

University of Tasmania Open Access Repository

Cover sheet

Title

Emissions predictive modelling and simulation for a plug-in hybrid electric scooter

Author

Yap, WK

Bibliographic citation

Yap, WK (2010). Emissions predictive modelling and simulation for a plug-in hybrid electric scooter. University Of Tasmania. Thesis. https://doi.org/10.25959/23211296.v1

Is published in:

Copyright information

This version of work is made accessible in the repository with the permission of the copyright holder/s under the following,

Licence.

Rights statement: Copyright Copyright 2010 the Author

If you believe that this work infringes copyright, please email details to: oa.repository@utas.edu.au

Downloaded from University of Tasmania Open Access Repository

Please do not remove this coversheet as it contains citation and copyright information.

University of Tasmania Open Access Repository

Library and Cultural Collections University of Tasmania Private Bag 3 Hobart, TAS 7005 Australia E oa.repository@utas.edu.au

Emissions Predictive Modelling and Simulation for a Plug-in Hybrid Electric Scooter

By

Wai Kean Yap

B. Eng. (Hons.), University of Tasmania, 2005

A Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

School of Engineering, University of Tasmania June 2010

Supervisory Committee: Professor Vishy Karri, Australian College of Kuwait Dr. Tim Gale, University of Tasmania

DECLARATION AND AUTHORITY OF ACCESS

This thesis contains no material that has been accepted for a degree or diploma by the University of Tasmania or any other institution, except by way of background information that has been duly acknowledged in this thesis, and to the best of the author's knowledge and belief no material has previously been published or written by another person except where due acknowledgement is made in text of this thesis, nor does the thesis contain any material that infringes copyright.

This thesis may be made available for loan. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1986.

Signed:_____

Date:_____

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my principal supervisor, Professor Vishy Karri for his profound knowledge, inspiration and expert guidance on, not just on my research, but life in general. I'd known Professor Karri since my undergraduate days. During his tenure at the University of Tasmania, he approached each of my problems, either personal or workrelated, with patience and dedication.

I would also like to thank my secondary supervisor, Dr. Tim Gale, for his assistance in all administrative-related problems I'd encountered during the course of my research at the university. Thanks also to Mr. Steven Avery, Mr. Andrew Bylett, Ms. Jennifer O'Donohue, Professor Michael Negnevitsky and Professor Chris Letchford for their assistance.

I would also like to thank Mr. Rob Warren of Reds Motorcycles for his assistance in operating the chassis dynamometer and his extensive knowledge on motorcycles and the Bike Ambulance for transporting the scooter efficiently and punctually.

Special thanks to my parents and I dedicate this thesis to them for their constant support in every way possible. Constant encouragements and phone calls proved invaluable to me and I'm greatly indebted to you.

ABSTRACT

This thesis presents a comprehensive study on emissions predictive control modelling for hybrid electric scooters. Two approaches were investigated on a constructed hybrid electric scooter. The first approach involves developing a hybrid electric scooter dynamic model using MATLAB-Simulink and the second involves the development of an Emissions Predictive Model using artificial neural network.

The hybrid electric scooter model was developed to further understand and analyze as well as to predict its performance and emissions before proper construction of the prototype begins. The MATLAB-Simulink model consists of four integrated models that formed the complete hybrid scooter model: Battery Model, Engine Model, DC Motor Model and the Vehicle Dynamics Model. The multi-mode controller predicts the required parameters to operate the scooter in an optimize condition. Experimental data were gathered and thus compared to the simulated data to check the model's feasibility and accuracy on four distinct driving cycles: Modified Urban Dynamometer Driving Schedule, New York City Cycle, European Driving Cycle and the Modified Highway Fuel Economy Driving Schedule. Results showed that the developed multi-state hybrid electric scooter model was accurate and feasible with predictive errors of ± 10 % for emission levels and fuel economy on the European Driving Cycle. Simulated results were also compared to the existing literature and it was found that the qualitative trends were similar. By having a high-confidence simulation model, performance of the hybrid electric scooter were also simulated over the mentioned driving cycles demonstrating the optimization strategy of the multi-state control system.

