-peer 
performance.

3.1 Peer-to-peer networks

Many early examples of peer-to-peer networks and protocols were never thought of 
in quite the same way that modern peer-to-peer systems are thought of. The term 
peer-to-peer did not emerge until well into the 1990's. It seems, with hindsight, that a 
peer-to-peer solution was a natural fit for some problems and solutions were written 
without much thought given about this being a new technique in its own right. This is 
particularly odd considering that many early examples were comparatively 
sophisticated (c.f. some modern, successful peer-to-peer systems) and “more peer-to-
peer” if you like than many first and second generation P2P examples given later. 

The following section will consider some early protocols and systems that 
exhibit strong peer-to-peer traits spanning from the late 1970's up until the late 
1990's. From there it follows on to examine the first widely recognised peer-to-peer 
systems that emerged in 1999 through to today.

3.1.1 Classification of Peer-to-peer Systems

Given that peer-to-peer is still a relatively young area of academic interest, with the 
first major conferences appearing around 2001 (O'Reilly 2001), there is still no clear 
set of categories with which to describe the classifications of peer to peer networks. 
Some describe them via application and capabilities (i.e. Milojicic et al 2002) and 
many historically around software releases e.g. 1st generation, 2nd generation and so 
on (i.e. Eberspächer & Schollmeier 2005).  Furthering this evolution here presented 
is a 4th generation classification, expanding on the earlier evolving classifications.
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New Classification Historical/Generative 
Classifications

Classification by 
Example

Store and Forward Early, Historical SMTP, NNTP

Centralised 1st Generation Napster

Decentralised 2nd Generation Gnutella, SMB

Structured 3rd Generation Pastry, Chord, CAN

Unstructured 2nd Generation Gnutella

Hybrid Hybrid Bittorrent

Table 2: A new classification scheme by peer-to-peer approach along with its 
generative classification equivalent and examples.

This simple taxonomy should aid the reader to keep track of the multitude of 
descriptions given in the referenced literature. It is also the furtive hope of the author 
that this new and modest classification scheme may find some traction with authors 
of new papers in a bid to find some standardisation as even new papers continue to 
use different mixes of classifications in their literature reviews; especially the 
outdated generative model which becomes continually less relevant as newer 
implementations pick from a variety of functionalities across these 3 or 4 
generations.

3.1.2 Store and Forward

“Store and Forward” peer-to-peer systems are those that act as both client and server 
for communication between peers over the Internet. If discussion is limited to 
applications that exist on the Internet, and not spiral recursively back to the Internet 
itself and to UUCP9 before that, two popular early core applications of the Internet 
were very peer-to-peer in their nature without actually being remarked as such 
explicitly (certainly at the time anyway). One is NNTP and the other is SMTP and 
both are discussed here. 

3.1.2.1 NNTP

The NNTP is the protocol used by the USENET which is one of the first widely used 
distributed systems that has been lately generally accepted as an early example of 
P2P. The USENET, conceived in 1979, is a public message system that allows users 
to post and read messages under a variety of different categories. Each USENET 
server is a peer on the USENET network and messages posted to a peer are shared or 
replicated around to all of the other accepting peers on the network. In modern 
USENET each peer speaks a protocol called NNTP which allows a message to be 
uploaded in one place and then quickly propagated over the entire USENET network. 
It is to be noted that while the system and network itself is very P2P, the access of it 

9 Unix to Unix Copy Program (UUCP) was an early application that allowed for commands to be 
run remotely and for files to be transferred between computers. It is a classic example of a store 
and forward architecture. See RFC976 (Horton 1986).
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is not. At the fringes of the network users interact with the USENET server using a 
separate client application in a very client/server (read: non P2P) manner. This can 
also be compared with electronic mail.

3.1.2.2 SMTP

Email, at its core, is a group of servers quite similar to USENET which forward 
email messages between servers with client applications being involved only at the 
fringes. The Simple Mail Transfer Protocol (SMTP) is the enabling technology. Each 
email server acts as both a server and a client to all of the other email servers on the 
Internet, accepting email messages and forwarding them along to the next closest 
server to the addressee.

See RFC821 (Postel 1982) and RFC5321 for the original SMTP and 
Extended SMTP (Klensin 2008) respectively for an exhaustive definition of these 
protocols.

3.1.3 Centralised

Some peer-to-peer systems are only partly peer-to-peer, that is they contain a 
significant centralised component without which they could not operate at all. The 
most classic example of this is Napster.

3.1.3.1 Napster

Napster was an infamous file sharing application that was first released in mid 1999. 
It allowed users to host their files, search for files hosted by other users and 
subsequently trade files between each other. The Napster network was predominately 
used for sharing MP310 files.

Napster's design was not very decentralised from a P2P perspective. The file 
transfer is between peers, however the searches are submitted to central servers. This 
provided a simple solution to the problems of distributed search (by avoiding it 
altogether) but created a single point of failure. When this central index was shut 
down, as it was in July 2001, it rendered the system inoperable.

3.1.4 Decentralised

Decentralised peer-to-peer systems are those that try to avoid all centralised elements 
as much as possible. Gnutella is the most obvious example of a decentralised peer-to-
peer network.

3.1.4.1 Gnutella

The second generation of P2P file sharing networks evolved as a response to the 
weakness of the centralised elements of Napster. The natural focus was to remove 
the central search servers that made Napster vulnerable. Gnutella was the first such 
example.

Gnutella is a protocol for distributed file sharing and search. The file 
exchanges work much the same as Napster, with peers exchanging files between 

10 MPEG-1 Audio Layer 3 is a common audio file format that employs lossy compression techniques 
to reduce the size of recorded audio at the cost of removing very high and very low frequencies 
that typically cannot be heard by humans.
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each other, however the search functionality is decentralised. Early versions of 
Gnutella worked by having searches propagate across the network. Nodes submit 
searches (usually just a search term string) and then pass this search packet on to all 
of the other nodes that they are connected to. This flooding approach allows nodes to 
see all of the search packets that come their way and notify the originating node 
(search packets also contain address information) if a match occurs. The approach, 
whilst very hard to “kill”, has several other obvious design limitations. The flooding 
approach to search does not scale very well and the open nature of search term 
propagation is open to malfeasance. Enormous amounts of bandwidth can be 
generated across the network as nodes  forward one packet to every connected node 
and then they forward it to every node they are connected to and so on (Ritter 2001).

3.1.4.2 Server Message Block

Another ubiquitous protocol is the Server Message Block (SMB) protocol which is 
more commonly regarded as the network protocol used by Microsoft Windows for 
peer networking or “Workgroups” between machines. Each machine that is 
registered on the network acts as a peer to all others. File can be requested or served 
from each machine. Its management is decentralised as each machine can largely 
choose what is to be shared and what is not. This contrasts with many other file 
protocols, which are strictly client server such as the File Transfer Protocol (FTP).

SMB was originally developed at IBM and widely implemented by Microsoft 
and is very much in common use. The Microsoft implementation has been 
subsequently reverse engineered by the SAMBA team making it widely available 
and interoperable with other platforms (Ts et al 2003).

3.1.5 Structured

After the popularity of Napster and Gnutella, by the late 90s and early 2000s 
academia recognised the potential for these new designs as fertile ground for 
research. The distributed search problem was vigorously investigated and several 
variations based on classic data structure of a hash table were presented in papers. 
These extensions to the hash table idea (as discussed in Chapter Two) culminated in 
several different designs in 2001 which together represents the third generation of 
P2P design. 

3.1.5.1 Distributed Hash Tables

The designs and implementations of DHTs that appeared somewhat concurrently 
were Chord, Pastry and the Content Addressable Network. Each system maintains its 
own overlay network and provides a hash table interface to storing and retrieving 
data. Each is based around a different data structure idea for organising its nodes in 
the overlay.  

3.1.5.1.1 Chord

Chord (Stoica et al 2001) is one of the earliest DHT implementations. Chord is based 
around a skip list  (See 2.2.2.4.2) where nodes are arranged in a circle with pointers 
forwards and backwards to other nodes as a successor and predecessor in which 
Chord calls a finger table. A hash table is distributed over this arrangement of nodes.

Chord provides a single lookup operation that when given a key it will find 
the node on which the key resides. Chord manages the underlying work of ensuring 
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that key integrity is maintained as nodes churn through the system by joining and 
leaving through maintaining lists of successors and predecessors as well as 
replication of keys throughout the system.

The Chord system is designed to be an underlying architecture for 
applications to be built on. There have been several prototype systems developed to 
demonstrate different potential usages. These include a cooperative file system, a 
distributed USENET cache and a distributed version of CiteSeer11 called OverCite 
(Chord 2008). 

3.1.5.1.2 Pastry

Pastry (Rowstron & Druschel 2001) is similar to chord in terms of overall design, 
including arranging nodes into a ring with links forwards and backwards between 
nodes. It contrasts when it comes to implementation. Pastry has its overlay network 
built on top of, rather than a part of, the distributed hash table implementation. This 
modularity allows for its routing metrics to be supplied by an external application. 
This can be used to optimise communication between physically close neighbours.

Implementations of systems using Pastry include the PAST distributed file 
system and the SCRIBE publishing and subscription system.

3.1.5.1.3 Content Addressable Network (CAN)

Of the three systems described in this section, CAN (Ratnasamy et al 2001) is the 
one which contrasts most in underlying design. In CAN data are stored in a multi-
dimensional Cartesian co-ordinate space which is divided into different regions 
(called zones) with each node in the overlay network responsible for a given region 
in this space. When a new node joins the system it picks a random point in space and 
initiates a request to join the zone that this point resides in. When a successful 
request is made, the joining node will receive half of the zone region that its 
destination node originally managed. Joining nodes keep making requests until they 
have been allocated a zone.

Each CAN node maintains a list of the zones that neighbouring nodes 
manage. When a routing request is received, the node will determine which zone is 
closest to the zone containing the destination point and then forwards it to that node's 
IP address.

CAN manages node churn through periodically sending heart beat messages. 
When a node is deemed to have failed, the zone it was responsible for needs to be 
absorbed by the rest of the system. If the zone can be added to an existing zone they 
will be merged, if not, the zone, in its current geometrical form, needs to taken over 
by a node. Nodes periodically examine the fitness of zones in their control for 
merging. When zones are changed, messages are broadcast to neighbouring nodes so 
their zone tables can be updated.

3.1.6 Unstructured

Both Gnutella (3.1.4.1) and SMB (3.1.4.2) fit into this category as well as they are 
both decentralised in their operation and administration whilst also being 
unstructured in their organisation. Beyond file sharing there are also examples of 
distributed operating systems, considered as such since the provided services beyond 
just file sharing. There were several examples of workstation systems in the early 

11 CiteSeer is a library of computer science publications and citations. See http://citeseer.ist.psu.edu/
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1980s that were based around P2P networks. One such was the Convergent 
Technologies Operating System. This OS ran on early workstations based around 
Intel processors that were networked together into small clusters with RS-422 serial 
cables (Centre for Computing History 2009).

3.1.7 Hybrid

The final category is the catch all which relates to combinations of centralised and 
decentralised, structured and unstructured as well as some of the earlier elements of 
store and forward. The costs of purely centralised elements (single point of failure) 
versus the cost of an entirely decentralised approach (extremely high overhead with 
potential poor quality of service) has led many designers to look for a compromise 
approach.

3.1.7.1 BitTorrent

BitTorrent is a novel approach to file sharing that aims to maximise the distribution 
of data in terms of bandwidth and speed. When downloading a file with traditional 
FTP, a  user  only  uses the download channel of their Internet  connection whilst the 
upload channel is mostly  unused.  BitTorrent takes advantage of this and allows 
other users to download parts of the same file that another user is downloading at the 
same time. While a user is downloading a file they may also be uploading a file to 
another user using this otherwise unused upload channel. This balances the load of 
the file distribution bandwidth across all of the peers and reduces the load on the 
originating server. The original node need only upload one copy of the file being 
shared rather than FTP where the server needs to upload every copy requested by a 
client.

To use BitTorrent for downloading a user must first find a file which gives 
the necessary information about the swarm the user intends to join. As BitTorrent 
does not  provide  its  own  search facility it relies  on existing search methods 
available to Internet users to find a “metainfo” file which contains the information 
required to join a BitTorrent session. This metainfo file, or “torrent”, is typically 
hosted on an ordinary web server and contains information about the file that is being 
downloaded, such as its length, name, number of pieces the file has been split into 
for distribution, hashes of these pieces, and the URL of a “tracker” to coordinate the 
swarm. 

A BitTorrent tracker is a small HTTP  based  service  that allows BitTorrent 
users using the same torrent to find each other. When each BitTorrent download is 
started, contact information about the new downloading node such as their IP 
address,  BitTorrent listening port are sent to the tracker. The tracker then responds 
with the same kind of information about others who are downloading the file so the 
new node can attempt to make other connections and increase its download and 
upload bandwidth. New implementations of the BitTorrent protocol are also 
beginning to use distributed hash tables (DHT) in order to attempt a decentralisation 
of the tracker component. This centralised component, contrasts starkly to the 
centralisation of a system like Napster (3.1.3.1) as you can choose from a myriad of 
trackers, or start your own. This allows for easy fail over should one centralised 
service become compromised or unavailable.

BitTorrent also employs many techniques to ensure that the transfer between 
two nodes is as efficient  as possible and that data is replicated as reliably as possible. 
Such  techniques  include  pipelining of data requests, order selection of file pieces 
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and interaction management between peers.

3.2 Distributed Computing

There are a myriad of distributed, grid and parallel computing architectures that have 
been proposed, implemented and used over the last some 30 years. To survey them 
all would easily provide enough material for a textbook. Here we will primarily 
outline BOINC and Condor as the two distributed computing systems that represent 
systems that have strong academic roots and current widespread use in a variety of 
places. A brief survey is then conducted of distributed computing systems that are 
peer-to-peer in their nature and have shown operational evidence or academic 
review. 

3.2.1 Client / Server Systems

3.2.1.1 BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC) is a volunteer 
distributed computing system (Anderson 2004) that grew out of the earlier 
seti@home project (Anderson et al 2002). From its origins processing data from the 
Arecibo radio telescope, it has been generalised for use for a variety of projects. It is 
a client/server system that has been designed to take advantage of spare computing 
cycles on participants' computers. 

A BOINC project is instigated by having the BOINC software installed and 
running on a server. The server is also furnished with a data set to be computed as 
well as the algorithm (or set of algorithms) for the clients to apply to the data set. 
BOINC can be used with existing applications that can be distributed as the 
computing algorithm for the clients to process work units with. Work units are 
distributed to clients as they request them and clients report back with results. 
Malfeasance is managed using public-key encryption and multiple calculation of 
work units by unrelated clients. BOINC has a default scheduling algorithm which 
matches the resources that a user has provided with the size of jobs available for 
computation in a first come, first served fashion.

BOINC is wide area network client-server distributed computing system with 
a focus on volunteer participation. It has a sophisticated client application which 
allows a user to chose to contribute to a variety of projects. The host of a project has 
many options for the customisation of aspects of the user interface to encourage 
participation. This usually includes a screensaver as well so that an appealing display 
is shown when processing work units. Also the “skin” of the application itself is 
programatically customisable to encourage adoption. In addition to visual appeal, 
there is also a credit system to reward the contributor with “points” or credits for 
verified results. This attempts to encourage participation through a leaderboard of 
high credit scores to advertise top contributors. Whilst, at time of writing, no work 
has been done to quantify these incentives, BOINC remains one of the most popular 
platforms for volunteer wide area network distributed computing.

Appendix C contains detailed instructions for setting up a computing project 
using BOINC. These instructions form part of the method used later in this thesis.

3.2.1.2 Condor

Condor is a software framework for distributed computing that was developed in the 
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1980s at the University of Wisconsin-Madison (Thain et. al. 2005). Condor can run 
both parallel and sequential coarse-grained jobs and is suitable for both dedicated 
clusters and spare processor cycles on desktop computers. Condor provides support 
for queueing jobs, applying scheduling and priority policies and the monitoring of 
computing resources and job completion.

Condor arranges different classes of computer groups into processing pools. 
Each pool advertises its availability to the Condor collector which serves as a 
database for available resources. Jobs are submitted by users and placed in a queue. 
A matchmaker takes jobs from the queue and allocates resources to them based on 
policies and the job's associated requirements. Job requirements are advertised using 
a job description language and processors are described also. The matchmaker pairs 
compatible jobs and resources and allocates the work. 

Condor supports jobs that are not independently parallel. Dependencies 
between jobs can be specified by stipulating a directed acyclic graph which will 
ensure that jobs are ran in order. In addition, Condor supports both MPI and PVM 
allowing for communication between processes as they are being processed. Condor 
is a mature platform that integrates readily with other systems (such as Grid 
middleware) to provide integration into larger systems such as Grids.

Appendix C contains detailed instructions for setting up a computing project 
using Condor. These instructions form part of the method used later in this thesis.

3.2.2 Grid Computing

Grid computing aims to be analogous to the power grid system where significant 
computing power is cheap, easy to access and ubiquitous. It compares very closely to 
distributed computing and, in many implementations, is broader in scope as it 
attempts to provide all of the infrastructure required for many different kinds of 
general purpose supercomputing applications. To further differentiate it from 
classical distributed computing, a grid should not be administered centrally, it should 
be based on open standards and quality of service should be non-trivial (Foster 
2002).

Here the Globus Toolkit, P-Grid, X-Grid and by way of helping clarity, 
Cloud Computing will briefly be discussed. 

3.2.2.1 Globus Toolkit

The Globus Toolkit is a suite of open standards which provides middleware for a 
grid computing implementation. There are standards for architecture, job submission, 
web service, security and so on which can be used to interface with distributed and 
parallel computing systems. As an example, Condor (3.2.1.2) can be integrated into a 
Globus Toolkit system where Condor provides the processing power while Globus 
manages the job submission. See Foster (2005) for a more detailed overview of 
Globus Toolkit. 

3.2.2.2 Other Systems: P-Grid & X-Grid

There are many other grid computing initiatives beyond just the Globus Toolkit. 
However, in many cases, it is difficult to differentiate them from distributed 
computing. In fact, applying Foster's check list yields fairly low scores.  

P-Grid, which is discussed further in 3.3.1.3, is a peer-to-peer based grid system that 
has been the subject of academic enquiry. X-Grid (Apple 2007) is a proprietary 
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system for harnessing computers together from Apple Inc. It is based on the BEEP 
protocol (Rose 2001) which provides a full-duplex frame based communication 
method that can run over TCP.

Both of these systems purport to be grids in their own right, hence their inclusion 
here, yet in both cases they fail the three point test (Foster 2002) (In the case of P-
Grid by not following open standards for grids and X-Grid by being centrally 
managed). 

3.2.2.3 Cloud Computing is not Grid Computing

Cloud computing has gained much attention in recent times. It can be described as 
software as a service, where applications and services are provided via the Internet 
that would traditionally be locally hosted on a private machine. It is an emerging area 
that has many definitions where many are still being sought (SYS-CON 2008). 
Buyya et al's (2008) later definition is “A Cloud is a type of parallel and distributed 
system consisting of a collection of inter- connected and virtualised computers that 
are dynamically provisioned and presented as one or more unified computing 
resources based on service-level agreements established through negotiation between 
the service provider and consumers.” Many cloud computing applications would 
actually be provided on distributed hardware at the server level, however as a 
paradigm itself it is not distributed processing in the conventional sense. It is often 
centrally managed, centrally hosted and accessed in a client/server fashion albeit 
with web browsers typically (so it is not strictly client server in the traditional sense 
either). It is mentioned here as is is commonly confused with Grid Computing and it 
is an area where peer-to-peer techniques are likely to play a large part. However, 
confusion well aside, it is an application of distributed computing and worthy of 
mention.

3.3 Related Work Combining Peer-to-peer and Distributed 
Computing

Now that peer-to-peer and client/server style distributed computing applications have 
been described, this section will move to describe work that has already been done as 
a combination of the two fields. That is, similar work which directly relates to the 
application later presented in this thesis.

3.3.1 Retrofitting BitTorrent into Distributed Computing Data 
Distribution

There has been some considerable work done in replacing the file distribution 
elements of existing client/server distributed computing systems. Wei, Fedak and 
Cappello published work in 2005 that examined the use of BitTorrent to be the 
mechanism for distributing data in a computational desktop grid. They followed this 
work up with replacing the data distribution mechanism in BOINC with BitTorrent 
(Costa et al 2008)12. 

3.3.2 Peer-to-peer Distributed Computing

There are few demonstrable general purpose distributed computing systems that use 
peer-to-peer as an underlying architecture. Three representative samples are 

12 This work references a paper (Goldsmith 2007) published as a part of the research supporting this 
thesis. 
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described here, the Gnutella Processing Unit, JNGI based on the the JXTA 
framework and P-Grid.

3.3.2.1 GPU

The Gnutella Processing Unit (GPU) is a distributed computing platform that allows 
users to share processing cycles. It is unique in the fact that along with sharing its 
name, GPU also shares the paradigm of having nodes provide resources equally, 
similar to its protocol namesake, without the ability to choose which jobs on the 
network each node contributes to. 

GPU is a SourceForge.net13 hosted project that is being managed and 
developed by a group of enthusiasts on the World Wide Web.

3.3.2.2 JXTA / JNGI

JNGI is a framework, built on top of another framework called JXTA which allows 
users to submit jobs to a network of peers. JXTA, by Sun Microsystems, is a 
framework created as an attempt to standardise P2P communication between a group 
of peers. JXTA identifies peers by a unique peer ID and groups of peers are able to 
form as they participate in various applications on the JXTA network.

JNGI consists of several different entities that are hierarchically arranged and 
responsible for a number of functions. There are the task dispatcher, repository, code 
repository, job repository, task repository and then the participating nodes 
themselves.

3.3.2.3 P-Grid

P-Grid (Aberer 2001) is similar to Pastry (See 3.1.5.1.2) in that it provides a DHT 
underlying implementation that the overlay is built on top of. What sets it apart is 
that its focus has been on general application so that it is able to be tasked for more 
general purpose usage. 

At time of writing P-Grid is in limited release to academics looking to investigate 
peer-to-peer and grid systems.

3.3.3 Botnets

A Botnet is a colloquialism for a massively distributed computing system that 
typically engages in malfeasance on a broad scale automatically utilising computer 
systems that are usually unaware that they are even a part of the network. Studies 
presented at a recent conference (HotBots07) have suggested that some of the most 
distributed, peer-to-peer computing systems in known usage, capable of multiple 
tasks and dynamic control, are potentially Botnets.

Whilst hardly a peer-reviewed system in its own right, it would be remiss not 
to mention potentially the largest deployed massively parallel peer-to-peer 
computing system in existence. Research into quantifying (Grizzard et al 2007) and 
reverse-engineering (Chiang & Lloyd 2007) some of these systems is now an 
emerging field.

13 SourceForge.net is a web based project management and source code management tool. It is a 
serves as a development tool for distributed collaboration and also as a central location for finding 
new and existing projects.
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3.4 Benchmarking and Evaluation

Several benchmarking suites exist specifically for the field of grid or distributed 
computing. The NAS Grid Benchmarks provide a detailed specification for a group 
of problems that can be solved by a grid in order to gain some benchmarks and 
insights. These grew out of the earlier NAS Parallel benchmarks (NPB), which 
represent a suite of problems that were typically encountered by NASA when 
investigating computational aerodynamics. Earlier work, largely based on 
benchmarking discrete computer systems such as LINPACK (explained below), have 
also been retrofitted and applied to distributed computing systems. Specialist grid 
benchmarking suites have also emerged such as Grid Bench that aim to take 
measurements across the spectrum of a grid's operation.

Whilst these benchmarks exist, few examples of comparative results with 
systems that are actually in use today are available to the researcher. This lessens the 
understanding of existing approaches and makes it difficult to assess the contribution 
of new systems as they emerge.

