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Abstract 

A new approach for the non-linear buckling and large deflection analyses of 

isotropic and composite stiffened panels, as used in high speed craft, is presented. 

Eight node isoparametric elements, formulated according to Marguerre shallow 

shell theory, are combined with three node beam elements, using the concept of 

equal displacements at the panel-stiffener interface, to represent the stiffened panels. 

Non-linear equilibrium equations are derived using the principle of virtual work 

applied to a continuum with a total Lagrangian description of motion. 

The arbitrarily stiffened, shallow shell element is capable of modelling eccentric or 

concentric stiffeners attached to flat or imperfect panels under in-plane or 

transverse loads. Special modelling considerations for the loading and boundary 

conditions, required in the linear and non-linear buckling analyses of stiffened 

panels using arbitrarily stiffened finite elements, are suggested and discussed for the 

first time. 

The Newton-Raphson incremental-iterative solution technique is used to obtain the 

non-linear response path. Results obtained in this investigation are compared with 

those available in the open literature to demonstrate the validity and efficiency of the 

proposed approach. Good agreement is found in all the investigated cases. 
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Chapter 1.  General Introduction 

 

1.1 Background 

In recent years the requirements for fast marine transportation and fast deployment 

capabilities, for commercial and naval vessels respectively, have led designers of 

High-Speed Craft (HSC) 1 to push their creations to the very edge of their operational 

limits. 

Since the structural failure of a HSC could have fatal consequences for the crew and 

passengers; generate major economical losses for ship-owners/operators; and 

seriously damage the reputation of the designer/shipbuilder, it is fundamental to 

ensure that the structure will be safe, i.e. that it would not fail under the prescribed 

design loads. This is not a simple task since HSC need to resist extreme loadings 

caused by higher operational speeds, such as slamming, which are yet to be fully 

understood (Thomas, 2003). 

In addition to being safe, the vessel must be as efficient as possible. According to 

Molland (2008), the efficiency of a HSC can be gauged using the transport efficiency 

factor, which is the ratio of the product of payload and speed to the total installed 

power. From this definition it can be easily appreciated that an increment of the 

payload would increase the overall efficiency of the vessel. 

A common way to achieve an increment in payload is to reduce the weight of the 

structure. However, a reduction in structural weight is normally linked to a reduction 

in scantlings that could lead to an unwanted reduction in structural safety, and/or to 

the use of exotic materials which could be expensive. Designers are hence forced to 

                                                 
1 A high-speed craft is, as defined by International Maritime Organization (IMO), a 

craft capable of a maximum speed, in meters per second, equal or exceeding 
0.16673.7 , where  is the volume of displacement corresponding to the design 

waterline in cubic metres.  
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find an optimum structure that efficiently balances strength, cost, and weight 

requirements without sacrificing safety. 

Since traditional structural design methods, i.e. empirical rules, cannot distinguish 

between structural adequacy and over-adequacy, the search for this optimum 

configuration in HSC is normally conducted using a rational-based approach 

(Hughes, 1988) where the design is directly and entirely based on structural theory 

and computer based methods of structural analysis, and which obtains an optimum 

structure on the basis of a designer-selected measure of merit. 

Until recently the numerical models used by marine structural designers for the 

rational-based structural analysis of marine structures have been mainly linear, i.e. 

based on the assumption that deflections of the structure remain small, i.e. less than 

half the thickness of the panel skin in magnitude. 

However, due to the lower stiffness of the materials used in HSC, the geometrically 

non-linear behaviour of laterally loaded panels is significant even at low load levels 

(Moy et al., 1996, Bau-Madsen et al., 1993) and consequently, a linear analysis may 

lead to under/overestimates of the displacement levels resulting in the design of 

under/overdesigned, structures. 

Moreover, it is now common for designers of HSC to conduct an ultimate failure 

analysis of the ship‟s hull girder in order to determine a safe operational limit for the 

vessel structure (Chen et al., 2003, Chen and Guedes Soares, 2007). This type of 

analysis requires an understanding of both the pre and post-buckling behaviour of the 

structure. The post-buckling behaviour of a stiffened panel is a highly non-linear 

problem that a linear finite element model will be unable to analyse. 

Finally, the search for an optimum structure is a very resource intensive process, as it 

involves repetitive calculations coupled to changes to the structural configuration 

parameters, i.e. stiffener orientation, eccentricity, spacing, and cross sectional 

dimensions. Consequently, if the analysis tool is computationally inefficient, every 

calculation will slow down the optimization process. The optimization process could 

be further delayed if the analysis tool lacks in modelling flexibility, as every iterative 

change in the structural arrangement could become an extremely laborious and 

tedious task for the designer. 
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Summarizing, the design of an optimal HSC structure is a complex balancing act. 

The complexity of the non-linear structural problem in hand, combined with the 

iterative nature of the calculations required in the design process of a HSC, creates 

the necessity for an efficient numerical modelling technique that reduces both the 

computational processing time, as well as the time required to generate and/or 

modify the structural configuration in the numerical model. 

1.2 Problem definition 

The structure of a HSC can be idealized as a thin-walled box girder (or girders in the 

case of a multihull). The walls of this box girder usually consist of a combination of 

flat and curved unstiffened and stiffened panels. 

Structural engineers define an unstiffened panel as a monocoque structure. The word 

monocoque results from the combination of coque, which is the French word for the 

shell of a shellfish (as well as the word for ship hull), and mono, a Greek word 

which in this context specifies that the skin is the sole contributor to the overall 

stiffness and strength of the panel. Therefore a monocoque can be understood as a 

structure where only the skin contributes to the overall stiffness of the panel. 

If the load is increased, the skin may be thickened in order to provide additional 

strength and stiffness. However, by increasing the skin thickness such a design will 

not be efficient in respect to the weight of material used. 

A stiffened panel on the other hand is defined by structural engineers as a semi-

monocoque (Figure 1-1). 

Here the addition of the Greek work semi specifies that the skin is not the single 

contributor to the overall strength and stiffness of the panel, since this configuration 

uses an internal framework to increase the overall bending stiffness of the panel. 

Normally, the stiffening members are arranged in an orthogonal grid-like pattern. 

However, in particular cases such as stern and bow panels of a ship hull, stiffeners 

are also placed at arbitrary orientations within the panel boundaries (Brubak et al., 

2007). 
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Figure 1-1 Nature’s example of a semi-monocoque structure. 

