
University of Tasmania Open Access Repository

Cover sheet

Title
Distributed computing and communication in peer-to-peer networks

Author
Goldsmith, B

Bibliographic citation
Goldsmith, B (2010). Distributed computing and communication in peer-to-peer networks. University Of
Tasmania. Thesis. https://doi.org/10.25959/23210420.v1

Is published in:

Copyright information
This version of work is made accessible in the repository with the permission of the copyright holder/s under
the following,

Licence.

Rights statement: Copyright 2010 the author

If you believe that this work infringes copyright, please email details to: oa.repository@utas.edu.au

Downloaded from University of Tasmania Open Access Repository

Please do not remove this coversheet as it contains citation and copyright information.

University of Tasmania Open Access Repository

Library and Cultural Collections

University of Tasmania

Private Bag 3

Hobart, TAS 7005 Australia

E oa.repository@utas.edu.au CRICOS Provider Code 00586B | ABN 30 764 374 782 utas.edu.au

http://doi.org/
http://rightsstatements.org/vocab/InC/1.0/
mailto:oa.repository@utas.edu.au
https://figshare.utas.edu.au
https://utas.edu.au

DISTRIBUTED COMPUTING
AND COMMUNICATION IN
PEER-TO-PEER NETWORKS

by

Bradley Charles Goldsmith

Bachelor of Computer Science, University of Wollongong (1997)
Master of Computing, University of Tasmania (2004)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

at the

UNIVERSITY OF TASMANIA

April 2010

Declaration of Originality

Chapter Three of this thesis contains some background material originally published in
(Goldsmith 2006) as a technical report from the School of Computing, University of
Tasmania.

Chapter Six of this thesis is an expansion of material originally published in (Goldsmith
2007) from the Proceedings of the 6th International Workshop on Agents and Peer-to-Peer
Computing (AP2PC 2007). Parts of Chapter One also contains extracts from this same
paper.

Edited versions of the instructions given within Appendix C for reproducing the results in
this thesis, and clustering with BOINC and Condor, have been self-published on the
Internet as blog entries and now part referenced by the BOINC project as external
documentation (BOINC 2007).

This thesis contains no material which has been accepted for a degree or diploma by
the University of Tasmania or any other institution, except by way of background
information which is duly acknowledged in the thesis. To the best of my knowledge
and belief no material previously published or written by another person is included,
expect where due acknowledgement is made in the text of the thesis.

Except where otherwise indicated, this is my own work.

Signed: ..

Dated: ..

i

Authority of Access

This thesis may be made available for loan and limited copying in accordance with the
Australian Copyright Act 1968.

All trademarks mentioned in this thesis are the property of their respective owners.

Signed: ..

Dated: ..

© Bradley Goldsmith 2004 - 2010. All rights reserved.

ii

Abstract

Traditional distributed computing systems are typically complex to implement and costly
to maintain. Furthermore, little comparative work has been done to understand the
performance and usability of these systems for their own sake as well of that of new
approaches that eventuate. The work presented herein addresses both of these problems
by describing the design and implementation of CompTorrent, a simple to implement and
maintain decentralised peer-to-peer computing network, based on techniques used in other,
non-computing peer-to-peer systems. This research also describes a new framework
(WAN-DC) suitable for the comparison of wide area distributed computing systems.
CompTorrent is compared with BOINC and Condor, two traditional distributed computing
systems, using the WAN-DC framework on the same cluster hardware.

WAN-DC consists of a baseline to quantify the size of the cluster hardware
followed by a set of well-known algorithms including calculations of the Mandelbrot set, a
conversion of video formats (Transcode) and a ray-tracing of a benchmarking scene (POV-
Ray). Other experiments include determining the systems underlying overhead with work
units of no load (No Work), as well as work units of ranging sizes in order to measure
where a system becomes acceptably efficient. This last test, One Second, is particularly
useful when comparing different systems and approaches.

Results show that CompTorrent maintains a performance range between that of
BOINC and Condor for all cluster node sizes for the POV-Ray experiment. Transcode
shows CompTorrent is between or better than BOINC and Condor in 50% of cases and,
whilst worse in the other half of experiments, it was only by approximately 15% in the
worst case. Mandelbrot showed results between both distributed systems and, similarly to
POV-Ray, No Work behaves either between or better than the results of both BOINC and
Condor. These, and other, results described within, show that that a distributed processing
system based on a decentralised, peer-to-peer network can provide similar results to
distributed processing systems based on traditional client/server networking architectures.

This work demonstrates a convergence of peer-to-peer and distributed computing
systems which while considered as certain as "death and taxes" (Foster & Iamnitchi 2003)
has not, until now, been formally demonstrated in an academic setting for general purpose
distributed computing where comparable systems exist based on a client-server approach.
It is hoped that this work contributes to the further adoption of "Grassroots" distributed
computing by bringing the ability to host and manage a distributed computing project to a
much wider audience.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Daniel Rolf, for his supervision, patience and
good humour during the course of this thesis. Thanks also to my associate supervisor, Dr.
Waheed Hugrass, for his help during the latter stages of my candidature in making sure this
thesis got out the door. I would also like to thank my fellow PhD students at the School of
Computing in Launceston for their support and advice over the years. In particular, Alistair
Atkinson and Michael Horton, with whom I most frequently whinged about our lot in life
as PhD students. Michael also assisted me greatly by providing a very thorough proofread
that was absolutely above and beyond the call of friendship. My partner, Emma Kirsopp,
who whilst also a student herself for parts of this thesis, helped keep both the house and I
together. I would also like to thank the anonymous examiners (who provided reports) that
helped improve the quality of this dissertation.

This research was supported by a Tasmanian Graduate Research Scholarship.

This thesis document was produced with the following tools:

Text and layout were written with OpenOffice.org.
Graphs produced by GnuPlot and GraphViz.
Postscript and PDFs were produced with tools from GhostScript.

iv

Table of Contents
1.0 Introduction..1

1.2 Motivation...1
1.3 Major Contributions..2
1.4 Structure of this Thesis..2

2.0 Distributed Computing, Peer-to-Peer Networks and Measuring the Performance of
Computing Systems..4

2.1 Distributed Computing..4
2.1.1 On the Differences Between Distributed and Parallel Computing......................4
2.1.2 Characteristics of Distributed Computing Systems: Terms, Actors and Roles.. .5
2.1.3 Characteristics of Parallel Architectures..8

2.1.3.1 Architecture..8
2.1.3.1.1 Flynn's Taxonomy..8

2.1.3.2 Characteristics of Parallel Problems..9
2.1.3.2.1 No Interprocess Communication (Independent or “Embarrassingly”
parallel) and Parametric Problems...9
2.1.3.2.2 Inter-process Communication (Coarse and Fine grained parallel
problems) ...9
2.1.3.2.3 Ordered or Purely Sequential Problems..10

2.1.4 Synchronisation in Distributed Processing Systems..10
2.1.4.1 Message Passing...10
2.1.4.2 Shared Memory..10
2.1.4.3 Coordination Models..11

2.1.4.3.1 Tuple Spaces and Coordination Languages.......................................11
2.1.4.3.2 Channel Based..11

2.1.5 Problem Solving in Distributed Systems...11
2.1.5.1 Data Decomposition...12
2.1.5.2 Task Decomposition...12

2.1.5.2.1 Recursive..12
2.1.5.2.2 Exploratory...12
2.1.5.2.3 Speculative...12

2.1.5.3 Hybrid Decomposition...13
2.1.6 Task Allocation in Distributed Systems..13

2.1.6.1 Tree..13
2.1.6.2 Crowd...13
2.1.6.3 Economic..13
2.1.6.4 Hybrid..13

2.1.7 Task Dependencies..14
2.1.7.1 Task Graph...14
2.1.7.2 Petri Nets..14
2.1.7.3 Heuristics..14

2.1.7.3.1 List Scheduling...14
2.1.7.3.2 Graph Decomposition...14
2.1.7.3.3 Critical Paths..15

2.1.7.4 Genetic Algorithms..15
2.1.8 Using Distributed Computing for Large Problem Solving................................15

2.1.8.1 Advantages...15
2.1.8.2 Disadvantages...16

2.2 Peer-to-Peer networks..16
2.2.1 Characteristics of Peer-to-Peer Networks..16

2.2.1.1 Basic Peer-to-Peer Network Structures..17
2.2.1.2 Centralisation...17

v

2.2.1.3 Bootstrapping...17
2.2.2 Peer-to-Peer Network Architectures..18

2.2.2.1 Flooding Systems...18
2.2.2.2 Partially Centralised Systems...19
2.2.2.3 Hybrid Systems..19
2.2.2.4 Distributed Hash Tables...19

2.2.2.4.1 Trees...20
2.2.2.4.2 Skiplist..20
2.2.2.4.3 Cartesian Coordinate Space..20
2.2.2.4.4 DHT Summary...20

2.2.3 Advantages of a Peer-to-Peer Approach..20
2.2.4 Disadvantages of a Peer-to-Peer Approach...21

2.3 Benchmarking and Evaluation...21
2.3.1 Machine Performance..22

2.3.1.1 IPS and FLOPS..22
2.3.1.2 Benchmarks..22

2.3.1.2.1 Synthetic...23
2.3.1.2.2 Kernel...23
2.3.1.2.3 Component and I/O..23
2.3.1.2.4 Real Software...23

2.3.1.3 Simulation..23
2.3.2 Distributed and Parallel Systems...23

2.3.2.1 Speedup and Efficiency..24
2.3.2.2 Statistics and Leaderboards..24

2.3.3 Peer-to-Peer..24
2.3.3.1 Search Performance..24
2.3.3.2 Replication...24
2.3.3.3 Overlay Performance..24

2.4 Chapter Summary..25
3.0 Related Work..26

3.1 Peer-to-peer networks..26
3.1.1 Classification of Peer-to-peer Systems..26
3.1.2 Store and Forward..27

3.1.2.1 NNTP...27
3.1.2.2 SMTP...28

3.1.3 Centralised...28
3.1.3.1 Napster...28

3.1.4 Decentralised ..28
3.1.4.1 Gnutella..28
3.1.4.2 Server Message Block..29

3.1.5 Structured ...29
3.1.5.1 Distributed Hash Tables...29

3.1.5.1.1 Chord..29
3.1.5.1.2 Pastry..30
3.1.5.1.3 Content Addressable Network (CAN)..30

3.1.6 Unstructured ...30
3.1.7 Hybrid..31

3.1.7.1 BitTorrent...31
3.2 Distributed Computing..32

3.2.1 Client / Server Systems..32
3.2.1.1 BOINC...32
3.2.1.2 Condor..32

3.2.2 Grid Computing...33
3.2.2.1 Globus Toolkit...33

vi

3.2.2.2 Other Systems: P-Grid & X-Grid..33
3.2.2.3 Cloud Computing is not Grid Computing..34

3.3 Related Work Combining Peer-to-peer and Distributed Computing....................34
3.3.1 Retrofitting BitTorrent into Distributed Computing Data Distribution.............34
3.3.2 Peer-to-peer Distributed Computing..34

3.3.2.1 GPU..35
3.3.2.2 JXTA / JNGI..35
3.3.2.3 P-Grid...35

3.3.3 Botnets...35
3.4 Benchmarking and Evaluation...36

3.4.1 Whetstone and Dhrystone..36
3.4.2 Netperf...36
3.4.3 LINPACK and LAPACK..36
3.4.5 NAS Grid Benchmarks..37
3.4.6 Peer-to-peer Benchmark Work..37

3.5 Chapter Summary..37
4.0 WAN-DC: A New Framework for the Comparison of Wide Area Network Distributed
Computing Systems..38

4.1 Motivation...38
4.2 Performance Metrics..39
4.3 Computing Benchmark..39

4.3.1 Baseline..40
4.3.1.1 LAPACK (synthetic)..40
4.3.1.2 Whetstone & Dhrystone (theoretical maximum).......................................40
4.3.1.3 Netperf / Netpipe (theoretical maximum)..41

4.3.2 Processing Intensive...41
4.3.2.1 POV-Ray Benchmark (application)...41

4.3.3 Mix...42
4.3.3.1 Transcode (application)..42
4.3.3.2 Mandelbrot (synthetic)...43

4.3.4 Responsiveness / Overhead..44
4.3.4.1 One second (synthetic)...44
4.3.4.2 Mean work unit (synthetic derived from application)................................45
4.3.4.3 No work (theoretical maximum)..45

4.4 Qualitative Issues...46
4.4.1 General Approach & Design..46

4.4.1.1 Approach ...46
4.4.1.2 Node Organisation (client / server, peer to peer).......................................47
4.4.1.3 Network Topology...47
4.4.1.4 Application...48
4.4.1.5 Requirements & Dedication ..48

4.4.2 Features..49
4.4.2.1 Algorithmic Suitability...49
4.4.2.2 Standards Support..50
4.4.2.3 Hardware Support..50
4.4.2.4 Task & Resource Management..50
4.4.2.5 Robustness..51
4.4.2.6 Licensing..51

4.4.3 Usability...51
4.4.3.1 Hosting...51
4.4.3.2 Joining..52
4.4.3.3 Coding..52
4.4.3.4 Support...52

4.4.4 Incentives...52

vii

4.5 Discussion of the WAN-DC benchmark...53
4.6 Chapter Summary..53

5.0 A Comparative Evaluation of Condor and BOINC Using the WAN-DC Benchmark. .54
5.1 Test Platforms..54
5.2 Test Environment..54
5.3 Test Datasets..54
5.4 Results...55

5.4.1 Baseline..55
5.4.1.1 LAPACK..55
5.4.1.2 Whetstone & Dhrystone...55
5.4.1.3 NetPerf...56

5.4.2 Condor..57
5.4.2.1 POV-Ray..57
5.4.2.2 Transcode...57
5.4.2.3 Mandelbrot...57
5.4.2.4 No Work...58
5.4.2.5 One Second..58
5.4.2.6 Mean Work Unit..61

5.4.3 BOINC...62
5.4.3.1 POV-Ray..62
5.4.3.2 Transcode...62
5.4.3.3 Mandelbrot...62
5.4.3.4 No Work...63
5.4.3.5 One Second..63
5.4.3.6 Mean Work Unit..66

5.4.4 Qualitative Evaluation...66
5.5 Discussion of Performance Results on BOINC and Condor.....................................68

5.5.1 POV-Ray..68
5.5.2 Transcode...69
5.5.3 No Work...69
5.5.4 Mandelbrot...69
5.5.5 One Second..69
5.5.6 Mean Work Unit..69

5.6 Chapter Summary..69
6.0 CompTorrent ...71

6.1 Introduction..71
6.2 Technical Overview...73

6.2.1 Metadata File...73
6.2.2 Tracker...74

6.2.3 Node..75
6.2.4 Security..76

6.3 Using CompTorrent...77
6.3.1 A Suitable Algorithm (and data!)..77
6.3.2 Locating a Tracker...77
6.3.3 Creating the Metadata File...77
6.3.4 Planting the Seed..78
6.3.5 Seeing the Results..79

6.3.5.1 The home page...79
6.3.5.2 Node & Work Unit List..79
6.3.5.3 Overlay Graph..80
6.3.5.4 Connection Graph..80
6.3.5.5 Last Run Times..81

6.4 Chapter Summary..81
7.0 CompTorrent Implementation..82

viii

7.1 Major Components..82
7.1.1 Tracker...82

7.1.1.1 Communication Protocol with Nodes..82
7.1.1.2 Discussion of Tracker Design..88

7.1.2 CompTorrent Application..89
7.1.2.1 Major Objects...89

7.1.2.1.1 Main Loop..89
7.1.2.1.2 Controller..90
7.1.2.1.3 CompTorrentPeer...91
7.1.2.1.4 TrackerParser..92
7.1.2.1.5 CompTorrentParser..92
7.1.2.1.6 Listener...93
7.1.2.1.7 Router...93
7.1.2.1.8 Processor...94

7.1.2.2 Communication Protocol Between Nodes...94
7.1.2.3 Network Overlay & Topology...96
7.1.2.4 Security..97

7.2 The CompTorrent Metadata File...97
7.3 CompTorrent in Action...99

7.3.1 A Seed Node by Itself..99
7.3.2 A Node Joining Without a Route ID..100
7.3.3 A Node Joining a Node..100
7.3.4 Requesting & Completing a Work Unit..100
7.3.5 Verification of the Work Unit..101
7.3.6 Assembling the Results..101

7.4 Summary..101
8.0 CompTorrent Evaluation..102

8.1 Performance Results..102
8.1.1 POV-Ray..102
8.1.2 Transcode...102
8.1.3 Mandelbrot...103
8.1.4 No Work...103
8.1.5 One Second..104
8.1.6 Mean Work Unit..106

8.2 Qualitative Results...108
8.3 Discussion of Results Compared with BOINC & Condor......................................109
8.4 Chapter Summary..111

9.0 Conclusions & Further Work...113
9.1 Conclusions...113

9.1.1 Distributed Computing with Peer-to-Peer Computing....................................113
9.1.1.1 Comparative Performance and Scalability...113

9.1.2 Ease of Use..113
9.1.3 New Incentives, Network Time, Processing Time and Machine Dedication. .114

9.2 Further Work..114
9.2.1 WAN-DC...114

9.2.1.1 Performance Metrics..115
9.2.1.2 Qualitative Metrics ..115
9.2.1.3 More Systems & Underlying Network Conditions..................................115

9.2.2 CompTorrent..116
9.2.2.1 Protocol and Routing Optimisation..116
9.2.2.2 Interprocess Communication..116
9.2.2.3 Optimisation of File Transfer...116
9.2.2.4 Trackers ...117

9.2.3 Botnets...117

ix

9.3 Some Personal Concluding Remarks on Peer-to-Peer as a Controversial Research
Topic..117

10.0 References..119
Appendix A ...127

Building Source Code..127
Tracker Database Schema..127
Tracker Database Schema Diagram...129
UML Class Diagrams..129

Appendix B ..133
Amdahl's Law..133
Gustafson-Barsis' Law...133

Appendix C...134
Experimental Setup Instructions..134

BOINC..134
Server...134
Client Side..136

Condor...142
Master Machine..142
Client Machine...143

Appendix D..145
WAN-DC Extras..145

Sequential read/write with underlying network changes (synthetic)...................145
Input/Output Intensive..145

Sequential read/write (synthetic / application)...146
BitTorrent (theoretical maximum)...146

Failure and Malfeasance...147
Erroneous Results (synthetic)...147
First work unit (synthetic derived from application)...148

Appendix E...149
Data Sets..149

Transcode..149
POV-Ray...150
Mandelbrot..150
One Second...151

Appendix F...152
Experimental Results...152

x

List of Figures
Figure 1: Ethernet throughput of the cluster network..56
Figure 2: The round trip time of the cluster network with packets of increasing size.........56
Figure 3: Condor One Second graph for 1 machine...59
Figure 4: Condor One Second graph for 2 machines...59
Figure 5: Condor One Second graph for 4 machines...59
Figure 6: Condor One Second graph for 8 machines...60
Figure 7: Condor One Second graph for 16 machines...60
Figure 8: Condor Mean One Second results..60
Figure 9: BOINC One Second graph for 1 machine..63
Figure 10: BOINC One Second graph for 2 machines...64
Figure 11: BOINC One Second graph for 4 machines...64
Figure 12: BOINC One Second graph for 8 machines...64
Figure 13: BOINC One Second graph for 16 machines...65
Figure 14: BOINC Mean One Second Results...65
Figure 15: A new job is started by the creation and publication of a metadata file.............72
Figure 16: The major steps in joining a CompTorrent swarm...73
Figure 17: Three nodes is a simple network interacting with each other and the tracker....76
Figure 18: The tracker WWW interface home page..79
Figure 19: The tracker Node & Work list..79
Figure 20: The overlay graph...80
Figure 21: The IP connection graph...80
Figure 22: The tracker page of last run times and other statistical information...................81
Figure 23: Collaboration graph for the sample implementation of CompTorrent...............89
Figure 24: CompTorrent One Second graph for 2 machines...104
Figure 25: CompTorrent One Second graph for 4 machines...104
Figure 26: CompTorrent One Second graph for 8 Machines...105
Figure 27: CompTorrent One Second graph for 16 machines...105
Figure 28: CompTorrent Mean One Second results...106

xi

Index of Tables
Table 1: Flynn's Taxonomy shown as a matrix..8
Table 2: A new classification scheme by peer-to-peer approach along with its generative
classification equivalent and examples..27
Table 3: The LAPACK experiment in detail in the WAN-DC benchmark.........................40
Table 4: The Whetstone and Dhrystone experiment in detail in the WAN-DC benchmark.
..41
Table 5: The Netperf experiment in detail in the WAN-DC benchmark.............................41
Table 6: The POV-Ray experiment in detail in the WAN-DC benchmark..........................42
Table 7: The Transcode experiment in detail in the WAN-DC benchmark.........................42
Table 8: The Mandelbrot experiment in detail in the WAN-DC benchmark.......................44
Table 9: The One Second experiment in detail in the WAN-DC benchmark......................45
Table 10: The Mean Work Unit experiment in detail in the WAN-DC benchmark............45
Table 11: The No Work experiment in detail in the WAN-DC benchmark........................46
Table 12: The qualitative approach category in the WAN-DC benchmark.........................47
Table 13: The qualitative node organisation category in the WAN-DC benchmark...........47
Table 14: The qualitative network topology category in the WAN-DC benchmark...........48
Table 15: The qualitative application category in the WAN-DC benchmark......................48
Table 16: The qualitative requirements category in the WAN-DC benchmark...................49
Table 17: The qualitative algorithm support category in the WAN-DC benchmark...........49
Table 18: The qualitative task ordering category in the WAN-DC benchmark...................49
Table 19: The qualitative communication standards category in the WAN-DC benchmark.
..49
Table 20: The qualitative hardware support category in the WAN-DC benchmark............50
Table 21: The qualitative job allocation category in the WAN-DC benchmark..................50
Table 22: The qualitative robustness category in the WAN-DC benchmark.......................51
Table 23: The qualitative licensing category in the WAN-DC benchmark.........................51
Table 24: The qualitative usability category in the WAN-DC benchmark..........................51
Table 25: The qualitative hosting category in the WAN-DC benchmark............................52
Table 26: The qualitative joining category in the WAN-DC benchmark............................52
Table 27: The qualitative coding category in the WAN-DC benchmark.............................52
Table 28: The qualitative support category in the WAN-DC benchmark............................52
Table 29: The qualitative incentives category in the WAN-DC benchmark.......................53
Table 30: Individual cluster machine performance for LAPACK.......................................55
Table 31: Individual cluster machine performance for Whetstone and Dhrystone..............55
Table 32: Condor results for the POV-Ray experiment...57
Table 33: Condor results for the Transcode experiment..57
Table 34: Condor results for the Mandelbrot experiment..58
Table 35: Condor results for the No Work experiment..58
Table 36: Condor results for the Mean Work Unit experiment...61
Table 37: BOINC results for the POV-Ray experiment...62
Table 38: BOINC results for the Transcode experiment..62
Table 39: BOINC results for the Mandelbrot experiment..63
Table 40: BOINC results for the No Work experiment...63
Table 41: BOINC results for the Mean Work Unit experiment...66
Table 42: WAN-DC qualitative results for both BOINC and Condor.................................68
Table 43: The major web based components of the CompTorrent Tracker.........................88
Table 44: The message schema of the CompTorrent protocol...95
Table 45: CompTorrent results for the POV-Ray experiment...102
Table 46: CompTorrent results for the Transcode experiment..103
Table 47: CompTorrent results for the Mandelbrot experiment..103

xii

Table 48: CompTorrent results for the No Work experiment..103
Table 49: Mean Work Unit results for CompTorrent...107
Table 50: WAN-DC qualitative results for CompTorrent..109
Table 51: POV-Ray speedup results for the three systems..109
Table 52: Transcode speedup results for the three systems...110
Table 53: Mandelbrot results for the three systems...110
Table 54: No Work results for the three systems...110
Table 55: Mean work unit (Transcode) results for the three systems................................111
Table 56: Mean work unit (Mandelbrot) results for the three systems..............................111
Table 57: Mean work unit (POV-Ray) results for the three systems.................................111
Table 58: Mean work unit (No Work) results for the three systems..................................111

xiii

Chapter One

“Dissent is the native activity of the scientist, and it has got him into a good deal of trouble in the last
years. But if that is cut off, what is left will not be a scientist. And I doubt whether it will be a man.”

 -- The late, great Dr. Jacob Bronowski.

1.0 Introduction

This thesis shows that a distributed processing system based on a decentralised, peer-
to-peer network can provide similar results to distributed processing systems based
on traditional client/server networking architectures. It describes the implementation
of a new distributed processing platform (called CompTorrent) that achieves this
level of result performance using a peer-to-peer network. CompTorrent is the first
working system that demonstrates a convergence between hybrid peer-to-peer
systems and distributed computing for general purpose distributed processing
applications.

CompTorrent brings several new ideas and new possibilities to wide area
distributed computing.

• Using a decentralised, ad hoc swarm as a processing resource for
distributed computing

• Distribution of source and computed data sets concurrently with
computation to enable participants to acquire both of the full data sets

• Using the acquisition of original and computed data sets as an incentive to
join the computing swarm

• Minimising infrastructure requirements, in both network connectivity and
server hardware, to a level approaching nothing for hosting a distributed
computing project

The result is a similar level of performance to traditional distributed
processing implementations with the added benefits of a decentralised, peer-to-peer
architecture. This provides access to distributed processing resources that may not
have been available to start up projects previously without the investment of time and
resources to maintain a central server pool as required in a traditional client/server
approach.

1.2 Motivation

Distributed computing has had several high profile successes from the 1990s
onwards. Folding@Home (Larson et al 2003), since 2000, has been working on
computing simulations for molecular dynamics to better understand certain diseases.
Distributed.net (Haynes 1998) has spent the last 10 years answering challenges by
RSA Security to encourage research into computational number theory.
SETI@Home has had over 5.2 million participants processing data from the Arecibo
radio telescope making it the largest distributed computing project over a wide area
network to date (Anderson et al 2002). These projects, and others like them, are
interesting, worthwhile and largely centralized in their control. This centralised
approach has led to many processing participants, but relatively few distributed
computing projects. This difference becomes particularly apparent when wide area

1

network distributed computing is compared to other distributed applications such as
file sharing or instant messaging. There are potentially many more applications for
raw computing power that could be realised should the overhead of centralised
control be removed.

Another motivation has been the limited application of peer to peer
techniques themselves and their individual suitability to some parts of distributed
computing. File sharing has undoubtedly been the biggest, and most controversial,
application of this technique and a large part of distributed computing is the
distribution of data. Instant messaging and telephony has been successful with a
peer-to-peer approach and the coordination of computing jobs has been a big part of
wide area network distributed computing that has been managed centrally. Wide area
network distributed computing requires significant computing resources just to
centrally manage the computation. Peer-to-peer networking has produced large
amounts of storage and computing power with minimal or no cost in terms of central
resources. Denial of service attack, and other hacking attempts, have occurred
several times on large centralised services (Vixie et al 2002) (ICANN 2007),
including instances of public distributed computing projects (Kotadia 2004). Peer-to-
peer systems have proven extremely resilient in the face of a variety of disruptive
attacks.

This research has taken the first steps in showing that decentralised peer-to-
peer distributed computing is feasible and can provide the tools to bring distributed
computing, as a general purpose computing tool, to a much larger audience.

1.3 Major Contributions

In addition to showing that a decentralised, peer-to-peer network can provide similar
results for distributed computing applications compared to existing client/server
architectures the following research contributions have been made:

● Applying the metadata concept to distributed computing
● A framework for the comparison of distributed computing architectures that

consists of performance measurement and selection criteria
● A comparison of two existing distributed computing systems (BOINC and

Condor) on the same hardware and network platform
● Having the sharing and dissemination of the original and computed data sets

as incentives for participating in an open distributed computing project
● Sharing the original dataset, computed dataset and execution load

concurrently
● The comparison of computing performance of this newly developed system

with two other established distributed computing platforms. The
experimentation utilised the same hardware and network to provide a fair
comparison without needing to rely on simulation

1.4 Structure of this Thesis

Chapter two provides the necessary background for the reader by giving a
description of distributed computing, peer-to-peer networks and the measurement
and benchmarking of distributed systems. Chapter three surveys a range of large and
small projects that bear relation to the system described in this thesis in chapters six,
seven and eight. Chapter four provides criteria for the evaluation of distributed
computing systems by first describing a taxonomy of computing distributed systems
and then a range of algorithms and techniques to enable a comparative analysis of
existing and emerging systems. Chapter five presents an evaluation of the BOINC

2

and Condor distributed computing systems using the criteria presented in Chapter
four. Chapters six and seven describe the design and implementation of the
CompTorrent distributed computing system. The design principles of CompTorrent
are explained followed by the actual implementation details and some discussion of
decisions made. Chapter eight provides a detailed evaluation of the CompTorrent
protocol using the evaluation framework presented in chapter four. Chapter nine
provides a discussion of further work that has been identified during this research
and then concludes.

3

Chapter Two

2.0 Distributed Computing, Peer-to-Peer Networks and
Measuring the Performance of Computing Systems

This chapter presents an overview of the separate fields of distributed computing,
peer-to-peer networking and measuring the performance of computing systems. It
intends to give the reader the necessary technical background, of all three fields, to
fully understand the rest of this thesis. This chapter concentrates on theoretical
background and underlying concepts with examples only where necessary for
explanation. The next chapter, chapter three, is where examples of these technologies
are described.

2.1 Distributed Computing

Distributed computing refers to two or more computers networked together sharing
the same computing work. The aim is that by sharing the job between multiple
computers, the computing work will be completed more quickly than on one machine
alone.

2.1.1 On the Differences Between Distributed and Parallel
Computing

Whilst there are many similarities between the goals, research problems and
operation of Parallel Computing and Distributed Computing, there are several subtle
differences. These two different terms are often, and incorrectly, used synonymously.
This confusion is further compounded by the fact that these two areas of research are
constantly undergoing significant change. Leopold (2001) provides perhaps the
clearest summary on the difference between parallel and distributed computing:

“Parallel computing splits an application up into tasks that are
executed at the same time, whereas distributed computing splits
an application up into tasks that are executed at different
locations, using different resources.”

Parallel computing typically refers to multiple processing elements existing within
one machine with each processor being dedicated to the overall system at the same
time. Distributed computing refers to a group of separate machines that each
contributes processing cycles to the overall system, over a network, over time.

Volunteer distributed computing was inspired by parallel computing systems
yet driven by a lower cost solution of using cheaper individual machines
interconnected by a local or wide-area network rather than specialist, expensive
parallel hardware required to coordinate many processors within the same machine.
Faster and cheaper networks have seen distributed systems emerge in the 1970s and
1980s, grow significantly through the 1990s to now being relatively common in
research institutions in the 2000s. Distributed computing is, at time of writing,

4

undergoing a convergence due to improvements in personal computing hardware and
wide area network performance.

This thesis is at all times concerned with distributed computing systems
however several of the common characteristics will be explained. When the
reference is to a parallel description, its is discussing the terms which are common to
both parallel and distributed systems and algorithms. Otherwise, a distributed
specific description, will refer to distributed computing systems and algorithms.

2.1.2 Characteristics of Distributed Computing Systems: Terms,
Actors and Roles.

There are several elementary distributed computing terms and ideas which will first
be defined for volunteer distributed computing. These notions are the computing job
itself, the processing nodes and tasks being completed.

A job relates to the overall computing work that needs to be done in order to
solve the problem at hand. There are several different categories of computing jobs
based on the underlying nature of the computation or algorithm itself. Some jobs are
very parallel in nature. These can be easily split into smaller parts that each processor
can work on independently. These are known as independently or embarrassingly
parallel problems. Some jobs only have a relatively small parallel component and
due to this much communication needs to take place between the different entities
working on different parts of the problem. This describes a problem which requires
much synchronisation between the different parts of the problem being processed.
The term used here to describe how well a job can be parallelised is granularity. A
coarse-grained algorithm allows the problem to be split into sizeable chunks
allowing more useful processing time compared to the time spent with
communication over a network. A fine-grained problem describes the opposite; the
job can only be processed for a relatively short period of time before communication
is required.

A node is an entity on the network that is able to perform computing tasks. In
a conventional parallel system this would refer to a physical processor unit within the
computer system. In the traditional distributed computing scenario this is more likely
to refer to a computer that is a part of the network. The modern practical reality tends
to be a combination of the two. Modern systems can have multiple CPUs per
machine and two and four processor systems are not unheard of in high-end personal
computers. Since mid 2006, “dual core” or “multi core” processors have become the
norm taking over from multiple discrete CPUs in a system. These are multiple
independent CPUs that are housed in the one chip package; often on the same
integrated circuit. This distinction is important as a discrete node on a distributed
processing network might well internally be a parallel processor as well.

A task is a logically discrete part of the overall processing job. Each task is
distributed amongst different machines or processors on the network to work on
different parts of the overall computation job at the same time. It should be the
overall aim of each distributed processing system to complete the computation work
as efficiently as possible. In the literature, jobs are sometimes referred to as tasks and
tasks referred to as subtasks.

Now that there is an understanding of the network of nodes that are each
working on a task in order to work towards completing the overall job, there needs to
be a way to coordinate this overall process. To do this one of the different types of
ways that nodes can be organised and coordinated, and the tasks themselves

5

managed, must be used. This will now be considered.

There is often ordering associated with the computation of tasks in an overall
job. The ordering may be sequential where the output from one particular task may
provide input for another task. Or perhaps a group of tasks sharing the same data set
may have shared data boundaries (or edges) where communication between tasks
will need to occur for the job to be processed correctly. Also, whilst maintaining
communication, these tasks need to be as evenly distributed as possible amongst
nodes (or directed towards some and away from others) in order to maintain a
balance. Maintaining synchronisation between nodes doing tasks in a dynamic
environment is difficult as deadlocks1 and race conditions2 between different tasks
and resources can occur. This calls for the need of synchronisation of tasks and is a
feature of many distributed systems. Synchronisation can be centralised, with one
node or agent in control of managing tasks, or decentralised with several or all nodes
managing a part of the overall synchronisation control or a combination of both.

Of course, managing these nodes and allocating tasks incurs a communication
overhead beyond what would occur if the tasks were being executed sequentially,
that is one after the other, on a single machine or processor. There are three broad
categories of overhead here. The first two, bandwidth and latency, are mostly
influenced by the network underlying the distributed computing system. The third is
response time which is the administrative time taken for the system to respond.

Bandwidth refers to how much data can be passed over a communication
channel in a finite period of time. This is a term that has been loaned from the field
of radio communications where there it refers to the difference between the upper
and lower frequencies of a communications channel. In computer networking it
refers to the data rate, or the amount of data that pass through a communication
channel over a given period of time3. In distributed computing, especially in a fine
grained problem, the amount of communication that needs to take place between
different nodes is crucial in the overall efficiency of the system. The bandwidth of
the network often becomes far more critical than the speed of the processing nodes
themselves.

Latency refers to the time between an action being initiated and the action
actually having some effect. In terms of the underlying network, latency can be the
time between the data being sent and the data actually being received. In terms of a
task, one measure of latency is the time between a task being allocated to a node and
the node actually beginning the processing task. So again there is one term referring
to two different things in the same area. Network latency is a serious issue along with
bandwidth in determining the overall effectiveness of a distributed processing
system. In this thesis latency issues in the underlying network will be referred to as
network latency and delays in the processing job being allocated and returned as
response time. Response time and network latency are often bundled together by the
term parallel overhead. The time taken to create each task, start and stop threads of
execution, wait for synchronisation cues and the network communication are all
examples of issues that can significantly count towards overall execution time when
compared to running the job on a single processor.

1 A deadlock occurs where two or more tasks are waiting for the other to finish first so neither ever
does.

2 A race condition describes a problem where the output result from a task changes based on the
sequence or timing of other events.

3 With the advent of wireless computer networking, the borrowing of this term has become a bad
idea. It is now possible to use the word bandwidth twice in a sentence with each occurrence
referring to a different thing.

6

Once the network of nodes is organised and the job is on its way to being
computed and an understanding that there are delays and performance issues, there
should exist a system that can be measured or at least a system where measurements
would be a good thing to have. In distributed computing there are two elementary
measures called speedup and efficiency that allows the practitioner to compare how
the system is working against theoretical ideals.