3.4.1 Whetstone and Dhrystone

Whetstone was one of the first general purpose, open benchmarks available (Curnow 
& Wichman 1976). It is a synthetic benchmark developed to test the floating point 
performance of an arbitrary machine  whilst avoiding many known compiler 
optimisations. It produces a measure known as Whetstone Instructions per Second. 
Its name comes from the town in which the benchmark was developed.  Many 
historical and modern machine's performance figures are available online 
(Longbottom 2008).

A play on the name of the Whetstone benchmark, Dhrystone is a synthetic 
benchmark developed to test the integer performance of a computing system in much 
the same way the whetstone measures floating point performance (Weicker 1984). It 
to was derived from a statistical analysis of  computer operations and primarily tests 
the arithmetic and logical performance of a CPU. 

3.4.2 Netperf

Netperf is a network performance measurement benchmark tool which focusses on 
the measurement of Ethernet performance by sending messages of various blocksizes 
from one host to another. This allows for measurements of latency, round trip time, 
saturation points and so on (Netperf 2009).

3.4.3 LINPACK and LAPACK

LINPACK is a library of routines for the solving of linear equations and least-
squares problems (Dongarra et al 2003). It was developed during the late 1970s and 
early 1980s for use on supercomputers. LAPACK is an updated version of 
LINPACK redesigned to take advantage of vector based, shared memory 
supercomputers. The LINPACK benchmark, derived from the usage of LINPACK 
itself, can measure a computer systems power by solving a system of linear 
equations. This provides a useful measure of floating point performance since 
solving dense linear equations is a common task for supercomputers for a variety of 
engineering problems.
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3.4.5 NAS Grid Benchmarks

The NAS Grid Benchmarks (NAS stands for Numerical Aerodynamic Simulation) 
are the logical succession from the earlier NAS Parallel Benchmarks which were 
developed at NASA as a set of common calculations that they often do. The original 
benchmarks were published as “pencil and paper” algorithms where the calculations 
were explained and input data and corresponding expected output were given (Bailey 
et al 1991). Example implementations came later with NAS 2. These were MPI 
based implementations that could be executed on any machine with an MPI 
implementation. NAS Parallel Benchmark 3 (NPB 3) was a further evolution with an 
implementation in OpenMP (a shared memory parallel programming library), high 
performance Fortran and Java. The latest release is GridNPB3 or the NAS Grid 
Benchmarks. These comprise of four benchmarks that are suitable to be run on a 
computing grid. There is an implementation available in both Fortran and Java using 
the Globus toolkit as a grid platform. A protocol for the usage of the NAS Grid 
Benchmarks is still being developed, at time of writing, so no comparative 
information between grid performance is available.

3.4.6 Peer-to-peer Benchmark Work

As alluded to in 2.3.3, peer-to-peer specific benchmarks are still very much in their 
early stages. Rhea et al (2003) present two benchmarks, find_owner and locate, as 
two common activities that DHT based peer-to-peer system rely on. Jinyang Li's 
PhD thesis (2005) presents a performance versus cost analysis of several DHT 
designs. Her performance versus cost metric (PVC), under simulation when graphed, 
produces a convex hull as the cost (bandwidth) varies against the performance (mean 
lookup latency).  These convex hulls represent a best achievable performance versus 
cost combination for a DHT under given parameters.

3.5 Chapter Summary

This chapter has briefly reviewed the most relevant examples of projects, based on 
the fields discussed in chapter two, that provide background for the remainder of this 
thesis. This provided and discussed examples of peer-to-peer network 
implementations, distributed computing and benchmarking and evaluation. Also 
described was a new taxonomy for peer-to-peer network implementations that allows 
existing and future designs to be categorised as one or more of the following: Store 
and Forward, Centralised, Decentralised, Structured, Unstructured and Hybrid.
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Chapter Four

4.0 WAN-DC: A New Framework for the Comparison of 
Wide Area Network Distributed Computing Systems

The emerging field of peer-to-peer wide area network distributed computing lacks a 
practical framework to provide a meaningful comparison between competing 
distributed computing systems and approaches. How does a peer-to-peer approach 
compare to a client-server approach? Does Condor solve an embarrassingly parallel 
problem quicker than BOINC? These questions become crucial when looking to 
compare and contrast the performance and usability of a new distributed computing 
or grid system with existing offerings.

This work aims to take the first steps in providing a concise, general-purpose 
benchmarking suite suitable for emerging wide area network distributed computing 
systems.

4.1 Motivation

This thesis represents part of the convergence between peer-to-peer systems and 
distributed computing. This convergence is something that has been described in the 
literature as being as certain “as death and taxes” (Iamnitchi and Foster 2003), yet 
still few operational systems exist which demonstrate this apparent foregone 
conclusion. The result of this investigation thus far has been the development of a 
hybrid peer-to-peer system called CompTorrent (Goldsmith 2007) and the 
development of the thesis that a peer-to-peer distributed computing platform should 
provide, in many cases, comparable performance to a client-server distributed 
computing system such as BOINC or Condor. After the system was developed, and 
even with the knowledge of distributed computing benchmarks that have already 
been mentioned (See 3.4), there was a real lack of published results of comparable 
systems. This has led to an expansion of the work to include a wider field of 
experimentation than what was originally intended.

This is not to say that some comparative work has not already been done 
between the various grid systems, just not as much as one might expect given the 
abundance of systems available. Radić and Imamagić (2004) have provided results 
on the performance of several job management systems and provided comparative 
results between the Sun Grid Engine, Torque and Condor. The NAS Parallel 
benchmarks also included some sample results based on earlier  parallel machines 
(Bailey et al 1991). So called “stat races” are also a prominent feature in online, 
volunteer distributed computing. Many project groups doing processing will provide 
online statistics regarding total number of users, CPU years, aggregate memory (in 
terms of RAM) and so on. Many of these statistics are from BOINC projects with a 
mix of other technologies such as distributed.net, Apple's X-Grid and others 
(Volunteer at Home 2007). These provide an ad hoc method of comparing cluster 
size and performance between projects competing for volunteer resources.

Other comparative work has looked more at differences in different cluster 
hardware, rather than the underlying protocols themselves. Chang et al (2004) have 
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looked at the difference between CISC and RISC hardware when executing the NAS 
Parallel Benchmarks. Boklund et al (2005) have produced some interesting work 
comparing the different performance of cluster hardware over time.

Little work appears to have been done on performance measurement and 
comparison between distributed computing platforms that exist over wide area 
networks. This benchmark is a first attempt at addressing this need to compare these 
systems in a quick and practical way.

4.2 Performance Metrics

This section describes the algorithms selected to be a part of the benchmark and the 
reasons behind their selection. There have been two primary goals that this has set 
out to achieve. Firstly, and similarly to NASA during the selection of their original 
grid benchmark, a range of algorithms have been chosen that satisfy the current 
requirements that this research has for distributed processing. In this case, a 
benchmark is needed that can be applied quickly and that is able to be computed by 
an arbitrary distributed computing system. The benchmark should produce results 
without needing to focus on the implementation of the benchmark itself. 

Dedicated clusters, in many cases, can be measured using benchmarks 
derived from parallel machines. However, wide area distributed computing, peer-to-
peer and grass-roots volunteer computing, where participating nodes are highly 
transient, does provide numerous new challenges. These challenges are not based in 
performance metrics alone: the  voluntary and participatory nature of these new 
designs require a benchmark to consider some of the more qualitative aspects of the 
exercise as computing efficiency alone can be less important, to the outcome of the 
project, than the ability to attract participants. The costs of joining and the effort 
required to start and host a distributed computing exercise can have a large effect on 
the success or outcome of a  modern project as it tries to attract participating nodes. 
Thus it is the case that this benchmark also introduces an evaluation criteria for 
distributed computing systems that can serve as a basis for evaluation, comparison 
and selection.

The following principles have been followed in the creation of this 
benchmark:

● Load should be able to be varied without changing the algorithm
● Data used should be freely available and easily verifiable
● The benchmark itself contains both practical applications and synthetic 

mixes. That is, applications that have a practical use, such as processing 
video, as well as purely synthetic tests that are only for the sake of 
benchmarking such as performing no work at all

● The benchmark is easily extensible with room for extra algorithms to be 
added in

4.3 Computing Benchmark

Independently, or Embarrassingly, parallel problems (see Chapter Two) represent 
algorithms that have a high level of natural parallelism. That is, they can be trivially 
divided amongst multiple processing elements for them to work independently 
towards a solution.

Four separate sections here are included to test the various parts of a typical 
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distributed computing system. These sections consist of  baseline tests, to gain a 
comparative measure against other existing and historical machines then metric 
categories of processing intensive, mix and responsiveness/overhead.

4.3.1 Baseline

A number of existing benchmarks have been selected to provide a measure of the 
processing power of the computing equipment being measured. This can be used to 
compare a distributed computing design to an earlier supercomputer approach where 
often Whetstone or LAPACK figures are likely to exist.

The Netperf benchmark is included to allow for the comparison of network 
performance between different machines. Network performance directly relates to 
the distributed computing system's ability to perform efficiently. It can also detect 
unusual circumstances that exist on a network that would otherwise have unfairly 
affected the score of a system's performance (Gropp & Sterling 2005).  

4.3.1.1 LAPACK (synthetic)

Test Description Obtain wall clock (time elapsed measured from start to finish), CPU time 
and operations per second to complete the LINPACK benchmark.

Test Aim To produce comparative performance figures using a well known and 
accepted benchmark.

Input Data A freely, Internet-available dataset of a suitable size for the test. 

Matrix Market is a recommended source repository for data.

Output Data LINPACK output.
Wall clock time to complete the benchmark.

Method Application should be run from 1 node to all node machines with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested). Each step should be repeated multiple times in order to gauge 
variability. Statistics provided should carefully describe the final values 
given in terms of their origin.

The overall experiment should be repeated for each distributed computing 
application, on unchanged hardware, after a complete reboot or equivalent 
cache clearing.   

Table 3: The LAPACK experiment in detail in the WAN-DC benchmark.

4.3.1.2 Whetstone & Dhrystone (theoretical maximum)

Whetstone is a classic synthetic benchmark consisting of an instruction mix derived 
from a statistical analysis of scientific applications running on an early computer 
system from the 1960s. Whilst the results from Whetstone in Mflops/sec are unlikely 
to be similar to LINPACK (such is the nature of benchmarks), it does provide a good 
idea of the “overall size” of a cluster. This is useful for comparison with the vast 
number of machines that have had statistics gathered with Whetstone over a 
considerable period of time.
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Test Description Obtain figures from the Whetstone benchmark

Test Aim An attempt to gain a best estimate of floating point numerical performance 
of the cluster hardware. This is to serve as a working theoretical maximum 
for what a distributed computing system could hope to achieve as overheads 
approach nil.

Input Data Nil

Output Data Whetstone benchmark output for each worker node in the cluster (produced 
by application with results to be added together by tester).

Method Application should be run from 1 node to all node machines with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested). Each step should be repeated multiple times in order to gauge 
variability. Statistics provided should carefully describe the final values 
given in terms of their origin.

Table 4: The Whetstone and Dhrystone experiment in detail in the WAN-DC 
benchmark.

4.3.1.3 Netperf / Netpipe (theoretical maximum)

Netperf is a network latency and throughput benchmark.

Test Description Perform the netperf benchmark on the cluster system.

Test Aim An attempt to gain a best estimate of network performance of the cluster 
hardware. This is to serve as a working theoretical maximum for what a 
distributed computing system could hope to achieve in terms of network 
performance. This is used as a reference point for the earlier input and 
output benchmarks in order to isolate network from protocol overhead.

Input Data Nil

Output Data Netperf benchmark results.

Method Application should be run from 1 node to all node machines with the same 
number of intermediary steps as used in the other benchmarks.

Table 5: The Netperf experiment in detail in the WAN-DC benchmark.

4.3.2 Processing Intensive

This benchmark application is designed to evaluate the processing power of a cluster. 

4.3.2.1 POV-Ray Benchmark (application)

POV-Ray (Persistence of Vision Raytracer) is a ray tracing program available for a 
wide variety of computer platforms. It has an accepted benchmark scene which, 
when rendered, allows for the comparison of different systems ability.

Test Description Obtain wall clock and CPU time to complete the POV-Ray benchmark.

Test Aim To gain an understanding of numerical performance of the system, with 
minimal network and disk usage, using an application benchmark that can 
be executed identically between different known distributed computing 
systems.

Input Data benchmark.pov benchmark.ini

Output Data Wall clock time to complete the benchmark from start to finish.
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Method Application should be run from 1 node to all node machines with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested). Each step should be repeated multiple times in order to gauge 
variability. Statistics provided should carefully describe the final values 
given in terms of their origin.

The overall experiment should be repeated for each distributed computing 
application, on unchanged hardware, after a complete reboot or equivalent 
cache clearing.   

Table 6: The POV-Ray experiment in detail in the WAN-DC benchmark.

4.3.3 Mix

These Mix benchmarks are designed to compare systems performing a mix of 
network and disk I/O whilst also performing processing work.

4.3.3.1 Transcode (application)

Transcode is an open source application that enables the conversion of one video 
format to another. For the purpose of benchmarking, video reprocessing is both a 
disk, processor and network intensive process.

 

Test Description Obtain bandwidth figures (Mbytes/sec) and wall clock time to distribute 
data over the cluster using the subject protocol.

Obtain wall clock and CPU time to complete the video processing 
conversion from transcode.

Obtain overall clock time to complete the video processing from start to 
finish.

Test Aim To gain an understanding of the overall performance of the cluster system 
with an application benchmark that involves  intensive processing, network/
disk IO and large input and output datasets. 

Input Data A freely, Internet-available dataset of a suitable size for the test. 

Suggested data element sizes ranging from 1Mb, 2Mb, 5Mb, 10Mb, 100Mb, 
1Gb. Care should be taken to ensure that data element size ranges both 
under and over the available memory per node to test the effect of changes 
to input/output requirements on each participating node.

The Internet Archive Moving Image Archive is a suggested repository for 
source data.

Output Data Transcode timing output for each worker node in the cluster (produced by 
application with results to be tabulated by the tester).

Wall clock time to complete the benchmark from start to finish.

The resultant converted video files.

Method Application should be run from 1 node to all node machines  with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested) for each data element size. Each step should be repeated multiple 
times in order to gauge variability. Statistics provided should carefully 
describe the final values given in terms of their origin.  

Table 7: The Transcode experiment in detail in the WAN-DC benchmark.
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4.3.3.2 Mandelbrot (synthetic)

The Mandelbrot Set is a fractal for which a large number of implementations are 
available and has been a popular choice for benchmarking due to its large, 
complicated output from relatively simple code (Vaughan & Brookes 1989).

The following is an excerpt of the algorithm used as derived from Emmanuel 
Dumas' (2001) implementation.

int mandelpoint(NUMBER z0_r, NUMBER z0_i, int nmax) {

int cp=0;
   NUMBER zn_r,zn_i,a,b;

   zn_r=z0_r;
   zn_i=z0_i;
   a=zn_r*zn_r;
   b=zn_i*zn_i;

while ( (cp<nmax) &&( (a+b) < SEUIL ) ) {
      zn_i=2.0*zn_r*zn_i+z0_i;
      zn_r=a­b+z0_r;

       a=zn_r*zn_r;
      b=zn_i*zn_i;

       cp++;
     }
  return cp;
}

void mandelbrot(const NUMBER xmin,
const NUMBER xmax,
const NUMBER ymin,
const NUMBER ymax,
const int startx,
const int starty,
const int lx,
const int ly,
const int nmax,
const int ximgmax,
const int yimgmax,
int *res) {

int x,y;

for(x=startx;x<startx+lx;x++) {
     for(y=starty;y<starty+ly;y++) {

NUMBER z0_r,z0_i;
// calcul de z0 
z0_r=xmin+(xmax­xmin)*x/ximgmax;
z0_i=ymin+(ymax­ymin)*y/yimgmax;
res[(x ­ startx)+(y­starty)*lx]=mandelpoint(z0_r,z0_i,nmax);

       }
}

}

Test Description Obtain overall wall clock time to complete the Mandelbrot set.

Test Aim To gain an understanding of the overall performance of the cluster system 
with an application benchmark that involves  intensive processing, network/
disk IO and large output datasets. 

Input Data A set of files each representing the region of the Mandelbrot set to calculate.

There are three separate parameter sets to this bench mark.
1. The overall set size being generated.
2. The number of segments the set is to be split into to be computed in 
parallel.
3. The region of the Mandelbrot set to be calculated. 
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Depending on items 2 and 3, each work unit can be either relatively uniform 
or provide a mix ranging from intensive computation to near trivial. Two 
datasets are provided, Mandelbrot_A and Mandelbrot_B, which illustrate 
each option.

Output Data Image files of the Mandelbrot set.
The wall clock time to produce the set.

Method Application should be run from 1 node to all node machines with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested) for each data element size and Mandelbrot region 
(Mandelbrot_A and Mandelbrot_B). By default, vertical “striped” regions 
are to be calculated with any deviation (such as square regions instead) 
being clearly noted. Each step should be repeated multiple times in order to 
gauge variability. Statistics provided should carefully describe the final 
values given in terms of their origin.  

Table 8: The Mandelbrot experiment in detail in the WAN-DC benchmark.

4.3.4 Responsiveness / Overhead

The responsiveness and overhead benchmarks are designed to load the system with 
as much “non-work” as possible. This “non-work” has a known amount of time to 
complete in terms of clock time per work unit. Thus the difference between the 
aggregate time of the work units and the actual time the system takes to complete 
them, when compared between systems, can give the experimenter an average 
indication of the throughput capabilities of each system as well as a measure of 
overhead. 

Overhead=
1
n

. ∑
i=1

n

t onesec i−k i

Where:
n is the number of samples taken
k is the ideal clock time of the computation 
t(onesec) is the clock time of the one second computation

4.3.4.1 One second (synthetic)

One second is a small application which will loop for as near to one second as 
possible.

A C implementation is as follows:

// get start time 
 
timeval tim; 
gettimeofday(&tim, NULL); 
double t1=tim.tv_sec+(tim.tv_usec/1000000.0); 
double t2 = 0.0; 
 
unsigned long loops = 0; 
 
do { 

gettimeofday(&tim, NULL); 
t2=tim.tv_sec+(tim.tv_usec/1000000.0); 
++loops; 

} while( (t2 ­ t1) < 1.0); 
 
printf("%.6lf seconds elapsed. %d loops.\n", t2­t1, loops); 
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Test Description Load the system with work units with a known execution time.

Test Aim To see the difference between competing systems when executing for a 
known period of time. How long does it actually take to compute a known 
period of work?

Input Data The length of time to compute for each work unit.

Suggested lengths include:

1 sec, 10 secs, 100 secs, 1000 secs, 2000, 3000, etc.

Output Data The wall clock time in seconds.

Method Application should be run from 1 node to all node machines with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested) for each work unit length. Each step should be repeated multiple 
times in order to gauge variability. Statistics provided should carefully 
describe the final values given in terms of their origin.  

Table 9: The One Second experiment in detail in the WAN-DC benchmark.

4.3.4.2 Mean work unit (synthetic derived from application)

Clock time difference between work units being completed over the course of 
computation. 

Test Description Obtain wall clock times for the difference between completed work units.

Test Aim To investigate the comparative lag that occurs between distributed 
computing systems. This is especially important for comparing emerging 
systems that rely on a decentralised approach where overhead may effect 
the ongoing performance of the system.

Input Data Data can be gathered from the results of other benchmark experiments from 
both a server or node perspective. That is, the time taken for each completed 
work unit to be received. Or, the time between starting a new worker node 
and actually receiving data to process (where data is available).

Output Data The wall clock time in seconds.

Method Application should be run from 1 node to all node machines with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested) for each work unit length. Each step should be repeated multiple 
times in order to gauge variability. Statistics provided should carefully 
describe the final values given in terms of their origin.  

Care should be taken to ensure that the test is fair and that all systems being 
compared are set to begin computation as soon as possible and that network 
load is comparable between tests.

Table 10: The Mean Work Unit experiment in detail in the WAN-DC benchmark.

4.3.4.3 No work (theoretical maximum)

The No Work test results in the number of empty work units that can be completed in 
a period of time.
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A implementation in C, to literally do nothing, is as follows:

int main (int argc, char * const argv[]) { 
 
return 0;

}

Test Description Obtain a theoretical maximum for the number of work units a system can 
process as the processing load of the work unit approaches zero.

Test Aim To investigate the maximum number of work units that can be issued and 
processed in a given amount of time.

Input Data None.

Output Data The number of completed work units in a given period of time.

Method Application should be run from 1 node to all node machines with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested) for each work unit length. Each step should be repeated multiple 
times in order to gauge variability. Statistics provided should carefully 
describe the final values given in terms of their origin.  

Care should be taken to ensure that the test is fair and that all systems being 
compared are set to begin computation as soon as possible and that network 
load is comparable between tests.

Table 11: The No Work experiment in detail in the WAN-DC benchmark.

4.4 Qualitative Issues

This section is intended to serve as both a selection criterion for distributed 
computing systems as well as a part of a framework to evaluate and compare them. It 
has been developed from a literature review of available distributed computing 
systems, grid computing and peer-to-peer computing areas. These areas continue to 
relate and converge with each other  (Foster & Iamnitchi 2003) and now require a 
consistent benchmark that has useful application across all three areas.

There has been some substantial earlier work in some of these areas. In 
resource management systems there exists a comprehensive taxonomy and survey of 
existing systems (Krauter, Buyya & Maheswaran 2002). Object modelling, within 
distributed computing, has been investigated with a view towards classification and 
comparison (Bakker, Kuz & van Steen 1997).

This framework draws on this earlier work, and on recent developments in the 
direction of distributed computing, to produce a high-level comparative framework.

4.4.1 General Approach & Design

In order to categorise the system being examined, it is necessary to examine the 
approach taken in order to complete a distributed computing exercise, the overlay 
network paradigm chosen, how the network is organised, whether the focus is on a 
task or a service and the requirements necessary to participate.

4.4.1.1 Approach

How is the distributed system organised? The first consideration should be whether 
the system comprises of a group of general machines or consists of  specialised 
hardware. If the system is general hardware, what is the approach taken to provide 
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computing services? Is it a decentralised swarm of loosely cooperating machines, a 
distributed cluster of machines, is it a grid providing services or is it a cluster of 
machines pooled between different geographic areas?

Specialised Hardware General Purpose Hardware

Parallel supercomputer Swarm

Grid

Cluster

Ad Hoc

Table 12: The qualitative approach category in the WAN-DC benchmark.

4.4.1.2 Node Organisation (client / server, peer to peer)

Distributed computing systems require nodes to organise themselves so that 
communication can occur so that jobs can be allocated and results returned. 
Client/server, peer-to-peer and a hybrid approach are the three known methods used 
to achieve this. Other methods will undoubtedly emerge and should be also 
considered to allow the categorisation of new systems.

Node Organisation

Client/server

Peer-to-peer

Hybrid

Other

Table 13: The qualitative node organisation category in the WAN-DC benchmark.

4.4.1.3 Network Topology

In many node organisations (4.4.1.2) different underlying network topologies can be 
employed for communication between nodes. These can have an effect on the 
overlayed services.

Network Topology Description

Fully connected Each node in the network is connected 
to every other node in the network.

Ring (or list) Nodes are arranged into a ring or list 
with a half or full duplex connection 
between them.

Tree (or star) Communication is directed via a strict 
hierarchy where a root node or central 
server communicates only with the 
nodes beneath it and so on. A star 
configuration is particularly common in 
client-server systems where a single 
machine (or group of machines) is 
connected to nodes around it.