The members of the framework, known as stiffeners, add negligible weight to the 

overall structure compared to their large influence on strength and stability of the 

panel (Bedair, 1998).  

Stiffened panels can exhibit a variety of failure modes, some overall and some local 

in nature. The quantitative and qualitative assessment of these failure modes is 

crucial to the understanding of the overall structural response of a HSC.  

As the optimum preliminary sizing of structural components at the conceptual design 

phase of new structures requires a large number of structural optimizations, and 

considering the fact that computational time and resources in the preliminary are 

limited, the use of detailed finite element models as part of this rational-based 

optimization of stiffened structures is not affordable (Lamberti et al., 2003). 

Designers are forced to reach a compromise between the complexity in the structural 

analysis model, e.g. local models instead of a global model and/or linearised analysis 

instead of non-linear analysis, and that of the optimization method (local versus 

global optimization). When designing new concepts where good initial designs are 

not available, design optimization needs to be performed, and this is not currently 

possible with complex models. 

The structural problem is further complicated in the analysis of HSC where materials 

with high strength-to-weight ratio such as aluminium alloys and, more recently, 

composite materials are normally used to save weight. 
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Composites made of Fibre-Reinforced Plastics (FRP) are often superior to steel and 

aluminium as building material for HSC due to their high stiffness-to-weight ratio 

and corrosion resistance. Nevertheless, poor fabrication quality, and high cost added 

to perceived lack of high-quality, initially limited the application of FRP composite 

to a few non-critical ship structures and small boats. 

However, it has been reported (Mouritz et al., 2001) that, since the mid-1980s, the 

overall length of FRP ships has increased steadily and that currently composite ships 

of up to 80-90 m long are being constructed or have already been built. This 

development has been driven by the need to enhance the operational performance 

(e.g increased range, stealth characteristics, stability, payload) but at the same time 

reduce the ownership cost of surface and submarine vessels, through better 

manufacturing processes and lower material costs.  

Mouritz et al. (2001) suggest that, if the trend continues, hulls for mid-size warships, 

such as frigates that are typically 120-160 m long, may be constructed from FRP 

composites from about 2020. This hypothetical trend is already a reality in the 

aerospace industry where the new Boeing 787 will soon become the first airliner 

with a composite only fuselage. 

 
Figure 1-2 FRP composite fuselage of the Boeing 787 (Boffoli 2007). 
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According to Mouritz et al. (2001), this progressive change could be accelerated if 

simple to use models for optimising the design of large, complex load-bearing naval 

structures become available. 

Such models are of special importance in the preliminary design of composite 

structures given that the scaling laws for composites are complex due to their 

anisotropic properties, making the modification of existing load-bearing structure 

designs more difficult than with metals. 

Furthermore, although experimental testing of composite structures is still necessary 

to validate the results of analytical and numerical models, extensive testing of 

composite structural components is extremely expensive and therefore unviable. A 

cost effective structural analysis tool, capable of evaluating the performance of 

composite structures, would be a significant aid in reducing the number of required 

experimental tests (Tay et al., 2008). 

1.3 Scope of work 

Clearly, it is vital that the HSC is not operated outside the structural design envelope. 

In order to calculate an optimum design envelope, an iterative structural design 

process has to be conducted. This design process should be as accurate and fast as 

economically practicable. 

Consequently, in this investigation, a non-linear analysis tool was developed to 

introduce and evaluate quick design modifications, which allows designers to 

conduct a streamlined and iterative design process efficiently. 

The requirements of this tool, and at the same time the goals in this investigation, 

are: 

1. The tool must be able to quickly evaluate the performance of unstiffened and 

stiffened panels, with a preliminary design level of accuracy and with 

minimum modelling cost. 

 

2. The tool must be capable of performing non-linear calculations for panels 

made from metallic and composite materials accurately and efficiently. 
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3. The tool must be able to modify the parameters that define the panel 

configuration, i.e. stiffener spacing, orientation, cross section and 

eccentricity, quickly to allow a thorough exploration of the design space. 

 

4. The position of the stiffener(s) within the panel must not impose any kind of 

topological restrictions that may affect the efficiency of the modelling tool. 

 

5. The tool must be capable of representing not only the behaviour of stiffened 

and unstiffened panels under the action of transverse loads, but also under the 

action of in-plane compressive loads. 

 

6. In order to model the non-linear compressive behaviour, the tool must 

include initial deformations of the unstiffened and stiffened panels 

1.4 Thesis outline 

The investigation conducted to develop and validate the analysis tool described in 

the previous Section is reported in the present thesis. The thesis is comprised of 7 

chapters in total: 

 Chapters 1 and 2 mainly consist of an introduction to the problem in hand 

and provide a detailed literature review of the available modelling techniques 

and existing work in the field of non-linear structural analysis of stiffened 

panels, with special attention to the developments of arbitrarily orientated 

stiffened finite element formulations. 

 

 Chapter 3 contains an extensive and detailed description of the mathematical 

formulation implemented in this investigation, for the non-linear analysis of 

stiffened panels using arbitrarily stiffened elements. The chapter includes a 

description of the theories used in the formulation of both the shallow shell 

master element as well as the Timoshenko beam slave element. 

 

 Chapter 4 discusses the procedures used to formulate and solve the non-linear 

equations of the stiffened element. This chapter includes the discussion of a 

new method used to account for the effects of in-plane loads in arbitrarily 
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stiffened panels, as well as a description of the technique used to calculate 

and incorporate initial deformations into the stiffened panel models. 

 

 In Chapter 5 the performance of the stiffened element in representing the 

non-linear behaviour of stiffened panels under transverse loads is validated 

against experimental and numerical data available in the open literature and 

data obtained using the general purpose finite element package ANSYS. 

 

 Similarly, in Chapter 6 the performance of the stiffened element in 

representing the non-linear behaviour of stiffened panels under in-plane loads 

is validated against experimental and numerical data available in the open 

literature and data obtained using the general purpose finite element package 

ANSYS. Furthermore, the effects of the in-plane load modelling technique 

suggested in chapter 4 are discussed and validated. 