Speedup is the ratio which describes how many times faster a job is running
on multiple processors rather than a single processor. It is derived by taking the
running time of a job running on one processor and dividing it by the running time
of the same job running on two or more processors. This gives us a number that is a
measure of how many processors the system is representing. Rarely is it the case that
two processors will process the job exactly twice as fast as 1 processor due to the
overheads already discussed that are inherent to distributed processing. This ideal
measure is known as linear speedup and is often included on speedup graphs as a
baseline for which the actual speedup measurements per number of processing
elements is compared. Where speedup is on the y axis and and number of processors
on the x axis, linear speedup will draw a straight line at 45∘ between the axes. The
reality of course is that speedup will typically lag somewhat beneath the ideal and
often the difference will increase as the number of processors does.

Occasionally, super-linear speedup can be observed. This is where for
example 2 processors working on the job will show more than 2 times speedup. This
is usually explained by caching, where the job can run faster overall due to the
accumulation of cache sizes of all the involved processors. So if only half of the
dataset fits within the cache on one node, split between two equal nodes the whole
dataset could be stored in faster cache memory, rather than half cache and half
conventional memory. This could potentially produce a speedup greater than the sum
of the processors involved - for a few multiples of nodes anyway depending on data
and cache size.

In parallel and distributed computing terms, efficiency is defined as the
amount of speedup divided by the number of processors being utilised. That is,
speedup per processor. This is typically a real number between 0 and 1.

These measures of speedup and efficiency can quickly allow us to determine
the scalability of the system or how well will it continue to perform as more nodes
and tasks are added. A naïve approach to measuring a distributed system might lead
one to think that the more processing nodes that can be added to a system the better.
Amdahl's Law (Amdahl 1967) shows us that there will always be an upper bound to
scalability in a distributed computing system so much so that eventually adding more
processors to a job can make the overall execution time longer as the overhead of
communication and management increases.

Amdahl's Law generally states that every computing job contains parts that
are not able to be executed purely in parallel. That means that no matter how many
processing nodes are available to the problem, the sequential only part of the job will
provide an upper limit to the overall speedup achieved4. This is a limitation until one
considers that a problem that is sufficiently large enough to be distributed will often
lend itself to parallelisation through the nature of its own size. Therefore the serial
limitation of the job does not have so large an effect and that many, many nodes can
be involved without speedup decreasing. This effect is described by Gustafson-
Barsis' Law5 and simply states that any sufficiently large problem can be efficiently

4 A Generalised formal definition for Amdahl's Law is given in Appendix B.
5 A Generalised formal definition for Gustafson-Barsis' Law is given in Appendix B.

7

parallelised.

This chapter will now move on to describe the different classifications of
architectures and the different categories of problems that can be solved with
distributed computing.

2.1.3 Characteristics of Parallel Architectures

There are many different categorisations of parallel machines and problems.
Considered here will be two broad categorisations, the classic classification of
Flynn's taxonomy as well as common classifications used in grid and cluster
literature.

2.1.3.1 Architecture

Whilst there are many taxonomies in the literature for describing computer
architectures, Flynn's Taxonomy has endured as the most general and useful for
categorising existing and emerging architectures.

2.1.3.1.1 Flynn's Taxonomy

Flynn's taxonomy (Flynn 1972) is a classification of computer architectures that is
also regularly used to classify algorithms as well.

Single
Instruction

Multiple
Instruction

Single
 Data SISD MISD

Multiple
Data SIMD MIMD

Table 1: Flynn's Taxonomy shown as a matrix.

Single Instruction, Single Data refers to a architecture that consists of a single
processing unit operating on a single stream of data without any parallelism
whatsoever. This is analogous to an early personal computer or a classic Von
Neumann architecture.

Single Instruction, Multiple Data is an architecture where a single stream of
instructions are applied to multiple streams of data simultaneously. Examples would
include a processor optimised for array based operations or a graphical processor.

Multiple Instruction, Single Data is an architecture where multiple streams of
instructions are applied to a single stream of data. Of the taxonomy, this is the rarest
seen applied, as only the most fault tolerant designs require separately developed
systems operating to provide a consensus result. Examples are found in aerospace
applications such as flight control systems.

Multiple Instruction, Multiple Data is an architecture of multiple operating
processors working on multiple streams of data. Multi threaded programming is
often MIMD and distributed systems, where asynchronous operations by multiple
processors on separate data, are a clear example.

8

2.1.3.2 Characteristics of Parallel Problems

In distributed computing terms, algorithms can be placed into three general
categories: No interprocess communication, interprocess communication and
sequential problems.

2.1.3.2.1 No Interprocess Communication (Independent or “Embarrassingly”
parallel) and Parametric Problems

As already alluded to in 2.1.2, an independently parallel or embarrassingly parallel
problem is one that can be completely computed with no communication between
processing nodes whatsoever during the computing process. A purely
embarrassingly parallel problem is one that includes no post processing of results.

Common examples of this class of algorithm would include a brute force
search of a keyspace, calculating a fractal such as the Mandelbrot set or ray-tracing a
graphical scene. Many classic wide area network distributed computing systems
concentrate solely on this class of algorithm as the lack of communication allows for
greater scalability.

No interprocess communication problems can be broken further down into
two sub categories: parametric and data parallel problems. A parametric problem is
an embarrassingly parallel problem that needs to be calculated multiple times with
different parameters. For example a physical simulation may require the same
calculations applied to the same data with different starting parameters as a problem
set. After the multiple calculations have occurred, post processing may be required in
order to chose the best fitting result or produce an aggregation of results. A data
parallel problem is one where the data are evenly divided between processing nodes
before the same algorithm is applied. The difference to plain embarrassingly parallel
is that the computation amount may vary depending on which data are allocated.
After computation has finished post processing is usually required to combine the
result set.

2.1.3.2.2 Inter-process Communication (Coarse and Fine grained parallel
problems)

This category of problems consists of algorithms that, when divided amongst
processors, requires communication between them in order to correctly compute the
given data. Depending on the nature of the algorithm, some require much
communication (fine grained) or communicate relatively infrequently (coarse
grained). Still, in the case of distributed computing applications, any communication
between processors is extremely expensive in terms of slowing down the overall
computation.

The amount of data to be communicated transcends the coarse/fine distinction –
some problems may have small amounts of data shared between processors but very
frequently. Others may have large amounts of data infrequently transmitted. A heat
transfer computation for example will often have data shared between nodes at the
boundaries of each data set only.

It is also noteworthy that some otherwise interprocess communication problems can
be solved in an embarrassingly parallel way by recalculating some parts of the
problem that would otherwise need to be shared.

9

2.1.3.2.3 Ordered or Purely Sequential Problems

A sequential problem is one where each task in the overall job must be calculated
one after the other in a strict order. Typically, data must also be handled in a strict
order as well. Problems with a high level of data dependency, when they occur, can
render a problem unsuitable for parallelisation. However, as the size of the problem
or the data set increases, generally there are opportunities for parallelisation. In
practise, relatively few purely sequential problems exist. However an example of one
would be the calculation of Fibonacci numbers. The dependence on the two
preceding results removes the ability for the parallelism to increase enough (and still
produce a Fibonacci sequence) for Gustafson-Barsis' Law to apply.

2.1.4 Synchronisation in Distributed Processing Systems

There are several models for communication between processing units in distributed
computing or parallel computing systems. This inter-process communication is
required for the management of the computing network as well as the
synchronisation of computation as required by the algorithm being computed. There
are many implementations of interprocess communication models in distributed
computing, however they broadly fit into three underlying categories. These are
message passing, shared memory or coordination models.

2.1.4.1 Message Passing

Message passing models rely on messages being sent and received between nodes
working on a task over a network or bus. This is the only mode of communication so
there is no shared memory between nodes. Message passing relies on the
programmer to deal with all facets of the data distribution, scheduling and algorithm
management. It requires a very low-level understanding of the message passing
system being applied and multi-process programming beyond the domain knowledge
required for the problem actually being solved itself.

The most common implementation of message passing is the Message
Passing Interface (MPI). MPI is a language-independent communication protocol
used for task synchronisation and is considered the de facto standard for distributed
processing by message passing.

See Snir et al (1996) for a definitive guide to MPI.

2.1.4.2 Shared Memory

Shared memory models rely on all processing nodes having access to a shared,
distributed memory store which is accessible to nodes working on a task. From a
traditional point of view, shared memory programming can best be described as
separate processing threads with a single process. Each thread executes
independently of one another yet has a shared memory space that is visible, and
editable, by all threads within the process. This greatly reduces the burden on the
programmer, when compared to message passing, as individual threads need not
know about other processing threads in order to carry out their task.

In a distributed environment, a distributed shared memory is maintained over
physically separate machines, and hence separate memory spaces, yet access is
typically available through an abstraction that looks like local memory. This allows
for ease of programming at the significant cost of performance when access to
memory is required from a non-local memory. Again, to draw from a traditional

10

SISD architecture, distributed shared memory is analogous to virtual memory in an
operating system. Memory fetches in physical ram (local storage) is much faster than
a fetch that requires a page to be brought from the disk (remote machine).

There are a variety of distributed shared memory projects under way with
OpenMP as the defacto standard. See Protić et al for a comprehensive review of
foundation concepts (Protić 1997) and the OpenMP official homepage (OpenMP
2009) for OpenMP resources.

2.1.4.3 Coordination Models

Coordination Models are a type of either shared memory or message passing that
differ enough from their underlying model to be considered a synchronisation model
in their own right. Coordination models differ themselves, from shared memory or
message passing, through the computation and communication aspects of
completing a task being completely separate from one another. This contrasts with
the shared memory or message passing approaches where the communication is
mixed with the computation from the developer's perspective.

2.1.4.3.1 Tuple Spaces and Coordination Languages

Tuple spaces allow the coordination of a computation job through a distributed,
associative shared memory which consists of objects called tuples. A tuple is an
ordered list of values that is referenced by its content rather than its address. Any
process can access any tuple in the tuple space.

Tuple spaces are a high level solution to coordinating processors in a
distributed system whilst still remaining efficient relative to low-level solutions
(Carriero and Gelernter 2006).

2.1.4.3.2 Channel Based

Channel based coordination models treat computation and communication separately
by treating the output from one process as being the input for another. Processing
elements communicate via message passing between one another over pre-
determined channels. There is no shared memory whatsoever and processing units
are treated as black boxes. The communicating sequential processes model (Hoare
1978) is the first significant channel based coordination model.

CSP is a very structured method of parallel programming. Programs are
defined by parallel regions where processes are created and run until they terminate
producing a set of outputs. These outputs can then be used as inputs for the next
parallel region. In the simpler CSP case, processes identify each another by an
explicit name and all read and write operations are synchronous and blocking.

The communicating sequential processes model also allows for the formal
analysis of complex systems and prove them secure and free of defects such as
deadlocks.

2.1.5 Problem Solving in Distributed Systems

In order to solve a problem concurrently, distributed and parallel systems decompose
the overall job into smaller tasks that can be divided amongst numerous processing
units or nodes in a processing network. The goal is to maximise the amount of
processing whilst minimising the communication overhead. There are several

11

existing strategies in the literature to achieve this. Here will be described how a
problem is commonly decomposed in a distributed processing system, how work is
allocated and how subtask dependencies are managed. This is described with a focus
on distributed architectures, and using that terminology, as there are many similar
models such as data-parallel model (tasks are statically mapped onto processes, and
the similar task is performed on different data), task-graph model (tasks are viewed
via a task dependency graph), work-pool model (this involves dynamically mapping
tasks onto processes for load balancing), master-slave model (one or more master
processes generate work for other processes to do), producer-consumer model (a
stream of data passes through numerous processes, and each one performs a task on
it).

Sinnen describes the common methods by dividing them into the three overall
categories of data decomposition, task decomposition and hybrid decomposition
(Sinnen 2007).

2.1.5.1 Data Decomposition

Data decomposition is a common method of decomposing a problem for solving on a
distributed computing system due to candidate problems often working with large
datasets. The data are partitioned into subsets depending on the nature of the
algorithm and distributed to nodes for processing. Input data, output data and
intermediate datasets are all candidates for partitioning during the processing
process.

Data decomposition is also used with other decomposition methods (the so-
called hybrid decomposition) which is briefly explained in 2.1.5.3.

2.1.5.2 Task Decomposition

Task decomposition is used where concurrency can be found in the execution of
tasks rather than the division of data. Common strategies include recursive,
exploratory and speculative.

2.1.5.2.1 Recursive

This is the classical divide-and-conquer approach where a task is split into subtasks
which form a tree structure. Each leaf of the tree represents an indivisible problem or
a problem of suitable size for the processor's speed and communication overhead.
Branches above leaves represent the sum of the dependent leaves below with the root
being the solution to the problem.

2.1.5.2.2 Exploratory

Exploratory decomposition closely resembles data decomposition in the way that
data are decomposed into a tree structure. However, it contrasts in the fact that not
every node in the tree is computed as a solution. Decisions are made at each branch
of the tree in order to come closer to the solution.

As a part of the exploratory process, it is possible to make a wrong decision
and backtracking back over the problem can be an additional overhead.

2.1.5.2.3 Speculative

Speculative decomposition is suitable where a problem includes a set of steps where

12

at each step there are a number of possible actions to take. This is analogous to the
switch statement in the C language. In distributed terms this means that tasks are
organised and then a decision is made and a single task executed with the rest
discarded.

2.1.5.3 Hybrid Decomposition

Hybrid decomposition is the combination of two or more decomposition methods in
order to extract concurrency from a problem. A combination of task and data
decomposition is a common solution to a variation of problems.

2.1.6 Task Allocation in Distributed Systems

There are multiple ways that tasks, once divided, can be distributed and allocated to
processors in a distributed system.

Tree, crowd, economic and hybrid models will now be considered as
examples of the major task allocation categories.

2.1.6.1 Tree

Tasks are allocated in a tree like structure by having a task start with a whole data
set, then as another node joins, the set will be divided and a portion given to the new
node. Should another node join, the task is divided again and so on.

This method of task allocation closely follows the channels of communication
in the network of processors and closely relates to divide-and-conquer style of task
decomposition.

2.1.6.2 Crowd

In contrast to tree computation, crowd allocation works by organising a pool of work
and a separate pool of processing nodes and allowing the “crowd” of nodes to do the
computation.

2.1.6.3 Economic

Some designs attempt to allocate a cost to each process in a computing network. See
Rajkumar Buyya's PhD thesis for a comprehensive treatment of economy based task
allocation (Buyya 2002).

Another variation on the economic theme is allocation based on reputation.
Processing nodes may gain status and reputation through the amount of tasks
satisfactorily completed. Here work may be allocated to nodes that are well regarded
and reliable. Some systems may even lower the amount of double rechecking or re-
computation that needs to occur to well respected nodes in order to manage
confidence in the computed dataset versus the amount of time for completion.

2.1.6.4 Hybrid

A hybrid approach is simply a combination of two or more of the aforementioned
schemes being used in concert for a desired result. Crowd computation along with
reputation is commonly used as is a mixture of tree and crowd computation.

13

2.1.7 Task Dependencies

In concert with task/data decomposition and task allocation, task dependencies, for
certain classes of algorithms, are of prime importance. Inter-task and parent-child
task dependencies often need to be satisfied in order for an overall job to be
completed. Mapping an arbitrary number of sub tasks and dependencies across an
arbitrary number of processors in the most efficient way is an NP-hard6 problem.
(Garey & Johnson 1979).

There are several approaches to attempting to optimise this process. Here will
be considered the common ones of task graphs, Petri Nets and heuristics.

2.1.7.1 Task Graph

Task graphs are typically directed acyclic graphs where each node represents a
subtask that needs to be performed. Edges between nodes indicate order precedence
and can have communication costs associated with them as well.

Various heuristic algorithms exist that can be applied to the graph in order to
maximise efficiency.

2.1.7.2 Petri Nets

Dependencies can also be modelled using Petri Nets which are an extension of the
task graph idea. Petri Nets have the advantage over directed acyclic graphs that they
support loops and the ability to make choices at an execution point. They do this by
describing processes beyond just the tasks and their hierarchy of task graphs. Petri
Nets can be represented graphically, as a flow chart, or can be mathematically
represented in a language.

See Bratosin et al (2007) for more information.

2.1.7.3 Heuristics

Several heuristic methods exist that, whilst quite effective in experimentation and
practise, are not or have not been proven correct. Like all heuristics, these often
provide good results when there is a large body of statistical analysis supporting the
fitness of the heuristic to its particular application.

2.1.7.3.1 List Scheduling

List scheduling algorithms work on the idea of tasks being placed in different
priority queues based on their importance. Importance may be measured by the
number of other tasks that depend on this task being completed or the number of
connected task that have already been scheduled and several other variations of this
theme.

2.1.7.3.2 Graph Decomposition

The aim of graph decomposition is to identify sub graphs of tasks that correspond to
an appropriate balance between processing time and communication overhead. It
attempts to achieve an optimal grain-size for allocation of work to processing nodes
(McCreary et al 1993).

6 “A problem is NP-hard if an algorithm for solving it can be translated into one for solving any NP-
problem (nondeterministic polynomial time) problem. NP-hard therefore means "at least as hard as
any NP-problem," although it might, in fact, be harder.” (Weisstein 2009)

14

2.1.7.3.3 Critical Paths

Where costs have been associated with each processing node in the task graph, along
with costs for communication along each connecting edge, a critical path is said to be
the most expensive route from the root of the tree down to the bottom of the tree
where the computation finishes. Critical path heuristics aim to shorten the critical
path as much as possible by grouping adjacent nodes together; thereby removing the
expensive communication links or edges in the graph. This produces groups of tasks
which form a processing grain which can then be allocated to a processing node.

See Khan (Khan et al 1994) for an interesting comparison of five common
multiprocessor scheduling heuristics, of the categories mentioned here, applied to a
large set of program dependence graphs.

2.1.7.4 Genetic Algorithms

Genetic Algorithms are a specialised heuristic, based on the evolutionary processes
of nature, that allows a search space to be examined in a polynomial time (Holland
1975). Searches are performed iteratively with information from previous searches
being passed down the generations with random mutations in parameters along the
way.

2.1.8 Using Distributed Computing for Large Problem Solving

Now that the major components and techniques of distributed computing are
understood, the motivations behind projects using distributed computing over some
more traditional alternatives like a supercomputer will be discussed.

2.1.8.1 Advantages

A distributed computing cluster, especially those comprising of cheap or existing
machines, provides access to computing power that is much cheaper per MFLOPS
compared to a similarly powered supercomputer. As the field has progressed, and
through the Internet, access to many more participants, distributed computing has
ceased being a lesser alternative and for many things has become the only feasible
alternative.

The sharing of resources and replication inherent in many distributed
computing systems can be a desirable trait all by itself. This is especially prevalent in
another sub field of distributed computing called grid computing and the newer, and
more nebulous, cloud computing.

Even machines permanently dedicated to the task can often provide
comparable performance than one dedicated parallel machine at a reduced cost. The
nodes in the network can change over time with machines added or subtracted as
budget or availability of resources dictates.

Some problems are inherently parallel and/or inherently distributed. Some
modelling, simulation and sensor systems require that their components be
distributed. Robustness and availability is also in a similar vein.

Avoiding waste through the scavenging of computing cycles is fast becoming
a consideration in recent times. These wasted cycles running an intensive screen
saver7 can amount to carbon in the atmosphere. If the machine is on and consuming
resources it should be doing something useful!

7 It's ironic considering it's no longer the screens that need saving when a computer is left on.

15

2.1.8.2 Disadvantages

Distributed computing introduces many new problems that are not usually
considered an issue in a single machine or dedicated computer cluster on a private
network. Security is the main issue here. Can the computed data be trusted? Are all
of the nodes well meaning and trustworthy?

As well as malfeasance, there is generally a higher level of failure of nodes
than which is observed in a dedicated parallel machine. Nodes may come and go
(this is known as churn). Nodes and their connections in the processing network will
not be homogeneous.

Some algorithms simply do not scale well over comparatively slower
networks. Even gigabit speed networks pale in speed comparison to processors
existing on a purpose built bus to say nothing about keeping all of the processing on
chip on a fast processor. This limitation is known and measurable, as already
discussed, and is a big consideration when designing a distributed computing project.

Needing to know a lot about the nature of the computing job can be a
significant problem. This again usually relates to the communication overhead where
a fine grained problem with a lot of communication overhead can quickly render a
distributed computing solution over a wide area network untenable. Indeed some
problems will present too much overhead even if all of the participating machines are
all on the same gigabit network.

2.2 Peer-to-Peer networks

Peer-to-Peer networks are characterised by each node in the network (peer) being
equivalent to each other node in the network. This contrasts to the client/server
approach where servers provide services to separate clients which consume them or
control clients outright. Client/server approaches tend to have the server and client
applications separately and independently written. In a peer-to-peer approach the
client and server software is the same application. Each node in a peer-to-peer
network acts as both a client and a server, consuming resources whilst also providing
them.

Peer-to-peer networks are gaining popularity due to their robust, decentralised
nature, low cost through usage of existing resources and potential for providing vast
resources of computation and storage. Peer-to-peer networks have been in operation,
in one form or another, since the earliest days of the Internet and have recently
proven popular as a platform for the sharing of files on wide area networks. Peer-to-
peer implementations also cover areas such as distributed communication,
computation and storage.

2.2.1 Characteristics of Peer-to-Peer Networks

Peer-to-peer networks consist of a network of nodes that work together in order to
provide services to users.

The network typically sits on top of the application level of the OSI model8.
This is why many peer-to-peer networks, especially structured peer-to-peer designs,
are known as overlay networks. Each network consists of a varying number of nodes.

8 The Open Systems Interconnection Basic Reference Model (or as commonly referred to the OSI
Model) is an abstract representation of the various layers of communication and hardware that
represent modern network architecture. See the OSI reference model (ITU 1994) for a complete
reference.

16

Each node is typically an end user's computer connected over the Internet that is
running the particular peer-to-peer application. In publicly accessible networks,
nodes vary greatly between each other in terms of capabilities such as available
computing power and underlying quality of their connection to the Internet (in terms
of available bandwidth, latency and throughput). Each node provides resources to the
network depending on the kind of peer-to-peer application it is. These resources
usually include processing power, storage or disk space, provision of files, search or
other services which together go towards providing an application to all users of the
network. The nodes in the peer-to-peer network typically maintain the network by
making a number of data connections with other nodes on forming the overlay.

2.2.1.1 Basic Peer-to-Peer Network Structures

There are a variety of network structures which govern how nodes and resources are
arranged though generally they fall into the two broad categories of structured and
unstructured networks. A structured peer-to-peer network has an order to the
arrangement of nodes and/or resources in the network. Connections between nodes
can be directed in order to improve performance at the cost of extra overhead in the
network maintenance. In an unstructured network nodes and resources are not
purposely arranged by any governing algorithm so nodes can make connections with
other nodes arbitrarily. As with most things, there is the third option between either
extreme which can be defined here as a partially structured network. This is
commonly expressed in peer-to-peer networks as a heuristic approach to limit some
of the excesses of a completely unstructured approach. Common examples of this
will be self arrangement of nodes based on their network connectivity (i.e.
Conspiring to move slower nodes to the edges of the network) or active or passive
attempts to remove obvious flaws in the overlay network arrangement such as cycles
in the graph etc.

2.2.1.2 Centralisation

In addition to structure, peer-to-peer networks can be centralised, semi-decentralised
or decentralised. A centralised peer-to-peer network will have one or more network
services hosted on a centralised server separate from the rest of the nodes. The
decentralised network has no central elements. All network services are distributed
across the nodes in the network. The notions of centralised and decentralised
networks is an important classification for peer-to-peer networks. The centralisation
of a peer-to-peer network refers to how many non-peer elements exist in the design.
Totally decentralised networks require every single peer to have an equal role in the
network without any central elements at all. A purely decentralised network is will
have every node equivalent to another with no central or independent mechanisms.
Completely decentralised peer-to-peer networks are rare with most having varying
degrees of centralisation and imposed structure and/or roles.

2.2.1.3 Bootstrapping

Bootstrapping is where a system initially starts a simple process whose purpose is to
start a much larger process. In peer-to-peer terms, bootstrapping often occurs where a
node needs to join the overlay network. It usually consults a database of known
nodes' IP and port details from previous connections or from known centralised
repositories of node information. This is a classic causality dilemma (the proverbial
chicken or egg problem), which in peer-to-peer terms always introduces at least a
small part of centralisation in order to maintain this information. Practically however,

17

as networks grow, the centralisation becomes less of an issue as you have private
databases of known nodes on the network and a multitude of online databases which
are unlikely to all be compromised at the same time.

See Karbhari et al (2003) for a study of bootstrapping in peer-to-peer systems
that includes a more detailed description.

2.2.2 Peer-to-Peer Network Architectures

Many early examples of peer-to-peer networks and protocols were never thought of
in quite the same way that modern peer-to-peer systems are thought of. Even though
connecting machines together not as clients and servers but as equal peers dates back
to the original ARPANET, it wasn't until 1998 that an application (Napster) was
written that is P2P in the modern sense (Magoules et al 2008). Between these two
times, the mid 1960s and 1998, many applications were written that are quite peer-to-
peer in their nature. It may seem, with hindsight, that a P2P solution was a natural fit
for some problems and solutions were written without much thought given about this
being a new technique in itself. This is interesting when one considers that some of
the most decentralised peer-to-peer examples are actually within these early systems.
Such examples are covered further in the next chapter.

These early systems are actually represented in some classic Internet
protocols as a kind of “store and forward”. These peer-to-peer systems were
extremely popular and effective as they essentially batched communication between
peers at certain times. The obvious example of this is the Usenet protocol NNTP.
Each host acted as both client and server moving data over large capacity links at
certain times of the day. This allowed for relatively efficient communication between
peers and limiting the “uncontrolled” bandwidth usage to the edges of the network
where a news client would connect. The edges of the network were client/server but
the primary network is peer-to-peer.

This section focusses on the underlying techniques used by peer-to-peer
systems to give an understanding of the current state of the art in both commercial
and research systems. It covers the main four approaches of flooding systems,
partially centralised, hybrid systems and highly structured systems based on
distributed hash tables.

2.2.2.1 Flooding Systems

Flooding systems work by having nodes build their own network though means of
needing to know of a connection point or existing node on the network in order to
join. These connected nodes then form an overlay network over the Internet. A list of
known nodes (also known as hosts) would be forwarded between nodes on the
network as well as the payload data that the network was tasked with sharing. This
required that a host joining the network would need to know of another existing host
on the network in order to connect and obtain, and then add itself to, the host list (the
so called bootstrap process).

Smaller peer-to-peer systems have also relied on network discovery based on
broadcast to bootstrap themselves onto the peer-to-peer network. A discovery
broadcast message could be sent to all known machines on another service.

Once a suitable peer-to-peer connection candidate has been established, the
new node attempts to communicate with it. A handshake process is then undertaken
where the nodes exchange messages to establish a peer-to-peer connection. These

18

messages typically consist of a connection request (“client” side), connection accept
or connection refuse (“server” side). The nodes will often exchange information
regarding other nodes that they are connected to, nodes that have been connected to
previously, and other suitable information to allow the overall network to grow.

Once a connection has been established, in addition to application specific
information being exchanged (such as search packets in a file sharing network),
nodes will exchange keep-alive messages periodically to detect connection failure.
These messages are sent at an interval as a trade off between the time difference
between discovery of failed nodes and the bandwidth required for these messages.
These systems often suffer scaling problems from the amount of bandwidth required
and various strategies are undertaken to try to mitigate this obvious limitation at the
expense of network purity.

2.2.2.2 Partially Centralised Systems

As discussed previously, flooding of packets as the main purpose of an overlay
network to fulfil its requirements, is inefficient and limited in scalability. An obvious
solution, is to partially centralise the overall system in order to remove the flooding
aspect. Peer-to-peer file exchange networks that have two main functions, search and
file exchange, have moved the search and node discovery functionality to a
centralised index whilst leaving the file exchange to be between peers.

Partial centralisation will solve many of the problems associated with
completely centralised peer-to-peer systems at the expense of the associated costs it
brings such as a necessary investment in infrastructure and a single point of failure.

2.2.2.3 Hybrid Systems

Hybrid systems attempt to have the best of both worlds when it comes to pure
decentralised peer-to-peer and partially centralised peer-to-peer. Most systems try to
work well without a centralised organisation element, but work better with one. Also,
they are designed so the centralised elements are non-specific and more of a protocol
rather than a single installation. That way, swarming hybrid systems can rely on
many different single centralised servers or on several different ones at once.

2.2.2.4 Distributed Hash Tables

Of the very structured and decentralised peer-to-peer networks, the distributed hash
table approach is still where most research efforts are concentrated.

A hash table is a data structure that associates keys with data. This means that
a piece of data can be placed into memory and can be later recalled using the key that
it was associated with. Data is recalled later through a lookup function which usually
takes the key as a single parameter and returns the earlier stored value. A variety of
algorithms exist for arranging the data within memory so that keys can efficiently
and uniquely recall data. A distributed hash table (DHT) extends the process a step
further to allow the hash table to be distributed over a network of nodes yet still
allowing for the simple lookup interface of a traditional hash table. This is achieved
by a technique known as keyspace partitioning. This means that each node on the
distributed network becomes responsible for a range of keys within the keyspace of
the hashing algorithm. So that when a lookup is called it must first be determined
which node is responsible for the key before doing the last lookup step of the
traditional hash table. This means that nodes in the network will be arranged in such

19

a way that the key can address both the node as well as the item in the hash table.
This is usually achieved through the use of a routing table so that a search for an item
by key will result in a traversal of the network, each step coming closer to the node
that actually holds the correct key. This results in a reasonable certainty of failure
and search time that was so lacking from the flooding techniques in second
generation P2P networks.

DHTs can be implemented using a variety of algorithms. The examples given
here are the three most popular variants based on trees, skiplists and the Cartesian
coordinate space.

2.2.2.4.1 Trees

Distributed hash table based peer-to-peer systems have been based on several
different tree variants for their general organisation structure. Binary trees, B-Trees
and Plaxton trees have all been used to organise search spaces and/or
communication.

Binary trees, and their common variants (See Sedgewick (1990) for a
resource on tree implementations), are used to organise a hierarchy of nodes and data
keys to maintain an overall logical network A Plaxton tree (or mesh), is an
interesting tree variant where a property of the tree structure is that every node is also
a root of its own tree (Plaxton et al 1997).

2.2.2.4.2 Skiplist

A Skiplist is a probabilistic structure that essentially consists of several layers of
ordered lists. It has roughly the same insertion times as a B-Tree implementation yet
is simpler to implement and maintain for certain tasks (Pugh 1990). There has been
much interest in peer-to-peer research with several projects basing their
implementations on skip lists or skip graphs.

2.2.2.4.3 Cartesian Coordinate Space

Another variant for maintaining a DHT is the Cartesian coordinate space approach.
Here the hash table is spread over a geometric area with each node being responsible
for an area of the graph.

2.2.2.4.4 DHT Summary

DHTs are an active research area with several new systems emerging each year along
with further study and refinement of earlier proposed systems based on the
underlying algorithms mentioned here. There are other systems based on rings,
butterfly networks and de Bruijn graphs, however the three general approaches of
trees, skiplists and Cartesian Coordinate Spaces provide enough background for this
thesis. See Risson and Moors (2004) for research leads on these extra systems.
Chapter three of this thesis will examine a number of implemented examples of DHT
based peer-to-peer systems.

2.2.3 Advantages of a Peer-to-Peer Approach

Avoiding financial cost is a major factor in favour of peer-to-peer networks.
Immense storage is available and evenly distributed amongst participating nodes
rather than being concentrated to a few powerful servers. Also the costs of bandwidth
are spread over the network. P2P distribution networks deliver vast amounts of

20

bandwidth that would, if implemented using FTP on a single site, cost a significant
amount for necessary hardware and network service. The motivation of this thesis,
and of several other recent contributions, has been to leverage this power for
computation. Decentralised P2P computing has already proven itself to provide an
immense amount of ongoing processing cycles for a fraction of the cost of dedicated
systems.

Capacity automatically increases with popularity. Well designed P2P systems
allow the overhead of extra users to be mitigated with the extra resources they
provide. This contrasts to a centralised system where there is a finite server capacity
and that every extra user consumes part of this resource without giving any back.

Centralised systems also present a single point of failure and weakness to
attack. A distributed system has the potential to be a robust system as load and risk
can be spread relatively evenly over the entire network.

2.2.4 Disadvantages of a Peer-to-Peer Approach

Distributed systems have their own set of vulnerabilities too especially in regards to
scalability and security. Many P2P systems suffer from design problems. As already
discussed, central elements critical to a P2P design have shown that a system with
millions of users can be brought to a halt by an external issue that is not a design or
operational fault (ie. legal action). It has also been discussed that some systems that
have relied on flooding queries have been shown to be ultimately infeasible as the
network load increases.

Security is a problem of general concern for any network; in the case of P2P
it is especially so. Depending on the application, issues of non-repudiation and trust
are especially important and difficult to implement correctly in a dynamic
environment. Conversely, in other applications anonymity is the greatest concern,
and like non-repudiation, difficult to implement efficiently and correctly. Attacks
also form a problem. In most P2P networks denial of service (DOS) and flooding
attacks are common. Bad nodes can flood another node with many superfluous
messages or connections in order to consume the target node's resources and weaken
the network at that point. In file sharing networks, poisoning is also a problem. Files
containing misrepresented data are often left on the network. Another user may
download one of these decoys only to find the file contents are not what they had
expected. This consumes network resources and affects a user's trust in the system.
These are just some of the security issues that need to be considered when designing
and implementing a P2P system.

2.3 Benchmarking and Evaluation

Benchmarks are standardised programs, methods or specifications designed to assess
the performance of a system. In computing, there are several different types of
benchmarks such as a micro-benchmark, kernel, synthetic and application. Each of
these can be applied to a system to gain insight into its operation compared to other
similarly tested systems. A micro-benchmark is used to assess a basic component of
the system such as speed of a particular class of instructions or a mix of different
instructions. A kernel benchmark is based on what previous researches have
considered to be useful or common workload for computing systems. Sorting, matrix
operations and searching algorithms require a mix of instructions that can better
assess a system's usability over just the speed of some individual instructions alone.
A synthetic benchmark is typically a program made up of instructions derived from a

21

statistical analysis of what the computing system is doing during real work in a
variety of applications. And, finally, an application benchmark is one that is based on
commonly used applications that provide a useful comparative metric. Operations
times in common business applications have proven popular as have more modern
examples such as frame rates in popular video games, time to compile widely
available code bases or render a ray tracing scene. In each case an application
benchmark takes advantage of both an application's nature of computing usage and
it's ubiquity.

Here will be examined the major areas of evaluation of computer systems, in
particular, those techniques that apply to distributed and parallel systems. Section 3.3
will discuss specific projects, limiting the discussion to the underlying techniques
starting with the foundations of machine performance, then measurement techniques
for distributed systems and finally an examination of methods applicable specifically
to peer-to-peer systems.

2.3.1 Machine Performance

Machine performance consists of several different areas and techniques. This section
begins by examining the historically important ones based on instructions and
floating point operations per second, benchmarks and simulation.

2.3.1.1 IPS and FLOPS

Early computer measurements were often based on the number of instructions per
second (IPS) that a machine was capable of. Whilst useful for selling computers
(“this machine does 500 more instructions per second than our closest competitor”),
it doesn't provide much of a metric for evaluation. Similarly a more modern example
would be to compare processors of different manufacture by clock speed alone.

Instruction mixes soon appeared which are statistical approximations of the
kinds of instructions that a machine would do over a period of time. A mix could
then be derived and ran on a machine in order to gain an insight into how it could
work with a real workload. Mixes were required as it was common for instructions to
have vastly different cycle times, or indeed number of cycles required, between
machines of different manufacture. Without a standard mix, it would be easy to
contrive a test to unfairly exploit a small advantage one machine may have whilst
covering its many disadvantages.

For many scientific applications, floating point operations tend to be almost
exclusively used, so a measure of floating point operations per second (FLOPS) was
considered enough of a measure for these generally expensive operations.