Hypercube A hypercube is a compromise between a 
fully connected network and a ring. It 
aims to produce a minimum number of 
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“hops” between nodes to communicate 
whilst maximising the number of nodes 
able to participate with a limited 
number of connections.

Butterfly A butterfly network, with similar 
routing abilities to a hypercube, 
typically has two input and two outputs 
where combinations of straight, crossed 
and broadcast paths are possible. 

Random A node joins any other node as it sees 
fit. There is no deterministic 
arrangement to how nodes are 
organised.

Heuristic Often this would be a network that 
begins as random and connections 
change as faults or inefficiencies are 
discovered in the network.

Other Other is particularly important as there 
are many variations and combinations 
of each one of the topologies described 
here. Flexibility should be used to 
describe a variation and refer back to 
one or more of the high level topologies 
presented to maintain context.

Table 14: The qualitative network topology category in the WAN-DC benchmark.

4.4.1.4 Application

This section is to determine whether the system is service based or task based. Is the 
system providing a computing service or is it centred around the computation of a 
specific task? Indeed, some systems can be configured to do both. The purpose of 
this section is to clarify this functionality in a distributed computing system.

Application

Task based

Service based

Either

Table 15: The qualitative application category in the WAN-DC benchmark.

4.4.1.5 Requirements & Dedication 

What system requirements are required for both hosting a project and participating in 
one? Are there any special hardware considerations? Does a participating node need 
to be completely dedicated in order to function? Also, how does the system interact 
with the operating system and present itself to the user?
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Requirements (Host or Node)

Specific hardware

Dedicated machine

Background process

Screensaver / idle cycles only

Table 16: The qualitative requirements category in the WAN-DC benchmark.

4.4.2 Features

Further to the general approach, consideration needs to be given to what features the 
system offers, the standards it supports, the hardware required, how tasks are 
managed and its robustness and licensing arrangements.

4.4.2.1 Algorithmic Suitability

Support for algorithm type (embarrassingly parallel, interprocess communication)

Algorithm Support

Interprocess communication

No interprocess communication

Ordered problems

Table 17: The qualitative algorithm support category in the WAN-DC benchmark.

Also, where there are ordered tasks, how is the ordering managed?

Task Order Management

Task graph

Petri Net

Heuristics

Table 18: The qualitative task ordering category in the WAN-DC benchmark.

And where there is support for interprocess communication, by which methods or 
standards does it occur?

Communication Standard

MPI

PVM

Tuplespace

Other

Table 19: The qualitative communication standards category in the WAN-DC 
benchmark.
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4.4.2.2 Standards Support

What open standards does the system adhere to which enable a deeper comparison 
between systems? 

4.4.2.3 Hardware Support

What hardware does the system support? Is the system able to run on multiple 
machines and operating systems? If so, which ones? Can the system operate well in a 
heterogeneous mix of machines and networks and take advantage of individual 
node's characteristics (such as multi-core processors?). What level of platform 
independence is there? Graphic processing units (GPU), especially for vector 
processing, are now potent processors in their own right and are being utilised by 
various voluntary computing systems.

Hardware Support

Platform Independence

Processing Hardware Support 

Heterogeneous Support

Graphics (GPU) Processing support. e.g. 
High end video cards in modern PCs.

Table 20: The qualitative hardware support category in the WAN-DC benchmark.

4.4.2.4 Task & Resource Management

Resource allocation can be directed by a server or, in some known systems, by nodes 
choosing which jobs to participate in. 

Allocation of Resources / Tasks Description

Job Allocation Control Server or Node. Are jobs allocated by the server 
in a server-client fashion? Or can the node choose 
which work to do from an available pool?

Proportional Tasks are allocated based on a best fit to node 
performance and task size.

Market Tasks and nodes are matched based on a virtual 
economic market.

None Nodes are allocated (or can randomly choose) the 
next task ready for computation (i.e. Next in the 
queue or graph as determined by the task 
ordering algorithm)

Table 21: The qualitative job allocation category in the WAN-DC benchmark.
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4.4.2.5 Robustness

Robustness Description

Checkpointing Support for long task checkpoints, no support 
(repeat tasks only).

Scalability Statistical evidence, Observed evidence.

Quality of Service Types of support being offered or no support.

Churn Hand over of part completed tasks, task 
rescheduling, no tolerance for node failure.

Malfeasance Multiple computation, trust/signing schemes.

Table 22: The qualitative robustness category in the WAN-DC benchmark.

4.4.2.6 Licensing

Licensing Description

License description {Proprietary, GPL, Public domain, Other}

Source availability {Open, Closed}

Governing organisation Corporation, Non-profit organisation, 
community, individual.

Table 23: The qualitative licensing category in the WAN-DC benchmark.

4.4.3 Usability

It would be possible with the use of survey and other qualitative research techniques 
to obtain actual evidence and data for this section, however detailed suggestions for 
survey or experimental design are left as being beyond the scope of this work.

Usability Description

Hosting a new project A originating node or any size. A tracker which can be hosted on 
the originating node or elsewhere.

Joining an exiting project Download software and pick a project.

Coding for a new project None required. Can use existing binaries.

Table 24: The qualitative usability category in the WAN-DC benchmark.

4.4.3.1 Hosting

How much work is needed to begin a project? Are there dedicated requirements for 
network connectivity or hardware infrastructure? 

51



Hosting a project

Software Perspective Hardware Perspective

Custom software 
required

General commodity 
hardware

Dedicated operating 
system

Specific hardware

Table 25: The qualitative hosting category in the WAN-DC benchmark.

4.4.3.2 Joining

What effort is required to join a running project? Is downloading and installing 
software required? 

Joining an existing project as a participant

Custom software required

Attaching through another application (i.e. Web 
Browser, Java Web Start)

Dedicated operating system

Table 26: The qualitative joining category in the WAN-DC benchmark.

4.4.3.3 Coding

Coding for hosting a new project

Support for existing binaries.

Libraries need to be compiled in.

Table 27: The qualitative coding category in the WAN-DC benchmark.

4.4.3.4 Support

What support is available for managing the system?

Support

Commercial support

Community support

Books

Developer support

Table 28: The qualitative support category in the WAN-DC benchmark.

4.4.4 Incentives

How are nodes attracted to participate in a project? General techniques  such as 
publicity, etc. are discussed by projects such as BOINC  (BOINC 2007). What 
features are provided by the software or system itself to encourage nodes to 
participate in the project?
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Incentives Description

Data access Access to the source or computed data set.

Financial through statistics Reliable statistical information of work units completed which can 
then form the basic of an actual economic system where processing 
work can be billed to the project owner and worker nodes can be 
paid.

Fame through statistics Reliable statistical information of work units completed which can 
be published to encourage new nodes to join and existing nodes to 
remain to hold or improve current leader board placement.

Table 29: The qualitative incentives category in the WAN-DC benchmark.

4.5 Discussion of the WAN-DC benchmark

Like the NAS parallel benchmarks, these have grown out of a personal requirement 
rather than an attempt to be all things to all benchmarking systems. This is obvious 
given that the operational characteristics (Section 4.3) cover only independently 
parallel problems or that malfeasance, of which some aspects are possible to 
measure, is not given here. As such, detailed discussion of suitable further work, 
including support for  algorithms that require interprocess communication, is 
discussed in Chapter Nine as a part of future work.  

4.6 Chapter Summary

This chapter has presented the WAN-DC benchmark. It is a benchmark suitable for 
wide area network distributed computing systems that evaluates both operational 
characteristics as well as a comparative framework to investigate the qualitative 
aspects of the system. It is the aim of this benchmark to provide some coverage 
across the previously separate areas of distributed computing and peer-to-peer 
networks. This benchmark is used in the next chapter to evaluate two client-server 
distributed computing systems and later in chapter eight to evaluate a hybrid peer-to-
peer system.
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Chapter Five

5.0 A Comparative Evaluation of Condor and BOINC 
Using the WAN-DC Benchmark

This chapter applies the developed benchmark presented in the previous chapter to 
compare two existing wide area network distributed computing systems. This 
comparison forms the foundation for the CompTorrent evaluation in chapter eight. 
All comparisons have occurred on the same hardware and network under controlled 
conditions to produce a fair evaluation of the different platforms. These controlled 
conditions come at the expense of not comparing over a wider area network than 
what was employed. However, a known network/hardware platform was considered 
more important to compare the new approach with the existing approaches in a 
meaningful way over what amounts to increases in latency, reduction in bandwidth 
and added issues of reliability and heterogeneity of network connection and 
processor. Further work required in this area is later discussed in section 9.2.1.3. 

5.1 Test Platforms

BOINC (See 3.2.1.1) and Condor (See 3.2.1.2) were selected in regards to their 
popularity, ubiquity and feature set. Both are widely used scientifically and differ in 
their usage and implementation. 

The focus of these experiments was a fair comparison to gauge how these 
systems compare with each other and then later with CompTorrent. All reasonable 
attempts were made to have similar operating characteristics between the two 
platforms when experimentation occurred. Communication rates with servers, 
timeouts, work unit scheduling characteristics and job allocation settings were made 
as equivalent as possible between the two platforms. This was done to expose the 
underlying approach whilst not disadvantaging either platform by nature of its 
operational settings. 

5.2 Test Environment

A cluster of 16 Pentium 3 class machines. Each with  800Mhz (approx) processors 
and all having 256Mb RAM and running Linux (kernel 2.6.12). Each machine was 
connected to the same network segment on a 100Mbps switched Ethernet network. 
Section 5.4.1 shows individual cluster machine and network performance.

A 17th machine was employed as the master server for both BOINC and 
Condor. It was also the same class of machine as each cluster node with the 
exception of RAM size with it possessing 512Mb in total.

The method for setting up these experiments on BOINC and Condor is 
described in detail in Appendix C.

5.3 Test Datasets

There are several datasets that are used for this chapter. For the Transcode 
experiment an arbitrary public domain movie, in MPEG2 format was chosen for 
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conversion into the AVI format. This video file used here was Charlie Chaplin's 
“Cruel Cruel Love” broken into 100 pieces of around 1Mb each. The POV-Ray 
experiment uses the POV-Ray benchmark dataset as included with the POV-Ray 
application with each work unit broken into 64 horizontal slices of equal height and 
width. Mandelbrot is a classical rendering of the Mandelbrot set with the overall job 
broken down into 160 work units to provide at least 10 units of work per machine in 
our sample cluster.

See Appendix E for a detailed description of the test datasets.

5.4 Results

BOINC and Condor displayed different results when running identical algorithms, 
with the same data on the same hardware and network platform. These results are 
given for Condor in section 5.4.2 and then BOINC in section 5.4.3. This chapter 
concludes with a comparative summary and discussion in section 5.5. 

5.4.1 Baseline

Here presented are results for the baseline that forms a part of the WAN-DC 
benchmark as described in 4.3.1.

5.4.1.1 LAPACK

Benchmark 1 2 3 4 5 6 7 8
LINPACK Rolled Double Precision 239.11 219.96 220.04 220.61 220.11 220.19 220.13 219.95
LINPACK Unrolled Double 
Precision 313.32 280.43 280.57 288.9 280.63 280.64 280.45 280.31
LINPACK Rolled Single Precision 179.6 173.27 173.08 173.25 173.21 173.28 173.25 173.09
LINPACK Unrolled Single 
Precision 194.89 185.98 186.04 186.34 186.04 186.05 186.05 186.01
Benchmark 9 10 11 12 13 14 15 16
LINPACK Rolled Double Precision 220.17 219.69 220.2 239.15 220.08 220.16 220.14 220.18
LINPACK Unrolled Double 
Precision 280.41 280.07 280.57 313.2 280.54 280.62 278.4 280.64
LINPACK Rolled Single Precision 173.24 173.1 173.22 179.72 173.27 173.22 173.21 173.29
LINPACK Unrolled Single 
Precision 186.09 185.85 186.08 194.94 186.07 186.03 186.06 186.06

Table 30: Individual cluster machine performance for LAPACK

5.4.1.2 Whetstone & Dhrystone

Benchmark 1 2 3 4 5 6 7 8
Dhrystone VAX MIPS 922.14 850.88 851.01 855.74 856.13 855.74 851.01 855.48
Whetstone MWIPS 734.7 678.15 678.14 678.07 678.2 678.14 678.15 677.61

Benchmark 9 10 11 12 13 14 15 16
Dhrystone VAX MIPS 826.06 849.48 851.26 922.29 851.13 856 855.87 851.13
Whetstone MWIPS 678.13 676.74 678.14 735.1 678.17 678.14 678.17 678.17

Table 31: Individual cluster machine performance for Whetstone and Dhrystone
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5.4.1.3 NetPerf
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Figure 1: Ethernet throughput of the cluster network.

Figure 2: The round trip time of the cluster network with 
packets of increasing size.



5.4.2 Condor

Appendix C contains detailed instructions and settings for the Condor 
implementation that forms the basis of these results.

5.4.2.1 POV-Ray

Condor performed well in the POV-Ray experiment as would be expected given its 
high computation and low network communication requirements. Table 32 shows 
good speedup efficiency (speedup / number of nodes) but curiously less so with two 
nodes. Two nodes is where super linear speedup is more likely to occur rather than a 
slow down. In this case it is simply a single run which performed significantly slower 
than the rest of the runs. Removing this outlier results in a mean run of 9077.75 with 
a corresponding rounded speedup of 1.79 and speedup efficiency at 0.895.

Condor POV-Ray

Num 
Machines

Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 16209 19.85 1 1

2 10022.8 2126.67 1.62 0.81

4 4200.2 1.1 3.86 0.97

8 2094 6.24 7.74 0.97

16 1035 2.12 15.66 0.98

Table 32: Condor results for the POV-Ray experiment.

5.4.2.2 Transcode

Some super-linear speedup was observed, quickly faded at 8 nodes with only a 
marginal improvement at 16. Transcode does have a loading time on these machines 
in the order of approximately 2 seconds on the data provided and their granularity. 
This overhead does explain why there is going to be a definite upper bound to the 
amount of speedup that is going to be observed.

Condor Transcode 

Num 
Machines

Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 1162.6 1.82 1 1

2 299 3.94 3.89 1.94

4 238.6 7.3 4.87 1.22

8 215.6 2.61 5.39 0.67

16 213.2 2.77 5.45 0.34

Table 33: Condor results for the Transcode experiment.

5.4.2.3 Mandelbrot

Here Condor has not performed particularly well at all with mean speedup reaching a 
maximum of 1.86 at 8 machines and performing worse at 16. Mandelbrot, whilst 
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computationally expensive, requires very little to begin processing and not very 
much in terms of disk or network input/output. It is likely to be the case that the 
granularity chosen is particularly poor for Condor's implementation. A comparison 
with “No Work” in the next section (5.4.2.4) does provide some insight. 

Condor Mandelbrot

Num 
Machines 

Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 610.8 132.68 1 1

2 420.4 3.51 1.45 0.73

4 333.6 6.35 1.83 0.46

8 329 7.68 1.86 0.23

16 332.2 5.97 1.84 0.12

Table 34: Condor results for the Mandelbrot experiment.

5.4.2.4 No Work

Here illustrated is how Condor performs with almost no work to do. It can be clearly 
seen that a speedup figure for 2 machines is observed with a maxima at 8 machines 
and very little change at 16. 

This result offers us insight into the results gained in Mandelbrot (5.4.2.3) 
where it wasn't understood why some speedup wasn't really achieved. This suggests 
that the Mandelbrot calculation itself was akin to no work under these conditions. 
There was also considerably more network activity than No Work, with the 
Mandelbrot experiment, that suggests that the network can be discounted as having 
an effect on the overall speedup observed in either Mandelbrot or No Work.

Condor No Work

Num 
Machines

Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 345.8 1.92 1 1

2 214 5.48 1.62 0.81

4 213.8 4.15 1.62 0.41

8 211.2 4.09 1.64 0.21

16 209 5.92 1.65 0.1

Table 35: Condor results for the No Work experiment.

5.4.2.5 One Second

Leading on from No Work and the observances with Mandelbrot, it shows that 
knowing at what job size the distributed computing system becomes useful is 
extremely important in the design of a distributed computing project. The One 
Second experiment is designed to show how the efficiency (expressed as known 
processing time divided by wall clock time) of a system varies over the size of the 
work unit.
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Figure 3: Condor One Second graph for 1 
machine.

Figure 4: Condor One Second graph for 2 
machines.

Figure 5: Condor One Second graph for 4 
machines.
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Figure 6: Condor One Second graph for 8 
machines.

Figure 7: Condor One Second graph for 16 
machines.

Figure 8: Condor Mean One Second results.



One Second shows , within the bounds of the size of our cluster, that the efficiency 
of the system converges at a job size of approximately 30 seconds.

5.4.2.6 Mean Work Unit

Table 36 shows the mean work unit results for POV-Ray, Mandelbrot, Transcode 
and No Work. The most obvious thing it shows is the difference in processing times 
between the different experiments. Mandelbrot, Transcode and No Work, when 
compared to POV-Ray, are comparatively light in their processing time per work 
unit. POV-Ray also displays the largest in the time taken to compute a work unit. 
This is chiefly due to the nature of the computation itself where the workload varies. 
The results show that there are cases where there is not a significant difference in run 
time between 1 and 2 machines.

Care must be taken with varying work unit algorithms like Mandelbrot on a 
small number of machines. Since Mean Work Unit looks for the average time to get 
a response with a computed data set, the difference between time taken for each work 
unit will vary on a single machine as the variance is being driven by the nature of the 
different work sizes and not the network or the distributed computing system's 
internal overhead. This is shown obviously with a higher deviation than mean result 
for Mandelbrot with 1 machine in Table 36.

Experiment # Machines Mean (secs) Standard deviation (secs)

POV-Ray 1 257.43 44.74

2 159.09 100.42

4 66.67 58.63

8 33.24 31.49

16 16.43 15.88

Mandelbrot 1 3.84 5.67

2 2.64 0.84

4 2.10 0.43

8 2.07 0.43

16 2.09 0.37

Transcode 1 11.74 1.03

2 3.02 1.19

4 2.41 1.2

8 2.18 1.37

16 2.15 1.38

No Work 1 3.49 0.23

2 2.16 0.54

4 2.16 0.68

8 2.13 0.54

16 2.11 0.5

Table 36: Condor results for the Mean Work Unit experiment.
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5.4.3 BOINC

5.4.3.1 POV-Ray

BOINC performed extremely well in POV-Ray. Table 37 shows good speedup 
efficiency (speedup / number of nodes) for the first three cluster sizes. Super linear 
speedup was observed for 8 and 16 node sizes. BOINC takes advantage of both 
hyper-threading and multi-core processing which explains this super-linearity. For 
this cluster, hyper-threading was possible (there were no multi-core nodes) and was 
observed in the BOINC data.

BOINC POV-Ray

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 16846.2 66.82 1 1

2 8640.4 39.39 1.95 0.98

4 4290.6 52.35 3.93 0.98

8 2019.8 21.44 8.34 1.04

16 891.6 32.08 18.89 1.18

Table 37: BOINC results for the POV-Ray experiment.

5.4.3.2 Transcode

Transcode shows increasing speedup across the range of cluster sizes without any 
super-linear speedup as observed in POV-Ray. The overhead of the network traffic 
has limited the amount of speedup observed.

BOINC Transcode

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 2619.8 624.68 1 1

2 1647 189.33 1.59 0.8

4 795.2 97.89 3.29 0.82

8 688.2 70.24 3.81 0.48

16 475.6 66.79 5.51 0.34

Table 38: BOINC results for the Transcode experiment.

5.4.3.3 Mandelbrot

Similarly to Transcode, Mandelbrot shows conventional if uninspiring results with 
very long runtimes to complete the exercise. Speed up continues to improve over the 
whole cluster range.
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BOINC Mandelbrot

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 2686.6 70.23 1 1

2 1430.4 128.92 1.88 0.94

4 783 58.53 3.43 0.86

8 529.8 135.21 5.07 0.63

16 394.8 181.34 6.8 0.43

Table 39: BOINC results for the Mandelbrot experiment.

5.4.3.4 No Work

BOINC produces a poorer than expected speedup with 4 machines and a maximum 
speedup with 8 machines. There was little difference between 8 and 16 machines.

BOINC No Work

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 1658.2 178.1 1 1

2 885.2 106.8 1.87 0.94

4 699 164.51 2.37 0.59

8 484 92 3.43 0.43

16 503 65.53 3.3 0.21

Table 40: BOINC results for the No Work experiment.

5.4.3.5 One Second

1,2,4 nodes shows ordered, linear results with very good efficiency (expressed as 
known processing time divided by wall clock time) ranging from approximately 83 – 
101 second  job sizes. 1 machine on BOINC shows an unusually high result. This is 
due to BOINC being able to dispense with its slow and deliberate work unit 
allocation and request cycle across the network.
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Figure 9: BOINC One Second graph for 1 
machine.
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Figure 11: BOINC One Second graph for 4 
machines.

Figure 12: BOINC One Second graph for 8 
machines.

Figure 10: BOINC One Second graph for 2 
machines.



However at 8 machines (Figure 12) linearity diverges at 20 seconds with a 
much higher standard deviation trending towards 100% efficiency at 200 second 
jobs.

With 16 machines, as expected, the efficiency increases at approximately half 
the rate of the 8 machine configuration. What is interesting is that the results are 
much more uniform compared to 8 machines, with more jobs and more nodes.

The graph in Figure 14 shows all of the previous One Second results as a 
mean for 1,2,4,8 and 16 node cluster sizes respectively.
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Figure 13: BOINC One Second graph for 16 
machines.

Figure 14: BOINC Mean One Second Results



5.4.3.6 Mean Work Unit

Table 41 shows the mean work unit results for POV-Ray, Mandelbrot, Transcode 
and No Work. Here deviation is consistently high, as a percentage, of the mean time 
taken to complete a work unit over the course of all experiments. BOINC will often 
pause for some time between job requests and allocations. This is due to BOINC's 
target audience of very large projects with very high numbers of participating nodes 
where exponential back off on failed requests is required to prevent flooding.

Experiment # Machines Mean (secs) Standard Deviation (secs)

POV-Ray 1 16.75 9.44

2 8.94 5.97

4 7.06 10.14

8 4.89 13.5

16 5.08 21.14

Mandelbrot 1 16.9 5.16

2 9 5.96

4 4.92 3.38

8 3.33 6.61

16 2.48 10.73

Transcode 1 26.46 19.31

2 16.64 12.21

4 8.03 4.68

8 6.95 17.94

16 4.8 10.11

No Work 1 16.75 9.44

2 8.94 5.97

4 7.06 10.14

8 4.89 13.5

16 5.08 21.14

Table 41: BOINC results for the Mean Work Unit experiment.

5.4.4 Qualitative Evaluation

Table 42 below presents the qualitative results for BOINC and Condor as a 
comparative guide to the available features of each system.

APPROACH / DESIGN

BOINC Condor

Approach Volunteer / Grid Cluster / Grid

Node Organisation Client / Server Client / Server

Network topology Star (with super hosts) Star (with pools)

Application Task / Grid (with added 
modules)

Task / Grid (with Condor G)
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Requirements & Dedication Idle cycles or greater Idle cycles or greater

FEATURES

BOINC Condor

Algorithmic Suitability No interprocess communication Interprocess communication and 
ordered problems

Standards supported None explicitly MPI, Globus, PVM, Master-
Worker (own standard), 
DRMAA 

Hardware / OS support Platform Independence:
Windows, Linux, Mac, Solaris, 
HPUX, Tru64, AIX, FreeBSD, 
OpenBSD

Hardware: Intel x86 32/64, 
AMD 32/64, Power PC 32/64, 
SPARC, HPPA, Alpha, IA64.

Hyperthreading and multi-core 
support

GPU Crunching: Application 
based. Evidence of some 
projects using some specific 
GPU hardware.

Heterogeneous:
Can target specific hardware or 
any hardware above.