 

 Finally, Chapter 7 provides a summary of the investigation and the overall 

conclusions arising from the current research. Recommendations for further 

research based on the present study are also presented in this chapter. 
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Chapter 2.  Literature Review 

 

2.1 Introduction 

The goal of this chapter is to establish an overview of available techniques for 

modelling the non-linear behaviour of stiffened structures with a design stage level of 

accuracy. The purpose of this is to provide an extensive basis for choosing the best 

approach to formulate an element which meets the aims of the present study described 

in Section 1.3. 

Although progress in the analysis of stiffened structures has been reported in the past by 

several authors (Satsangi and Mukhopadhyay, 1989, Mukhopadhyay and Mukherjee, 

1989, Sinha and Mukhopadhyay, 1995, Mukhopadhyay and Sinha, 1992, Norwood, 

1995), these reviews were focused mainly on the linear response of such structures. 

Consequently, as part of the present investigation, a literature review focusing on the 

non-linear response of stiffened structures was conducted and published  to highlight 

the advances and the state-of-the-art in the field (Ojeda et al., 2008). The most relevant 

outcomes of that review are presented in this Chapter to guide the selection of the most 

suitable modelling tool. 

The cited references were selected to illustrate the variety of models being used in the 

broad area of stiffened structural analysis and are not necessarily the only significant 

contribution on the subject. The discussion is kept to a descriptive level, and for all the 

mathematical details, the reader is advised to refer to the cited literature. Undoubtedly, a 

survey of this type will not do justice to all the contributions for which the author 

apologizes. 

  



Literature Review 

10 
 

2.2 Stiffened panel modelling approaches 

A variety of methods are available for the non-linear analysis of stiffened panels, 

ranging from simple closed form solutions to complicated three dimensional discretised 

solutions. 

The analysis cost typically increases with the level of detail modelled and the fidelity of 

the analysis procedure used (Lamberti et al., 2003). The most common analysis models 

or methods are as follows: 

1. Analytical and semi-analytical methods; 
2. Finite strip method; 
3. Finite element method. 

 

2.2.1 Analytical and semi-analytical method 

The simplest approach to analyse stiffened structures is to use an analytical model in 

which the structure is converted to an equivalent plate/shell with constant thickness by 

smearing out the stiffeners. The model is suitable for obtaining load paths, stiffness 

constraints and overall or general buckling load estimates. However, these models 

cannot be used for stress calculations or to capture local and stiffener buckling failures. 

Moreover further difficulties appear when using this approach if the stiffeners are not 

identical in both directions since the resulting thickness becomes non-uniform. 

The “smeared stiffener” approach was used by Shen (1998) for the post-buckling 

analysis of imperfect stiffened laminated cylindrical shells under combined external 

pressure and thermal loading. The author used a boundary layer theory of shell buckling 

which includes the effects of non-linear pre-buckling deformations, non-linear large 

deflections in the post-buckling range and initial deformations of the shell. 

Nonetheless the “smeared approach” fails to capture the local effects of the stiffeners, 

thereby making it unsuitable to study the response of stiffened panels, where the 

stiffeners are spaced unevenly or are of different cross section; hence the applicability 

of the “smeared” approach is very much restricted. 

Recently, and in order to overcome these difficulties, Steen et al. (Steen and Byklum, 

2005, Steen et al., 2004b, Steen et al., 2001, Steen et al., 2004a) have proposed three 

semi-analytical models to study the post-buckling ultimate strength of stiffened panels: 
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an unstiffened model, an orthogonally stiffened model and an arbitrary stiffened model. 

These models can be classified as semi-analytical in the sense that they are based on the 

recognised plate theory of Marguerre (1938) in combination with numerical techniques 

for solution of governing differential equations. Both the unstiffened and the 

orthogonally stiffened models are capable of assessing post-buckling strength whereas 

the arbitrary orientated stiffened model is limited only to linear analyses. Furthermore, 

none of these models are capable of analysing composite laminated panels. 

2.2.2 Finite strip method 

The finite strip method was devised for structural analysis in the late 1960‟s (Cheung 

and Tham, 1998). This method treats the stiffened panels as an assemblage of plates or 

shells. For each component in the assemblage, the field equations are solved and 

boundary conditions at the interfaces are matched between adjoining members. The 

field equations for each component can be solved exactly or approximately using 

assumed displacements. 

The finite strip method is suitable for the analysis of stiffened panels manufactured 

from layered composite materials. Loughlan (1994) and Loughlan and Delaunoy (1993) 

used the finite strip method to study the effects of fibre orientation on the buckling of 

composite stiffened plates. A multi-term finite strip approach was required to predict 

the complex buckling behaviour of composite stiffened panels under shear loads. The 

method was later extended by Loughlan (1996) for the buckling analysis of composite 

box sections. In both cases only structures reinforced with stiffeners running parallel 

with the direction of the strips where considered. 

The conventional finite strip method allows different segments to have different 

properties, but does not allow variations of thickness or properties in each segment. 

This restricts the models to have length-wise or breadth-wise uniform properties. Local 

details (e.g. cutouts, localized loads) are difficult to model.  

The spline finite strip method was developed to overcome some of the limitations of the 

conventional finite strip method by adopting a cubic B-spline function to improve the 

interpolation in the direction of the strip. 

This approach has been proven suitable for the vibration (Wang and Dawe, 1997), 

buckling (Wang and Dawe, 1997, Dawe, 2002), and transient (Dawe, 2002) analyses of 
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prismatically stiffened composite plates as well as for the vibration and buckling 

analysis of stiffened sandwich plates (Yuan and Dawe, 2004). 

An example of the application of this spline finite strip method to the study of stiffened 

plates is the work of Sheikh and Mukhopadhyay (Sheikh and Mukhopadhyay, 2002, 

Sheikh and Mukhopadhyay, 2000). The authors extended the analysis capabilities of 

their previously developed linear formulation (Sheikh and Mukhopadhyay, 1993, 

Sheikh and Mukhopadhyay, 1992) to perform large deflection and non-linear transient 

vibration analysis of stiffened plates. The main advantage of the formulation lies in the 

treatment of the stiffeners which does not need to be placed along the edges of the 

strips. However, the main limitation of this approach is that the stiffener ends have to 

pass through two opposite edges of the strips. 

2.2.3 Finite element method 

The finite element method (Zienkiewicz and Taylor, 1994) involves replacing the panel 

domain with a discrete number of interpolation regions (elements) of known stiffness. 

The versatility of this method relies on its ability to cater for arbitrary geometry, 

material anisotropy, ease of formulation as well as its ability to include a wide range of 

boundary conditions and loads (Prusty, 2001b). 

