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Abstract 
 

The detrimental health effects of particulate air pollution have been well established 

through environmental health research worldwide. Fine or ‘respirable’ particulate 

matter derived from combustion sources has been linked to both acute and chronic 

respiratory and cardiovascular conditions, and premature death in the most susceptible 

of a population. The Tamar Valley in northern Tasmania has a significant winter air 

pollution problem. Launceston is the largest population centre in the valley (population 

approx. 67,000) and despite its size this small city has regularly recorded the highest 

levels of particulate pollution levels of any city in Australia. This is due largely to 

complex geographic and climatic processes that support cold air drainage and the 

formation of night-time temperature inversions in the valley over winter months. 

Under these conditions ground temperature drops and air pollution becomes trapped at 

ground level under a layer of dense cold air. Fine particulate matter from domestic 

wood heating contributes to around 88% of particulate load in Launceston compared to 

65% in other Australian cities. Concern has therefore been raised for the respiratory 

health of Tamar Valley residents in recent years. Previous studies have assumed 

homogeneity of pollution exposure, and disease risk, across the landscape. This 

assumption is unrealistic, as recent research indicates that both the distribution of 

disease and the dispersal of particulate air pollution exhibit considerable spatial 

variation.  

 

This is the first study to look in detail at the spatial relationships between particulate 

air pollution and respiratory disease distribution in the Tamar Valley. Disease clustering 

was investigated and various environmental processes were explored in detail to 

explain the spatial disparity of disease distribution. Patterns of respiratory disease 

occurrence in the Tamar Valley were investigated through spatial analysis of 15 years 

(1992-2006) of de-identified hospital admissions records. Issues of confidentiality and 

geoprivacy in spatial public health studies were discussed in detail. Spatial distributions 

of Asthma, Bronchiolitis, Bronchitis and Chronic Obstructive Pulmonary Disease (COPD) 

were explored individually and in combined form. Data were explored for annual 

variations in disease distribution. This revealed that, while disease incidence generally 

declined over the study period, this decline was most noticeable around George Town 

in the north of the valley. Further analysis revealed little spatial variation in seasonal 

spatial patterns of disease occurrence across the valley, though disease cases 

generally were more numerous in winter. COPD incidence was found to be highly 

clustered in a small number of address locations thought to correspond to nursing 

homes and aged care facilities across the valley. It was therefore believed that COPD 
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was more closely correlated with the locations of these facilities than with any 

geographic or climatic processes. Three techniques for the detection of disease clusters 

were applied (kernel density function, Getis Ord Gi* statistic and Kulldorff’s spatial 

scan statistic). Areas around George Town and the North Esk valley east of Launceston 

consistently showed elevated disease levels. However, considerable variation in the 

reporting of ‘significant’ clusters was noted between methods, and also with the same 

method at different spatial scales. Issues of statistical inference were therefore 

discussed.  

 

Several ‘exposure surfaces’ were created to approximate the winter dispersion of 

particulate air pollution in Launceston. Modelled air pollution concentrations were 

derived from TAPM (The Air Pollution Model), a prognostic air pollution dispersion 

model currently in use in Tasmania for environmental monitoring purposes. A digital 

elevation model was also classified into terrain features that are known to accumulate 

high levels of particulate pollution through the process of cold air drainage (i.e. low-

lying channels and river flats). Spatial relationships between disease incidence and 

these air pollution ‘proxies’ were then explored in detail. Weak relationships were 

found between disease incidence and terrain features representing small channel and 

valleys. A ‘significant’ relationship was found between disease incidence and the valley 

floor, though issues of statistical inference were again discussed in this context. Spatial 

non-stationarity was detected in all relationships, indicating that global statistics 

inadequately define these relationships. A strong inverse relationship was found 

between modelled air pollution concentrations and disease incidence, indicating that 

disease rates were generally higher in areas outside the modelled air pollution plume 

derived by TAPM. TAPM concentrations were also found to closely mirror the underlying 

population distribution. The inability of TAPM to adequately predict pollution levels in 

areas outside major population centres, and various issues of socioeconomic 

confounding were discussed as possible explanations for this finding. 

 

Results generally revealed considerable variation in the spatial relationships between 

disease incidence and air pollution proxies used in this study. These results argue 

strongly for the spatial analysis of air pollution relationships to health outcomes, and 

the continued refinement of methods. None of these findings could have resulted from 

a purely temporal (non-spatial) investigation. 
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1 Introduction 

1.1 Background  

The Tamar Valley in northern Tasmania has a long-standing air pollution problem. 

Despite its small population and relative absence of large scale industry, Launceston 

has regularly recorded the highest air pollution levels of any city in Australia (DEH, 

2004). This is largely due to the topographic and climatic characteristics of the Tamar 

river valley, which support the formation of temperature inversions over the winter 

months (Lyons and expert working party, 1996; Power, 2001). 

 

The movement and dispersion of air pollution within the Tamar Valley has been 

extensively studied, most comprehensively for the Tamar Valley Airshed Study (TVAS) 

(Power, 2001). It is known that light katabatic (gravity-propelled) winds roll down the 

surrounding hill slopes and settle in the valley floor on still winter nights; this produces 

a layer of dense cold air at ground level that remains trapped under a layer of 

displaced warmer air until it is dispersed by solar radiation or wind, usually the 

following morning (Nunez, 1991; Power, 2001; Sturman and Tapper, 2006). Air 

pollution produced at ground level, typically wood smoke from residential heating 

(Lyons and expert working party, 1996); (Ayers et al., 1999), therefore accumulates 

and concentrates within this layer. Seasonal fluctuations in the spatial dispersal of 

pollution are governed largely by seasonally variable meteorology (Power, 2001).  

 

Particulate air pollution is commonly measured as PM10 (particulate matter with an 

aerodynamic diameter equal to or less than 10 microns). The small particles that 

comprise PM10 are known to penetrate deep into the lungs and beyond into the 

circulatory system (Dockery and Pope, 1994). Both PM10 and the smaller PM2.5 have 

consistently been linked to morbidity and mortality in studies worldwide (Dockery and 

Pope, 1994; Forastiere, 2004; Pope III, 2000; WHO, 2006a). A 10 µgm-3 increase in 

daily mean PM10 is now known to correspond to increases of approximately 1.4% and 

3.4% in cardiovascular and respiratory disease respectively, and a 1% increase in 

mortality from all causes (Dockery and Pope, 1994).  

 

Launceston’s air quality has improved in recent years, due largely to local government 

initiatives and increased public awareness of the health risks of wood heating. In 

particular, the Launceston Woodheater Replacement Program launched in 2001 has 

contributed to a substantial reduction in wood smoke pollution from residential wood 

heaters (DEH, 2005b). However, Australia’s National Environment Protection Measure 

(NEPM) standard has been exceeded every year in Launceston until 2005 (DEH, 
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2005b); 2006 was the only year on record that Launceston’s particulate air pollution 

levels were within allowable national limits.  

1.2 Significance of the study 

This is the first study to look in detail at the spatial spread of respiratory disease and 

air pollution in the Tamar Valley. The use of Geographic Information Systems (GIS) is 

rapidly expanding in the field of public health research as spatial analysis of health 

data is capable of revealing localised anomalies that can otherwise be hidden within 

statistical averages of a population. With further industrial developments currently 

proposed for the upper Tamar Valley, it is vital that we better understand what is 

happening in terms of public health in surrounding population centres. 

 

A recent time-oriented study conducted by medical researchers (Mesaros et al., 2007) 

found a weak relationship between air pollution levels and respiratory admissions for 

bronchitis/bronchiolitis in the Tamar Valley. This study assumed, however, that levels 

of pollution were uniform across the valley, which may have reduced the strength of 

any association. There is now strong evidence to suggest that spatial disparity in 

particulate air pollution concentration is significant even at the neighbourhood scale, 

and that assumptions of homogeneity can lead to false conclusions being drawn about 

both the magnitude and significance of pollution-related health outcomes (Maheswaran 

and Craglia, 2004; Monn, 2001; Wilson et al., 2004; Wilson et al., 2006; Wilson and 

Zawar-Reza, 2006) 

1.3 Aims and objectives  

This study is a detailed pre-epidemiological study predicated on understanding the 

spatial distribution of respiratory disease and its relationship to the dispersal of 

particulate air pollution in the Tamar Valley.  

 

The objectives of the study are to: 

• Effectively deal with issues of confidentiality and geoprivacy in the analysis and 

publication of spatial public health information;  

• Investigate the spatial patterns of acute respiratory disease occurrences, and 

thereby identify areas of increased relative risk of disease in the valley;  

• Investigate annual and seasonal fluctuations in spatial patterns of disease; 

• Examine various exposure surfaces derived from modelled air pollution dispersion 

data and terrain analyses as proxies for winter cold air drainage in the Tamar 

Valley, and thereby identify possible areas of increased relative risk of pollution 

exposure in the valley; 
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• Explore the spatial relationships between pollution exposure surfaces and disease 

locations, and thereby comment on the spatial relationships between environmental 

air pollution and acute respiratory illness in the Tamar Valley;  

• Explore the uncertainties inherent in this type of public health research. 

1.4 Structure of the thesis  

Chapter one provides some background information and outlines the importance of 

conducting this research.  

 

Chapter two contains a review of relevant epidemiological and ecological studies, 

with an emphasis on the spatial interrogation of medical data and its use in air 

pollution exposure analyses.  

 

Chapter three details the pre-processing of data to ensure geoprivacy of medical 

records. Aspects of ethical use of spatial public health data are addressed. 

 

Chapter four provides a detailed spatial investigation of acute respiratory disease in 

the Tamar Valley based on hospital admissions records from 1992 to 2006. This 

chapter utilises de-identified individual-level data for a high-resolution spatial 

analysis of disease clustering in the valley.  

 

Chapter five combines spatial disease data with various ‘exposure surfaces’ derived 

from air pollution modelling and terrain analysis to investigate spatial relationships 

between respiratory disease occurrence and climatic/geographic factors known to 

influence PM10 concentration.  

  

Finally, chapter six concludes the thesis and offers suggestions for further research. 
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2 Spatial epidemiology of respiratory disease: review 

2.1 Particulate air pollution and health 

The adverse health effects of particulate air pollution are well documented. Research 

worldwide has consistently shown that increased levels of particulate air pollution are 

associated with increased morbidity and mortality, most noticeably from respiratory 

and cardiovascular causes (Abramson, 2001; Ackermann-Liebrich et al., 1997; Brook 

et al., 2007; Chen et al., 2006; Christie et al., 1992; Dockery and Pope, 1994; 

Forastiere, 2004; Fusco et al., 2001; Gilliland et al., 2005; Goldberg et al., 2006; Hales 

et al., 1999; Jerrett et al., 2005b; Leem et al., 2006; McGowan et al., 2002; Medina et 

al., 2004; Mesaros et al., 2007; Moolgavkar, 2000; Oyana et al., 2004; Peel et al., 

2006; Pope III, 2000; Salvaggio, 1994; Sheppard et al., 1999; Simpson et al., 1997; 

Ulirsch et al., 2007; Wordley et al., 1997; Yunesian et al., 2006). The historic case of a 

catastrophic fog in London in 1952 is the most dramatic example of this relationship, 

with drastically elevated pollution levels causing widespread respiratory problems and 

the premature deaths of an estimated 12,000 people (Bell and Davis, 2001; De 

Angelo, 2006). 

 

Along with sulphur dioxide, nitrogen dioxide and ozone, particulate air pollution is 

known to exacerbate or cause diseases of the respiratory and cardiovascular systems, 

resulting in both acute and chronic disease conditions and premature death for the 

most susceptible in the population (WHO, 2005). Acute respiratory conditions with 

short latency periods, such as Asthma, Bronchitis and Bronchiolitis, are well suited to 

investigations of the relationships between air pollution and health. These diseases are 

especially responsive to fluctuations in particulate air pollution, which gives less 

opportunity for bias to occur from other diseases (Elliott and Wakefield, 2000).  

2.1.1 PM10 and PM2.5 defined  

Particulate matter with an aerodynamic diameter equal to or less than 10 microns, or 

ten thousandths of a millimetre, is commonly referred to as PM10 or ‘inhalable’ 

particles. A measure of PM10 includes quantities of all particles equal to and smaller 

than 10 microns (10 µm). PM2.5 refers to particles 2.5 µm in diameter and smaller and 

is referred to variably as the ‘fine’ or ‘respirable’ fraction of PM10. Airborne 

concentrations of PM10 and PM2.5 are typically expressed in micrograms per cubic metre 

(µgm-3). 

 

Particulate air pollution is most commonly expressed as the highest or average mass of 

PM10 per volume of sampled air per day, or per year. For public health reasons 

however, there is debate around the optimal size fraction that should be monitored 
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(i.e. PM10, PM2.5, PM1 etc), whether to measure mass or particulate counts, and the 

most appropriate temporal averaging period (Elliott et al., 2000a).  

 

Ambient PM10 concentrations have been measured at a permanent monitoring station 

at Ti Tree Bend, northern Launceston, since 1992 and this facility has recently been 

upgraded to also record ambient concentrations of PM2.5. There is also a meteorological 

station at this site. 

2.1.2 PM10 and PM2.5 health impacts 

Particles of different sizes impact on the human body in different ways. Research has 

shown that particles greater than or equal to 10 microns in diameter (≥ PM10) are 

deposited in the upper airways and nasopharynx region of the respiratory tract, while 

finer particles (≤ PM2.5) penetrate deep into the lungs and beyond into the bloodstream 

(Salvaggio, 1994). This information has been useful in determining relative air 

pollution types and sources in epidemiological studies where specific respiratory 

symptoms are known. For example, PM2.5 is known to cause irritation and inflammation 

of the lower respiratory tract and is also known to originate from smoke (Dockery and 

Pope, 1994; Pope III, 2000), while irritations of the upper respiratory tract (nose and 

throat) are generally caused by dust particles of mechanical origin, which constitute 

the larger size fraction of PM10 (WHO, 2005). By studying the specific respiratory 

symptoms of participants in a study (i.e. presence of wet cough, dry cough, sneezing, 

wheezing, etc.) it is possible to deduce the relative atmospheric conditions to which 

they were exposed, with respect to appropriate latency periods.  

 

The Australian Fine Particles study of 1996-1997 (Ayers et al., 1999) systematically 

analysed the physical and chemical properties of particulate air pollution and 

corresponding disease occurrences in several Australian cities and reported that, "...the 

statistical relationships noted between health outcomes and PM10 are most likely 

caused by the PM2.5 component of the size fraction…", and, "...stronger relationships 

might be observed between PM2.5 and health outcomes, than are currently observed 

between PM10 and health outcomes, if more PM2.5 data were available" (Ayers et al., 

1999 p89). As dedicated monitoring of PM2.5 has only commenced in the last couple of 

years in Australia, PM10 is still being used for retrospective epidemiological studies. 

2.1.3 National and international standards 

The World Health Organisation (WHO) has recently updated guideline levels for air 

pollutants, recommending across-the-board reductions in pollutant levels globally 

(WHO, 2006b). Allowable concentrations of PM10 have now been set at 50 µgm-3 for 24 

hour average and 20 µgm-3 for annual average levels; 24 hour and annual mean levels 

of PM2.5 have been set at 25 and 10 µgm-3 respectively (WHO, 2005). It is believed 
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that this reduction in allowable limits will, if met, reduce worldwide air pollution-related 

mortality by around 15% (WHO, 2006a). However, while there is currently no 

recommended maximum exposure dosage (Simpson et al., 1997; WHO, 2006a), it has 

been suggested that the relationship between particulate air pollution and disease is 

linear, and as such there is no threshold of particulate air pollution below which there 

would be no observable health effects (McGowan et al., 2002).  

 

In line with WHO guidelines, and under the National Standards for Criteria Air 

Pollutants, Australia’s National Environment Protection Measures (NEPM) air pollution 

standards are currently set at 50 µgm-3 for 24 hour average concentrations of PM10; 

PM2.5 limits are set at 25 µgm-3 for daily maximum levels and 8 µgm-3 for annual 

averages (DEH, 2005a). Under this standard, the 24-hour average concentrations are 

allowed to be exceeded five times annually (five allowable exceedances).  

2.1.4 Tamar Valley air pollution  

The Ti Tree Bend air monitoring station at Invermay, northern Launceston, has been 

measuring daily and annual average PM10 concentrations since 1992 (though initial 

measurements were taken only every six days). PM2.5 measurements commenced in 

June 2005. Results have demonstrated that Launceston, despite its low population, has 

regularly experienced some of the highest air pollution events in the country. For 

example, in 1992 the highest recorded PM10 concentration at Ti Tree Bend was 186 

µgm-3, or close to four times what is now the allowable limit, and in 1997 the NEPM 

24-hour average standard of 50 µgm-3 was exceeded on 51 days, or 46 more than the 

standard now allows (data from Department of Primary Industries and Water (DPIWE, 

2007)). Figure 2.1 shows a plot of the sixth highest 24-hour average concentrations of 

PM10 (i.e. the next most polluted day after the five allowable exceedances) in each 

capital city in Australia and Launceston over a decade, and shows the magnitude of 

Launceston’s air pollution problem.  

 

Figure 2.1- PM10 concentrations on the sixth-highest recorded day of each year 1991 to 2001 for 

Launceston and every Australian capital city. The red line indicates the NEPM 24 hour standard of 50 µgm-3, 

which may be exceeded just five times annually under the national standard. (Source: Australian 

Government Department of the Environment and Water Resources, 20 Jan 2006) 
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Leading studies have found that wood smoke is the main contributor to particulate air 

pollution in Launceston in winter (Ayers et al., 1999; DEH, 2005b; Lyons and expert 

working party, 1996), while other major Australian cities of larger population 

experience higher proportions of automotive and industrial emissions (Ayers et al., 

1999). Accordingly, the proportion of PM2.5 in PM10 was found to be up to 88% in 

Launceston in winter, compared to around 65% in other cities (i.e. Sydney, Melbourne, 

Adelaide and Brisbane). In light of this, the new NEPM PM2.5 24-hour standard of 25 

µgm-3 coming into effect in 2008 will effectively require a further halving of particle 

pollution concentrations in the Tamar Valley (Power, 2007). 

 

While particulate matter from residential combustion sources is known to be the 

primary source of air pollution in the Tamar Valley, emission rates alone do not 

account for the elevated air pollution levels; unfavourable geographical and 

meteorological factors are known to compound the problem (Lyons and expert working 

party, 1996). In particular, stable atmospheric conditions associated with anticyclonic 

weather patterns in winter are now known to be responsible for the accumulation and 

concentration of PM10 in the Tamar Valley. And most notably, cold air drainage 

transports pollutants downhill, which has been predicted to result in concentrations 

becoming highest in the low-lying areas of the North Esk valley, Glen Dhu and 

southern Launceston (Lyons and expert working party, 1996; Nunez, 1991).  

   

Figure 2.2 – Landsat and Quickbird satellite images of all of Tasmania (left) and just the Tamar Valley 

(right). In the image on the left, a large band of fog is seen covering the entire Tamar Valley and extending 

southeast to the midlands area. The image on the right shows the area around Launceston blanketed by low 

cloud/fog. (Sources: SOER / Google Earth (2007))  

 

In 1996, at the completion of an extensive study into the air pollution problem in 

Launceston, it was recommended that, “all possible measures should be taken by the 

community and authorities to reduce the causes of particulate air pollution in the local 
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environment, as a matter of urgency” (Lyons and expert working party, 1996). 

Following from this study, the situation in Launceston and the Tamar Valley has 

improved in recent years, due in large part to public education and local government 

initiatives. In particular, the Wood Heater Replacement Program established in 2001 

has greatly reduced the particulate air pollution load in the valley. However, concern 

has been raised that this improvement in concentrations may have reached a plateau 

at what is still an unacceptably high level (ABC Northern Tasmania, 2004). 

2.1.5 Tamar Valley respiratory health studies 

Launceston’s elevated PM10 levels and high PM2.5/PM10 ratio, coupled with the known 

relationships between PM2.5 and diseases of the lower respiratory tract, have prompted 

considerable focus on the respiratory health of Tamar Valley residents over the years. 

A study of the geographical spread of childhood asthma across Tasmania was 

completed in 1980 and, using the location of primary schools that were attended by 

participants as the location of ‘cases’, this study found that "the most severely affected 

asthmatics were most prevalent in a wide area around the Tamar Estuary in the North 

of the state. The proportion of cases in this area was over twice the norm; this was 

significant at p=<0.01” (Giles, 1980). Giles (1980) observed that the number of cases 

per population in the Tamar Valley in this class of “sever, chronic” Asthma was 17/209, 

or 8.3%; the observed Tasmanian state average was 2.9%. 