Platform Independence:
Windows, Linux, Mac, Solaris, 
HPUX, AIX

Hardware: As supported by the 
above operating systems.

GPU Crunching:
General support not at present 
but it is an intention. 

Heterogeneous:
Can target specific hardware or 
any hardware above.

TASK & RESOURCE MANAGEMENT

BOINC Condor

Resource allocation to Jobs Server Server

Task allocation Server Server

ROBUSTNESS

BOINC Condor

Checkpointing Yes when optioned by client 
software.

Yes when optioned by client 
software.

Scalability Claimed: Millions of jobs per 
day. 

Observed: Millions of users per 
day.

Observed:
Large pools of ostensibly 
dedicated processors up to 4800 
reported in one site. 10000 
concurrent jobs (Withers 2007). 

Quality of service Some features with dedicated 
machines.

Yes.

Churn Yes. Readily. Depending on application but 
generally yes.

Malfeasance Multiple calculations, pattern 
fitting, extensible by the 
algorithm developer.

Secure communication, secure 
execution (sandboxing), 
multiple calculations.

LICENSING

BOINC Condor

Licence Description GNU Lesser General Public Apache License 2.0
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License

Source Availability Open Open

Governing Organisation University of California University of Wisconsin-
Madison

USABILITY

BOINC Condor

Hosting a new project Server hardware dedicated to 
the task. High speed internet 
connection.

Server hardware dedicated to 
the task. LAN/WAN connection 
to processing nodes.

Joining an exiting project Download software and pick a 
project.

Depending on usage. From 
downloading software and 
joining a project to dedicated 
machine.

Coding for a new project Support for existing binaries and 
different levels of library 
integration.

Support for existing binaries and 
different levels of library 
integration. More work also 
depending on services required 
(i.e. PVM, MPI)

SUPPORT

BOINC Condor

Commercial None officially. Yes.

Community Yes. Mailing lists, Web sites, 
Wikis, Unofficial sites.

Yes. Mailing lists, Web sites, 
Wikis, Unofficial sites.

Books None specific, but several 
scientific texts relating to it as a 
tool to use with some 
instructions.

None specific, but several 
scientific texts relating to it as a 
tool to use with some 
instructions.

PARTICIPATORY INCENTIVES

BOINC Condor

Data Access Per project basis. Per project basis.

Financial through statistics No. No. But possible depending on 
grid middleware.

“Fame” through statistics Yes. No.

Table 42: WAN-DC qualitative results for both BOINC and Condor.

5.5 Discussion of Performance Results on BOINC and Condor

This section now follows on to compare and contrast the results of these systems 
now that the benchmark has been applied.

5.5.1 POV-Ray

Condor performed well with speedup close to the corresponding number of  nodes  in 
the cluster (when correcting for an outlier in 2 nodes). BOINC performed similarly to 
condor for the 1,2,and 4 machine cluster configuration (again when correcting for the 
2 node outlier) however super linear speedup was observed for 8 and 16 node 
clusters. BOINC specifically supports processor hyper-threading support and multi-
core support which explains this behaviour. In BOINC's case it will request and have 
2 jobs allocated at a time per processor on the machine.
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5.5.2 Transcode

At first glance, both Condor and BOINC appear to provide similar results for the 
Transcoding exercise across some cluster sizes. They both have similar speedup 
results across the range of cluster sizes. Elapsed time on BOINC is approximately 
twice as what was observed for Condor with the same job on the same hardware. 
This is to be expected given the differences between BOINC and Condor's job 
allocation where there is considerably more turns of communication for BOINC in 
order to have a job allocated. 

5.5.3 No Work

On both systems little speedup was observed. In the case of Condor very little 
changed from 2 machines up to 16. On BOINC, speedup was observed, however this 
result is offset by the elapsed time which was far more than that observed on Condor.

5.5.4 Mandelbrot

Mandelbrot on Condor behaved like No Work. On BOINC, similarly to Transcode, 
the high overhead for work unit allocation resulted in much longer running times 
and, in this case, scope for speedup. Though in every case the elapsed time was less 
on condor than BOINC. However by 16 machines on BOINC there was significantly 
less difference between the two suggesting that the overhead on BOINC becomes 
less of an issue compared to Condor as its overhead increases along with the size of 
the cluster.

5.5.5 One Second

In both cases, each system showed their focus. Condor produced a set of results that 
would be expected for a system designed for more-or-less local area networks; not 
strictly so but certainly not the extremely transient network participants that BOINC 
was designed for. Results quickly converged and produced run times that were very 
consistent. BOINC, however, quickly degraded to a speedup “flat line” for such 
small jobs as they are simply not suitable for WAN calculation with BOINC.

5.5.6 Mean Work Unit

Here the difference between BOINC and Condor is stark and as expected. Condor 
demonstrates a strong link between the work load of a work unit and the time taken 
to complete this unit. This shows the general efficiency of job allocation and 
completion between the server and the client. A requirement for a system that has a 
focus of working as a LAN cluster. BOINC is optimised for WAN operation and as 
such, with the client focus of requesting jobs, shows a greater difference between the 
time taken to complete each work unit.

5.6 Chapter Summary

This chapter has presented the results of applying the WAN-DC benchmark to both 
the BOINC and Condor distributed computing systems. Both sets of experiments 
were performed on the same cluster hardware, network and data sets. This has 
produced a comparative set of results for two distributed systems that have not been 
compared in this way previously at time of writing.
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These results form the basis of a comparison for a peer-to-peer distributed 
computing system that will be introduced in the next chapter and later subjected to 
the same benchmark under the same conditions. 
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Chapter Six

6.0 CompTorrent 
This chapter describes the overall design and operation of CompTorrent. 
CompTorrent embodies the practical implementation of this thesis to demonstrate 
that a peer-to-peer network can produce comparable results to that of a client-server 
approach when used for general purpose distributed computing.

6.1  Introduction

CompTorrent allows a small group or an individual to host their own distributed 
computing project. This is achieved without needing to know much about distributed 
computing and, in many cases, without writing any new code. CompTorrent allows a 
group of nodes to share a dataset that needs to be computed. They share the original 
dataset, the computation load and the resulting computed dataset. This allows an 
originating node to upload an original data set only once and still share the entire 
dataset amongst many nodes. CompTorrent shows a partially decentralized peer-to-
peer network being successfully used for distributed computing.

CompTorrent introduces several new techniques to distributed computing in 
order to solve some existing problems. Most importantly, and unfortunately also 
hardest to quantify, is the claim to lower the cost of entry to distributed computing 
from the perspective of those wanting to have something computed. Joining a 
computing project tends to be easy. However, starting one requires much more work. 
Many systems, such as those mentioned in Chapter 3, have a very simple means of 
joining the system – mainly the installation of some software and then the running of 
an application, which often presents as a screen saver for when the machine is 
otherwise unused. Others based on Java Web Start , again as described in Chapter 3, 
can be joined with the click of a URL. Any earlier difficulties perceived in joining a 
distributed computing project have very much been solved. However, the creation of 
a distributed computing project tends to be more difficult. BOINC, arguably one of 
the more open and easier systems to create with, still requires the dedication and 
configuration of server hardware to the task of managing a project. The Gnutella 
Processing Unit (See 3.3.2.1) does not natively allow your own projects to be created 
at all (GPU 2007). Many other systems exist that are dedicated to a particular task 
and would fall into the very difficult to create category. That is if you want to start a 
distributed computing project then first you must write a distributed computing 
system. While CompTorrent is not the first to introduce a generic distributed 
platform, as clearly BOINC and Condor have been shown to do this in this thesis, it 
is the first to utilize the tracker and “metadata file” concepts to attempt to satisfy the 
goal of making a system that is both easy to join and easy to create new projects.

An overview of this new system begins with the notion of a “seeder”, that is, 
the group or user who initiates the distributed processing task and has a full set of the 
original data. First they create a metadata file (using a software tool) which describes 
or contains the algorithm and describes the data set. This metadata file can be 
published on the World Wide Web (WWW) or another peer-to-peer (P2P) service, 
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for interested parties to download. This process is illustrated in figure 15 below.

The distributed metadata file is what allows other users to join in the 
computing exercise. Once downloaded, another interested user uses the CompTorrent 
application to read this metadata file, extract the algorithm, begin computation and 
attempt to join the other computers working on the project. It does this by first 
contacting a “tracker” whose contact details are included in the metadata file. The 
tracker is a service hosted on the WWW which maintains information about which 
nodes are currently working on a problem and which parts of the problem are 
currently unsolved. The tracker suggests tasks for each node and helps coordinate the 
process. Its serves as a shared memory for the swarm and does so independently of it. 
This process is illustrated in figure 16. Here it is claimed that these techniques 
greatly simplify the task of starting a distributed computing project whilst also 
leaving it equally simple to join. It also allows separate computing jobs to be 
completely independent of one another so as to minimize any overhead in 
maintaining any other project other than your own. This approach contrasts with 
having a large group of nodes running multiple projects divided between them. Using 
file sharing as an example, BitTorrent's approach of a single swarm per file set easily 
outpaces Gnutella's approach of one large network with many file sets  (Ritter 2006) 
(Bharambe 2005).

CompTorrent also introduces the notion of sharing the data set as well as the 
computation at the same time. Whilst a distributed system has always needed to 
share some of the data, namely the data being computed, here the incentive to join a 
project is to share in the computed data. Collaborative video encoding from a higher 
to lower bit rate can share the work and distribute the result at the same time. Using 
the output of one computing exercise among several research groups for the input of 
another is also a tangible incentive.
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6.2 Technical Overview

Following the overview just given, this section proceeds to describe each major part 
of the CompTorrent system in more detail and show how each part interacts with the 
rest of the system. Security and trustworthiness of the overall system is also 
discussed.

6.2.1 Metadata File

The metadata file contains information about the location of the tracker, the 
algorithm to be used and a description of the original data set. It contains everything 
a new node needs to find the tracker to join the swarm, the algorithm used to 
compute a part of the result and the sizes, names and hashes of each piece of original 
data to be computed. This file is formatted in XML. An example is given below.

The first section of the file contains the version of the file, the connection 
details for the tracker, the name of the computation project, the size and hash of the 
original data set. The algorithm subset of the file contains the execution details of the 
algorithm and the algorithm itself. There are two broad options for the algorithm in 
the metadata file. The swarm can rely on the algorithm application being available on 
the participating machines (as is shown in the example given) or the application 
binary can be directly embedded into the metadata file in a base64 encoding. Either 
way, this approach allows the seeder to distribute the algorithm as flexibly as 
possible. Java bytecode is easily included or a more complicated script can be used to 
broadly cater for a variety of situations and platforms. Once the algorithm has been 
extracted or obtained, the execution field stipulates how the algorithm is executed. It 
is assumed that there will always be an input file that contains data that will be 
acceptable to the algorithm. A resulting computed data set will be produced and 
saved in a computed directory.
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<?xml version="1.0" ?>
<comptorrent>
<version>0.1</version>
<tracker_url>144.6.40.251</tracker_url>
<tracker_port>60000</tracker_port>
<name>cruelcruellove</name>
<size>93130756</size>
<md5>8EE44CB5C9A5AFCACD6C0AF363C1C5A1</md5>
<algorithm>
<execution>algo.sh</execution>
<script>
#!/bin/sh
transcode ­i $1 ­o $2 ­y xvid
</script>
</algorithm>
<orig_data>
<file><name>chunk­
001.mpg</name><size>1035738</size><md5>055172279073E1DC42C847BC794816A5</md5></file>
...
<file><name>chunk­
100.mpg</name><size>703680</size><md5>BCEB81C97C89B6C0D61CFC8F8F1384DE</md5></file>
</orig_data>
</comptorrent>

The remaining section of the file describes the original data set. It does not 
contain the original data, only its representation in terms of name, size and hash. 
Nodes ask each other for original data as necessary and share the bandwidth load of 
the distribution task. The size of each data chunk in the set is dependent on the nature 
of the job and left to the judgement of the seeder at the time the metadata file is 
created. A typical data chunk size may be in the range of 256kb to 1Mb depending 
on the intensity of the computation task and quality of the network connection 
between typical nodes. Just like the algorithm, this data can be sent in plain text or 
Base64 encoded depending on the  nature of the data to be processed. Anything that 
is acceptable to XML can be left in original form whilst binary data can be encoded 
or compressed and encoded. Along with each chunk of data, the size of the data and 
a hash of the data for checksumming is included. Support for very large data sets is 
available now via two means. One option is by having multiple CompTorrent 
metadata files which swarms can join to process parts of the dataset independently. A 
second is that the embedded or downloaded algorithm manages is own data handling.

6.2.2 Tracker

The tracker is a WWW service that provides a simple shared memory for a swarm or 
number of swarms. From the tracker a node can get a list of other connected nodes in 
the swarm, get a suggestion for the next data chunk to process and report data chunks 
finished. It is a simple service that is basically a web-based front end for an SQL 
database to allow nodes to gain and provide information quickly. A tracker is kept 
simple and provides no significant processing services so that a swarm need not 
completely rely on it for its work. As such a node does not necessarily keep an open 
connection to the tracker at all times. It connects and makes requests as needed. 
There is no reason why the tracker could not be ported to other mediums beyond 
HTTP. This is the subject of future work and is discussed at the end of this thesis.

In a traditional client-server distributed computing system, the services 
provided by a Tracker would be offered by a dedicated server. In a hybrid system 
such as this one, any tracker, or multiple trackers, can be used to provide these kinds 
of services. For general purpose distributed computing, the usage of the tracker 
paradigm by CompTorrent is novel. 

The current implementation of the tracker includes tools for gathering and 
disseminating much operational data. Data are made available on which nodes have 
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which data pieces and at what time files were received or calculations made and at 
what times were connections between nodes made. All of these data are displayed in 
a web based application. Real time graphs of network topology are available as are 
visual indicators of original and computed data per node.

6.2.3 Node

Nodes speak a simple protocol that is represented in XML and communicate via 
sockets. This protocol is original and is not compatible with any other peer-to-peer 
protocol. XML was chosen due to ease of ongoing modification to the protocol when 
compared with a binary message structure style approach. Nodes make connections 
with each other after asking a tracker for nodes that are already in the swarm and 
how many existing connections to other nodes they already have. Each node will 
make as many outgoing connections to other nodes and receive incoming 
connections as it can based on user configuration. This overlay network is 
maintained for the life of the swarm as new nodes join and existing nodes leave. 
Presently, connection candidates are suggested by the tracker based on the simple 
heuristic of choosing the least connected node from a pool of nodes that do not have 
connections which involve the new potential node. A routing scheme is then overlaid 
the underlying TCP/IP network.

The communication protocol is simple and largely consists of messages to 
manage connections and exchange data chunks. Connection requests include 
information about what original and computed data a prospective partner node has 
and details about which other nodes it is already connected to. A node will then 
accept or refuse a connection with a reply and pass back similar information to take 
advantage of this brief connection. Connected nodes pass file request and file reply 
messages back and forth as they work towards completing their datasets.

A node computes a part of the overall job and reports to the tracker that it has 
finished. Nodes make requests to each other to ask for parts of the original and the 
computed data sets. Once a node obtains a new chunk of data, it reports this to the 
tracker so it can service requests for that chunk as well to help share the load.

Each node is equivalent to every other node in the network and has no 
different functionality whether it be an originating seed or a new node joining a large 
existing swarm. Nodes are arbitrary volunteers on a network and do not need to have 
similar architectures. Every node computes and shares data with every other node 
that it is connected to. There are no “special” nodes with greater importance to the 
swarm or different responsibilities. It is the equal aim of each node to assemble, and 
maintain, a complete set of the computed datasets and optionally the original data set 
in an attempt to provide as much redundancy as possible to the swarm as a whole. 
Computed chunks that are lost can be recalculated, allowing the swarm to heal itself 
should a node leave without sharing its computed data. Original data are replicated 
quickly amongst nodes in a rarest first fashion. To further illustrate this process, 
figure 17 shows a seed node with a full original data set and half of the computed set. 
Node 1 has obtained half of the original data and applied the algorithm producing 
some computed data. The tracker helps direct each node to form an overlay network 
and suggests chunks for computation and sources for data. As the computation is 
finished, the new node would work with the seed and node 1 for copies of the 
original and/or computed data.
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6.2.4 Security

Whilst not actually a discrete part of the system like the tracker or the node, the 
security implications of the system need to be considered in order to gauge its 
usefulness. From the description of the system already given, it is clear that the 
behaviour of nodes can have a dramatic impact on the reliability of the system. The 
major features currently implemented which addressing these issues will now be 
discussed. 

To begin with there is an implicit trust in the seeder or the group who has 
constructed the metadata file and a new user wishing to participate. This is especially 
the case when a custom or unknown algorithm is the agent of computation. This is 
where the ability to include a script to use an existing application might be more 
suitable. It is envisaged that in time, users would be able to gain credibility, based on 
the quality and trustworthiness of their offerings, that would be manifested in a 
community that has grown around the distribution of the metadata files itself. This is 
certainly what has occurred with BitTorrent where there are many search or 
aggregation sites which serve as databases for existing BitTorrent swarms. Users are 
commonly allowed to make comments on each file available. 

Once there is some measure of trust in the seeder, the integrity of the 
metadata file itself, whilst not currently implemented, could be managed with a 
digital signature scheme using existing tools. Original data integrity is already 
managed with hashes and this would obviously be further strengthened if the 
metadata file, containing the original set of hashes, was digitally signed by the 
author. 

The computed datasets are easy targets for malfeasance. The hashes given in 
the metadata file protect the original data, but that does little to suggest the integrity 
of their computed equivalent. In CompTorrent, a seed stipulates how many times 
each data chunk is to be recomputed, by a separate random node, before it is 
considered trustworthy. This clearly has a profound effect on the time needed to 
compute an entire set. However in an uncontrolled environment it is one of the few 
tangible ways to get an idea of how much trust can be placed on a result. Other 
distributed systems commonly use various credit and cheating techniques to manage 
and rate node contributions; this is something that may be examined in the future for 
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inclusion beyond the re-computation which is currently implemented. 

6.3 Using CompTorrent

This section demonstrates the usage of CompTorrent and forms a part of the method 
employed in Chapter 8 for obtaining measurements. This is similar to Appendix C 
where a method for reproducing the results described in Chapter 5 is given for 
Condor and BOINC.

6.3.1 A Suitable Algorithm (and data!)

There are three stipulations for an algorithm to be computed with CompTorrent as 
described in this thesis:

1. The algorithm being computed must be independently parallel.

2. The computation time should be larger relative to the network time required 
to distribute the data for the exercise to be worthwhile.

3. The interface with the algorithm, as an executable, should take an input file, 
execute, and then produce an output file in a synchronous fashion.

Obviously a data set would be a necessary requirement. It should be divided into 
suitable portions so as to satisfy item number 2 above and be suitable to be passed to 
the algorithm.

Now an algorithm that meets these requirements has been written or obtained, 
a tracker needs to be found to host the swarm.

6.3.2 Locating a Tracker

A tracker can be either controlled by the owner of the project or not. Providing the 
tracker is willing to host the project. All that is required is to know where the project 
is to be ultimately hosted in order to move on to create the metadata file.

6.3.3 Creating the Metadata File

A metadata file needs to be created as per 6.2.1. There is a tool that has been written 
to make this a less arduous task. This tool is imaginatively called makecomptorrent 
and has the following signature:

makecomptorrent file_name directory_name tracker port algorithm execution 
max_chunk_size

filename: the file name of algorithm that does the work)

directory_name: The directory containing the original data files that are to be 
computed (and nothing else)

tracker: The url that the tracker is hosted on

port: The port that the tracker is on the url you just gave

algorithm: The executable file that actually does the work

execution: How CompTorrent is supposed to run the algorithm?

max_chunk_size: The maximum data size for original or computed data set 
pieces (in bytes)
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For example:
 ./makecomptorrent onesecond jobs 144.6.40.251 60000 onesecond.exe onesecond 256000 > 
onesecond.comptorrent

This will create a project called onesecond using the files in the jobs/ 
directory using a tracker hosted at 144.6.40.251:60000. The executable 
onesecond.exe will be used at the algorithm and the maximum file size of the 
data calculated. The metadata file is output to stdout so in this example it will be 
redirected to the file onesecond.comptorrent.

6.3.4 Planting the Seed

There are two steps to this. Firstly, a seed node on a machine somewhere needs to be 
started that will generally stay online long enough for the complete dataset to be 
uploaded to the swarm. The seed is started thus:

comptorrent metadata_file network_interface tracker_url (optional)  seed compute

metadata_file: The comptorrent metadata file for the swarm you want to start 
(or join).

network_interface: Which network connection to use.

tracker_url: This is optional, however it is possible to use a different tracker 
to the one stipulated in the metadata file.

Seed: 0 or 1. Am I the seed (and running for the first time)? The only real 
difference here is that it will ask the tracker to clear the cache of data for the job.

Compute: 0 or 1. Will this node be contributing computing resources or just 
hosting data files. This is useful for seeds which do not want to do any of the actual 
computing work.

For example:

./comptorrent comptorrents/mandelbrot.comptorrent eth0 1 0

This will start the application using the mandelbrot.comptorrent metadata file, listen 
on the network adapter called eth0 as the seed and not do any computation.

Now that the seed is running, connected to the tracker and listening for new 
connecting nodes, nodes need to be encouraged to connect. The first and most 
obvious step of this is that the metadata file will need to be shared. In a controlled 
environment it can be shared on a local drive or server; in a WAN environment a 
web site or via email may be more appropriate. Nodes who wish to participate 
download the file and start the application in the same way, though with the last two 
options reversed, as they are not the seed and you would like to hope that they will 
compute as well.
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6.3.5 Seeing the Results

At present the tracker is open for all users to see the computing progress. Some 
differentiation between the project owners and participants later on would be an 
obvious requirement for production. A web based interface was implemented that 
describes the overall swarm and its progress.

6.3.5.1 The home page

This page lists all of the jobs hosted on the tracker and provides a menu to each 
major function.

6.3.5.2 Node & Work Unit List

The node and work unit list (accessible by clicking on the name of the job in the 
diagram above) gives an overview of the job's progress. The nodes in the swarm are 
described as are the statuses of each work unit. Work units can be observed as 
uncomputed (red), allocated and in-progress (yellow) and completed (green). Figure 
19 shows a completely computed project.
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Figure 18: The tracker WWW interface home page.

Figure 19: The tracker Node & Work list.



6.3.5.3 Overlay Graph

The overlay graph shows a representation of the overlay network tree for the swarm. 
Each node is allocated a network overlay key which allows it to route messages to 
any other node in the overlay network without keys needing to be allocated by any 
central authority. This is discussed in further detail in section 7.1.2.3.

6.3.5.4 Connection Graph

The connection graph shows the IP connections between each node in the swarm. It 
shows the actual network socket connections between each node that are made.
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6.3.5.5 Last Run Times

The Last Run Times page primarily shows a list of each work unit, when it was 
completed, when nodes joined the swarm and so on.

6.4 Chapter Summary

This chapter has presented a high-level description of a new distributed computing 
system that is relatively generic and easy to use for both joining and creating a 
distributed computing project.  Techniques have been applied to distributed 
processing that have not been applied before, namely the metadata file and tracker 
paradigms, that have produced favourable results. This has allowed for CompTorrent 
to use many existing compiled programs without modification as an algorithm for a 
computing swarm to use. 

Chapter Seven follows with a detailed description of CompTorrent.
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Chapter Seven

7.0 CompTorrent Implementation
This chapter will discuss the individual components that comprise the overall 
CompTorrent system in detail. 

7.1 Major Components

As discussed in the previous chapter, CompTorrent consists of two major software 
components, the tracker and the CompTorrent peer-to-peer application itself. This 
section will examine each in detail.