Since its first introduction to the analysis of ship structures by Paulling (1964), the 

finite element method has become established as the standard tool for the analysis of 

ship structures (Thomas, 2003). 

Although the finite element method is considered to be one of the most accurate and 

versatile techniques available, a careful selection of the modelling approach is 

paramount to perform efficient analyses, as an inappropriate model can use large 

amounts of computer storage as well as modelling and processing time (Sheikh and 

Mukhopadhyay, 2002). 

The most detailed finite element models available are those that use three dimensional 

elements, also known as solid elements, to represent the complete structural domain of 

the panel. These models are generated by dividing (meshing) the stiffened panel domain 

into a series of small tetrahedral and/or hexahedra interpolation regions or elements. 
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Although being the most detailed discretisation technique available, three dimensional 

finite element models of stiffened panels are used in few particular applications. 

One of these applications is the analysis of thermal induced deformations created by 

welding. Camilleri et al., (2005) used highly detailed finite element models, created in 

the general purpose finite element code ANSYS with the eight node hexahedra element 

SOLID 45, to optimize the welding scheme with respect to minimum out-of-plane 

deformation in orthogonally stiffened panels. In this analysis three dimensional 

elements were used to describe in detail the state of stress surrounding the zone affected 

by welding in order to predict the thermal distortions accurately. 

Another area of application of three dimensional finite element models is the field of 

fracture mechanics, where highly detailed three dimensional finite element models are 

normally used to track the progression of failure. An example of such application are 

the failure predictions for rib-stiffened panels presented by Key et al. (2004). These 

authors used ABAQUS eight node hexahedra elements, augmented with the multi-

continuum technology progressive failure model, to predict and analyse the separation 

of the stiffener from the skin at the interface. Again, this problem required a highly 

detailed description of the state of stress at the skin-stiffener interface for an accurate 

prediction of the progression of failure. 

The main reason for the limited application of three dimensional models in the analysis 

of stiffened panels, is that these elements are considered wasteful and problematic 

(Cook, 1995). They are considered wasteful as they compute the transverse normal 

stress which is negligible in such a thin structure and, more importantly, they are 

considered problematic as three dimensional element models are normally much harder 

to prepare, tedious to check for errors, and most importantly, the higly demanding of 

computer resources. 

Indeed, in order to control the shape and quality of the mesh, the domain topology, 

normally defined using Computer Aided Design (CAD) software, must be divided as 

shown in Figure 2-1. Such divisions increase the complexity of the model and force the 

user to perform tedious Boolean operations to subdivide the domain. Such operations 

might be cumbersome if multiple and/or non-uniformly shaped stiffeners were present 

in the model. 
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Figure 2-1 Topology requirements for a three dimensional finite element mesh. 

In addition, Cook (1995) suggests that because of the dimensions of a stiffened panel, 

the three dimensional elements become distorted in modelling the thin panel skin and 

stiffener volumes. This, according to Cook, invites locking, which is an overly stiff 

representation of some of the deformation modes of the structure. The locking problem 

could be avoided by using a greater number of more compact elements. However, this 

would increase the total number of degrees of freedom of the structure, which in turn 

would make the solution numerically inefficient. 

A better option for generating a model of a stiffened panel using finite elements is to 

represent the panel domain using two dimensional elements. Two dimensional elements 

are obtained by collapsing a three dimensional element in the thickness direction and by 

omitting the transverse normal stress in their formulation. Two dimensional elements 

can be quadrilateral or triangular in shape, with a quadrilateral element mesh yielding 

usually more accurate results than a mesh of similar density based on triangular 

elements. 

Consequently, such elements required only the definition of a two dimensional domain 

(surface), which is normally divided, in order to control the shape and quality of the 

mesh, as illustrated in Figure 2-2.  
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Figure 2-2 Topology requirements for a two dimensional finite element mesh. 

It is important to note that, in this division, a line that is common to all three areas must 

exist in order to ensure that the panel and stiffener behaves as a semi-monocoque 

structure. 

An example of the application of two dimensional finite elements to the analysis of 

stiffened structures is the investigation reported by Chen and Guedes Soares (2007, 

2008) on the longitudinal strength of composite ship hulls. In this investigation, the hull 

girder was idealized as an assembly of stiffened composite panels modelled using 

degenerated laminated composite shell elements for both the panel skin and the 

stiffener. Using a progressive failure algorithm, the ultimate strength of each stiffened 

panel was predicted by nonlinear finite element analysis. Based on the individual panel 

failure results, the longitudinal strength of the ship‟s hull girder was estimated using an 

iterative method similar to that suggested by Gordo et al. (1996). 

More recently, and also using two dimensional finite elements, the post-buckling 

behaviour and strength of multi-stiffened aluminium panels under combined axial 

compression and lateral pressure was investigated by Khedmati et al. (2010). 

In that investigation, a finite element model, previously generated by Rigo et al. (Rigo 

et al., 2003) using the general purpose finite element package ANSYS, was used to 
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study the influence of both initial deflections and the heat affected zone on the post-

buckling behaviour and collapse characteristics of aluminium stiffened panels under 

combined axial compression and lateral pressure. 

Nevertheless, although stiffened panel model generated using two dimensional elements 

are more computationally efficient than those generated using three dimensional 

elements, a large number of equations are still required to discretise the stiffener 

domain. Furthermore, in such models the user is still required to perform Boolean 

operations to obtain a domain topology that is suitable for a two dimensional element 

mesh. 

The inefficiency of idealising stiffened structures with only three or two dimensional 

finite elements has led researchers to search for more computationally efficient models. 

A more efficient way of representing a stiffened panel, using the finite element method, 

is to combine two different types of elements in the same model. This is normally 

achieved by combining two dimensional (plate/shells) and one-dimensional (beam) 

elements as shown in Figure 2-3. Here, two dimensional elements are used to discretise 

the skin of the panel (Surface 1 and Surface 2) whilst the one-dimensional elements are 

used to discretise the stiffener (along the common line). 

An admissible, combined model demands compatible displacements fields for both the 

beam and the shell elements. Therefore, the interpolation functions approximating the 

displacement fields in beams must be the same as the ones approximating the 

corresponding displacement field in the shell elements. This approach, known as the 

discrete stiffener approach, was used by Liao & Reddy (1990) to present a degenerated 

continuum-based, laminated, isoparametric, stiffened shell element in conjunction with 

a degenerated, isoparametric beam element to investigate the static, geometric, non-

linear response of composite stiffened shells. 
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Figure 2-3 Topology requirements for a discretely stiffened finite element mesh. 