 

An expert working party consisting of scientific and medical researchers was formed in 

1991 to further investigate the effects on respiratory health of what was then a 

worsening air pollution problem in Launceston and the upper Tamar Valley (Lyons and 

expert working party, 1996). Launceston General Hospital (LGH) records were 

examined and evidence suggested an increasing pattern of respiratory disease since 

1980, which was worse in winter. Hospital records between 1992/93 were subject to a 

more detailed analysis of correlations with field PM10 measurements, though small 

population numbers made statistical inferences difficult. International evidence of 

similar studies was cited as indicating that a lack of statistical significance in small-

population studies such as this did not necessarily preclude the existence of a 

relationship (Lyons and expert working party, 1996).  

 

A more recent study attempted to remedy the problems of small population numbers 

by analysing accumulated hospital admissions and Ti Tree Bend monitoring data from 

1992 to 2002 (Mesaros et al., 2007). This study found a significant relationship 

between winter PM10 concentrations and hospital admissions for bronchitis/ 

bronchiolitis. A weak association was also found between hospital admissions and air 

pressure (Mesaros et al., 2007), which would seem to be associated with the 

anticyclonic conditions that drive pollution build up in the valley.  In addition, every 10 
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µgm-3 increase in PM10 was found to result in a 4% rise in hospital admissions. This 

study agrees with the findings of an extensive review conducted by Dockery and Pope 

(1994) of similar studies, which found an average increase of 3.4% in respiratory 

disease for every 10 µgm-3 rise in PM10. 

 

To date, studies of the relationship between air pollution and disease in the Tamar 

Valley have been either non-spatial (e.g. (Lyons and expert working party, 1996; 

Mesaros et al., 2007) or of very coarse spatial resolution (e.g. Giles, 1980) and have 

therefore assumed homogeneity of exposure across the valley. As recent literature 

suggests, however, this assumption may in fact cause pollution exposure, and disease 

rates, to be underestimated in some areas and overestimated in others (Brindley et al., 

2004; DEH, 2005b; Durand and Wilson, 2006; Kingham et al., 2006; Wilson et al., ; 

Wilson et al., 2006; Wilson and Zawar-Reza). 

2.2 Spatial epidemiology  

Spatial epidemiology, or medical geography, has existed for centuries – the most 

widely reported study being Snow’s 19th century investigation of cholera outbreaks in 

London (Snow, 1854). With the development of Geographic Information Systems (GIS) 

in the past few decades, however, spatial epidemiology has become vastly more 

accessible (Koch and Denike, 2004; Maheswaran and Craglia, 2004).  

2.2.1 Why spatial? 

The principle advantage of a spatial approach to epidemiology over traditional 

statistical analyses lies in the fact that spatial studies are sensitive to geographic 

anomalies which in non-spatial studies can be hidden within statistical averages of a 

study population (Koch and Denike, 2004). A spatial study therefore is capable of 

revealing local or regional ‘clusters’ of elevated or reduced disease incidence that are 

otherwise absorbed into generalised population estimates. Maheswaran and Haining 

(Maheswaran and Craglia, 2004) comment that, "a substantial amount of public health 

information has an intrinsic spatial component, which is often not realized. The use of 

GIS....is strongly recommended to bring an added dimension to public health 

intelligence." 

 

Elliott et al (2000a) describe four different realms of spatial epidemiology, the most 

relevant to this study being ‘disease mapping’ and ‘geographical correlation studies’ 

(elsewhere called ‘ecological studies’). Disease mapping is described as an essentially 

descriptive analysis method used to “… summarise spatial and spatio-temporal 

variation in risk”, while geographic correlation studies go some way toward explaining 

disease aetiology (causes or origins of disease). The key difference here lies between 

studying the incidence of disease, and studying the relationship between disease 
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incidence and another factor (Koch and Denike, 2004; Sexton et al., 2002). It should 

be appreciated, however, that a true aetiological study requires a considerable amount 

of background information relating to the personal risk factors – or confounders - of 

individual ‘participants’ in the study, with the ultimate goal being to estimate the true 

exposure risk to communities in scenarios of both exposure and non-exposure (Sexton 

et al., 2002). We are alerted to the dangers of jumping to conclusions with cause-and-

effect studies here, as Schwartz et al (1996) point out that many correlated events 

may not be at all causative or related (e.g. HIV AIDS and stock market increases).  

2.2.2 Confounders in spatial epidemiology 

There are a great many confounding factors in epidemiological studies, the effects of 

which are many and varied. Both identifying and controlling for confounders, however, 

can be complicated (Greenland and Robins, 1986; Maheswaran and Craglia, 2004). A 

recent study in Tehran for example identified the following confounders in a study of 

atmospheric air pollution and morbidity: daily temperature, humidity, day of the week, 

season, ‘holiday effect’, smoking history (several sub-categories identified), exposure 

hours, occupational exposure, home heating method, presence of common cold in 

household, history of asthma, age, gender, education and economic status (Yunesian 

et al., 2006). Others include marital status, family size, unemployment or rank of 

employment, various measures of indoor air quality, and housing proximity to pollution 

sources (Gilliland et al., 2005; Jerrett et al., 2003; Pope III, 2000; Schwartz et al., 

1996). Some illnesses can even act as confounders for the disease of interest, such as 

diabetes and respiratory illnesses being confounders for cardiovascular disease (Peel et 

al., 2006). Long term cigarette smoking also produces a range of respiratory 

symptoms similar to those associated with exposure to fine particulate matter, though 

the effects of smoking are greater (Pope III, 2000). 

 

Spatial epidemiology then introduces its own unique confounder: spatial 

autocorrelation (Jerrett et al., 2003; Lipton et al., 2005). Positive spatial 

autocorrelation dictates that objects that are close together are more similar than 

objects that are further apart. In contrast to correlation – which is a measure of 

similarity between two different datasets – autocorrelation is a measure of how similar 

the individual components of a single dataset are to each other and how these 

relationships change with distance. In an urban context, spatial autocorrelation exists 

in the uneven organisation of houses across the city, as well as in the heterogenous 

social structure of the population (Hayes, 2003). Failure to account for spatial 

autocorrelation in epidemiological studies can influence both the magnitude and 

significance of any relationships drawn between air pollution and health effects (Jerrett 

and Finkelstein, 2005). 
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2.2.3 GIS and ‘Environmental Justice’: a case for the spatial approach 

Many studies have shown that within a given population, regions of lower socio-

economic status show generally higher rates of morbidity and mortality than more 

affluent areas (Carstairs, 2000; Hayes, 2003; Jerrett et al., 2003; Koch and Denike, 

2004; Lipton et al., 2005; Maantay, 2002; Snow, 1854; Yunesian et al., 2006). 

Compared to the more affluent in society, the deprived are more likely to live in poorly 

insulated houses and in less favourable geographical locations, experience higher rates 

of occupational exposure to industrial pollutants, smoke more heavily and experience 

generally diminished levels of overall health.  

 

In North America in particular, studies of environmental justice are consistently 

showing that certain geographical sections of the population, often based on racial and 

socioeconomic divides, are more disadvantaged than others in terms of both exposure 

to environmental pollutants and potential impacts on health (Lipton et al., 2005; 

Maantay, 2002). Elliott and Wakefield (2000) comment that this socio-economic 

confounding can present a real problem in studies interested in disease aetiology, as 

socio-economic factors are strongly correlated with both disease occurrence and levels 

of pollution and industry (as the poorest in society suffer more health problems 

generally, and often work in and/or live near sources of industrial pollution). Thus, an 

association between industry and disease will be detected even in the absence of air 

pollution effects (Elliott and Wakefield, 2000). This has been described as a special 

case of spatial autocorrelation. 

 

Adjusting for deprivation, however, may be inappropriate in a study interested in the 

effects of air pollution per se. Regardless of whether the issue is one of environmental 

equity, or true air pollution exposure, an elevated incidence of disease may be reason 

enough for further investigation and/or intervention (Elliott and Wakefield, 2000; 

Lipton et al., 2005). 

2.3 Air pollution exposure estimates 

Studies investigating the relationships between PM10 and disease occurrences require 

some way of determining the level of pollution exposure experienced by the study 

group. A majority of non-spatial studies have traditionally relied on PM10 monitoring 

data from a single or few locations in the vicinity of the study area to test for 

correlations with disease rates (Goldberg et al., 2006; McGowan et al., 2002; Medina 

et al., 2004; Mesaros et al., 2007; Ulirsch et al., 2007). This approach is now being 

cautioned against though, particularly for studies of urban environments (Wilson et al., 

2006).  
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Spatial studies on the other hand, require the generation of an ‘exposure surface’ as a 

means of estimating the geographical variations in pollution exposure of a population 

or an individual for the area and time period of interest.  

2.3.1 Exposure surfaces – the spatial approach to exposure classification 

Various techniques have been employed for creating exposure surfaces, ranging in 

sophistication from interpolating measured PM10 data from a network of monitoring 

stations (e.g. (Brindley et al., 2004; Leem et al., 2006; Liao et al., 2006)), to 

modelling air pollution dispersion within the region based on local meteorology, 

topography and several other known variables (e.g. (Scoggins et al., 2004; Stedman, 

2007; Wilson and Zawar-Reza, 2006)). Some small-scale studies have also supplied 

participants with personal monitoring devices that directly measure individual 

exposures across time (Monn, 2001; Zeger et al., 2000). Other researchers have 

employed various proxies for exposure estimation such as land use type, terrain 

features, distance to known pollution sources, and land cover and thermal signals from 

satellite imagery (Corburn, 2007; Elliott et al., 2000a; van de Kassteele et al., 2006; 

Weng and Yang, 2006).  

 

Inevitably, uncertainty exists in the estimation of all exposure surfaces, however, as 

pollution exposure varies between individuals and for any one individual across time 

(Wilson et al., 2004; Wilson et al., 2006; Zeger et al., 2000). It is therefore 

challenging to produce a valid and comprehensive exposure layer, even for small 

geographic areas (Elliott et al., 2000b). 

2.3.2 Exposure misclassification 

Exposure misclassification has been described as the weakest link in epidemiological 

studies (Elliott et al., 2000b). This arises when false assumptions are made about 

either the spatial distribution of pollution across the study area or the assumed level of 

exposure of each individual. The impacts of exposure misclassification on studies of 

disease aetiology can be considerable (Ito et al., 1995; Wilson et al., 2004), thus it is 

important to recognise the inherent value and limitations of a study before making 

categorical assumptions about disease aetiology based on apparent correlations 

between disease occurrences and exposure surfaces.   

 

This study utilises the de-identified residential address of respiratory patients as the 

presumed point of exposure to outdoor air pollution. While this is a common approach 

in ecological studies, it has also been strongly criticised (e.g. (Briggs, 2005)). 

Certainly, a failure to account for other forms of exposure (e.g. occupational, indoor, 

vehicular, etc.) leaves this study vulnerable to exposure misclassification. However, a 

fundamental assumption being made here relates to the fact that winter air pollution in 
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the Tamar Valley is worst at night ((Lyons and expert working party, 1996; Nunez, 

1991; Power, 2001), and this is a time when most people are assumed to be at home. 
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3 Data acquisition and pre-processing 

3.1 Introduction 

This chapter details the pre-processing of Launceston General Hospital admissions data 

in preparation for disease cluster detection. De-identification of medical records, 

required to protect patient privacy, is explained in detail. The dataset spans a 15 year 

period from 1992-2006 and includes abridged records of all hospital inpatients whose 

ICD-9/ICD-10 (International Classification of Disease) discharge code corresponded to 

Asthma, Bronchitis, Bronchiolitis or Chronic Obstructive Pulmonary Disease (COPD) as 

the primary disease condition.  

3.1.1 Point data vs. aggregate data 

Spatially represented medical data is most often available to researchers in aggregate 

form. That is, ‘point’ address locations of disease occurrence are grouped into some 

larger, often arbitrary, unit of space. The size of aggregation unit varies with the 

spatial scale of the study, though for micro scale studies such as this, data are 

commonly aggregated into local government areas, ‘urban’/’rural’ divisions, Census 

collection districts or postcodes. It is becoming increasingly evident, however, that 

aggregate data is often not sufficient to answer important spatial questions about 

environmental effects on public health (Armstrong et al., 1999; Boulos et al., 2006; 

Kwan et al., 2004; Wheeler, 2007). 

 

Ideally, researchers would have access to address data in point form (or ‘case event 

data’), though confidentiality requirements often limit access to this information 

(Boulos et al., 2006; Maheswaran and Craglia, 2004).  Issues of confidentiality and 

geoprivacy are addressed more thoroughly in section 3.1.2 below. Using point data 

that has undergone some level of masking to preserve confidentiality is the most 

preferable method for small area ecological studies (Armstrong et al., 1999).  

 

Following ethics approval, this study was granted access to a dataset of much higher 

spatial resolution than the majority of comparable studies. Patient address locations 

were requested and supplied in point form rather than aggregate form, which greatly 

enhanced the potential for detailed spatial analysis. However, working with point data 

instead of aggregate data introduces issues of patient confidentiality and ethical 

reporting that are not generally considered in studies of coarser spatial resolution.  

3.1.2 Confidentiality, geoprivacy and ethical reporting  

In public health research, confidential information is generally accepted to mean any 

demographic or medical information that can potentially identify an individual (Quinn, 
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1997). ‘Geoprivacy’ then refers to the protection of information that could identify an 

individual’s home, place of work, or path of travel (Kwan et al., 2004). In order to 

preserve patient privacy in studies of spatial health data, researchers must employ 

some method of ensuring that both privacy and geoprivacy of individuals is 

maintained. These can be implemented prior to data analysis (e.g. (Wheeler, 2007)), 

prior to publication of maps (e.g. (Curtis et al., 2006)), or both.  

 

The publication of spatial health data in map form presents real concerns for 

maintaining public privacy and confidentiality. The rapid rise in popularity of web 

mapping (Google Earth) has had a powerful impact on communities lacking the means 

to otherwise use GIS (i.e. either the hardware, software or technical ability) (Curtis et 

al., 2006). Researchers are required to act responsibly. Curtis et al (2006) warn that 

"...any map containing point data, even when little secondary spatial information is 

presented, is vulnerable to being re-engineered [post-publication] to reveal the actual 

addresses associated with the points. It is therefore vital that some masking occurs of 

the original point data." 

 

Three core methods of preserving geoprivacy through the application of geographical 

masks are reported in the literature: aggregation, affine transformations and random 

perturbations (Armstrong et al., 1999; Kwan et al., 2004). The spatial accuracy lost 

through aggregation of point data has already been discussed; this is perhaps the least 

preferable option of the three. Affine transformations impose a systematic shift in the 

point dataset as a whole that maintains the positions of the points relative to each 

other but shifts them all in some way within the study area (i.e. rotation, re-scaling or 

moving) (Armstrong et al., 1999).  

 

Random perturbation then is an introduction of random error into the dataset that 

shifts each point a random distance, within a defined upper limit, from its true location 

(Armstrong et al., 1999; Kwan et al., 2004). Random perturbation, or ‘random 

scrambling’, was chosen as the method of de-identification most suited to this current 

study.  

3.2 Data acquisition and pre-processing 

3.2.1 Project ethics approval 

Ethics approval was granted for this project from the University of Tasmania Social 

Science Ethics Committee on 19 May 2007 (project number H9382). The committee 

granted permission to utilise de-identified patient address data in point form sourced 

from medical records obtained through the Department of Health and Human Services, 

Tasmania (DHHS). De-identification methods are detailed in section 3.3 below. 
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3.2.2 Spatial extent of the study area  

All data in the study were analysed and displayed in the projected coordinate system 

GDA 94 UTM Zone 55S (MGA). All spatial analyses and map production was done using 

ESRI software ArcGIS v 9.1. The study area was aligned to coincide with the spatial 

extent of the Tamar Valley Airshed Study (TVAS) for ease of comparison with this work 

(see (Power, 2001)). This bounding box had the following coordinates: Top: 

5468324.32, Left: 464316.71, Right: 535415.74, Bottom: 5392170.94 (see Figure 

3.1). A rectangular area with these coordinates was digitised and all datasets were 

‘clipped’ to this extent at various stages of analysis. 

 

    

Figure 3.1 – The white rectangle demarcates the spatial extent of the Tamar Valley study area in northern 

Tasmania 

3.2.3 Address points dataset 

A section of the Address Points Dataset (APD) was provided by Land Information 

Services Tasmania (theLIST). This dataset in its full spatial extent contains, among 

other things, the street address and centroid XY co-ordinate of every residence in 

Tasmania (theLIST, 2007). 
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For urban and rural properties less than 1 ha in area, each point location in the APD 

corresponds to the centroid (spatial mean point) of the cadastral parcel. Rural 

properties greater than 1 ha in area are defined by a point location 50 m perpendicular 

to the road midline at the point of access to the property (theLIST, 2007). Spatial 

‘accuracy’ of these points is reported as being within 5 m for properties less than 1 ha 

and 50 m for properties greater than 1 ha. Properties with multiple residences (e.g. a 

block of flats) are listed as a single address point, corresponding to the street address 

of the parent property (theLIST, 2007).   

 

While points in the APD do not always correspond to the absolute spatial location of the 

house on a given property, it was believed that the dataset gave an adequate 

estimation of ‘place of residence’ for the study population. It also provided a platform 

from which to launch the de-identification process detailed in section 3.3 below. Figure 

3.2 shows the APD coloured by postcode and illustrates that using individual address 

points offers vastly greater spatial resolution than if data were aggregated by 

postcode.  

 

 

Figure 3.2 - Map of a section of the Tasmanian Address Points Dataset with points coloured by postcode; a 

digital elevation model is shown in shaded relief to display terrain features. Postcodes in the Tamar Valley 

cover vast areas of  varying terrain, and are therefore not a suitable aggregation unit for micro-scale health 

studies such as this.  
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3.2.4 Census data 

The Australian Bureau of Statistics (ABS) provided spatially referenced population data 

for 2001 aggregated to collection district level. There are on average 200 dwellings 

within each collection district (Australian Bureau of Statistics, 2001), which results in 

these areas varying greatly in size across both urban and rural regions. Census data 

for the Greater Launceston region was also sourced in non-spatial format for 1996, 

2001 and 2006. Figure 3.3 shows the Address Points Dataset and Census collection 

districts of the Tamar Valley and surrounding region. A star-shaped census district in 

the Tamar River, representing expatriates, travellers and people who were otherwise 

absent from their place of residence on Census night, was deleted from the Census 

layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 - The Address Points Dataset and Census collection districts, coloured according to population 

numbers. The white rectangle defines the spatial extent of the study area. 

3.2.5 Population estimation ‘per residence’ 

An estimation of population ‘per residence’ was calculated by spatially joining the 

Address Points Dataset to the 2001 Census collection districts layer in ArcGIS. The 

total population of each collection district was then divided by the number of ‘houses’ 

within it. This gave a crude approximation of population at each address point in the 

study area. Once this calculation was complete, both the Census layer and the APD 

were ‘clipped’ to the spatial extent of the study area (Figure 3.4). Resulting occupancy 
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numbers ranged from 0.3 to 4.2 occupants per house. In summary, this gave a total 

population of 94,984 spread over 42,997 addresses for the entire study area.  

 

The population of the Tamar Valley has been described as relatively static (Power, 

2001), and statistical records confirm this (Australian Bureau of Statistics, 2007). 

However, between 1996 and 2001 both Launceston’s and George Town’s population 

declined slightly (-0.5%; -1.3%), then increased slightly (+0.7%; +0.8%) from 2001 

to 2006 (Australian Bureau of Statistics, 2007). Although these fluctuations are small, 

the available 2001 spatial data reflects a time when population was at its lowest for the 

three Census years. In addition to this, census data generally is known to slightly 

underestimate total population (Diamond, 1997). Therefore all population counts are 

likely to be modestly underestimated for the study period. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 - Census collection districts and Address Points Dataset were combined to give an approximation 

of population ‘per house’, then clipped to the spatial extent of the study area. Digital elevation model is 

displayed in shaded relief. 