2.3.1.2 Benchmarks

Benchmarks are a set of standardised trials, usually in the form of software packages,
that are executed on a computer to assess its overall performance. They can also be
expanded to apply to software or hardware testing in order to test for correctness of
implementation. Ideally a benchmark should be open, standardised and
independently verifiable. Still, care needs to be taken in the selection of a benchmark
with an understanding of the hardware being measured. Modern pipelined systems
may not perform well on synthetic benchmarks.

Benchmarks themselves fall into a number of separate categories that will
now be examined in turn.

22

2.3.1.2.1 Synthetic

These benchmarks closely correspond to the mixes discussed previously. A statistical
analysis of a machine's operation is taken over a period of time to gather data on the
percentage of each instructions usage whilst under load. An application is then
written to perform these instructions in the same proportions.

2.3.1.2.2 Kernel

Rather than just the individual operations of the synthetic benchmark, a kernel
benchmark looks to the algorithms that are commonly used in order to gauge a
machine's performance. Mathematical subroutines such as linear algebra are often
used as a basis for performance measurement.

2.3.1.2.3 Component and I/O

Component benchmarks individually measure the performance of each part of a
computer system. Synthetic and Kernel benchmarks will often concentrate only on
processor speed. A component benchmark will also assess the speed of associated
hardware such as memory, cache, register speed and so on. Input / Output (I/O)
benchmarks will also assess networking and storage devices.

2.3.1.2.4 Real Software

Software applications are often used as de facto benchmarks for modern computer
systems. The number of frame rates that a video game can display per second, can be
a good approximation of graphics and processor performance. Compiling a large,
widely available code base can also give a good indication of processor, memory and
disk performance. Commonly available business applications often serve as a good
benchmark due to their load and especially their ubiquity allowing for ad hoc
measurements to be applied without installation of specialised software.

2.3.1.3 Simulation

Simulation is used to assess performance where the system being measured is still in
design or where it is not practically feasible to reproduce that actual environment in
order to perform an actual test. Many modern systems based on distributed
processors or that operate over wide area networks or load of many thousands or
even millions of discrete users, make actual testing difficult if not impossible.
Applications are therefore written to produce a simulated load or simulate the system
itself that is to be tested.

The February 2002 issue of IEEE Computer (IEEE 2002) is a special issue
dedicated to performance simulation and provides many quality leads to further
information.

2.3.2 Distributed and Parallel Systems

Benchmarking and evaluation of distributed and parallel systems use combinations
of all of the techniques presented in machine performance in the previous section.
However, there are a few variations specific to distributed and parallel systems;
especially wide area network distributed systems.

23

2.3.2.1 Speedup and Efficiency

As already discussed in 2.1.2, speedup and efficiency are two common goals of
distributed and parallel systems. It is not unusual to expect then that these form the
base measure of many benchmarks for distributed systems. The actual benchmarks
themselves will be a suite of kernel or synthetic benchmark applications however the
addition of speedup and efficiency as the application scales over the processors is
often of equal interest. This is especially the case to designers of new overlay
networks where the speedup is the primary way of evaluating a new design.

2.3.2.2 Statistics and Leaderboards

A wide area network peculiarity is the so called leaderboards that occur for
contributors to large distributed computing projects. Performance of user's machines
(or clusters of machines) are displayed on public leaderboards. These often show the
number of work units completed and are an indicator of individual node performance
as a part of the computing cloud or grid.

2.3.3 Peer-to-Peer

Peer-to-peer benchmarking is still in its infancy. There has been some work done in
this area yet it still has a long way to go before any standards emerge. What
benchmarks do exist are primarily based around what would be considered, in other
performance measurement areas, application benchmarks. When considered
carefully, this should not really be surprising considering that the vast majority of
peer-to-peer implementations are generally at the application layer of the OSI model.
So, that being said, the following section will consider several of the areas of peer-to-
peer that have had some performance measurement applied across implementations
before looking at some specific examples in chapter three. Chapter Four endeavours
to make some new additions to benchmarking of peer to peer systems by
considering several issues that have not been addressed by the available literature.

2.3.3.1 Search Performance

Many peer-to-peer applications rely on finding keys. DHT based designs are
keyspaces partitioned over nodes. Finding who owns a particular key differs greatly
depending on the underlying algorithm chosen and its implementation.

2.3.3.2 Replication

Decentralised systems rely on replication in order to deal with node churn. Different
algorithms will have a marked difference on the amount of time and bandwidth
consumed to find and maintain replicas of data.

2.3.3.3 Overlay Performance

Managing and maintaining the overlay will again differ by the choice of underlying
algorithm and the implementation between systems. The amount of bandwidth
consumed by keeping the network together and performing housekeeping tasks has
been the subject of analysis in the literature. It hasn't gotten as far as being
incorporated into any kind of comprehensive suite, however some individual metrics
have been identified. Examples of these metrics are discussed in section 3.4.6.

24

2.4 Chapter Summary

This chapter has reviewed the separate areas of distributed computing, peer-to-peer
networking and measuring the performance of computing systems. It concentrated on
the theoretical background and underlying concepts with examples only where
necessary for explanation. Chapter Three continues by showing where examples of
these technologies are used.

25

Chapter Three

3.0 Related Work

This chapter builds on the overview of technologies discussed in the previous chapter
by presenting a survey of some representative systems that best provide context for
the contributions of the remainder of this thesis. The chapter is divided into three
sections covering peer-to-peer networks, distributed computing systems and previous
work in the benchmarking of distributed computing systems and peer-to-peer
performance.

3.1 Peer-to-peer networks

Many early examples of peer-to-peer networks and protocols were never thought of
in quite the same way that modern peer-to-peer systems are thought of. The term
peer-to-peer did not emerge until well into the 1990's. It seems, with hindsight, that a
peer-to-peer solution was a natural fit for some problems and solutions were written
without much thought given about this being a new technique in its own right. This is
particularly odd considering that many early examples were comparatively
sophisticated (c.f. some modern, successful peer-to-peer systems) and “more peer-to-
peer” if you like than many first and second generation P2P examples given later.

The following section will consider some early protocols and systems that
exhibit strong peer-to-peer traits spanning from the late 1970's up until the late
1990's. From there it follows on to examine the first widely recognised peer-to-peer
systems that emerged in 1999 through to today.

3.1.1 Classification of Peer-to-peer Systems

Given that peer-to-peer is still a relatively young area of academic interest, with the
first major conferences appearing around 2001 (O'Reilly 2001), there is still no clear
set of categories with which to describe the classifications of peer to peer networks.
Some describe them via application and capabilities (i.e. Milojicic et al 2002) and
many historically around software releases e.g. 1st generation, 2nd generation and so
on (i.e. Eberspächer & Schollmeier 2005). Furthering this evolution here presented
is a 4th generation classification, expanding on the earlier evolving classifications.

26

New Classification Historical/Generative
Classifications

Classification by
Example

Store and Forward Early, Historical SMTP, NNTP

Centralised 1st Generation Napster

Decentralised 2nd Generation Gnutella, SMB

Structured 3rd Generation Pastry, Chord, CAN

Unstructured 2nd Generation Gnutella

Hybrid Hybrid Bittorrent

Table 2: A new classification scheme by peer-to-peer approach along with its
generative classification equivalent and examples.

This simple taxonomy should aid the reader to keep track of the multitude of
descriptions given in the referenced literature. It is also the furtive hope of the author
that this new and modest classification scheme may find some traction with authors
of new papers in a bid to find some standardisation as even new papers continue to
use different mixes of classifications in their literature reviews; especially the
outdated generative model which becomes continually less relevant as newer
implementations pick from a variety of functionalities across these 3 or 4
generations.

3.1.2 Store and Forward

“Store and Forward” peer-to-peer systems are those that act as both client and server
for communication between peers over the Internet. If discussion is limited to
applications that exist on the Internet, and not spiral recursively back to the Internet
itself and to UUCP9 before that, two popular early core applications of the Internet
were very peer-to-peer in their nature without actually being remarked as such
explicitly (certainly at the time anyway). One is NNTP and the other is SMTP and
both are discussed here.

3.1.2.1 NNTP

The NNTP is the protocol used by the USENET which is one of the first widely used
distributed systems that has been lately generally accepted as an early example of
P2P. The USENET, conceived in 1979, is a public message system that allows users
to post and read messages under a variety of different categories. Each USENET
server is a peer on the USENET network and messages posted to a peer are shared or
replicated around to all of the other accepting peers on the network. In modern
USENET each peer speaks a protocol called NNTP which allows a message to be
uploaded in one place and then quickly propagated over the entire USENET network.
It is to be noted that while the system and network itself is very P2P, the access of it

9 Unix to Unix Copy Program (UUCP) was an early application that allowed for commands to be
run remotely and for files to be transferred between computers. It is a classic example of a store
and forward architecture. See RFC976 (Horton 1986).

27

is not. At the fringes of the network users interact with the USENET server using a
separate client application in a very client/server (read: non P2P) manner. This can
also be compared with electronic mail.

3.1.2.2 SMTP

Email, at its core, is a group of servers quite similar to USENET which forward
email messages between servers with client applications being involved only at the
fringes. The Simple Mail Transfer Protocol (SMTP) is the enabling technology. Each
email server acts as both a server and a client to all of the other email servers on the
Internet, accepting email messages and forwarding them along to the next closest
server to the addressee.

See RFC821 (Postel 1982) and RFC5321 for the original SMTP and
Extended SMTP (Klensin 2008) respectively for an exhaustive definition of these
protocols.

3.1.3 Centralised

Some peer-to-peer systems are only partly peer-to-peer, that is they contain a
significant centralised component without which they could not operate at all. The
most classic example of this is Napster.

3.1.3.1 Napster

Napster was an infamous file sharing application that was first released in mid 1999.
It allowed users to host their files, search for files hosted by other users and
subsequently trade files between each other. The Napster network was predominately
used for sharing MP310 files.

Napster's design was not very decentralised from a P2P perspective. The file
transfer is between peers, however the searches are submitted to central servers. This
provided a simple solution to the problems of distributed search (by avoiding it
altogether) but created a single point of failure. When this central index was shut
down, as it was in July 2001, it rendered the system inoperable.

3.1.4 Decentralised

Decentralised peer-to-peer systems are those that try to avoid all centralised elements
as much as possible. Gnutella is the most obvious example of a decentralised peer-to-
peer network.

3.1.4.1 Gnutella

The second generation of P2P file sharing networks evolved as a response to the
weakness of the centralised elements of Napster. The natural focus was to remove
the central search servers that made Napster vulnerable. Gnutella was the first such
example.

Gnutella is a protocol for distributed file sharing and search. The file
exchanges work much the same as Napster, with peers exchanging files between

10 MPEG-1 Audio Layer 3 is a common audio file format that employs lossy compression techniques
to reduce the size of recorded audio at the cost of removing very high and very low frequencies
that typically cannot be heard by humans.

28

each other, however the search functionality is decentralised. Early versions of
Gnutella worked by having searches propagate across the network. Nodes submit
searches (usually just a search term string) and then pass this search packet on to all
of the other nodes that they are connected to. This flooding approach allows nodes to
see all of the search packets that come their way and notify the originating node
(search packets also contain address information) if a match occurs. The approach,
whilst very hard to “kill”, has several other obvious design limitations. The flooding
approach to search does not scale very well and the open nature of search term
propagation is open to malfeasance. Enormous amounts of bandwidth can be
generated across the network as nodes forward one packet to every connected node
and then they forward it to every node they are connected to and so on (Ritter 2001).

3.1.4.2 Server Message Block

Another ubiquitous protocol is the Server Message Block (SMB) protocol which is
more commonly regarded as the network protocol used by Microsoft Windows for
peer networking or “Workgroups” between machines. Each machine that is
registered on the network acts as a peer to all others. File can be requested or served
from each machine. Its management is decentralised as each machine can largely
choose what is to be shared and what is not. This contrasts with many other file
protocols, which are strictly client server such as the File Transfer Protocol (FTP).

SMB was originally developed at IBM and widely implemented by Microsoft
and is very much in common use. The Microsoft implementation has been
subsequently reverse engineered by the SAMBA team making it widely available
and interoperable with other platforms (Ts et al 2003).

3.1.5 Structured

After the popularity of Napster and Gnutella, by the late 90s and early 2000s
academia recognised the potential for these new designs as fertile ground for
research. The distributed search problem was vigorously investigated and several
variations based on classic data structure of a hash table were presented in papers.
These extensions to the hash table idea (as discussed in Chapter Two) culminated in
several different designs in 2001 which together represents the third generation of
P2P design.

3.1.5.1 Distributed Hash Tables

The designs and implementations of DHTs that appeared somewhat concurrently
were Chord, Pastry and the Content Addressable Network. Each system maintains its
own overlay network and provides a hash table interface to storing and retrieving
data. Each is based around a different data structure idea for organising its nodes in
the overlay.

3.1.5.1.1 Chord

Chord (Stoica et al 2001) is one of the earliest DHT implementations. Chord is based
around a skip list (See 2.2.2.4.2) where nodes are arranged in a circle with pointers
forwards and backwards to other nodes as a successor and predecessor in which
Chord calls a finger table. A hash table is distributed over this arrangement of nodes.

Chord provides a single lookup operation that when given a key it will find
the node on which the key resides. Chord manages the underlying work of ensuring

29

that key integrity is maintained as nodes churn through the system by joining and
leaving through maintaining lists of successors and predecessors as well as
replication of keys throughout the system.

The Chord system is designed to be an underlying architecture for
applications to be built on. There have been several prototype systems developed to
demonstrate different potential usages. These include a cooperative file system, a
distributed USENET cache and a distributed version of CiteSeer11 called OverCite
(Chord 2008).

3.1.5.1.2 Pastry

Pastry (Rowstron & Druschel 2001) is similar to chord in terms of overall design,
including arranging nodes into a ring with links forwards and backwards between
nodes. It contrasts when it comes to implementation. Pastry has its overlay network
built on top of, rather than a part of, the distributed hash table implementation. This
modularity allows for its routing metrics to be supplied by an external application.
This can be used to optimise communication between physically close neighbours.

Implementations of systems using Pastry include the PAST distributed file
system and the SCRIBE publishing and subscription system.

3.1.5.1.3 Content Addressable Network (CAN)

Of the three systems described in this section, CAN (Ratnasamy et al 2001) is the
one which contrasts most in underlying design. In CAN data are stored in a multi-
dimensional Cartesian co-ordinate space which is divided into different regions
(called zones) with each node in the overlay network responsible for a given region
in this space. When a new node joins the system it picks a random point in space and
initiates a request to join the zone that this point resides in. When a successful
request is made, the joining node will receive half of the zone region that its
destination node originally managed. Joining nodes keep making requests until they
have been allocated a zone.

Each CAN node maintains a list of the zones that neighbouring nodes
manage. When a routing request is received, the node will determine which zone is
closest to the zone containing the destination point and then forwards it to that node's
IP address.

CAN manages node churn through periodically sending heart beat messages.
When a node is deemed to have failed, the zone it was responsible for needs to be
absorbed by the rest of the system. If the zone can be added to an existing zone they
will be merged, if not, the zone, in its current geometrical form, needs to taken over
by a node. Nodes periodically examine the fitness of zones in their control for
merging. When zones are changed, messages are broadcast to neighbouring nodes so
their zone tables can be updated.

3.1.6 Unstructured

Both Gnutella (3.1.4.1) and SMB (3.1.4.2) fit into this category as well as they are
both decentralised in their operation and administration whilst also being
unstructured in their organisation. Beyond file sharing there are also examples of
distributed operating systems, considered as such since the provided services beyond
just file sharing. There were several examples of workstation systems in the early

11 CiteSeer is a library of computer science publications and citations. See http://citeseer.ist.psu.edu/

30

1980s that were based around P2P networks. One such was the Convergent
Technologies Operating System. This OS ran on early workstations based around
Intel processors that were networked together into small clusters with RS-422 serial
cables (Centre for Computing History 2009).

3.1.7 Hybrid

The final category is the catch all which relates to combinations of centralised and
decentralised, structured and unstructured as well as some of the earlier elements of
store and forward. The costs of purely centralised elements (single point of failure)
versus the cost of an entirely decentralised approach (extremely high overhead with
potential poor quality of service) has led many designers to look for a compromise
approach.

3.1.7.1 BitTorrent

BitTorrent is a novel approach to file sharing that aims to maximise the distribution
of data in terms of bandwidth and speed. When downloading a file with traditional
FTP, a user only uses the download channel of their Internet connection whilst the
upload channel is mostly unused. BitTorrent takes advantage of this and allows
other users to download parts of the same file that another user is downloading at the
same time. While a user is downloading a file they may also be uploading a file to
another user using this otherwise unused upload channel. This balances the load of
the file distribution bandwidth across all of the peers and reduces the load on the
originating server. The original node need only upload one copy of the file being
shared rather than FTP where the server needs to upload every copy requested by a
client.

To use BitTorrent for downloading a user must first find a file which gives
the necessary information about the swarm the user intends to join. As BitTorrent
does not provide its own search facility it relies on existing search methods
available to Internet users to find a “metainfo” file which contains the information
required to join a BitTorrent session. This metainfo file, or “torrent”, is typically
hosted on an ordinary web server and contains information about the file that is being
downloaded, such as its length, name, number of pieces the file has been split into
for distribution, hashes of these pieces, and the URL of a “tracker” to coordinate the
swarm.

A BitTorrent tracker is a small HTTP based service that allows BitTorrent
users using the same torrent to find each other. When each BitTorrent download is
started, contact information about the new downloading node such as their IP
address, BitTorrent listening port are sent to the tracker. The tracker then responds
with the same kind of information about others who are downloading the file so the
new node can attempt to make other connections and increase its download and
upload bandwidth. New implementations of the BitTorrent protocol are also
beginning to use distributed hash tables (DHT) in order to attempt a decentralisation
of the tracker component. This centralised component, contrasts starkly to the
centralisation of a system like Napster (3.1.3.1) as you can choose from a myriad of
trackers, or start your own. This allows for easy fail over should one centralised
service become compromised or unavailable.

BitTorrent also employs many techniques to ensure that the transfer between
two nodes is as efficient as possible and that data is replicated as reliably as possible.
Such techniques include pipelining of data requests, order selection of file pieces

31

and interaction management between peers.

3.2 Distributed Computing

There are a myriad of distributed, grid and parallel computing architectures that have
been proposed, implemented and used over the last some 30 years. To survey them
all would easily provide enough material for a textbook. Here we will primarily
outline BOINC and Condor as the two distributed computing systems that represent
systems that have strong academic roots and current widespread use in a variety of
places. A brief survey is then conducted of distributed computing systems that are
peer-to-peer in their nature and have shown operational evidence or academic
review.

3.2.1 Client / Server Systems

3.2.1.1 BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC) is a volunteer
distributed computing system (Anderson 2004) that grew out of the earlier
seti@home project (Anderson et al 2002). From its origins processing data from the
Arecibo radio telescope, it has been generalised for use for a variety of projects. It is
a client/server system that has been designed to take advantage of spare computing
cycles on participants' computers.

A BOINC project is instigated by having the BOINC software installed and
running on a server. The server is also furnished with a data set to be computed as
well as the algorithm (or set of algorithms) for the clients to apply to the data set.
BOINC can be used with existing applications that can be distributed as the
computing algorithm for the clients to process work units with. Work units are
distributed to clients as they request them and clients report back with results.
Malfeasance is managed using public-key encryption and multiple calculation of
work units by unrelated clients. BOINC has a default scheduling algorithm which
matches the resources that a user has provided with the size of jobs available for
computation in a first come, first served fashion.

BOINC is wide area network client-server distributed computing system with
a focus on volunteer participation. It has a sophisticated client application which
allows a user to chose to contribute to a variety of projects. The host of a project has
many options for the customisation of aspects of the user interface to encourage
participation. This usually includes a screensaver as well so that an appealing display
is shown when processing work units. Also the “skin” of the application itself is
programatically customisable to encourage adoption. In addition to visual appeal,
there is also a credit system to reward the contributor with “points” or credits for
verified results. This attempts to encourage participation through a leaderboard of
high credit scores to advertise top contributors. Whilst, at time of writing, no work
has been done to quantify these incentives, BOINC remains one of the most popular
platforms for volunteer wide area network distributed computing.

Appendix C contains detailed instructions for setting up a computing project
using BOINC. These instructions form part of the method used later in this thesis.

3.2.1.2 Condor

Condor is a software framework for distributed computing that was developed in the

32

1980s at the University of Wisconsin-Madison (Thain et. al. 2005). Condor can run
both parallel and sequential coarse-grained jobs and is suitable for both dedicated
clusters and spare processor cycles on desktop computers. Condor provides support
for queueing jobs, applying scheduling and priority policies and the monitoring of
computing resources and job completion.

Condor arranges different classes of computer groups into processing pools.
Each pool advertises its availability to the Condor collector which serves as a
database for available resources. Jobs are submitted by users and placed in a queue.
A matchmaker takes jobs from the queue and allocates resources to them based on
policies and the job's associated requirements. Job requirements are advertised using
a job description language and processors are described also. The matchmaker pairs
compatible jobs and resources and allocates the work.

Condor supports jobs that are not independently parallel. Dependencies
between jobs can be specified by stipulating a directed acyclic graph which will
ensure that jobs are ran in order. In addition, Condor supports both MPI and PVM
allowing for communication between processes as they are being processed. Condor
is a mature platform that integrates readily with other systems (such as Grid
middleware) to provide integration into larger systems such as Grids.

Appendix C contains detailed instructions for setting up a computing project
using Condor. These instructions form part of the method used later in this thesis.

3.2.2 Grid Computing

Grid computing aims to be analogous to the power grid system where significant
computing power is cheap, easy to access and ubiquitous. It compares very closely to
distributed computing and, in many implementations, is broader in scope as it
attempts to provide all of the infrastructure required for many different kinds of
general purpose supercomputing applications. To further differentiate it from
classical distributed computing, a grid should not be administered centrally, it should
be based on open standards and quality of service should be non-trivial (Foster
2002).

Here the Globus Toolkit, P-Grid, X-Grid and by way of helping clarity,
Cloud Computing will briefly be discussed.

3.2.2.1 Globus Toolkit

The Globus Toolkit is a suite of open standards which provides middleware for a
grid computing implementation. There are standards for architecture, job submission,
web service, security and so on which can be used to interface with distributed and
parallel computing systems. As an example, Condor (3.2.1.2) can be integrated into a
Globus Toolkit system where Condor provides the processing power while Globus
manages the job submission. See Foster (2005) for a more detailed overview of
Globus Toolkit.

3.2.2.2 Other Systems: P-Grid & X-Grid

There are many other grid computing initiatives beyond just the Globus Toolkit.
However, in many cases, it is difficult to differentiate them from distributed
computing. In fact, applying Foster's check list yields fairly low scores.

P-Grid, which is discussed further in 3.3.1.3, is a peer-to-peer based grid system that
has been the subject of academic enquiry. X-Grid (Apple 2007) is a proprietary

33

system for harnessing computers together from Apple Inc. It is based on the BEEP
protocol (Rose 2001) which provides a full-duplex frame based communication
method that can run over TCP.

Both of these systems purport to be grids in their own right, hence their inclusion
here, yet in both cases they fail the three point test (Foster 2002) (In the case of P-
Grid by not following open standards for grids and X-Grid by being centrally
managed).

3.2.2.3 Cloud Computing is not Grid Computing

Cloud computing has gained much attention in recent times. It can be described as
software as a service, where applications and services are provided via the Internet
that would traditionally be locally hosted on a private machine. It is an emerging area
that has many definitions where many are still being sought (SYS-CON 2008).
Buyya et al's (2008) later definition is “A Cloud is a type of parallel and distributed
system consisting of a collection of inter- connected and virtualised computers that
are dynamically provisioned and presented as one or more unified computing
resources based on service-level agreements established through negotiation between
the service provider and consumers.” Many cloud computing applications would
actually be provided on distributed hardware at the server level, however as a
paradigm itself it is not distributed processing in the conventional sense. It is often
centrally managed, centrally hosted and accessed in a client/server fashion albeit
with web browsers typically (so it is not strictly client server in the traditional sense
either). It is mentioned here as is is commonly confused with Grid Computing and it
is an area where peer-to-peer techniques are likely to play a large part. However,
confusion well aside, it is an application of distributed computing and worthy of
mention.

3.3 Related Work Combining Peer-to-peer and Distributed
Computing

Now that peer-to-peer and client/server style distributed computing applications have
been described, this section will move to describe work that has already been done as
a combination of the two fields. That is, similar work which directly relates to the
application later presented in this thesis.

3.3.1 Retrofitting BitTorrent into Distributed Computing Data
Distribution

There has been some considerable work done in replacing the file distribution
elements of existing client/server distributed computing systems. Wei, Fedak and
Cappello published work in 2005 that examined the use of BitTorrent to be the
mechanism for distributing data in a computational desktop grid. They followed this
work up with replacing the data distribution mechanism in BOINC with BitTorrent
(Costa et al 2008)12.

3.3.2 Peer-to-peer Distributed Computing

There are few demonstrable general purpose distributed computing systems that use
peer-to-peer as an underlying architecture. Three representative samples are

12 This work references a paper (Goldsmith 2007) published as a part of the research supporting this
thesis.

34

described here, the Gnutella Processing Unit, JNGI based on the the JXTA
framework and P-Grid.

3.3.2.1 GPU

The Gnutella Processing Unit (GPU) is a distributed computing platform that allows
users to share processing cycles. It is unique in the fact that along with sharing its
name, GPU also shares the paradigm of having nodes provide resources equally,
similar to its protocol namesake, without the ability to choose which jobs on the
network each node contributes to.

GPU is a SourceForge.net13 hosted project that is being managed and
developed by a group of enthusiasts on the World Wide Web.

3.3.2.2 JXTA / JNGI

JNGI is a framework, built on top of another framework called JXTA which allows
users to submit jobs to a network of peers. JXTA, by Sun Microsystems, is a
framework created as an attempt to standardise P2P communication between a group
of peers. JXTA identifies peers by a unique peer ID and groups of peers are able to
form as they participate in various applications on the JXTA network.

JNGI consists of several different entities that are hierarchically arranged and
responsible for a number of functions. There are the task dispatcher, repository, code
repository, job repository, task repository and then the participating nodes
themselves.

3.3.2.3 P-Grid

P-Grid (Aberer 2001) is similar to Pastry (See 3.1.5.1.2) in that it provides a DHT
underlying implementation that the overlay is built on top of. What sets it apart is
that its focus has been on general application so that it is able to be tasked for more
general purpose usage.

At time of writing P-Grid is in limited release to academics looking to investigate
peer-to-peer and grid systems.

3.3.3 Botnets

A Botnet is a colloquialism for a massively distributed computing system that
typically engages in malfeasance on a broad scale automatically utilising computer
systems that are usually unaware that they are even a part of the network. Studies
presented at a recent conference (HotBots07) have suggested that some of the most
distributed, peer-to-peer computing systems in known usage, capable of multiple
tasks and dynamic control, are potentially Botnets.

Whilst hardly a peer-reviewed system in its own right, it would be remiss not
to mention potentially the largest deployed massively parallel peer-to-peer
computing system in existence. Research into quantifying (Grizzard et al 2007) and
reverse-engineering (Chiang & Lloyd 2007) some of these systems is now an
emerging field.

13 SourceForge.net is a web based project management and source code management tool. It is a
serves as a development tool for distributed collaboration and also as a central location for finding
new and existing projects.

35

3.4 Benchmarking and Evaluation

Several benchmarking suites exist specifically for the field of grid or distributed
computing. The NAS Grid Benchmarks provide a detailed specification for a group
of problems that can be solved by a grid in order to gain some benchmarks and
insights. These grew out of the earlier NAS Parallel benchmarks (NPB), which
represent a suite of problems that were typically encountered by NASA when
investigating computational aerodynamics. Earlier work, largely based on
benchmarking discrete computer systems such as LINPACK (explained below), have
also been retrofitted and applied to distributed computing systems. Specialist grid
benchmarking suites have also emerged such as Grid Bench that aim to take
measurements across the spectrum of a grid's operation.

Whilst these benchmarks exist, few examples of comparative results with
systems that are actually in use today are available to the researcher. This lessens the
understanding of existing approaches and makes it difficult to assess the contribution
of new systems as they emerge.

3.4.1 Whetstone and Dhrystone

Whetstone was one of the first general purpose, open benchmarks available (Curnow
& Wichman 1976). It is a synthetic benchmark developed to test the floating point
performance of an arbitrary machine whilst avoiding many known compiler
optimisations. It produces a measure known as Whetstone Instructions per Second.
Its name comes from the town in which the benchmark was developed. Many
historical and modern machine's performance figures are available online
(Longbottom 2008).

A play on the name of the Whetstone benchmark, Dhrystone is a synthetic
benchmark developed to test the integer performance of a computing system in much
the same way the whetstone measures floating point performance (Weicker 1984). It
to was derived from a statistical analysis of computer operations and primarily tests
the arithmetic and logical performance of a CPU.

3.4.2 Netperf

Netperf is a network performance measurement benchmark tool which focusses on
the measurement of Ethernet performance by sending messages of various blocksizes
from one host to another. This allows for measurements of latency, round trip time,
saturation points and so on (Netperf 2009).

3.4.3 LINPACK and LAPACK

LINPACK is a library of routines for the solving of linear equations and least-
squares problems (Dongarra et al 2003). It was developed during the late 1970s and
early 1980s for use on supercomputers. LAPACK is an updated version of
LINPACK redesigned to take advantage of vector based, shared memory
supercomputers. The LINPACK benchmark, derived from the usage of LINPACK
itself, can measure a computer systems power by solving a system of linear
equations. This provides a useful measure of floating point performance since
solving dense linear equations is a common task for supercomputers for a variety of
engineering problems.

36

3.4.5 NAS Grid Benchmarks

The NAS Grid Benchmarks (NAS stands for Numerical Aerodynamic Simulation)
are the logical succession from the earlier NAS Parallel Benchmarks which were
developed at NASA as a set of common calculations that they often do. The original
benchmarks were published as “pencil and paper” algorithms where the calculations
were explained and input data and corresponding expected output were given (Bailey
et al 1991). Example implementations came later with NAS 2. These were MPI
based implementations that could be executed on any machine with an MPI
implementation. NAS Parallel Benchmark 3 (NPB 3) was a further evolution with an
implementation in OpenMP (a shared memory parallel programming library), high
performance Fortran and Java. The latest release is GridNPB3 or the NAS Grid
Benchmarks. These comprise of four benchmarks that are suitable to be run on a
computing grid. There is an implementation available in both Fortran and Java using
the Globus toolkit as a grid platform. A protocol for the usage of the NAS Grid
Benchmarks is still being developed, at time of writing, so no comparative
information between grid performance is available.

3.4.6 Peer-to-peer Benchmark Work

As alluded to in 2.3.3, peer-to-peer specific benchmarks are still very much in their
early stages. Rhea et al (2003) present two benchmarks, find_owner and locate, as
two common activities that DHT based peer-to-peer system rely on. Jinyang Li's
PhD thesis (2005) presents a performance versus cost analysis of several DHT
designs. Her performance versus cost metric (PVC), under simulation when graphed,
produces a convex hull as the cost (bandwidth) varies against the performance (mean
lookup latency). These convex hulls represent a best achievable performance versus
cost combination for a DHT under given parameters.

3.5 Chapter Summary

This chapter has briefly reviewed the most relevant examples of projects, based on
the fields discussed in chapter two, that provide background for the remainder of this
thesis. This provided and discussed examples of peer-to-peer network
implementations, distributed computing and benchmarking and evaluation. Also
described was a new taxonomy for peer-to-peer network implementations that allows
existing and future designs to be categorised as one or more of the following: Store
and Forward, Centralised, Decentralised, Structured, Unstructured and Hybrid.

37

Chapter Four

4.0 WAN-DC: A New Framework for the Comparison of
Wide Area Network Distributed Computing Systems

The emerging field of peer-to-peer wide area network distributed computing lacks a
practical framework to provide a meaningful comparison between competing
distributed computing systems and approaches. How does a peer-to-peer approach
compare to a client-server approach? Does Condor solve an embarrassingly parallel
problem quicker than BOINC? These questions become crucial when looking to
compare and contrast the performance and usability of a new distributed computing
or grid system with existing offerings.

This work aims to take the first steps in providing a concise, general-purpose
benchmarking suite suitable for emerging wide area network distributed computing
systems.

4.1 Motivation

This thesis represents part of the convergence between peer-to-peer systems and
distributed computing. This convergence is something that has been described in the
literature as being as certain “as death and taxes” (Iamnitchi and Foster 2003), yet
still few operational systems exist which demonstrate this apparent foregone
conclusion. The result of this investigation thus far has been the development of a
hybrid peer-to-peer system called CompTorrent (Goldsmith 2007) and the
development of the thesis that a peer-to-peer distributed computing platform should
provide, in many cases, comparable performance to a client-server distributed
computing system such as BOINC or Condor. After the system was developed, and
even with the knowledge of distributed computing benchmarks that have already
been mentioned (See 3.4), there was a real lack of published results of comparable
systems. This has led to an expansion of the work to include a wider field of
experimentation than what was originally intended.

This is not to say that some comparative work has not already been done
between the various grid systems, just not as much as one might expect given the
abundance of systems available. Radić and Imamagić (2004) have provided results
on the performance of several job management systems and provided comparative
results between the Sun Grid Engine, Torque and Condor. The NAS Parallel
benchmarks also included some sample results based on earlier parallel machines
(Bailey et al 1991). So called “stat races” are also a prominent feature in online,
volunteer distributed computing. Many project groups doing processing will provide
online statistics regarding total number of users, CPU years, aggregate memory (in
terms of RAM) and so on. Many of these statistics are from BOINC projects with a
mix of other technologies such as distributed.net, Apple's X-Grid and others
(Volunteer at Home 2007). These provide an ad hoc method of comparing cluster
size and performance between projects competing for volunteer resources.

Other comparative work has looked more at differences in different cluster
hardware, rather than the underlying protocols themselves. Chang et al (2004) have

38

looked at the difference between CISC and RISC hardware when executing the NAS
Parallel Benchmarks. Boklund et al (2005) have produced some interesting work
comparing the different performance of cluster hardware over time.

Little work appears to have been done on performance measurement and
comparison between distributed computing platforms that exist over wide area
networks. This benchmark is a first attempt at addressing this need to compare these
systems in a quick and practical way.

4.2 Performance Metrics

This section describes the algorithms selected to be a part of the benchmark and the
reasons behind their selection. There have been two primary goals that this has set
out to achieve. Firstly, and similarly to NASA during the selection of their original
grid benchmark, a range of algorithms have been chosen that satisfy the current
requirements that this research has for distributed processing. In this case, a
benchmark is needed that can be applied quickly and that is able to be computed by
an arbitrary distributed computing system. The benchmark should produce results
without needing to focus on the implementation of the benchmark itself.

Dedicated clusters, in many cases, can be measured using benchmarks
derived from parallel machines. However, wide area distributed computing, peer-to-
peer and grass-roots volunteer computing, where participating nodes are highly
transient, does provide numerous new challenges. These challenges are not based in
performance metrics alone: the voluntary and participatory nature of these new
designs require a benchmark to consider some of the more qualitative aspects of the
exercise as computing efficiency alone can be less important, to the outcome of the
project, than the ability to attract participants. The costs of joining and the effort
required to start and host a distributed computing exercise can have a large effect on
the success or outcome of a modern project as it tries to attract participating nodes.
Thus it is the case that this benchmark also introduces an evaluation criteria for
distributed computing systems that can serve as a basis for evaluation, comparison
and selection.

The following principles have been followed in the creation of this
benchmark:

● Load should be able to be varied without changing the algorithm
● Data used should be freely available and easily verifiable
● The benchmark itself contains both practical applications and synthetic

mixes. That is, applications that have a practical use, such as processing
video, as well as purely synthetic tests that are only for the sake of
benchmarking such as performing no work at all

● The benchmark is easily extensible with room for extra algorithms to be
added in

4.3 Computing Benchmark

Independently, or Embarrassingly, parallel problems (see Chapter Two) represent
algorithms that have a high level of natural parallelism. That is, they can be trivially
divided amongst multiple processing elements for them to work independently
towards a solution.

Four separate sections here are included to test the various parts of a typical

39

distributed computing system. These sections consist of baseline tests, to gain a
comparative measure against other existing and historical machines then metric
categories of processing intensive, mix and responsiveness/overhead.