The degenerated shell and beam elements were obtained by imposing appropriate 

kinematic constraints on the three dimensional isoparametric solid element as presented 

by Bathe & Bolourchi (1980). Similarly, Qun et al. (1999) used the discrete stiffener 

approach to develop a finite element program for the static analysis of concentrically 

stiffened isotropic plates and shells with large deflection and rotations. A generalized 

conforming triangular flat shell element with drilling degrees of freedom and the three 

dimensional beam element with Hermite interpolation was used to represent the 

stiffened structure. 

The discrete stiffener approach has not been limited to the global analysis of stiffened 

shells. The local behaviour of discretely stiffened laminated composite cylindrical 

shells has been investigated by Kassegne & Reddy (1998). The layer-wise theory 

(Reddy, 1987) was used to model the composite laminate. The layer-wise model is 

essentially a 3D model in a 2D format, where the 3D displacement field is expanded as 

a function of a surface wise 2D displacement field and a one-dimensional interpolation 

through the thickness. Hence it is capable of representing the local layer behaviour. The 

authors acknowledged that the discrete layer-wise model might be too expensive 

computationally for shells with a large number of stiffeners. 
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Koko & Olson (1991a) used a super-element approach for the large deflection elasto-

plastic analysis of orthogonally stiffened plates. The super-elements are designed to 

contain all the basic modes of deformation so that only one plate element per bay and 

one beam element per span are needed to analyse a stiffened structure, therefore 

reducing the storage requirement and solution times. The authors further extended the 

proposed method for the non-linear modal and transient analyses of stiffened plates 

(Koko and Olson, 1991b, 1992). Later, and inspired by the satisfactory performance of 

the super-elements for the non-linear analysis stiffened plates, Jiang & Olson (1994) 

further developed this approach to study the non-linear behaviour of stiffened shells. 

The proposed method was limited to the study of isotropic rectangular plates and shells, 

stiffened in mutually perpendicular directions. Hence, and similar to the discrete 

stiffener approach, this particular super-element approach is restricted by the condition 

that the stiffeners must pass through the edges of the super-element. 

Another interesting approach was reported by Günay (1999). The author presented a 

geometrically non-linear finite element analysis of laminated stiffened cylindrical 

shallow shells using composite shallow shell elements with stringer-type stiffeners. In 

his analysis, a two sided meshing system was generated to represent cylindrical shell 

with stiffeners in a three dimensional co-ordinate system. No attempts were made to 

model stiffeners of various shapes and/or having arbitrary orientation in the plate/shell 

panel. 

A significant disadvantage of the discretely stiffened models discussed so far is that the 

orientation of the stiffeners is restricted by the mesh, because the beam and shell 

elements are connected to each other at their nodal points. Therefore, a beam element 

can be placed only along the boundaries of the areas of the panel. 

Consequently, the distribution of stiffeners modelled by beam elements has a very 

restrictive influence on the meshing of the skin, which may be very inefficient, 

especially when repeated analyses are to be performed to estimate the optimum spacing 

and orientation of stiffeners in a panel. 

An optimal combined model should involve the placement of the beam element within 

the plate or shell element at an arbitrary orientation (Barut et al., 2000), as shown in 

Figure 2-4. 
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This requires the definition of the displacement fields at any point within a slave 

element (beam element) in terms of the field variables of a master element (plate or 

shell element). Since the beam kinematic field is described by the shell kinematic field, 

only the master plates or shells are needed to discretise the entire stiffened shell 

structure. Thus eliminating the modelling difficulties attributed to the conventional 

beam-plate and beam-shell models. 

This approach is referred to as the arbitrary-orientated stiffener approach and has been 

widely applied for more than two decades to the linear analysis of stiffened plates (Ray 

and Satsangi, 1996, Ray and Satsangi, 1999, Kumar and Mukhopadhyay, 2002, Kumar 

et al., 2002, Kumar and Srivastava, 2003, Satsangi and Ray, 1998, Chattopadhyay et 

al., 1993, Barik and Mukhopadhyay, 2002, Palani et al., 1993, Palani et al., 1992, 

Kumar and Mukhopadhyay, 2000b, Thompson et al., 1988, Mukherjee and 

Chattopadhyay, 1994, Chattopadhyay et al., 1992, Mukhopadhyay, 1981) and stiffened 

shells (Samanta and Mukhopadhyay, 1998, Prusty, 2001b, Nayak and Bandyopadhyay, 

2002, Prusty, 2001a, Prusty and Satsangi, 2001b, Prusty and Satsangi, 2001a, Prusty, 

2003, Prusty et al., 2001a, Prusty et al., 2001b). 

 
Figure 2-4 Topology requirements for a arbitrarily stiffened finite element mesh. 
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An excellent example of the application of the arbitrarily-orientated stiffener to the 

analysis of ship structures is the computer program Advance Ship Structural Analysis 

(ASSA) developed by Kumar and Mukhopadhyay (Kumar and Mukhopadhyay, 2002, 

Kumar et al., 2002, Kumar and Mukhopadhyay, 2000a) for the global linear structural 

analysis of ship hulls. This program uses a 3 node Allman-discrete Kirchhoff-Mindlin 

stiffened plate element to represent isotropic and composite stiffened panels without the 

restriction of having to align the mesh with the trajectories of the stiffeners. It has been 

reported (Kumar and Mukhopadhyay, 2002) that a reduction of nearly 50% in the total 

number of degrees of freedom, for the same level of accuracy, of a generic ship model 

was achieved by using this stiffened element instead of a conventional discretely 

stiffened model. 

However, the vast majority of the reported formulations are limited to linear analysis. In 

fact the reported work on the application of the arbitrarily-orientated stiffener approach 

to the large deflection analysis of stiffened plates and shells is scarce. 

The first application was reported by Rao et al. (1993). The authors presented the finite 

element static analysis of the large deflection response of isotropic stiffened plates 

using an isoparametric quadratic stiffened plate bending element. The stiffened element 

was a development of the linear formulation presented by Mukhopadhyay et al. (1984). 

The authors excluded the contribution of the stiffener non-linearities in the formulation. 