3.2.6 Medical records 

Abridged medical records of respiratory admissions to the Launceston General Hospital 

(LGH) between 1992 and 2006 were sourced from the Department of Health and 

Human Services, Tasmania (DHHS). These electronic datasets contained a record 

number, date of admission, length of stay and street address of every admission within 
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this period. LGH is by far the largest public hospital in the Tamar Valley, with George 

Town Hospital in the north currently servicing just 15 acute-care beds. As admissions 

for both hospitals are recorded centrally at LGH, it was believed that the requested 

dataset was representative of all Tamar Valley inpatients admitted into the public 

system over the study period.   

 

For reasons of patient confidentiality these datasets could not be accessed directly, and 

it was therefore necessary to devise a method of ‘de-identifying’ patient addresses 

remotely. De-identification is a process whereby personal information is altered or 

truncated to preserve the privacy of individuals. This process is detailed in section 3.3 

below.  

 

Age and gender data of each patient were not requested with the medical records as it 

was thought that this could facilitate the possible re-identification of individuals. For 

example, if for a given address there was an admission for a 52-year-old male in 1992 

and a 64-year-old male in 2004, then it could reasonably be assumed that that same 

address now (in 2007) may be home to a 67-year-old male, with a history of 

respiratory disease. This was believed to be an undesirable outcome. Unfortunately, 

the absence of age and gender information from the dataset also meant that these 

demographic confounders could not be accounted for. 

3.3 Random perturbation of address points 

This section details the de-identification of patient address data through a process of 

random perturbation, or scrambling. Each point location was shifted a uniform random 

direction and distance from its true location up to a defined maximum radius. This 

radial distance was determined intuitively through examining both the APD and a 

digital elevation model (DEM) of the study area. A distance of 200 m was found to be 

mutually suitable for maintaining the spatial integrity of the dataset and protecting 

patient geoprivacy.  

 

Given the large distances between some rural properties, it was considered that rural 

properties may require scrambling a greater distance than urban ones to adequately 

preserve geoprivacy. However, this was decided against on the grounds that the 

spatial locations of rural addresses were already less ‘accurate’ than urban locations in 

the Address Points Dataset (as discussed in section 3.2.3 above); the additional spatial 

error that would have been introduced by shifting rural points even further from their 

‘true’ location was not desirable. It was therefore decided instead to perform the 

analyses based on a 200 m maximum radial perturbation and remove rural points from 

maps prior to publication. 
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The general format of both the medical records (Table 3-1) and address points 

datasets (Table 3-2) can be seen below.  

 

Table 3-1 - General format of the Address Points Dataset (APD). 

             

Geo-ID 

Geo 

type 

Easting Northing Street 

number 

Street 

name 

Street 

type  

Locality Postcode 

904232 urban 511248 5414868 23 Smith Rd Launceston 7250 

1014089 rural 510014 5416897 101 Fred  St Mt Direction 7277 

950296 urban 461707 5446182 49 North  Ave George Town 7253 

 

 

Table 3-2 - General format of the medical records datasets prior to de-identification. Admissions for each 

disease (Asthma, Bronchiolitis, Bronchitis and COPD) were summarised in separate tables. (All displayed 

data are hypothetical.) *LOS = length of stay associated with hospital admission. 

Record 

number 

Admission date LOS* Street 

number 

Street 

name 

Street 

type 

Locality  Postcode Primary 

Disease 

 

12345-1 1992-06-05 2 *** *** *** *** 7250 ASTHMA 

54321-4 2005-11-23 12 *** *** *** *** 7249 ASTHMA 

98765-1 1994-02-19 1 *** *** *** *** 7278 ASTHMA 

 

3.3.1 De-identification of medical data 

Initially, a macro was designed that accessed both the medical records and the 

Address Points Dataset (APD) simultaneously. This macro was developed in Visual 

Basic by Darren Turner (UTAS) and worked in five stages:  

1. An address row was read from the medical records file (e.g. 23 Smith Rd 

Launceston);  

 

2. This was matched to the corresponding address in the ADP, and the relevant true 

X,Y coordinates were found; 

 

3. A uniform random number generation with an absolute upper limit of 200 (i.e. +/- 

200) was applied to both the X (Easting) and Y (Northing) co-ordinates of the true 

address location; 

  

4. It was identified that points could potentially be moved more than 200 m (Euclidean 

distance) from their true location if high values were added to both the Easting and 

Northing value, as illustrated in Figure 3.5, resulting in a square buffer rather than 

circular.  
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Figure 3.5 - Illustration showing that address points could be moved further than 200 m from their 'true' 

location (up to 282.8 m ) if maximum perturbation distances were added in both the Easting and Northing 

direction. Basic Pythagorean theory was applied to remedy this problem. 

 

To instead ensure a circular buffer with 200 m maximum radius, Pythagorean theory 

was applied: E2 + N2 = c2; where E is the distance in metres that the true location will 

shift along the Easting axis, N is the distance in metres that the true location will shift 

along the Northing axis, and c is total distance shifted (maximum = 200). After 

randomly generating both E and N the equation was solved for c. An expression was 

considered ‘true’ if c <= 200 and ‘false’ otherwise; if false, step 3 was repeated until 

true. 

 

5. The scrambled X,Y location was written into the appropriate row of the medical 

records file and the street address columns were deleted. 

 

At the completion of this 5-step process, medical records could then be accessed which 

contained a scrambled address location in place of the street address. Unfortunately, 

this method proved unsatisfactory for three reasons. Firstly, applying a new 

perturbation to every address in the medical records dataset meant that none of the 

geographic locations of the resulting disease cases aligned exactly with the locations of 

‘houses’ in the APD. This not only considerably raised the number of data points and 

therefore the processing speed required for analysis, but also resulted in all of the 

‘true’ address locations being free from disease cases. Secondly, in cases with 

numerous admissions from the same street address, as was most commonly the case 

with COPD, the resulting data points were so neatly, randomly arranged around a 

single address point that the true address location was easily re-identifiable. And 

thirdly, by randomly moving only the case data and leaving the population data in its 

true location, it was thought that address locations could potentially be re-identified by 

analysing street patterns of address points, particularly in urban areas. Figure 3.6 

illustrates these issues.  

200 m 

282.8 m 

200 m 
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Figure 3.6 - Unsatisfactory results of the first de-identification attempt. Dark blue points are house locations 

from the Address Points Dataset, green points indicate COPD incidence. For dwellings with numerous 

admissions, it is clearly seen that ‘cases’ accumulate and become clustered in a 200 m circular buffer around 

the true address location. This renders address data potentially re-identifiable. It can also be seen that 

patterns in the organisation of urban properties make it possible to re-identify the original street address. 

 

In light of the above observations, it was determined that a new method of de-

identification was needed that met the following two criteria: disease ‘cases’ must align 

exactly with address points; and, patterns of address points must be altered to 

disallow possible re-identification. 

3.3.2 A better method: de-identification of address data 

A second macro was then designed that first scrambled the points in the Address 

Points Dataset and then assigned these scrambled co-ordinates to the medical records. 

This macro was developed in Visual Basic by Tony Miller (Eighty Options, Tasmania) 

and worked in five stages: 

1. A uniform random perturbation was performed on all Easting and Northing 

values in the Address Points dataset (ADP). To once again ensure that the 

buffer was circular rather than square, and that the circle had a maximum 

radius of 200 m, Pythagoras’ law was applied, though slightly differently this 

time: 

  N2 +E2 = c2;  

where N is the amount in metres to be added to the Northing value, E is the 

upper limit of the amount in metres to be added to the Easting value, and c is 

the maximum radius of the circular buffer (200). A number between -200 and 

200 was first randomly generated to be added to the Northing value.  

Pythagoras’ law was then solved for E, given that c = 200. For example, if N 

has been generated as -64, then solving for E gives:  

  E2 = c2 – N2 

         = 2002 – (-64)2 

        = 40000 – 4096 
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       = 35904 

   E = +/- 189.5 

This value for E is an absolute value that provides the range within which the 

second number will be randomly generated. That is, a number between -189.5 

and 189.5 is then randomly generated to be added to the Easting value of that 

true address point in the APD.   

 

This step was applied to every address location in the APD such that all address 

locations were then randomly shifted within a 200 m radius, in any direction, 

form their true location.    

 

2. A street address was read from the medical records file; 

 

3. This street address from medical records was matched with a street address 

in the APD;  

 

4. The newly generated (scrambled) X,Y location corresponding to that address 

was written into the medical records file (just as a look-up table). In this way, 

multiple admissions from the same street address were all assigned the same 

X,Y coordinates.  

 

5. The primary disease name (i.e. ASTHMA, BRONCHIOLITIS, BRONCHITIS or 

COPD) was read from each of the medical records files, and for every ‘case’ of 

every disease registered at that address, a number was added incrementally to 

the corresponding column in the APD.  

The resulting format of the Address Points Dataset and medical records is shown in 

Table 3-3 and Table 3-4, respectively. Figure 3.7 demonstrated that address points 

were successfully ‘scrambled’ a random direction and distance up to 200 m from their 

original location.  

 Figure 3.8 and Figure 3.9 show the spatial outcome of this de-identification process, 

which proved a far superior method to the first attempt. 

 

Table 3-3 - General format of the Address Points Dataset (APD) after random perturbation with the second 

macro. Street addresses have been removed and true Easting and Northing values have been replaced by 

the results of the random perturbation. Incremental counts of each disease have been generated (AS = 

Asthma, BL = Bronchiolitis, BR = Bronchitis, COPD = Chronic Obstructive Pulmonary Disease). 

Geo-ID Geo 

type 

Adjusted 

Easting 

Adjusted 

Northing 

Postcode AS BL BR COPD 

904232 urban 511214 5414903 7250 2 0  1 0 

1014089 rural 510164 5416842 7277 0 0 0  0 

950296 urban 461709 5446116 7253 1 0 0 1 
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Table 3-4 - General format of the medical records datasets after de-identification with the second macro. 

Street addresses have been replaced with the adjusted Easting and Northing values from the APD. (All data 

are hypothetical.) *LOS = length of stay associated with hospital admission. 

Record number Admission date LOS Adjusted 

Easting 

Adjusted 

Northing 

Postcode 

12345-1 1992-06-05 2 502175 5529683 7250 

54321-4 2005-11-23 12 492758 5418294 7249 

98765-1 1994-02-19 1 512734 5467325 7278 

 

 

 

Figure 3.7 – Successful de-identification of address points using the second macro. This diagram was 

developed using sample address data to check to accuracy of the macro prior to implementation. 

 

Figure 3.8 and Figure 3.9 then show the Address Points Dataset at two spatial scales 

before and after random perturbation. This de-identification process proved a far 

superior method to the first attempt. A comparison of Figure 3.8 and Figure 3.9 shows 

that the random perturbation of address points resulted in addresses at the 

neighbourhood scale becoming unrecognisable, though at a coarser resolution (i.e. the 

whole study area) there is very little change. This was precisely the outcome that was 

hoped for; spatial integrity of the dataset was not compromised at the coarse 

resolution of the entire study area, and geoprivacy was maintained at the 

neighbourhood scale.  

 De-identification of address points… 

The LIST Address Points 

Dataset (2007) was 

scrambled with a macro 

that randomly moved 

each “house” up to 200 m 

from its true location, in 

any direction. 

True location 

“Scrambled” location 

200 m buffer 
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Figure 3.8 - The Address Points dataset at two scales in its original form 

  

 

Figure 3.9 - The APD at two scales after random perturbation (Source: Land Information Services Tasmania 

(theLIST))  

 

Address Points Dataset – scrambled 200 m 
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3.3.3 Ethical reporting of spatial public health data 

It must be acknowledged that while there is clear value in analysing health data 

spatially, the interpretation and presentation of results requires great care. 

Inappropriate reporting of disease clusters can cause unnecessary alarm and distress, 

particularly among the at risk population (Fefferman et al., 2005; Sabel and Loytonen, 

2004), and this must be considered along with any presumed benefit of identifying 

public health concerns.  

 

The publication of spatial health data holds real concerns about geoprivacy and 

confidentiality, yet no standards currently exist for the mapping of health data in point 

form. Studies have shown that it is sometimes possible to ‘re-engineer’ modified 

address data from published maps to re-identify some of the residences/residents, 

even if background cartographic elements have been removed (eg roads) (Curtis et al., 

2006).  

 

The U.S. Department of Health and Human Services (HHS) has produced guidelines for 

the publication (mapping) of health data in aggregate form. They state that maps 

should not be produced at the residential level for areas with a population of less than 

20,000 (Curtis et al., 2006); this is somewhat open to interpretation. It is noted that 

there is no mention of the sparsity of address points in rural vs. urban settings, nor the 

scale at which maps can be published. It is also not clear whether this guideline refers 

to aggregation units of 20,000+, or to the total population of the study area. In the 

absence of clear guidelines for ethical reporting, a combination of standards for 

aggregate data and common sense should be applied.  

3.3.4 Further masking of rural addresses 

As mentioned above, the considerable distances between many rural properties in the 

study area raised some concerns about the risk of possible re-identification of these 

addresses post-publication. As seen by comparing the coarse resolution images on the 

left of FiguresFigure 3.8 andFigure 3.9, there is little change in the relative position of 

some rural address points after the 200 m perturbation as some addresses are 

considerably more than 200 m apart. Other researchers recommend dealing with this 

problem by removing sparse data points, aggregating point data into a generalised 

surface, or refraining from publishing maps altogether (Curtis et al., 2006). 

 

To further ensure geoprivacy of rural residents in this study, all address points that 

were further than 200 m from their nearest neighbour were removed from the dataset 

prior to map production. Some points with only one or two close neighbours, that were 

thought to be possibly re-identifiable, were also deleted. This was achieved by first 

creating a 200 m buffer around each address point and selecting all those with no 
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overlapping buffers (i.e. no neighbours within 200 m). The dataset was then visually 

checked for any other address points that were considered potentially recognisable at a 

scale of 1:400,000 (the scale at which the majority of maps were produced for this 

study). Remote points were thus included in the analyses of this study, but excluded 

from the published maps. 
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4 Disease mapping 

4.1  Research Hypothesis 

• “Spatial and/or temporal clusters of respiratory disease are evident within the 

Tamar Valley” 

• Hnull: “There is no clustering of respiratory disease in the Tamar Valley at any 

spatial or temporal scale.” i.e. “There is complete spatial and temporal 

randomness.”  

4.2 Introduction  

This chapter details the analysis of de-identified patient address data for the detection 

of areas of elevated risk of respiratory disease in the Tamar Valley.  Three methods of 

cluster detection are applied and explained in detail.  

4.2.1 Generalisation of point patterns into ‘hot-spots’ or ‘clusters’ 

In its simplest form, point data may be observed ‘as is’ for a rough look at disease 

occurrences across a study area. It is useful then to generalise point data of disease 

occurrence into areas of elevated or reduced risk of disease. ‘Cluster detection’ is a 

common term in the literature referring most often to the detection of areas of 

elevated disease risk. It has been suggested that the term ‘spatial variation in risk’ is 

more appropriate than ‘cluster’ in studies of respiratory disease as it is argued that the 

latter implies a genetic or infectious component to the disease under study (and 

therefore non-independence of observations) (Diggle, 2000; Sabel and Loytonen, 

2004). However, ‘cluster’ has a relatively generic meaning across the majority of 

literature and so both terms are used concurrently here. 

4.2.2 The value of disease mapping  

Throughout its long history, disease mapping has proven an invaluable tool in studies 

looking to answer a fundamental question; “where is disease most prevalent?” By 

effectively answering this question, further questions of social/environmental justice 

and disease aetiology can be investigated.  

 

On a global scale, disease mapping by the World Health Organization has been 

singularly instrumental in detecting the presence and spread of communicable diseases 

such as HIV AIDS, H5N1 avian influenza (bird flu) and severe acute respiratory 

syndrome (SARS). This initial knowledge of disease geography allows for the 

identification of at-risk populations and the development of highly targeted, cost-

effective intervention strategies (WHO, 2007).   
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Sabel and Loytonen (2004) pose a series of generic questions that could be answered 

with a cluster analysis, including: 

• Is the observed clustering a result of natural background variation? (i.e. is 

the background population itself spatially clustered?) 

• At what scale does clustering occur? 

• Are clusters a result of some existing heterogeneity in the study area (i.e. 

autocorrelation)? 

• Are clusters associated with proximity to roads or other pollution sources?  

• Are spatial clusters also aggregated in time?  

These research questions guided much of the current study.  

4.2.3 Cluster detection techniques 

Identifying the presence and/or location of disease clusters in a study area are central 

components of many spatial epidemiological and pre-epidemiological studies (Kelsall 

and Diggle, 1998; Maheswaran and Craglia, 2004; Sabel and Loytonen, 2004). Cluster 

detection techniques can be global or local, focused or general and use aggregate or 

individual-level data (Elliott et al., 2000a; Fotheringham et al., 2002b; Maheswaran 

and Craglia, 2004).  

 

Global cluster detection determines the presence/absence of spatial clustering in an 

entire dataset and can provide useful initial information about the study area. Non-

spatial epidemiological studies can be thought of as using global test statistics, as the 

presence and magnitude of disease rates (and/or relationship to environmental 

factors) are considered for the entire population as a whole (Fotheringham et al., 

2002a). Examples of spatial global cluster detection techniques include the K function, 

Pearson's chi-squared statistic, kernel intensity function ratio summary, and Cuzick 

and Edward’s method (Cuzick and Edwards, 1990). Global statistics designed to detect 

spatial similarity (autocorrelation) include Moran's I and Geary's c (Sabel and 

Loytonen, 2004). 

 

Local clusters then can be defined as specific areas within the dataset where elevated 

or reduced rates of disease occur; this is the particular domain of spatial data analysis 

(Fotheringham et al., 2002a). Local clustering techniques include: kernel intensity 

function; Getis Ord statistics, and Kulldorff’s spatial scan statistic (Wheeler, 2007).  

 

Moving window methods are a type of local test able to detect the spatial location of 

excess cases. The search ‘window’ can be defined in a number of ways (e.g. circle, grid 

cells, annulus etc) and these methods generally assess where the "number of cases 

within a window exceeds that expected by chance" (Sabel and Loytonen, 2004). 

Examples include Openshaw's method, Besag and Newell's method, Kulldorff’s scan 
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statistic, and Cuzic and Edward's method. Moving window methods are particularly 

recommended for sparse data (Wartenberg and Greenberg, 1993, in: (Sabel and 

Loytonen, 2004).  

 

Tests for focused clusters concentrate on a particular known pollution source and look 

for proximal disease clusters. General, or unfocused, tests on the other hand assume 

nothing of relative proximity to pollution sources and test the whole population for 

local areas of elevated disease risk (Kulldorff and Nagarwalla, 1995).   

 

Global clustering of respiratory disease has already been observed and reported for 

Launceston and the Tamar Valley as a whole (i.e. (Giles, 1980; Lyons and expert 

working party, 1996; Mesaros et al., 2007)). This current study therefore employed 

three local unfocused cluster detection techniques to investigate the spatial variability 

in disease rates at the micro-scale: Kernel Density Estimation, the Getis Ord Gi* 

statistic, and Kulldorff’s spatial scan statistic, implemented in SaTScan. Each is 

explained in detail below.  

4.3 Methods  

4.3.1 Software requirements 

ESRI software ArcGIS version 9.1 was used for the majority of spatial data analysis 

and map generation in this section of the study. 

 

SaTScan v 7.0.3 was used to implement Kulldorff’s spatial scan statistic for cluster 

detection. SaTScan is a public access software package developed by Kulldorff (2006) 

and was designed explicitly for the purpose of detecting local disease clusters within a 

population, though it is applicable to a broad range of research fields. SaTScan 

incorporates Poisson, Ordinal, Bernoulli, Exponential, Normal and Space-Time 

Permutation statistical models suitable for various research questions and data types. 

Data can be searched for purely spatial, purely temporal or spatio-temporal clusters of 

disease.  

4.3.2 Preliminary disease analysis 

Disease data were first analysed non-spatially to observe global temporal trends in 

disease occurrence. Various combinations of Asthma, Bronchiolitis, Bronchitis and 

COPD admissions numbers were analysed and graphed for comparison. Throughout the 

study, disease ‘houses’ were used to represent address points where one or more 

disease cases was recorded; disease ‘cases’ refers to total hospital admissions and can 

include multiple admissions from the same address. 
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4.3.3 Kernel Density Estimation 

Kernel Density Estimation (KDE) was used in this investigation primarily as an 

exploratory data analysis tool. KDE can be conceptualised as the application of a 

moving ‘window’ that systematically scans a spatial dataset to determine varying 

density across the study area. Kernel Intensity Estimation refers to the same technique 

used to analyses the distribution of attributes within the data (e.g. rather than the 

number of houses occurring in a given area, the number of house occupants in a given 

area) (Waller and Gotway, 2004; Wheeler, 2007). Kernel Intensity Estimation is a 

more correct definition for its use in the current study, though ‘Kernel Density 

Estimation’ is commonly used to describe both functions in the literature.   