4.3.1 Baseline

A number of existing benchmarks have been selected to provide a measure of the
processing power of the computing equipment being measured. This can be used to
compare a distributed computing design to an earlier supercomputer approach where
often Whetstone or LAPACK figures are likely to exist.

The Netperf benchmark is included to allow for the comparison of network
performance between different machines. Network performance directly relates to
the distributed computing system's ability to perform efficiently. It can also detect
unusual circumstances that exist on a network that would otherwise have unfairly
affected the score of a system's performance (Gropp & Sterling 2005).

4.3.1.1 LAPACK (synthetic)

Test Description Obtain wall clock (time elapsed measured from start to finish), CPU time
and operations per second to complete the LINPACK benchmark.

Test Aim To produce comparative performance figures using a well known and
accepted benchmark.

Input Data A freely, Internet-available dataset of a suitable size for the test.

Matrix Market is a recommended source repository for data.

Output Data LINPACK output.
Wall clock time to complete the benchmark.

Method Application should be run from 1 node to all node machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested). Each step should be repeated multiple times in order to gauge
variability. Statistics provided should carefully describe the final values
given in terms of their origin.

The overall experiment should be repeated for each distributed computing
application, on unchanged hardware, after a complete reboot or equivalent
cache clearing.

Table 3: The LAPACK experiment in detail in the WAN-DC benchmark.

4.3.1.2 Whetstone & Dhrystone (theoretical maximum)

Whetstone is a classic synthetic benchmark consisting of an instruction mix derived
from a statistical analysis of scientific applications running on an early computer
system from the 1960s. Whilst the results from Whetstone in Mflops/sec are unlikely
to be similar to LINPACK (such is the nature of benchmarks), it does provide a good
idea of the “overall size” of a cluster. This is useful for comparison with the vast
number of machines that have had statistics gathered with Whetstone over a
considerable period of time.

40

Test Description Obtain figures from the Whetstone benchmark

Test Aim An attempt to gain a best estimate of floating point numerical performance
of the cluster hardware. This is to serve as a working theoretical maximum
for what a distributed computing system could hope to achieve as overheads
approach nil.

Input Data Nil

Output Data Whetstone benchmark output for each worker node in the cluster (produced
by application with results to be added together by tester).

Method Application should be run from 1 node to all node machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested). Each step should be repeated multiple times in order to gauge
variability. Statistics provided should carefully describe the final values
given in terms of their origin.

Table 4: The Whetstone and Dhrystone experiment in detail in the WAN-DC
benchmark.

4.3.1.3 Netperf / Netpipe (theoretical maximum)

Netperf is a network latency and throughput benchmark.

Test Description Perform the netperf benchmark on the cluster system.

Test Aim An attempt to gain a best estimate of network performance of the cluster
hardware. This is to serve as a working theoretical maximum for what a
distributed computing system could hope to achieve in terms of network
performance. This is used as a reference point for the earlier input and
output benchmarks in order to isolate network from protocol overhead.

Input Data Nil

Output Data Netperf benchmark results.

Method Application should be run from 1 node to all node machines with the same
number of intermediary steps as used in the other benchmarks.

Table 5: The Netperf experiment in detail in the WAN-DC benchmark.

4.3.2 Processing Intensive

This benchmark application is designed to evaluate the processing power of a cluster.

4.3.2.1 POV-Ray Benchmark (application)

POV-Ray (Persistence of Vision Raytracer) is a ray tracing program available for a
wide variety of computer platforms. It has an accepted benchmark scene which,
when rendered, allows for the comparison of different systems ability.

Test Description Obtain wall clock and CPU time to complete the POV-Ray benchmark.

Test Aim To gain an understanding of numerical performance of the system, with
minimal network and disk usage, using an application benchmark that can
be executed identically between different known distributed computing
systems.

Input Data benchmark.pov benchmark.ini

Output Data Wall clock time to complete the benchmark from start to finish.

41

Method Application should be run from 1 node to all node machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested). Each step should be repeated multiple times in order to gauge
variability. Statistics provided should carefully describe the final values
given in terms of their origin.

The overall experiment should be repeated for each distributed computing
application, on unchanged hardware, after a complete reboot or equivalent
cache clearing.

Table 6: The POV-Ray experiment in detail in the WAN-DC benchmark.

4.3.3 Mix

These Mix benchmarks are designed to compare systems performing a mix of
network and disk I/O whilst also performing processing work.

4.3.3.1 Transcode (application)

Transcode is an open source application that enables the conversion of one video
format to another. For the purpose of benchmarking, video reprocessing is both a
disk, processor and network intensive process.

Test Description Obtain bandwidth figures (Mbytes/sec) and wall clock time to distribute
data over the cluster using the subject protocol.

Obtain wall clock and CPU time to complete the video processing
conversion from transcode.

Obtain overall clock time to complete the video processing from start to
finish.

Test Aim To gain an understanding of the overall performance of the cluster system
with an application benchmark that involves intensive processing, network/
disk IO and large input and output datasets.

Input Data A freely, Internet-available dataset of a suitable size for the test.

Suggested data element sizes ranging from 1Mb, 2Mb, 5Mb, 10Mb, 100Mb,
1Gb. Care should be taken to ensure that data element size ranges both
under and over the available memory per node to test the effect of changes
to input/output requirements on each participating node.

The Internet Archive Moving Image Archive is a suggested repository for
source data.

Output Data Transcode timing output for each worker node in the cluster (produced by
application with results to be tabulated by the tester).

Wall clock time to complete the benchmark from start to finish.

The resultant converted video files.

Method Application should be run from 1 node to all node machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested) for each data element size. Each step should be repeated multiple
times in order to gauge variability. Statistics provided should carefully
describe the final values given in terms of their origin.

Table 7: The Transcode experiment in detail in the WAN-DC benchmark.

42

4.3.3.2 Mandelbrot (synthetic)

The Mandelbrot Set is a fractal for which a large number of implementations are
available and has been a popular choice for benchmarking due to its large,
complicated output from relatively simple code (Vaughan & Brookes 1989).

The following is an excerpt of the algorithm used as derived from Emmanuel
Dumas' (2001) implementation.

int mandelpoint(NUMBER z0_r, NUMBER z0_i, int nmax) {

int cp=0;
 NUMBER zn_r,zn_i,a,b;

 zn_r=z0_r;
 zn_i=z0_i;
 a=zn_r*zn_r;
 b=zn_i*zn_i;

while ((cp<nmax) &&((a+b) < SEUIL)) {
 zn_i=2.0*zn_r*zn_i+z0_i;
 zn_r=a­b+z0_r;

 a=zn_r*zn_r;
 b=zn_i*zn_i;

 cp++;
 }
 return cp;
}

void mandelbrot(const NUMBER xmin,
const NUMBER xmax,
const NUMBER ymin,
const NUMBER ymax,
const int startx,
const int starty,
const int lx,
const int ly,
const int nmax,
const int ximgmax,
const int yimgmax,
int *res) {

int x,y;

for(x=startx;x<startx+lx;x++) {
 for(y=starty;y<starty+ly;y++) {

NUMBER z0_r,z0_i;
// calcul de z0
z0_r=xmin+(xmax­xmin)*x/ximgmax;
z0_i=ymin+(ymax­ymin)*y/yimgmax;
res[(x ­ startx)+(y­starty)*lx]=mandelpoint(z0_r,z0_i,nmax);

 }
}

}

Test Description Obtain overall wall clock time to complete the Mandelbrot set.

Test Aim To gain an understanding of the overall performance of the cluster system
with an application benchmark that involves intensive processing, network/
disk IO and large output datasets.

Input Data A set of files each representing the region of the Mandelbrot set to calculate.

There are three separate parameter sets to this bench mark.
1. The overall set size being generated.
2. The number of segments the set is to be split into to be computed in
parallel.
3. The region of the Mandelbrot set to be calculated.

43

Depending on items 2 and 3, each work unit can be either relatively uniform
or provide a mix ranging from intensive computation to near trivial. Two
datasets are provided, Mandelbrot_A and Mandelbrot_B, which illustrate
each option.

Output Data Image files of the Mandelbrot set.
The wall clock time to produce the set.

Method Application should be run from 1 node to all node machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested) for each data element size and Mandelbrot region
(Mandelbrot_A and Mandelbrot_B). By default, vertical “striped” regions
are to be calculated with any deviation (such as square regions instead)
being clearly noted. Each step should be repeated multiple times in order to
gauge variability. Statistics provided should carefully describe the final
values given in terms of their origin.

Table 8: The Mandelbrot experiment in detail in the WAN-DC benchmark.

4.3.4 Responsiveness / Overhead

The responsiveness and overhead benchmarks are designed to load the system with
as much “non-work” as possible. This “non-work” has a known amount of time to
complete in terms of clock time per work unit. Thus the difference between the
aggregate time of the work units and the actual time the system takes to complete
them, when compared between systems, can give the experimenter an average
indication of the throughput capabilities of each system as well as a measure of
overhead.

Overhead=
1
n

. ∑
i=1

n

t onesec i−k i

Where:
n is the number of samples taken
k is the ideal clock time of the computation
t(onesec) is the clock time of the one second computation

4.3.4.1 One second (synthetic)

One second is a small application which will loop for as near to one second as
possible.

A C implementation is as follows:

// get start time

timeval tim;
gettimeofday(&tim, NULL);
double t1=tim.tv_sec+(tim.tv_usec/1000000.0);
double t2 = 0.0;

unsigned long loops = 0;

do {

gettimeofday(&tim, NULL);
t2=tim.tv_sec+(tim.tv_usec/1000000.0);
++loops;

} while((t2 ­ t1) < 1.0);

printf("%.6lf seconds elapsed. %d loops.\n", t2­t1, loops);

44

Test Description Load the system with work units with a known execution time.

Test Aim To see the difference between competing systems when executing for a
known period of time. How long does it actually take to compute a known
period of work?

Input Data The length of time to compute for each work unit.

Suggested lengths include:

1 sec, 10 secs, 100 secs, 1000 secs, 2000, 3000, etc.

Output Data The wall clock time in seconds.

Method Application should be run from 1 node to all node machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested) for each work unit length. Each step should be repeated multiple
times in order to gauge variability. Statistics provided should carefully
describe the final values given in terms of their origin.

Table 9: The One Second experiment in detail in the WAN-DC benchmark.

4.3.4.2 Mean work unit (synthetic derived from application)

Clock time difference between work units being completed over the course of
computation.

Test Description Obtain wall clock times for the difference between completed work units.

Test Aim To investigate the comparative lag that occurs between distributed
computing systems. This is especially important for comparing emerging
systems that rely on a decentralised approach where overhead may effect
the ongoing performance of the system.

Input Data Data can be gathered from the results of other benchmark experiments from
both a server or node perspective. That is, the time taken for each completed
work unit to be received. Or, the time between starting a new worker node
and actually receiving data to process (where data is available).

Output Data The wall clock time in seconds.

Method Application should be run from 1 node to all node machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested) for each work unit length. Each step should be repeated multiple
times in order to gauge variability. Statistics provided should carefully
describe the final values given in terms of their origin.

Care should be taken to ensure that the test is fair and that all systems being
compared are set to begin computation as soon as possible and that network
load is comparable between tests.

Table 10: The Mean Work Unit experiment in detail in the WAN-DC benchmark.

4.3.4.3 No work (theoretical maximum)

The No Work test results in the number of empty work units that can be completed in
a period of time.

45

A implementation in C, to literally do nothing, is as follows:

int main (int argc, char * const argv[]) {

return 0;

}

Test Description Obtain a theoretical maximum for the number of work units a system can
process as the processing load of the work unit approaches zero.

Test Aim To investigate the maximum number of work units that can be issued and
processed in a given amount of time.

Input Data None.

Output Data The number of completed work units in a given period of time.

Method Application should be run from 1 node to all node machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested) for each work unit length. Each step should be repeated multiple
times in order to gauge variability. Statistics provided should carefully
describe the final values given in terms of their origin.

Care should be taken to ensure that the test is fair and that all systems being
compared are set to begin computation as soon as possible and that network
load is comparable between tests.

Table 11: The No Work experiment in detail in the WAN-DC benchmark.

4.4 Qualitative Issues

This section is intended to serve as both a selection criterion for distributed
computing systems as well as a part of a framework to evaluate and compare them. It
has been developed from a literature review of available distributed computing
systems, grid computing and peer-to-peer computing areas. These areas continue to
relate and converge with each other (Foster & Iamnitchi 2003) and now require a
consistent benchmark that has useful application across all three areas.

There has been some substantial earlier work in some of these areas. In
resource management systems there exists a comprehensive taxonomy and survey of
existing systems (Krauter, Buyya & Maheswaran 2002). Object modelling, within
distributed computing, has been investigated with a view towards classification and
comparison (Bakker, Kuz & van Steen 1997).

This framework draws on this earlier work, and on recent developments in the
direction of distributed computing, to produce a high-level comparative framework.

4.4.1 General Approach & Design

In order to categorise the system being examined, it is necessary to examine the
approach taken in order to complete a distributed computing exercise, the overlay
network paradigm chosen, how the network is organised, whether the focus is on a
task or a service and the requirements necessary to participate.

4.4.1.1 Approach

How is the distributed system organised? The first consideration should be whether
the system comprises of a group of general machines or consists of specialised
hardware. If the system is general hardware, what is the approach taken to provide

46

computing services? Is it a decentralised swarm of loosely cooperating machines, a
distributed cluster of machines, is it a grid providing services or is it a cluster of
machines pooled between different geographic areas?

Specialised Hardware General Purpose Hardware

Parallel supercomputer Swarm

Grid

Cluster

Ad Hoc

Table 12: The qualitative approach category in the WAN-DC benchmark.

4.4.1.2 Node Organisation (client / server, peer to peer)

Distributed computing systems require nodes to organise themselves so that
communication can occur so that jobs can be allocated and results returned.
Client/server, peer-to-peer and a hybrid approach are the three known methods used
to achieve this. Other methods will undoubtedly emerge and should be also
considered to allow the categorisation of new systems.

Node Organisation

Client/server

Peer-to-peer

Hybrid

Other

Table 13: The qualitative node organisation category in the WAN-DC benchmark.

4.4.1.3 Network Topology

In many node organisations (4.4.1.2) different underlying network topologies can be
employed for communication between nodes. These can have an effect on the
overlayed services.

Network Topology Description

Fully connected Each node in the network is connected
to every other node in the network.

Ring (or list) Nodes are arranged into a ring or list
with a half or full duplex connection
between them.

Tree (or star) Communication is directed via a strict
hierarchy where a root node or central
server communicates only with the
nodes beneath it and so on. A star
configuration is particularly common in
client-server systems where a single
machine (or group of machines) is
connected to nodes around it.

Hypercube A hypercube is a compromise between a
fully connected network and a ring. It
aims to produce a minimum number of

47

“hops” between nodes to communicate
whilst maximising the number of nodes
able to participate with a limited
number of connections.

Butterfly A butterfly network, with similar
routing abilities to a hypercube,
typically has two input and two outputs
where combinations of straight, crossed
and broadcast paths are possible.

Random A node joins any other node as it sees
fit. There is no deterministic
arrangement to how nodes are
organised.

Heuristic Often this would be a network that
begins as random and connections
change as faults or inefficiencies are
discovered in the network.

Other Other is particularly important as there
are many variations and combinations
of each one of the topologies described
here. Flexibility should be used to
describe a variation and refer back to
one or more of the high level topologies
presented to maintain context.

Table 14: The qualitative network topology category in the WAN-DC benchmark.

4.4.1.4 Application

This section is to determine whether the system is service based or task based. Is the
system providing a computing service or is it centred around the computation of a
specific task? Indeed, some systems can be configured to do both. The purpose of
this section is to clarify this functionality in a distributed computing system.

Application

Task based

Service based

Either

Table 15: The qualitative application category in the WAN-DC benchmark.

4.4.1.5 Requirements & Dedication

What system requirements are required for both hosting a project and participating in
one? Are there any special hardware considerations? Does a participating node need
to be completely dedicated in order to function? Also, how does the system interact
with the operating system and present itself to the user?

48

Requirements (Host or Node)

Specific hardware

Dedicated machine

Background process

Screensaver / idle cycles only

Table 16: The qualitative requirements category in the WAN-DC benchmark.

4.4.2 Features

Further to the general approach, consideration needs to be given to what features the
system offers, the standards it supports, the hardware required, how tasks are
managed and its robustness and licensing arrangements.

4.4.2.1 Algorithmic Suitability

Support for algorithm type (embarrassingly parallel, interprocess communication)

Algorithm Support

Interprocess communication

No interprocess communication

Ordered problems

Table 17: The qualitative algorithm support category in the WAN-DC benchmark.

Also, where there are ordered tasks, how is the ordering managed?

Task Order Management

Task graph

Petri Net

Heuristics

Table 18: The qualitative task ordering category in the WAN-DC benchmark.

And where there is support for interprocess communication, by which methods or
standards does it occur?

Communication Standard

MPI

PVM

Tuplespace

Other

Table 19: The qualitative communication standards category in the WAN-DC
benchmark.

49

4.4.2.2 Standards Support

What open standards does the system adhere to which enable a deeper comparison
between systems?

4.4.2.3 Hardware Support

What hardware does the system support? Is the system able to run on multiple
machines and operating systems? If so, which ones? Can the system operate well in a
heterogeneous mix of machines and networks and take advantage of individual
node's characteristics (such as multi-core processors?). What level of platform
independence is there? Graphic processing units (GPU), especially for vector
processing, are now potent processors in their own right and are being utilised by
various voluntary computing systems.

Hardware Support

Platform Independence

Processing Hardware Support

Heterogeneous Support

Graphics (GPU) Processing support. e.g.
High end video cards in modern PCs.

Table 20: The qualitative hardware support category in the WAN-DC benchmark.

4.4.2.4 Task & Resource Management

Resource allocation can be directed by a server or, in some known systems, by nodes
choosing which jobs to participate in.

Allocation of Resources / Tasks Description

Job Allocation Control Server or Node. Are jobs allocated by the server
in a server-client fashion? Or can the node choose
which work to do from an available pool?

Proportional Tasks are allocated based on a best fit to node
performance and task size.

Market Tasks and nodes are matched based on a virtual
economic market.

None Nodes are allocated (or can randomly choose) the
next task ready for computation (i.e. Next in the
queue or graph as determined by the task
ordering algorithm)

Table 21: The qualitative job allocation category in the WAN-DC benchmark.

50

4.4.2.5 Robustness

Robustness Description

Checkpointing Support for long task checkpoints, no support
(repeat tasks only).

Scalability Statistical evidence, Observed evidence.

Quality of Service Types of support being offered or no support.

Churn Hand over of part completed tasks, task
rescheduling, no tolerance for node failure.

Malfeasance Multiple computation, trust/signing schemes.

Table 22: The qualitative robustness category in the WAN-DC benchmark.

4.4.2.6 Licensing

Licensing Description

License description {Proprietary, GPL, Public domain, Other}

Source availability {Open, Closed}

Governing organisation Corporation, Non-profit organisation,
community, individual.

Table 23: The qualitative licensing category in the WAN-DC benchmark.

4.4.3 Usability

It would be possible with the use of survey and other qualitative research techniques
to obtain actual evidence and data for this section, however detailed suggestions for
survey or experimental design are left as being beyond the scope of this work.

Usability Description

Hosting a new project A originating node or any size. A tracker which can be hosted on
the originating node or elsewhere.

Joining an exiting project Download software and pick a project.

Coding for a new project None required. Can use existing binaries.

Table 24: The qualitative usability category in the WAN-DC benchmark.

4.4.3.1 Hosting

How much work is needed to begin a project? Are there dedicated requirements for
network connectivity or hardware infrastructure?

51

Hosting a project

Software Perspective Hardware Perspective

Custom software
required

General commodity
hardware

Dedicated operating
system

Specific hardware

Table 25: The qualitative hosting category in the WAN-DC benchmark.

4.4.3.2 Joining

What effort is required to join a running project? Is downloading and installing
software required?

Joining an existing project as a participant

Custom software required

Attaching through another application (i.e. Web
Browser, Java Web Start)

Dedicated operating system

Table 26: The qualitative joining category in the WAN-DC benchmark.

4.4.3.3 Coding

Coding for hosting a new project

Support for existing binaries.

Libraries need to be compiled in.

Table 27: The qualitative coding category in the WAN-DC benchmark.

4.4.3.4 Support

What support is available for managing the system?

Support

Commercial support

Community support

Books

Developer support

Table 28: The qualitative support category in the WAN-DC benchmark.

4.4.4 Incentives

How are nodes attracted to participate in a project? General techniques such as
publicity, etc. are discussed by projects such as BOINC (BOINC 2007). What
features are provided by the software or system itself to encourage nodes to
participate in the project?

52

Incentives Description

Data access Access to the source or computed data set.

Financial through statistics Reliable statistical information of work units completed which can
then form the basic of an actual economic system where processing
work can be billed to the project owner and worker nodes can be
paid.

Fame through statistics Reliable statistical information of work units completed which can
be published to encourage new nodes to join and existing nodes to
remain to hold or improve current leader board placement.

Table 29: The qualitative incentives category in the WAN-DC benchmark.

4.5 Discussion of the WAN-DC benchmark

Like the NAS parallel benchmarks, these have grown out of a personal requirement
rather than an attempt to be all things to all benchmarking systems. This is obvious
given that the operational characteristics (Section 4.3) cover only independently
parallel problems or that malfeasance, of which some aspects are possible to
measure, is not given here. As such, detailed discussion of suitable further work,
including support for algorithms that require interprocess communication, is
discussed in Chapter Nine as a part of future work.

4.6 Chapter Summary

This chapter has presented the WAN-DC benchmark. It is a benchmark suitable for
wide area network distributed computing systems that evaluates both operational
characteristics as well as a comparative framework to investigate the qualitative
aspects of the system. It is the aim of this benchmark to provide some coverage
across the previously separate areas of distributed computing and peer-to-peer
networks. This benchmark is used in the next chapter to evaluate two client-server
distributed computing systems and later in chapter eight to evaluate a hybrid peer-to-
peer system.

53

Chapter Five

5.0 A Comparative Evaluation of Condor and BOINC
Using the WAN-DC Benchmark

This chapter applies the developed benchmark presented in the previous chapter to
compare two existing wide area network distributed computing systems. This
comparison forms the foundation for the CompTorrent evaluation in chapter eight.
All comparisons have occurred on the same hardware and network under controlled
conditions to produce a fair evaluation of the different platforms. These controlled
conditions come at the expense of not comparing over a wider area network than
what was employed. However, a known network/hardware platform was considered
more important to compare the new approach with the existing approaches in a
meaningful way over what amounts to increases in latency, reduction in bandwidth
and added issues of reliability and heterogeneity of network connection and
processor. Further work required in this area is later discussed in section 9.2.1.3.

5.1 Test Platforms

BOINC (See 3.2.1.1) and Condor (See 3.2.1.2) were selected in regards to their
popularity, ubiquity and feature set. Both are widely used scientifically and differ in
their usage and implementation.

The focus of these experiments was a fair comparison to gauge how these
systems compare with each other and then later with CompTorrent. All reasonable
attempts were made to have similar operating characteristics between the two
platforms when experimentation occurred. Communication rates with servers,
timeouts, work unit scheduling characteristics and job allocation settings were made
as equivalent as possible between the two platforms. This was done to expose the
underlying approach whilst not disadvantaging either platform by nature of its
operational settings.

5.2 Test Environment

A cluster of 16 Pentium 3 class machines. Each with 800Mhz (approx) processors
and all having 256Mb RAM and running Linux (kernel 2.6.12). Each machine was
connected to the same network segment on a 100Mbps switched Ethernet network.
Section 5.4.1 shows individual cluster machine and network performance.

A 17th machine was employed as the master server for both BOINC and
Condor. It was also the same class of machine as each cluster node with the
exception of RAM size with it possessing 512Mb in total.

The method for setting up these experiments on BOINC and Condor is
described in detail in Appendix C.

5.3 Test Datasets

There are several datasets that are used for this chapter. For the Transcode
experiment an arbitrary public domain movie, in MPEG2 format was chosen for

54

conversion into the AVI format. This video file used here was Charlie Chaplin's
“Cruel Cruel Love” broken into 100 pieces of around 1Mb each. The POV-Ray
experiment uses the POV-Ray benchmark dataset as included with the POV-Ray
application with each work unit broken into 64 horizontal slices of equal height and
width. Mandelbrot is a classical rendering of the Mandelbrot set with the overall job
broken down into 160 work units to provide at least 10 units of work per machine in
our sample cluster.

See Appendix E for a detailed description of the test datasets.

5.4 Results

BOINC and Condor displayed different results when running identical algorithms,
with the same data on the same hardware and network platform. These results are
given for Condor in section 5.4.2 and then BOINC in section 5.4.3. This chapter
concludes with a comparative summary and discussion in section 5.5.

5.4.1 Baseline

Here presented are results for the baseline that forms a part of the WAN-DC
benchmark as described in 4.3.1.

5.4.1.1 LAPACK

Benchmark 1 2 3 4 5 6 7 8
LINPACK Rolled Double Precision 239.11 219.96 220.04 220.61 220.11 220.19 220.13 219.95
LINPACK Unrolled Double
Precision 313.32 280.43 280.57 288.9 280.63 280.64 280.45 280.31
LINPACK Rolled Single Precision 179.6 173.27 173.08 173.25 173.21 173.28 173.25 173.09
LINPACK Unrolled Single
Precision 194.89 185.98 186.04 186.34 186.04 186.05 186.05 186.01
Benchmark 9 10 11 12 13 14 15 16
LINPACK Rolled Double Precision 220.17 219.69 220.2 239.15 220.08 220.16 220.14 220.18
LINPACK Unrolled Double
Precision 280.41 280.07 280.57 313.2 280.54 280.62 278.4 280.64
LINPACK Rolled Single Precision 173.24 173.1 173.22 179.72 173.27 173.22 173.21 173.29
LINPACK Unrolled Single
Precision 186.09 185.85 186.08 194.94 186.07 186.03 186.06 186.06

Table 30: Individual cluster machine performance for LAPACK

5.4.1.2 Whetstone & Dhrystone

Benchmark 1 2 3 4 5 6 7 8
Dhrystone VAX MIPS 922.14 850.88 851.01 855.74 856.13 855.74 851.01 855.48
Whetstone MWIPS 734.7 678.15 678.14 678.07 678.2 678.14 678.15 677.61

Benchmark 9 10 11 12 13 14 15 16
Dhrystone VAX MIPS 826.06 849.48 851.26 922.29 851.13 856 855.87 851.13
Whetstone MWIPS 678.13 676.74 678.14 735.1 678.17 678.14 678.17 678.17

Table 31: Individual cluster machine performance for Whetstone and Dhrystone

55

5.4.1.3 NetPerf

56

Figure 1: Ethernet throughput of the cluster network.

Figure 2: The round trip time of the cluster network with
packets of increasing size.

5.4.2 Condor

Appendix C contains detailed instructions and settings for the Condor
implementation that forms the basis of these results.

5.4.2.1 POV-Ray

Condor performed well in the POV-Ray experiment as would be expected given its
high computation and low network communication requirements. Table 32 shows
good speedup efficiency (speedup / number of nodes) but curiously less so with two
nodes. Two nodes is where super linear speedup is more likely to occur rather than a
slow down. In this case it is simply a single run which performed significantly slower
than the rest of the runs. Removing this outlier results in a mean run of 9077.75 with
a corresponding rounded speedup of 1.79 and speedup efficiency at 0.895.

Condor POV-Ray

Num
Machines

Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 16209 19.85 1 1

2 10022.8 2126.67 1.62 0.81

4 4200.2 1.1 3.86 0.97

8 2094 6.24 7.74 0.97

16 1035 2.12 15.66 0.98

Table 32: Condor results for the POV-Ray experiment.

5.4.2.2 Transcode

Some super-linear speedup was observed, quickly faded at 8 nodes with only a
marginal improvement at 16. Transcode does have a loading time on these machines
in the order of approximately 2 seconds on the data provided and their granularity.
This overhead does explain why there is going to be a definite upper bound to the
amount of speedup that is going to be observed.

Condor Transcode

Num
Machines

Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 1162.6 1.82 1 1

2 299 3.94 3.89 1.94

4 238.6 7.3 4.87 1.22

8 215.6 2.61 5.39 0.67

16 213.2 2.77 5.45 0.34

Table 33: Condor results for the Transcode experiment.

5.4.2.3 Mandelbrot

Here Condor has not performed particularly well at all with mean speedup reaching a
maximum of 1.86 at 8 machines and performing worse at 16. Mandelbrot, whilst

57

computationally expensive, requires very little to begin processing and not very
much in terms of disk or network input/output. It is likely to be the case that the
granularity chosen is particularly poor for Condor's implementation. A comparison
with “No Work” in the next section (5.4.2.4) does provide some insight.

Condor Mandelbrot

Num
Machines

Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 610.8 132.68 1 1

2 420.4 3.51 1.45 0.73

4 333.6 6.35 1.83 0.46

8 329 7.68 1.86 0.23

16 332.2 5.97 1.84 0.12

Table 34: Condor results for the Mandelbrot experiment.

5.4.2.4 No Work

Here illustrated is how Condor performs with almost no work to do. It can be clearly
seen that a speedup figure for 2 machines is observed with a maxima at 8 machines
and very little change at 16.

This result offers us insight into the results gained in Mandelbrot (5.4.2.3)
where it wasn't understood why some speedup wasn't really achieved. This suggests
that the Mandelbrot calculation itself was akin to no work under these conditions.
There was also considerably more network activity than No Work, with the
Mandelbrot experiment, that suggests that the network can be discounted as having
an effect on the overall speedup observed in either Mandelbrot or No Work.

Condor No Work

Num
Machines

Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 345.8 1.92 1 1

2 214 5.48 1.62 0.81

4 213.8 4.15 1.62 0.41

8 211.2 4.09 1.64 0.21

16 209 5.92 1.65 0.1

Table 35: Condor results for the No Work experiment.

5.4.2.5 One Second

Leading on from No Work and the observances with Mandelbrot, it shows that
knowing at what job size the distributed computing system becomes useful is
extremely important in the design of a distributed computing project. The One
Second experiment is designed to show how the efficiency (expressed as known
processing time divided by wall clock time) of a system varies over the size of the
work unit.

58

59

Figure 3: Condor One Second graph for 1
machine.

Figure 4: Condor One Second graph for 2
machines.

Figure 5: Condor One Second graph for 4
machines.

60

Figure 6: Condor One Second graph for 8
machines.

Figure 7: Condor One Second graph for 16
machines.

Figure 8: Condor Mean One Second results.

One Second shows , within the bounds of the size of our cluster, that the efficiency
of the system converges at a job size of approximately 30 seconds.

5.4.2.6 Mean Work Unit

Table 36 shows the mean work unit results for POV-Ray, Mandelbrot, Transcode
and No Work. The most obvious thing it shows is the difference in processing times
between the different experiments. Mandelbrot, Transcode and No Work, when
compared to POV-Ray, are comparatively light in their processing time per work
unit. POV-Ray also displays the largest in the time taken to compute a work unit.
This is chiefly due to the nature of the computation itself where the workload varies.
The results show that there are cases where there is not a significant difference in run
time between 1 and 2 machines.

Care must be taken with varying work unit algorithms like Mandelbrot on a
small number of machines. Since Mean Work Unit looks for the average time to get
a response with a computed data set, the difference between time taken for each work
unit will vary on a single machine as the variance is being driven by the nature of the
different work sizes and not the network or the distributed computing system's
internal overhead. This is shown obviously with a higher deviation than mean result
for Mandelbrot with 1 machine in Table 36.

Experiment # Machines Mean (secs) Standard deviation (secs)

POV-Ray 1 257.43 44.74

2 159.09 100.42

4 66.67 58.63

8 33.24 31.49

16 16.43 15.88

Mandelbrot 1 3.84 5.67

2 2.64 0.84

4 2.10 0.43

8 2.07 0.43

16 2.09 0.37

Transcode 1 11.74 1.03

2 3.02 1.19

4 2.41 1.2

8 2.18 1.37

16 2.15 1.38

No Work 1 3.49 0.23

2 2.16 0.54

4 2.16 0.68

8 2.13 0.54

16 2.11 0.5

Table 36: Condor results for the Mean Work Unit experiment.

61

5.4.3 BOINC

5.4.3.1 POV-Ray

BOINC performed extremely well in POV-Ray. Table 37 shows good speedup
efficiency (speedup / number of nodes) for the first three cluster sizes. Super linear
speedup was observed for 8 and 16 node sizes. BOINC takes advantage of both
hyper-threading and multi-core processing which explains this super-linearity. For
this cluster, hyper-threading was possible (there were no multi-core nodes) and was
observed in the BOINC data.

BOINC POV-Ray

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 16846.2 66.82 1 1

2 8640.4 39.39 1.95 0.98

4 4290.6 52.35 3.93 0.98

8 2019.8 21.44 8.34 1.04

16 891.6 32.08 18.89 1.18

Table 37: BOINC results for the POV-Ray experiment.

5.4.3.2 Transcode

Transcode shows increasing speedup across the range of cluster sizes without any
super-linear speedup as observed in POV-Ray. The overhead of the network traffic
has limited the amount of speedup observed.

BOINC Transcode

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 2619.8 624.68 1 1

2 1647 189.33 1.59 0.8

4 795.2 97.89 3.29 0.82

8 688.2 70.24 3.81 0.48

16 475.6 66.79 5.51 0.34

Table 38: BOINC results for the Transcode experiment.

5.4.3.3 Mandelbrot

Similarly to Transcode, Mandelbrot shows conventional if uninspiring results with
very long runtimes to complete the exercise. Speed up continues to improve over the
whole cluster range.

62

BOINC Mandelbrot

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 2686.6 70.23 1 1

2 1430.4 128.92 1.88 0.94

4 783 58.53 3.43 0.86

8 529.8 135.21 5.07 0.63

16 394.8 181.34 6.8 0.43

Table 39: BOINC results for the Mandelbrot experiment.

5.4.3.4 No Work

BOINC produces a poorer than expected speedup with 4 machines and a maximum
speedup with 8 machines. There was little difference between 8 and 16 machines.

BOINC No Work

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 1658.2 178.1 1 1

2 885.2 106.8 1.87 0.94

4 699 164.51 2.37 0.59

8 484 92 3.43 0.43

16 503 65.53 3.3 0.21

Table 40: BOINC results for the No Work experiment.

5.4.3.5 One Second

1,2,4 nodes shows ordered, linear results with very good efficiency (expressed as
known processing time divided by wall clock time) ranging from approximately 83 –
101 second job sizes. 1 machine on BOINC shows an unusually high result. This is
due to BOINC being able to dispense with its slow and deliberate work unit
allocation and request cycle across the network.

63

Figure 9: BOINC One Second graph for 1
machine.

64

Figure 11: BOINC One Second graph for 4
machines.

Figure 12: BOINC One Second graph for 8
machines.

Figure 10: BOINC One Second graph for 2
machines.

However at 8 machines (Figure 12) linearity diverges at 20 seconds with a
much higher standard deviation trending towards 100% efficiency at 200 second
jobs.

With 16 machines, as expected, the efficiency increases at approximately half
the rate of the 8 machine configuration. What is interesting is that the results are
much more uniform compared to 8 machines, with more jobs and more nodes.

The graph in Figure 14 shows all of the previous One Second results as a
mean for 1,2,4,8 and 16 node cluster sizes respectively.

65

Figure 13: BOINC One Second graph for 16
machines.

Figure 14: BOINC Mean One Second Results

5.4.3.6 Mean Work Unit

Table 41 shows the mean work unit results for POV-Ray, Mandelbrot, Transcode
and No Work. Here deviation is consistently high, as a percentage, of the mean time
taken to complete a work unit over the course of all experiments. BOINC will often
pause for some time between job requests and allocations. This is due to BOINC's
target audience of very large projects with very high numbers of participating nodes
where exponential back off on failed requests is required to prevent flooding.

Experiment # Machines Mean (secs) Standard Deviation (secs)

POV-Ray 1 16.75 9.44

2 8.94 5.97

4 7.06 10.14

8 4.89 13.5

16 5.08 21.14

Mandelbrot 1 16.9 5.16

2 9 5.96

4 4.92 3.38

8 3.33 6.61

16 2.48 10.73

Transcode 1 26.46 19.31

2 16.64 12.21

4 8.03 4.68

8 6.95 17.94

16 4.8 10.11

No Work 1 16.75 9.44

2 8.94 5.97

4 7.06 10.14

8 4.89 13.5

16 5.08 21.14

Table 41: BOINC results for the Mean Work Unit experiment.