7.1.1 Tracker

This section builds on the description in section 6.2.2 to provide a detailed technical 
description as well as a discussion of design considerations. The Tracker is a WWW 
service that provides a discovery service for nodes as well as a repository for what 
work has been done. It is a collection of web scripts written in the PHP language and 
backed by a MySQL database.

7.1.1.1 Communication Protocol with Nodes

Nodes communicate with the tracker via a HTTP interface. Requests are made to 
individual files on the tracker server. Each file has a specific purpose, set of request 
variables (in our implementation using a GET14) and reply. Each is discussed in turn 
in the table below to illustrate the overall process.

Each of the functions described here has a related database table, or set of 
tables, which is described in the tracker database schema in Appendix A.

chunk_report.php Purpose: 

To advise the tracker that a work unit has been completed. 

Parameters:

uuid – The unique id of the node. Used as an identifying key.

name – The name of the work unit.

hash – The hash generated from the original data.

comptorrentname – The job that the  work unit belongs to.

comp_state –  The current status of the work unit 
{0:uncompleted, 1:allocated/in-progress, 2:completed}. 
Generally a node will only set it completed as the tracker will 
manage the uncompleted and allocated states.

14 A GET is a part of the HTTP specification which allows data to be passed to a web server. See the 
HTTP/1.1 specification for more information (RFC 2616).
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torrenthash – The md5 hash of the computed result. 

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_datachunks

register_node.php Purpose:

To advise the tracker that a new node on the network for a 
particular comptorrent. Sent by the joining node as soon as it 
has been allocated a route key by another node.

Parameters:

ip – The node's IPv4 address.

port – The node's Ipv4 port for listening for new join requests.

uuid – The unique id of the node. Used as an identifying key.

name – The name of the “comptorrent” or computing job. So a 
tracker can host multiple jobs.

routeid - The key in the route table that has been assigned to 
this node.

Return Values:

boolean – Success or failure of request.

Primarily Related Database Table(s):

sp2p_node

node_report.php Purpose:

To advise the tracker of a node's ongoing status.

Parameters:

ip – The node's IPv4 address.

port – The node's Ipv4 port for listening for new join requests.

num_connections – The number of total connections to other 
nodes in the network.

uuid – the unique id of the node. Used as an identifying key.

comptorrentname – The name of the “comptorrent” or 
computing job. So a tracker can host multiple jobs.

num_computed_chunks – The amount of computed work units 
that this node has in it's possession.

num_original_chunks = The amount of original data subsets 
that this node has in it's possession.

routeid - The key in the route table that has been assigned to 
this node.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_node

clear_records.php Purpose:

To clear the records for a tracker. Used primarily as a tool in 
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testing and running multiple computations with the same name 
repeatedly. Not particularly suitable for deployment in a 
production environment.

Parameters:

None!

Return Values:

None!

Primarily Related Database Table(s):

All tables.

get_comp_hash.php Purpose:

To ask the tracker for the computed hash of a particular work 
unit. This can aid the node in assessing the reliability of a work 
unit being received from another node.

Parameters:

nodeuuid – The unique id of the node. Used as an identifying 
key.

chunkname – The name of the work unit.

Return Values:

string – MD5 (or other) hash of the accepted computed hash for 
this work unit as determined by the tracker.

Primarily Related Database Table(s):

sp2p_datachunks, sp2p_computing

random_chunk.php Purpose:

Request a  work unit to process. Random may be a misnomer 
as the tracker can employ a variety of algorithms besides 
randomness to make a suitable suggestion. Algorithms include 
in order processing (start at the first and work through to the 
end), random, least computed, and least confirmed.

Parameters:

nodeuuid – the unique id of the node. Used as an identifying 
key.

Return Values:

string

Primarily Related Database Table(s):

sp2p_datachunks

stats.php Purpose:

Report a generic operational statistic. This is used to gather 
data on the nature of the computation, when nodes join and 
leave, when the are computing a work unit and so on. 

Parameters:

nodeuuid – the unique id of the node. Used as an identifying 
key.

type – A free-form string of up to 12 characters to describe the 
type of statistic e.g. processing, init, etc.

statistic – A free-form string of up to 64 characters to contain 
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statistic data.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_stats

file_report.php Purpose:

Report having an original data subset.

Parameters:

torrenthash – The identifying hash of the comptorrent.

nodeuuid – The unique id of the node. Used as an identifying 
key.

resulthash – The MD5 hash computed from the original data 
subset.

filename – The name of the work unit.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_files

finish_report.php Purpose:

Report a computed work unit.

Parameters:

orighash – The identifying hash of the original data subset.

torrenthash – The identifying hash of the comptorrent.

uuid – The unique id of the node. Used as an identifying key.

resulthash – The MD5 hash computed from the work unit.

chunk_name – The name of the work unit.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_datachunks, sp2p_computing, sp2p_files

set_chunks_done.php Purpose:

Report a number of computed work units in one message. 
Communicating with the tracker can be expensive. This 
attempts to minimise the cost.

Parameters:

comphash – Multiple md5 computed work unit hashes as 
comma separated values.

torrenthash – The identifying hash of the comptorrent.

nodeuuid – the unique id of the node. Used as an identifying 
key.

Return Values:
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boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_datachunks, sp2p_computing, sp2p_files

set_orig_data.php Purpose:

Similarly to set_chunks_done.php this reports multiple original 
data set pieces.

Parameters:

origdata – Multiple md5 computed original data set hashes as 
comma separated values.

torrenthash – The identifying hash of the comptorrent.

nodeuuid – the unique id of the node. Used as an identifying 
key.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_files

report_connection.php Purpose:

Advise the tracker of a connection between two nodes in the 
overlay network.

Parameters:

nodeuuid – the unique id of the node. Used as an identifying 
key.

server - The unique id of the node acting at the “server” end of 
the connection.

client - The unique id of the node acting at the “client” end of 
the connection.

torrentname – The name of the “comptorrent” or computing 
job. So a tracker can host multiple jobs.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_connections

request_node.php Purpose:

Request a candidate node to make a connection with. The 
tracker can employ a variety of algorithms to make a suitable 
suggestion.

Parameters:

uuid = the unique id of the node. Used as an identifying key.

ip = the IPv4 address of the node making the request.

Return Values:

string – IPv4 address and port of suggested node.

Primarily Related Database Table(s):

sp2p_node, sp2p_connections
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get_route_to_file.php Purpose:

Ask the tracker for the overlay key of the node most likely to 
have the requested file.

Parameters:

nodeuuid – The unique id of the node. Used as an identifying 
key.

chunkhash – The computed MD5 hash of the requested file.

Return Values:

string – route id of a node with the file.

Primarily Related Database Table(s):

sp2p_node, sp2p_files, sp2p_datachunks

suggest_orig_chunks.php Purpose:

Ask the tracker for some suggested original data set files. 
These can be allocated randomly or on the least shared files.

Parameters:

lastchunk – The last original data set file suggestion that the 
node retrieved from the tracker. This can hint the tracker based 
on what files the node reports to already have. It can suggest 
files around there – or not around there. Depends on the 
algorithm being used.

Return Values:

string – work unit suggestion

Primarily Related Database Table(s):

sp2p_datachunks

report_ipconnection.php Purpose:

Report to the tracker a connection between nodes that has been 
made where they already have overlay keys. These redundant 
connections are made to improve network robustness and 
performance. At the tracker level, these notifications are a 
courtesy (and allowance for research so the actual network can 
be drawn) as nodes will “short-cut route” messages at each 
node without communication with the tracker. This is discussed 
further in 7.1.2.3.

Parameters:

server – The IPv4 address of the node at the “server” end of the 
connection.

client – The IPv4 address of the node at the “client” end of the 
connection.

nodeuuid – the unique id of the node. Used as an identifying 
key.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_ipconnections

ipconnection_exists.php Purpose:
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Ask the tracker whether two nodes have a IP connection. Helps 
nodes make decisions about whether to accept incoming 
requests. 

Parameters:

server – The IPv4 address of the node at the “server” end of the 
connection. Can be thought as address 1 as it will test for 
connections made in either client-server or server-client 
configurations.

client – The IPv4 address of the node at the “client” end of the 
connection. Can be thought as address 2 as it will test for 
connections made in either client-server or server-client 
configurations.

nodeuuid – the unique id of the node. Used as an identifying 
key.

Return Values:

boolean – connected or not connected.

Primarily Related Database Table(s):

sp2p_ipconnections

Table 43: The major web based components of the CompTorrent Tracker.

7.1.1.2 Discussion of Tracker Design

The approach taken here, using a web application along with a MySQL database, 
affords all of the robustness that a modern web application enjoys. It is possible 
therefore, with little extra application work, to take advantage of load balancing 
between servers and replication of databases.

The Tracker itself only aids the computation through suggestions of work 
units when nodes request them. These suggestions aid swift computation however 
nodes can request and compute any available work units they wish. This can improve 
performance as the tracker will allocate work chunks based on what files a node 
already has to minimise processing starvation – without the node knowing what has 
or has not been computed. This approach minimises the amount that the nodes need 
to know about the overall network and removes the associated bandwidth between 
nodes over the network that would otherwise be required for this functionality. The 
Tracker will also direct the job through the nature of the computation and nature of 
the network (in order processing (start at the first and work through to the end), 
random, least computed, and least confirmed). A tracker will also periodically 
reassign work that appears to have taken longer than the average.

The tracker collects information reported from nodes. All information 
reported is specifically used for aiding the computation task such as nodes making 
connections to other nodes, their overlay keys and which data have been processed. 
Further derived from this information, are statistics and statuses which are used for 
informational and testing purposes. 

A tracker also enforces the swarm paradigm and naturally limits the size of 
the peer-to-peer network. Nodes participating in a particular job rather than nodes 
participating in a large network where jobs are then chosen. This contrasts with an 
approach of a monolithic system such as a classical Grid or that taken by GPU 
(3.3.2.1).
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7.1.2 CompTorrent Application

The reference implementation is written in C++ and utilizes the commonc++, 
crypto++ and tinyxml libraries. The application and all of the libraries used are 
compilable with the GNU C++ compiler ensuring that it is relatively portable 
between all major platforms. 

Obtaining and compiling the code is detailed in Appendix A.

7.1.2.1 Major Objects

There are 8 major parts to the CompTorrent application. Most are objects that 
contain threads so that they can operate independently of other parts of the 
application. Some objects are in a hierarchical relationship and communicate with 
each other via inheritance or aggregation. Others communicate via a system of 
message queues so that they can service requests without needing to wait any longer 
for processing than absolutely necessary. Communication between the tracker and 
other nodes on the network is always “best effort” in this implementation. Resends of 
data and reallocations are dealt with via timeouts and subsequent reallocation of 
unsent work. 

UML class diagrams are listed in Appendix B.

7.1.2.1.1 Main Loop

The main loop of the application is primarily concerned with bootstrapping onto the 
network and starting each of the main objects. It then periodically attempts to make 
outgoing connections.

if (Controller.parse_torrent(comptorrent_file)) {
  // decode the comptorrent file, extract the algorithm, create the
  // working dir, etc
  Controller.create_working();
  Controller.start_distributed(my_ip, my_port);
  // get in touch with the tracker (hopefully) and see what's going
  // on with the wider network
  Controller.bootstrap_from_tracker();
  // start the thread which will wait for and manage incoming
  // connections
  Controller.start_listener(my_ip, my_port);
  for (;;) {
    Controller.tracker­>report_stats_to_tracker();
    Controller.attempt_outgoing_connection(my_ip, my_port);
  }
}
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7.1.2.1.2 Controller

The Controller class oversees the runtime operation of the application without 
needing to know too much about the actual protocol being run. It has the notion of 
connections, messages and files that need to be managed. It is the parent of all 
CompTorrentPeer objects created (CompTorrentPeer is described in the next 
section).

Controller contains several of the other objects described in this section which 
are created to make or receive connections on the network as well as parse the 
metadata file.

void start_distributed(string host_ip_, string host_port_);
void start_listener(string host_ip_, string host_port_);

void make_connection(string host_ip_, string host_port_);
void attempt_outgoing_connection(string host_ip_, string host_port_);
void attempt_incoming_connection(string host_ip_, string host_port_);

bool parse_torrent(string file_path);
bool create_working();
unsigned long bootstrap_from_tracker();
void clear_tracker_data();

There are also methods for general connection management which Controller 
maintains an overseer role in.

void add_connected_peer(string ip, string port, void* CompTorrentPeer);
bool connected_peer_exists(string ip, string port);
void out_broadcast(string msg);
bool remove_connected_peer(string ip, string port);

void add_peer_under_consideration(string ip, string port);
bool peer_under_consideration(string ip, string port);
bool remove_considered_peer(string ip, string port);

void set_routing_id(string routing_id_);
string get_routing_id();
string get_next_routing_id();

void set_ip(string ip_) { ip = ip_; }
void set_port(string port_) { port = port_; }
string get_ip() { return ip; }
string get_port() { return port; }

int get_num_connections();
int get_num_incoming_connections();
int get_num_outgoing_connections();

void increment_num_incoming_connections(); 
void increment_num_outgoing_connections();
void decrement_num_outgoing_connections();
void decrement_num_incoming_connections();

References to major objects are kept here.

CompTorrentParser* comp_torrent;
TrackerParser* tracker;
// NUM_PROCESSORS is how many units to work on concurrently
Processor* processor[NUM_PROCESSORS]; 
Router* router;
Listener* listener;

As with connection management, Controller oversees the node's collection of work 
units and files. 

bool have_comp_chunk(string chunkname);
void add_comp_chunk(string filename, string resulthash);
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void get_known_comp_chunks_xml(ostringstream& xml);
int get_num_comp_chunks();

bool remove_required_comp_chunk(string chunk_name);
void add_required_comp_chunk(string filename);
bool get_next_required_comp_chunk(file_chunk& f);
int num_required_comp_chunks();

bool have_file(string chunkname, string filetype);
void request_file(string chunkname, string filetype);

bool have_orig_chunk(string chunkname);
void add_orig_chunk(string filename, string resulthash);
void get_known_orig_chunks_xml(ostringstream& xml);
int get_num_orig_chunks(); 

bool remove_required_orig_chunk(string chunk_name);
void add_required_orig_chunk(string filename);
void add_required_orig_chunk_front(string filename);
bool get_next_required_orig_chunk(file_chunk& f);
int num_required_orig_chunks();

7.1.2.1.3 CompTorrentPeer

The CompTorrentPeer object acts on the messages received from other nodes (as 
described in 7.1.2.2). These messages are received and sent via message queues 
in_box and out_box.

It has methods which manage the sending of messages:
void send_welcome_message();
void send_noop();

As well as methods to parse received messages:
bool process_noop(string intmp);
bool process_file_update(string intmp); 
bool process_welcome_message(string intmp);
bool process_connect_message(string intmp);
bool process_file_reply(string intmp);
bool process_file_request(string intmp);
bool process_overlay_message(string intmp);
bool process_overlay_update_message(string intmp);

Each of these methods directly correspond to the messages the process which 
are explained in 7.1.2.2.

Its run method embodies the logic for how these messages are marshalled.
void CompTorrentPeer::run() {

while (!die) {

bool message_sent = false;

// if I am the server end of this connection and I'm unconnected, 
// send a welcome message

if (state == p_unconnected) {
send_welcome_message();
state = p_overlay_wait;

}

string intmp(""); // the message popped of the incoming messages queue
while (AbstractPeer­>in_box.pop(intmp)) {

process_noop(intmp);
process_connect_message(intmp);
process_welcome_message(intmp);
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process_overlay_message(intmp);
process_file_update(intmp);
process_file_reply(intmp);
process_file_request(intmp);

}
}

...

It also manages link failure detection and kills itself if a connection becomes 
unresponsive

...
}

7.1.2.1.4 TrackerParser

The tracker object manages communication between a node and the Tracker. It also 
manages collections of some of the inter-node communication that the node has been 
exposed to.

A collection of methods to interface with the tracker interfaces as described in 
7.1.2.1. 

bool report_ipconnection(string client, string server);
bool ipconnection_exists(string client, string server);
bool get_route_to_file(const string chunk_hash, string& 
routeid);
...

As well as methods to maintain some collections of information gleaned from 
communication with other nodes as per messages 7.1.2.2.

void add_known_peer(known_peer kp);
bool known_peer_exists(known_peer kp);

It maintains collections of the known_peers and data units.
vector<known_peer> known_peers;
vector<orig_data_chunk> data_chunks;

7.1.2.1.5 CompTorrentParser

The comptorrentparser object contains the data primarily gleaned from the 
comptorrent metadata file. It also manages collections of some of the inter-node 
communication that the node as been exposed to.

It contains methods to load and initialise the object from the metadata file: 

bool load_xml(string);
bool create_working();

As well as methods to access parsed data:

string get_version();
string get_tracker_url();
string get_tracker_port();
...

It also manages the known connections between the node and other nodes 
connected as well as the collections of nodes that it have been previously known to 
exist on the network.

bool known_peer_exists(known_peer kp);
void add_known_peer(known_peer kp);
void remove_known_peer(known_peer kp);
...
unsigned long get_num_known_peers();
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unsigned long get_num_connected_peers();
...
vector<known_peer> known_peers;

Methods exist to manage the data being processed. Collections of the original 
and computed data sets are kept.

vector<orig_data_chunk> data_chunk_list;
...
bool comp_data_exists(string filename);
bool orig_data_exists(string filename);
...
void   update_comp_chunk(string chunk_name, computation_state state, bool 

file_exists);
void   update_orig_chunk(string chunk_name, computation_state state, bool 

file_exists);
...
filemap known_files;

7.1.2.1.6 Listener

The listener manages incoming connections to a node. One is created for each 
“server-side” connection that a node accepts. Once the IP connection is made it is up 
to the created CompTorrentPeer objects to decide where a logical connection occurs. 
Here the only checking it to ensure that the node doesn't already have a connection to 
the requesting node. This can occur when two nodes both decide individually to 
make a connection to each other concurrently. There is a critical section in the 
listener that ensures that IP connections are handled one at a time to avoid 
superfluous connections.

void Listener::run() {

for (;;) {
  if (server.isPendingConnection()) {
  AbstractPeer* p2p = new AbstractPeer(server, parent, SERVER);

  if (!parent­>connected_peer_exists(kp.ip, kp.port)) {
    parent­>add_connected_peer(kp.ip, kp.port, (void*)p2p);
    p2p­>set_my_ip(host_ip, host_port);
    p2p­>detach();
  } else {
  server.reject();

         }
       }

7.1.2.1.7 Router

The router exists in the Controller object which manages data chunks received by the 
node. When messages containing work unit data are received, they are placed in a 
queue for the router to manage. Providing it has a route the router will process 
original data chunks as they arrive (storing them on the node's disk and presenting 
them to the Processor object) and if the node is waiting on a request for a work unit 
computed by another node, process them as well by saving them to the disk.

for (;;) {
if (parent­>get_routing_id() != NO_ROUTE) {

// grab the next required original file off the stack
get_next_orig_chunk();
if (parent­>get_num_comp_chunks()>=num_requested_comp_chunks)

get_next_comp_chunk();
}

}
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7.1.2.1.8 Processor

The Processor object requests work to be done from the tracker as well as managing 
requests and replies for original data pieces to match the allocated work.
void Processor::run(){

for (;;) { 
if ((!processing_finished()) && 
  (parent­>tracker­>get_next_chunk_name(current_chunk_name))) {
   // do we have this chunk?
   if (parent­>comp_torrent>orig_data_exists(current_chunk_name){

process_orig_chunk(current_chunk_name);
   } else {
// we don't have this chunk ­ 
// we are going to need to ask for it and wait
parent­>add_required_orig_chunk_front(current_chunk_name);

...

Here the node will grab a few work units near it as well to lessen the chance 
of starving again.

...
parent­>add_required_orig_chunk(child­>GetText());

   }

// if we're waiting on an original chunk to turn up 
// lets see if we've got it yet
if (state == waiting_on_origchunk) {
  // have we got it yet? If so lets process it
  if (parent­>comp_torrent­>orig_data_exists(current_chunk_name)) {

process_orig_chunk(current_chunk_name);
  } else {

wait_timeout­­;
...

Here there is a timeout process where if a work unit can't be found in a given 
period of time the node can tell the tracker to give it to someone else.
...
}

7.1.2.2 Communication Protocol Between Nodes

Nodes communicate using a simple message based protocol using XML. Some 
messages are shared through limited broadcast where others are exchanged between 
connected nodes only. 

<comptorrent>
<packet>{welcome,denied}
</packet>
<ip></ip>
<port></port>
<uuid></uuid>
<compchunks>
<datachunk></datachunk>
...
</compchunks>
<origchunks>
<datachunk></datachunk>
...
</origchunks>
</comptorrent>
</comptorrent>

Purpose: 
During a connection negotiation, a welcome packet is 
sent by a server to the client on an accepted connect. On 
a refused connection, denied is sent instead with the rest 
of the information potentially omitted.
Parameters:
ip – The client's IPv4 address.
port – The client's listening port.
uuid – The client's unique id.
compchunks – filenames of the parts of the original and 
computed data sets that this node possesses.

<comptorrent>
<packet>connect</packet>
<ip></ip>
<port></port>
<uuid></uuid>
<routeid></routeid>
</comptorrent>

Purpose:
During connection negotiation, a connect packet is sent 
from the client to the server.
Parameters:
ip – The client's IPv4 address.
port – The client's listening port.
uuid – The client's unique id.
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routeid – The client's overlay key. Left blank if the client 
has not yet joined the overlay network.

<comptorrent>
<packet>noop</packet>
<ip></ip>
<port></port>
<uuid></uuid>
</comptorrent>

Purpose:
Sent periodically at either end of the connection to keep 
the connection active.
Parameters:
ip – The client's IPv4 address.
port – The client's listening port.
uuid – The client's unique id.

<comptorrent>
<method>direct</method>
<packet>file_req</packet>
<dest></dest>
<from></from>
<type>{comp_data, 
orig_data}</type>
<filehash></filehash>
<name></name>
<node_id></node_id>
<ip></ip>
<port></port>
</comptorrent>

Purpose:
Request a file to be routed around the network or from a 
directly connected IP connection.
Parameters:
method (direct) – Indicates that the packet is sent 
directly on a single IP connection and shouldn't be 
routed on.
dest – The overlay route key of the destination.
from – The overlay route key of the originating node.
type – The data type computed or original.
filehash – The md5 hash of the requested file. 
name – The name of the data requested.
node_id - The client's unique id.
ip – The client's IPv4 address.
port – The client's listening port.

<comptorrent>
<packet>file_update</packet>
<filehash></filehash>
<name></name>
<type>{comp_data, 
orig_data}</type>
<ip></ip>
<port></port>
</comptorrent>

Purpose:
Sent between directly connected nodes to advertise an 
available file on a particular connection.
Parameters:
ip – The sender's IPv4 address.
port – The sender's listening port.
filehash – The md5 hash of the available file. 
type – The data type computed or original.
name – The name of the available file.

<comptorrent>

<packet>file_reply</packet>
<dest></dest>
<type></type>
<ip></ip>
<port></port>
<filehash></filehash>
<name></name>
<data></data>
</comptorrent>

Purpose:
File reply packet. 
Parameters:
ip – The sender's IPv4 address.
port – The sender's listening port.
dest – The overlay route key of the destination.
type – The data type computed or original.
ip – The sender's IPv4 address.
port – The sender's listening port.
filehash – The md5 hash of the available file. 
name – The name of the available file.
Data – The file data. Either plain text or binary encoded 
base64 uuencoded text.

<comptorrent>
<packet>overlay_update
</packet>
<routeid></routeid>
<ip></ip>
<port></port>
</comptorrent>

Purpose:
To advise connected nodes of a node's overlay key.
Parameters:
routeid – The overlay key for the node.
ip – The sender's IPv4 address.
port – The sender's listening port.