 

The output of KDE is a unit-less measure of density that corresponds to the function of 

the mathematical curve created by the kernel window passing over the study area; this 

is illustrated in Figure 4.1. The integral of x is always equal to 1, so as the radius of the 

search window increases, the maximum value of f(x) decreases. The optimal search 

window can either be determined intuitively or through a mathematical investigation, 

mostly incorporating the Mean Integrated Squared Error (MISE) which is a measure of 

agreement between the kernel density estimate and the true probability density 

estimate (Fotheringham et al., 2002b). As KDE was used here largely for exploratory 

purposes, intuitive selection of the kernel window was thought to be adequate.  

 

Figure 4.1 – Kernel density estimation, showing the effect of different bandwidths, or search windows, on 

both the ‘smoothness’ of the created density surface and the magnitude of reported density estimates (f(x)). 

Bandwidth increases from left to right in the diagram. (Adapted from (Silverman, 1986)) 

 

KDE was applied using the ArcGIS Spatial Analyst extension, with the analysis 

environment set to the spatial extent of the study area. It is usual to produce a map 

layer of expected disease incidence and then compare this with the observed disease 

layer to compare the differences (Maheswaran and Craglia, 2004). The function was 

therefore first applied to the population as a whole – using the created population ‘per 

residence’ attribute of the APD – to illustrate the spatial pattern that would be 

expected if disease occurrences were evenly distributed across the population.  

 

KDE was then applied to data from each disease individually (i.e. the point locations of 

Asthma, Bronchiolitis, Bronchitis and COPD accumulated over the 1992-2006 study 

period), and to all diseases collectively. Data were grouped over the entire 15 year 
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study period for initial investigations. Temporal variation in disease patterns where 

then explored using the Asthma dataset for each year, and each season, to test for 

robustness of spatial patterns over time.  

4.3.4 Getis Ord Gi* statistic 

The Getis Ord Gi* statistic with z-score rendering was applied using the ArcGIS Spatial 

Statistics extension. Separate disease cluster analyses were conducted for each of 

Asthma, Bronchiolitis, Bronchitis and COPD using cumulative data for the entire study 

period (1992-2006). Combined disease incidence for Asthma, Bronchiolitis and 

Bronchitis was also tested for. A 1 km fixed distance search radius was chosen 

intuitively as the distance that would adequately account for the shift introduced by the 

200 m random perturbation of address points. 

 

The Getis Ord Gi* statistic is similar to KDE in that it scans the dataset with a moving 

window of fixed size (in this case) to detect density variations; it differs from KDE on 

two important counts. Firstly, rather than scanning the entire dataset indiscriminately, 

each point is visited individually and the density/intensity of observations is calculated 

within a defined radial distance (of each address point). Secondly, a measure of 

density inside each search window is calculated relative to that expected outside the 

window (i.e. the rest of the population). In this way, the Gi* statistic is computed that 

compares local averages with a global average and thus identifies ‘hot spots’ (Getis 

and Ord, 1996). A Gi* statistic is calculated for each point in the dataset and 

corresponds to the density of observations within the search radius around that point 

(including the point itself) (Getis and Ord, 1996). Thus, address points with no disease 

cases may be assigned a high Gi* score if neighbouring points (within the search 

radius) have a high disease incidence. 

 

The output of the Getis Ord Gi* statistic is a point dataset that is a replicate of the 

original, with a Gi* score attached to each point. The dataset can then be displayed in 

graduated colour to highlight the variation in disease density. Rather than publish 

individual point data, however, z-score rendering was first applied. Z-score rendering 

applies a z-score to each point, thereby identifying clusters that are various standard 

deviations from the mean of the study area (i.e. Z-scores of +1 and +2 relate to 

clusters that are 1 and 2 standard deviations above the mean respectively). Clusters of 

just one or two isolated points were removed from the dataset prior to map production 

to aid geoprivacy. 

4.3.5 Kulldorff’s spatial scan statistic  

SaTScan is a free software tool developed by Kulldorff (2006) that can be used to 

search for purely spatial, purely temporal or spatiotemporal clusters. Kulldorff’s spatial 
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scan statistic incorporated in SaTScan extends the work of Openshaw et al (1987) and 

Cuzick and Edwards (1990) to incorporate an unfocused (general), local cluster 

detection method. Like the Gi* statistic, a search window is centred on each point in 

the dataset. Here though, the search window can be either circular or elliptic and, 

critically, of ever increasing radius from zero until up to 50% of the population is 

incorporated (Kulldorff and Nagarwalla, 1995). In this way, the maximum search 

radius is not a fixed Euclidian distance but rather is variably dependent on the spatial 

distribution of the background population. The optimal radius is determined separately 

for each cluster based on the window size (and orientation if elliptic) that contains the 

highest number of cases per population. 

 

The ‘ellipses’ used in SaTScan vary not only in size but also in shape and orientation. A 

circle and five ellipses are used, with shapes defined by the ratio of the long to short 

axis (ratios are 1.5, 2, 3, 4 and 5); each ellipse shape is then rotated through a 

different number of spatial orientations (corresponding to 4, 6, 9, 12 and 15 for each 

ellipse shape, respectively). The north-south orientation is always included and the 

other orientations are evenly spaced around the compass (Kulldorff, 2006). Within 

each window, observed/expected disease frequency is then calculated for each cluster 

of points, rather than each point. This process therefore assigns the same value to 

every point within a shared cluster, which can include both cases and non-cases. The 

statistic calculates the expected disease intensity within each possible window variant, 

based on the population size contained within the cluster through Monte Carlo 

simulations of (1000 in this case) random subsets of the remaining population. Thus, 

the statistical significance of each possible cluster is calculated; the cluster with the 

lowest p-value for that point is then reported in the output. For large datasets, this is 

clearly a highly computationally demanding process. For example, the full dataset used 

in this study consisted of around 43,000 points, which required 2 Gb of memory and 

took over 8 days to run on a Linux machine, using two processors.  

 

SaTScan was first programmed to analyse clustering of the Asthma dataset in a spatial 

subset of the George Town area (as KDE and the Gi* statistic both showed an elevated 

incidence of Asthma in George Town). The dataset was scanned for purely spatial 

clusters of elevated disease rates under a Poisson probability model. Elliptical search 

windows were selected to incorporate up to 50% of the population. Individual address 

points were treated as having a population of one, thus this was a test for clustering of 

‘Asthma houses’ (houses where Asthma occurred over the study period 1992-2006).  

 

SaTScan was then run on a dual processor machine to analyse Asthma clustering in 

the entire dataset (a powerful computer was required to manage the entire dataset at 

once). The same parameters were used as for the George Town analysis, though the 
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population ‘per residence’ field was used as a measure of population. This analysis of 

the entire dataset was therefore a test for clustering within the population, rather than 

a test for clustering of Asthma houses.  

 

The resulting cluster maps were edited prior to publication to remove address points 

that were further than 200 m from their nearest neighbour or were otherwise thought 

to be possibly re-identifiable.  

4.4 Results 

4.4.1 Preliminary disease analysis 

Graphs of general disease rates are shown below. Figure 4.2 shows the proportional 

hospital admission rates for Asthma, Bronchiolitis, Bronchitis and COPD for each year 

in the study period. Figure 4.3 shows a comparison between Asthma and COPD 

admissions, and Figure 4.4 shows total admissions for Asthma, Bronchiolitis and 

Bronchitis for every year in the study period. It is seen in these graphs that COPD 

admission rates began to rise sharply in 1999. This is probably due to the changeover 

from ICD-9 to ICD-10 discharge codes between 1998 and 2000, which brought some 

transfer of diagnoses from chronic Asthma to COPD (Wisconsin Department of Health 

and Family Services, 2004). However, Figure 4.3 shows that this increase is not 

entirely explained by the ICD-9 to ICD-10 changeover, as the increase in COPD was 

higher than the decrease in Asthma. Figure 4.4 shows the annual fluctuations in 

disease admission rates for Asthma, Bronchiolitis and Bronchitis, where it is seen that 

Asthma rates alone dropped markedly in 2004 (which may relate again to the sharp 

peak in COPD admissions in this year). Global statistics for the study area are 

summarised in  

Table 4-1. 
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Figure 4.2 - Proportional hospital admission rates for Asthma, Bronchiolitis, Bronchitis and COPD for each 

year of the study period. 
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Asthma and COPD, individually and combined
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Figure 4.3 - Total Asthma (blue) and COPD (pink) admissions plotted individually and combined (yellow) for 

every year in the study period. The rise in COPD in 1999 is not entirely explained by the change from ICD-9 

to ICD-10 in this year, as the increase in COPD in this year is greater than the decrease in Asthma.  
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Figure 4.4 – Total admissions for Asthma (blue), Bronchiolitis (pink) and Bronchitis (yellow) for every year 

in the study period 

 

Table 4-1 – Global statistics of disease admissions for the entire study area. All disease numbers reflect 15 

years of accumulated hospital admissions. (*ABB = combined Asthma, Bronchiolitis and Bronchitis.) 

 Address 

points 

Total 

population 

Asthma Bronchiolitis Bronchitis COPD Total 

disease 

ABB* 

 42997 94985 2240 773 717 2337 6067 3730 

% of total 

population 

--- 100 2.36 0.81 0.75 2.46 6.39 3.92 

 

4.4.2 Kernel Density/Intensity Estimation 

A 2 km kernel window (search radius) was found to neither over-smooth nor create 

‘spikes’ around data points, which was the desired outcome (Fotheringham et al., 

2002b). However, this bandwidth also meant that only the larger population centres 

around Launceston, George Town and Hadspen were detected. The spatial pattern of 

the underlying population of the study area is shown in Figure 4.5 (A) where it can be 

seen that population density is highest in southern Launceston. Smaller population 

densities are seen in Newnham north east of Launceston, George Town to the north of 
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the valley and Hadspen to the south west. This is the spatial density distribution that 

would be expected if disease occurrences were evenly distributed across the 

population. Figure 4.5 (B-D) shows that Asthma, Bronchiolitis and Bronchitis exhibit 

spatial patterns quite different from the total population, which suggests that disease 

occurrence may not be spatially random. Again, KDE produces a unit-less measure of 

density, so all legends are relative only (see Figure 4.1 and section 4.3.3). 

 

Figure 4.5 (E) shows that COPD has a spatial pattern that is highly clustered in 

southern Launceston. Both spatial and non-spatial observations of COPD incidence 

showed that this disease was occurring in large numbers at a handful of addresses 

across the Tamar Valley (up to 137 cases from a single address over the 15 year 

period); these addresses were most likely nursing homes and aged care facilities. As 

such, it was believed that the spatial occurrence of COPD was largely biased by the 

location of these facilities, rather than influenced by any geographic or climatic 

processes. It was therefore decided to remove COPD from subsequent analyses of 

‘total disease’, which from here on includes only Asthma, Bronchiolitis and Bronchitis, 

abbreviated to ‘ABB’. 

 

To test the robustness of disease clusters over time, combined Asthma, Bronchiolitis 

and Bronchitis (ABB) incidence was analysed annually (1992-2006). Results are 

displayed in Figure 4.6 where it is seen that there is some variation in total disease 

pattern across the study years. Given the higher rate of Asthma compared to both 

Bronchiolitis and Bronchitis (n = 2440 vs. 773 and 717, respectively), these results are 

heavily influenced by Asthma fluctuations. Disease rates generally declined over the 

study period. Most notably, disease rates in George Town were very high in the first 

years of the study period (1992-1995). 2006 showed one extreme cluster of disease 

northeast of Launceston and closer inspection of the dataset revealed that this was due 

to 47 admissions from just 3 addresses.  

 

Seasonal variation in total disease was then investigated. Results are shown in Figure 

4.7, where it can be seen that seasonal variations are not as pronounced as annual 

fluctuations. Note, however, that the magnitude of disease occurrence fluctuates 

across the seasons, with winter displaying the highest disease rate of all seasons.  
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A – Kernel Density Estimation of total population (n = 94,985). This is the general density pattern that would 
be expected of each disease, if disease occurrences were distributed evenly across the population.  
 

 

 
 
 
 
 
 

 
 

 

 

 

 

 
B – Asthma (n = 2240)  C – Bronchiolitis  (n = 773)  

 

 
 
 
 
 
 

 

 

 

 

 

 

 

D – Bronchitis (n = 717)  E – COPD (n = 2327)  

Figure 4.5 – Kernel Intensity Estimation of Total Population (A) and Total Asthma (B), Bronchiolitis (C), 

Bronchitis (D) and COPD (E) for the 1992-2006 study period. It is seen that disease patterns (B – E) are 

different from the spread of total population (A), indicating that disease is not occurring uniformly across the 

population. All legends are relative only. A 2 km search radius was used. 
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1992  (n = 382) 1993  (n = 318) 1994  (n = 306) 

   

1995  (n = 284) 1996  (n = 235) 1997  (n = 234) 

   

1998  (n = 215) 1999  (n = 214) 2000  (n = 212) 

   

2001  (n = 263) 2002  (n = 223) 2003  (n = 230) 
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2004  (n = 166) 2005  (n = 210) 2006  (n = 237) 

  

 
Figure 4.6 – Kernel Intensity Estimation showing annual variation in the spatial pattern of ABB (Asthma, 

Bronchiolitis and Bronchitis) for every year of the study period. 
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Figure 4.7 – KDE showing seasonal variation in disease occurrence for combined Asthma, Bronchiolitis and 

Bronchitis for each combined season of the study period 1992-2006. Note the different legend for each 

season. 
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4.4.3 Getis Ord Gi* Statistic 

Results of the Getis Ord Gi* statistic, with displayed z-score rendering, are shown in 

Figure 4.8 below. Areas coloured beige and red correspond to points that are 1 and 2 

standard deviations above the mean, respectively. Here it can be seen that Asthma is 

most prevalent around George Town and eastern and northern Launceston; 

Bronchiolitis predominates around Hadspen and northern and eastern Launceston; 

and, Bronchitis is quite prevalent in the northern sections of the study area around 

George Town, Beauty Point and Beaconsfield. COPD is seen to be highly clustered in 

areas around southern Launceston, Legana, Lilydale and Low Head to the north of 

George Town. As mentioned, these areas correspond to the location of aged care 

facilities, and so were not considered indicative of any geographical or climatic 

correlate.  

 

  
A - Asthma B – Bronchiolitis  

  
C – Bronchitis  D – COPD 

Figure 4.8 - Results of the Getis Ord Gi* statistic (with z-score rendering) for (A) Asthma, (B) Bronchiolitis, 

(C) Bronchitis and (D) COPD. A 1 km radial search window was used. Only clusters that are > 1 (beige) and 

> 2 (red) standard deviations above the mean expected rate of disease for the study area are displayed. To 

protect geoprivacy, isolated points were removed prior to publication.  



Samya Jabbour – Where the dust settles 

 42 

 

The Getis Ord Gi* statistic was then applied to identify combined clusters of Asthma, 

Bronchiolitis and Bronchitis (ABB). The results, at two spatial scales, can be seen in 

Figure 4.9. The map of the entire dataset (on the left) shows that total disease is 

elevated in George Town, Beauty Point and Beaconsfield in the north, and the eastern 

suburbs of Launceston in the south. Scattered areas around Rosevale, Mount Direction 

and Hadspen also showed elevated levels.  

 

     

Figure 4.9 – Z-score results of the Getis Ord Gi* statistic for combined cases of Asthma, Bronchiolitis and 

Bronchitis for the entire study period (1992-2006). Left map shows only those clusters with a z-score greater 

than 1. The map on the right shows the Launceston area (the area within the white square in the left 

image), showing clusters with all z scores ranging between 2 standard deviations above and below the 

population mean. The localities of Rocherlea, Newnham, Ravenswood, Invermay, Waverley, St Leonards and 

Glen Dhu show ‘significantly’ higher rates of disease than the general population. ABB incidence around the 

Launceston CBD is at least 2 standard deviations below the mean. Isolated address points have been 

removed. 

 

A close-up view of Launceston, seen on the right in Figure 4.9, reveals that the 

localities of Rocherlea, Newnham, Invermay, Ravenswood, Waverley, St Leonards and 

an area around Glen Dhu all display respiratory disease rates ‘significantly’ higher (> 2 

standard deviations) than the population mean. These localities lie in the North Esk 

river valley. Disease incidence around the Launceston CBD and northwest to Trevallyn 

is at least 2 standard deviations below the mean, as is the area around Norwood to the 

south. 
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4.4.4 Kulldorff’s spatial scan statistic  

SaTScan was used to implement Kulldorff’s spatial scan statistic. The Asthma dataset 

was analyses for clustering in the entire Tamar Valley (Figure 4.10), and a subregion 

around George Town (Figure 4.11).  

 

Figure 4.10 shows that analysis of the entire valley detected a very large elliptical 

cluster falling predominantly on the eastern side of the Tamar River. This included the 

Rowella region on the northwest shore also. A smaller cluster to the north of 

Launceston CBD at Invermay was also detected (consistent with the results of the Gi* 

statistic). Both of these clusters were found to be significant at p < 0.01. Several very 

small clusters were also detected though they varied in significance; most of these 

included only a single point, which could be considered ‘outliers’ in this case. Only 

clusters containing more than one address point were of interest here, as multiple 

admissions from a single, isolated address were likely either aged care facilities or 

some other health care facility, both of which were not considered associated with 

geographic or climatic processes.  

 

Figure 4.10 – SaTScan results for Asthma clusters in entire valley. Large red elliptical cluster centred 

around Mt Direction suggests that Asthma incidence is ‘significantly’ higher on the east side of the Tamar 

than the west (this cluster returned a p-value of <0.01).  Smaller yellow cluster (p <0.01) is shown just 

north of Launceston CBD at Invermay. All other clusters vary in size and significance. Address points of the 

background population are displayed in green. 
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Figure 4.11 shows the results of the analysis of a George Town subregion of the 

dataset. Two elliptical clusters were detected in George Town and Beauty Point, which 

were both significant at p < 0.01. Three single point clusters were also detected, that 

again could be considered outliers. For comparison between the two, Figure 4.12 

shows a map of the northern section of the SaTScan analysis of the entire valley 

(displayed in its entirety in Figure 4.10 This map covers the same extent as Figure 

4.11 for ease of comparison with the George Town subset. It is seen here that 

SaTScan analysis of the entire dataset did not detect the ‘significant’ cluster at Beauty 

Point that can be seen in Figure 4.11 (shown in yellow). Also, the cluster in George 

Town seen in Figure 4.11 (displayed in red) contains fewer address points than that 

seen in the northern tip of the large red cluster in Figure 4.12, which stretches further 

east and north into Low Head. Generally, SaTScan results were ‘coarser’ for the entire 

dataset than for the George Town subset; analyses at different scale levels therefore 

produce different results. 

 

     

Figure 4.11 – SaTScan analysis for Asthma clusters in the George Town area (the white square shows 

analysis extent). Both the red and yellow clusters are significant at p<0.001. Green points are the scrambled 

address points of the APD; digital elevation model is displayed in shaded relief. 
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Figure 4.12 – SaTScan analysis for Asthma clusters in the entire study area, showing only the George Town 

region (the white square here is extent of display only). The red cluster is the northern tip of the large 

elliptical cluster in Figure 4.10; green points are scrambled address points of the APD. Digital elevation 

model is displayed in shaded relief. 

 

However, given that the George Town subregion was analysed for Asthma incidence 

‘per house’ and the total dataset was analysed ‘per resident’, these differences should 

be treated cautiously.  

 

Given that SaTScan displays both cases and non-cases within a given cluster equally, 

the risk of re-identifying the residence of a respiratory patient is considered negligible.  

For this reason, isolated rural points were not removed from maps displaying SaTScan 

output (i.e. Figure 4.10, Figure 4.11 and Figure 4.12). Single-point clusters were, 

however, removed.   

4.4.5 Summary statistics 

Based on the results of the above cluster detection statistics, the areas around George 

Town, Hadspen and eastern and northern Launceston were identified as areas of 

elevated disease incidence. These areas were then investigated further.  
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Figure 4.13 – Geographic location of digitised population subregions ‘George Town’ (green), ‘Hadspen’ 

(pink), ‘Invermay’(orange), ‘Newnham’ (light blue) and ‘Waverley’ (yellow).  