For the second approach, the Emissions Predictive Model was then built using artificial neural network techniques to predict the following tailpipe emissions gases; CO, CO_2 , HC and O_2 . Three feed-forward neural network models were investigated and compared in this study; back-propagation, optimization layer-by-layer and radial basis function networks. Based on the experimental setup, the neural network models were trained and tested to accurately predict the effect of the engine operating conditions on the emissions by varying the number of hidden nodes. The selected optimization layer-by-layer network proved to be the most accurate and reliable predictive tool with prediction errors of ± 5 %. The effect of the engine operating conditions for a scooter is shown to display similar qualitative and quantitative trends between the simulated and the experimental data.

Having accurate predictive models for emissions and fuel economy enable the hybrid electric scooter to be optimized via modelling and simulation before proper construction begins. The developed emissions predictive models could act as a virtual emissions sensor replacing costly hardware for the developed physical hybrid electric scooter. This study provides a better understanding in effects of engine process parameters on tailpipe emissions for the hybrid electric scooter as well as for general hybrid vehicular applications

FULL LIST OF PUBLICATIONS

- Yap, WK & Karri, V 2010, 'Emissions predictive modelling by investigating various neural network models', accepted for 2010 IEEE Vehicle and Propulsion Conference, Lille, France.
- Yap, WK & Karri, V 2010, 'Performance simulation and prediction model for a hybrid electric scooter drive ', *International Journal of Energy Research*, vol. 34, no. 1, pp. 67-83.
- Yap, WK & Karri, V 2009, 'Performance modelling and simulation of a hybrid electric scooter', *International Journal of Electric and Hybrid Vehicles*, vol. 2, no. 1. pp. 43-63.
- Yap, WK & Karri, V 2008, 'Modelling and simulation of a hybrid scooter', *International Journal of Electrical Power and Energy Systems Engineering*, vol. 1, no. 3, pp. 165-170.
- Karri, V, Yap, WK & Titchen, J 2008, 'Simulation and configuration of hydrogen assisted renewable energy power system', *International Journal of Electrical Power* and Energy Systems Engineering, vol. 1, no. 3, pp. 171-178
- 6. **Yap, WK** & Karri, V 2008, 'Regenerative control system for plug-in hydrogen fuel cell scooter', *International Journal of Energy Research*, vol. 32, no. 9, pp. 783-792.
- Yap, WK & Karri, V 2008, 'Modelling and simulation of a hybrid scooter', in *Proceedings of World Academy of Science, Engineering and Technology*, Paris, France, vol. 30, pp. 880-885.
- Karri, V, Yap, WK & Titchen, J 2008, 'Simulation and configuration of hydrogen assisted renewable energy power system', in *Proceedings of World Academy of Science, Engineering and Technology*, Paris, France, vol. 30, pp. 886-893.
- Yap, WK & Karri, V 2007, 'Control system for plug-in hybrid hydrogen fuel cell scooter', in *Proceedings of International Conference on Modelling and Simulation*, Coimbatore, India, pp. 31-36.
- Yap, WK & Karri, V 2007, 'Regenerative control systems for plug-in hydrogen fuel cell scooter', in *Proceedings of 2007 International Conference on Engineering Sustainability*, Western Australia, Australia, pp. 195-196.

TABLE OF CONTENTS

Declaration and Authority of Access	ii
Acknowledgements	iii
Abstract	iv
Full List of Publications	vi
Table of Contents	vii
List of Figures	xii
List of Tables	xvii
Abbreviations	xviii

CHAPTER 1: INTRODUCTION1
1.1 Introduction1
1.2 Motor Vehicle and Emissions Growth1
1.3 Emission Impacts on Human Health
1.3.1 Carbon Monoxide4
1.3.2 Nitrogen Oxide4
1.3.3 Ozone
1.3.4 Hydrocarbon
1.3.5 Particulate Matter
1.3.6 Sulfur Dioxide5
1.3.7 Lead5
1.4 Solutions Required
1.4.1 Alternative Fuels
1.4.2 Zero Emission Vehicle
1.4.3 Hydrogen as a Fuel7
1.4.4 Hybrid Electric Vehicle7
1.5 Problem Statement and Contributions
1.6 Research Focus and Tools