5.4.4 Qualitative Evaluation

Table 42 below presents the qualitative results for BOINC and Condor as a
comparative guide to the available features of each system.

APPROACH / DESIGN

BOINC Condor

Approach Volunteer / Grid Cluster / Grid

Node Organisation Client / Server Client / Server

Network topology Star (with super hosts) Star (with pools)

Application Task / Grid (with added
modules)

Task / Grid (with Condor G)

66

Requirements & Dedication Idle cycles or greater Idle cycles or greater

FEATURES

BOINC Condor

Algorithmic Suitability No interprocess communication Interprocess communication and
ordered problems

Standards supported None explicitly MPI, Globus, PVM, Master-
Worker (own standard),
DRMAA

Hardware / OS support Platform Independence:
Windows, Linux, Mac, Solaris,
HPUX, Tru64, AIX, FreeBSD,
OpenBSD

Hardware: Intel x86 32/64,
AMD 32/64, Power PC 32/64,
SPARC, HPPA, Alpha, IA64.

Hyperthreading and multi-core
support

GPU Crunching: Application
based. Evidence of some
projects using some specific
GPU hardware.

Heterogeneous:
Can target specific hardware or
any hardware above.

Platform Independence:
Windows, Linux, Mac, Solaris,
HPUX, AIX

Hardware: As supported by the
above operating systems.

GPU Crunching:
General support not at present
but it is an intention.

Heterogeneous:
Can target specific hardware or
any hardware above.

TASK & RESOURCE MANAGEMENT

BOINC Condor

Resource allocation to Jobs Server Server

Task allocation Server Server

ROBUSTNESS

BOINC Condor

Checkpointing Yes when optioned by client
software.

Yes when optioned by client
software.

Scalability Claimed: Millions of jobs per
day.

Observed: Millions of users per
day.

Observed:
Large pools of ostensibly
dedicated processors up to 4800
reported in one site. 10000
concurrent jobs (Withers 2007).

Quality of service Some features with dedicated
machines.

Yes.

Churn Yes. Readily. Depending on application but
generally yes.

Malfeasance Multiple calculations, pattern
fitting, extensible by the
algorithm developer.

Secure communication, secure
execution (sandboxing),
multiple calculations.

LICENSING

BOINC Condor

Licence Description GNU Lesser General Public Apache License 2.0

67

License

Source Availability Open Open

Governing Organisation University of California University of Wisconsin-
Madison

USABILITY

BOINC Condor

Hosting a new project Server hardware dedicated to
the task. High speed internet
connection.

Server hardware dedicated to
the task. LAN/WAN connection
to processing nodes.

Joining an exiting project Download software and pick a
project.

Depending on usage. From
downloading software and
joining a project to dedicated
machine.

Coding for a new project Support for existing binaries and
different levels of library
integration.

Support for existing binaries and
different levels of library
integration. More work also
depending on services required
(i.e. PVM, MPI)

SUPPORT

BOINC Condor

Commercial None officially. Yes.

Community Yes. Mailing lists, Web sites,
Wikis, Unofficial sites.

Yes. Mailing lists, Web sites,
Wikis, Unofficial sites.

Books None specific, but several
scientific texts relating to it as a
tool to use with some
instructions.

None specific, but several
scientific texts relating to it as a
tool to use with some
instructions.

PARTICIPATORY INCENTIVES

BOINC Condor

Data Access Per project basis. Per project basis.

Financial through statistics No. No. But possible depending on
grid middleware.

“Fame” through statistics Yes. No.

Table 42: WAN-DC qualitative results for both BOINC and Condor.

5.5 Discussion of Performance Results on BOINC and Condor

This section now follows on to compare and contrast the results of these systems
now that the benchmark has been applied.

5.5.1 POV-Ray

Condor performed well with speedup close to the corresponding number of nodes in
the cluster (when correcting for an outlier in 2 nodes). BOINC performed similarly to
condor for the 1,2,and 4 machine cluster configuration (again when correcting for the
2 node outlier) however super linear speedup was observed for 8 and 16 node
clusters. BOINC specifically supports processor hyper-threading support and multi-
core support which explains this behaviour. In BOINC's case it will request and have
2 jobs allocated at a time per processor on the machine.

68

5.5.2 Transcode

At first glance, both Condor and BOINC appear to provide similar results for the
Transcoding exercise across some cluster sizes. They both have similar speedup
results across the range of cluster sizes. Elapsed time on BOINC is approximately
twice as what was observed for Condor with the same job on the same hardware.
This is to be expected given the differences between BOINC and Condor's job
allocation where there is considerably more turns of communication for BOINC in
order to have a job allocated.

5.5.3 No Work

On both systems little speedup was observed. In the case of Condor very little
changed from 2 machines up to 16. On BOINC, speedup was observed, however this
result is offset by the elapsed time which was far more than that observed on Condor.

5.5.4 Mandelbrot

Mandelbrot on Condor behaved like No Work. On BOINC, similarly to Transcode,
the high overhead for work unit allocation resulted in much longer running times
and, in this case, scope for speedup. Though in every case the elapsed time was less
on condor than BOINC. However by 16 machines on BOINC there was significantly
less difference between the two suggesting that the overhead on BOINC becomes
less of an issue compared to Condor as its overhead increases along with the size of
the cluster.

5.5.5 One Second

In both cases, each system showed their focus. Condor produced a set of results that
would be expected for a system designed for more-or-less local area networks; not
strictly so but certainly not the extremely transient network participants that BOINC
was designed for. Results quickly converged and produced run times that were very
consistent. BOINC, however, quickly degraded to a speedup “flat line” for such
small jobs as they are simply not suitable for WAN calculation with BOINC.

5.5.6 Mean Work Unit

Here the difference between BOINC and Condor is stark and as expected. Condor
demonstrates a strong link between the work load of a work unit and the time taken
to complete this unit. This shows the general efficiency of job allocation and
completion between the server and the client. A requirement for a system that has a
focus of working as a LAN cluster. BOINC is optimised for WAN operation and as
such, with the client focus of requesting jobs, shows a greater difference between the
time taken to complete each work unit.

5.6 Chapter Summary

This chapter has presented the results of applying the WAN-DC benchmark to both
the BOINC and Condor distributed computing systems. Both sets of experiments
were performed on the same cluster hardware, network and data sets. This has
produced a comparative set of results for two distributed systems that have not been
compared in this way previously at time of writing.

69

These results form the basis of a comparison for a peer-to-peer distributed
computing system that will be introduced in the next chapter and later subjected to
the same benchmark under the same conditions.

70

Chapter Six

6.0 CompTorrent
This chapter describes the overall design and operation of CompTorrent.
CompTorrent embodies the practical implementation of this thesis to demonstrate
that a peer-to-peer network can produce comparable results to that of a client-server
approach when used for general purpose distributed computing.

6.1 Introduction

CompTorrent allows a small group or an individual to host their own distributed
computing project. This is achieved without needing to know much about distributed
computing and, in many cases, without writing any new code. CompTorrent allows a
group of nodes to share a dataset that needs to be computed. They share the original
dataset, the computation load and the resulting computed dataset. This allows an
originating node to upload an original data set only once and still share the entire
dataset amongst many nodes. CompTorrent shows a partially decentralized peer-to-
peer network being successfully used for distributed computing.

CompTorrent introduces several new techniques to distributed computing in
order to solve some existing problems. Most importantly, and unfortunately also
hardest to quantify, is the claim to lower the cost of entry to distributed computing
from the perspective of those wanting to have something computed. Joining a
computing project tends to be easy. However, starting one requires much more work.
Many systems, such as those mentioned in Chapter 3, have a very simple means of
joining the system – mainly the installation of some software and then the running of
an application, which often presents as a screen saver for when the machine is
otherwise unused. Others based on Java Web Start , again as described in Chapter 3,
can be joined with the click of a URL. Any earlier difficulties perceived in joining a
distributed computing project have very much been solved. However, the creation of
a distributed computing project tends to be more difficult. BOINC, arguably one of
the more open and easier systems to create with, still requires the dedication and
configuration of server hardware to the task of managing a project. The Gnutella
Processing Unit (See 3.3.2.1) does not natively allow your own projects to be created
at all (GPU 2007). Many other systems exist that are dedicated to a particular task
and would fall into the very difficult to create category. That is if you want to start a
distributed computing project then first you must write a distributed computing
system. While CompTorrent is not the first to introduce a generic distributed
platform, as clearly BOINC and Condor have been shown to do this in this thesis, it
is the first to utilize the tracker and “metadata file” concepts to attempt to satisfy the
goal of making a system that is both easy to join and easy to create new projects.

An overview of this new system begins with the notion of a “seeder”, that is,
the group or user who initiates the distributed processing task and has a full set of the
original data. First they create a metadata file (using a software tool) which describes
or contains the algorithm and describes the data set. This metadata file can be
published on the World Wide Web (WWW) or another peer-to-peer (P2P) service,

71

for interested parties to download. This process is illustrated in figure 15 below.

The distributed metadata file is what allows other users to join in the
computing exercise. Once downloaded, another interested user uses the CompTorrent
application to read this metadata file, extract the algorithm, begin computation and
attempt to join the other computers working on the project. It does this by first
contacting a “tracker” whose contact details are included in the metadata file. The
tracker is a service hosted on the WWW which maintains information about which
nodes are currently working on a problem and which parts of the problem are
currently unsolved. The tracker suggests tasks for each node and helps coordinate the
process. Its serves as a shared memory for the swarm and does so independently of it.
This process is illustrated in figure 16. Here it is claimed that these techniques
greatly simplify the task of starting a distributed computing project whilst also
leaving it equally simple to join. It also allows separate computing jobs to be
completely independent of one another so as to minimize any overhead in
maintaining any other project other than your own. This approach contrasts with
having a large group of nodes running multiple projects divided between them. Using
file sharing as an example, BitTorrent's approach of a single swarm per file set easily
outpaces Gnutella's approach of one large network with many file sets (Ritter 2006)
(Bharambe 2005).

CompTorrent also introduces the notion of sharing the data set as well as the
computation at the same time. Whilst a distributed system has always needed to
share some of the data, namely the data being computed, here the incentive to join a
project is to share in the computed data. Collaborative video encoding from a higher
to lower bit rate can share the work and distribute the result at the same time. Using
the output of one computing exercise among several research groups for the input of
another is also a tangible incentive.

72

Figure 15: A new job is started by the creation and publication of a metadata file.

6.2 Technical Overview

Following the overview just given, this section proceeds to describe each major part
of the CompTorrent system in more detail and show how each part interacts with the
rest of the system. Security and trustworthiness of the overall system is also
discussed.

6.2.1 Metadata File

The metadata file contains information about the location of the tracker, the
algorithm to be used and a description of the original data set. It contains everything
a new node needs to find the tracker to join the swarm, the algorithm used to
compute a part of the result and the sizes, names and hashes of each piece of original
data to be computed. This file is formatted in XML. An example is given below.

The first section of the file contains the version of the file, the connection
details for the tracker, the name of the computation project, the size and hash of the
original data set. The algorithm subset of the file contains the execution details of the
algorithm and the algorithm itself. There are two broad options for the algorithm in
the metadata file. The swarm can rely on the algorithm application being available on
the participating machines (as is shown in the example given) or the application
binary can be directly embedded into the metadata file in a base64 encoding. Either
way, this approach allows the seeder to distribute the algorithm as flexibly as
possible. Java bytecode is easily included or a more complicated script can be used to
broadly cater for a variety of situations and platforms. Once the algorithm has been
extracted or obtained, the execution field stipulates how the algorithm is executed. It
is assumed that there will always be an input file that contains data that will be
acceptable to the algorithm. A resulting computed data set will be produced and
saved in a computed directory.

73

Figure 16: The major steps in joining a CompTorrent swarm

<?xml version="1.0" ?>
<comptorrent>
<version>0.1</version>
<tracker_url>144.6.40.251</tracker_url>
<tracker_port>60000</tracker_port>
<name>cruelcruellove</name>
<size>93130756</size>
<md5>8EE44CB5C9A5AFCACD6C0AF363C1C5A1</md5>
<algorithm>
<execution>algo.sh</execution>
<script>
#!/bin/sh
transcode ­i $1 ­o $2 ­y xvid
</script>
</algorithm>
<orig_data>
<file><name>chunk­
001.mpg</name><size>1035738</size><md5>055172279073E1DC42C847BC794816A5</md5></file>
...
<file><name>chunk­
100.mpg</name><size>703680</size><md5>BCEB81C97C89B6C0D61CFC8F8F1384DE</md5></file>
</orig_data>
</comptorrent>

The remaining section of the file describes the original data set. It does not
contain the original data, only its representation in terms of name, size and hash.
Nodes ask each other for original data as necessary and share the bandwidth load of
the distribution task. The size of each data chunk in the set is dependent on the nature
of the job and left to the judgement of the seeder at the time the metadata file is
created. A typical data chunk size may be in the range of 256kb to 1Mb depending
on the intensity of the computation task and quality of the network connection
between typical nodes. Just like the algorithm, this data can be sent in plain text or
Base64 encoded depending on the nature of the data to be processed. Anything that
is acceptable to XML can be left in original form whilst binary data can be encoded
or compressed and encoded. Along with each chunk of data, the size of the data and
a hash of the data for checksumming is included. Support for very large data sets is
available now via two means. One option is by having multiple CompTorrent
metadata files which swarms can join to process parts of the dataset independently. A
second is that the embedded or downloaded algorithm manages is own data handling.

6.2.2 Tracker

The tracker is a WWW service that provides a simple shared memory for a swarm or
number of swarms. From the tracker a node can get a list of other connected nodes in
the swarm, get a suggestion for the next data chunk to process and report data chunks
finished. It is a simple service that is basically a web-based front end for an SQL
database to allow nodes to gain and provide information quickly. A tracker is kept
simple and provides no significant processing services so that a swarm need not
completely rely on it for its work. As such a node does not necessarily keep an open
connection to the tracker at all times. It connects and makes requests as needed.
There is no reason why the tracker could not be ported to other mediums beyond
HTTP. This is the subject of future work and is discussed at the end of this thesis.

In a traditional client-server distributed computing system, the services
provided by a Tracker would be offered by a dedicated server. In a hybrid system
such as this one, any tracker, or multiple trackers, can be used to provide these kinds
of services. For general purpose distributed computing, the usage of the tracker
paradigm by CompTorrent is novel.

The current implementation of the tracker includes tools for gathering and
disseminating much operational data. Data are made available on which nodes have

74

which data pieces and at what time files were received or calculations made and at
what times were connections between nodes made. All of these data are displayed in
a web based application. Real time graphs of network topology are available as are
visual indicators of original and computed data per node.

6.2.3 Node

Nodes speak a simple protocol that is represented in XML and communicate via
sockets. This protocol is original and is not compatible with any other peer-to-peer
protocol. XML was chosen due to ease of ongoing modification to the protocol when
compared with a binary message structure style approach. Nodes make connections
with each other after asking a tracker for nodes that are already in the swarm and
how many existing connections to other nodes they already have. Each node will
make as many outgoing connections to other nodes and receive incoming
connections as it can based on user configuration. This overlay network is
maintained for the life of the swarm as new nodes join and existing nodes leave.
Presently, connection candidates are suggested by the tracker based on the simple
heuristic of choosing the least connected node from a pool of nodes that do not have
connections which involve the new potential node. A routing scheme is then overlaid
the underlying TCP/IP network.

The communication protocol is simple and largely consists of messages to
manage connections and exchange data chunks. Connection requests include
information about what original and computed data a prospective partner node has
and details about which other nodes it is already connected to. A node will then
accept or refuse a connection with a reply and pass back similar information to take
advantage of this brief connection. Connected nodes pass file request and file reply
messages back and forth as they work towards completing their datasets.

A node computes a part of the overall job and reports to the tracker that it has
finished. Nodes make requests to each other to ask for parts of the original and the
computed data sets. Once a node obtains a new chunk of data, it reports this to the
tracker so it can service requests for that chunk as well to help share the load.

Each node is equivalent to every other node in the network and has no
different functionality whether it be an originating seed or a new node joining a large
existing swarm. Nodes are arbitrary volunteers on a network and do not need to have
similar architectures. Every node computes and shares data with every other node
that it is connected to. There are no “special” nodes with greater importance to the
swarm or different responsibilities. It is the equal aim of each node to assemble, and
maintain, a complete set of the computed datasets and optionally the original data set
in an attempt to provide as much redundancy as possible to the swarm as a whole.
Computed chunks that are lost can be recalculated, allowing the swarm to heal itself
should a node leave without sharing its computed data. Original data are replicated
quickly amongst nodes in a rarest first fashion. To further illustrate this process,
figure 17 shows a seed node with a full original data set and half of the computed set.
Node 1 has obtained half of the original data and applied the algorithm producing
some computed data. The tracker helps direct each node to form an overlay network
and suggests chunks for computation and sources for data. As the computation is
finished, the new node would work with the seed and node 1 for copies of the
original and/or computed data.

75

6.2.4 Security

Whilst not actually a discrete part of the system like the tracker or the node, the
security implications of the system need to be considered in order to gauge its
usefulness. From the description of the system already given, it is clear that the
behaviour of nodes can have a dramatic impact on the reliability of the system. The
major features currently implemented which addressing these issues will now be
discussed.

To begin with there is an implicit trust in the seeder or the group who has
constructed the metadata file and a new user wishing to participate. This is especially
the case when a custom or unknown algorithm is the agent of computation. This is
where the ability to include a script to use an existing application might be more
suitable. It is envisaged that in time, users would be able to gain credibility, based on
the quality and trustworthiness of their offerings, that would be manifested in a
community that has grown around the distribution of the metadata files itself. This is
certainly what has occurred with BitTorrent where there are many search or
aggregation sites which serve as databases for existing BitTorrent swarms. Users are
commonly allowed to make comments on each file available.

Once there is some measure of trust in the seeder, the integrity of the
metadata file itself, whilst not currently implemented, could be managed with a
digital signature scheme using existing tools. Original data integrity is already
managed with hashes and this would obviously be further strengthened if the
metadata file, containing the original set of hashes, was digitally signed by the
author.

The computed datasets are easy targets for malfeasance. The hashes given in
the metadata file protect the original data, but that does little to suggest the integrity
of their computed equivalent. In CompTorrent, a seed stipulates how many times
each data chunk is to be recomputed, by a separate random node, before it is
considered trustworthy. This clearly has a profound effect on the time needed to
compute an entire set. However in an uncontrolled environment it is one of the few
tangible ways to get an idea of how much trust can be placed on a result. Other
distributed systems commonly use various credit and cheating techniques to manage
and rate node contributions; this is something that may be examined in the future for

76

Figure 17: Three nodes is a simple network interacting with each other and the
tracker.

inclusion beyond the re-computation which is currently implemented.

6.3 Using CompTorrent

This section demonstrates the usage of CompTorrent and forms a part of the method
employed in Chapter 8 for obtaining measurements. This is similar to Appendix C
where a method for reproducing the results described in Chapter 5 is given for
Condor and BOINC.

6.3.1 A Suitable Algorithm (and data!)

There are three stipulations for an algorithm to be computed with CompTorrent as
described in this thesis:

1. The algorithm being computed must be independently parallel.

2. The computation time should be larger relative to the network time required
to distribute the data for the exercise to be worthwhile.

3. The interface with the algorithm, as an executable, should take an input file,
execute, and then produce an output file in a synchronous fashion.

Obviously a data set would be a necessary requirement. It should be divided into
suitable portions so as to satisfy item number 2 above and be suitable to be passed to
the algorithm.

Now an algorithm that meets these requirements has been written or obtained,
a tracker needs to be found to host the swarm.

6.3.2 Locating a Tracker

A tracker can be either controlled by the owner of the project or not. Providing the
tracker is willing to host the project. All that is required is to know where the project
is to be ultimately hosted in order to move on to create the metadata file.

6.3.3 Creating the Metadata File

A metadata file needs to be created as per 6.2.1. There is a tool that has been written
to make this a less arduous task. This tool is imaginatively called makecomptorrent
and has the following signature:

makecomptorrent file_name directory_name tracker port algorithm execution
max_chunk_size

filename: the file name of algorithm that does the work)

directory_name: The directory containing the original data files that are to be
computed (and nothing else)

tracker: The url that the tracker is hosted on

port: The port that the tracker is on the url you just gave

algorithm: The executable file that actually does the work

execution: How CompTorrent is supposed to run the algorithm?

max_chunk_size: The maximum data size for original or computed data set
pieces (in bytes)

77

For example:
 ./makecomptorrent onesecond jobs 144.6.40.251 60000 onesecond.exe onesecond 256000 >
onesecond.comptorrent

This will create a project called onesecond using the files in the jobs/
directory using a tracker hosted at 144.6.40.251:60000. The executable
onesecond.exe will be used at the algorithm and the maximum file size of the
data calculated. The metadata file is output to stdout so in this example it will be
redirected to the file onesecond.comptorrent.

6.3.4 Planting the Seed

There are two steps to this. Firstly, a seed node on a machine somewhere needs to be
started that will generally stay online long enough for the complete dataset to be
uploaded to the swarm. The seed is started thus:

comptorrent metadata_file network_interface tracker_url (optional) seed compute

metadata_file: The comptorrent metadata file for the swarm you want to start
(or join).

network_interface: Which network connection to use.

tracker_url: This is optional, however it is possible to use a different tracker
to the one stipulated in the metadata file.

Seed: 0 or 1. Am I the seed (and running for the first time)? The only real
difference here is that it will ask the tracker to clear the cache of data for the job.

Compute: 0 or 1. Will this node be contributing computing resources or just
hosting data files. This is useful for seeds which do not want to do any of the actual
computing work.

For example:

./comptorrent comptorrents/mandelbrot.comptorrent eth0 1 0

This will start the application using the mandelbrot.comptorrent metadata file, listen
on the network adapter called eth0 as the seed and not do any computation.

Now that the seed is running, connected to the tracker and listening for new
connecting nodes, nodes need to be encouraged to connect. The first and most
obvious step of this is that the metadata file will need to be shared. In a controlled
environment it can be shared on a local drive or server; in a WAN environment a
web site or via email may be more appropriate. Nodes who wish to participate
download the file and start the application in the same way, though with the last two
options reversed, as they are not the seed and you would like to hope that they will
compute as well.

78

6.3.5 Seeing the Results

At present the tracker is open for all users to see the computing progress. Some
differentiation between the project owners and participants later on would be an
obvious requirement for production. A web based interface was implemented that
describes the overall swarm and its progress.

6.3.5.1 The home page

This page lists all of the jobs hosted on the tracker and provides a menu to each
major function.

6.3.5.2 Node & Work Unit List

The node and work unit list (accessible by clicking on the name of the job in the
diagram above) gives an overview of the job's progress. The nodes in the swarm are
described as are the statuses of each work unit. Work units can be observed as
uncomputed (red), allocated and in-progress (yellow) and completed (green). Figure
19 shows a completely computed project.

79

Figure 18: The tracker WWW interface home page.

Figure 19: The tracker Node & Work list.

6.3.5.3 Overlay Graph

The overlay graph shows a representation of the overlay network tree for the swarm.
Each node is allocated a network overlay key which allows it to route messages to
any other node in the overlay network without keys needing to be allocated by any
central authority. This is discussed in further detail in section 7.1.2.3.

6.3.5.4 Connection Graph

The connection graph shows the IP connections between each node in the swarm. It
shows the actual network socket connections between each node that are made.

80

Figure 20: The overlay graph

Figure 21: The IP connection graph

6.3.5.5 Last Run Times

The Last Run Times page primarily shows a list of each work unit, when it was
completed, when nodes joined the swarm and so on.

6.4 Chapter Summary

This chapter has presented a high-level description of a new distributed computing
system that is relatively generic and easy to use for both joining and creating a
distributed computing project. Techniques have been applied to distributed
processing that have not been applied before, namely the metadata file and tracker
paradigms, that have produced favourable results. This has allowed for CompTorrent
to use many existing compiled programs without modification as an algorithm for a
computing swarm to use.

Chapter Seven follows with a detailed description of CompTorrent.

81

Figure 22: The tracker page of last run times and other
statistical information.

Chapter Seven

7.0 CompTorrent Implementation
This chapter will discuss the individual components that comprise the overall
CompTorrent system in detail.

7.1 Major Components

As discussed in the previous chapter, CompTorrent consists of two major software
components, the tracker and the CompTorrent peer-to-peer application itself. This
section will examine each in detail.

7.1.1 Tracker

This section builds on the description in section 6.2.2 to provide a detailed technical
description as well as a discussion of design considerations. The Tracker is a WWW
service that provides a discovery service for nodes as well as a repository for what
work has been done. It is a collection of web scripts written in the PHP language and
backed by a MySQL database.

7.1.1.1 Communication Protocol with Nodes

Nodes communicate with the tracker via a HTTP interface. Requests are made to
individual files on the tracker server. Each file has a specific purpose, set of request
variables (in our implementation using a GET14) and reply. Each is discussed in turn
in the table below to illustrate the overall process.

Each of the functions described here has a related database table, or set of
tables, which is described in the tracker database schema in Appendix A.

chunk_report.php Purpose:

To advise the tracker that a work unit has been completed.

Parameters:

uuid – The unique id of the node. Used as an identifying key.

name – The name of the work unit.

hash – The hash generated from the original data.

comptorrentname – The job that the work unit belongs to.

comp_state – The current status of the work unit
{0:uncompleted, 1:allocated/in-progress, 2:completed}.
Generally a node will only set it completed as the tracker will
manage the uncompleted and allocated states.

14 A GET is a part of the HTTP specification which allows data to be passed to a web server. See the
HTTP/1.1 specification for more information (RFC 2616).

82

torrenthash – The md5 hash of the computed result.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_datachunks

register_node.php Purpose:

To advise the tracker that a new node on the network for a
particular comptorrent. Sent by the joining node as soon as it
has been allocated a route key by another node.

Parameters:

ip – The node's IPv4 address.

port – The node's Ipv4 port for listening for new join requests.

uuid – The unique id of the node. Used as an identifying key.

name – The name of the “comptorrent” or computing job. So a
tracker can host multiple jobs.

routeid - The key in the route table that has been assigned to
this node.

Return Values:

boolean – Success or failure of request.

Primarily Related Database Table(s):

sp2p_node

node_report.php Purpose:

To advise the tracker of a node's ongoing status.

Parameters:

ip – The node's IPv4 address.

port – The node's Ipv4 port for listening for new join requests.

num_connections – The number of total connections to other
nodes in the network.

uuid – the unique id of the node. Used as an identifying key.

comptorrentname – The name of the “comptorrent” or
computing job. So a tracker can host multiple jobs.

num_computed_chunks – The amount of computed work units
that this node has in it's possession.

num_original_chunks = The amount of original data subsets
that this node has in it's possession.

routeid - The key in the route table that has been assigned to
this node.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_node

clear_records.php Purpose:

To clear the records for a tracker. Used primarily as a tool in

83

testing and running multiple computations with the same name
repeatedly. Not particularly suitable for deployment in a
production environment.

Parameters:

None!

Return Values:

None!

Primarily Related Database Table(s):

All tables.

get_comp_hash.php Purpose:

To ask the tracker for the computed hash of a particular work
unit. This can aid the node in assessing the reliability of a work
unit being received from another node.

Parameters:

nodeuuid – The unique id of the node. Used as an identifying
key.

chunkname – The name of the work unit.

Return Values:

string – MD5 (or other) hash of the accepted computed hash for
this work unit as determined by the tracker.

Primarily Related Database Table(s):

sp2p_datachunks, sp2p_computing

random_chunk.php Purpose:

Request a work unit to process. Random may be a misnomer
as the tracker can employ a variety of algorithms besides
randomness to make a suitable suggestion. Algorithms include
in order processing (start at the first and work through to the
end), random, least computed, and least confirmed.

Parameters:

nodeuuid – the unique id of the node. Used as an identifying
key.

Return Values:

string

Primarily Related Database Table(s):

sp2p_datachunks

stats.php Purpose:

Report a generic operational statistic. This is used to gather
data on the nature of the computation, when nodes join and
leave, when the are computing a work unit and so on.

Parameters:

nodeuuid – the unique id of the node. Used as an identifying
key.

type – A free-form string of up to 12 characters to describe the
type of statistic e.g. processing, init, etc.

statistic – A free-form string of up to 64 characters to contain

84

statistic data.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_stats

file_report.php Purpose:

Report having an original data subset.

Parameters:

torrenthash – The identifying hash of the comptorrent.

nodeuuid – The unique id of the node. Used as an identifying
key.

resulthash – The MD5 hash computed from the original data
subset.

filename – The name of the work unit.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_files

finish_report.php Purpose:

Report a computed work unit.

Parameters:

orighash – The identifying hash of the original data subset.

torrenthash – The identifying hash of the comptorrent.

uuid – The unique id of the node. Used as an identifying key.

resulthash – The MD5 hash computed from the work unit.

chunk_name – The name of the work unit.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_datachunks, sp2p_computing, sp2p_files

set_chunks_done.php Purpose:

Report a number of computed work units in one message.
Communicating with the tracker can be expensive. This
attempts to minimise the cost.

Parameters:

comphash – Multiple md5 computed work unit hashes as
comma separated values.

torrenthash – The identifying hash of the comptorrent.

nodeuuid – the unique id of the node. Used as an identifying
key.

Return Values:

85

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_datachunks, sp2p_computing, sp2p_files

set_orig_data.php Purpose:

Similarly to set_chunks_done.php this reports multiple original
data set pieces.

Parameters:

origdata – Multiple md5 computed original data set hashes as
comma separated values.

torrenthash – The identifying hash of the comptorrent.

nodeuuid – the unique id of the node. Used as an identifying
key.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_files

report_connection.php Purpose:

Advise the tracker of a connection between two nodes in the
overlay network.

Parameters:

nodeuuid – the unique id of the node. Used as an identifying
key.

server - The unique id of the node acting at the “server” end of
the connection.

client - The unique id of the node acting at the “client” end of
the connection.

torrentname – The name of the “comptorrent” or computing
job. So a tracker can host multiple jobs.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_connections

request_node.php Purpose:

Request a candidate node to make a connection with. The
tracker can employ a variety of algorithms to make a suitable
suggestion.

Parameters:

uuid = the unique id of the node. Used as an identifying key.

ip = the IPv4 address of the node making the request.

Return Values:

string – IPv4 address and port of suggested node.

Primarily Related Database Table(s):

sp2p_node, sp2p_connections

86

get_route_to_file.php Purpose:

Ask the tracker for the overlay key of the node most likely to
have the requested file.

Parameters:

nodeuuid – The unique id of the node. Used as an identifying
key.

chunkhash – The computed MD5 hash of the requested file.

Return Values:

string – route id of a node with the file.

Primarily Related Database Table(s):

sp2p_node, sp2p_files, sp2p_datachunks

suggest_orig_chunks.php Purpose:

Ask the tracker for some suggested original data set files.
These can be allocated randomly or on the least shared files.

Parameters:

lastchunk – The last original data set file suggestion that the
node retrieved from the tracker. This can hint the tracker based
on what files the node reports to already have. It can suggest
files around there – or not around there. Depends on the
algorithm being used.

Return Values:

string – work unit suggestion

Primarily Related Database Table(s):

sp2p_datachunks

report_ipconnection.php Purpose:

Report to the tracker a connection between nodes that has been
made where they already have overlay keys. These redundant
connections are made to improve network robustness and
performance. At the tracker level, these notifications are a
courtesy (and allowance for research so the actual network can
be drawn) as nodes will “short-cut route” messages at each
node without communication with the tracker. This is discussed
further in 7.1.2.3.

Parameters:

server – The IPv4 address of the node at the “server” end of the
connection.

client – The IPv4 address of the node at the “client” end of the
connection.

nodeuuid – the unique id of the node. Used as an identifying
key.

Return Values:

boolean – success or failure of request.

Primarily Related Database Table(s):

sp2p_ipconnections

ipconnection_exists.php Purpose:

87

Ask the tracker whether two nodes have a IP connection. Helps
nodes make decisions about whether to accept incoming
requests.

Parameters:

server – The IPv4 address of the node at the “server” end of the
connection. Can be thought as address 1 as it will test for
connections made in either client-server or server-client
configurations.

client – The IPv4 address of the node at the “client” end of the
connection. Can be thought as address 2 as it will test for
connections made in either client-server or server-client
configurations.

nodeuuid – the unique id of the node. Used as an identifying
key.

Return Values:

boolean – connected or not connected.

Primarily Related Database Table(s):

sp2p_ipconnections

Table 43: The major web based components of the CompTorrent Tracker.

7.1.1.2 Discussion of Tracker Design

The approach taken here, using a web application along with a MySQL database,
affords all of the robustness that a modern web application enjoys. It is possible
therefore, with little extra application work, to take advantage of load balancing
between servers and replication of databases.

The Tracker itself only aids the computation through suggestions of work
units when nodes request them. These suggestions aid swift computation however
nodes can request and compute any available work units they wish. This can improve
performance as the tracker will allocate work chunks based on what files a node
already has to minimise processing starvation – without the node knowing what has
or has not been computed. This approach minimises the amount that the nodes need
to know about the overall network and removes the associated bandwidth between
nodes over the network that would otherwise be required for this functionality. The
Tracker will also direct the job through the nature of the computation and nature of
the network (in order processing (start at the first and work through to the end),
random, least computed, and least confirmed). A tracker will also periodically
reassign work that appears to have taken longer than the average.

The tracker collects information reported from nodes. All information
reported is specifically used for aiding the computation task such as nodes making
connections to other nodes, their overlay keys and which data have been processed.
Further derived from this information, are statistics and statuses which are used for
informational and testing purposes.

A tracker also enforces the swarm paradigm and naturally limits the size of
the peer-to-peer network. Nodes participating in a particular job rather than nodes
participating in a large network where jobs are then chosen. This contrasts with an
approach of a monolithic system such as a classical Grid or that taken by GPU
(3.3.2.1).

88

7.1.2 CompTorrent Application

The reference implementation is written in C++ and utilizes the commonc++,
crypto++ and tinyxml libraries. The application and all of the libraries used are
compilable with the GNU C++ compiler ensuring that it is relatively portable
between all major platforms.

Obtaining and compiling the code is detailed in Appendix A.

7.1.2.1 Major Objects

There are 8 major parts to the CompTorrent application. Most are objects that
contain threads so that they can operate independently of other parts of the
application. Some objects are in a hierarchical relationship and communicate with
each other via inheritance or aggregation. Others communicate via a system of
message queues so that they can service requests without needing to wait any longer
for processing than absolutely necessary. Communication between the tracker and
other nodes on the network is always “best effort” in this implementation. Resends of
data and reallocations are dealt with via timeouts and subsequent reallocation of
unsent work.

UML class diagrams are listed in Appendix B.

7.1.2.1.1 Main Loop

The main loop of the application is primarily concerned with bootstrapping onto the
network and starting each of the main objects. It then periodically attempts to make
outgoing connections.

if (Controller.parse_torrent(comptorrent_file)) {
 // decode the comptorrent file, extract the algorithm, create the
 // working dir, etc
 Controller.create_working();
 Controller.start_distributed(my_ip, my_port);
 // get in touch with the tracker (hopefully) and see what's going
 // on with the wider network
 Controller.bootstrap_from_tracker();
 // start the thread which will wait for and manage incoming
 // connections
 Controller.start_listener(my_ip, my_port);
 for (;;) {
 Controller.tracker­>report_stats_to_tracker();
 Controller.attempt_outgoing_connection(my_ip, my_port);
 }
}

89

Figure 23: Collaboration graph for the sample implementation of CompTorrent

7.1.2.1.2 Controller

The Controller class oversees the runtime operation of the application without
needing to know too much about the actual protocol being run. It has the notion of
connections, messages and files that need to be managed. It is the parent of all
CompTorrentPeer objects created (CompTorrentPeer is described in the next
section).