 

Figure 4.13 shows the geographical areas of subregions that were manually digitised in 

ArcGIS to incorporate areas of observed disease clustering. Disease incidence in each 

subregion was compared to disease incidence in the total population as a way of 

comparing these areas to the total study area. These results are summarised in  

Table 4-2 where it is seen that relative disease incidence in these local subregions is up 

to 65% higher than the total population.  

 

Table 4-2 – Analysis of disease incidence in local subregions of the study area, showing up to 65% increase 

in disease incidence in these areas relative to the total population of the study area. Geographic locations 

used to define subregions are shown in Figure 4.13. (* Calculated as disease cases / population) (** 

Calculated as local disease incidence of subregion / disease incidence of total study area x 100) 

Subregion Population Disease cases 
(1992-2006) 

Local disease 
incidence (%)* 

 

Disease incidence relative to 
total population (%) ** 

Total study area 
 

94984 3730 3.92 100 

‘George Town’ 
 

5241 317 6.05 154 

‘Hadspen’ 
 

1847 83 4.49 115 

‘Invermay’ 
 

7506 360 4.80 122 

‘Newnham’ 
 

7615 383 5.03 128 

‘Waverley’ 
 

6277 407 6.48 165 
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4.5 Discussion 

4.5.1 Disease clusters and statistical inference  

The results of local cluster detection found in this study provide a compelling argument 

for the spatial analysis of health data. Distinct spatial and spatio-temporal patterns of 

elevated disease incidence were found, most consistently around George Town and the 

North Esk region east of Launceston. However, while results clearly show the presence 

of local disease clusters, the statistical ‘significance’ of these clusters should be viewed 

with prudence. For example, the Getis Ord Gi* statistic determines cluster significance 

based on a comparison between disease incidence inside the (1 km) radial search 

window and the whole population. The resulting ‘significance’ is therefore largely 

dependent on the chosen size of the search window, the presence of spatial 

autocorrelation in the dataset, and both the geographical size and spread of the entire 

study population (Getis and Ord, 1992). Similarly, the significance of clusters reported 

with Kulldorff’s spatial scan statistic is highly dependent on the size of the study area. 

This can be clearly seen in Figures 4.11 and 4.12. As Kulldorff and Nagarwalla (1995) 

themselves caution, “it is not meaningful to attribute significance to a cluster without 

reference to the study region." Note also that disease ‘clusters’ identified by both the 

Gi* statistic and Kulldorff’s spatial scan statistic included both disease cases and non-

cases. That is, any given cluster (excluding those of a single point) is likely to contain a 

number of points with no recorded disease incidence. This requires careful 

consideration of the results prior to making assumptions about houses identified as 

being in a ‘cluster’ 

 

Understanding issues of scaling is critical to the effective and accurate use of GIS in 

public health studies (Sexton et al., 2002, Wheeler, 2007 #135). The importance of 

defining the study area size is demonstrated in  

Table 4-2; here, ‘global’ statistics have been calculated for each defined subregion. 

Hypothetically, if the ‘Waverly’ subregion represented the entire spatial extent of a 

study area, global statistics would return a total population disease incidence of 

6.48%. It would not be known that disease incidence of this population was markedly 

higher than that of the population immediately surrounding the study area; and, it is 

possible that a cluster detection statistic would not find any local disease clusters 

within the study site. Similarly, the spatial extent of this study included only an area 

surrounding the Tamar Valley. This region has previously been reported as having the 

highest rate of “severe, chronic” Asthma in Tasmania (Giles, 1980). If a contemporary 

cluster detection study were to be done on the state of Tasmania as a whole, it is very 

likely that there would be different patterns of disease clustering observed within the 

Tamar Valley than those seen in the current study. 
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In addition to the disparity in statistical significance between datasets of different 

spatial extents, results also showed some disagreement between different cluster 

detection techniques. A comparison of FigureFigure 4.8 (A) andFigure 4.10 shows that 

the Gi* statistic found ‘significant’ clusters of Asthma on the western side of the Tamar 

that were not detected by SaTScan. Likewise, vast areas of the eastern Tamar that 

were included in a ‘significant’ Asthma cluster by SaTScan were not considered 

significant with the Gi* statistic. This problem has been reported in the literature. 

Wheeler (2007) commented that the different results returned from different 

techniques (SaTScan and kernel intensity function ratio) caused him to wonder “which 

was the most trustworthy?” Aamodt et al (2006) also found differences between 

methods and suggest that SaTScan may be more sensitive to clusters of lower relative 

risk than other methods tested. Researchers are generally warned here not to rely on 

the results of a single analysis method alone (Sahsuvaroglu and Jerrett, 2007). 

 

 

The search window used in SaTScan initially centres on a point and then increases in 

size until (a maximum of) 50% of the population is included (Kulldorff, 1997; Kulldorff, 

2006). It would seem then that the size of a resulting cluster would also be dependent 

on its geographical position relative to the rest of the population. Consider an 

elongated study area like the Tamar Valley with a population centre at either end; 

Launceston in the south has a far greater population than George Town in the north. 

Conceptually, a scan window around a point in the centre of Launceston would reach a 

size that incorporates 50% of the population before it reaches the population centre of 

George Town. As such, it would seem that a cluster in Launceston (which includes 

approx. 77% of the study population) will be influenced more heavily by the population 

immediately surrounding it than a cluster in George Town, which could have been 

formed by a much larger scan window, potentially reaching all the way to northern 

Launceston. This concept is illustrated in Figure 4.10, where it is seen that a very large 

cluster was detected in the sparsely populated area on the east of the Tamar, and a 

very small cluster was found in the city centre at Invermay. SaTScan has elsewhere 

been found to have difficulty detecting large clusters within large population centres, 

where the population distribution in the study area is not uniform (Aamodt et al., 

2006). Irregularly shaped clusters are also generally more difficult to detect than 

circular or elliptic ones and the limitation of SaTScan to only incorporate either circular 

or elliptical search windows has also been noted by other researchers (Aamodt et al., 

2006; Wheeler, 2007).  

 

Another factor detracting from the statistical strength of findings in this study is the 

positional error inherent in the datasets. As detailed in Chapter 3, all address points 

were randomly moved up to 200 m from their ‘true’ location. Also mentioned was the 
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fact that the original ‘true’ locations of address points were already subject to some 

positional error in the Address Points Dataset as a whole (theLIST, 2007). For cluster 

detection statistics that are dependent on the relative location of disease cases within 

the population, these spatial errors may have influenced any perceived results.  

4.5.2 Hospital admissions as a measure of morbidity 

This study defined respiratory disease occurrence by Launceston General Hospital 

admissions records. This approach influenced the dataset in the following ways. Firstly, 

hospital admissions represent the ‘top-end’ of respiratory disease occurrence, as only 

the sickest in the population are admitted to hospital. There is a greater number of 

people who are treated in the Emergency Department and do not get admitted to 

hospital, and an even greater number of people who visit a General Practitioner or 

some other health care provider instead of entering the hospital system. Further still 

down the ‘health hierarchy’, many more people will increase the use of self medication 

(e.g. with Asthma inhalers) before seeking any medical assistance. Using only hospital 

admissions data therefore constricts the size of the possible study population.  

 

Secondly, studying admissions to a public hospital necessarily precludes all respiratory 

patients who were admitted to private hospitals; this introduces a form of socio-

economic confounding that causes the poorer in society to be over-represented (Giles, 

1980). Also, it has been commented that asthmatics living at the edges of a hospital 

catchment tend to seek medical treatment in their local areas rather than relying on 

the hospital system (Giles, 1980); thus it seems that those living in remote rural areas 

may also be under-represented by relying solely on hospital admissions. An advantage 

in dealing purely with hospital admissions data, however, is that human error is 

minimised. ICD-9/10 codes were decided only by a small number of hospital staff from 

a single hospital over the study period, and therefore diagnostic discrepancies were 

kept to a minimum. 

 

Fifteen years of accumulated hospital records were analysed simultaneously in this 

study to address the problems associated with small population studies. However, a 

change in the international disease coding system occurred in the study period, which 

had some impact on the way respiratory diseases were classified. The conversion from 

ICD-9-CM to ICD-10-AM between 1998 and 2000 caused some changes in respiratory 

disease diagnoses (AIHW, 2000; AIHW, 2001). Most notably, COPD diagnoses 

increased considerably as diseases that were previously labelled chronic Asthma or 

Emphysema are now diagnosed as COPD (Wisconsin Department of Health and Family 

Services, 2004). As COPD was not included in analyses of ‘total disease’ in this study 

this effect may not be great. Also, the general decline in Asthma incidence over the 

study period seen in Figure 4.4 does not seem totally attributable to this change in 
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diagnosis. Therefore, while some effects of the changeover are noted, they are not 

considered substantial in this study. 

4.5.3 Spatial autocorrelation and confounders 

The vast majority of cluster detection studies in the literature define the clustering of 

disease cases as a departure from Complete Spatial Randomness (CSR) (Aamodt et 

al., 2006; Abrams and Kleinman, 2007; Durand and Wilson, 2006; Kingham et al., 

2006; Kulldorff, 2006; Kulldorff and Nagarwalla, 1995; Sabel and Loytonen, 2004; 

Wheeler, 2007; Wilson et al., 2004; Wilson et al., 2006; Wilson and Zawar-Reza, 

2006). CSR was the underlying assumption in each of the methods employed in this 

section of the study. However, it has been argued that a null hypothesis of CSR is not 

appropriate for environmental and social studies which are dealing with heterogenous 

background populations, or autocorrelation (Goovaerts and Jacquez, 2004; Wakefield 

and Shaddick, 2006). 

 

While spatial autocorrelation is present in most if not all public health datasets, failure 

to account for it will further affect the statistical validity of any reported clustering 

(Goovaerts and Jacquez, 2004; Jerrett and Finkelstein, 2005; Lipton et al., 2005; 

Maheswaran and Craglia, 2004; Maheswaran and Haining, 2004; Sabel and Loytonen, 

2004). Specifically, positive global autocorrelation in a dataset will return false positive 

results for local clustering (Getis and Ord, 1996; Ord and Getis, 1995). A suggested 

alternative is to adopt a Neutral model, which takes into account spatial 

autocorrelation in the background population and tests the alternative hypothesis as a 

departure from that pattern (Goovaerts and Jacquez, 2004). Standardised Morbidity 

Ratios (SMR) can then be calculated based on background age structure and various 

other confounding factors (Goovaerts and Jacquez, 2004). 

 

As mentioned, this study did not have access to personal or demographic data such as 

age, gender, socioeconomic status, smoking history and occupation. All of theses are 

known to influence the results of cluster detection, and most exhibit positive spatial 

autocorrelation (Carstairs, 2000; Hayes, 2003; Jerrett et al., 2003; Koch and Denike, 

2004; Maantay, 2002; Sexton et al., 2002). “Confounding” generally has been 

described as “the single most important problem” in studies of cluster detection 

(Wartenberg and Greenberg, 1993) in: (Maheswaran and Craglia, 2004), and Rothman 

(1990) has gone so far as to suggest that it is of limited scientific value to conduct 

disease cluster analyses at all, given all the limitations of data quality and confounders. 

However, cluster detection studies are usually the precursor to further investigations 

(Besag and Newell, 1991) and even in the absence of confounding information, disease 

mapping and cluster detection contributes valuable information to pre-epidemiological 
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studies (Maheswaran and Craglia, 2004; Sabel and Loytonen, 2004). Cluster detection 

techniques were therefore used primarily as an exploratory tool in this study. 

4.6 Conclusion 

Kernel density estimation was used purely for exploratory spatial data analysis in this 

study. Spatial analysis of acute respiratory disease in the Tamar Valley revealed 

several local clusters of ‘significantly’ elevated disease risk using the Gets Ord Gi* 

statistic and Kulldorff’s spatial scan statistic. Total disease incidence in local areas 

tested was found to be up to 65% higher than the total (global) disease rate. 

Variations were detected in the spatial location of each disease (Asthma, Bronchiolitis, 

Bronchitis and COPD), and spatio-temporal variations were found in disease 

distribution between years and between seasons. Disease levels generally declined 

over the study period (1992-2006), with George Town showing the most dramatic 

decline in disease cases. All diseases showed spatial patterns different to that of the 

background population, suggesting that disease occurrence is not randomly spread 

across the population.  

 

Specifically, Launceston’s eastern and northern suburbs of Rocherlea, Ravenswood, 

Waverley, Invermay, Newnham and St Leonards (i.e. the North Esk region) 

consistently showed elevated disease levels (i.e. Figure 4.9 and Figure 4.10). This was 

particularly true for Asthma and Bronchiolitis (e.g. Figure 4.8). The areas around Glen 

Dhu in southern Launceston and Hadspen to the west also showed elevated disease 

rates. To the north, Bronchitis was found to be especially prevalent around the 

northwest Tamar regions of Beauty Point and Beaconsfield, and COPD was found to be 

highly clustered in a small number of addresses thought to be nursing homes and aged 

care facilities. Disease rates (particularly Asthma) were especially high in George Town 

in the early years of the study period (1992 – 1995) (see Figure 4.6), and seasonal 

variations in spatial patterns generally were small (Figure 4.7). None of these findings 

could have resulted from a purely global (non-spatial) investigation of the dataset.  

 

This chapter has provided a useful pre-epidemiological analysis of the spatial 

distribution of respiratory disease in the Tamar Valley. The next chapter combines 

these disease data with various proxies for particulate air pollution dispersion, thereby 

investigating possible spatial relationships between observed disease clusters and 

particulate air pollution exposure. 
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5 Exposure surfaces and disease: correlations  

5.1 Research Hypothesis 

• “Spatial distribution of winter disease incidence can be explained by exposure 

surfaces representing winter particulate air dispersion in the Tamar Valley.”  

•  [Hnull: “There is no observable spatial relationship between respiratory disease 

incidence and the exposure surfaces used.”] 

5.2 Introduction 

This chapter explores the relationships between winter disease incidence and various 

exposure surfaces used to represent the spatial distribution of winter particulate air 

pollution in the Launceston region. The analyses were conducted on a spatial subset of 

Launceston rather than the entire Tamar Valley because reliable air pollution modelling 

data, based on known residential wood heater emissions, was only available for 

Launceston. Two exposure surfaces were derived from prognostic dispersion modelling 

of wood heater emissions in Launceston using TAPM (The Air Pollution Model) (Hurley, 

2005), with surfaces representing both the average and maximum concentrations of 

PM10 over a single winter season. TAPM is currently used widely for modelling domestic 

and industrial pollution sources in Tasmania. A digital elevation model was also 

analysed to produce an additional three exposure surfaces based on terrain features 

known to support winter cold air drainage and cold air ponding. Statistical relationships 

between disease incidence and exposure surfaces were explored, and Geographically 

Weighted Regression was applied to test for spatial stationarity in these relationships.  

5.2.1 Winter air pollution in the Tamar Valley 

The Tamar Valley is a large coastal river valley characterised by stable atmospheric 

conditions and anti-cyclonic weather patterns in the winter months (Power, 2001). 

Under these conditions ‘temperature inversions’ are formed by nocturnal katabatic 

drainage transporting cold air from surrounding hill slopes down into the valley floor, 

displacing warmer, lighter air (Sturman and Tapper, 2006). These temperature 

inversions have been found to reach vertical heights of between 80 and 300 metres 

under stable atmospheric conditions (Lyons and expert working party, 1996; Nunez, 

1991) 

 

Temperature inversions have a two-fold effect on air pollution levels in the valley. 

Firstly, decreased temperature at ground level in the valley floor causes an increase in 

home heating. Wood combustion is a major source of domestic heating in the Tamar 

Valley (DEH, 2005b), and wood smoke is Launceston’s primary source of particulate air 

pollution (Ayers et al., 1999; Todd et al., 1997). Secondly, wood smoke emissions and 
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other particulate pollutants become trapped within the dense air mass formed by the 

temperature inversion. Pollutant levels then accumulate through the night until the 

inversion is dissipated by solar radiation or wind, usually the following morning 

(Sturman and Tapper, 2006). This combination of increased emissions and poor 

dispersion leads to vastly elevated levels of particulate air pollution in Launceston and 

the Tamar Valley on winter nights.  

 

Tethersonde balloon soundings conducted over two nights of worst case anticyclonic 

conditions in Launceston in 1991 modelled the formation and movement of the 

temperature inversion layer over Launceston (Nunez, 1991). This study reported that 

particulate pollution emissions were predicted to concentrate in the low lying areas of 

the North Esk valley and towards Glen Dhu and southern Launceston (Nunez, 1991). 

This pattern of pollutant accumulation in terrain depressions follows a process known 

as ‘cold air ponding’, where cold air drainage builds up over the night to fill follows in 

the landscape (Sturman and Tapper, 2006). 

 

Lyons et al. (1996) also reported that smog/air pollution was worse in some areas of 

the Tamar Valley than others, and that ‘smog zones’ had been included on official 

maps of the valley dating prior to 1985.  

 

The Tamar Valley Airshed Study (TVAS) (Power, 2001) contributed greatly to our 

understanding of air pollution dispersion within the Tamar Valley. Air pollution from 

residential and industrial sources was extensively modelled over a two year period 

using NUATMOS/CITPUFF diagnostic modelling. This study reported marked variations 

in seasonal wind flows through the valley and noted that anticyclonic conditions 

noticeably worsened the air pollution problem in Launceston. The frequency of 

anticyclonic days (defined as those with a recorded surface atmospheric pressure equal 

to or greater than 1020 hPa) rose from 17% in spring and summer to 30% in autumn 

and 40% in winter. 

5.2.2 Exposure assessment and the ecological fallacy 

Many researchers have commented on the difficulties of linking health effects to 

environmental exposure in ecological studies (Cakmak et al., 2003; Christie et al., 

1992; Elliott et al., 2000a; Elliott et al., 2000b; Jerrett and Finkelstein, 2005; Mindell 

and Barrowcliffe, 2005; Pearce, 2002; Sexton et al., 2002; Waller and Gotway, 2004; 

Weng and Yang, 2006; Wilson et al., 2004; Wilson et al., 2006; Zeger et al., 2000). 

‘Exposure’ in the context of epidemiology refers to the levels of pollution that each 

participant or person in a study area is exposed to over the duration of a study period. 

This is invariably very difficult to quantify, and in some cases also difficult to define 

(Briggs, 2000). Researchers very rarely have access to personal exposure data for all 
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participants in a study population; in all other cases, some means of approximating 

exposure is necessary. However, inaccuracies in air pollution measurements and 

exposure assessment can have significant consequences for the estimation of 

morbidity and mortality from pollution effects (Colvile and Briggs, 2000; Ito et al., 

1995; Zeger et al., 2000). As such, a lack of reliable exposure data is widely 

considered to be the weakest link in epidemiology (Colvile and Briggs, 2000; Elliott et 

al., 2000b; Zeger et al., 2000).  

 

The ‘ecological fallacy’ is a universal problem in epidemiology and spatial science and 

refers to the incorrect assumption that the characteristics of an individual, or 

household, can be directly inferred from the characteristics of the group, or 

aggregation, to which it belongs. A similar problem is ecological bias and this refers to 

false inferences of biological impact on an individual based on ecological effects within 

the study area (Maheswaran and Craglia, 2004). Cross-level studies then are those 

that draw inference from relationships between layers of different spatial resolutions 

(e.g. exposure surfaces and population), a category of analysis described as being 

“particularly susceptible to ecological bias" (Maheswaran and Craglia, 2004). The 

potential for ecological bias is reduced in small area studies however, as exposure is 

generally more consistent across the study population when the study area is small 

(Arnold et al., 2000; Elliott et al., 2000a).  

 

A majority of epidemiological studies use data from a single or few air pollution 

monitoring sites to link air pollution exposure with health outcomes. Studies have 

shown, however, that urban environments can show extreme variations in pollution 

concentrations within distances of only tens of metres, so this methodology is now 

cautioned against (Brindley et al., 2004 ; Wilson et al., 2004). In spatial studies, 

various geostatistical interpolation methods such as kriging are commonly used to 

interpolate pollution levels between monitoring stations. This method also has its 

limitations however, as accurate kriging of air pollution in urban environments requires 

a dense network of monitoring sites to adequately reflect intraurban variations (Briggs, 

2005).  

 

Substantial differences in the spatial dispersion of different size fractions of particulate 

pollution have also been reported. Monn (2001) and Wilson et al (2004) have each 

reported findings from extensive literature reviews of air pollution monitoring studies 

which found that heterogeneity was evident in most urban areas. Heterogeneity was 

defined by Wilson et al as concentrations that varied 20% or more between sites. 