<comptorrent>
<packet>overlay</packet>
<routeid></routeid>
</comptorrent>

Purpose:
To allocate a directly connected node an overlay key.
Parameters:
routeid – The overlay key for the node.

Table 44: The message schema of the CompTorrent protocol.
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7.1.2.3 Network Overlay & Topology

CompTorrent relies on a tree to organise its nodes into an overlay network. A simple 
key scheme is used where keys are allocated as a string derived from the node where 
the connection is being made. The “server” node allocates a string which is a 
concatenation of it's route key and a number representing the number of currently 
connected “client” nodes plus one. The seed node, and root of the tree, starts with a 
route of “1”. If the root has two children they will have route keys of “11” and “12”. 
If the right most node has a child it will have a key of “121”, and so on. This 
arrangement is known as a trie and can be found described in Knuth (1997).

When a node wishes to make a new connection, they can do so in two ways. 
With the  aid of the tracker, a connection candidate can be suggested for the new 
node. This can be based on an algorithm to moderate the nature of the overlay 
network. At present, nodes can be allocated randomly or be balanced by number of 
existing connections. In the case of the latter, existing nodes in the overlay network 
can be selected based on them having the least number of existing connections. 
Where the tracker is unavailable, a node can attempt a connection to another 
arbitrary known node (bootstrapping similar to Gnutella). In either case is the 
decision of the  connection is made by the individual node, the tracker only assists 
the overall process it does not actively manage it.  

Each node is allocated their route key and all of their child nodes will have 
keys that are a superset of their own key. When routing a message from one node to 
the other, messages can be sent from one node to any other in the network by 
traversing the tree upwards to where there is a match between the current node and 
the destination key. Worst case this means that a message will need to route all the 
way to the root before heading back down towards the destination. In practice a node 
will maintain more than one connection. It will usually maintain connections to its 
child nodes where it has previously allocated them a route key in the overlay 
network. Once a node has been allocated a place in the network it will make some 
connections over time, randomly or as directed by the tracker, to other nodes in 
various parts of the network. This allows messages to “short cut” through the overlay 
network. A message when it arrives will be routed on to its nearest neighbour as 
connected to that node – this will include its “worst case upwards” as well as a 
selection of potentially nearer nodes in the overlay.

This scheme has several advantages and disadvantages. The most obvious as 
already implied is that as long as you maintain a connection to a “higher” position in 
the overlay tree it is likely that you will be able to route a message. Implementation 
is simple with the core of the scheme implemented in only a few tens of lines of 
code.  Decentralisation is also maintained by any node being able to allocate a 
routeable key without knowledge of the overall network. This adds the benefit of 
being robust in the face of access to a tracker and further decentralisation of swarm 
management. Separate trackers can manage node allocation and work unit 
management or multiples doing both. 

As with most tree structures, worst case performance can see the nodes 
allocated into a list or a star. Also, with node churn it is possible for parts of the 
overlay to become unreachable. Both of these disadvantages are mitigated by the 
tracker paradigm and random node connections after overlay placement. 

In addition, the hierarchical network scheme also lends itself well to the 
nature of computation. It is reasonable to assume that a seed is one of the most 
interested in the results of participating nodes in a computing swarm. Results moving 
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upwards towards the seed are naturally suitable. As are passing results around as one 
of the biggest incentives, in general, is an interest in either or both computed and 
original data sets. Bandwidth consumption is limited by the random allocation of 
computing jobs, and therefore original and computed data subsets, being spread 
around the overlay network reasonably evenly. Nodes can eavesdrop on moving 
messages, especially those requesting and replying to data sets, and make notes of 
likely nodes with data that they will later need or save data that they want as it passes 
through the network.  Whilst the organisation of the network is hierarchical in a 
communication sense, there is no imposed hierarchy on the nodes themselves. Nodes 
can leave and join whenever and wherever they choose without disrupting 
computation or communication. 

7.1.2.4 Security

In a distributed wide area volunteer network computing system, the integrity of the 
results and the confidence that these are results are correct is of paramount 
importance. In CompTorrent, as with most of these systems, confidence in computed 
data is gained through multiple computation of work units. The metadata files can 
also be digitally signed to allow a node to check that the metadata file is originally 
from a trusted source. Even a simple scheme of publishing a hash generated from the 
metadata file on a group controlled web site would afford a reasonable amount of 
certainty for users. This trust could conceivably increase if the hash matches on 
multiple unrelated and reputable websites.

That all being said a user still has to trust the seed and the tracker. The fact 
that metadata files contain executable code is cause for concern enough. In 
production, this concern can be mitigated by having metadata files digitally signed, 
as just discussed, by a seed and provided to the tracker. However, this only shifts the 
trust - it doesn't create it. A participant will need to trust that the project is as it is 
advertised. This trust would come through the number of nodes participating in the 
network, the project being associated with a trusted website (such as a faculty, 
company or organisation site) which would have a copy of the metadata signature on 
it as well. The metadata file, once trusted, allows that trust to be extended to the data 
sets as it contains hashes of every part of the original data set.

The tracker maintains security by keeping things as opaque as possible. It 
always opts for “blind requests” where possible e.g. “is this node linked to this node” 
rather than: “tell me all of the node connections that you know about”. 

However, there are still many places where malfeasance can occur since 
CompTorrent has not been widely released. That is reasonable, at this stage, as 
CompTorrent is still “academic” code. Hardening needs to occur before it could be 
reliably used in production and is considered later in this thesis as further work.

7.2 The CompTorrent Metadata File

Building on the description given in 6.2.1, this section will describe each part of the 
metadata file in detail. The file presented is an abbreviated version of the 
CompTorrent file used in the Mandelbrot experiment presented later in 8.1.3.

<?xml version="1.0" ?>
<comptorrent>
<version>0.1</version>
<tracker_url>192.168.1.5</tracker_url>
<tracker_port>60000</tracker_port>
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<name>mandelbrot</name>
<size>12345678</size>
<max_chunk_size>264000</max_chunk_size>
<md5>12DFF226FD2430A0F36204CD66423122</md5>
<algorithm>
<execution>comptorrents/working/mandelbrot/mandelbrot</execution>
<java_bytecode>
begin­base64 755 mandelbrot
f0VMRgEBAQAAAAAAAAAAAAIAAwABAAAAIIkECDQAAACwwwAAAAAAADQAIAAI
...
====
</java_bytecode>
<classname>mandelbrot</classname>
</algorithm>
<orig_data>
<file><name>mandelbrot_00000001</name><size>67</size><md5>12DFF226FD2430A0F36204CD664
23122</md5></file>
...
<file><name>mandelbrot_00000160</name><size>67</size><md5>12DFF226FD2430A0F36204CD664
23122</md5></file>
</orig_data>
</comptorrent>

Each element will now be considered in turn.

The version element allows for versioning of the system. This can allow the 
tracker and application know whether the metadata file is compatible with 
themselves before processing. The tracker URL and port indicates which tracker is 
the “home” tracker for this metadata file. It is possible to stipulate a different tracker 
and port when the CompTorrent application starts which will override the one given 
here as an option to allow trackers to move yet still capitalise on earlier metadata file 
distribution.
<version>0.1</version>
<tracker_url>192.168.1.5</tracker_url>
<tracker_port>60000</tracker_port>

The name and size of the computing project is given here. The name should 
be  human readable and relatively unique (to the hosting tracker at least). The size 
refers to the total size of the original dataset for computation.
<name>mandelbrot</name>
<size>12345678</size>

The max_chunk size refers to the largest piece that the original data set has 
been broken into. This allows for memory allocation in the application but also gives 
an indication of the size of each work unit. The md5 hash here is the hash of the 
entire original dataset. This allows an application to verify the entire set should it be 
obtained.

<max_chunk_size>264000</max_chunk_size>
<md5>12DFF226FD2430A0F36204CD66423122</md5>

The algorithm section contains two parts; the execution and bytecode. The 
execution element tells CompTorrent how the embedded algorithm is to be executed. 
It can be a script, or as in the example here, a single command. The bytecode section 
includes a base64 encoded copy of the algorithm. This can be java, as it is in this 
case, or an executable. Its possible that the embedded algorithm can simply be a 
downloader for another larger or more frequently changing algorithm that isn't 
suitable for embedding into the metadata file itself.
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<algorithm>
<execution>comptorrents/working/mandelbrot/mandelbrot</execution>
<java_bytecode>
begin­base64 755 mandelbrot
f0VMRgEBAQAAAAAAAAAAAAIAAwABAAAAIIkECDQAAACwwwAAAAAAADQAIAAI
...
====
</java_bytecode>
<classname>mandelbrot</classname>
</algorithm>

The original data section describes every subset of the data which forms the 
basis of each work unit. Each “chunk” of the data has a name, a size and a computed 
md5 hash. The name and the hash are used as a way of identifying and verifying data 
received from nodes on the network respectively.

<orig_data>
<file><name>mandelbrot_00000001</name><size>67</size><md5>12DFF226FD2430A0F36204CD664
23122</md5></file>
...
<file><name>mandelbrot_00000160</name><size>67</size><md5>12DFF226FD2430A0F36204CD664
23122</md5></file>
</orig_data>

7.3 CompTorrent in Action

Now that the major components of the system are understood, a “step through” of the 
processes are presented here to show how the system functions as a whole. Typical 
states are given and discussed.

7.3.1 A Seed Node by Itself

A computing exercise will always start with a single seed and a CompTorrent file. 
The same CompTorrent file is used by the seed to start the computation as well as it 
being distributed to other potential nodes to join later.

The seed's actions at start are mostly managed by the main loop itself:

1. Set my route id to 1 and contact the tracker and register the project.

2. Create an Controller object to manage the runtime operation of the 
application. Here Controller will create a Processor object which, 
depending on the parameters given to the seed at start up, may start 
working on the computation itself. This is an option as some seeds may 
wish to merely upload the source data as quickly as possible and then 
disconnect.

3. Parse the CompTorrent file, extract the algorithm and create working 
directories.

4. Create a CompTorrentPeer object to manage messages.

5. Start a listener object to accept incoming connections.

6. Enter the main loop and repeatedly try to make outgoing connections to 
other nodes as they become known to the seed.
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7.3.2 A Node Joining Without a Route ID

New nodes will make a connection to an existing node without having an overlay 
key or route id. This means that one is allocated to them as part of the connection 
process. From the existing node on the network's perspective (the server in the case 
of this direct connect), this is an incoming or client connection.

1. A new node will contact the tracker and receive a suggestion for a node to 
connect to.

2. Through Controller.attempt_outgoing_connection() the node will create a 
new Controller object for this connection and start it.

3. Controller will create a CompTorrentPeer object that will go through the 
connection process and send a connect message. If it gets a welcome 
message it will add itself to a collection of connections and notify the 
tracker that a connection has been made. If it is refused it will simply 
terminate itself.

4. At the server side of this new connection, the corresponding 
CompTorrentPeer object (the same object is used for client and server 
connections) should observe that the connecting node doesn't have a route 
id and will derive one from its own route and send an overlay message 
directly to the new node. It is perfectly possible for multiple connection to 
be occuring concurrently so it is the first received overlay message that is 
accepted by the new node and its route key that is adopted as its own. 
Further overlay messages are ignored if the node already has a route id. 
Once this has occurred the new node will broadcast its overlay key to 
directly connected nodes as well as informing the tracker.

5. Now that the node is registered on the overlay network, its processor 
object should begin to request and process work units.

7.3.3 A Node Joining a Node

As a part of the main loop of the CompTorrent application, periodically nodes will 
attempt to make connections to other nodes on the network, even though they already 
have a primary connection from when they were allocated a route id. These are 
outgoing connections that the node makes to improve the robustness and 
performance of the network.

This process is identical to steps 1,2 and 3 just described in 7.3.2. Obviously 
steps 4 and 5 are related to obtaining a new route key. As this node is already a part 
of the overlay network, it will furnish the server node with its overlay id during the 
connection request. On successful connection, both nodes will notify the tracker that 
a direct, or ip, connection has been made. 

7.3.4 Requesting & Completing  a Work Unit

Work units are requested and completed in the Processor object.

1. Providing the node has a route id (as it it pointless trying to do 
computation if you won't be able to get files) and that the processing has 
not been deemed finished, the Processor will contact the tracker and 
request a work unit.

2. When a work unit is allocated, the processor checks to see if it already has 
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the matching original data file, if so it begins processing the work unit. If 
not, it will pass a request for the file to the Controller object which will 
then pass the request out to its connected nodes via a tracker hint if it 
doesn't already have a directly connected node with the required file. The 
processor will then wait for the file to arrive before starting processing. 
Obviously, in the simplest case described,  this provides much scope for 
starvation. However, this is mitigated by the tracker suggesting work 
units based on files that the node already has (as a result of eavesdropping 
on passing through requests and requesting requesting more than one 
original data file at a time) or files that are known to be nearby.

3. When the processing has completed, the node contacts the tracker and lets 
it know that its been done and what the calculated hash of the result is. 
The tracker can then verify this result by allocating the same work unit to 
different nodes.

7.3.5 Verification of the Work Unit

The actual verification process is identical to requesting a work unit. A tracker 
suggests work units and the nodes don't really know if they have been computed 
already or not. A mischievous or particularly attentive node may be able to measure 
how long work units stay in an allocated state, but this is difficult with the variation 
of time taken for each work unit to be completed – either due to the nature of data or 
to the variation of network and processing speed.  

Once the tracker receives a number of resulting computed data sets with 
matching hashes, some confidence in the correctness of the computed work can be 
had. Should conflicting results be received, the latest received work unit is discarded. 
Where there are only two results, the newest work unit replaces the original one to 
avoid the scenario of a first result being incorrect .

7.3.6 Assembling the Results

In the simplest case, the original and computed datasets can be reassembled through 
concatenation. A suggested extension of the system would involve adding another 
element to the metadata which would contain a script for post-processing of the 
dataset on completion.

7.4 Summary

This chapter has described the major components of the CompTorrent system, the 
Tracker, Metadata file and CompTorrent Application, in technical detail. Discussion 
of design considerations was also presented along with discoveries and compromises 
made along the way.

In the following chapter, an evaluation of this system is presented along with 
a comparison to the traditional distributed computing platforms as presented in 
Chapter 5.
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Chapter Eight

8.0 CompTorrent Evaluation
In this Chapter an evaluation is presented of the system described in Chapters 6 and 7 
using WAN-DC, the benchmark presented in Chapter 4. These data were gathered on 
the same hardware as the evaluation of BOINC and Condor as presented in Chapter 5 
and as such, allow us to compare these 3 different systems as fairly as possible. In 
this chapter it will be demonstrated that a peer-to-peer distributed computing system 
can produce similar performance results to a traditional client/server distributed 
computing system. 

8.1 Performance Results

In this section the performance results are presented for CompTorrent with 
discussion of the results at each step.

8.1.1 POV-Ray

CompTorrent performed well in the POV-Ray experiment showing conventional 
results across the range of participating node sizes with speedup efficiency remaining 
between 0.96 and 0.98.

CompTorrent POV-Ray

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 16348 64.08 1 1.00

2 8521.8 91.8 1.92 0.96

4 4250.4 62.2 3.85 0.96

8 2089 3.16 7.83 0.98

16 1054 36.96 15.51 0.97

Table 45: CompTorrent results for the POV-Ray experiment.

8.1.2 Transcode

Transcode performed relatively poorly with speedup peaking at 8 machines. The 
intrinsic overhead of the transcode application has a marked effect on the amount of 
speedup that can theoretically be achieved.
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CompTorrent Transcode

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 1091 6.63 1 1

2 602.6 45.54 1.81 0.91

4 352.2 18.39 3.1 0.78

8 202.2 21.63 5.4 0.68

16 236.4 18.45 4.62 0.29

Table 46: CompTorrent results for the Transcode experiment.

8.1.3 Mandelbrot

CompTorrent produces lacklustre results for Mandelbrot. Speedup peaks at 8 
machines with little change in efficiency across the range with a maxima of only 2.41 
and an efficiency of around 30%.

CompTorrent Mandelbrot

CompTorrent Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 444.8 83.42 1 1

2 240 2.35 1.85 0.93

4 203.8 23.86 2.18 0.55

8 184.8 18.46 2.41 0.3

16 234.4 25.81 1.9 0.12

Table 47: CompTorrent results for the Mandelbrot experiment.

8.1.4 No Work

No Work illustrates the bare overhead of CompTorrent and what kind of speedup can 
be observed with jobs of no time whatsoever. It peaks at 8 nodes and begins to 
reduce by 16. Some similarity is observed between the results here and that of 
Mandelbrot, with the peak at 8 machines and a similar speedup at 2 machines.

CompTorrent No Work

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 103.8 1.1 1 1

2 58.8 4.21 1.77 0.89

4 40 1.87 2.6 0.65

8 34.4 1.34 3.02 0.38

16 36.8 3.7 2.82 0.18

Table 48: CompTorrent results for the No Work experiment.
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8.1.5 One Second

Figure 24 shows that two machines, whilst quite erratic in places, are not much 
worse in efficiency at the corresponding job length for any of the large node sizes. 
And where the measurements appear erratic is where they are swinging toward 100% 
efficiency (expressed as known processing time divided by wall clock time), so 
whilst less deterministic, it is in the favour of overall job completion time being 
lower.
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Figure 24: CompTorrent One Second graph for 
2 machines.

Figure 25: CompTorrent One Second graph for 
4 machines.



4, 8 and 16 machines show an obvious curve where jobs of around 20 seconds 
in length become acceptable for the system as configured.

Figure 28 shows all of the previous One Second results as a mean for 1,2,4,8 and 16 
node cluster sizes respectively.
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Figure 26: CompTorrent One Second graph for 
8 Machines.

Figure 27: CompTorrent One Second graph for 
16 machines.



8.1.6 Mean Work Unit

Table 49 shows the mean work unit results for POV-Ray, Mandelbrot, Transcode 
and No Work. Similarly to Condor presented earlier, the most obvious thing it shows 
is the difference in processing times between the different experiments. Mandelbrot, 
Transcode and No Work, when compared to POV-Ray, are comparatively light in 
their processing time per work unit for the same reasons. That is, the work units of 
POV-Ray are differing in their load and that CompTorrent is relatively efficient in 
processing work units to allow this to so obviously show.

Mandelbrot also displays a large difference between individual runtimes for a 
single machine. Care must be taken with varying work unit algorithms like 
Mandelbrot on a  small number of machines. Since Mean Work Unit looks for the 
average time to get a response with a computed data set, the difference between time 
taken for each work unit will vary on a single machine as the variance is being driven 
by the nature of the  different work sizes and not the network or the distributed 
computing system's internal overhead. This is shown obviously with a higher 
deviation than mean result for Mandelbrot with 1 machine in Table 49.
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Experiment Name Num Machines Mean (secs) Standard Deviation (secs)

POV-Ray 1 259.49 46.17

2 135.27 79.21

4 67.47 46.47

8 33.16 29.67

16 16.73 14.13

Mandelbrot 1 2.8 3.16

2 1.51 0.79

4 1.28 0.47

8 1.16 0.39

16 1.47 0.59

Transcode 1 11.02 1.49

2 6.09 2.72

4 3.56 1.40

8 2.04 0.74

16 2.39 1.03

No Work 1 1.05 0.20

2 0.59 0.25

4 0.4 0.34

8 0.35 0.51

16 0.37 1.23

Table 49: Mean Work Unit results for CompTorrent
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8.2 Qualitative Results

APPROACH / DESIGN

CompTorrent

Approach Volunteer / Cluster

Node Organisation Peer-to-peer

Network topology Ad Hoc

Application Task

Requirements & Dedication Idle cycles or greater

FEATURES

CompTorrent

Algorithmic Suitability No interprocess communication

Standards supported None explicitly

Hardware / OS support Platform Independence:
Unix, Linux, Mac. Can be compiled for Windows with little effort.

Hardware: 
As supported by the above operating systems.

GPU Processing Support:
No.

Heterogeneous:
Any hardware supported by the operating systems above.

TASK & RESOURCE MANAGEMENT

CompTorrent

Resource allocation to Jobs Server or Node.

Task allocation Server or Node.

ROBUSTNESS

CompTorrent

Checkpointing No.

Scalability Experimentation only.

Quality of service No

Churn Yes

Malfeasance Multiple calculations

LICENSING

CompTorrent

Licence Description GNU Lesser General Public License

Source Availability Open

Governing Organisation Individual

USABILITY

CompTorrent

Hosting a new project A originating node or any size. A tracker which can be hosted on 
the originating node or elsewhere.
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Joining an exiting project Download software and pick a project.

Coding for a new project None required. Can use existing binaries.

SUPPORT

CompTorrent

Commercial No

Community Web site and mailing list.

Books No. PhD thesis.

PARTICIPATORY INCENTIVES

CompTorrent

Data Access Yes. Source and computed data set. Could be limited by the 
project but it would defeat the purpose of the system.

Financial through statistics Possibly – could be controlled by a tracker.

“Fame” through statistics Yes – by tracker.

Table 50: WAN-DC qualitative results for CompTorrent.

8.3 Discussion of Results Compared with BOINC & Condor

As alluded to in the introduction, a variety of systems have been chosen to represent 
several of the different approaches to distributed computing that present a reasonable 
survey at time of writing. The results obtained for CompTorrent, as just described, 
will be compared to the results described in Chapter 5 for BOINC and Condor.

POV-Ray Speedup

Cluster Size Condor BOINC CompTorrent

1 1 1 1

2 1.62 1.95 1.92

4 3.86 3.93 3.85

8 7.74 8.34 7.83

16 15.66 18.89 15.51

Table 51: POV-Ray speedup results for the three systems.

In Table 51, CompTorrent compares favourably with both BOINC and Condor with 
all systems producing similar results across the range of cluster sizes. In cases 1, 2 
and 8 the results of CompTorrent fall between those of BOINC and Condor. In the 
case of 4 and 16 machines, CompTorrent is worse that both Condor and BOINC 
though only by a small margin. Super-linear speedup was observed for BOINC (from 
hyper-threading as discussed previously) in the cases of 8 and 16 machines however 
all results, for all systems, remain close to ideal across the range of cluster 
configurations. This is due to the desirable processing (much) and communication 
(not much) ratio of the POV-Ray algorithm.
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Transcode Speedup

Cluster Size Condor BOINC CompTorrent

1 1 1 1

2 3.89 1.59 1.81

4 4.87 3.29 3.1

8 5.39 3.81 5.4

16 5.45 5.51 4.62

Table 52: Transcode speedup results for the three systems.

Transcode is presented in Table 52, showing results for CompTorrent that are either 
between the range of BOINC and Condor (for 2 and 8 machines) and worse for 16 
and 4 machines. Transcode, being a video processing experiment, has a combination 
of high network load as well as high computation. 

Mandelbrot Speedup

Cluster Size Condor BOINC CompTorrent

1 1 1 1

2 1.45 1.88 1.85

4 1.83 3.43 2.18

8 1.86 5.07 2.41

16 1.84 6.8 1.9

Table 53: Mandelbrot results for the three systems.

In Mandelbrot (Table 53), CompTorrent demonstrates results similar to that of 
Condor with marginally more speedup in each case. BOINC shows much better 
speedup results however, referring back to Section 5.4.2.3, this is due to very long 
runtimes for this experiment compared to Condor and CompTorrent.

No Work Speedup

Cluster Size Condor BOINC CompTorrent

1 1 1 1

2 1.62 1.87 1.77

4 1.62 2.37 2.6

8 1.64 3.43 3.02

16 1.65 3.3 2.82

Table 54: No Work results for the three systems.

Table 54 shows CompTorrent again producing results between both Condor and 
BOINC, with the exception at 4 machines, where CompTorrent performs marginally 
better than either system.