Controller contains several of the other objects described in this section which
are created to make or receive connections on the network as well as parse the
metadata file.

void start_distributed(string host_ip_, string host_port_);
void start_listener(string host_ip_, string host_port_);

void make_connection(string host_ip_, string host_port_);
void attempt_outgoing_connection(string host_ip_, string host_port_);
void attempt_incoming_connection(string host_ip_, string host_port_);

bool parse_torrent(string file_path);
bool create_working();
unsigned long bootstrap_from_tracker();
void clear_tracker_data();

There are also methods for general connection management which Controller
maintains an overseer role in.

void add_connected_peer(string ip, string port, void* CompTorrentPeer);
bool connected_peer_exists(string ip, string port);
void out_broadcast(string msg);
bool remove_connected_peer(string ip, string port);

void add_peer_under_consideration(string ip, string port);
bool peer_under_consideration(string ip, string port);
bool remove_considered_peer(string ip, string port);

void set_routing_id(string routing_id_);
string get_routing_id();
string get_next_routing_id();

void set_ip(string ip_) { ip = ip_; }
void set_port(string port_) { port = port_; }
string get_ip() { return ip; }
string get_port() { return port; }

int get_num_connections();
int get_num_incoming_connections();
int get_num_outgoing_connections();

void increment_num_incoming_connections();
void increment_num_outgoing_connections();
void decrement_num_outgoing_connections();
void decrement_num_incoming_connections();

References to major objects are kept here.

CompTorrentParser* comp_torrent;
TrackerParser* tracker;
// NUM_PROCESSORS is how many units to work on concurrently
Processor* processor[NUM_PROCESSORS];
Router* router;
Listener* listener;

As with connection management, Controller oversees the node's collection of work
units and files.

bool have_comp_chunk(string chunkname);
void add_comp_chunk(string filename, string resulthash);

90

void get_known_comp_chunks_xml(ostringstream& xml);
int get_num_comp_chunks();

bool remove_required_comp_chunk(string chunk_name);
void add_required_comp_chunk(string filename);
bool get_next_required_comp_chunk(file_chunk& f);
int num_required_comp_chunks();

bool have_file(string chunkname, string filetype);
void request_file(string chunkname, string filetype);

bool have_orig_chunk(string chunkname);
void add_orig_chunk(string filename, string resulthash);
void get_known_orig_chunks_xml(ostringstream& xml);
int get_num_orig_chunks();

bool remove_required_orig_chunk(string chunk_name);
void add_required_orig_chunk(string filename);
void add_required_orig_chunk_front(string filename);
bool get_next_required_orig_chunk(file_chunk& f);
int num_required_orig_chunks();

7.1.2.1.3 CompTorrentPeer

The CompTorrentPeer object acts on the messages received from other nodes (as
described in 7.1.2.2). These messages are received and sent via message queues
in_box and out_box.

It has methods which manage the sending of messages:
void send_welcome_message();
void send_noop();

As well as methods to parse received messages:
bool process_noop(string intmp);
bool process_file_update(string intmp);
bool process_welcome_message(string intmp);
bool process_connect_message(string intmp);
bool process_file_reply(string intmp);
bool process_file_request(string intmp);
bool process_overlay_message(string intmp);
bool process_overlay_update_message(string intmp);

Each of these methods directly correspond to the messages the process which
are explained in 7.1.2.2.

Its run method embodies the logic for how these messages are marshalled.
void CompTorrentPeer::run() {

while (!die) {

bool message_sent = false;

// if I am the server end of this connection and I'm unconnected,
// send a welcome message

if (state == p_unconnected) {
send_welcome_message();
state = p_overlay_wait;

}

string intmp(""); // the message popped of the incoming messages queue
while (AbstractPeer­>in_box.pop(intmp)) {

process_noop(intmp);
process_connect_message(intmp);
process_welcome_message(intmp);

91

process_overlay_message(intmp);
process_file_update(intmp);
process_file_reply(intmp);
process_file_request(intmp);

}
}

...

It also manages link failure detection and kills itself if a connection becomes
unresponsive

...
}

7.1.2.1.4 TrackerParser

The tracker object manages communication between a node and the Tracker. It also
manages collections of some of the inter-node communication that the node has been
exposed to.

A collection of methods to interface with the tracker interfaces as described in
7.1.2.1.

bool report_ipconnection(string client, string server);
bool ipconnection_exists(string client, string server);
bool get_route_to_file(const string chunk_hash, string&
routeid);
...

As well as methods to maintain some collections of information gleaned from
communication with other nodes as per messages 7.1.2.2.

void add_known_peer(known_peer kp);
bool known_peer_exists(known_peer kp);

It maintains collections of the known_peers and data units.
vector<known_peer> known_peers;
vector<orig_data_chunk> data_chunks;

7.1.2.1.5 CompTorrentParser

The comptorrentparser object contains the data primarily gleaned from the
comptorrent metadata file. It also manages collections of some of the inter-node
communication that the node as been exposed to.

It contains methods to load and initialise the object from the metadata file:

bool load_xml(string);
bool create_working();

As well as methods to access parsed data:

string get_version();
string get_tracker_url();
string get_tracker_port();
...

It also manages the known connections between the node and other nodes
connected as well as the collections of nodes that it have been previously known to
exist on the network.

bool known_peer_exists(known_peer kp);
void add_known_peer(known_peer kp);
void remove_known_peer(known_peer kp);
...
unsigned long get_num_known_peers();

92

unsigned long get_num_connected_peers();
...
vector<known_peer> known_peers;

Methods exist to manage the data being processed. Collections of the original
and computed data sets are kept.

vector<orig_data_chunk> data_chunk_list;
...
bool comp_data_exists(string filename);
bool orig_data_exists(string filename);
...
void update_comp_chunk(string chunk_name, computation_state state, bool

file_exists);
void update_orig_chunk(string chunk_name, computation_state state, bool

file_exists);
...
filemap known_files;

7.1.2.1.6 Listener

The listener manages incoming connections to a node. One is created for each
“server-side” connection that a node accepts. Once the IP connection is made it is up
to the created CompTorrentPeer objects to decide where a logical connection occurs.
Here the only checking it to ensure that the node doesn't already have a connection to
the requesting node. This can occur when two nodes both decide individually to
make a connection to each other concurrently. There is a critical section in the
listener that ensures that IP connections are handled one at a time to avoid
superfluous connections.

void Listener::run() {

for (;;) {
 if (server.isPendingConnection()) {
 AbstractPeer* p2p = new AbstractPeer(server, parent, SERVER);

 if (!parent­>connected_peer_exists(kp.ip, kp.port)) {
 parent­>add_connected_peer(kp.ip, kp.port, (void*)p2p);
 p2p­>set_my_ip(host_ip, host_port);
 p2p­>detach();
 } else {
 server.reject();

 }
 }

7.1.2.1.7 Router

The router exists in the Controller object which manages data chunks received by the
node. When messages containing work unit data are received, they are placed in a
queue for the router to manage. Providing it has a route the router will process
original data chunks as they arrive (storing them on the node's disk and presenting
them to the Processor object) and if the node is waiting on a request for a work unit
computed by another node, process them as well by saving them to the disk.

for (;;) {
if (parent­>get_routing_id() != NO_ROUTE) {

// grab the next required original file off the stack
get_next_orig_chunk();
if (parent­>get_num_comp_chunks()>=num_requested_comp_chunks)

get_next_comp_chunk();
}

}

93

7.1.2.1.8 Processor

The Processor object requests work to be done from the tracker as well as managing
requests and replies for original data pieces to match the allocated work.
void Processor::run(){

for (;;) {
if ((!processing_finished()) &&
 (parent­>tracker­>get_next_chunk_name(current_chunk_name))) {
 // do we have this chunk?
 if (parent­>comp_torrent>orig_data_exists(current_chunk_name){

process_orig_chunk(current_chunk_name);
 } else {
// we don't have this chunk ­
// we are going to need to ask for it and wait
parent­>add_required_orig_chunk_front(current_chunk_name);

...

Here the node will grab a few work units near it as well to lessen the chance
of starving again.

...
parent­>add_required_orig_chunk(child­>GetText());

 }

// if we're waiting on an original chunk to turn up
// lets see if we've got it yet
if (state == waiting_on_origchunk) {
 // have we got it yet? If so lets process it
 if (parent­>comp_torrent­>orig_data_exists(current_chunk_name)) {

process_orig_chunk(current_chunk_name);
 } else {

wait_timeout­­;
...

Here there is a timeout process where if a work unit can't be found in a given
period of time the node can tell the tracker to give it to someone else.
...
}

7.1.2.2 Communication Protocol Between Nodes

Nodes communicate using a simple message based protocol using XML. Some
messages are shared through limited broadcast where others are exchanged between
connected nodes only.

<comptorrent>
<packet>{welcome,denied}
</packet>
<ip></ip>
<port></port>
<uuid></uuid>
<compchunks>
<datachunk></datachunk>
...
</compchunks>
<origchunks>
<datachunk></datachunk>
...
</origchunks>
</comptorrent>
</comptorrent>

Purpose:
During a connection negotiation, a welcome packet is
sent by a server to the client on an accepted connect. On
a refused connection, denied is sent instead with the rest
of the information potentially omitted.
Parameters:
ip – The client's IPv4 address.
port – The client's listening port.
uuid – The client's unique id.
compchunks – filenames of the parts of the original and
computed data sets that this node possesses.

<comptorrent>
<packet>connect</packet>
<ip></ip>
<port></port>
<uuid></uuid>
<routeid></routeid>
</comptorrent>

Purpose:
During connection negotiation, a connect packet is sent
from the client to the server.
Parameters:
ip – The client's IPv4 address.
port – The client's listening port.
uuid – The client's unique id.

94

routeid – The client's overlay key. Left blank if the client
has not yet joined the overlay network.

<comptorrent>
<packet>noop</packet>
<ip></ip>
<port></port>
<uuid></uuid>
</comptorrent>

Purpose:
Sent periodically at either end of the connection to keep
the connection active.
Parameters:
ip – The client's IPv4 address.
port – The client's listening port.
uuid – The client's unique id.

<comptorrent>
<method>direct</method>
<packet>file_req</packet>
<dest></dest>
<from></from>
<type>{comp_data,
orig_data}</type>
<filehash></filehash>
<name></name>
<node_id></node_id>
<ip></ip>
<port></port>
</comptorrent>

Purpose:
Request a file to be routed around the network or from a
directly connected IP connection.
Parameters:
method (direct) – Indicates that the packet is sent
directly on a single IP connection and shouldn't be
routed on.
dest – The overlay route key of the destination.
from – The overlay route key of the originating node.
type – The data type computed or original.
filehash – The md5 hash of the requested file.
name – The name of the data requested.
node_id - The client's unique id.
ip – The client's IPv4 address.
port – The client's listening port.

<comptorrent>
<packet>file_update</packet>
<filehash></filehash>
<name></name>
<type>{comp_data,
orig_data}</type>
<ip></ip>
<port></port>
</comptorrent>

Purpose:
Sent between directly connected nodes to advertise an
available file on a particular connection.
Parameters:
ip – The sender's IPv4 address.
port – The sender's listening port.
filehash – The md5 hash of the available file.
type – The data type computed or original.
name – The name of the available file.

<comptorrent>

<packet>file_reply</packet>
<dest></dest>
<type></type>
<ip></ip>
<port></port>
<filehash></filehash>
<name></name>
<data></data>
</comptorrent>

Purpose:
File reply packet.
Parameters:
ip – The sender's IPv4 address.
port – The sender's listening port.
dest – The overlay route key of the destination.
type – The data type computed or original.
ip – The sender's IPv4 address.
port – The sender's listening port.
filehash – The md5 hash of the available file.
name – The name of the available file.
Data – The file data. Either plain text or binary encoded
base64 uuencoded text.

<comptorrent>
<packet>overlay_update
</packet>
<routeid></routeid>
<ip></ip>
<port></port>
</comptorrent>

Purpose:
To advise connected nodes of a node's overlay key.
Parameters:
routeid – The overlay key for the node.
ip – The sender's IPv4 address.
port – The sender's listening port.

<comptorrent>
<packet>overlay</packet>
<routeid></routeid>
</comptorrent>

Purpose:
To allocate a directly connected node an overlay key.
Parameters:
routeid – The overlay key for the node.

Table 44: The message schema of the CompTorrent protocol.

95

7.1.2.3 Network Overlay & Topology

CompTorrent relies on a tree to organise its nodes into an overlay network. A simple
key scheme is used where keys are allocated as a string derived from the node where
the connection is being made. The “server” node allocates a string which is a
concatenation of it's route key and a number representing the number of currently
connected “client” nodes plus one. The seed node, and root of the tree, starts with a
route of “1”. If the root has two children they will have route keys of “11” and “12”.
If the right most node has a child it will have a key of “121”, and so on. This
arrangement is known as a trie and can be found described in Knuth (1997).

When a node wishes to make a new connection, they can do so in two ways.
With the aid of the tracker, a connection candidate can be suggested for the new
node. This can be based on an algorithm to moderate the nature of the overlay
network. At present, nodes can be allocated randomly or be balanced by number of
existing connections. In the case of the latter, existing nodes in the overlay network
can be selected based on them having the least number of existing connections.
Where the tracker is unavailable, a node can attempt a connection to another
arbitrary known node (bootstrapping similar to Gnutella). In either case is the
decision of the connection is made by the individual node, the tracker only assists
the overall process it does not actively manage it.

Each node is allocated their route key and all of their child nodes will have
keys that are a superset of their own key. When routing a message from one node to
the other, messages can be sent from one node to any other in the network by
traversing the tree upwards to where there is a match between the current node and
the destination key. Worst case this means that a message will need to route all the
way to the root before heading back down towards the destination. In practice a node
will maintain more than one connection. It will usually maintain connections to its
child nodes where it has previously allocated them a route key in the overlay
network. Once a node has been allocated a place in the network it will make some
connections over time, randomly or as directed by the tracker, to other nodes in
various parts of the network. This allows messages to “short cut” through the overlay
network. A message when it arrives will be routed on to its nearest neighbour as
connected to that node – this will include its “worst case upwards” as well as a
selection of potentially nearer nodes in the overlay.

This scheme has several advantages and disadvantages. The most obvious as
already implied is that as long as you maintain a connection to a “higher” position in
the overlay tree it is likely that you will be able to route a message. Implementation
is simple with the core of the scheme implemented in only a few tens of lines of
code. Decentralisation is also maintained by any node being able to allocate a
routeable key without knowledge of the overall network. This adds the benefit of
being robust in the face of access to a tracker and further decentralisation of swarm
management. Separate trackers can manage node allocation and work unit
management or multiples doing both.

As with most tree structures, worst case performance can see the nodes
allocated into a list or a star. Also, with node churn it is possible for parts of the
overlay to become unreachable. Both of these disadvantages are mitigated by the
tracker paradigm and random node connections after overlay placement.

In addition, the hierarchical network scheme also lends itself well to the
nature of computation. It is reasonable to assume that a seed is one of the most
interested in the results of participating nodes in a computing swarm. Results moving

96

upwards towards the seed are naturally suitable. As are passing results around as one
of the biggest incentives, in general, is an interest in either or both computed and
original data sets. Bandwidth consumption is limited by the random allocation of
computing jobs, and therefore original and computed data subsets, being spread
around the overlay network reasonably evenly. Nodes can eavesdrop on moving
messages, especially those requesting and replying to data sets, and make notes of
likely nodes with data that they will later need or save data that they want as it passes
through the network. Whilst the organisation of the network is hierarchical in a
communication sense, there is no imposed hierarchy on the nodes themselves. Nodes
can leave and join whenever and wherever they choose without disrupting
computation or communication.

7.1.2.4 Security

In a distributed wide area volunteer network computing system, the integrity of the
results and the confidence that these are results are correct is of paramount
importance. In CompTorrent, as with most of these systems, confidence in computed
data is gained through multiple computation of work units. The metadata files can
also be digitally signed to allow a node to check that the metadata file is originally
from a trusted source. Even a simple scheme of publishing a hash generated from the
metadata file on a group controlled web site would afford a reasonable amount of
certainty for users. This trust could conceivably increase if the hash matches on
multiple unrelated and reputable websites.

That all being said a user still has to trust the seed and the tracker. The fact
that metadata files contain executable code is cause for concern enough. In
production, this concern can be mitigated by having metadata files digitally signed,
as just discussed, by a seed and provided to the tracker. However, this only shifts the
trust - it doesn't create it. A participant will need to trust that the project is as it is
advertised. This trust would come through the number of nodes participating in the
network, the project being associated with a trusted website (such as a faculty,
company or organisation site) which would have a copy of the metadata signature on
it as well. The metadata file, once trusted, allows that trust to be extended to the data
sets as it contains hashes of every part of the original data set.

The tracker maintains security by keeping things as opaque as possible. It
always opts for “blind requests” where possible e.g. “is this node linked to this node”
rather than: “tell me all of the node connections that you know about”.

However, there are still many places where malfeasance can occur since
CompTorrent has not been widely released. That is reasonable, at this stage, as
CompTorrent is still “academic” code. Hardening needs to occur before it could be
reliably used in production and is considered later in this thesis as further work.

7.2 The CompTorrent Metadata File

Building on the description given in 6.2.1, this section will describe each part of the
metadata file in detail. The file presented is an abbreviated version of the
CompTorrent file used in the Mandelbrot experiment presented later in 8.1.3.

<?xml version="1.0" ?>
<comptorrent>
<version>0.1</version>
<tracker_url>192.168.1.5</tracker_url>
<tracker_port>60000</tracker_port>

97

<name>mandelbrot</name>
<size>12345678</size>
<max_chunk_size>264000</max_chunk_size>
<md5>12DFF226FD2430A0F36204CD66423122</md5>
<algorithm>
<execution>comptorrents/working/mandelbrot/mandelbrot</execution>
<java_bytecode>
begin­base64 755 mandelbrot
f0VMRgEBAQAAAAAAAAAAAAIAAwABAAAAIIkECDQAAACwwwAAAAAAADQAIAAI
...
====
</java_bytecode>
<classname>mandelbrot</classname>
</algorithm>
<orig_data>
<file><name>mandelbrot_00000001</name><size>67</size><md5>12DFF226FD2430A0F36204CD664
23122</md5></file>
...
<file><name>mandelbrot_00000160</name><size>67</size><md5>12DFF226FD2430A0F36204CD664
23122</md5></file>
</orig_data>
</comptorrent>

Each element will now be considered in turn.

The version element allows for versioning of the system. This can allow the
tracker and application know whether the metadata file is compatible with
themselves before processing. The tracker URL and port indicates which tracker is
the “home” tracker for this metadata file. It is possible to stipulate a different tracker
and port when the CompTorrent application starts which will override the one given
here as an option to allow trackers to move yet still capitalise on earlier metadata file
distribution.
<version>0.1</version>
<tracker_url>192.168.1.5</tracker_url>
<tracker_port>60000</tracker_port>

The name and size of the computing project is given here. The name should
be human readable and relatively unique (to the hosting tracker at least). The size
refers to the total size of the original dataset for computation.
<name>mandelbrot</name>
<size>12345678</size>

The max_chunk size refers to the largest piece that the original data set has
been broken into. This allows for memory allocation in the application but also gives
an indication of the size of each work unit. The md5 hash here is the hash of the
entire original dataset. This allows an application to verify the entire set should it be
obtained.

<max_chunk_size>264000</max_chunk_size>
<md5>12DFF226FD2430A0F36204CD66423122</md5>

The algorithm section contains two parts; the execution and bytecode. The
execution element tells CompTorrent how the embedded algorithm is to be executed.
It can be a script, or as in the example here, a single command. The bytecode section
includes a base64 encoded copy of the algorithm. This can be java, as it is in this
case, or an executable. Its possible that the embedded algorithm can simply be a
downloader for another larger or more frequently changing algorithm that isn't
suitable for embedding into the metadata file itself.

98

<algorithm>
<execution>comptorrents/working/mandelbrot/mandelbrot</execution>
<java_bytecode>
begin­base64 755 mandelbrot
f0VMRgEBAQAAAAAAAAAAAAIAAwABAAAAIIkECDQAAACwwwAAAAAAADQAIAAI
...
====
</java_bytecode>
<classname>mandelbrot</classname>
</algorithm>

The original data section describes every subset of the data which forms the
basis of each work unit. Each “chunk” of the data has a name, a size and a computed
md5 hash. The name and the hash are used as a way of identifying and verifying data
received from nodes on the network respectively.

<orig_data>
<file><name>mandelbrot_00000001</name><size>67</size><md5>12DFF226FD2430A0F36204CD664
23122</md5></file>
...
<file><name>mandelbrot_00000160</name><size>67</size><md5>12DFF226FD2430A0F36204CD664
23122</md5></file>
</orig_data>

7.3 CompTorrent in Action

Now that the major components of the system are understood, a “step through” of the
processes are presented here to show how the system functions as a whole. Typical
states are given and discussed.

7.3.1 A Seed Node by Itself

A computing exercise will always start with a single seed and a CompTorrent file.
The same CompTorrent file is used by the seed to start the computation as well as it
being distributed to other potential nodes to join later.

The seed's actions at start are mostly managed by the main loop itself:

1. Set my route id to 1 and contact the tracker and register the project.

2. Create an Controller object to manage the runtime operation of the
application. Here Controller will create a Processor object which,
depending on the parameters given to the seed at start up, may start
working on the computation itself. This is an option as some seeds may
wish to merely upload the source data as quickly as possible and then
disconnect.

3. Parse the CompTorrent file, extract the algorithm and create working
directories.

4. Create a CompTorrentPeer object to manage messages.

5. Start a listener object to accept incoming connections.

6. Enter the main loop and repeatedly try to make outgoing connections to
other nodes as they become known to the seed.

99

7.3.2 A Node Joining Without a Route ID

New nodes will make a connection to an existing node without having an overlay
key or route id. This means that one is allocated to them as part of the connection
process. From the existing node on the network's perspective (the server in the case
of this direct connect), this is an incoming or client connection.

1. A new node will contact the tracker and receive a suggestion for a node to
connect to.

2. Through Controller.attempt_outgoing_connection() the node will create a
new Controller object for this connection and start it.

3. Controller will create a CompTorrentPeer object that will go through the
connection process and send a connect message. If it gets a welcome
message it will add itself to a collection of connections and notify the
tracker that a connection has been made. If it is refused it will simply
terminate itself.

4. At the server side of this new connection, the corresponding
CompTorrentPeer object (the same object is used for client and server
connections) should observe that the connecting node doesn't have a route
id and will derive one from its own route and send an overlay message
directly to the new node. It is perfectly possible for multiple connection to
be occuring concurrently so it is the first received overlay message that is
accepted by the new node and its route key that is adopted as its own.
Further overlay messages are ignored if the node already has a route id.
Once this has occurred the new node will broadcast its overlay key to
directly connected nodes as well as informing the tracker.

5. Now that the node is registered on the overlay network, its processor
object should begin to request and process work units.

7.3.3 A Node Joining a Node

As a part of the main loop of the CompTorrent application, periodically nodes will
attempt to make connections to other nodes on the network, even though they already
have a primary connection from when they were allocated a route id. These are
outgoing connections that the node makes to improve the robustness and
performance of the network.

This process is identical to steps 1,2 and 3 just described in 7.3.2. Obviously
steps 4 and 5 are related to obtaining a new route key. As this node is already a part
of the overlay network, it will furnish the server node with its overlay id during the
connection request. On successful connection, both nodes will notify the tracker that
a direct, or ip, connection has been made.

7.3.4 Requesting & Completing a Work Unit

Work units are requested and completed in the Processor object.

1. Providing the node has a route id (as it it pointless trying to do
computation if you won't be able to get files) and that the processing has
not been deemed finished, the Processor will contact the tracker and
request a work unit.

2. When a work unit is allocated, the processor checks to see if it already has

100

the matching original data file, if so it begins processing the work unit. If
not, it will pass a request for the file to the Controller object which will
then pass the request out to its connected nodes via a tracker hint if it
doesn't already have a directly connected node with the required file. The
processor will then wait for the file to arrive before starting processing.
Obviously, in the simplest case described, this provides much scope for
starvation. However, this is mitigated by the tracker suggesting work
units based on files that the node already has (as a result of eavesdropping
on passing through requests and requesting requesting more than one
original data file at a time) or files that are known to be nearby.

3. When the processing has completed, the node contacts the tracker and lets
it know that its been done and what the calculated hash of the result is.
The tracker can then verify this result by allocating the same work unit to
different nodes.

7.3.5 Verification of the Work Unit

The actual verification process is identical to requesting a work unit. A tracker
suggests work units and the nodes don't really know if they have been computed
already or not. A mischievous or particularly attentive node may be able to measure
how long work units stay in an allocated state, but this is difficult with the variation
of time taken for each work unit to be completed – either due to the nature of data or
to the variation of network and processing speed.

Once the tracker receives a number of resulting computed data sets with
matching hashes, some confidence in the correctness of the computed work can be
had. Should conflicting results be received, the latest received work unit is discarded.
Where there are only two results, the newest work unit replaces the original one to
avoid the scenario of a first result being incorrect .

7.3.6 Assembling the Results

In the simplest case, the original and computed datasets can be reassembled through
concatenation. A suggested extension of the system would involve adding another
element to the metadata which would contain a script for post-processing of the
dataset on completion.

7.4 Summary

This chapter has described the major components of the CompTorrent system, the
Tracker, Metadata file and CompTorrent Application, in technical detail. Discussion
of design considerations was also presented along with discoveries and compromises
made along the way.

In the following chapter, an evaluation of this system is presented along with
a comparison to the traditional distributed computing platforms as presented in
Chapter 5.

101

Chapter Eight

8.0 CompTorrent Evaluation
In this Chapter an evaluation is presented of the system described in Chapters 6 and 7
using WAN-DC, the benchmark presented in Chapter 4. These data were gathered on
the same hardware as the evaluation of BOINC and Condor as presented in Chapter 5
and as such, allow us to compare these 3 different systems as fairly as possible. In
this chapter it will be demonstrated that a peer-to-peer distributed computing system
can produce similar performance results to a traditional client/server distributed
computing system.

8.1 Performance Results

In this section the performance results are presented for CompTorrent with
discussion of the results at each step.

8.1.1 POV-Ray

CompTorrent performed well in the POV-Ray experiment showing conventional
results across the range of participating node sizes with speedup efficiency remaining
between 0.96 and 0.98.

CompTorrent POV-Ray

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 16348 64.08 1 1.00

2 8521.8 91.8 1.92 0.96

4 4250.4 62.2 3.85 0.96

8 2089 3.16 7.83 0.98

16 1054 36.96 15.51 0.97

Table 45: CompTorrent results for the POV-Ray experiment.

8.1.2 Transcode

Transcode performed relatively poorly with speedup peaking at 8 machines. The
intrinsic overhead of the transcode application has a marked effect on the amount of
speedup that can theoretically be achieved.

102

CompTorrent Transcode

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 1091 6.63 1 1

2 602.6 45.54 1.81 0.91

4 352.2 18.39 3.1 0.78

8 202.2 21.63 5.4 0.68

16 236.4 18.45 4.62 0.29

Table 46: CompTorrent results for the Transcode experiment.

8.1.3 Mandelbrot

CompTorrent produces lacklustre results for Mandelbrot. Speedup peaks at 8
machines with little change in efficiency across the range with a maxima of only 2.41
and an efficiency of around 30%.

CompTorrent Mandelbrot

CompTorrent Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 444.8 83.42 1 1

2 240 2.35 1.85 0.93

4 203.8 23.86 2.18 0.55

8 184.8 18.46 2.41 0.3

16 234.4 25.81 1.9 0.12

Table 47: CompTorrent results for the Mandelbrot experiment.

8.1.4 No Work

No Work illustrates the bare overhead of CompTorrent and what kind of speedup can
be observed with jobs of no time whatsoever. It peaks at 8 nodes and begins to
reduce by 16. Some similarity is observed between the results here and that of
Mandelbrot, with the peak at 8 machines and a similar speedup at 2 machines.

CompTorrent No Work

Num Machines Mean Run (secs) Standard Deviation (secs) Speedup Speedup Efficiency

1 103.8 1.1 1 1

2 58.8 4.21 1.77 0.89

4 40 1.87 2.6 0.65

8 34.4 1.34 3.02 0.38

16 36.8 3.7 2.82 0.18

Table 48: CompTorrent results for the No Work experiment.

103

8.1.5 One Second

Figure 24 shows that two machines, whilst quite erratic in places, are not much
worse in efficiency at the corresponding job length for any of the large node sizes.
And where the measurements appear erratic is where they are swinging toward 100%
efficiency (expressed as known processing time divided by wall clock time), so
whilst less deterministic, it is in the favour of overall job completion time being
lower.

104

Figure 24: CompTorrent One Second graph for
2 machines.

Figure 25: CompTorrent One Second graph for
4 machines.

4, 8 and 16 machines show an obvious curve where jobs of around 20 seconds
in length become acceptable for the system as configured.

Figure 28 shows all of the previous One Second results as a mean for 1,2,4,8 and 16
node cluster sizes respectively.

105

Figure 26: CompTorrent One Second graph for
8 Machines.

Figure 27: CompTorrent One Second graph for
16 machines.

8.1.6 Mean Work Unit

Table 49 shows the mean work unit results for POV-Ray, Mandelbrot, Transcode
and No Work. Similarly to Condor presented earlier, the most obvious thing it shows
is the difference in processing times between the different experiments. Mandelbrot,
Transcode and No Work, when compared to POV-Ray, are comparatively light in
their processing time per work unit for the same reasons. That is, the work units of
POV-Ray are differing in their load and that CompTorrent is relatively efficient in
processing work units to allow this to so obviously show.

Mandelbrot also displays a large difference between individual runtimes for a
single machine. Care must be taken with varying work unit algorithms like
Mandelbrot on a small number of machines. Since Mean Work Unit looks for the
average time to get a response with a computed data set, the difference between time
taken for each work unit will vary on a single machine as the variance is being driven
by the nature of the different work sizes and not the network or the distributed
computing system's internal overhead. This is shown obviously with a higher
deviation than mean result for Mandelbrot with 1 machine in Table 49.

106

Figure 28: CompTorrent Mean One Second results.

Experiment Name Num Machines Mean (secs) Standard Deviation (secs)

POV-Ray 1 259.49 46.17

2 135.27 79.21

4 67.47 46.47

8 33.16 29.67

16 16.73 14.13

Mandelbrot 1 2.8 3.16

2 1.51 0.79

4 1.28 0.47

8 1.16 0.39

16 1.47 0.59

Transcode 1 11.02 1.49

2 6.09 2.72

4 3.56 1.40

8 2.04 0.74

16 2.39 1.03

No Work 1 1.05 0.20

2 0.59 0.25

4 0.4 0.34

8 0.35 0.51

16 0.37 1.23

Table 49: Mean Work Unit results for CompTorrent

107

8.2 Qualitative Results

APPROACH / DESIGN

CompTorrent

Approach Volunteer / Cluster

Node Organisation Peer-to-peer

Network topology Ad Hoc

Application Task

Requirements & Dedication Idle cycles or greater

FEATURES

CompTorrent

Algorithmic Suitability No interprocess communication

Standards supported None explicitly

Hardware / OS support Platform Independence:
Unix, Linux, Mac. Can be compiled for Windows with little effort.

Hardware:
As supported by the above operating systems.

GPU Processing Support:
No.

Heterogeneous:
Any hardware supported by the operating systems above.

TASK & RESOURCE MANAGEMENT

CompTorrent

Resource allocation to Jobs Server or Node.

Task allocation Server or Node.

ROBUSTNESS

CompTorrent

Checkpointing No.

Scalability Experimentation only.

Quality of service No

Churn Yes

Malfeasance Multiple calculations

LICENSING

CompTorrent

Licence Description GNU Lesser General Public License

Source Availability Open

Governing Organisation Individual

USABILITY

CompTorrent

Hosting a new project A originating node or any size. A tracker which can be hosted on
the originating node or elsewhere.

108

Joining an exiting project Download software and pick a project.

Coding for a new project None required. Can use existing binaries.

SUPPORT

CompTorrent

Commercial No

Community Web site and mailing list.

Books No. PhD thesis.

PARTICIPATORY INCENTIVES

CompTorrent

Data Access Yes. Source and computed data set. Could be limited by the
project but it would defeat the purpose of the system.

Financial through statistics Possibly – could be controlled by a tracker.

“Fame” through statistics Yes – by tracker.

Table 50: WAN-DC qualitative results for CompTorrent.

8.3 Discussion of Results Compared with BOINC & Condor

As alluded to in the introduction, a variety of systems have been chosen to represent
several of the different approaches to distributed computing that present a reasonable
survey at time of writing. The results obtained for CompTorrent, as just described,
will be compared to the results described in Chapter 5 for BOINC and Condor.

POV-Ray Speedup

Cluster Size Condor BOINC CompTorrent

1 1 1 1

2 1.62 1.95 1.92

4 3.86 3.93 3.85

8 7.74 8.34 7.83

16 15.66 18.89 15.51

Table 51: POV-Ray speedup results for the three systems.

In Table 51, CompTorrent compares favourably with both BOINC and Condor with
all systems producing similar results across the range of cluster sizes. In cases 1, 2
and 8 the results of CompTorrent fall between those of BOINC and Condor. In the
case of 4 and 16 machines, CompTorrent is worse that both Condor and BOINC
though only by a small margin. Super-linear speedup was observed for BOINC (from
hyper-threading as discussed previously) in the cases of 8 and 16 machines however
all results, for all systems, remain close to ideal across the range of cluster
configurations. This is due to the desirable processing (much) and communication
(not much) ratio of the POV-Ray algorithm.

109

Transcode Speedup

Cluster Size Condor BOINC CompTorrent

1 1 1 1

2 3.89 1.59 1.81

4 4.87 3.29 3.1

8 5.39 3.81 5.4

16 5.45 5.51 4.62

Table 52: Transcode speedup results for the three systems.

Transcode is presented in Table 52, showing results for CompTorrent that are either
between the range of BOINC and Condor (for 2 and 8 machines) and worse for 16
and 4 machines. Transcode, being a video processing experiment, has a combination
of high network load as well as high computation.

Mandelbrot Speedup

Cluster Size Condor BOINC CompTorrent

1 1 1 1

2 1.45 1.88 1.85

4 1.83 3.43 2.18

8 1.86 5.07 2.41

16 1.84 6.8 1.9

Table 53: Mandelbrot results for the three systems.

In Mandelbrot (Table 53), CompTorrent demonstrates results similar to that of
Condor with marginally more speedup in each case. BOINC shows much better
speedup results however, referring back to Section 5.4.2.3, this is due to very long
runtimes for this experiment compared to Condor and CompTorrent.

No Work Speedup

Cluster Size Condor BOINC CompTorrent

1 1 1 1

2 1.62 1.87 1.77

4 1.62 2.37 2.6

8 1.64 3.43 3.02

16 1.65 3.3 2.82

Table 54: No Work results for the three systems.

Table 54 shows CompTorrent again producing results between both Condor and
BOINC, with the exception at 4 machines, where CompTorrent performs marginally
better than either system.

For the Mean time for a work unit to be returned, Tables 55,56,57 and 58 all
show CompTorrent behaving between the ranges of, or better than, Condor and
BOINC.

110

Mean Work Unit - Transcode

Cluster Size Condor (secs) BOINC (secs) CompTorrent (secs)

1 11.74 26.46 11.02

2 3.02 16.64 6.09

4 2.41 8.03 3.56

8 2.18 6.95 2.04

16 2.15 4.8 2.39

Table 55: Mean work unit (Transcode) results for the three systems.

Mean Work Unit - Mandelbrot

Cluster Size Condor (secs) BOINC (secs) CompTorrent (secs)

1 3.84 16.9 2.8

2 2.64 9 1.51

4 2.10 4.92 1.28

8 2.07 3.33 1.16

16 2.09 2.48 1.47

Table 56: Mean work unit (Mandelbrot) results for the three systems.

Mean Work Unit - POV-Ray

Cluster Size Condor (secs) BOINC (secs) CompTorrent (secs)

1 257.43 267.61 259.49

2 159.09 137.36 135.27

4 66.67 68.12 67.47

8 33.24 32.13 33.16

16 16.43 14.15 16.73

Table 57: Mean work unit (POV-Ray) results for the three systems.

Mean Work Unit – No Work

Cluster Size Condor (secs) BOINC (secs) CompTorrent (secs)

1 3.49 16.75 1.05

2 2.16 8.94 0.59

4 2.16 7.06 0.4

8 2.13 4.89 0.35

16 2.11 5.08 0.37

Table 58: Mean work unit (No Work) results for the three systems.