Notably, the larger size fraction of particulate pollution (PM10-2.5) was generally found 

to be more heterogeneously spread than smaller particulates (PM2.5), indicating that 

larger, heavier particles do not travel as far from their source as finer, lighter particles 
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(Wilson et al., 2004). Ultrafine (<0.1 µg) particles though were found to exhibit similar 

patterns of heterogeneity to coarse particles, which suggested that these particles are 

most easily transported via local turbulence (Monn, 2001; Wilson et al., 2004). These 

findings have implications for studies that have previously inferred PM2.5 concentration 

as a direct proportion of PM10 levels. Future work should perhaps address the 

quantification of PM10 and PM2.5 dispersion separately across the landscape. 

5.2.3 Air pollution dispersion modelling 

Air pollution dispersion models can be broadly categorised as either diagnostic or 

prognostic. Each requires the location and emission levels of pollution sources in the 

study area, though diagnostic models also utilise considerable input data from field 

measurements of air pollution concentration and local meteorology. Diagnostic models 

are therefore capable of producing detailed site-specific outputs of air pollution 

dispersion for a given study period, and they require limited specialised training to 

operate (Jerrett et al., 2005a). The time and resources involved in the collection of 

field data, however, can render diagnostic models less attractive than prognostic 

models (Jerrett et al., 2005a). Conversely, prognostic dispersion models use data 

sourced from synoptic scale meteorology in combination with digital terrain models and 

pollution emission rates of the study area, to produce outputs of air pollution 

concentration at any location and time in the study period for which meteorological 

data is available (Hurley, 1999; Hurley, 2005). Prognostic models therefore offer the 

great advantage of being applicable to a retrospective study. However, prognostic 

dispersion models require extensive training to be run effectively (Jerrett et al., 

2005a). Many models employ a combination of prognostic and diagnostic elements for 

increased accuracy (Power, 2001).  

 

TAPM (The Air Pollution Model) is a three-dimensional prognostic dispersion model 

recently developed by the CSIRO (Hurley, 1999; Hurley, 2005). TAPM uses prognostic 

meteorology and terrain feature information to solve fundamental fluid dynamics and 

vector transport equations, thereby dispensing with the need for ground based 

meteorological observations (Hurley, 2005; Luhar and Hurley, 2003). TAPM is currently 

widely used for pollution dispersion modelling of both industrial and residential 

pollutants in Tasmania.  

 

While pollution dispersion models have advanced in both complexity and accessibility in 

recent years, dispersion modelling has only rarely been used in exposure assessment 

for public health studies (Briggs, 2000; Briggs, 2005; Colvile and Briggs, 2000; Elliott 

et al., 2000a; Jerrett et al., 2005a). This seems to be attributable both to a lack of 

knowledge of dispersion models among epidemiologists, and to a lack of confidence in 

the outputs (Briggs, 2000).  A review of validation tests for dispersion modelling, for 
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example, found that dispersion models generally displayed 70% accuracy at best. Also 

the maximum spatial resolution of outputs is usually 1 km (TAPM outputs at 500 m 

resolution), and this is considered too coarse for many exposure assessment studies 

(Jerrett et al., 2005a).  

5.2.4 Terrain analysis as proxy for cold air drainage 

A comprehensive study of intraurban particulate concentrations in Christchurch, New 

Zealand, was recently conducted by Wilson et al (2006) using a network of monitoring 

sites. Christchurch has a comparable air pollution problem to Launceston. Wood and 

coal combustion is the principle source of particulate pollution in this city and winter 

temperature inversions cause regular exceedances of air pollution standards (Wilson et 

al., 2006). This study found the lowest measured particulate concentrations occurred 

on a hill; this was attributed to winter cold air drainage transporting particulates to 

lower elevations in the city (Spronken-Smith et al., 2002), in: (Wilson et al., 2006).  

 

A recent micro-scale study based in Lenah Valley, Hobart, measured local fluctuations 

in PM10 across the valley landscape (Ling, 2002). Similar to the Tamar Valley, Lenah 

Valley is subject to temperature inversions and katabatic cold air drainage under stable 

winter conditions (though less pronounced and on a smaller scale than the Tamar 

Valley). This study recorded both increased PM10 and decreased temperature in the 

valley floor compared to hill tops on 'katabatic days' (days when katabatic winds were 

noted). Over a difference in elevation of around 100 m between sites, it was reported 

that areas of the valley floor were “regularly subjected to up to 5 times greater 

concentrations of PM10 than areas at higher elevations" (Ling, 2002). 

 

In the absence of reliable dispersion modelling, researchers commonly use proxies for 

pollution exposure estimates such as proximity to pollution source, level of source 

activity, land use and terrain feature analysis (Corburn, 2007; Elliott et al., 2000a; van 

de Kassteele et al., 2006; Weng and Yang, 2006). In the Tamar Valley, it has been 

found that under winter anticyclonic conditions, particulate air pollution produced in 

Launceston drains to surrounding areas of lowest elevation (Lyons and expert working 

party, 1996; Nunez, 1991). This phenomenon of increasing PM10 concentrations with 

decreasing elevation has been observed by other researchers (e.g. (Ling, 2002; Wilson 

et al., 2006)). Terrain analysis has previously been used as a proxy for katabatic 

drainage along river valleys in the Hobart area (Smeal, 1998).  

 

Terrain feature analysis was used in this study as a surrogate for cold air drainage and 

cold air ponding in the Tamar Valley. Concave terrain features such as valleys (at 

various scales) and relatively flat, low-lying areas were treated as conduits for cold air 

drainage and the accumulation of particulate matter through cold air ponding. These 
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landscape features could then be used in place of actual PM10 monitoring data to 

simulate relative particulate concentration accumulations within the landscape. Terrain 

proxies in this way enable examination of environmental variables at a more detailed 

spatial scale than the coarse (500 m) resolution of prognostic dispersion modelling 

allows.  

5.3 Software and data requirements 

A digital elevation model (DEM) with 25 m spatial resolution was provided by Land 

Information Services Tasmania (theLIST). This dataset was derived from 1:25,000 

topographic maps and has a spatial accuracy of 12.5 m. Particulate air pollution 

dispersion modelling results derived using TAPM (“The Air Pollution Model”) version 

3.0.7 (Hurley, 2005) were provided by Dr Michael Power, Senior Scientific Officer 

(Air/Noise) of the Tasmanian Department of Tourism, Arts and the Environment 

(DTAE). 

 

ESRI software ArcGIS version 9.1 was used for the majority of spatial data analysis 

and map generation in the study. LandSerf v 2.2 was used to categorise the DEM into 

terrain types based on quadratic surface modelling (Wood, 2005). Microsoft Excel 

(2003) was used primarily for graphing data interactions. The statistical package JMP 

(version 5.1) (SAS Institute Inc., 2003) was used for analysis of the different 

interactions of ‘cases’ and ‘non-cases’ with all exposure surfaces in the population, and 

R (Venables et al., 2006) was used to convert data information from ASCII to tabular 

format for use in spatial regression analysis. Geographically Weighted Regression 

version 3 (Charlton et al., 2003) was used to analyse spatial stationarity in 

relationships between disease locations and all exposure surfaces.  

5.4 Methods  

5.4.1 Non-spatial investigation of PM10 and disease 

Microsoft Excel was used to explore the non-spatial relationships between hospital 

admissions and PM10 concentrations, as measured at the Ti Tree Bend monitoring 

station at Invermay. Annual admissions for Asthma, Bronchiolitis, Bronchitis and COPD 

were each compared with 95th percentile PM10 concentrations. Relationships between 

PM10 and combined disease admissions for Asthma, Bronchiolitis, Bronchitis and COPD 

(ABBC), and then combined admissions for Asthma, Bronchiolitis and Bronchitis (ABB) 

(i.e. minus COPD) were also tested for annual trends.  

 

Results of this investigation indicated that COPD was not correlated with PM10 

fluctuations at the same temporal scale as the other more acute diseases (ABB). COPD 

admissions were therefore excluded from the dataset and relationships between PM10 
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and ABB were explored at a finer temporal scale. Daily fluctuations in ABB hospital 

admissions and 24 hour average PM10 concentrations were plotted for each year of the 

study period.  

5.4.2 Spatial extent of study area  

The spatial extent of the study area chosen for this section of analysis was based on 

the area for which TAPM (The Air Pollution Model) could be reliably run. TAPM required 

inputs of the known proportion of residential wood heater emissions (i.e. pollution 

sources) for a given study period. This corresponded to an area encompassing all of 

Launceston in the southern Tamar Valley, seen in Figure 5.1 below. The bounding 

coordinates for this area (in GDA 94 UTM Zone 55S (MGA)) are, Top: 5430783, Left: 

492687, Right: 527712 and Bottom: 5393283.  

 

Figure 5.1 – The spatial extent of this section of analysis is shown as the pink rectangle covering 

Launceston, Newnham and Hadspen.  

5.4.3 Digital elevation model 

A digital elevation model (DEM) is a raster (grid) dataset used to store topographic 

information of a region. Each grid cell in a DEM represents the mean elevation of the 

area within that grid cell. A DEM with square grid cells of 25 m in length is said to have 

a 25 m resolution, and is commonly referred to as a “25 m DEM”.  

 

A 25 m DEM of Tasmania was clipped to an area of slightly larger extent than the 

Launceston study area seen in Figure 5.1. It was made larger rather than the same 

size to eliminate ‘edge effects’ from subsequent LandSerf analyses. All ‘no data’ values 

corresponding to water in the DEM were changed to zero with the conditional raster 

calculation: (con[IsNull[DEM], 0, IsNull[DEM]), which uses an “if…then…else” 

statement; this served two important functions. Firstly, as a result of the random 

perturbation process, some address points ended up in the Tamar River. If the grid 
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cells of the DEM that comprised the spatial extent of the river had remained set at ‘no 

data’, these address points would have been ignored when combined with elevation 

data for further analysis. By changing these values to zero these address points were 

assumed to lie at an elevation of 0 m, which was acceptable given the surrounding low 

lying river flats of their likely ‘true’ location. Secondly, subsequent terrain analysis in 

LandSerf was greatly improved by using a DEM with continuous values, as ‘no data’ 

values around the river created considerable ‘edge effects’ in outputs.  

5.4.4 TAPM – The Air Pollution Model 

TAPM version 3.0.7 was run by Dr Michael Power at the Tasmanian Department of 

Tourism, Arts and the Environment (DTAE). TAPM was run in single tracer mode, using 

residential wood heater emissions as the sole pollution source. Wood smoke from 

residential heating is known to contribute to the majority of particulate load in 

Launceston (Ayers et al., 1999; Lyons and expert working party, 1996; Power, 2001; 

Todd et al., 1997). Census data for 2001 was used as a measure of housing density 

(occupied dwellings/km2). The spatial distribution of wood heater emissions was 

calculated as a simple proportion of 30% of housing density; of this 30% of wood-

burning dwellings, 70% were assumed to have AS4013 compliant heaters, 23% non-

compliant heaters and 7% open fires – proportional emission levels were adjusted 

accordingly (DEH, 2005b; Power, 2007). Meteorological data including temperature, 

wind speed and wind direction were input as hourly means. Emissions were specified at 

a mean daily temperature of 10˚C; a linear scaling function doubled emission levels for 

a temperature of 0˚C, and reduced emissions to zero at a temperature of 20˚C. TAPM 

used a 250 m DEM for terrain height reference, and a land use reference file also of 

250 m resolution; ground level meteorology is determined through interactions with 

terrain height and surface features (Hurley, 2005). Soil data (for ground moisture 

approximation) were used at 5 km resolution. 

 

TAPM outputs used in this study were maximum (“cmax”) and average (“cavg”) PM10 

concentrations for winter months (June, July and August). Only winter months were 

selected to capture the unique conditions of wood smoke dispersion under winter 

meteorological conditions, where anticyclonic weather patterns and temperature 

inversions predominate in the Tamar Valley (Lyons and expert working party, 1996; 

Nunez, 1991; Power, 2001; Sturman and Tapper, 2006). “Cmax” refers to a grid 

surface with each grid cell displaying the maximum modelled PM10 concentration 

encountered at that grid cell for the entire model run (in this case, every day of winter 

2005). “Cavg” then refers to a grid surface containing the average PM10 concentration 

for each grid cell. All outputs were at 500 m resolution, which is the finest scale 

possible. 
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TAPM writes grid files in a different format to ArcGIS, so it was necessary to transpose 

TAPM grid files into ASCII files before importing them into ArcGIS. A short macro was 

developed to facilitate this process. Grids were resampled from 500 m to 25 m 

resolution for analysis with terrain surfaces, and later resampled again to 200 m 

resolution for analysis with Geographically Weighted Regression. This is explained 

further below.  

5.4.5 LandSerf terrain analysis 

LandSerf is an open source software package developed by Wood (2005) that enables 

the categorisation of a DEM into different terrain classes. LandSerf applies a quadratic 

approximation to elevation data for classification of terrain feature types. ‘Quadratic 

approximation’ refers to the fitting of a second order polynomial trend (or a trend with 

a single curve) to a surface. Under this model, elliptic regions are classed as ‘pits’ and 

‘peaks’, parabolic regions as ‘channels’ and ‘ridges’, and hyperbolic areas as ‘passes’; 

flat regions are classed as ‘planes’ (Wood, 1996). In this way, each grid cell in the 

resulting surface is assigned a landform class based on the grid cells in its 

neighbourhood. This concept is illustrated Figure 5.2 below. 

 

     

Figure 5.2 – Demonstration of the quadratic approximation function used in LandSerf to categorise digital 

elevation models into the six terrain classes listed on the right (peak, pass, pit, plane, channel and ridge). 

(Sources: (Wood, 1996); (Fisher et al., 2004))  

 

LandSerf v 2.2 was used to categorise a 25 m DEM of the Launceston region into six 

terrain features: ‘channel’, plane’, ‘ridge’, ‘peak’, ‘pass’ and ‘pit’. Multi-scale fuzzy 

feature classification was applied, which is a concept based on fuzzy set theory (Fisher 

et al., 2004). Fuzzy set theory has commonly been used in the classification of ‘vague’ 

landforms, such as mountains, in geographical analysis. In fuzzy set theory, a concept, 

e.g. ‘channel’, is first defined and objects that match that concept exactly are assigned 

a ‘membership’ of 1 to the channel class; weaker matches are assigned progressively 

smaller membership values until 0, indicating no match at all (Fisher et al., 2004). 

Multi-scale fuzzy membership then takes into account the different classifications of 

the same point that can occur at different scales across the landscape. This concept is 

illustrated in Figure 5.3 where it can be seen that the top of a hill can variably be 
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assigned to the morphometric class ‘channel’, ‘plane’ and ‘ridge’ at different scales. The 

output of multi-scale fuzzy feature classification is six surfaces (one for each terrain 

class) with each cell in a layer having a membership to that terrain class between 0 

(never) and 1 (at all scales). Only ‘channels’ and ‘planes’ were of interest in this study 

as these were the landforms believed to best represent the terrain depressions that 

support cold air drainage and ponding (Smeal, 1998; Sturman and Tapper, 2006). 

 

 

 

 

 

Figure 5.3 – Illustration of multi-scale fuzzy feature classification, showing that the same point on a 

landscape can be assigned different morphometric classes at different spatial scales. (Source: (Fisher et al., 

2004)) 

 

An upper window size of 101 grid cells was used in this analysis (windows must have 

an odd number of cells to ensure values can be assigned to the centre point of the 

window). The upper limit of the search window was chosen intuitively by visually 

analysing the spatial scale of terrain features in the DEM; this showed valleys with a 

maximum width of around 2.5 km. Given the DEM grid resolution of 25 m, an upper 

window size of ‘101’ corresponded to 101 x 101 grid cells at 25 m each, which equals a 

linear distance of 2.525 km. An adaptive search window ranging from 3 cells (75 m in 

width) up to 101 (2525 m) thus classified the terrain at each window size.  

 

All LandSerf grid layers in the study were produced at 25 m resolution; all TAPM 

outputs were resampled from 500 m to 25 m resolution. All LandSerf and TAPM 

outputs were then ‘snapped’ to the DEM. Snapping is a process whereby an entire 

raster layer is shifted slightly so that individual grid cells align perfectly in geographic 

space with those of another raster layer. This is necessary in order to accurately 

perform spatial analyses between layers. Once all raster layers were correctly aligned 

in this way, the DEM and LandSerf layers were resized to the spatial extent of the 

TAPM layers. This was achieved by using one of the TAPM outputs as a ‘mask’ for each 

of the other raster layers, resulting in all raster layers being exactly aligned and sized. 
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5.4.6 Zonal statistics and data generalisation 

In order to ascertain the influence of the exposure surfaces on respiratory admissions, 

it was necessary to first attribute the values of all underlying grid surfaces to individual 

address points in the study area. In this way, the local conditions giving rise to 

increased particulate air pollution at each address point (both cases and non-cases) 

could be summarised in a single table for further regression analysis. Given that all 

address points had previously been shifted up to 200 m from their true location it was 

not appropriate to simply attribute underlying grid values directly to the scrambled 

address point location. To remedy this, a 200 m circular buffer was created around 

each address point and summary statistics of the underlying exposure surfaces were 

then calculated for the buffer areas (i.e. zonal statistics). These values were then 

assigned to the corresponding scrambled address point in the centre of that buffer as 

an approximation of exposure for all possible locations of the true address point.  

 

As the vast majority of 200 m buffers in the study area overlapped (address points in 

Launceston are predominantly less than 200 m apart), Zonal Statistics were calculated 

using a Spatial Ecology extension to ArcGIS which adequately coped with overlapping 

buffers (Beyer, 2004 ). The Zonal Statistics tool calculates summary statistics (i.e. 

minimum, maximum, mean, median, standard deviation, sum and count) of the values 

of a raster layer that fall within the spatial boundaries of each zone, or buffer (Beyer, 

2004 ). Given the 25 m resolution of all grid layers in the study, each 200 m radial 

buffer covered approximately 200 grid cells, each with a unique value; this is 

illustrated in Figure 5.4. In order to determine whether or not it was appropriate to use 

the mean value of these grid cells in further calculations, it was first necessary to 

assess the distribution of data values within each zone.  

 
Figure 5.4 – Enlarged image of a non-overlapping 200 m buffer, or zone, illustrating the variation in 

underlying grid cells. Zonal statistics provide summary statistics on these grid cell values and assign these to 

the centroid of the zone, which in this case is the address point in its scrambled location.  
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Four buffers were selected at random from the study area and histograms were plotted 

of the spread of values in each underlying exposure surface grids. If the values of a 

grid layer followed a Gaussian (normal) distribution for the four sample zones, then the 

mean could be considered a suitable measure to assign to the address point; if values 

were obviously skewed, a log transformation would be necessary prior to analysis. 

Figure 5.5 shows the histograms produced for the three terrain grid layers (DEM, 

channel and planar) at each of the four sample buffers. (Given the coarse resolution 

(500 m) of the layers produced by TAPM it was not necessary to assess the distribution 

of values from these layers.) It can be seen that, while there is considerable variation 

in the distribution of values within all zones, there is no obvious deviation from a 

normal distribution. The mean grid value for each buffer was therefore considered an 

acceptable measure of the underlying exposure surface to attribute to the scrambled 

address points. Zonal means were then calculated for all buffers in the study area (n = 

33791) using all five exposure surfaces (DEM, ‘planar’, ‘channel’, PM10 cmax and PM10 

cavg).  

 

   

 

(Buffer 2 was at a constant elevation 

of 10 m – no histogram was possible) 

  

   

   
Figure 5.5 – Histograms showing the spread of raster values within four sample buffers of the DEM (left), 

channel (middle) and planar (right) grid layers. While distributions vary markedly between buffers, none of 

the histograms are obviously skewed, and so can be considered normally distributed. 
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The dataset produced in this way, with zonal statistics of exposure surfaces assigned to 

each of the 33,000+ points, unfortunately proved too cumbersome to be easily run 

with Geographically Weighted Regression (GWR). Specifically, a spatial logistic 

regression model in GWR based on these 33,000+ points would take up to 25 days to 

run on a desktop PC (Martin Charlton, Pers. Comm.). The dataset was therefore 

reduced in both spatial extent and resolution, via a process described below. The 

above analysis did, however, show that exposure surface data within 200 m of address 

points followed a reasonably normal distribution, which was important for 

Geographically Weighted Regression. 