For the Mean time for a work unit to be returned, Tables 55,56,57 and 58 all 
show CompTorrent behaving between the ranges of, or better than, Condor and 
BOINC.
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Mean Work Unit - Transcode

Cluster Size Condor (secs) BOINC (secs) CompTorrent (secs)

1 11.74 26.46 11.02

2 3.02 16.64 6.09

4 2.41 8.03 3.56

8 2.18 6.95 2.04

16 2.15 4.8 2.39

Table 55: Mean work unit (Transcode) results for the three systems.

Mean Work Unit - Mandelbrot

Cluster Size Condor (secs) BOINC (secs) CompTorrent (secs)

1 3.84 16.9 2.8

2 2.64 9 1.51

4 2.10 4.92 1.28

8 2.07 3.33 1.16

16 2.09 2.48 1.47

Table 56: Mean work unit (Mandelbrot) results for the three systems.

Mean Work Unit - POV-Ray

Cluster Size Condor (secs) BOINC (secs) CompTorrent (secs)

1 257.43 267.61 259.49

2 159.09 137.36 135.27

4 66.67 68.12 67.47

8 33.24 32.13 33.16

16 16.43 14.15 16.73

Table 57: Mean work unit (POV-Ray) results for the three systems.

Mean Work Unit – No Work

Cluster Size Condor (secs) BOINC (secs) CompTorrent (secs)

1 3.49 16.75 1.05

2 2.16 8.94 0.59

4 2.16 7.06 0.4

8 2.13 4.89 0.35

16 2.11 5.08 0.37

Table 58: Mean work unit (No Work) results for the three systems.

8.4 Chapter Summary

This chapter has presented and discussed the results for CompTorrent and compared 
them to the results gathered earlier for BOINC and Condor. In all performance 
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metrics, CompTorrent has presented with similar results to BOINC or Condor whilst 
having a completely different underlying peer-to-peer architecture. This peer-to-peer 
system, as presented and under the described conditions and benchmarks, has 
produced comparable results to two traditional distributed computing systems. This 
has shown, within the limits of the systems tested, that a peer-to-peer approach to be 
an acceptable one for distributed computing.
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Chapter Nine

9.0 Conclusions & Further Work
This chapter summarises how the research presented in this thesis has achieved its 
stated goals. It also discusses future research directions that have been identified and 
concludes with some closing remarks about the nature of peer-to-peer as a topic of 
research at time of writing.

9.1 Conclusions

This thesis primarily considered the problem of the cost of hosting a distributed 
computing project in a traditional manner. From this the research questions arose: 
Can peer-to-peer techniques be applied, which are known to have a lower project 
ownership cost, to general purpose distributed computing effectively? And, how can 
this new system be measured against other existing distributed computing systems?

This section will summarise the answers to these questions that this thesis has 
answered.

9.1.1 Distributed Computing with Peer-to-Peer Computing

This thesis has shown that using peer-to-peer techniques with distributed computing 
is not only feasible, it shows that it compares well with existing client-server 
approaches in terms of the computing performance achieved as well as the levels of 
service offered.

9.1.1.1 Comparative Performance and Scalability

According to the WAN-DC benchmark results show that CompTorrent maintains a 
performance range between that of BOINC and Condor for all cluster node sizes for 
the POV-Ray experiment. Transcode shows CompTorrent is between or better than 
BOINC and Condor in 50% of cases and, whilst worse in the other half of 
experiments, it was only by approximately 15% in the worst case. Mandelbrot 
showed results between both distributed systems and, similarly to POV-Ray, No 
Work behaves either between or better than the results of both BOINC and Condor. 

Whilst limited by the smaller scale scenario presented within this thesis, these 
results from Chapters 5 and 8 show that that a distributed processing system based on 
a decentralised, peer-to-peer network can provide similar results to distributed 
processing systems based on traditional client/server networking architectures. This 
has been proven on hardware under controlled conditions without the need to resort 
to simulation.

9.1.2 Ease of Use

As discussed in Chapter 6, CompTorrent requires very little effort to install and use – 
from either the user or project manager's point of view. Once the project manager has 
identified the algorithm to be used, packaged it within a script in such as way that it 
has a data in and data out file-based interface, the job is almost done - only the 
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generation of a metadata file and associated work units is all that is required. This 
level of work is also generally true of BOINC and Condor to this point, however the 
next step is key – no server requirements. A tracker must be used of course, but this 
does not necessarily need to be under the control of the project owner. A seed is then 
started and the project begins. Indeed, once the original dataset has be uploaded to 
the swarm it is not necessary for it to continue to remain a part of the network. Later 
it could reconnect as a normal node and retrieve the computed dataset just like 
anyone else.

It is hoped that future development of this project will allow more economies 
to be found in the instigation and maintenance of distributed computing projects.

9.1.3 New Incentives, Network Time, Processing Time and Machine 
Dedication

If CompTorrent's operation is considered, obviously the time taken to upload the full 
data set to the swarm versus the time taken to compute the result set will be 
paramount for the seed when considering the value of a CompTorrent exercise. This 
relates strongly to what is classically considered to be the efficiency metric in 
distributed computing where efficiency is measured as computation versus 
communication. Some more trivial applications of CompTorrent, such as recoding 
video, may take longer to upload and download the original and computed sets 
respectively and therefore yield no computation advantage at all. However, the 
overall time taken for the swarm as a whole to receive a computed set is determined 
by the upload speed of the original seed and the algorithm run time. So, if the swarm 
as a whole is interested only in the computed set, simultaneous computation and 
distribution may well get each node the computed set in less overall elapsed time 
when compared to single machine computation first and then distribution. Certainly 
the lag between the original data set becoming available and the start of the 
computed set being distributed is minimized with CompTorrent. One needs to keep 
in mind here that this is public computing where many participants are interested in 
the data sets. Obviously in a private computing exercise these mitigating 
circumstances, to what would otherwise be a waste of time, would not apply.

There are other incentives for a seed over just elapsed time as well. The load 
placed on the machine itself is a factor when the primary consideration is low-cost 
ownership of hosting the project. The time taken for a single processor to complete a 
computation job obviously relies on the load placed on the machine itself. It may be 
reasonable to recode 4.6Gb of MPEG1 video to 700Mb of MPEG4 in 4 hours 
providing the machine is absolutely dedicated to the task. An 8 hour simultaneous 
upload, compute and download may be preferable where the machine is not highly 
loaded by the computing task and so can be readily used for other work.

9.2 Further Work
Here further work identified during the course of this thesis is discussed for the 
major works within this thesis of WAN-DC and CompTorrent. 

9.2.1 WAN-DC

Clearly, for wider utility, WAN-DC needs to have algorithms included which support 
inter-process communication. Also, the qualitative metrics could be improved 
significantly through survey work to allow for a more rigorous approach. However, 
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as alluded to previously in chapter four, this benchmark grew out of necessity rather 
than being an exercise of trying to be all things to all situations as this could easily 
grow into the scope of an entire thesis in itself. Here are presented some options for 
consideration for later expansion.

9.2.1.1 Performance Metrics

Two broad categories of inter-process communication should be considered for 
integration into WAN-DC. They are, of course, loosely and tightly coupled 
algorithms. An example of a loosely coupled application, with good prospects for 
scalability, would be calculating primes using the classical algorithm of the Sieve of 
Eratosthenes with strike out. Another loosely coupled example, with less natural 
scalability, could be calculating Fibonacci numbers. This algorithm's inherent 
sequential nature could lead to an investigation of how distributed systems deal with 
largely sequential problems in a wide area network distributed computing network 
with all the challenges it presents. Other problems should be identified to produce 
some examples between these two extremes.

In the case of tightly coupled problems there are a plethora of examples 
where communication overhead has the potential to overwhelm a system. Parallel 
sorting applications, such as Mergesort (Knuth 1998), are common examples, with 
implementations found readily in the literature.  Matrix based applications, 
particularly wave front computations such as heat transfer, give a good, adjustable 
level of granularity based on the lengths of the communicating edges of the matrices 
shared between nodes.

Other additions to this benchmark could include testing for malfeasance, 
measuring robustness, further work in establishing baselines or seeing how 
degradation of the  underlying network performance affects these systems. Several of 
these benchmarks were considered during this thesis work and have been included in 
Appendix D as a head start for future work in this area.

Integration of existing parallel benchmarks, as appropriate to wide area 
network distributed computing, could be incorporated. For example, determining 
where the NAS Parallel Benchmarks could apply to peer-to-peer systems would be 
useful. 

9.2.1.2 Qualitative Metrics 

Experimental design for survey work of the qualitative options as well as formally 
devising a method of obtaining results from a wide audience.

9.2.1.3 More Systems & Underlying Network Conditions

A framework's value is also increased through the number of machines and systems 
that have been evaluated and whose statistics are available. In this thesis, three 
systems were evaluated using WAN-DC. Extending this to other hardware and 
systems, in particular Grid and tuple space based systems would be of considerable 
value.

More work on formalising the conditions for applying the WAN-DC 
benchmark, and benchmarks in general, would be useful for modern distributed 
systems. At present it is difficult to quantify the nature of the network that the system 
is on (one of the main reasons this thesis's results concentrated on a controllable 
network environment). Developing a method for the approximate quantification of a 
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set of nodes participating in a swarm at a given time will greatly increase the 
comparability of benchmarks being applied to these wide area network systems. 
System results will have greater value if the underlying network conditions are 
understood at the time.

Also, the limited and small nature of the cluster employed, is an obvious 
candidate for future work. With more resources, beyond that available to this project, 
it would be possible to construct a stable WAN cluster with which to repeat this 
experimentation to see how the systems compare over a larger geographical scale.

9.2.2 CompTorrent

CompTorrent has demonstrated the contributions of this thesis however there is 
always scope for further extension and improvement. This section will briefly 
discuss some suggestion for further work with CompTorrent.

9.2.2.1 Protocol and Routing Optimisation

The usage of XML for communication between nodes for all communications could 
be wasteful for fine-grained tasks. XML was originally chosen due to its ease of 
extensibility and modification as the research progressed. Beyond compressing the 
XML, which is a possibility but again unlikely to yield much gain for very small 
payloads (Goldsmith 2004), a binary structure implementation where the bare 
minimum of meta data is exchanged is feasible. A solution between binary structures 
and XML that has gained popularity during the progress of this thesis is YAML, 
which provides a lighter weight mark up language for structured data (Ingerson, 
Evans & Ben-Kiki 2001).

Examining the relationships between the nature of the computation task and 
the topology of the overlay network is already showing promise. Applying different 
routing algorithms is an area in its own right and further work beyond the least 
common ancestor heuristic which is used now should prove worthwhile. Other 
routing arrangements used in distributed hash tables such as a Skiplist, Cartesian 
Coordinate Space, Plaxton Tree and similar could be compared to see if they offer 
performance benefits whilst considering their cost in terms of implementation 
complexity and transparency for the user. 

9.2.2.2 Interprocess Communication

Another obvious extension would be support for algorithms that are not completely 
independently parallel. The classic choices between shared memory or message 
passing are two obvious candidates for implementation and testing. Implementing 
shared memory across nodes in a CompTorrent swarm would also allow for a 
distributed tracker to be overlaid on the network. This could either be as a primary or 
secondary tracker service and it would be interesting to see how this could be used to 
improve the robustness of the system.

9.2.2.3 Optimisation of File Transfer

Optimization of file transfer is another area that may yield improved results. A lot of 
work has already been done investigating the efficiency of BitTorrent for file 
transfers including some recent work (Piatek et al 2007) that has further increased 
performance by some 70% by selective uploading to connected peers based on their 
behaviour. It will be interesting to see if these ranking algorithms would have a 
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similar result with peers based on their bandwidth contribution as well as their 
computing contribution. This would expand on existing work of allocating tasks 
based on the number of data chunks processed, number of file requests services, time 
taken to respond, etc.

9.2.2.4 Trackers 

The tracker is currently an HTTP service and has a relatively small bandwidth load 
(subject to the granularity of the task and data). A recent idea involves investigating 
the possibility of embedding tracker data into unlikely places or protocols. As the 
tracker is mainly shared memory (lists of connected nodes, completed chunks) it may 
well be possible to host tracker data on another unrelated service such as Internet 
Relay Chat. Security related issues is also an area where much work can be done. An 
obfuscation technique that has already been proven in concept is embedding tracker 
data into an image using steganographic techniques. It will be interesting to see if the 
extra bandwidth required will result in any stealth advantage. As would looking at 
the mobility of projects between trackers during computation. 

The tracker could obviously be extended to involve more computation when 
suggesting nodes for connection. It has been kept as simple as possible in the case of 
CompTorrent in order to prove that a genuinely decentralised swarm can produce 
similar results to a client-server system. In practice, especially where a higher 
confidence in nodes is recognised (i.e. in a controlled, production environment), 
more tracker involvement would be sensible. However, in a peer-to-peer system this 
should always be carefully considered along with the level of centralisation the 
system is to maintain.

9.2.3 Botnets

As previously mentioned in 3.3.3, botnets have been potentially identified as some of 
the most distributed, peer-to-peer computing systems known to be in practical, albeit 
illegal, use. Further work to identify existing techniques being used by these 
networks could compliment the work in this thesis as well as providing potential 
insight into mitigating the effects of these harmful botnets. This is raised here as a 
general research direction beyond the scope of CompTorrent and general purpose 
distributed computing.

9.3 Some Personal Concluding Remarks on Peer-to-Peer as a 
Controversial Research Topic

At the beginning of Chapter 1 of this thesis,  a quote from J. Bronowski was included 
which referred to the nature of a scientist as being one of dissent. Peer-to-peer 
computing, as a technique, has come under great, sustained fire from the media, 
industry groups and politicians as being synonymous with illegal file sharing and the 
distribution of other prohibited content. There have been many calls for it to be 
banned and many attempts for it to be blocked at a Internet Service Provider level.

This incorrect assumption that a networking or computing technique equals 
malfeasance and corruption is one that must not be allowed to continue to propagate 
further. This is hardly the first time that computing has been controversial, yet I feel 
that it is significant for us here as so many different groups are in active opposition at 
once. 

In this thesis it has been shown that peer-to-peer networking can provide a 
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useful harnessing of resources that might not otherwise have been economically 
feasible and therefore available to a research group. This allows scientific projects 
another avenue for procuring computing cycles just like BOINC and Condor (and 
many others) are doing now. This project, at time of writing, uniquely allows the not 
necessarily professional and less funded groups or individuals the ability to host a 
distributed computing project easily and virtually without cost.

In this field, researchers should find it their duty to show how peer-to-peer is 
not all about “MP3s and piracy” and continue to speak out at ill-informed debate and 
demonstrate where peer-to-peer as a discrete technology itself is being used for the 
real benefit of humanity. The mesh networking scheme used in the One Laptop Per 
Child project is a real example of peer-to-peer being a part of the success of a 
humanitarian effort. 

It is hoped that this thesis, and others like it in the area of peer-to-peer 
computing, will show that this technique is overwhelmingly benign and can be used 
productively and widely for the benefit of all.
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Appendix A 

The source code for CompTorrent, including the database schema and doxygen 
documentation (including collaboration diagrams), accompanies the thesis 
electronically on a DVD.

Building Source Code

These instructions are for building CompTorrent using gcc 4.3.2 on Ubuntu 8.10.

It is assumed that sharutils has been installed on the machine (for 
uuencode/uudecode ).

Obtain the following 3rd party libraries and compile and install them as per their 
individual instructions.
commoncpp2­1.7.3.tar.gz – configure, make, sudo make install
cryptopp560.zip  ­ make, sudo make install
tinyxml_2_5_3.tar.gz ­ make
curl­7.19.4.tar.gz – configure, make, sudo make install

Installing CompTracker
sudo ln ­s /home/bcg/source/sp2p/trunk/comptracker/public_html/ comptracker 

edit globalconfig.php to match your database connection.

$global_vars = array(

"dbhost" => "localhost",
"dbname" => "sp2p",
"dbuser" => "root",
"dbpass" => "77moke",

);

Tracker Database Schema

The tracker uses a MySQL database to maintain information about the 
computing projects its hosting. It provides much of the storage for the tracker 
interfaces as described in 7.1.2.2.
CREATE TABLE `sp2p_comptorrent` (
  `name` varchar(32) NOT NULL,
  `xml` text NOT NULL,
  `uuid` varchar(36) NOT NULL,
  PRIMARY KEY  (`name`),
  KEY `uuid` (`uuid`)
);

CREATE TABLE `sp2p_computing` (
  `computingpk` int(11) NOT NULL auto_increment,
  `torrenthash` char(36) NOT NULL,
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  `origdatahash` char(36) NOT NULL,
  `resulthash` char(36) NOT NULL,
  `nodeuuid` char(36) NOT NULL,
  `update_time` datetime NOT NULL,
  `finish_time` datetime NOT NULL,
  `filename` varchar(255) NOT NULL,
  PRIMARY KEY  (`computingpk`),
  KEY `torrenthash` (`torrenthash`),
  KEY `origdatahash` (`origdatahash`,`resulthash`,`nodeuuid`)
);

CREATE TABLE `sp2p_connections` (
  `connectionpk` int(11) NOT NULL auto_increment,
  `server_nodefk` char(36) NOT NULL,
  `client_nodefk` char(36) NOT NULL,
  `torrentname` varchar(32) NOT NULL,
  PRIMARY KEY  (`connectionpk`),
  KEY `server_nodefk` (`server_nodefk`,`client_nodefk`),
  KEY `torrentname` (`torrentname`),
  KEY `client_nodefk` (`client_nodefk`)
);

CREATE TABLE `sp2p_datachunks` (
  `torrenthash` char(36) NOT NULL,
  `name` varchar(36) NOT NULL,
  `size` int(11) NOT NULL,
  `status` int(11) NOT NULL,
  `torrentname` varchar(36) NOT NULL,
  `filehash` char(36) NOT NULL,
  `allocate_time` datetime NOT NULL,
  `num_computed` int(11) NOT NULL,
  PRIMARY KEY  (`name`),
  KEY `torrenthash` (`torrenthash`)
);

CREATE TABLE `sp2p_files` (
  `filenodepk` int(11) NOT NULL auto_increment,
  `filehash` char(36) NOT NULL,
  `nodeuuid` char(36) NOT NULL,
  `torrenthash` char(36) NOT NULL,
  `filename` varchar(255) NOT NULL,
  PRIMARY KEY  (`filenodepk`),
  KEY `filehash` (`filehash`),
  KEY `nodeuuid` (`nodeuuid`),
  KEY `torrenthash` (`torrenthash`)
);

CREATE TABLE `sp2p_ipconnections` (
  `ipconnectionspk` int(11) NOT NULL auto_increment,
  `client` varchar(15) NOT NULL,
  `server` varchar(15) NOT NULL,
  PRIMARY KEY  (`ipconnectionspk`)
);

CREATE TABLE `sp2p_node` (
  `uuid` varchar(36) NOT NULL,
  `ip` varchar(15) NOT NULL,
  `port` varchar(5) NOT NULL,
  `num_computed_chunks` int(11) NOT NULL,
  `num_original_chunks` int(11) NOT NULL,
  `num_connections` int(11) NOT NULL,
  `comptorrentname` varchar(32) NOT NULL,
  `update_time` datetime NOT NULL,
  `routeid` int(11) NOT NULL,
  `tracker_hits` int(11) NOT NULL,
  `route_req_served` int(11) NOT NULL,
  `mutex` varchar(36) NOT NULL,
  PRIMARY KEY  (`uuid`)
);

CREATE TABLE `sp2p_stats` (
  `statpk` int(11) NOT NULL auto_increment,
  `nodeguid` char(36) NOT NULL,
  `type` varchar(12) NOT NULL,
  `statistic` varchar(64) NOT NULL,
  `tstamp` timestamp NOT NULL default CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,
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  PRIMARY KEY  (`statpk`),
  KEY `nodeguid` (`nodeguid`)
);

Tracker Database Schema Diagram

UML Class Diagrams
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Appendix B 

Amdahl's Law

Amdahl’s Law (Amdahl 1967) explains that all programs have a limit to which they 
can be parallelised, and gives us an algorithm with which to calculate the maximum 
possible speedup of a parallel program. The limitation arises from the non 
parallelisable part of the application, the part that must be executed sequentially.

                                            S   = 

  Where:

    • S is the speedup of the program,.

    • P is the part of the application that can be parallelised, 

    • (1 − P) is the part of the program which must be executed sequentially.

    • N is the number of processing elements working on the task. 

As N grows large the maximum speedup tends towards (1 − P). This gives an upper 
limit the amount of processors can be usefully utilised in a parallel computing 
exercise for a particular application or algorithm.

Gustafson-Barsis' Law

Gustafson-Barsis' Law allows for more flexibility over Amdahl's Law by allowing 
for the number of processors to change and the size of the problem to change as well 
during computation. This makes Gustafson-Barsis' Law much more suitable for 
modelling volunteer networks where nodes come and go and the overall problem size 
is often in flux.

                               S(P) = P − α (P − 1) 

    Where: 

    • S is the speedup of the application. 

    • P is the number of processing elements. 

    • α is the part of the algorithm that is sequential.

Gustafson-Barsis' Law achieves this through considering the overall time of 
sequential execution rather than a fixed amount of sequential execution per 
processor.
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Appendix C

Experimental Setup Instructions

This thesis contains experiments covering several different existing distributed 
computing systems. These systems are non-trivial to install, configure and operate. 
This appendix covers the installation instructions and settings used in detail for the 
experimental results presented in this thesis. These should serve as a starting point 
for building on or verification of this work for BOINC and Condor (See section 6.3 
for instructions for CompTorrent).

In these examples the address 144.6.40.251 and 127.0.0.1 are used 
interchangeably to represent the master server machine. The user name “bcg” is used 
to represent the logged in account of the server administrator. 

BOINC

The host system was Ubuntu Linux 6.06 with a full complement of GNU 
development tools, mysql and php installed via apt-get.

Server

Check out the code thus:
svn co http://boinc.berkeley.edu/svn/trunk/boinc

(Revision 14015 was the latest revision at time of experimentation).

Build the code:
./_autosetup
./configure ­­disable­client
make

Create a project:

./make_project ­­url_base http://144.6.40.251/boinc/ ­­db_host localhost 
­­db_user root test1

Steps to complete installation:

1. Change Apache configuration (as root):

cat /home/bcg/projects/test1/test1.httpd.conf >> /etc/apache/httpd.conf && apachectl 
restart

(note: path to httpd.conf varies)

sudo cp /home/bcg/projects/test1/test1.httpd.conf /etc/apache2/sites­available/
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2. Add to crontab (as bcg (my username) in this case)

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /home/bcg/projects/test1/bin/start ­­cron

(If cron cannot run "start", try using a helper script to set PATH and 
PYTHONPATH)

3. The project is configured with a test application.

To install this application (recommended) run:
cd /home/bcg/projects/test1
bin/xadd
bin/update_versions

To start, show status, and stop the project, run:
bin/start
bin/status
bin/stop

The project's URLs are (the url and project name will of course depend on 
installation):

Home page (and master URL): http://144.6.40.251/test1/

Administrative page:http://144.6.40.251/test1_ops/

Enable account creation – edit config.xml in the ~/project/test1/ directory and set the 
the disable_account_creation element to 0

BOINC connects to Internet URLs in a few places in the code. This poses an 
annoying problem behind university proxy servers. To alleviate this, comment out 
the following lines of code:

/home/bcg/projects/test1/html/ops/index.php

Insert a /* at line 23 and a */ at the end of line 39.