This effect was later included by Chattopadhyay et al. (1995). In this later work, the 

large deflections of laminated composite stiffened plates were analysed using an eight 

noded isoparametric element. The element formulation was based on Reissner-

Mindlin‟s hypothesis with a total Lagrangian description of motion. In both works, the 

arbitrary orientated stiffener approach was applied so that the stiffener may lay within 

the element, with the limitation that the stiffener ends had to pass through two opposite 

edges of the element. The presented formulation was not capable of modelling 

stiffeners of arbitrary cross-section. 

The arbitrary-orientated stiffener approach was also applied to the geometrically non-

linear analysis of stiffened shells by Goswami and Mukhopadhyay (1995). 

Geometrically non-linear finite element static, modal and transient analyses of 

laminated composite stiffened shells were carried out using a nine noded Lagrangian 

curved shear flexible isoparametric stiffened element with five degrees of freedom per 
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node. Again the formulation accounts for arbitrarily orientated stiffeners with the 

limitation that stiffeners have to pass through two opposite edges of the element. Hence 

it is not possible to model stiffeners that are required to pass through two adjacent edges 

of the shell element. Additionally, the formulation is restricted to the analysis of 

shallow shells. 

In view of this restriction, Samanta and Mukhopadhyay (1999) presented a formulation 

for the large deflections of deep isotropic stiffened shells. The analysis was conducted 

using a combination of Allman‟s plane stress triangle and the discrete Kirchhoff 

triangle plate bending element which was previously used (Samanta and 

Mukhopadhyay, 1998, Samanta and Mukhopadhyay, 2004) by the authors to analyse 

the small deflections of stiffened plates and shells. The proposed formulation was 

limited to thin, isotropic plates and shells reinforced with stiffeners of rectangular cross-

section only.  

Ray and Satsangi (1998) presented an arbitrary orientated finite element formulation for 

the geometrically non-linear analysis of laminated hat-stiffened plates. The stiffened 

panel was discretised using eight node plate and three node beam isoparametric 

elements derived previously for the linear analysis of hat-stiffened composite plates 

(Ray and Satsangi, 1996). Although the authors suggested that the stiffener can be 

incorporated at any arbitrary orientation within the plate element, no validation work 

was presented to support their claim. 

As part of the present investigation, and in the absence of knowledge of the earlier work 

by Ray and Satsangi, Ojeda et al. (2007) conducted a similar investigation which 

demonstrated, through numerical validation, that the arbitrarily orientated stiffened 

approach was indeed capable of representing truly arbitrarily orientated stiffened 

panels. 

More recently, Barut et al. (2000) presented a stiffened shell element formulation for 

the geometric non-linear analysis of composite laminated stiffened shells. It is a four 

node, triangular, C0 anisoparametric element with five degrees of freedom at the corner 

nodes and two degrees of freedom at the centre node. The formulation accounts for 

transverse shear deformation and material anisotropy in both the shell and stiffener. The 

laminated stiffeners may be arbitrary in orientation and cross section. Whilst the 

element is capable of taking large deflections and rotations into account, the presented 
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formulation has not been proven to be capable of solving deep shell examples. 

Although the study discusses the incorporation of arbitrarily shaped and arbitrarily 

orientated stiffeners, only one example for a laminated cross-ply stiffened shell with 

rectangular stiffeners was covered. 

It can be seen that the reported work has focused on studying the non-linear response of 

stiffened plates and shells under transverse loads. However, deck, side and bottom 

panels of a ship hull are not only subjected to the action of transverse loads, but also 

subjected to the action of large in-plane forces which may induce stability failure.  

The classical approach to elastic stability analysis, also known as bifurcation buckling 

analysis, involves the linearization of the pre-buckling state, which leads to an Eigen-

value problem to obtain the buckling load parameter (Eigen-value) and the buckling 

mode shape (Eigen-vector). 

In order to study the bifurcation buckling behaviour of stiffened panels authors have 

used the arbitrary orientated stiffener approach to determine the linear buckling loads. 

The first work reported on this area was presented by Mukhopadhyay and Mukherjee 

(1990). The authors used an eight-node isoparametric stiffened plate element, 

previously developed to solve stiffened plate bending problems (Mukhopadhyay et al., 

1990, Mukhopadhyay and Satsangi, 1984), to calculate the buckling load parameter of 

isotropic flat stiffened panels. 

Later, and in order to avoid shear locking, a phenomenon usually encountered in earlier 

isoparametric elements, Kumar and Mukhopadhyay (1999) presented a stiffened 

element for buckling analysis of laminated stiffened plates based on the combination of 

Allman‟s plane stress triangular element and a discrete Kirchhoff-Mindlin plate bending 

element. The element was used to calculate the linear buckling loads of composite 

stiffened plates under uni-axial and shear edge-loads. 

Another approach to avoid shear locking was presented by Barik and Mukhopadhyay 

(2002), they presented a stiffened-plate bending element derived by combining the four-

node rectangular plane-stress element having 8 degrees of freedom with the simplest 

rectangular plate-bending element having 12 degrees of freedom (commonly known as 

the ACM Element, after Adini, Clough and Melosh). 
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However, all these investigations assumed a uniform state of stress in the plate for the 

construction of the initial stress matrix, yielding a fast but very limited solution. 

Therefore this approach becomes unviable if either the panel edge loading is non-

uniform or if the boundary conditions are not symmetric, as in these cases a non-

uniform state of stress would need to be considered in the construction of the initial 

stress matrix. 

A more general procedure requires the calculation of the state of stress, using a linear 

static solution, before the Eigenvalue buckling analysis in order to obtain the true stress 

distribution. 

Srivastava et al. (2003) used this procedure to investigate the buckling response of 

isotropic stiffened plates subjected to partial edge loading, i.e. when the initial stresses 

are no longer uniform. In this investigation the authors conducted firstly a plane-stress 

static analysis in which the initial stress distribution due to the non-uniform loading was 

calculated followed by a bifurcation buckling analysis in which the buckling parameter 

due to the non-uniform stress distribution was obtained. 

Although this study investigates the effect of concentrated and partially distributed 

loads on the edges of the panel, no attention was given to how the load acting on the 

stiffener cross section affects the in-plane behaviour of the stiffened element. 

Moreover, although previous investigations using the arbitrarily orientated stiffener 

approach have reported on the effect of stiffener eccentricity on linear buckling, no 

author has reported on the modelling implication of stiffener edge loading in such 

configurations. 