CHAPTER 2: LITERATURE SURVEY	14
2.1 Introduction	14
2.2 Hybrid Electric Vehicle Drivetrain Architecture	14
2.2.1 Series Architecture	16
2.2.2 Parallel Architecture	17
2.2.3 Series-Parallel Architecture	18
2.3 Commercialized Multi-Mode Hybrid Vehicle Drivetrain Designs	20
2.3.1 General Motors Design	21
2.3.2 University of Michigan-Dearborn Design	28
2.3.3 Renault Design	29
2.3.4 Silvatech Design	31
2.3.5 Timken Design	33
2.4 Hybrid Vehicle Modelling and Simulation	35
2.4.1 Modelling and Simulation Tools	35
2.4.2 Energy Control Management	36
2.4.3 Emissions Predictive Techniques	37
2.5 Summary	
CHAPTER 3: DEVELOPED ARTIFICIAL NEURAL NETWORK	40
3.1 Artificial Neural Network	40
3.1.1 Artificial Neuron	41
3.2 Neural Network Structures	43
3.2.1 Feed-forward Network	43
3.2.2 Recurrent Network	43
3.3 Normalization of Dataset	44
3.4 Neural Network Learning	45
3.5.1 Back-propagation Neural Network	45
3.5.2 Kohonen Neural Network	48
3.5.3 Radial Basis Function Neural Network	50
3.5.4 Optimization Layer by Layer Neural Network	52
	viii

3.6 Summary	
CHAPTER 4: HES MODELLING AND CONSTRUCTION	
4.1 Introduction	
4.2 Previous Research	
4.3 HES Model Development	60
4.3.1 Vehicle Dynamics Model	61
4.3.2 Hub Motor Model	65
4.3.3 Battery Model	68
4.3.4 Internal Combustion Engine Model	71
4.3.4.1 Chassis Dynamometer Testing	71
4.3.4.2 ICE Model	75
4.3.5 Emissions Model	
4.4 Multi-State Control System Model	
4.5 Overall Integration of HES Model	
4.6 HES Development	
4.7 HES Model Architecture	91
4.8 HES Construction	
4.8.1 Scooter Selection	
4.8.2 DC Motor Selection	
4.8.3 Battery and Charger Selection	94
4.8.4 Torque Restrainer	
4.9 Controller Development	96
4.9.1 Microcontroller Selection	97
4.9.1.1 48 V Battery Current	
4.9.1.2 48 V and 12 V Battery Line Voltages	
4.9.1.3 Accelerator Position	
4.9.1.4 Battery Temperature	
4.9.1.5 Electric and Petrol Enable	
4.9.1.6 Kill Switch	
	ix

4.9.1.7 Petrol Kill	
4918 Brake On and Ignition On	107
4 9 1 9 Start Button	107
4.9.1.10 Charger Connected	108
4.9.1.11 Pun Fan	100
4.9.1.12 Wheel Speed	109
4.9.1.12 Wheel Speed	109
4.9.1.14 Electric Motor Enable	111
4.9.1.15 Electric Controller Throttle	112
4.9.1.16 Start Engine	113
4.9.1.17 Running indicator	114
4.9.1.18 Serial Data Transmit	114
4.9.1.19 LCD Control	115
4.9.2 Mains Battery Charging	115
4.9.3 Manual Start Requirement	115
4.10 HES Operation Procedure	116
4.10.1 HES Startup Procedure	116
4.10.2 HES Stopping Procedure	117
4.10.3 HES Charging Procedure	117
4.10.4 Long Term Storage	117
4.11 Conclusion	118
CHAPTER 5: HES PREDICTIVE MODEL APPRAISAL AND STRESULTS	IMULATION
5.1 Introduction	
5.2 Driving Cycles	119
5.2.1 Standard European Driving Cycle	120
5.2.1 Standard Buropean Driving Cycle	120
5.2.2 Woullied Orban Dynamometer Schedule	120
5.2.3 New York City Cycle	120
5.2.4 Modified Highway Fuel Economy Driving Schedule	121