8.4 Chapter Summary

This chapter has presented and discussed the results for CompTorrent and compared
them to the results gathered earlier for BOINC and Condor. In all performance

111

metrics, CompTorrent has presented with similar results to BOINC or Condor whilst
having a completely different underlying peer-to-peer architecture. This peer-to-peer
system, as presented and under the described conditions and benchmarks, has
produced comparable results to two traditional distributed computing systems. This
has shown, within the limits of the systems tested, that a peer-to-peer approach to be
an acceptable one for distributed computing.

112

Chapter Nine

9.0 Conclusions & Further Work
This chapter summarises how the research presented in this thesis has achieved its
stated goals. It also discusses future research directions that have been identified and
concludes with some closing remarks about the nature of peer-to-peer as a topic of
research at time of writing.

9.1 Conclusions

This thesis primarily considered the problem of the cost of hosting a distributed
computing project in a traditional manner. From this the research questions arose:
Can peer-to-peer techniques be applied, which are known to have a lower project
ownership cost, to general purpose distributed computing effectively? And, how can
this new system be measured against other existing distributed computing systems?

This section will summarise the answers to these questions that this thesis has
answered.

9.1.1 Distributed Computing with Peer-to-Peer Computing

This thesis has shown that using peer-to-peer techniques with distributed computing
is not only feasible, it shows that it compares well with existing client-server
approaches in terms of the computing performance achieved as well as the levels of
service offered.

9.1.1.1 Comparative Performance and Scalability

According to the WAN-DC benchmark results show that CompTorrent maintains a
performance range between that of BOINC and Condor for all cluster node sizes for
the POV-Ray experiment. Transcode shows CompTorrent is between or better than
BOINC and Condor in 50% of cases and, whilst worse in the other half of
experiments, it was only by approximately 15% in the worst case. Mandelbrot
showed results between both distributed systems and, similarly to POV-Ray, No
Work behaves either between or better than the results of both BOINC and Condor.

Whilst limited by the smaller scale scenario presented within this thesis, these
results from Chapters 5 and 8 show that that a distributed processing system based on
a decentralised, peer-to-peer network can provide similar results to distributed
processing systems based on traditional client/server networking architectures. This
has been proven on hardware under controlled conditions without the need to resort
to simulation.

9.1.2 Ease of Use

As discussed in Chapter 6, CompTorrent requires very little effort to install and use –
from either the user or project manager's point of view. Once the project manager has
identified the algorithm to be used, packaged it within a script in such as way that it
has a data in and data out file-based interface, the job is almost done - only the

113

generation of a metadata file and associated work units is all that is required. This
level of work is also generally true of BOINC and Condor to this point, however the
next step is key – no server requirements. A tracker must be used of course, but this
does not necessarily need to be under the control of the project owner. A seed is then
started and the project begins. Indeed, once the original dataset has be uploaded to
the swarm it is not necessary for it to continue to remain a part of the network. Later
it could reconnect as a normal node and retrieve the computed dataset just like
anyone else.

It is hoped that future development of this project will allow more economies
to be found in the instigation and maintenance of distributed computing projects.

9.1.3 New Incentives, Network Time, Processing Time and Machine
Dedication

If CompTorrent's operation is considered, obviously the time taken to upload the full
data set to the swarm versus the time taken to compute the result set will be
paramount for the seed when considering the value of a CompTorrent exercise. This
relates strongly to what is classically considered to be the efficiency metric in
distributed computing where efficiency is measured as computation versus
communication. Some more trivial applications of CompTorrent, such as recoding
video, may take longer to upload and download the original and computed sets
respectively and therefore yield no computation advantage at all. However, the
overall time taken for the swarm as a whole to receive a computed set is determined
by the upload speed of the original seed and the algorithm run time. So, if the swarm
as a whole is interested only in the computed set, simultaneous computation and
distribution may well get each node the computed set in less overall elapsed time
when compared to single machine computation first and then distribution. Certainly
the lag between the original data set becoming available and the start of the
computed set being distributed is minimized with CompTorrent. One needs to keep
in mind here that this is public computing where many participants are interested in
the data sets. Obviously in a private computing exercise these mitigating
circumstances, to what would otherwise be a waste of time, would not apply.

There are other incentives for a seed over just elapsed time as well. The load
placed on the machine itself is a factor when the primary consideration is low-cost
ownership of hosting the project. The time taken for a single processor to complete a
computation job obviously relies on the load placed on the machine itself. It may be
reasonable to recode 4.6Gb of MPEG1 video to 700Mb of MPEG4 in 4 hours
providing the machine is absolutely dedicated to the task. An 8 hour simultaneous
upload, compute and download may be preferable where the machine is not highly
loaded by the computing task and so can be readily used for other work.

9.2 Further Work
Here further work identified during the course of this thesis is discussed for the
major works within this thesis of WAN-DC and CompTorrent.

9.2.1 WAN-DC

Clearly, for wider utility, WAN-DC needs to have algorithms included which support
inter-process communication. Also, the qualitative metrics could be improved
significantly through survey work to allow for a more rigorous approach. However,

114

as alluded to previously in chapter four, this benchmark grew out of necessity rather
than being an exercise of trying to be all things to all situations as this could easily
grow into the scope of an entire thesis in itself. Here are presented some options for
consideration for later expansion.

9.2.1.1 Performance Metrics

Two broad categories of inter-process communication should be considered for
integration into WAN-DC. They are, of course, loosely and tightly coupled
algorithms. An example of a loosely coupled application, with good prospects for
scalability, would be calculating primes using the classical algorithm of the Sieve of
Eratosthenes with strike out. Another loosely coupled example, with less natural
scalability, could be calculating Fibonacci numbers. This algorithm's inherent
sequential nature could lead to an investigation of how distributed systems deal with
largely sequential problems in a wide area network distributed computing network
with all the challenges it presents. Other problems should be identified to produce
some examples between these two extremes.

In the case of tightly coupled problems there are a plethora of examples
where communication overhead has the potential to overwhelm a system. Parallel
sorting applications, such as Mergesort (Knuth 1998), are common examples, with
implementations found readily in the literature. Matrix based applications,
particularly wave front computations such as heat transfer, give a good, adjustable
level of granularity based on the lengths of the communicating edges of the matrices
shared between nodes.

Other additions to this benchmark could include testing for malfeasance,
measuring robustness, further work in establishing baselines or seeing how
degradation of the underlying network performance affects these systems. Several of
these benchmarks were considered during this thesis work and have been included in
Appendix D as a head start for future work in this area.

Integration of existing parallel benchmarks, as appropriate to wide area
network distributed computing, could be incorporated. For example, determining
where the NAS Parallel Benchmarks could apply to peer-to-peer systems would be
useful.

9.2.1.2 Qualitative Metrics

Experimental design for survey work of the qualitative options as well as formally
devising a method of obtaining results from a wide audience.

9.2.1.3 More Systems & Underlying Network Conditions

A framework's value is also increased through the number of machines and systems
that have been evaluated and whose statistics are available. In this thesis, three
systems were evaluated using WAN-DC. Extending this to other hardware and
systems, in particular Grid and tuple space based systems would be of considerable
value.

More work on formalising the conditions for applying the WAN-DC
benchmark, and benchmarks in general, would be useful for modern distributed
systems. At present it is difficult to quantify the nature of the network that the system
is on (one of the main reasons this thesis's results concentrated on a controllable
network environment). Developing a method for the approximate quantification of a

115

set of nodes participating in a swarm at a given time will greatly increase the
comparability of benchmarks being applied to these wide area network systems.
System results will have greater value if the underlying network conditions are
understood at the time.

Also, the limited and small nature of the cluster employed, is an obvious
candidate for future work. With more resources, beyond that available to this project,
it would be possible to construct a stable WAN cluster with which to repeat this
experimentation to see how the systems compare over a larger geographical scale.

9.2.2 CompTorrent

CompTorrent has demonstrated the contributions of this thesis however there is
always scope for further extension and improvement. This section will briefly
discuss some suggestion for further work with CompTorrent.

9.2.2.1 Protocol and Routing Optimisation

The usage of XML for communication between nodes for all communications could
be wasteful for fine-grained tasks. XML was originally chosen due to its ease of
extensibility and modification as the research progressed. Beyond compressing the
XML, which is a possibility but again unlikely to yield much gain for very small
payloads (Goldsmith 2004), a binary structure implementation where the bare
minimum of meta data is exchanged is feasible. A solution between binary structures
and XML that has gained popularity during the progress of this thesis is YAML,
which provides a lighter weight mark up language for structured data (Ingerson,
Evans & Ben-Kiki 2001).

Examining the relationships between the nature of the computation task and
the topology of the overlay network is already showing promise. Applying different
routing algorithms is an area in its own right and further work beyond the least
common ancestor heuristic which is used now should prove worthwhile. Other
routing arrangements used in distributed hash tables such as a Skiplist, Cartesian
Coordinate Space, Plaxton Tree and similar could be compared to see if they offer
performance benefits whilst considering their cost in terms of implementation
complexity and transparency for the user.

9.2.2.2 Interprocess Communication

Another obvious extension would be support for algorithms that are not completely
independently parallel. The classic choices between shared memory or message
passing are two obvious candidates for implementation and testing. Implementing
shared memory across nodes in a CompTorrent swarm would also allow for a
distributed tracker to be overlaid on the network. This could either be as a primary or
secondary tracker service and it would be interesting to see how this could be used to
improve the robustness of the system.

9.2.2.3 Optimisation of File Transfer

Optimization of file transfer is another area that may yield improved results. A lot of
work has already been done investigating the efficiency of BitTorrent for file
transfers including some recent work (Piatek et al 2007) that has further increased
performance by some 70% by selective uploading to connected peers based on their
behaviour. It will be interesting to see if these ranking algorithms would have a

116

similar result with peers based on their bandwidth contribution as well as their
computing contribution. This would expand on existing work of allocating tasks
based on the number of data chunks processed, number of file requests services, time
taken to respond, etc.

9.2.2.4 Trackers

The tracker is currently an HTTP service and has a relatively small bandwidth load
(subject to the granularity of the task and data). A recent idea involves investigating
the possibility of embedding tracker data into unlikely places or protocols. As the
tracker is mainly shared memory (lists of connected nodes, completed chunks) it may
well be possible to host tracker data on another unrelated service such as Internet
Relay Chat. Security related issues is also an area where much work can be done. An
obfuscation technique that has already been proven in concept is embedding tracker
data into an image using steganographic techniques. It will be interesting to see if the
extra bandwidth required will result in any stealth advantage. As would looking at
the mobility of projects between trackers during computation.

The tracker could obviously be extended to involve more computation when
suggesting nodes for connection. It has been kept as simple as possible in the case of
CompTorrent in order to prove that a genuinely decentralised swarm can produce
similar results to a client-server system. In practice, especially where a higher
confidence in nodes is recognised (i.e. in a controlled, production environment),
more tracker involvement would be sensible. However, in a peer-to-peer system this
should always be carefully considered along with the level of centralisation the
system is to maintain.

9.2.3 Botnets

As previously mentioned in 3.3.3, botnets have been potentially identified as some of
the most distributed, peer-to-peer computing systems known to be in practical, albeit
illegal, use. Further work to identify existing techniques being used by these
networks could compliment the work in this thesis as well as providing potential
insight into mitigating the effects of these harmful botnets. This is raised here as a
general research direction beyond the scope of CompTorrent and general purpose
distributed computing.

9.3 Some Personal Concluding Remarks on Peer-to-Peer as a
Controversial Research Topic

At the beginning of Chapter 1 of this thesis, a quote from J. Bronowski was included
which referred to the nature of a scientist as being one of dissent. Peer-to-peer
computing, as a technique, has come under great, sustained fire from the media,
industry groups and politicians as being synonymous with illegal file sharing and the
distribution of other prohibited content. There have been many calls for it to be
banned and many attempts for it to be blocked at a Internet Service Provider level.

This incorrect assumption that a networking or computing technique equals
malfeasance and corruption is one that must not be allowed to continue to propagate
further. This is hardly the first time that computing has been controversial, yet I feel
that it is significant for us here as so many different groups are in active opposition at
once.

In this thesis it has been shown that peer-to-peer networking can provide a

117

useful harnessing of resources that might not otherwise have been economically
feasible and therefore available to a research group. This allows scientific projects
another avenue for procuring computing cycles just like BOINC and Condor (and
many others) are doing now. This project, at time of writing, uniquely allows the not
necessarily professional and less funded groups or individuals the ability to host a
distributed computing project easily and virtually without cost.

In this field, researchers should find it their duty to show how peer-to-peer is
not all about “MP3s and piracy” and continue to speak out at ill-informed debate and
demonstrate where peer-to-peer as a discrete technology itself is being used for the
real benefit of humanity. The mesh networking scheme used in the One Laptop Per
Child project is a real example of peer-to-peer being a part of the success of a
humanitarian effort.

It is hoped that this thesis, and others like it in the area of peer-to-peer
computing, will show that this technique is overwhelmingly benign and can be used
productively and widely for the benefit of all.

118

10.0 References

Aberer, K., 2001, P-Grid: A Self-Organizing Access Structure for P2P Information
Systems, Proceedings of the Ninth International Conference of Cooperative
Information Systems, 2001.

Amdahl, G., 1967. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities, AFIPS Conference Proceedings, (30), pp. 483-485.

Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D. 2002.
SETI@home: An Experiment in Public Resource Computing. Communications of the
ACM. Vol. 45 Issue 11, (2002) 56 – 61.

Anderson, D. 2004. BOINC: A system for public-resource computing and storage. In
5th IEEE/ACM International Workshop on Grid Computing.

Apple Inc., 2007, Xgrid Technical Brief,
<http://images.apple.com/server/macosx/docs/L355779B_Xgrid_tb.pdf>. Last
Accessed 4 April 2009.

Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fineberg,
S., Frederickson, P., Lasinski, T., Schreiber, R., Venkatakrishnan, V., Weeratunga,
S., Simon, H., 1991. The NAS parallel benchmarks. The International Journal of
Supercomputer Applications.

Bakker, A., Kuz, I., Steen, M. 1997, Towards a taxonomy of distributed-object
models, In Proceedings of the Third Annual ASCI Conference, pp. 22-27.

Bharambe, A., Herley, C., Padmanabhan, V. N. 2005. Analyzing and Improving

BitTorrent Performance. Technical Report. MSR-TR-2005-03, Microsoft Research.

BOINC, 2007, Boinc Project, Other Information on Creating BOINC projects,
<http://boinc.berkeley.edu/trac/wiki/OtherProjectDocs>, Last Accessed 18 December
2008.

BOINC, 2007, Boinc Project, Recruiting and retaining volunteers,
<http://boinc.berkeley.edu/trac/wiki/VolunteerRecruit>, Last Accessed 3 April 2008.

Boklund, A., Mankefors-Christiernin, S., Jiresjö, C., Namaki, N., 2005. COTS-
Cluster Evolution during the Last Decade and Extrapolation into the Next.
Proceedings Parallel and Distributed Computing and Networks (Sweden).

119

Bratosin C., van der Aalst, W., Sidorova N. 2007. Modeling Grid Workflows with
Coloured Petri Nets, Eighth Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools, CPN'07, Aarhus, Denmark 2007.

Buyya, R. 2002. Economic-based Distributed Resource Management and Scheduling
for Grid Computing, Ph.D. Thesis, Monash University, Melbourne Australia, April
12, 2002.

Buyya, R., Yeo, C., Venugopa, S. 2008. Market-oriented cloud computing: Vision,
hype, and reality for delivering IT services as computing utilities. In Proceedings of
the 10th IEEE International Conference on High Performance Computing and
Communications (HPCC-08, IEEE CS Press, Los Alamitos,CA, USA).

Carriero, N., Gelernter, D. 2006. HPCWire. Letter to the Editor: The Tuple Space
Solution. June 16, 2006. <http://www.hpcwire.com/topic/systems/17885239.html>
Last Accessed 1/12/2008

Centre for Computing History, 2009. Computing History – Convergent
Technologies. <http://www.computinghistory.org.uk/sec/2963/Convergent-
Technologies/>. Last accessed 5 April 2009.

Chang H., Li, K., Lin, Y. Yang, C., Wang, H., Lee L,. 2005. Performance issues of
grid computing based on different architecture cluster computing platforms,
19th International Conference on Advanced Information Networking and
Applications, 2005. AINA 2005. Volume 2, pp 321 – 324.

Cortell, J. 2005, Lecturer censored in Spanish University (UPV) for defending P2P
networks,
<http://homepage.mac.com/jorgecortell/blogwavestudio/LH20041209105106/LHA2
0050520091532/index.html> Last Accessed 25 March 2009.

Costa, F., Silva, L., Fedak, G., Kelley, I., 2008. Optimizing the data distribution
layer of BOINC with BitTorrent. IPDPS 2008 Parallel and Distributed Processing,
2008.

Curnow, H.J., Wichman, B.A. 1976. A Synthetic Benchmark, Computer Journal,
Volume 19, Issue 1, February 1976., p. 43-49.

Dongarra, J., Luszczek, P., Petitet, A. 2003. The LINPACK benchmark: Past,
present, and future. Concurrency and Computation: Practice and Experience 15, 1-
18.

Dumas, E. 2001. Programme de bench calcul de l'ensemble de Mandelbrot .
Available online: <http://magnux.free.fr/gcc/mandelbrot.c>. Last accessed 26 April
2009.

120

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4536446
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4536446

Eberspächer, J., Schollmeier, R. 2005, Peer-to-Peer Systems and Applications: First
and Second Generation of Peer-to-Peer Systems, Lecture Notes in Computer
Science, Springer.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T., 1999, RFC2616: HTTP1/1 Specification, Network Working Group, IETF.

Flynn, M. 1972. Some Computer Organizations and Their Effectiveness, IEEE
Transactions. Computer, Vol. C-21, pp. 948, 1972.

Foster, I., 2002, What is the Grid? - a three point checklist, GRIDtoday, Vol. 1, No.
6.

Foster, I., Iamnitchi, A. 2003. On Death, Taxes, and the Convergence of. Peer-to-
Peer and Grid Computing. IPTPS 2003. LNCS 2735, pp. 118-128. Springer-Verlag
Berlin.

Foster, I., 2005, Globus Toolkit Version 4: Software for Service-Oriented Systems.
IFIP International Conference on Network and Parallel Computing, Springer-Verlag
LNCS 3779, pp 2-13.

Garey, M., Johnson, D. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY.

Chiang, K., Lloyd, L. 2007. A case study of the rustock rootkit and spam bot. In
Proceedings of USENIX HotBots'07.

Chord, 2008. The Chord/DHash Project. <http://pdos.csail.mit.edu/chord/>. Last
accessed 5 April 2009.

Goldsmith, B., 2006, 'CompTorrent: Applying BitTorrent Techniques to Distributed
Computing.' Technical Report, School of Computing, University of Tasmania.

Goldsmith, B., 2007, Enabling Grassroots Distributed Computing with
CompTorrent, Proceedings of the Sixth International Workshop on Agents and Peer-
to-Peer Computing (AP2PC 2007), Honolulu, Hawaii, USA

Goldsmith, B., 2004, A Peer to Peer Supply Chain Network, Coursework Masters
Thesis, School of Computing, University of Tasmania.

121

GPU 2007. GPU: a Global Processing Unit. <http://gpu.sourceforge.net> Ac-

cessed Jan 25, 2007.

Grizzard, J., Sharma, V., Nunnery, C., Kang, B., Dagon, D. 2007. Peer-to-peer
botnets: Overview and case study. In Proceedings of USENIX HotBots'07.

Gropp, W., Sterling, T., 2003, Beowulf Cluster Computing with Linux, 2nd edition,
MIT Press, USA.

Haynes, B., 1998. Collective Wisdom. American Scientist, Vol. 86, No. 2, March-
April 1998, pp. 118-122.

Hoare, C., 1978. Communicating sequential processes. Communications of the ACM
21 (8): pp. 666–677.

Holland, J., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press.

Horton, M. 1986. RFC976: UUCP Mail Interchange Format Standard, Bell
Laboratories, USA.

IEEE, 2002. Computer. Feburary Issue 2002.

Ingerson, B., Evans, C., Ben-Kiki, O., 2001. Yet Another Markup Language (YAML)
1.0. <http://yaml.org/spec/history/2001-08-01.html> Last Accessed 25 Mar 2009.

ICANN 2007. Factsheet - Root server attack on 6 February 2007, ICANN (2007-
03-01). Last Accessed 15/12/2008.

ITU, 1994. Open Systems Interconnection - Basic Reference Model: The basic
model, <http://www.itu.int/rec/T-REC-X.200-199407-I/en>, Last Accessed
18/12/2008.

Karbhari, P., Ammar, M., Dhamdhere, A., Raj, H., Riley, G., Zegura, E. 2003.
Bootstrapping in Gnutella: A Preliminary Measurement Study, Technical Report.
Georgia Institute of Technology.

Khan A., Mccreary C., Jones M. 1994. A comparison of multiprocessor scheduling
heuristics, In Proceedings of the 1994 International Conference on Parallel
Processing, volume II, pp. 243-250.

122

http://yaml.org/spec/history/2001-08-01.html

Klensin, J. 2008. RFC5321: ESMTP, Simple Mail Transfer Protocol, Network
Working Group. <http://tools.ietf.org/html/rfc5321> Last Accessed 25 Mar 2009.

Knuth, D. 1998. The Art of Computer Programming, Section 5.2.4: Sorting by
Merging, Addison-Wesley. pp.158–168.

Knuth, D. 1998. The Art of Computer Programming, Volume 3: Sorting and
Searching, Second Edition. Addison-Wesley. Section 6.3: Digital Searching, pp.
492.

Kotadia M. 2004. SETI's BOINC project hit by DDoS attack,
<http://news.zdnet.co.uk/security/0,1000000189,39161876,00.htm>

Last Accessed 15/12/2008.

Krauter, K., Buyya, R., Maheswaran , M. 2002, A taxonomy and survey of grid
resource management systems for distributed computing , Software: Practice and
Experience, Vol 32 , No. 2, pp. 135-164 . John Wiley & Sons, Ltd.

Larson, S. M., Snow, D. C., Shirts, M., Pande, V. S. 2003. Folding@Home and
Genome@Home: Using distributed computing to tackle previously intractable
problems in computational biology. Grant, R., ed, Horizon Press Modern Methods
in Computational Biology.

Leopold, C., 2001, Parallel and Distributed Computing A survey of models,
paradigms and approaches, pp. 3, Wiley, USA.

Li, Jinyang. 2005, Routing Tradeoffs in Dynamic Peer-to-peer networks. PhD Thesis.
MIT.

Longbottom, R. 2008. Whetstone Benchmark History and Results,
<http://freespace.virgin.net/roy.longbottom/whetstone.htm> Last accessed 2 April
2009.

Magoules, F., Nguyen T., Yu L., 2008, Grid Resource Management

Towards Virtual And Services Compliant Grid Computing. Taylor & Francis Ltd
USA, pp. 98.

McCreary, C., Thompson, J., Gill, D., Smith, T., Zhu, Y. 1993. Partitioning and
Scheduling Using Graph Decomposition, In Twenty-eighth annual ACM symposium
on theory of computing, pp. 93-106.

123

http://news.zdnet.co.uk/security/0,1000000189,39161876,00.htm

Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., Venkataramani, A. 2007, Do
Incentives Build Robustness in BitTorrent? In 4th USENIX Symposium on
Networked Systems Design & Implementation (NSDI '07), Cambridge, MA, USA.

Miller, J. 2004, Characterization of Data on the Gnutella Peer-to-Peer Network,
IEEE Consumer Communications and Networking Conference, January 2004.

Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., Xu, Z., 2002. Peer-to-Peer Computing, HP Laboratories, Technical
Report. Palo Alto, HPL-2002-57.

Netperf, 2009, <http://www.netperf.org/>, Last accessed 3 April 2009.

OpenMP, 2009, The OpenMP API Specification for parallel programming,
<http://openmp.org/>, Last accessed 17 Mar, 2010.

O'Reilly. 2001. The O'Reilly Peer-to-Peer Conference,
<http://conferences.oreillynet.com/p2p_sf01/>, Last Accessed 1 Apr 2009.

Plaxton, C., Rajaraman, R., Richa, A. 1997. Accessing nearby copies of replicated
objects in a distributed environment, ACM Symposium on Parallel Algorithms and
Architectures, pp. 311–320.

Postel, J. 1982. RFC 821: SIMPLE MAIL TRANSFER PROTOCOL, Information
Sciences Institute, University of Southern California.<http://james.apache.org/server/
rfclist/smtp/rfc0821.txt>, Last Accessed 3 May 2009.

Protić, J., Tomasevic, M., Milutinović, V. 1997. Distributed Shared Memory:
Concepts and Systems, Wiley-IEEE Computer Society Press.

Pugh, W. 1990. Skip lists: A probabilistic alternative to balanced trees,
Communications of the ACM. 33 (6): pp. 668–676.

Radić, B., Imamagić E., 2004. Benchmarking the Performance of JMS on Computer
Clusters, CARNet Users Conference, 28. 9. 2004.

Ratnasamy, S., Francis, P., Shenker, S., Handley, M., 2001, A Scalable Content-
Addressable Network, In Proceedings of ACM SIGCOMM , pp. 161 – 172.

124

Rhea, S., Roscoe, T., Kubiatowicz J. 2003, Structured Peer-to-peer overlays need
application-driven benchmarks. Electronic Proceedings for the 1st International
Workshop on Peer-to-Peer Systems (IPTPS '02).

Risson, J., Moors, T. Survey of Research towards Robust Peer-to-Peer Networks:
Search Methods. 2004. Technical report EE-P2P-1-1, University of New South
Wales, Sydney, Australia.

Ritter, J., 2001, Why Gnutella Can't Scale. No, Really,
<http://www.darkridge.com/~jpr5/doc/gnutella.html>, Last Accessed April 11, 2006.

Rose, M. 2001. RFC3080: The Blocks Extensible Exchange Protocol Core, Invisible
Worlds, Inc., <http://tools.ietf.org/html/rfc3080>, Last Accessed 4 April 2009.

Rowstron, A., Druschel, P. 2001. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Heidelberg, Germany. pp. 329–350.

Sedgewick, R. 1990, Algorithms in C, 2nd Ed, Addison-Wesley, USA.

Sinnen, O., 2007. Task Scheduling for Parallel Systems. Wiley, USA.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J., 1996. MPI: The
Complete Reference. MIT Press, Boston, USA.

Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H. 2001. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In the Proceedings
of ACM SIGCOMM 2001, San Deigo, CA.

SYS-CON. 2008, Twenty-One Experts Define Cloud Computing,
<http://cloudcomputing.sys-con.com/node/612375/print>, Last Accessed April 4,
2009.

Thain, D., Tannenbaum, T., Livny, M., 2005. Distributed Computing in Practice: the
Condor Experience. Concurrency and Computation: Practice and Experience,
Volume 17. pp. 323–356.

Ts, J., Eckstein, R., Collier-Brown, D., 2003. Using Samba, 2nd Edition, O'Reilly &
Associates, <http://us6.samba.org/samba/docs/using_samba/toc.html>, Last
Accessed April 2, 2009.

125

Vaughan, J., Brookes, G., 1989. The Mandelbrot set as a parallel processing
benchmark, University Computing, 11, (3), pp. 193–197.

Vixie, P., Sneeringer, G., Schleifer, M. 2002. Events of 21-Oct-2002. <http://c.root-
servers.org/october21.txt>, Last Accessed 15/12/2008.

Volunteer at Home, 2007, Volunteer at Home - List of all active volunteer computing
projects.
<http://www.volunteerathome.com/sections/active_projects/active_projects.htm>

Last Accessed 25 Mar 2009.

Wei, B., Fedak, G., Cappello, F., 2005. Collaborative Data Distribution with
BitTorrent for Computational Desktop Grids, Proceedings of the The 4th
International Symposium on Parallel and Distributed Computing (ISPDC'05), p.250-
257, July 04-06, 2005.

Weicker, R. Dhrystone: A Synthetic Systems Programming Benchmark,
Communications of the ACM (CACM), Volume 27, Number 10, October 1984, p.
1013-1030.

Weisstein, E., 2009. NP-Hard Problem. From MathWorld--A Wolfram Web
Resource. <http://mathworld.wolfram.com/NP-HardProblem.html>. Last accessed
16 May 2009.

Withers, A., 2007. Condor Scalability and Management at Brookhaven National
Laboratory,
<http://www.cs.wisc.edu/condor/PCW2007/presentations/withers_cw2007.pdf>.
Last accessed 5 April 2009.

126

http://www.cs.wisc.edu/condor/PCW2007/presentations/withers_cw2007.pdf
http://d.root-servers.org/october21.txt

Appendix A

The source code for CompTorrent, including the database schema and doxygen
documentation (including collaboration diagrams), accompanies the thesis
electronically on a DVD.

Building Source Code

These instructions are for building CompTorrent using gcc 4.3.2 on Ubuntu 8.10.

It is assumed that sharutils has been installed on the machine (for
uuencode/uudecode).

Obtain the following 3rd party libraries and compile and install them as per their
individual instructions.
commoncpp2­1.7.3.tar.gz – configure, make, sudo make install
cryptopp560.zip ­ make, sudo make install
tinyxml_2_5_3.tar.gz ­ make
curl­7.19.4.tar.gz – configure, make, sudo make install

Installing CompTracker
sudo ln ­s /home/bcg/source/sp2p/trunk/comptracker/public_html/ comptracker

edit globalconfig.php to match your database connection.

$global_vars = array(

"dbhost" => "localhost",
"dbname" => "sp2p",
"dbuser" => "root",
"dbpass" => "77moke",

);

Tracker Database Schema

The tracker uses a MySQL database to maintain information about the
computing projects its hosting. It provides much of the storage for the tracker
interfaces as described in 7.1.2.2.
CREATE TABLE `sp2p_comptorrent` (
 `name` varchar(32) NOT NULL,
 `xml` text NOT NULL,
 `uuid` varchar(36) NOT NULL,
 PRIMARY KEY (`name`),
 KEY `uuid` (`uuid`)
);

CREATE TABLE `sp2p_computing` (
 `computingpk` int(11) NOT NULL auto_increment,
 `torrenthash` char(36) NOT NULL,

127

 `origdatahash` char(36) NOT NULL,
 `resulthash` char(36) NOT NULL,
 `nodeuuid` char(36) NOT NULL,
 `update_time` datetime NOT NULL,
 `finish_time` datetime NOT NULL,
 `filename` varchar(255) NOT NULL,
 PRIMARY KEY (`computingpk`),
 KEY `torrenthash` (`torrenthash`),
 KEY `origdatahash` (`origdatahash`,`resulthash`,`nodeuuid`)
);

CREATE TABLE `sp2p_connections` (
 `connectionpk` int(11) NOT NULL auto_increment,
 `server_nodefk` char(36) NOT NULL,
 `client_nodefk` char(36) NOT NULL,
 `torrentname` varchar(32) NOT NULL,
 PRIMARY KEY (`connectionpk`),
 KEY `server_nodefk` (`server_nodefk`,`client_nodefk`),
 KEY `torrentname` (`torrentname`),
 KEY `client_nodefk` (`client_nodefk`)
);

CREATE TABLE `sp2p_datachunks` (
 `torrenthash` char(36) NOT NULL,
 `name` varchar(36) NOT NULL,
 `size` int(11) NOT NULL,
 `status` int(11) NOT NULL,
 `torrentname` varchar(36) NOT NULL,
 `filehash` char(36) NOT NULL,
 `allocate_time` datetime NOT NULL,
 `num_computed` int(11) NOT NULL,
 PRIMARY KEY (`name`),
 KEY `torrenthash` (`torrenthash`)
);

CREATE TABLE `sp2p_files` (
 `filenodepk` int(11) NOT NULL auto_increment,
 `filehash` char(36) NOT NULL,
 `nodeuuid` char(36) NOT NULL,
 `torrenthash` char(36) NOT NULL,
 `filename` varchar(255) NOT NULL,
 PRIMARY KEY (`filenodepk`),
 KEY `filehash` (`filehash`),
 KEY `nodeuuid` (`nodeuuid`),
 KEY `torrenthash` (`torrenthash`)
);

CREATE TABLE `sp2p_ipconnections` (
 `ipconnectionspk` int(11) NOT NULL auto_increment,
 `client` varchar(15) NOT NULL,
 `server` varchar(15) NOT NULL,
 PRIMARY KEY (`ipconnectionspk`)
);

CREATE TABLE `sp2p_node` (
 `uuid` varchar(36) NOT NULL,
 `ip` varchar(15) NOT NULL,
 `port` varchar(5) NOT NULL,
 `num_computed_chunks` int(11) NOT NULL,
 `num_original_chunks` int(11) NOT NULL,
 `num_connections` int(11) NOT NULL,
 `comptorrentname` varchar(32) NOT NULL,
 `update_time` datetime NOT NULL,
 `routeid` int(11) NOT NULL,
 `tracker_hits` int(11) NOT NULL,
 `route_req_served` int(11) NOT NULL,
 `mutex` varchar(36) NOT NULL,
 PRIMARY KEY (`uuid`)
);

CREATE TABLE `sp2p_stats` (
 `statpk` int(11) NOT NULL auto_increment,
 `nodeguid` char(36) NOT NULL,
 `type` varchar(12) NOT NULL,
 `statistic` varchar(64) NOT NULL,
 `tstamp` timestamp NOT NULL default CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,

128

 PRIMARY KEY (`statpk`),
 KEY `nodeguid` (`nodeguid`)
);

Tracker Database Schema Diagram

UML Class Diagrams

129

130

131

132

Appendix B

Amdahl's Law

Amdahl’s Law (Amdahl 1967) explains that all programs have a limit to which they
can be parallelised, and gives us an algorithm with which to calculate the maximum
possible speedup of a parallel program. The limitation arises from the non
parallelisable part of the application, the part that must be executed sequentially.

 S =

 Where:

 • S is the speedup of the program,.

 • P is the part of the application that can be parallelised,

 • (1 − P) is the part of the program which must be executed sequentially.

 • N is the number of processing elements working on the task.

As N grows large the maximum speedup tends towards (1 − P). This gives an upper
limit the amount of processors can be usefully utilised in a parallel computing
exercise for a particular application or algorithm.

Gustafson-Barsis' Law

Gustafson-Barsis' Law allows for more flexibility over Amdahl's Law by allowing
for the number of processors to change and the size of the problem to change as well
during computation. This makes Gustafson-Barsis' Law much more suitable for
modelling volunteer networks where nodes come and go and the overall problem size
is often in flux.

 S(P) = P − α (P − 1)

 Where:

 • S is the speedup of the application.

 • P is the number of processing elements.

 • α is the part of the algorithm that is sequential.

Gustafson-Barsis' Law achieves this through considering the overall time of
sequential execution rather than a fixed amount of sequential execution per
processor.

133

Appendix C

Experimental Setup Instructions

This thesis contains experiments covering several different existing distributed
computing systems. These systems are non-trivial to install, configure and operate.
This appendix covers the installation instructions and settings used in detail for the
experimental results presented in this thesis. These should serve as a starting point
for building on or verification of this work for BOINC and Condor (See section 6.3
for instructions for CompTorrent).

In these examples the address 144.6.40.251 and 127.0.0.1 are used
interchangeably to represent the master server machine. The user name “bcg” is used
to represent the logged in account of the server administrator.

BOINC

The host system was Ubuntu Linux 6.06 with a full complement of GNU
development tools, mysql and php installed via apt-get.

Server

Check out the code thus:
svn co http://boinc.berkeley.edu/svn/trunk/boinc

(Revision 14015 was the latest revision at time of experimentation).