It must be noted that an eccentric stiffener couples the in-plane and bending behaviour 

of the panel. Therefore, if not modelled properly, a purely in-plane load on the edge of 

the panel creates a fictitious out-of-plane deformation. This deformation will generate 

bending stress and consequently will generate an incorrect state of stress in the plate 

yielding an incorrect value for the buckling load parameter. It is likely that this 

modelling issue has been overlooked since, as previously discussed, most authors have 

assumed a stress field and have not carried out a linear static calculation before the 

Eigen-value analysis. 
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The major drawback of all the Eigen-value buckling analyses discussed so far is that 

they completely neglect the effect of initial deformations in the panel. If a stiffened 

panel under the action of in-plane compressive forces has a finite initial deformation 

there is no longer distinct bifurcation buckling behaviour. Rather, the panel deforms in 

a continuous manner as the external loads are increased. This highly non-linear 

behaviour is especially important because the reserve capacity that exists after the initial 

panel deformation takes place (Byklum and Amdahl, 2002). 

2.3 Conclusions 

From the review, it can be seen that the arbitrarily stiffened element approach is the 

most efficient technique to generate finite element models of stiffened panels capable of 

producing results with a preliminary design level accuracy. 

Although the large deflection of stiffened panels has been previously studied using 

arbitrarily orientated stiffened elements, all formulations fail to account for the initial 

deformations present in real structures. These deformations have a critical effect on the 

structural response of stiffened panels under the action of in-plane compressive loads. 

Since the understanding of this behaviour is critical to produce an optimal design, there 

is a need for an effective and efficient analysis tool for the study of the complex 

structural non-linear response of arbitrary stiffened panels.  

In this work a more general stiffened element formulation, capable of studying not only 

the large deflection under transverse loads but also the post-buckling of stiffened panels 

with initial deformations is developed based on Marguerre‟s (1938) shallow shell 

theory. 
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Chapter 3.  Finite Element Formulation 

 

3.1 Introduction 

As described in previous sections, an arbitrarily stiffened element consists of the 

combination of a master and a slave element as shown in Figure 3-1. Here, the skin of 

the panel is represented by the master elements, numbered using Roman numerals, 

whilst the stiffener is represented by the slave elements, numbered using Latin 

numerals. 

 
Figure 3-1 Details of the finite element mesh of a stiffened panel using arbitrarily stiffened 

elements. 

The figure shows that in this model both stiffened and unstiffened elements are present. 

In the stiffened panel master elements II III and IV receive the stiffness contribution of 

the slave elements iii, ii and i respectively, whilst element I will remain unstiffened. 
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In the following sections the finite element expression for both the master and the slave 

elements is presented. The middle plane of the panel was selected as the reference plane 

of the master element. Both elements are combined using the assumption of equal 

displacements (Hughes and Davies, 1975, Hughes et al., 1976) and rotations 

(Mukhopadhyay and Satsangi, 1984) at the slave-master element interface. This 

assumption requires that the cross section of the slave element and master element 

before deformation remain co-planar after deformation, i.e. the cross section of the 

beam element lies on the same plane as that of the shell element after deformation 

(Barut et al., 2000). 

In order to derive the kinematic description of the deformation of a continuous body it 

is required first to define a frame of reference. The two possible frames of reference in 

continuum mechanics are the Eulerian (spatial) and the Lagrangian (material) frames of 

reference. 

In an Eulerian frame of reference the attention is focused on the motion of the material 

through a stationary control volume and it is therefore preferred for the analysis of fluid 

mechanics problems. 

Unlike an Eulerian frame of reference, in a Lagrangian frame of reference we follow all 

particles of the body in their motion, from their original to final configuration and it is 

therefore preferred for the solution of solid mechanics problems and is consequently 

selected as the frame of reference in this work. 

For a Lagrangian frame of reference, three possible kinematic descriptions of motion 

are currently in use in finite element programs that solve non-linear structural problems. 

They can be distinguished from each other by the choice of reference configuration. 

The first and most popular is the Total Lagrangian (TL) description of motion. Here the 

reference configuration is seldom or never changed. Normally it is kept equal to the 

initial configuration throughout the analysis. Stresses and strains are measured with 

respect to this initial configuration. 

The second description is the Updated Lagrangian (UL) description of motion, where 

the last target configuration, once reached, becomes the next reference configuration. 

Therefore stresses and strains are redefined once the reference configuration is updated. 
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This description is primarily used in treatments of very large strains and flow like 

behaviour 

Finally, in the co-rotational (CR) description the reference configuration is divided. 

Stresses and strains are measured from the co-rotated configuration while the base 

configuration is maintained as reference for measuring rigid body motion. 

Although the co-rotational description of motion is gaining popularity for some 

structural elements, the Total Lagrangian description of motion remains the most 

widely used in the formulation of continuum-based finite element and is therefore used 

in this work. 

3.2 Formulation of the master element 

In this Section the mathematical formulation of the master element is presented. The 

formulation uses an eight node isoparametric non-linear shallow shell element defined 

within a total Lagrangian frame of reference, based on a nine node Lagrangian element 

presented by Pica and Wood (1980). 

The eight node element was selected since it is already available in the element library 

of almost every commercial finite element package which may facilitate the adoption of 

this formulation in existing programs. The shallow shell element is capable of 

modelling not only panels made of isotropic materials but laminated materials as well. 

3.2.1 Displacement field in a shallow shell 

In any three dimensional solid the displacement field varies in the three Cartesian 

directions. However a three dimensional approach to the description of the 

displacement field of a shallow shell is very complicated and inefficient (Cook, 1995). 

Consequently, the three dimensional field description in thin-walled members, such as 

plates and shallow shells, is normally abandoned in favour of a simpler two-

dimensional theories. In these theories it is assumed that the variation of the in-plane 

displacement along the thickness direction can be represented using kinematic 

hypotheses such as Kirchhoff‟s or Reissner-Mindlin‟s hypothesis (Reissner, 1945, 

Mindlin, 1951). 
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Kirchhoff‟s hypothesis postulates that the displacements can be described by assuming 

that a line that is straight and normal to the mid-surface before loading will remain 

straight and normal to the deformed mid-surface after a load has been applied. As a 

result of this assumption shear deformation is neglected, i.e. deformation is due entirely 

to bending and in-plane stretching. This limits the application of this hypothesis to the 

study of thin plates/shallow shells only. 