5.3 HES Model Appraisal	
5.4 HES Model Simulation Results	127
5.4.1 ECE-15 Cycle	
5.4.2 Modified UDDS Cycle	
5.4.3 NYCC Cycle	133
5.4.4 Modified HWFET Cycle	135
5.4.5 States Analysis	
5.4.6 Fuel Economy and Emissions Analysis	
5.5 Conclusion	139
CHAPTER 6: ANN EMISSIONS PREDICTIVE MODEL	141
6.1 Introduction	141
6.2 Emissions Predictive Model	141
6.2.1 Neural Network Analysis Package	142
6.2.2 General Procedures of the Emissions Predictive Model	143
6.3 Results and Model Appraisal	145
6.3.1 CO	145
6.3.2 CO ₂	146
6.3.3 HC	148
6.3.4 O ₂	149
6.4 Conclusion	151
CHAPTER 7: FINAL CONCLUDING REMARKS AND RECOMME	ENDATIONS
	153
List of References	156
Annendix A	130
Appendix B	
Appendix C	101 2000

LIST OF FIGURES

Figure 1.1: Base Case Projected Growth in Motor Vehicle Travel	2
Figure 1.2: Justus B. Entz's Chalkboard Design	8
Figure 1.3: The Pieper Design	8
Figure 1.4: The Vendovelli and Priestly Electric Carriage Company Design	9
Figure 2.1: General Representation of a HEV Drivetrain	15
Figure 2.2: Load Power	15
Figure 2.3: (a) Series Hybrid Structure (b) Parallel Hybrid Structure (c) Series-Para Structure	allel Hybrid 19
Figure 2.4: General Motors Hybrid Drivetrain Design A	22
Figure 2.5: General Motors Hybrid Drivetrain Design B	25
Figure 2.6: General Motors Two-Mode EVT Architecture	
Figure 2.7: GM's Two-Mode Compound-Split Hybrid Design	27
Figure 2.8: University of Michigan-Dearborn Hybrid Drivetrain Design	29
Figure 2.9: Renault Drivetrain Design	
Figure 2.10: Silvatech Drivetrain Design	31
Figure 2.11: Timken Drivetrain Design	
Figure 3.1: Biological Neural System	40
Figure 3.2: Artificial Neuron Structure	41
Figure 3.3: Activation Functions	42
Figure 3.4: Feed-forward Neural Network	43
Figure 3.5: Recurrent Neural Network	44
Figure 3.6: Back-propagation Neural Network Model with 1 Hidden Layer	46
Figure 3.7: Basic Kohonen Neural Network Model	49
Figure 3.8: Basic Radial Basis Function Neural Network Model	50
Figure 3.9: Gaussian Activation Function	51
Figure 3.10: Optimization Layer by Layer Neural Network Model	53
Figure 3.11: Linearized Network Structure for the Optimization of the Hidden Lay	er56

Figure 4.1: Scooter Free Body Diagram	61
Figure 4.2: I/O Flow Diagram for Vehicle Dynamics Model	64
Figure 4.3: MATLAB-Simulink Vehicle Dynamics Block Model – Level 1	64
Figure 4.4: MATLAB-Simulink Vehicle Dynamics Block Model – Level 2	65
Figure 4.5: Island Earth GL2 Hub Motor Characteristics	66
Figure 4.6: I/O Flow Diagram for Hub Motor Model	67
Figure 4.7: MATLAB-Simulink Hub Motor Block Model – Level 1	68
Figure 4.8: MATLAB-Simulink Battery Model – Level 1	70
Figure 4.9: 83 cc Bug Escape Scooter	71
Figure 4.10: Scooter on the Chassis Dynamometer	72
Figure 4.11: Gas Analyzer Setup	73
Figure 4.12: Modified ECE-15 Cycle	74
Figure 4.13: ICE Maps for Each Throttle Openings	75
Figure 4.14: I/O Flow Diagram for ICE Model 1	76
Figure 4.15: ICE BSFC Map	77
Figure 4.16: I/O Flow Diagram for ICE Model 2	78
Figure 4.17: MATLAB-Simulink ICE Model – Level 1	79
Figure 4.18: Emissions Data for Each Throttle	80
Figure 4.19: I/O Flow Diagram for Emissions Model	81
Figure 4.20: Speed Threshold Values for Each Propulsion Source	82
Figure 4.21: SC Threshold Values during Vehicle Operation	83
Figure 4.22: MATLAB-Simulink Controller Model – Level 1	85
Figure 4.23: Control Block Diagram	86
Figure 4.24: Control Operation Parameters	87
Figure 4.25: Overall HES Model Flow Diagram	89
Figure 4.26: MATLAB-Simulink HES Predictive Model	90
Figure 4.27: HES Architecture and Power Flow	92
Figure 4.28: Reduced Tire Surface Width from 120 mm to 57 mm	93
Figure 4.29: Attached Hub Motor	94
	xiii