/home/bcg/projects/test1/html/inc/user.inc
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Modify the function get_other_projects at line 60 to return $user and do nothing else 
eg:

function get_other_projects($user) {

  /* $cpid = md5($user­>cross_project_id . $user­>email_addr);
  $url = "http://boinc.netsoft­online.com/get_user.php?cpid=$cpid";
  $f = fopen($url, "r");
  if (!$f) {
  return $user;
  }
  $u = parse_user($f, $user);
  fclose($f);
  return $u; */

return $user;
}

Client Side

Download boinc_5.10.21_i686-pc-linux-gnu.sh

./boinc ­­attach_project http://144.6.40.251/test1/ 
de68da8503386b0232e664a27f2dad92

That should be all that is required however here are some problems encountered and 
solutions:

Problem: Getting the authenticator for each client.

Solution: Get it from the db.

Problem: No work from project. The feeder seemed to be dying as can be seen by the 
status.

bcg@rhdl-a2:~/projects/test1/bin$ ./status
BOINC is ENABLED
DAEMON pid status   lockfile disabled commandline
 1  7907 NOT RUNNING UNLOCKED no    feeder ­d 3
 2  7909 running   locked  no    transitioner ­d 3
 3  7912 running   locked  no    file_deleter ­d 3

Tried running the feeder directly (as it would be by BOINC as defined in 
config.xml):

bcg@rhdl­a2:~/projects/test1/bin$ ./feeder ­d 3
2007­11­20 16:42:29.7621 [normal ] Starting
shmctl RMID: Operation not permitted
2007­11­20 16:42:29.7631 [CRITICAL] can't destroy shmem
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Solution:

change the group for the feeder thus:

bcg@rhdl­a2:~/projects/test1/bin$ sudo chgrp www­data feeder
bcg@rhdl­a2:~/projects/test1/bin$ sudo chmod g+xs feeder

But if that doesn't work, execute the start with sudo:

sudo bin/start

and that should be problem solved.

Here is an example for setting up a project using Mandelbrot:

Server:

Create the Project

cd /data/source/boinc/tools/
./make_project ­­url_base http://144.6.40.251/ ­­db_host localhost 
­­db_user root mandelbrot16

Set up the Project Website

sudo cp mandelbrot16.httpd.conf /etc/apache2/sites­available/

sudo ln ­s /etc/apache2/sites­available/mandelbrot16.httpd.conf 
/etc/apache2/sites­enabled/mandelbrot16.httpd.conf

sudo apache2ctl restart

cd ~/projects/mandelbrot16

sudo chown www­data ~/projects/ ­R

Enable Account Creation

Enable account creation – edit config.xml in the ~/project/mandelbrot16/ directory 
and set the the disable_account_creation element to 0

Edit the Project

In this example, only Linux machines are being used, so par down the project xml to 
only include one target platform (or adjust for your circumstances).
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Also, add in the name of the algorithm executable. In this case its Mandelbrot.

<boinc>
  <platform>
    <name>i686­pc­linux­gnu</name>
    <user_friendly_name>Linux running on an Intel x86­compatible 
CPU</user_friendly_name>
  </platform>
  <app>
    <name>mandelbrot</name>
    <user_friendly_name>mandelbrot16</user_friendly_name>
  </app>
</boinc>

Edit config.xml

Make sure the db_passwd element contains your db password

Compile the Wrapper

svn co http://boinc.berkeley.edu/svn/trunk/boinc_samples
cd boinc_samples/wrapper
ln ­s `g++ ­print­file­name=libstdc++.a`
make
cp boinc_samplaes/wrapper/wrapper 
~/projects/mandelbrot16/apps/mandelbrot/wrapper_5.5_i686­pc­linux­
gnu

Copy the Algorithm

Also make sure to name your algorithm as per BOINC's naming convention so that it 
matches the target platforms set out in the project.xml.

mkdir ~/projects/mandelbrot16/apps/mandelbrot/
cp 
/data/source/sp2p/experiments/mandelbrot/160/comptorrents/working/mandelbrot/mandelbr
ot ~/projects/mandelbrot16/apps/mandelbrot_5.5_i686­pc­linux­gnu
bin/xadd
bin/update_versions

Add Templates for Work Units and Results

Put the following into a file called result_template in 
~/projects/mandelbrot16/templates/

  <file_info>
    <name><OUTFILE_0/></name>
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    <generated_locally/>
    <upload_when_present/>
    <max_nbytes>1000000</max_nbytes>
    <url><UPLOAD_URL/></url>
  </file_info>
  <result>
    <file_ref>
      <file_name><OUTFILE_0/></file_name>
      <open_name>out</open_name>
    </file_ref>
  </result>

Put the following into a file called work_unit_template in 
~/projects/mandelbrot16/templates/

  <file_info>
   <number>0</number>
  </file_info>
  <workunit>
    <file_ref>
      <file_number>0</file_number>
      <open_name>in</open_name>
    </file_ref>
  </workunit>

Add Work Units

The mandelbrot executable takes 2 command line arguments: an infile and an outfile.

The infile stipulates the parameters for the mandelbrot set being generated.

The outfile is a resulting jpeg.

For this example, there are 16 work units, each a file containing the settings for the 
overall Mandelbrot set as well as the region of the set to be calculated (so it can be 
split up and computed over multiple machines).

Copy each of these files into the ~/projects/mandelbrot16/download directory.

Now, tell BOINC about each one of these files by inserting each one of them as a 
work unit (using the templates from the previous step).

bin/create_work ­appname mandelbrot ­wu_name mandelbrot_00000001 ­wu_template 
templates/work_unit_template ­result_template templates/result_template ­min_quorum 1 
­target_nresults 1 mandelbrot_00000001

Do this changing the file and work unit name for each data set file eg. 
mandelbrot_00000002, mandelbrot_00000003 and so on.

Start BOINC

sudo bin/start

You can also stop it (sudo bin/stop) and get a status (sudo bin/status)
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Create a Client User Account

Go to the project homepage (http://144.6.40.251/mandelbrot16/) and create an 
account.

If the server does not have public Internet access, as is often the case on a dedicated 
cluster, this page might take a while to load as it tries to get user info from the 
BOINC main site. You can hack this out editing the file user.inc 
(home/bcg/projects/test1/html/inc/user.inc). Modify the function get_other_projects 
at line 60 to return $user and do nothing else eg:

function get_other_projects($user) {
   /* $cpid = md5($user­>cross_project_id . $user­>email_addr);
   $url = "http://boinc.netsoft­online.com/get_user.php?cpid=$cpid";
   $f = fopen($url, "r");
   if (!$f) {
     return $user;
   }
   $u = parse_user($f, $user);
   fclose($f);
   return $u; */

return $user;
}

Since this is a dedicated cluster example, you like me will probably not bother setting 
up email on the servers. You need to edit the created user's database entry and also 
get the authentication key so command line clients can attach to the project.

Connect to the database using phpmyadmin or similar. Go to the mandelbrot16 
database and browse the results in the user table.

Take note of the authenticator field value (eg. 
84a35ba7615192bd3120019d8861ffac). You will need to to connect shortly.

Update the email_validated field to contain a 1.

Client Machines:

Download boinc_5.10.21_i686-pc-linux-gnu.sh from the BOINC website.

Run it on the client machine from your home directory. This will install the runtime 
files into a BOINC directory.

In a terminal run:
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./run_client

Alternatively, you can create the following script (from: http://blog.os-tools.net/?
p=31):

#!/bin/sh
# /etc/init.d/boinc
# Start/stop/restart
 
test ­x /home/bcg/BOINC/boinc || exit 0
 
case "$1" in
start)
echo "Starting BOINC."
cd "/home/bcg/BOINC" && exec ./boinc >>stdoutdae.txt 
2>>stderrdae.txt &
;;
stop)
echo "Stopping BOINC."
killall boinc
;;
restart)
killproc boinc
sleep 2
cd "/home/bcg/BOINC" && exec ./boinc >>stdoutdae.txt 
2>>stderrdae.txt &
;;
*)
echo "Usage: /etc/init.d/boinc {start|stop|restart}"
exit 2
esac
exit 0

Which will allow you to start and stop BOINC as a service – so you can maintain one 
terminal window only in which to run the client and then issue commands to it. This 
saves having 2 x n terminals open (where n = number of nodes). 16 cshh windows is 
bad enough without needing 32 open on a single desktop.

Attach to the Project

In another separate terminal window:

./boinc_cmd –project_attach http://144.6.40.251/mandelbrot16/mandelbrot16/ 
cc5e5948e2ff9fe00dc2474d271753ad

Use your own authenticator at this point that you noted down earlier.

You can also detach from the project later on by running:
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./boinc_cmd –project http://144.6.40.251/mandelbrot16/ detach

To later reset projects:

Stop BOINC server.
Empty the workunit and result tables in the database.
empty the ~projects/mandelbrot16/upload directory
Add work units again.
Start BOINC server.

Condor

Master Machine

Download condor-6.8.7-linux-x86-rhel.tar.gz and uncompress it.

cd /data/condor­6.8.7

mkdir condor_root
mkdir condor_local

sudo ./condor_configure ­­install­dir=/data/condor­6.8.7/condor_root/ 
­­type=manager,submit ­­local­dir=/data/condor­6.8.7/condor_local/ ­­owner=bcg 
­­install=/data/condor­6.8.7/release.tar

export CONDOR_CONFIG=/data/condor­6.8.7/condor_root/etc/condor_config

Edit condor_root/etc/condor_config:

Set RELEASE_DIR to /data/condor-6.8.7/condor_root/

Set HOSTALLOW_WRITE to *

Set HOSTALLOW_ADMINISTRATOR = $(FULL_HOSTNAME)

Start Condor:

sudo condor_root/sbin/condor_master

Stop Condor:

sudo condor_root/sbin/condor_off -master

Check that its running:

ps -ef | egrep condor_

bcg@rhdl­a2:/data/condor­6.8.7$ ps ­ef | egrep condor_
bcg      24421     1  0 12:25 ?        00:00:00 condor_root/sbin/condor_master
bcg      24422 24421  0 12:25 ?        00:00:00 condor_collector ­f
bcg      24423 24421  0 12:25 ?        00:00:00 condor_negotiator ­f
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bcg      24424 24421  0 12:25 ?        00:00:00 condor_schedd ­f
bcg      24425 24421  7 12:25 ?        00:00:07 condor_startd ­f
bcg      24475  5431  0 12:27 pts/0    00:00:00 grep ­E condor_

Create a job

# file name:  mandelbrot16.condor
# Condor submit description file for mandelbrot
Executable      = path_to/mandelbrot
Universe        = vanilla
Error           = logs/err.$(cluster)
Output          = logs/out.$(cluster)
Log             = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/mandelbrot_00000001
Arguments       = mandelbrot_00000001 mandelbrot_00000001_out
Queue

create a directory to put the job in.

mkdir mandelbrot16
cd mandelbrot16
mkdir logs
mkdir files

Submit a job

condor_root/bin/condor_submit mandelbrot16/mandelbrot16.condor

Check on jobs

All jobs:

bin/condor_q 

A job:

bin/condor_q 3

Client Machine

Download condor-6.8.7-linux-x86-rhel.tar.gz and uncompress it.

cd /data/condor­6.8.7
mkdir condor_root
mkdir condor_local
sudo ./condor_configure ­­install­dir=/home/bcg/condor­6.8.7/condor_root/ 
­­type=execute ­­local­dir=/home/bcg/condor­6.8.7/condor_local/ ­­owner=bcg 
­­install=/home/bcg/condor­6.8.7/release.tar
export CONDOR_CONFIG=/home/bcg/condor­6.8.7/condor_root/etc/condor_config

Edit condor-6.8.7/condor_root/etc/condor_config

Set UID_DOMAIN = $(FULL_HOSTNAME)
Set FILESYSTEM_DOMAIN=$(FULL_HOSTNAME)
Set HOSTALLOW_ADMINISTRATOR = $(FULL_HOSTNAME)
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Set HOSTALLOW_WRITE to *

Edit condor-6.8.7/condor_local/condor_config.local

Set CONDOR_HOST = 144.6.40.251
SET UID_DOMAIN and FILESYSTEM_DOMAIN to $(FULL_HOSTNAME)

NETWORK_INTERFACE = 144.6.40.115
WANT_SUSPEND = FALSE
CONTINUE = TRUE
SUSPEND = FALSE
PREEMPT = FALSE
START=TRUE
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Appendix D

WAN-DC Extras

Sequential read/write with underlying network changes (synthetic)

This is a variation on the earlier Sequential read/write test with the addition of 
modulating the performance of the underlying network.
Test Description Perform the Sequential read/write test whilst changing the bandwidth and 

latency properties of the underlying network.

Test Aim To observe how the system performs distributing test and result data under a 
variety of network conditions.

Input Data A freely, Internet-available dataset of a suitable size for the test. 

Suggested sizes ranging from 100kb, 1000kb, 10Mb, 100Mb, 1Gb.

The Internet Archive is a suggested repository for source data.

Output Data Wall clock time to complete the file distribution from start to finish.

Mbytes/sec if the tested system provides its own figure.

Method 1. Homogeneous

Modulate the bandwidth of the underlying network to represent commonly 
available device bandwidths ranging from modem speeds to gigabit 
Ethernet.

All devices should be set to the same speed.

Apply the method of the sequential read/write for both uniform size and 
mixed data unit sizes.

2. Heterogeneous

Modulate the bandwidth of the underlying network to represent commonly 
available device bandwidths ranging from modem speeds to gigabit 
Ethernet.

All devices should be set to a range of different speeds to represent a known 
mix of devices.

Apply the method of the sequential read/write for both uniform size and 
mixed data unit sizes.

Input/Output Intensive

The benchmark presented here is designed to compare the ability of cluster 
technologies to distributed data between nodes on the network.
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Sequential read/write (synthetic / application)

The aim of this benchmark is to test how quickly a distributed computing system can 
copy data between nodes. For systems that use NFS (or similar) as their file system, 
this will ostensibly be a test of that technology, the network connection and the 
cluster hardware. For systems that divide data into discrete units and share it as 
packets, this will enable the measurement of the packet protocol, the network 
connection and the cluster hardware. 

Test Description Obtain bandwidth figures (Mbytes/sec) and wall clock time to distribute 
data.

Test Aim To gain an understanding of the efficiency of the system to distribute test 
and result data across the network using a variety of data set sizes.

Input Data A freely, Internet-available dataset of a suitable size for the test. 

Suggested sizes ranging from 100kb, 1000kb, 10Mb, 100Mb, 1Gb.

The Internet Archive is a suggested repository for source data.

Output Data Wall clock time to complete the file distribution from start to finish.

Mbytes/sec if the tested system provides its own figure.

Method 1. Uniform size

For each data set size, each set should be split into smaller  uniform 
elements to simulate it being a unit of work for processing.

Suggested sizes ranging from 512bytes, 1kb, 10kb, 100kb, 256kb, 1000kb, 
10Mb, 20Mb, 50Mb, 100Mb.

2. Mix

For each data set size, each set should be split into smaller  random sized 
elements to simulate it being a unit of work for processing.

Suggested sizes including 512bytes, 1kb, 10kb, 100kb, 256kb,1000kb, 
10Mb, 20Mb, 50Mb, 100Mb.

BitTorrent (theoretical maximum)

Test Description Obtain bandwidth figures (Mbytes/sec) and wall clock time to distribute 
data over the cluster using the BitTorrent protocol.

Test Aim This test is an attempt to gain a best estimate of maximum disk and network 
performance of the cluster hardware. This is to serve as a working 
theoretical maximum for what a distributed computing system could hope to 
achieve.

Input Data A freely, Internet-available dataset of a suitable size for the test. 

Suggested sizes ranging from 100kb, 1000kb, 10Mb, 100Mb, 1Gb.

The Internet Archive is a suggested repository for source data.

Output Data BitTorrent timing output for each worker node in the cluster (produced by 
application with results to be tabulated by tester).
Wall clock time to complete the file distribution from start to finish.
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Method Application should be run from 1 worker to all worker machines with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested). Each step should be repeated multiple times in order to gauge 
variability. Statistics provided should carefully describe the final values 
given in terms of their origin.  

Care should be taken to ensure that one of the tested message chunk sizes 
corresponds to one of the sizes tried in sequential read/write. BitTorrent's 
usual size is 256kb.

Test Description Perform the Mandelbrot benchmark under varying degrees of network load.

Test Aim Load the network with traffic to investigate the effect of heavy traffic up to 
a denial of service attack on various components of the distributed 
computing system.

Input Data Nil

Output Data Wall clock time to complete the Mandelbrot set.

Method 1. General load

Load the network with varying degrees of traffic using a tool such as 
WebLOAD.

2. Denial of Service

Load individual parts of the distributed computing system with varying 
degrees of traffic. Individual clients, server components, name servers and 
other components, as per the system being tested, should be loaded in turn 
to examine the effect it has on performance.

Failure and Malfeasance

Distributed computing systems that operate over wide area networks must consider 
the uncertain nature of nodes providing services to the system. 

Erroneous Results (synthetic)

Incorrect results

Test Description Perform the Mandelbrot benchmark with deliberately introduced errors at a 
known probabilistic rate.

Test Aim To understand how the system copes with varying degrees of incorrect 
results and how node exclusion policies can effect the overall process.

Input Data A set of files each representing the region of the Mandelbrot set to calculate.

There are three separate parameter sets to this bench mark.
1. The overall set size being generated.
2. The number of segments the set is to be split into to be computed in 
parallel.
3. The region of the Mandelbrot set to be calculated. 
4. The probability of this work unit being calculated incorrectly. Code has 
been provided to randomly change some points within the calculated work 
unit at a particular probabilistic rate. Start with a low probability, i.e. 
0.0001, and then step up towards 1 in reasonable increments.
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Depending on items 2 and 3, each work unit can be either relatively uniform 
or provide a mix ranging from intensive computation to near trivial. Two 
datasets are provided, Mandelbrot_A and Mandelbrot_B, which illustrate 
each option.

Output Data Image files of the Mandelbrot set.
The wall clock time to produce the set.

Method Perform this test using one of the same sets of parameters as the standard 
Mandelbrot to give a starting point. 

1. Random node failure

Arrange the work units so that all nodes have the same probability of 
failure.

2. Bad node

Select a single node as random to be a source of error at a probabilistic rate.

First work unit (synthetic derived from application)

Clock time taken for a work unit to be completed when measured from the start of 
computation.

Test Description Obtain wall clock times for a first work unit to be received.

Test Aim To investigate the lag, setup or joining time that occurs in a distributed 
computing system. This is especially important for comparing emerging 
systems that rely on a decentralised approach where a bootstrapping phase 
may occur as a node joins the network.

Input Data Data can be gathered from the results of other benchmark experiments from 
both a server or node perspective. That is, the time taken for the first 
completed work unit to be received. Or, the time between starting a new 
worker node and actually receiving data to process (where data is available).

Output Data The elapsed time in microseconds.

Method Application should be run from 1 worker to all worker machines with a 
reasonable number of steps to meet a stated confidence interval (95% 
suggested) for each work unit length. Each step should be repeated multiple 
times in order to gauge variability. Statistics provided should carefully 
describe the final values given in terms of their origin.  

Care should be taken to ensure that the test is fair and that all systems being 
compared are set to begin computation as soon as possible and that network 
load is comparable between tests.
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Appendix E

Data Sets

Transcode

The file CC_1914_03_26_CruelCruelLove.mpg is available from archive.org and 
has been split using the mpgtx tool thus: 

mpgtx ­200 ../CC_1914_03_26_CruelCruelLove.mpg ­b CC_1914_03_26_CruelCruelLove

The individual files as used here are also available with this thesis and listed below 
with their sizes in bytes.

1035738  chunk-001.mpg  899402  chunk-035.mpg  992574  chunk-068.mpg 

 961558  chunk-002.mpg  996380  chunk-036.mpg  998936  chunk-069.mpg 

 997946  chunk-003.mpg  992284  chunk-037.mpg  741322  chunk-070.mpg 

 836572  chunk-004.mpg  749924  chunk-038.mpg  995420  chunk-071.mpg 

 995420  chunk-005.mpg  933264  chunk-039.mpg  993564  chunk-072.mpg 

 995420  chunk-006.mpg 1024964  chunk-040.mpg  980840  chunk-073.mpg 

 747462  chunk-007.mpg 1006002  chunk-041.mpg  813808  chunk-074.mpg 

 993884  chunk-008.mpg  746822  chunk-042.mpg  998552  chunk-075.mpg 

 995834  chunk-009.mpg  989344  chunk-043.mpg  989088  chunk-076.mpg 

 997626  chunk-010.mpg 1000408  chunk-044.mpg  748550  chunk-077.mpg 

 858346  chunk-011.mpg  799612  chunk-045.mpg  998680  chunk-078.mpg 

 999768  chunk-012.mpg  975434  chunk-046.mpg  993564  chunk-079.mpg 

 747048  chunk-013.mpg 1020616  chunk-047.mpg  997020  chunk-080.mpg 

 991900  chunk-014.mpg  991934  chunk-048.mpg  748388  chunk-081.mpg 

 999192  chunk-015.mpg  744616  chunk-049.mpg  991486  chunk-082.mpg 

 747304  chunk-016.mpg  994524  chunk-050.mpg  999704  chunk-083.mpg 

 998424  chunk-017.mpg  998488  chunk-051.mpg 1025762  chunk-084.mpg 

 993756  chunk-018.mpg  995804  chunk-052.mpg  745512  chunk-085.mpg 

 998202  chunk-019.mpg  743720  chunk-053.mpg  993692  chunk-086.mpg 

 749156  chunk-020.mpg  998138  chunk-054.mpg  995676  chunk-087.mpg 

149



 993884  chunk-021.mpg  976458  chunk-055.mpg  746344  chunk-088.mpg 

1004086  chunk-022.mpg  798080  chunk-056.mpg 1146148  chunk-089.mpg 

 812272  chunk-023.mpg 1000792  chunk-057.mpg  795264  chunk-090.mpg 

 988256  chunk-024.mpg  997626  chunk-058.mpg  998872  chunk-091.mpg 

 997370  chunk-025.mpg  922678  chunk-059.mpg  995420  chunk-092.mpg 

 996666  chunk-026.mpg  799100  chunk-060.mpg  854894  chunk-093.mpg 

 812310  chunk-027.mpg  930640  chunk-061.mpg  904932  chunk-094.mpg 

 980042  chunk-028.mpg  997562  chunk-062.mpg  996986  chunk-095.mpg 

 995706  chunk-029.mpg  994938  chunk-063.mpg  995676  chunk-096.mpg 

 841082  chunk-030.mpg  916350  chunk-064.mpg  937322  chunk-097.mpg 

1000920  chunk-031.mpg  992796  chunk-065.mpg  830658  chunk-098.mpg 

 747876  chunk-032.mpg  747014  chunk-066.mpg 1016042  chunk-099.mpg 

 997178  chunk-033.mpg  997690  chunk-067.mpg  703680  chunk-100.mpg

 996218  chunk-034.mpg 

POV-Ray

The files benchmark.pov and benchmark.ini are widely available and accompany this 
thesis. 

Mandelbrot

A typical configuration of the Mandelbrot set is rendered in vertical slices of 40 
pixels wide with an overall images size of 6400 by 4800. 

Mandelbrot_00000001: 
­2.3333166666666667 1.00001666666666666 ­1.25 1.25 0 0 40 4800 1024 6400 4800 

mandelbrot_00000002 :

­2.3333166666666667 1.00001666666666666 ­1.25 1.25 40 0 80 4800 1024 
6400 4800 

...

mandelbrot_00000159 :

­2.3333166666666667 1.00001666666666666 ­1.25 1.25 6320 0 6360 4800 
1024 6400 4800 

mandelbrot_00000160 :

­2.3333166666666667 1.00001666666666666 ­1.25 1.25 6360 0 6400 4800 
1024 6400 4800 
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One Second

Each file contains an increasing integer, starting from one, representing the number 
of seconds the processor should wait for. 
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Appendix F

Experimental Results

Please see accompanying file bcg_phd_thesis_appendix_F.pdf
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