Build the code:
./_autosetup
./configure ­­disable­client
make

Create a project:

./make_project ­­url_base http://144.6.40.251/boinc/ ­­db_host localhost
­­db_user root test1

Steps to complete installation:

1. Change Apache configuration (as root):

cat /home/bcg/projects/test1/test1.httpd.conf >> /etc/apache/httpd.conf && apachectl
restart

(note: path to httpd.conf varies)

sudo cp /home/bcg/projects/test1/test1.httpd.conf /etc/apache2/sites­available/

134

2. Add to crontab (as bcg (my username) in this case)

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /home/bcg/projects/test1/bin/start ­­cron

(If cron cannot run "start", try using a helper script to set PATH and
PYTHONPATH)

3. The project is configured with a test application.

To install this application (recommended) run:
cd /home/bcg/projects/test1
bin/xadd
bin/update_versions

To start, show status, and stop the project, run:
bin/start
bin/status
bin/stop

The project's URLs are (the url and project name will of course depend on
installation):

Home page (and master URL): http://144.6.40.251/test1/

Administrative page:http://144.6.40.251/test1_ops/

Enable account creation – edit config.xml in the ~/project/test1/ directory and set the
the disable_account_creation element to 0

BOINC connects to Internet URLs in a few places in the code. This poses an
annoying problem behind university proxy servers. To alleviate this, comment out
the following lines of code:

/home/bcg/projects/test1/html/ops/index.php

Insert a /* at line 23 and a */ at the end of line 39.

/home/bcg/projects/test1/html/inc/user.inc

135

Modify the function get_other_projects at line 60 to return $user and do nothing else
eg:

function get_other_projects($user) {

 /* $cpid = md5($user­>cross_project_id . $user­>email_addr);
 $url = "http://boinc.netsoft­online.com/get_user.php?cpid=$cpid";
 $f = fopen($url, "r");
 if (!$f) {
 return $user;
 }
 $u = parse_user($f, $user);
 fclose($f);
 return $u; */

return $user;
}

Client Side

Download boinc_5.10.21_i686-pc-linux-gnu.sh

./boinc ­­attach_project http://144.6.40.251/test1/
de68da8503386b0232e664a27f2dad92

That should be all that is required however here are some problems encountered and
solutions:

Problem: Getting the authenticator for each client.

Solution: Get it from the db.

Problem: No work from project. The feeder seemed to be dying as can be seen by the
status.

bcg@rhdl-a2:~/projects/test1/bin$./status
BOINC is ENABLED
DAEMON pid status lockfile disabled commandline
 1 7907 NOT RUNNING UNLOCKED no feeder ­d 3
 2 7909 running locked no transitioner ­d 3
 3 7912 running locked no file_deleter ­d 3

Tried running the feeder directly (as it would be by BOINC as defined in
config.xml):

bcg@rhdl­a2:~/projects/test1/bin$./feeder ­d 3
2007­11­20 16:42:29.7621 [normal] Starting
shmctl RMID: Operation not permitted
2007­11­20 16:42:29.7631 [CRITICAL] can't destroy shmem

136

Solution:

change the group for the feeder thus:

bcg@rhdl­a2:~/projects/test1/bin$ sudo chgrp www­data feeder
bcg@rhdl­a2:~/projects/test1/bin$ sudo chmod g+xs feeder

But if that doesn't work, execute the start with sudo:

sudo bin/start

and that should be problem solved.

Here is an example for setting up a project using Mandelbrot:

Server:

Create the Project

cd /data/source/boinc/tools/
./make_project ­­url_base http://144.6.40.251/ ­­db_host localhost
­­db_user root mandelbrot16

Set up the Project Website

sudo cp mandelbrot16.httpd.conf /etc/apache2/sites­available/

sudo ln ­s /etc/apache2/sites­available/mandelbrot16.httpd.conf
/etc/apache2/sites­enabled/mandelbrot16.httpd.conf

sudo apache2ctl restart

cd ~/projects/mandelbrot16

sudo chown www­data ~/projects/ ­R

Enable Account Creation

Enable account creation – edit config.xml in the ~/project/mandelbrot16/ directory
and set the the disable_account_creation element to 0

Edit the Project

In this example, only Linux machines are being used, so par down the project xml to
only include one target platform (or adjust for your circumstances).

137

http://144.6.40.251/

Also, add in the name of the algorithm executable. In this case its Mandelbrot.

<boinc>
 <platform>
 <name>i686­pc­linux­gnu</name>
 <user_friendly_name>Linux running on an Intel x86­compatible
CPU</user_friendly_name>
 </platform>
 <app>
 <name>mandelbrot</name>
 <user_friendly_name>mandelbrot16</user_friendly_name>
 </app>
</boinc>

Edit config.xml

Make sure the db_passwd element contains your db password

Compile the Wrapper

svn co http://boinc.berkeley.edu/svn/trunk/boinc_samples
cd boinc_samples/wrapper
ln ­s `g++ ­print­file­name=libstdc++.a`
make
cp boinc_samplaes/wrapper/wrapper
~/projects/mandelbrot16/apps/mandelbrot/wrapper_5.5_i686­pc­linux­
gnu

Copy the Algorithm

Also make sure to name your algorithm as per BOINC's naming convention so that it
matches the target platforms set out in the project.xml.

mkdir ~/projects/mandelbrot16/apps/mandelbrot/
cp
/data/source/sp2p/experiments/mandelbrot/160/comptorrents/working/mandelbrot/mandelbr
ot ~/projects/mandelbrot16/apps/mandelbrot_5.5_i686­pc­linux­gnu
bin/xadd
bin/update_versions

Add Templates for Work Units and Results

Put the following into a file called result_template in
~/projects/mandelbrot16/templates/

 <file_info>
 <name><OUTFILE_0/></name>

138

 <generated_locally/>
 <upload_when_present/>
 <max_nbytes>1000000</max_nbytes>
 <url><UPLOAD_URL/></url>
 </file_info>
 <result>
 <file_ref>
 <file_name><OUTFILE_0/></file_name>
 <open_name>out</open_name>
 </file_ref>
 </result>

Put the following into a file called work_unit_template in
~/projects/mandelbrot16/templates/

 <file_info>
 <number>0</number>
 </file_info>
 <workunit>
 <file_ref>
 <file_number>0</file_number>
 <open_name>in</open_name>
 </file_ref>
 </workunit>

Add Work Units

The mandelbrot executable takes 2 command line arguments: an infile and an outfile.

The infile stipulates the parameters for the mandelbrot set being generated.

The outfile is a resulting jpeg.

For this example, there are 16 work units, each a file containing the settings for the
overall Mandelbrot set as well as the region of the set to be calculated (so it can be
split up and computed over multiple machines).

Copy each of these files into the ~/projects/mandelbrot16/download directory.

Now, tell BOINC about each one of these files by inserting each one of them as a
work unit (using the templates from the previous step).

bin/create_work ­appname mandelbrot ­wu_name mandelbrot_00000001 ­wu_template
templates/work_unit_template ­result_template templates/result_template ­min_quorum 1
­target_nresults 1 mandelbrot_00000001

Do this changing the file and work unit name for each data set file eg.
mandelbrot_00000002, mandelbrot_00000003 and so on.

Start BOINC

sudo bin/start

You can also stop it (sudo bin/stop) and get a status (sudo bin/status)

139

Create a Client User Account

Go to the project homepage (http://144.6.40.251/mandelbrot16/) and create an
account.

If the server does not have public Internet access, as is often the case on a dedicated
cluster, this page might take a while to load as it tries to get user info from the
BOINC main site. You can hack this out editing the file user.inc
(home/bcg/projects/test1/html/inc/user.inc). Modify the function get_other_projects
at line 60 to return $user and do nothing else eg:

function get_other_projects($user) {
 /* $cpid = md5($user­>cross_project_id . $user­>email_addr);
 $url = "http://boinc.netsoft­online.com/get_user.php?cpid=$cpid";
 $f = fopen($url, "r");
 if (!$f) {
 return $user;
 }
 $u = parse_user($f, $user);
 fclose($f);
 return $u; */

return $user;
}

Since this is a dedicated cluster example, you like me will probably not bother setting
up email on the servers. You need to edit the created user's database entry and also
get the authentication key so command line clients can attach to the project.

Connect to the database using phpmyadmin or similar. Go to the mandelbrot16
database and browse the results in the user table.

Take note of the authenticator field value (eg.
84a35ba7615192bd3120019d8861ffac). You will need to to connect shortly.

Update the email_validated field to contain a 1.

Client Machines:

Download boinc_5.10.21_i686-pc-linux-gnu.sh from the BOINC website.

Run it on the client machine from your home directory. This will install the runtime
files into a BOINC directory.

In a terminal run:

140

./run_client

Alternatively, you can create the following script (from: http://blog.os-tools.net/?
p=31):

#!/bin/sh
/etc/init.d/boinc
Start/stop/restart

test ­x /home/bcg/BOINC/boinc || exit 0

case "$1" in
start)
echo "Starting BOINC."
cd "/home/bcg/BOINC" && exec ./boinc >>stdoutdae.txt
2>>stderrdae.txt &
;;
stop)
echo "Stopping BOINC."
killall boinc
;;
restart)
killproc boinc
sleep 2
cd "/home/bcg/BOINC" && exec ./boinc >>stdoutdae.txt
2>>stderrdae.txt &
;;
*)
echo "Usage: /etc/init.d/boinc {start|stop|restart}"
exit 2
esac
exit 0

Which will allow you to start and stop BOINC as a service – so you can maintain one
terminal window only in which to run the client and then issue commands to it. This
saves having 2 x n terminals open (where n = number of nodes). 16 cshh windows is
bad enough without needing 32 open on a single desktop.

Attach to the Project

In another separate terminal window:

./boinc_cmd –project_attach http://144.6.40.251/mandelbrot16/mandelbrot16/
cc5e5948e2ff9fe00dc2474d271753ad

Use your own authenticator at this point that you noted down earlier.

You can also detach from the project later on by running:

141

./boinc_cmd –project http://144.6.40.251/mandelbrot16/ detach

To later reset projects:

Stop BOINC server.
Empty the workunit and result tables in the database.
empty the ~projects/mandelbrot16/upload directory
Add work units again.
Start BOINC server.

Condor

Master Machine

Download condor-6.8.7-linux-x86-rhel.tar.gz and uncompress it.

cd /data/condor­6.8.7

mkdir condor_root
mkdir condor_local

sudo ./condor_configure ­­install­dir=/data/condor­6.8.7/condor_root/
­­type=manager,submit ­­local­dir=/data/condor­6.8.7/condor_local/ ­­owner=bcg
­­install=/data/condor­6.8.7/release.tar

export CONDOR_CONFIG=/data/condor­6.8.7/condor_root/etc/condor_config

Edit condor_root/etc/condor_config:

Set RELEASE_DIR to /data/condor-6.8.7/condor_root/

Set HOSTALLOW_WRITE to *

Set HOSTALLOW_ADMINISTRATOR = $(FULL_HOSTNAME)

Start Condor:

sudo condor_root/sbin/condor_master

Stop Condor:

sudo condor_root/sbin/condor_off -master

Check that its running:

ps -ef | egrep condor_

bcg@rhdl­a2:/data/condor­6.8.7$ ps ­ef | egrep condor_
bcg 24421 1 0 12:25 ? 00:00:00 condor_root/sbin/condor_master
bcg 24422 24421 0 12:25 ? 00:00:00 condor_collector ­f
bcg 24423 24421 0 12:25 ? 00:00:00 condor_negotiator ­f

142

http://144.6.40.251/test1/

bcg 24424 24421 0 12:25 ? 00:00:00 condor_schedd ­f
bcg 24425 24421 7 12:25 ? 00:00:07 condor_startd ­f
bcg 24475 5431 0 12:27 pts/0 00:00:00 grep ­E condor_

Create a job

file name: mandelbrot16.condor
Condor submit description file for mandelbrot
Executable = path_to/mandelbrot
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/mandelbrot_00000001
Arguments = mandelbrot_00000001 mandelbrot_00000001_out
Queue

create a directory to put the job in.

mkdir mandelbrot16
cd mandelbrot16
mkdir logs
mkdir files

Submit a job

condor_root/bin/condor_submit mandelbrot16/mandelbrot16.condor

Check on jobs

All jobs:

bin/condor_q

A job:

bin/condor_q 3

Client Machine

Download condor-6.8.7-linux-x86-rhel.tar.gz and uncompress it.

cd /data/condor­6.8.7
mkdir condor_root
mkdir condor_local
sudo ./condor_configure ­­install­dir=/home/bcg/condor­6.8.7/condor_root/
­­type=execute ­­local­dir=/home/bcg/condor­6.8.7/condor_local/ ­­owner=bcg
­­install=/home/bcg/condor­6.8.7/release.tar
export CONDOR_CONFIG=/home/bcg/condor­6.8.7/condor_root/etc/condor_config

Edit condor-6.8.7/condor_root/etc/condor_config

Set UID_DOMAIN = $(FULL_HOSTNAME)
Set FILESYSTEM_DOMAIN=$(FULL_HOSTNAME)
Set HOSTALLOW_ADMINISTRATOR = $(FULL_HOSTNAME)

143

Set HOSTALLOW_WRITE to *

Edit condor-6.8.7/condor_local/condor_config.local

Set CONDOR_HOST = 144.6.40.251
SET UID_DOMAIN and FILESYSTEM_DOMAIN to $(FULL_HOSTNAME)

NETWORK_INTERFACE = 144.6.40.115
WANT_SUSPEND = FALSE
CONTINUE = TRUE
SUSPEND = FALSE
PREEMPT = FALSE
START=TRUE

144

Appendix D

WAN-DC Extras

Sequential read/write with underlying network changes (synthetic)

This is a variation on the earlier Sequential read/write test with the addition of
modulating the performance of the underlying network.
Test Description Perform the Sequential read/write test whilst changing the bandwidth and

latency properties of the underlying network.

Test Aim To observe how the system performs distributing test and result data under a
variety of network conditions.

Input Data A freely, Internet-available dataset of a suitable size for the test.

Suggested sizes ranging from 100kb, 1000kb, 10Mb, 100Mb, 1Gb.

The Internet Archive is a suggested repository for source data.

Output Data Wall clock time to complete the file distribution from start to finish.

Mbytes/sec if the tested system provides its own figure.

Method 1. Homogeneous

Modulate the bandwidth of the underlying network to represent commonly
available device bandwidths ranging from modem speeds to gigabit
Ethernet.

All devices should be set to the same speed.

Apply the method of the sequential read/write for both uniform size and
mixed data unit sizes.

2. Heterogeneous

Modulate the bandwidth of the underlying network to represent commonly
available device bandwidths ranging from modem speeds to gigabit
Ethernet.

All devices should be set to a range of different speeds to represent a known
mix of devices.

Apply the method of the sequential read/write for both uniform size and
mixed data unit sizes.

Input/Output Intensive

The benchmark presented here is designed to compare the ability of cluster
technologies to distributed data between nodes on the network.

145

Sequential read/write (synthetic / application)

The aim of this benchmark is to test how quickly a distributed computing system can
copy data between nodes. For systems that use NFS (or similar) as their file system,
this will ostensibly be a test of that technology, the network connection and the
cluster hardware. For systems that divide data into discrete units and share it as
packets, this will enable the measurement of the packet protocol, the network
connection and the cluster hardware.

Test Description Obtain bandwidth figures (Mbytes/sec) and wall clock time to distribute
data.

Test Aim To gain an understanding of the efficiency of the system to distribute test
and result data across the network using a variety of data set sizes.

Input Data A freely, Internet-available dataset of a suitable size for the test.

Suggested sizes ranging from 100kb, 1000kb, 10Mb, 100Mb, 1Gb.

The Internet Archive is a suggested repository for source data.

Output Data Wall clock time to complete the file distribution from start to finish.

Mbytes/sec if the tested system provides its own figure.

Method 1. Uniform size

For each data set size, each set should be split into smaller uniform
elements to simulate it being a unit of work for processing.

Suggested sizes ranging from 512bytes, 1kb, 10kb, 100kb, 256kb, 1000kb,
10Mb, 20Mb, 50Mb, 100Mb.

2. Mix

For each data set size, each set should be split into smaller random sized
elements to simulate it being a unit of work for processing.

Suggested sizes including 512bytes, 1kb, 10kb, 100kb, 256kb,1000kb,
10Mb, 20Mb, 50Mb, 100Mb.

BitTorrent (theoretical maximum)

Test Description Obtain bandwidth figures (Mbytes/sec) and wall clock time to distribute
data over the cluster using the BitTorrent protocol.

Test Aim This test is an attempt to gain a best estimate of maximum disk and network
performance of the cluster hardware. This is to serve as a working
theoretical maximum for what a distributed computing system could hope to
achieve.

Input Data A freely, Internet-available dataset of a suitable size for the test.

Suggested sizes ranging from 100kb, 1000kb, 10Mb, 100Mb, 1Gb.

The Internet Archive is a suggested repository for source data.

Output Data BitTorrent timing output for each worker node in the cluster (produced by
application with results to be tabulated by tester).
Wall clock time to complete the file distribution from start to finish.

146

Method Application should be run from 1 worker to all worker machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested). Each step should be repeated multiple times in order to gauge
variability. Statistics provided should carefully describe the final values
given in terms of their origin.

Care should be taken to ensure that one of the tested message chunk sizes
corresponds to one of the sizes tried in sequential read/write. BitTorrent's
usual size is 256kb.

Test Description Perform the Mandelbrot benchmark under varying degrees of network load.

Test Aim Load the network with traffic to investigate the effect of heavy traffic up to
a denial of service attack on various components of the distributed
computing system.

Input Data Nil

Output Data Wall clock time to complete the Mandelbrot set.

Method 1. General load

Load the network with varying degrees of traffic using a tool such as
WebLOAD.

2. Denial of Service

Load individual parts of the distributed computing system with varying
degrees of traffic. Individual clients, server components, name servers and
other components, as per the system being tested, should be loaded in turn
to examine the effect it has on performance.

Failure and Malfeasance

Distributed computing systems that operate over wide area networks must consider
the uncertain nature of nodes providing services to the system.

Erroneous Results (synthetic)

Incorrect results

Test Description Perform the Mandelbrot benchmark with deliberately introduced errors at a
known probabilistic rate.

Test Aim To understand how the system copes with varying degrees of incorrect
results and how node exclusion policies can effect the overall process.

Input Data A set of files each representing the region of the Mandelbrot set to calculate.

There are three separate parameter sets to this bench mark.
1. The overall set size being generated.
2. The number of segments the set is to be split into to be computed in
parallel.
3. The region of the Mandelbrot set to be calculated.
4. The probability of this work unit being calculated incorrectly. Code has
been provided to randomly change some points within the calculated work
unit at a particular probabilistic rate. Start with a low probability, i.e.
0.0001, and then step up towards 1 in reasonable increments.

147

Depending on items 2 and 3, each work unit can be either relatively uniform
or provide a mix ranging from intensive computation to near trivial. Two
datasets are provided, Mandelbrot_A and Mandelbrot_B, which illustrate
each option.

Output Data Image files of the Mandelbrot set.
The wall clock time to produce the set.

Method Perform this test using one of the same sets of parameters as the standard
Mandelbrot to give a starting point.

1. Random node failure

Arrange the work units so that all nodes have the same probability of
failure.

2. Bad node

Select a single node as random to be a source of error at a probabilistic rate.

First work unit (synthetic derived from application)

Clock time taken for a work unit to be completed when measured from the start of
computation.

Test Description Obtain wall clock times for a first work unit to be received.

Test Aim To investigate the lag, setup or joining time that occurs in a distributed
computing system. This is especially important for comparing emerging
systems that rely on a decentralised approach where a bootstrapping phase
may occur as a node joins the network.

Input Data Data can be gathered from the results of other benchmark experiments from
both a server or node perspective. That is, the time taken for the first
completed work unit to be received. Or, the time between starting a new
worker node and actually receiving data to process (where data is available).

Output Data The elapsed time in microseconds.

Method Application should be run from 1 worker to all worker machines with a
reasonable number of steps to meet a stated confidence interval (95%
suggested) for each work unit length. Each step should be repeated multiple
times in order to gauge variability. Statistics provided should carefully
describe the final values given in terms of their origin.

Care should be taken to ensure that the test is fair and that all systems being
compared are set to begin computation as soon as possible and that network
load is comparable between tests.

148

Appendix E

Data Sets

Transcode

The file CC_1914_03_26_CruelCruelLove.mpg is available from archive.org and
has been split using the mpgtx tool thus:

mpgtx ­200 ../CC_1914_03_26_CruelCruelLove.mpg ­b CC_1914_03_26_CruelCruelLove

The individual files as used here are also available with this thesis and listed below
with their sizes in bytes.

1035738 chunk-001.mpg 899402 chunk-035.mpg 992574 chunk-068.mpg

 961558 chunk-002.mpg 996380 chunk-036.mpg 998936 chunk-069.mpg

 997946 chunk-003.mpg 992284 chunk-037.mpg 741322 chunk-070.mpg

 836572 chunk-004.mpg 749924 chunk-038.mpg 995420 chunk-071.mpg

 995420 chunk-005.mpg 933264 chunk-039.mpg 993564 chunk-072.mpg

 995420 chunk-006.mpg 1024964 chunk-040.mpg 980840 chunk-073.mpg

 747462 chunk-007.mpg 1006002 chunk-041.mpg 813808 chunk-074.mpg

 993884 chunk-008.mpg 746822 chunk-042.mpg 998552 chunk-075.mpg

 995834 chunk-009.mpg 989344 chunk-043.mpg 989088 chunk-076.mpg

 997626 chunk-010.mpg 1000408 chunk-044.mpg 748550 chunk-077.mpg

 858346 chunk-011.mpg 799612 chunk-045.mpg 998680 chunk-078.mpg

 999768 chunk-012.mpg 975434 chunk-046.mpg 993564 chunk-079.mpg

 747048 chunk-013.mpg 1020616 chunk-047.mpg 997020 chunk-080.mpg

 991900 chunk-014.mpg 991934 chunk-048.mpg 748388 chunk-081.mpg

 999192 chunk-015.mpg 744616 chunk-049.mpg 991486 chunk-082.mpg

 747304 chunk-016.mpg 994524 chunk-050.mpg 999704 chunk-083.mpg

 998424 chunk-017.mpg 998488 chunk-051.mpg 1025762 chunk-084.mpg

 993756 chunk-018.mpg 995804 chunk-052.mpg 745512 chunk-085.mpg

 998202 chunk-019.mpg 743720 chunk-053.mpg 993692 chunk-086.mpg

 749156 chunk-020.mpg 998138 chunk-054.mpg 995676 chunk-087.mpg

149

 993884 chunk-021.mpg 976458 chunk-055.mpg 746344 chunk-088.mpg

1004086 chunk-022.mpg 798080 chunk-056.mpg 1146148 chunk-089.mpg

 812272 chunk-023.mpg 1000792 chunk-057.mpg 795264 chunk-090.mpg

 988256 chunk-024.mpg 997626 chunk-058.mpg 998872 chunk-091.mpg

 997370 chunk-025.mpg 922678 chunk-059.mpg 995420 chunk-092.mpg

 996666 chunk-026.mpg 799100 chunk-060.mpg 854894 chunk-093.mpg

 812310 chunk-027.mpg 930640 chunk-061.mpg 904932 chunk-094.mpg

 980042 chunk-028.mpg 997562 chunk-062.mpg 996986 chunk-095.mpg

 995706 chunk-029.mpg 994938 chunk-063.mpg 995676 chunk-096.mpg

 841082 chunk-030.mpg 916350 chunk-064.mpg 937322 chunk-097.mpg

1000920 chunk-031.mpg 992796 chunk-065.mpg 830658 chunk-098.mpg

 747876 chunk-032.mpg 747014 chunk-066.mpg 1016042 chunk-099.mpg

 997178 chunk-033.mpg 997690 chunk-067.mpg 703680 chunk-100.mpg

 996218 chunk-034.mpg

POV-Ray

The files benchmark.pov and benchmark.ini are widely available and accompany this
thesis.

Mandelbrot

A typical configuration of the Mandelbrot set is rendered in vertical slices of 40
pixels wide with an overall images size of 6400 by 4800.

Mandelbrot_00000001:
­2.3333166666666667 1.00001666666666666 ­1.25 1.25 0 0 40 4800 1024 6400 4800

mandelbrot_00000002 :

­2.3333166666666667 1.00001666666666666 ­1.25 1.25 40 0 80 4800 1024
6400 4800

...

mandelbrot_00000159 :

­2.3333166666666667 1.00001666666666666 ­1.25 1.25 6320 0 6360 4800
1024 6400 4800

mandelbrot_00000160 :

­2.3333166666666667 1.00001666666666666 ­1.25 1.25 6360 0 6400 4800
1024 6400 4800

150

One Second

Each file contains an increasing integer, starting from one, representing the number
of seconds the processor should wait for.

151

Appendix F

Experimental Results

Please see accompanying file bcg_phd_thesis_appendix_F.pdf

152

	University of Tasmania Open Access Repository
	Cover sheet
	1.0 Introduction
	1.2 Motivation
	1.3 Major Contributions
	1.4 Structure of this Thesis

	2.0 Distributed Computing, Peer-to-Peer Networks and Measuring the Performance of Computing Systems
	2.1 Distributed Computing
	2.1.1 On the Differences Between Distributed and Parallel Computing
	2.1.2 Characteristics of Distributed Computing Systems: Terms, Actors and Roles.
	2.1.3 Characteristics of Parallel Architectures
	2.1.3.1 Architecture
	2.1.3.1.1 Flynn's Taxonomy

	2.1.3.2 Characteristics of Parallel Problems
	2.1.3.2.1 No Interprocess Communication (Independent or “Embarrassingly” parallel) and Parametric Problems
	2.1.3.2.2 Inter-process Communication (Coarse and Fine grained parallel problems)
	2.1.3.2.3 Ordered or Purely Sequential Problems

	2.1.4 Synchronisation in Distributed Processing Systems
	2.1.4.1 Message Passing
	2.1.4.2 Shared Memory
	2.1.4.3 Coordination Models
	2.1.4.3.1 Tuple Spaces and Coordination Languages
	2.1.4.3.2 Channel Based

	2.1.5 Problem Solving in Distributed Systems
	2.1.5.1 Data Decomposition
	2.1.5.2 Task Decomposition
	2.1.5.2.1 Recursive
	2.1.5.2.2 Exploratory
	2.1.5.2.3 Speculative

	2.1.5.3 Hybrid Decomposition

	2.1.6 Task Allocation in Distributed Systems
	2.1.6.1 Tree
	2.1.6.2 Crowd
	2.1.6.3 Economic
	2.1.6.4 Hybrid

	2.1.7 Task Dependencies
	2.1.7.1 Task Graph
	2.1.7.2 Petri Nets
	2.1.7.3 Heuristics
	2.1.7.3.1 List Scheduling
	2.1.7.3.2 Graph Decomposition
	2.1.7.3.3 Critical Paths

	2.1.7.4 Genetic Algorithms

	2.1.8 Using Distributed Computing for Large Problem Solving
	2.1.8.1 Advantages
	2.1.8.2 Disadvantages

	2.2 Peer-to-Peer networks
	2.2.1 Characteristics of Peer-to-Peer Networks
	2.2.1.1 Basic Peer-to-Peer Network Structures
	2.2.1.2 Centralisation
	2.2.1.3 Bootstrapping

	2.2.2 Peer-to-Peer Network Architectures
	2.2.2.1 Flooding Systems
	2.2.2.2 Partially Centralised Systems
	2.2.2.3 Hybrid Systems
	2.2.2.4 Distributed Hash Tables
	2.2.2.4.1 Trees
	2.2.2.4.2 Skiplist
	2.2.2.4.3 Cartesian Coordinate Space
	2.2.2.4.4 DHT Summary

	2.2.3 Advantages of a Peer-to-Peer Approach
	2.2.4 Disadvantages of a Peer-to-Peer Approach

	2.3 Benchmarking and Evaluation
	2.3.1 Machine Performance
	2.3.1.1 IPS and FLOPS
	2.3.1.2 Benchmarks
	2.3.1.2.1 Synthetic
	2.3.1.2.2 Kernel
	2.3.1.2.3 Component and I/O
	2.3.1.2.4 Real Software

	2.3.1.3 Simulation

	2.3.2 Distributed and Parallel Systems
	2.3.2.1 Speedup and Efficiency
	2.3.2.2 Statistics and Leaderboards

	2.3.3 Peer-to-Peer
	2.3.3.1 Search Performance
	2.3.3.2 Replication
	2.3.3.3 Overlay Performance

	2.4 Chapter Summary

	3.0 Related Work
	3.1 Peer-to-peer networks
	3.1.1 Classification of Peer-to-peer Systems
	3.1.2 Store and Forward
	3.1.2.1 NNTP
	3.1.2.2 SMTP

	3.1.3 Centralised
	3.1.3.1 Napster

	3.1.4 Decentralised		
	3.1.4.1 Gnutella
	3.1.4.2 Server Message Block

	3.1.5 Structured		
	3.1.5.1 Distributed Hash Tables
	3.1.5.1.1 Chord
	3.1.5.1.2 Pastry
	3.1.5.1.3 Content Addressable Network (CAN)

	3.1.6 Unstructured		
	3.1.7 Hybrid
	3.1.7.1 BitTorrent

	3.2 Distributed Computing
	3.2.1 Client / Server Systems
	3.2.1.1 BOINC
	3.2.1.2 Condor

	3.2.2 Grid Computing
	3.2.2.1 Globus Toolkit
	3.2.2.2 Other Systems: P-Grid & X-Grid
	3.2.2.3 Cloud Computing is not Grid Computing

	3.3 Related Work Combining Peer-to-peer and Distributed Computing
	3.3.1 Retrofitting BitTorrent into Distributed Computing Data Distribution
	3.3.2 Peer-to-peer Distributed Computing
	3.3.2.1 GPU
	3.3.2.2 JXTA / JNGI
	3.3.2.3 P-Grid

	3.3.3 Botnets

	3.4 Benchmarking and Evaluation
	3.4.1 Whetstone and Dhrystone
	3.4.2 Netperf
	3.4.3 LINPACK and LAPACK
	3.4.5 NAS Grid Benchmarks
	3.4.6 Peer-to-peer Benchmark Work

	3.5 Chapter Summary

	4.0 WAN-DC: A New Framework for the Comparison of Wide Area Network Distributed Computing Systems
	4.1 Motivation
	4.2 Performance Metrics
	4.3 Computing Benchmark
	4.3.1 Baseline
	4.3.1.1 LAPACK (synthetic)
	4.3.1.2 Whetstone & Dhrystone (theoretical maximum)
	4.3.1.3 Netperf / Netpipe (theoretical maximum)

	4.3.2	Processing Intensive
	4.3.2.1 POV-Ray Benchmark (application)

	4.3.3 Mix
	4.3.3.1 Transcode (application)
	4.3.3.2 Mandelbrot (synthetic)

	4.3.4 Responsiveness / Overhead
	4.3.4.1 One second (synthetic)
	4.3.4.2 Mean work unit (synthetic derived from application)
	4.3.4.3 No work (theoretical maximum)

	4.4 Qualitative Issues
	4.4.1 General Approach & Design
	4.4.1.1 Approach	
	4.4.1.2 Node Organisation (client / server, peer to peer)
	4.4.1.3 Network Topology
	4.4.1.4 Application
	4.4.1.5 Requirements & Dedication

	4.4.2 Features
	4.4.2.1 Algorithmic Suitability
	4.4.2.2 Standards Support
	4.4.2.3 Hardware Support
	4.4.2.4 Task & Resource Management
	4.4.2.5 Robustness
	4.4.2.6 Licensing

	4.4.3 Usability
	4.4.3.1 Hosting
	4.4.3.2 Joining
	4.4.3.3 Coding
	4.4.3.4 Support

	4.4.4 Incentives

	4.5 Discussion of the WAN-DC benchmark
	4.6 Chapter Summary

	5.0 A Comparative Evaluation of Condor and BOINC Using the WAN-DC Benchmark
	5.1 Test Platforms
	5.2 Test Environment
	5.3 Test Datasets
	5.4 Results
	5.4.1 Baseline
	5.4.1.1 LAPACK
	5.4.1.2 Whetstone & Dhrystone
	5.4.1.3 NetPerf

	5.4.2 Condor
	5.4.2.1 POV-Ray
	5.4.2.2 Transcode
	5.4.2.3 Mandelbrot
	5.4.2.4 No Work
	5.4.2.5 One Second
	5.4.2.6 Mean Work Unit

	5.4.3 BOINC
	5.4.3.1 POV-Ray
	5.4.3.2 Transcode
	5.4.3.3 Mandelbrot
	5.4.3.4 No Work
	5.4.3.5 One Second
	5.4.3.6 Mean Work Unit

	5.4.4 Qualitative Evaluation

	5.5 Discussion of Performance Results on BOINC and Condor
	5.5.1 POV-Ray
	5.5.2 Transcode
	5.5.3 No Work
	5.5.4 Mandelbrot
	5.5.5 One Second
	5.5.6 Mean Work Unit

	5.6 Chapter Summary

	6.0 CompTorrent
	6.1 Introduction
	6.2 Technical Overview
	6.2.1 Metadata File
	6.2.2 Tracker

	6.2.3 Node
	6.2.4 Security

	6.3 Using CompTorrent
	6.3.1 A Suitable Algorithm (and data!)
	6.3.2 Locating a Tracker
	6.3.3 Creating the Metadata File
	6.3.4 Planting the Seed
	6.3.5 Seeing the Results
	6.3.5.1 The home page
	6.3.5.2 Node & Work Unit List
	6.3.5.3 Overlay Graph
	6.3.5.4 Connection Graph
	6.3.5.5 Last Run Times

	6.4 Chapter Summary

	7.0 CompTorrent Implementation
	7.1 Major Components
	7.1.1 Tracker
	7.1.1.1 Communication Protocol with Nodes
	7.1.1.2 Discussion of Tracker Design

	7.1.2 CompTorrent Application
	7.1.2.1 Major Objects
	7.1.2.1.1 Main Loop
	7.1.2.1.2 Controller
	7.1.2.1.3 CompTorrentPeer
	7.1.2.1.4 TrackerParser
	7.1.2.1.5 CompTorrentParser
	7.1.2.1.6 Listener
	7.1.2.1.7 Router
	7.1.2.1.8 Processor

	7.1.2.2 Communication Protocol Between Nodes
	7.1.2.3 Network Overlay & Topology
	7.1.2.4 Security

	7.2 The CompTorrent Metadata File
	7.3 CompTorrent in Action
	7.3.1 A Seed Node by Itself
	7.3.2 A Node Joining Without a Route ID
	7.3.3 A Node Joining a Node
	7.3.4 Requesting & Completing a Work Unit
	7.3.5 Verification of the Work Unit
	7.3.6 Assembling the Results

	7.4 Summary

	8.0 CompTorrent Evaluation
	8.1 Performance Results
	8.1.1 POV-Ray
	8.1.2 Transcode
	8.1.3 Mandelbrot
	8.1.4 No Work
	8.1.5 One Second
	8.1.6 Mean Work Unit

	8.2 Qualitative Results
	8.3 Discussion of Results Compared with BOINC & Condor
	8.4 Chapter Summary

	9.0 Conclusions & Further Work
	9.1 Conclusions
	9.1.1 Distributed Computing with Peer-to-Peer Computing
	9.1.1.1 Comparative Performance and Scalability

	9.1.2 Ease of Use
	9.1.3 New Incentives, Network Time, Processing Time and Machine Dedication

	9.2 Further Work
	9.2.1 WAN-DC
	9.2.1.1 Performance Metrics
	9.2.1.2 Qualitative Metrics
	9.2.1.3 More Systems & Underlying Network Conditions

	9.2.2 CompTorrent
	9.2.2.1 Protocol and Routing Optimisation
	9.2.2.2 Interprocess Communication
	9.2.2.3 Optimisation of File Transfer
	9.2.2.4 Trackers

	9.2.3 Botnets
	9.3 Some Personal Concluding Remarks on Peer-to-Peer as a Controversial Research Topic

	10.0 References
	Appendix A
	Building Source Code
	Tracker Database Schema
	Tracker Database Schema Diagram
	UML Class Diagrams

	Appendix B
	Amdahl's Law
	Gustafson-Barsis' Law

	Appendix C
	Experimental Setup Instructions
	BOINC
	Server
	Client Side

	Condor
	Master Machine
	Client Machine

	Appendix D
	WAN-DC Extras
	Sequential read/write with underlying network changes (synthetic)
	Input/Output Intensive
	Sequential read/write (synthetic / application)
	BitTorrent (theoretical maximum)

	Failure and Malfeasance
	Erroneous Results (synthetic)
	First work unit (synthetic derived from application)

	Appendix E
	Data Sets
	Transcode
	POV-Ray
	Mandelbrot
	One Second

	Appendix F
	Experimental Results