Figure 4.30: Underneath the Seat Compartment	95
Figure 4.31: Torque Restrainers	96
Figure 4.32: HES Control Signal Flow Diagram	97
Figure 4.33: PCB Board under the HES's Seat	97
Figure 4.34: Microchip ICD 2 Programmer	98
Figure 4.35: Current Sensor Power Supply	100
Figure 4.36: Current Sensor Signal Conditioning	101
Figure 4.37: Battery Voltage Sensor Circuit	101
Figure 4.38: Throttle Sensor Circuit	
Figure 4.39: Temperature Sensor	103
Figure 4.40: Electric, Petrol and Hybrid Modes Switches	
Figure 4.41: Dashboard Display	104
Figure 4.42: Manual Electric, ICE and Hybrid Mode Circuit	104
Figure 4.43: Kill Switch Circuit	
Figure 4.44: Petrol Kill Circuit	106
Figure 4.45: Brake On and Ignition On Circuit	107
Figure 4.46: 240 V Mains Detection Circuit	
Figure 4.47: Switching Circuit	
Figure 4.48: Wheel Speed Sensor	110
Figure 4.49: ICE Tachometer Circuit	111
Figure 4.50: Controller Output to Relay	112
Figure 4.51: Switching Circuit	112
Figure 4.52: Electric Controller Circuit	113
Figure 4.53: RS232 Serial Port	114
Figure 4.54: Charge Plug Installed	115
Figure 4.55: Parallel Plug-in Hybrid Electric Scooter	116
Figure 5.1: ECE-15 Driving Cycle	
Figure 5.2: Modified UDDS Driving Cycle	121
Figure 5.3: NYCC Driving Cycle	121
	xiv

Figure 5.4: Modified HWFET Driving Cycle122
Figure 5.5: Fuel Economy for the Modified ECE-15 Cycle
Figure 5.6: BSFC for the Modified ECE-15 Cycle123
Figure 5.7: CO Predictions for the Modified ECE-15 Cycle124
Figure 5.8: CO ₂ Predictions for the Modified ECE-15 Cycle124
Figure 5.9: HC Predictions for the Modified ECE-15 Cycle
Figure 5.10: O ₂ Predictions for the Modified ECE-15 Cycle
Figure 5.11: Demanded Torque and Power for the ECE-15 Cycle
Figure 5.12: ICE and Motor Torque Provided for the ECE-15
Figure 5.13: Fuel Economy and SC for the ECE-15
Figure 5.14: States Transition for the ECE-15 Cycle
Figure 5.15: Accumulative Emissions for the ECE-15 Cycle
Figure 5.16: Demanded Torque and Power for the Modified UDDS Cycle
Figure 5.17: ICE and Motor Torque Provided for the Modified UDDS Cycle
Figure 5.18: Fuel Economy and SC for the Modified UDDS Cycle
Figure 5.19: States Transition for the Modified UDDS Cycle
Figure 5.20: Accumulative Emissions for the Modified UDDS Cycle
Figure 5.21: Demanded Torque and Power for the NYCC Cycle
Figure 5.22: ICE and Motor Torque Provided for the NYCC Cycle
Figure 5.23: Fuel Economy and SC for the NYCC Cycle
Figure 5.24: States Transition for the NYCC Cycle
Figure 5.25: Accumulative Emissions for the NYCC Cycle
Figure 5.26: Demanded Torque and Power for the Modified HWFET Cycle136
Figure 5.27: ICE and Motor Torque Provided for the Modified HWFET Cycle136
Figure 5.28: Fuel Economy and SC for the Modified HWFET Cycle136
Figure 5.29: States Transition for the Modified HWFET Cycle
Figure 5.30: Accumulative Emissions for the Modified HWFET137
Figure 6.1: EPM Structure
Figure 6.2: Neural Network Model List
XV