 

Asthma, Bronchiolitis and Bronchitis (ABB) cases for all winters in the study period 

(1992-2006), ABB cases for winter 2005, and total population were each generalised 

into point density layers using the ‘point density’ tool in the ArcGIS Spatial Analyst 

extension. This produced layers with a measure of density per km2. Binary disease 

data (1/0; case/non-case) was used as a representation of disease houses, rather than 

disease cases per se. This was thought to give a better indication of the geography of 

disease incidence without the confounding influence of multiple admissions from the 

same address. These density layers were all produced at a resolution of 200 m. The 

DEM and LandSerf layers ‘channel’ and ‘planar’ were each resampled from 25 m to 200 

m resolution. TAPM output layers representing ‘cavg’ and ‘cmax’ were resampled from 

500 m to 200 m resolution. 

 

These 200 m grids (eight in total) were converted to ASCII files and the dataset as a 

whole was then converted to tabular format using a script in the statistical package R 

(Venables et al., 2006). This process resulted in a table with centre X and Y 

coordinates and values for each corresponding raster layer assigned to each 200 m 

grid cell; a sample of this dataset is shown in Table 5-1. With all data in a single table, 

and the dataset very much reduced in size (from 33,000+ points to 6075 grid cells), 

Geographically Weighted Regression could be run. 

 

Table 5-1- An section of the table used to run Geographically Weighted Regression, containing centre 

coordinates of each grid cell and all corresponding raster values. ‘Case05’ corresponds to the density surface 

of disease cases for winter 2005; ‘wscase’ is disease cases for all winters (1992-2006). 

ID 
 

X Y channel cavg cmax dem case05 planar pop wscase 

1 
 

503787 5420383 0.091 2.572 11.355 30.117 0 0.849 271.06 5.96 

2 
 

503987 5420383 0.086 2.461 10.887 20.632 0 0.898 201.92 1.98 

3 
 

504187 5420383 0.008 2.278 10.107 17.223 0 0.988 83.552 0 

4 
 

504387 5420383 0.016 2.278 10.107 12.853 0 0.983 16.415 0 
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5.4.7 Global statistical analysis 

Binary disease data for all winters and 2005 winter months were assessed against all 

exposure surfaces using the statistical software package JMP (v 5.1) (SAS Institute 

Inc., 2003). Data for exposure surfaces were derived from the zonal statistics 

calculations detailed in the previous section; in this way, exposure data associated with 

each address location corresponded to the mean value for all possible locations of the 

true address location (see section 5.4.6 and Figure 5.4). Global relationships between 

respiratory disease and exposure surfaces for the entire dataset were then observed. 

Univariate t-tests were also performed to determine the significance of relationships.  

5.4.8 Geographically Weighted Regression 

In contrast to regression, which gives a global measure of the correlation of two 

variables, Geographically Weighted Regression (GWR) calculates regression coefficients 

between data points at all specified spatial locations across a dataset. In this way, site-

specific data relationships can be assessed and spatial non-stationarity can be detected 

(Charlton et al., 2003). A non-stationary relationship varies across space or time, and 

this includes most associations observed in social and environmental science 

(Fotheringham et al., 2002a). GWR was used in this study to test for stationarity in the 

relationships between terrain features known to support cold air drainage and health 

outcomes for acute respiratory morbidity. In this way, the local influence exerted by 

each exposure surface on disease outcomes could be assessed.  

 

The incidence of acute respiratory disease (ABB) admissions for all winters in the study 

period was used as the dependent variable in GWR; all terrain-based exposure 

surfaces (representing ‘channels’, ‘planes’ and elevation) and total population were 

regressed against this variable. Disease admissions for winter 2005 were analysed 

separately against TAPM outputs. Disease admissions data for all winters, rather than 

2005 winter months, were used in the main regression analysis because they were 

approximately 15 times greater in number than the data from 2005 winter. This 

provided better support for the model, and the larger disease dataset was thought to 

give a better indication of the influence of terrain features on health outcomes.  

 

GWR applies a kernel window to the dataset (similar to that used to illustrate Kernel 

Density Estimation in Chapter 3) and local regression models are fit to all points within 

each kernel; the choice of kernel size, or bandwidth, therefore has a considerable 

impact on the results obtained from GWR (Fotheringham et al., 2002a).  

 

GWR 3 was run using a Gaussian model with an adaptive spatial kernel; the ‘Akaike 

Information Criterion’ (AIC) was used for bandwidth optimisation. This procedure 

allowed a single, optimal bandwidth to be determined for all regression calculations in 
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the dataset, rather than separate bandwidths being used for each calculation. This 

resulted in a single bandwidth of 312 nearest neighbours being determined for use 

throughout the modelling run (Fotheringham et al., 2002a). Local regression values 

were then determined based on 312 data points, or in this case grid cells, for each 

calculation. For each regression calculation, different weightings were assigned by the 

model to each data point according to its distance from the regression point. Note 

though that all data points in the analysis were evenly spaced as they corresponded to 

the centre co-ordinates of 200 m grid cells. 

 

The result of GWR is a list of parameter values describing the strength of regression 

relationship between the dependent variable (disease density) and each independent 

variable (terrain surfaces and population). These results were written to the 

geographic centroids of each grid cell in the 200 m output grid; these points were then 

converted to raster files with a 200 m resolution in ArcGIS for visualisation of outputs.  

5.5 Results 

5.5.1 Non-spatial analysis of PM10 and disease relationships 

Non-spatial relationships between disease admissions and PM10 concentrations, as 

measured at the Ti Tree Bend monitoring station, are shown below in Figure 5.6. 

Asthma and Bronchitis admissions are seen to be closely correlated to PM10 levels. 

Bronchiolitis admissions rose markedly in 1999-2000, suggesting an increase in 

diagnosis associated with the ICD-9 to ICD-10 changeover at this time, though when 

this is considered, Bronchiolitis admissions also seem reasonably correlated with 

annual PM10 fluctuations. COPD shows almost an inverse relationship with PM10 levels. 

Similar to Bronchiolitis, COPD admissions rose dramatically with the change to ICD-10 

disease coding in 1999-2000, though they continued to rise sharply until 2004, 

indicating that the increase in admissions may not be entirely attributable to the 

change in diagnosis. COPD levels also rose steadily between 1992 and 1994, while 

PM10 levels fell over this time.  
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Bronchitis and PM10 95 percentile
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Figure 5.6 – Relationships between 95th percentile PM10 concentrations (blue) and annual disease 

admissions (pink) for (A) Asthma, (B) Bronchiolitis, (C) Bronchitis and (D) COPD for each year in the study 

period.  

 

A comparison of Figure 5.7 and Figure 5.8 further illustrates the anomalous 

relationship between COPD and PM10. These graphs show that combined Asthma, 

Bronchiolitis, Bronchitis and COPD (ABBC) admissions show agreement with PM10 only 

until 1999; beyond 2000 there is a strong departure from this trend. With the removal 

of COPD, however, combined Asthma, Bronchiolitis and Bronchitis (ABB) admissions 

are strongly correlated with 95th percentile PM10 concentrations throughout the study 

period. This result provides further justification for the removal of COPD from analysis 

in this study.  
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Figure 5.7 -  Combined Asthma, Bronchiolitis, Bronchitis and COPD (ABBC) plotted against Ti Tree Bend 

PM10 95th percentile values for each year in the study period, showing reasonable correlation until 1999, then 

a strong departure from this trend. 
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Figure 5.8 - Asthma, Bronchiolitis and Bronchitis (ABB) (i.e. minus COPD) plotted against Ti Tree Bend PM10 

95th percentile values for each year in the study period, showing a much more consistent correlation with the 

removal of COPD.  

 

The paired graphs shown in Figure 5.9 compare daily fluctuations in hospital 

admissions for ABB (upper, pink graphs) and 24hr average PM10 concentrations 

recorded at Ti Tree Bend (lower, blue graphs). In the early years of the study period, 

PM10 measurements were recorded only every 6 days and predominantly in winter; 

numerous gaps in PM10 data therefore made comparisons with disease data difficult. 

For this reason, only data from 2003 to 2006 are displayed here. These paired graphs 

show strong patterns between disease admissions and 24hr average PM10 recordings at 

Ti Tree Bend. It is seen that both disease admissions and PM10 exhibit seasonal 

variations each year, with peaks in winter, though the intensity of this trend is 

variable. The severe peak in PM10 measured at Ti Tree Bend in December 2006 

corresponds largely to road dust contamination, with some bush fire smoke also 

detected (DPIWE, 2007). 

 

The year 2005 shows a reasonably high incidence of both disease admissions and PM10, 

and a strong seasonal influence in both datasets that isn’t entirely aligned (i.e. a 

temporal lag may be present). This year was therefore selected for further 

investigation into how disease admissions and PM10 concentrations interact spatially 

within the valley. Model inputs for TAPM were therefore based on 2005 meteorology 

and emissions data. 
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Figure 5.9 - Paired graphs of daily fluctuations in (upper, pink) combined hospital admissions for Asthma, 

Bronchiolitis and Bronchitis (ABB), and (lower, blue) 24hr average concentrations of PM10 recorded at Ti Tree 

Bend, for the latter years of the study period (2003-2006).  
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5.5.2 TAPM and LandSerf exposure surfaces 

All exposure surfaces are shown in Figure 5.11 and Figure 5.11, displayed with and 

without address points and buffers used in zonal statistics calculations. TAPM outputs 

(Figure 5.11) are seen to closely follow the distribution of address points, or housing 

density, in the Launceston region. LandSerf ‘planar’ regions predominate the terrain 

surface, as the majority of areas at the scale tested (2.5 km search window) are ‘flat’ 

regions on the river plain or hill slopes. The LandSerf ‘channel’ layer is seen to follow 

the rivers and valleys of the DEM (seen as the white regions of high ‘membership’ to 

the channel class). Figure 5.11 also illustrates the difference in spatial resolution of the 

exposure surfaces, not only in grid cell size but in precision. Examination of the spatial 

relationships between exposure surfaces and disease are possible only at a relatively 

coarse resolution for the TAPM outputs, while terrain analysis shows much finer detail.  

  

A. TAPM output – Maximum modelled PM10 concentration (cmax) at each grid cell for 2005 winter. 

Concentrations are in µg/m3. Spatial resolution is 500 m.  

 

  
B. TAPM output – Average modelled PM10 concentration (cavg) at each grid cell for 2005 winter. 

Concentrations are in µg/m3.  Spatial resolution is 500 m. 

 

Figure 5.10 – TAPM exposure surfaces of (A) ‘cmax’ and (B) cavg, showing the modelled PM10 maximum 

(top) and average (bottom) concentration at each grid cell. 

 



Samya Jabbour – Where the dust settles 

 71 

  
A. Digital elevation model, displayed with hillshade. Spatial resolution is 25 m. 

 

  
B. LandSerf output – “planar”. Spatial resolution is 25 m. 

 

  
C. LandSerf output – “channel”. Spatial resolution is 25 m. 

 

Figure 5.11 – All terrain exposure surfaces used in the study displayed both with (right) and without (left) 

address points and 200 m buffers. The outline of the Tamar River is shown in blue. 
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TAPM cmax is also displayed in Figure 5.12 with symbology adjusted to display the 

areas of highest modelled particulate concentration, which is seen to be around East 

Launceston and Newstead. 

 

 
Figure 5.12 – TAPM “cmax” resampled to 200 m resolution and displayed with adjusted histogram to show 

areas of highest PM10 concentration. The areas of East Launceston and Newstead show the highest modelled 

particulate levels. 

 

5.5.3 Population and disease density surfaces 

Point density surfaces for total population, binary disease cases (ABB) for all winters, 

and binary disease cases (ABB) for winter 2005 are shown in Figure 5.13. Kernel 

density estimation was also applied using Hawth’s spatial ecology extension for ArcGIS 

to generalise these patterns into 50% isopleths (i.e. the area within which 50% of the 

density is observed) (Beyer, 2004 ).  
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A. Population 

density 

 
 

B. Disease density 

for all winters 

(1992-2006)  

C. Disease density for 

2005 winter 

 

Figure 5.13 – Density distributions of (A) total population, (B) disease admissions for all winters, and (C) 

disease admissions for winter 2005. All are shown with 50% isopleths demarking the area within which 50% 

of the density distribution falls.  The Tamar River outline is shown in blue.  Grids are in 200 m resolution.  

 

The 50% isopleths of total population distribution and winter 2005 disease distribution 

are displayed together with the TAPM cmax surface in Figure 5.14, where it is seen 

that the TAPM output closely matches the underlying population distribution (shown in 

purple). Large numbers of disease admissions were found in the areas of highest PM10 

concentration in East Launceston and Newstead, though equally large numbers were 

also observed in the less populated areas around Ravenswood, Waverley and Hadspen. 

A three-dimensional view of this relationship between total population and 2005 winter 

disease admissions is displayed in Figure 5.15, where it is clearly seen that disease 

cases are biased towards the north eastern side of the valley from the major 

population centre. This image also demonstrates that the area of highest modelled 

PM10 concentration seen in Figure 5.14 – where disease incidence and population 

density are both high – lies at a low elevation on the valley floor.  
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Figure 5.14 - TAPM cmax grid for 2005 winter maximum PM10 concentrations overlaid with 50% isopleths of 

2005 winter ABB admissions (green), and total population (purple). It is seen that the TAPM output closely 

follows the total population distribution (upon which emission levels were based). The areas of highest PM10 

concentration around East Launceston and Newstead (see Figure 5.12) show high disease rates, while a 

large proportion of disease cases also occur in the less populated areas of Ravenswood, Waverley and 

Hadspen. The outline of the Tamar River is shown in blue. Isopleths were derived using Hawth’s kernel 

density estimator in Spatial Ecology extensions for ArcGIS (Beyer, 2004 ). 

 

 

 

 

 

Figure 5.15- Three-dimensional view of the Launceston region seen in Figure 5.14, looking northwest 

through the North Esk and Tamar River valleys from Relbia. Terrain height has been exaggerated slightly for 

illustrative purposes; Tamar River outline is shown in blue. It is seen that a large proportion of houses with 

recorded winter admissions for ABB (light green) occurred in areas outside of the major population centre 

(purple). These were predominantly on the eastern side on the North Esk valley (on the right in this image).   
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5.5.4 Global statistical analysis 

The distribution of address points corresponding to binary disease cases (1) and non-

cases (0) were assessed against zonal statistics calculations of all exposure surfaces. 

The results of these global statistical analyses are summarised in Table 5-2. Results 

show that disease cases occurred more frequently than non-disease cases in areas 

classed as channels and planes; the latter relationship was significant. Disease cases 

also tended to be slightly more prevalent at lower elevations, though this relationship 

was far from significant and standard deviations were very high.  

 

Interestingly, these analyses show that maximum and average PM10 concentrations 

predicted by TAPM (cmax) were inversely related to disease incidence for 2005 winter, 

indicating that modelled PM10 concentrations were higher in locations where no disease 

was recorded. This is consistent with the findings of the previous section that showed 

modelled air pollution concentrations closely followed the population distribution, while 

high levels of disease incidence were observed outside the major population centre. 

Note, however, that the standard deviations of these measurements were again very 

high.  

 

Independent Dependent Mean S.D. t-test 

2005 winter (0) 15.71 8.54 TAPM cavg (µg/m3) 

2005 winter (1) 13.58 9.10 
0.175  

2005 winter (0) 50.30 23.61 TAPM cmax (µg/m3) 

2005 winter (1) 42.37 25.47 
0.0027 

All winters (0) 0.099 0.132 LandSerf channel  

All winters (1) 0.101 0.138 
0.366 

All winters (0) 0.739 0.205 LandSerf planar 

All winters (1) 0.761 0.195 
0.0007 

All winters (0) 75.26 55.76 DEM (elevation) (m ASL) 

All winters (1) 73.88 50.35 
0.781 

All winters (0) 2.237 0.552 Population per house 

All winters (1) 2.362 0.565 
-- 

Table 5-2 – Global statistical relationships between binary disease data (0 = non-cases, 1 = disease cases) 

for 2005 winter disease data and TAPM outputs, and for all winters disease data and all terrain-based 

exposure surfaces. Population per house was also measured against all winter disease data. 

5.5.5 Geographically Weighted Regression 

Initial outputs of Geographically Weighted Regression (GWR) provided details of the 

global relationships between the dependent variable (ABB admissions for all winters) 

and each of the independent variables. Only terrain proxies were used here (i.e. not 

TAPM output) because TAPM output was specific to 2005 meteorology; GWR also 

requires sufficient data to build a model, so disease data for all winters were used with 

terrain analysis instead of just 2005 winter data.  
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Variance of the global parameter estimate was compared with the variance of local 

estimates to give an indication of stationarity in each relationship. Specifically, if the 

inter-quartile range of the local parameter distribution (representing 50% of the 

distribution) is higher than 2 standard deviations of the global parameter distribution 

(which represents 68% under a normal distribution) then non-stationarity in the 

relationship is indicated (Fotheringham et al., 2002a). These relationships between 

global and local parameter estimates are summarised below in Table 5-3 where it is 

seen that the relationships between winter disease admissions and all independent 

variables exhibit non-stationarity, or local variance.  

 

Parameter Global  (2 x standard 

deviations)  

Local  (Inter-

quartile range)  

Non-stationary? 

Intercept 0.639 3.333 yes 

LandSerf channel 0.661 2.349 yes 

LandSerf planar 0.548 1.475 yes 

DEM (elevation) 0.0015 0.0112 yes 

Population  0.00026 0.0083 yes 

Table 5-3 – Test for non-stationarity in the relationship between disease incidence for all winters and each 

of the independent variables tested. Non-stationarity is indicated if the inter-quartile range of the local 

distribution is greater than 2 standard deviations of the global distribution; all relationships in this study 

exhibit non-stationarity. 

 

Graphical output of GWR analysis is displayed in Figure 5.16 where considerable local 

variation in relationships between winter disease incidence and exposure surfaces is 

demonstrated. Local variability is seen to be particularly strong in relationships 

between disease occurrence and all terrain features.  
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LandSerf channel 

 

LandSerf planar 

 

  

DEM (elevation)  

 

Population per house 

 

Figure 5.16 – Results of Geographically Weighted Regression analysis for parameter values. Density of 

disease incidence for all winters was modelled against each exposure surface, and total population. Spatial 

non-stationarity exists in all relationships, though most notably with the terrain analysis layers of channel, 

planar and elevation. Light shaded areas correspond to locations where the independent variable has a 

higher influence on disease incidence. 50% isopleth of all winter disease density in shown in yellow; the 

Tamar River outline is shown in blue. 

 

Figure 5.16 suggests that the relative influence of terrain features (channel, planar and 

elevation) on disease incidence is higher in some areas than others. Most notably, the 

area around Ravenswood and Waverley (see Figure 5.13 for clarification) consistently 

showed a weak relationship (neither positive nor negative) with terrain proxies. This 

indicates that factors other than terrain features (and the cold air drainage these were 

approximating) may be contributing to the high disease rates observed in these areas.  

 



Samya Jabbour – Where the dust settles 

 78 

5.6 Discussion 

5.6.1 Terrain features and exposure assessment 

The terrain feature types used in this study were believed to represent regions where 

particulate pollution would accumulate due to winter-time cold air drainage and 

ponding. This was based on reports that particulate air pollution drains to low-lying 

regions of the Tamar Valley under the stable anticyclonic conditions that predominate 

in winter (Lyons and expert working party, 1996; Nunez, 1991). Inverse relationships 

between local elevation and PM10 concentrations had also been observed elsewhere 

(Ling, 2002; Wilson, 2006). This study used ‘channels’ and ‘planes’ derived from 

quadratic approximation of terrain height (Wood, 1996), and elevation from a DEM as 

three surrogates for cold air drainage as a means of identifying areas of PM10 

accumulations. A significant relationship was found between disease incidence and 

planar regions, used here to represent regions of the valley floor and hill slopes.  

 

Given that temperature inversions in Launceston have been found to reach heights of 

between 80 and 300 m (Nunez, 1991), it was thought that ‘channels’ may show a 

similar pattern of correlation with disease incidence. However, the weaker (non-

significant) relationship detected between disease incidence and ‘channels’ in this 

study could be explained by the findings from a study of air pollution dispersion in 

Christchurch, New Zealand (Wilson et al., 2006) The researchers noted that a 

monitoring site in their study that was in the path of cold air drainage experienced 

significant turbulence which locally dissipated the temperature inversion, thereby 

decreasing local pollutant levels (Wilson et al., 2006). Whether channels act as 

conduits for katabatic flows or reservoirs for cold air ponding may be dependent both 

on the scale at which they are measured and their elevation.  

 

The very weak (non-significant) relationship detected between elevation and disease 

incidence in this study suggests that disease cases were only slightly more likely to 

occur at lower elevations. The weakness of this relationship is probably due to the fact 

that it is relative elevation, rather than elevation per se, that gives rise to conditions of 

cold air ponding (Sturman and Tapper, 2006). As mentioned, Ling (2002) found a 

strong inverse relationship between elevation and PM10 concentrations, though 

crucially, this was measured in a single, isolated valley system; the ‘valley floor’ in this 

study was 92 m ASL. Further investigations of elevation as a surrogate for cold air 

ponding should therefore consider a measure of relativity. 

 

It is interesting that the observed relationships between all terrain proxies and disease 

incidence were weakest around the areas of Ravenswood and Waverley in the North 

Esk valley. This would seem to suggest that the disease incidence in these areas is not 
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well explained by topographic processes but that some other factor may be influencing 

high disease rates here. Socioeconomic confounding could be one explanation, and this 

point is expanded on below.  

 

The presence of non-stationarity in relationships between disease incidence and all 

terrain features indicates that a more detailed spatial investigation of these 

relationships is warranted. The method of classifying terrain features for use as 

exposure surfaces in this study was reasonably subjective, and is likely to have 

influenced the observed relationships between terrain features and disease. As 

mentioned, the upper size of the search window used in LandSerf to categorise surface 

features was chosen somewhat arbitrarily by visually analysing the DEM. Multi-scale 

classification was used to minimise the impacts of choosing an inappropriate scale 

(Wood, 1996), though other scales could be investigated in further studies. Also, the 

methods used to derive the associated statistics should perhaps be reviewed in future 

analyses. As detailed in section 5.4.6, mean zonal statistics calculations for a 200 m 

radial zone around each scrambled address were used to approximate terrain 

conditions for all possible locations of the true address point within each zone. This 

may have introduced bias if the distribution of values in all zones was not Gaussian.  

5.6.2 Dispersion modelling and exposure assessment 

This study found a significant inverse relationship between disease incidence and 

modelled air pollution dispersion patterns derived from TAPM, indicating that modelled 

PM10 concentrations were lower in areas of recorded disease incidence. Three possible 

explanations for this finding are suggested. The most obvious, and least likely, is that 

there is no significant relationship between acute respiratory disease and particulate air 

pollution. This can quickly be discounted, however, given the voluminous body of 

evidence already cited to the contrary from studies worldwide, including the World 

Health Organisation. Included in this is the recent study by Mesaros et al (2007) that 

found a (significant) 4% increase in hospital admissions for bronchitis and bronchiolitis 

to the Launceston General Hospital for every 10 ug/m3 increase in PM10 measured at Ti 

Tree Bend. And further, section 5.5.1 of this study demonstrates the strong temporal 

agreement between ABB admissions and measured PM10 concentrations from the Ti 

Tree Bend monitoring station.     

 

A second possible explanation for this finding could reflect a limitation of TAPM to 

adequately predict pollutant concentrations in areas of low population density. As 

demonstrated in section 5.5.3 of this study, TAPM outputs closely matched the spatial 

distribution of total population density in Launceston, while some areas of disease 

incidence occurred outside this population centre (around Ravenswood, Waverley and 

Hadspen). Briggs (2005) comments that many dispersion models give sound pollution 
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estimates close to pollution sources but are limited in their ability to predict exposure 

in remote areas. TAPM assumed emissions data input as a simple proportion of housing 

density (i.e. 30% of population = wood burning dwellings) (Power, 2007); the findings 

of this study could reveal a problem with this assumption.  

 

Dispersion modelling has rarely been used by epidemiologists for health effect 

assessment partly because they are poorly validated (Briggs, 2005; Jerrett et al., 

2005a; Wilson, 2006). The coarse resolution of output data is also thought to be a 

deterrent to epidemiologists (Jerrett et al., 2005a). Those models that have been 

validated typically show no more than 70% agreement with measured pollution levels 

(Briggs, 2000). The validation and development of dispersion models for the accurate 

prediction of intraurban air pollution has therefore been identified as a priority area of 

research (Jerrett et al., 2005a; Wilson et al., 2004). In a preliminary validation 

assessment of the modelling conducted for this study, TAPM was found to significantly 

under-predict PM10 levels at Ti Tree Bend (66 µg/m3 modelled vs. 110 µg/m3 

measured) (Power, 2007) – this shows only 60% agreement between measured and 

modelled concentration levels at this location. A formal validation study of TAPM also 

found that this model under-predicts pollutant levels in night-time stable conditions 

(Luhar and Hurley, 2003). Given that stable atmospheric conditions are a dominant 

climatic feature of the Tamar Valley in winter (Power, 2001), this issue may be a 

source of considerable error in this study.   

 

Colvile and Briggs (2000) add that emissions data used in dispersion modelling are 

usually collected for regulatory purposes of air quality assessment and may not be 

suitably detailed for epidemiological applications; the validation of dispersion models is 

likewise usually conducted for regulatory purposes only. Also, measurements from 

monitoring stations, used to validate models, are usually situated in exposed positions 

and this may significantly underestimate pollution levels in more sheltered 

environments. Researchers must therefore understand the assumptions on which 

models are based to avoid misuse of dispersion modelling for health effect 

assessments. They conclude by suggesting that a closer collaboration between 

atmospheric scientists and epidemiologists should be encouraged (Colvile and Briggs, 

2000). 

 

In the absence of ground monitoring data from a network of monitoring sites across 

Launceston, it is not known whether the results found in this study are attributable to 

the limitations of TAPM to accurately predict pollution emissions outside of major 

population centres, or whether ambient pollution levels are accurately predicted by the 

model and some other factors are to blame for the increase in disease incidence in 

some areas. It is also probable that there is spatial bias in the use of wood heaters 
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over other home heating methods across the study area that TAPM did not account for. 

Given TAPM’s current wide usage in Tasmania for modelling both residential and 

industrial pollutants, however, these results suggest that a more detailed validation 

study is required before TAPM can be used with confidence for health exposure 

estimates. 

 

The third and final possible explanation for the findings of increased disease incidence 

in areas of low modelled PM10 concentration relates to issues of socioeconomic 

confounding and environmental justice, as explained below.   

5.6.3 Issues of socioeconomic confounding in the Tamar Valley  

The areas of Waverley and Ravenswood in the North Esk valley are among the lowest 

ranking socioeconomic regions in Launceston. The presence of increased disease 

density here in the absence of elevated (modelled) PM10 levels raises issues regarding 

possible socioeconomic confounding and environmental justice. As explained in 

Chapter 2, people of lower socioeconomic status may tend to experience poorer 

respiratory health generally due to a combination of sub-standard housing design 

(leading to ventilation problems), higher rates of occupational pollution exposure, 

higher smoking rates and generally diminished overall health (Carstairs, 2000; Hayes, 

2003; Jerrett et al., 2003; Koch and Denike, 2004; Lipton et al., 2005; Maantay, 

2002). In a study of air pollution and respiratory disease in Newcastle, New South 

Wales, Christie et al (1992) reported that "correlations between geographic location 

and respiratory admissions rates may be a manifestation of social class rather than 

poor air quality, although a contribution from the latter cannot be discounted".  

 

Social and occupational factors may also offer explanations for the high levels of 

respiratory disease detected in George Town in the early years of the study period, and 

its decline in more recent years (see Chapter 4). A large number of George Town 

residents work in the Bell Bay industrial precinct 2 km to the south of George Town, 

which is a significant source of industrial pollutants. A study that accounts for 

occupation of participants may find that this decline in disease may be attributable to 

an improvement in Occupational Health and Safety standards over past decades.  

 

On the other side of the socioeconomic divide, residents in the more affluent areas 

around East Launceston are likely to show lower rates of hospital admissions than 

might be expected for the level of ambient pollution levels in these areas. This can be 

attributable not only to the opposite of all factors just mentioned but, notably, because 

people of higher socioeconomic status tend to favour the private health care system 

(Giles, 1980); this study accessed only public hospital admissions records and 
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therefore is likely to have introduced a level of spatially influenced socioeconomic bias 

into the results. 

 

The vital role of personal confounding information in studies of disease aetiology was 

highlighted almost a century ago. Waller and Gotway (2004) cite a study by Maxcy 

(1926) that found negligible spatial pattern between residential address location and 

disease (endemic typhus fever). Data were then correlated with occupational location 

and a concentration of disease was detected in the city’s central business district. 

Maxcy then added attribute data of occupation type and found the highest disease 

incidence among those working in various food outlets, restaurants and green grocers, 

leading to a suggested link between the disease and rodent vectors via mites, fleas or 

lice (Waller and Gotway, 2004). Such a result argues strongly for the inclusion of 

personal demographic information in future studies of environmental health 

assessment in the Tamar Valley.  

5.6.4 Methodological limitations of this study 

The analysis of datasets at different spatial resolutions in this study introduced some 

issues of cross-level inference and ecological bias (Maheswaran and Craglia, 2004). 

Issues of spatial scale are central to any study linking environmental exposure to 

population health as the degree of perceived linkage between pollution and disease is 

necessarily dependent on the scale at which the study is focussed (Brindley et al., 

2004; Elliott et al., 2000a; Maheswaran and Craglia, 2004; Openshaw et al., 1987; 

Sexton et al., 2002; Wilson et al., 2006).  

 

The use of aggregate data instead of individual residence data introduces considerable 

bias to environmental exposure estimates (Zandbergen and Chakraborty, 2006) and 

individual level data was therefore used in this study to avoid these problems. Every 

effort was then taken to maintain the spatial integrity of this unique dataset by 

attempting to conduct all exposure analyses at the individual level. However, the 200 

m random perturbation applied to individual data was accounted for by creating 200 m 

buffers around scrambled address points and calculating mean intersections with 

exposure surfaces, thereby effectively reducing the resolution of the population data to 

200 m anyway. The spatial resolution of available exposure surfaces in the study also 

varied from 25 m for terrain surfaces to 500 m for TAPM outputs. Analysis of exposure 

at a coarser resolution therefore may have been warranted. 

 

Furthermore, the results of Geographically Weighted Regression were not exploited to 

its full potential in this study. GRW has elsewhere been used to improve model 

predictions and gain a more thorough understanding of local variations in datasets 

(e.g. (Osborne et al., 2007). The site-specific spatial non-stationarity of relationships 
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between disease incidence and other factors could be incorporated into analysis of 

future studies. 

5.7 Conclusion 

The spatial investigation of interactions between winter disease incidence and exposure 

surfaces found a weak inverse relationship between disease incidence and elevation 

(i.e. disease cases were found to occur at slightly lower elevations than non-disease 

cases). Disease cases were also slightly more frequently associated with the terrain 

feature class ‘channel’, which was used to approximate small valley formations in the 

landscape. Neither of these associations was found to be significant at the global level. 

Winter disease incidence was, however, found to be significantly related to the ‘planar’ 

terrain features used to simulate hill slopes and the valley floor (p = 0.0007). Non-

stationarity was detected in all relationships between disease incidence and terrain 

features, however, suggesting that global statistics do not adequately capture the 

complexity of relationships found. 

 

A significant inverse relationship was found between winter disease incidence for 2005 

and PM10 air pollution modelled using the prognostic dispersion model TAPM (p = 

0.0027). That is, modelled PM10 maximum concentration levels were found to be 

significantly lower in areas of elevated disease incidence. Modelled PM10 average 

concentrations also exhibited an inverse relationship with disease incidence, though 

this association was not significant. Investigation of the spatial distributions of disease 

incidence, total population and modelled PM10 maximum concentrations revealed that 

TAPM outputs were very closely aligned with the spatial distribution of total population, 

while high levels of disease incidence were observed in areas of both high and low 

population density. An area around East Launceston and Newstead recorded the 

highest modelled PM10 concentrations and this was also an area of high disease 

incidence. However, the areas of Ravenswood, Waverley and Hadspen also recorded 

high disease incidence but very low modelled pollution levels. Validation of modelled 

results revealed that TAPM significantly under-predicted measured pollution levels at 

the Ti Tree Bend monitoring station. The failure of TAPM to adequately predict pollution 

dispersion in areas outside of major population densities, particularly under winter 

anticyclonic conditions, and various issues of socioeconomic confounding were cited as 

possible explanations for this result.   

 

The findings of this section of the study further support the argument that study of 

relationships between environmental exposure and health outcomes requires spatial 

interrogation. None of these findings could have resulted from a purely temporal 

investigation of hospital admissions and recorded PM10 measurements from the Ti Tree 

Bend monitoring station. 
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6 Conclusion 

6.1 Findings from this study 

This investigation of respiratory disease and air pollution exposure in the Tamar Valley 

has revealed the spatial disparity of health risk across the valley for the first time. This 

study had access to a unique dataset of hospital admissions data at the individual level 

(i.e. point data corresponding to the de-identified residential address of patients) which 

enabled analysis at a very fine spatial resolution. Comparable studies have most 

frequently used aggregate data (i.e. address information that is grouped into some 

arbitrary geographic area like Census districts or postcodes). The fine resolution of 

individual-level data is now strongly recommended for public health investigations of 

this kind that seek to draw inference from the relationships between small scale 

environmental processes and health outcomes.  

 

The use of this dataset raised issues of patient confidentiality and geoprivacy not 

normally considered in studies of coarser resolution. Confidentiality was maintained 

through all stages of this study. This ‘de-identification’ process involved the random 

perturbation of all address points in the Tamar Valley such that all ‘houses’ were 

shifted a random direction and distance up to 200 m from their true location prior to 

analysis in GIS. No confidential medical information was therefore known to the 

researcher (i.e. true patient address location, name, age, gender, date of birth, etc.). 

To further ensure the geoprivacy of individuals, all remote address locations that were 

believed to possibly enable the re-identification of an individual patient were removed 

from maps prior to publication.  

 

Three cluster detection techniques – Kernel Density Estimation (KDE), the Getis Ord 

Gi* statistic and Kulldorff’s spatial scan statistic – were applied to test for spatial 

patterns in the occurrence of Asthma, Bronchiolitis, Bronchitis and Chronic Obstructive 

Pulmonary Disease (COPD). KDE was used primarily as an exploratory data analysis 

tool, while the Gi* statistic and Kulldorff’s scan statistic both gave outputs of clusters 

with associated statistical significance. Initial results revealed that COPD was highly 

clustered in a small number of address locations believed to correspond to nursing 

homes or aged care facilities across the valley; the location of this disease was 

therefore thought to be heavily biased by the location of these facilities rather than any 

geographic of climatic process. Subsequent analyses of ‘total respiratory disease’ in 

this study therefore included only Asthma, Bronchiolitis and Bronchitis (‘ABB’). Each 

disease was found to display a slightly different pattern of occurrence, though many 

similarities were observed. George Town in the north of the Tamar Valley and areas 
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along the North Esk river valley in the south (i.e. Ravenswood, Waverley, Newnham 

and Invermay) consistently revealed areas of elevated disease risk. However, 

considerable variation in ‘statistically significant’ clusters was observed between cluster 

detection techniques and also between analyses conducted with the same technique at 

different spatial scales. Statistical inference was therefore discussed in the context of 

each cluster detection method.  

 

Analysis of annual spatial variations in the occurrence of total disease (ABB) revealed 

that disease incidence declined generally over the study period, though most 

noticeably in George Town; disease rates were particularly high in George Town in the 

first years of the study period (between 1992 and 1995). The spatial analysis of 

seasonal disease rates revealed that disease patterns were relatively stable across 

seasons, though disease incidence generally was much greater in winter. The null 

hypothesis of ‘complete spatial randomness’ was disproved, though the relevance of 

this hypothesis to public health studies was also discussed. 

 

Various exposure surfaces were created to simulate the spatial distribution of 

particulate air pollution in the Tamar Valley. This section of analysis was conducted on 

a spatial subset of the valley covering just the Launceston region, as this was the area 

for which air pollution modelling data was available. Two surfaces of modelled air 

pollution concentrations were derived from TAPM (‘The Air Pollution Model’), which is a 

prognostic dispersion model currently in common use in Tasmania. These predictions 

were primarily based on estimated wood heater emission rates, synoptic scale 

meteorological data and terrain height for simulation of ground level wind fields. Three 

exposure surfaces were also created based on terrain feature classification. These 

surfaces simulated terrain depressions such as valleys and channels which previous 

studies have found give rise to increased levels of particulate air pollution in winter 

through the process of cold air drainage. 

 

Spatial relationships between all exposure surfaces and winter disease incidence (ABB) 

were examined in detail. Only winter disease cases were used in this section of 

analysis to specifically investigate the relationship between disease incidence and the 

effects of the atmospheric temperature inversions known to predominate in the Tamar 

Valley over winter months. A weak relationship was found between disease location 

and elevation, suggesting that disease cases were slightly more likely to occur at lower 

elevations than non disease cases. Disease events were also found to be slightly more 

prevalent in the terrain features used to simulate channels and small valleys, though 

no significant relationship was found. A ‘significant’ relationship was found between 

disease cases and the planar regions of the valley floor and hill slopes; issues of 

statistical inference were again discussed. Geographically Weighted Regression was 
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used to investigate local variations in the strength of relationship between disease 

rates and terrain features. This analysis indicated significant ‘non-stationarity’ in all 

relationships, indicating that the influence of terrain features on disease was not 

constant across the study area.  

 

A significant inverse relationship was found between disease incidence and the 

modelled air pollution surface of maximum PM10 concentration produced by TAPM, 

suggesting that, on average, modelled air pollution levels were lower in areas of high 

disease incidence. The areas of highest modelled air pollution (around East Launceston 

and Newstead) were also areas of high disease incidence, though the less populated 

areas of Waverley, Ravenswood and Hadspen showed high disease incidence and very 

low modelled PM10 concentrations. The failure of TAPM to adequately predict pollution 

concentrations, both in areas of low population density and under stable atmospheric 

conditions, and various issues of socioeconomic confounding were discussed as 

possible reasons for this finding.  

 

The relationship between environmental air pollution and disease incidence is an 

intrinsically spatial relationship. None of the results of this study could have resulted 

from a purely global (non-spatial) investigation of hospital records and pollution levels 

from a single monitoring site. The findings of this study therefore argue strongly for 

the spatial analysis of spatial processes such as this. In addition, the inherent 

uncertainties associated with all public health studies were addressed in this study. 

Various limitations associated with disease mapping and cluster detection were 

explored, particularly relating to inference drawn from the varied ‘statistical 

significance’ of different cluster results. The importance of applying more than one 

technique was highlighted by this process, though doubt remains over the most 

suitable method for detecting clusters of disease. Substantial limitations were also 

encountered in the attempt to link disease incidence with pollution exposure surfaces. 

This area of study is well recognised as a source of considerable uncertainty in public 

health research, and several lines of reasoning were followed to explain the results 

found in this study. Methodological limitations of linking datasets of different spatial 

resolutions were also discussed. 
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6.2 Recommendations for further research 

 

 There is a great need generally for guidelines on the standardised methods for 

both the detection and reporting of disease clusters.   

 

 National guidelines for the ethical reporting of spatial public health information 

are required. This should include separate guidelines for the reporting of 

aggregate and individual-level information. 

 

 This study has highlighted the need for a detailed spatial survey of intraurban 

air pollution dispersion in Launceston. This should ideally include separate 

measurements of PM10 and PM2.5, as considerable evidence now indicates that 

the spatial variations between particles of different sizes changes across the 

urban landscape. 

  

 This study has also identified the need to validate TAPM for public health 

applications generally. Epidemiologists require air pollution exposure 

information at a higher level of accuracy than that which generally exists for 

environmental monitoring and policy requirements. The potential limitations of 

this model to accurately predict pollution dispersion in areas of low population 

density are of considerable concern for public health applications. The 

usefulness of this model in the Tamar Valley generally should also be assessed 

against its ability to accurately predict pollution dispersion under stable 

atmospheric conditions. 

 

 Future investigations of the relationship between respiratory disease and air 

pollution should include relevant demographic information to account for 

socioeconomic confounders.  

 

 Air pollution in Launceston has improved in recent years as a result of a 

decrease in residential wood heating and an increased reliance on electric and 

gas heating. With electricity prices currently predicted to rise from next year, 

however, trends in both air pollution concentrations and respiratory disease 

rates should be closely monitored.  
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