Figure 6.3: Neural Network EPM Structure	
Figure 6.4: CO Training Error	
Figure 6.5: CO Testing Error	
Figure 6.6: CO Prediction Results	
Figure 6.7: CO ₂ Training Error	147
Figure 6.8: CO ₂ Testing Error	147
Figure 6.9: CO ₂ Prediction Results	
Figure 6.10: HC Training Error	
Figure 6.11: HC Testing Error	
Figure 6.12: HC Prediction Results	
Figure 6.13: O ₂ Training Error	
Figure 6.14: O ₂ Testing Error	
Figure 6.15: O ₂ Prediction Results	151

LIST OF TABLES

Table 1.1: Projected Emissions	
Table 2.1: Operating Modes and Conditions for GM Design A 23	
Table 2.2: Operating Modes and Conditions for GM Design B 25	
Table 2.3: Operating Modes and Conditions for GM Two-Mode EVT Design 27	
Table 2.4: Operating Modes and Conditions for GM's Two-Mode Compound-Split Hybrid Design	
Table 2.5: Operation Modes and Conditions for University of Michigan-Dearborn Design29	
Table 2.6: Renault Design Modes	
Table 2.7: Silvatech Design Modes 32	
Table 2.8: Timken Design Modes	
Table 4.1: Rolling Resistance Coefficient	
Table 4.2: 83 cc Bug Escape Scooter Data 71	
Table 4.3: Overall HES Model Flow Diagram Description 88	
Table 4.4: Island Earth GL2 Hub Motor Summary 94	
Table 4.5: Summary of PIC18F4520 Features 98	
Table 4.6: Summary of I/O Requirements	
Table 4.7: Switch Configuration105	
Table 5.1: Results and Errors for Fuel Usage Simulation for ECE-15 Cycle	
Table 5.2: Results and Errors for Emissions and Fuel Economy Simulation 126	
Table 5.3: Summary of State Usages 138	
Table 5.4: Summary of the Simulated Fuel Economy 139	
Table 5.5: Summary of the Simulated Total Emissions 139	
Table 6.1: Summary of Results151	

ABBREVIATIONS

AI	artificial intelligence
ANN	artificial neural network
BP1	back-propagation with 1 hidden layer
BP2	back-propagation with 2 hidden layers
BSFC	brake specific fuel consumption
CAFE	Corporate Average Fuel Economy
CL	clutch
СО	carbon monoxide
CO_2	carbon dioxide
DFV	dual-fuel vehicles
ECE-15	Standard European Cycle
EPM	Emissions Prediction Model
EC	energy source
ES	energy converter
EV	electric vehicle
FCV	fuel cell vehicles
НС	hydrocarbon
HEM	hybrid electric motorcycle
HES	hybrid electric scooter
HEV	hybrid electric vehicle
HWFET	Highway Fuel Economy Driving Schedule
I/O	input/output
ICE	internal combustion engine
LVQ	learning vector quantization
M/G	motor/generator unit
NO ₃	nitrate
NOx	nitrogen oxides
NYCC	New York City Cycle
O ₂	oxygen
O ₃	ozone
OLL	Optimization Layer by Layer

Pb	lead
PGT	planetary gear train
PM	particulate matter
ppm	parts per million
RBF	Radial Basis Function
RBF+KOH	Radial Basis Function incorporating the Kohonen Network
RMS	root mean square
rpm	revolutions per minute
SC	state of charge
SLA	sealed lead acid
SO_2	sulphur dioxides
SO_4^-	sulphate
tce	trichloroethylene
TPS	throttle position sensor
UDDS	Urban Dynamometer Driving Schedule
US EPA	Environment Protection Agency
WOT	wide open throttle
ZEV	zero emissions vehicle