Moreover, the use of Kirchhoff‟s hypothesis is a limiting factor in the study of 

composite laminated panels using equivalent single layer theories. In effect, as noted by 

Reddy and Robbins (1994), laminated panels have relatively low shear stiffness 

compared to the in-plane stiffness, and therefore experience large transverse shear 

strains, which an element based on Kirchhoff‟s hypothesis are incapable of represent. 

In contrast to Kirchhoff‟s hypothesis, Reissner-Mindlin‟s hypothesis states that the 

plate normals remain straight but not necessarily normal to the deformed mid-surface 

after loading. Hence, this hypothesis allows shear deformation to take place and so 

expanding its application to the study of moderately thick plates and shells. Since the 

inclusion of transverse shear deformation has the advantage of providing a better 

representation of the behaviour of thick and/or composite shallow shells the Reissner-

Mindlin‟s hypothesis was adopted in this work. 

According to the Reissner-Mindlin‟s hypothesis, the three dimensional Cartesian 

displacement vector , ,
T

u v wu of any material point within the panel , ,x y zx  

can be expressed using the generalised displacement vector û  presented in Equation 

3.1 

 

ˆ

ˆ

ˆˆ

x

y

u

v

wu  3.1 

where û , v̂ , ŵ  are the mid-surface translations and 
x

, 
y
 the mid-surface rotations 

defined in Figure 3-2. 
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For a shallow shell, i.e. an imperfect panel, the three dimensional components of the 

Cartesian displacement vector u  at any point is expressed using Reissner-Mindlin 

hypothesis as 

 

0 1

(̂ , ) ( , )

(̂ , ) ( , )

ˆ ˆ ˆ( , ) ( , )

x

y

u u x y z x y

v v x y z x y

w w w x y w x y

 3.2 

 
Figure 3-2 Definition of the mid-surface quantities of the shallow shell. 

Here, 
0

ˆ ,w x y  is the stress-free, mid-surface deformation in the z  direction and 

1
ˆ ,w x y is the net deformation in the z  direction. The total deformation in the z  

direction, ŵ , is defined as shown in Figure 3-3. 
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Figure 3-3 Transverse deformations of the shallow shell. 

If the plate mid-surface of the panel is free from initial deformations, i.e. 
0

ˆ 0w , 

Equation 3.2 becomes 

 

1

ˆ , ,

ˆ , ,

ˆ ,

x

y

u u x y z x y

v v x y z x y

w w x y

 3.3 

Equation 3.3 describes the displacements of a perfectly flat panel. 

3.2.2 Strain measure in a shallow shell 

The six components of strain, in a solid undergoing large deformation, can be described 

using Green‟s strain vector as 
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2 2 2
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z
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yz
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y y y y

w u

z zε
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1 1

2 2

v w

z z
u v u u v v w w

y x x y x y x y
u w u u v v w w

z x x z x z x z
v w u u v v w w

z y y z y z y z

 3.4 

However, since the thickness of the panel is small compared to the other two 

dimensions, it can be assumed that the normal strain component in the trough-the-

thickness direction, 
z
, to be negligible and hence the strain vector of Equation 3.4 can 

reduced to 

 

2 2 2

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

x

y

xy

xz

yz

u u v w

x x x x

v u v w

y y y y
u v u u

y x x y

ε v v w w

x y x y
u w u u v v w w

z x x z x z x z
v w u u v v w w

z y y z y z y z

 3.5 

It can be appreciated that this strain definition, which has been adopted by other authors 

(Chattopadhyay et al., 1995, Rao et al., 1993, Ray and Satsangi, 1998) to formulate 

their respective geometrically non-linear master stiffened element, does not include 

initial stress-free, out-of-plane deformations in the panel. 

As the inclusion of initial out-of-plane deformation is a crucial part of the non-linear 

buckling analysis of panels under in-plane loads, the previously mentioned stiffened 

plate elements are confined to the analysis of flat panels under transverse loads only. 
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In order to overcome this limitation, this investigation includes initial out-of-plane 

deformation using the strain definition suggested by Pica and Wood (1980). These 

researchers suggest that the strain vector presented in Equation 3.5 is modified by 

subtracting the initial stress-free deformations from the total strain as 

2 2 2

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

x

y

xy

xz

yz

u u v w

x x x x

v u v w

y y y y
u v u u

y x x y

ε

2

0

2

0

1

2

1

2

w

x

w

x
v v w w

x y x y
u w u u v v w w

z x x z x z x z
v w u u v v w w

z y y z y z y z

0 0

0 0 0

0 0 0

w w

x y
w w w

x x z
w w w

y y z

 3.6 

Equation 3.6 is simplified even further using the von Kármán assumption. According to 

this assumption all quadratic terms, except for those corresponding to rotation of the 

mid-surface, are dropped from Green‟s strain vector. 

This simplification rests on the assumption that, the vertical component of displacement 

of the plate, w , is independent of the vertical coordinate z  and, that the gradients of u

and v  are small and therefore their high order contribution to Equation 3.6 can be 

neglected. As a result of this simplification the strain vector can be further reduced to 

2

2

1

2

1

2
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y
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yz

u
w
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2
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w
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 3.7 
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3.2.3 Stress measure in a shallow shell 

For each geometrically non-linear measure of strain, there is a conjugate stress measure. 

In this case, since the original configuration has been chosen as the reference 

configuration (TL description of motion), the stress vector associated with the Green 

strain measure described in Equation 3.4 is the second Piola-Kirchhoff stress vector. 

The second Piola-Kirchhoff stress measure expresses the transformed current force per 

unit of undeformed area (original configuration). In Section 3.2.2 it was stated that the 

normal strain component in the through-the-thickness direction, 
z
, to be negligible. 

Consequently, in this derivation of the stresses of a shallow shell it can also be assumed 

that the magnitude of the normal stress component in this direction, 
z

, to be 

negligible. 

By integrating the second Piola-Kirchhoff stresses over the thickness of the shallow 

shell the resultant values of the forces and moments by unit length at the mid-surface of 

the shallow shell are obtained as 

 

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
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t

t y

t
x

t xy
y

t
xy

t x
x

t
y

t y
xy

t

x
t xy

y
t

t xz

t

t yz

dz

dz
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dzN
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M
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Q

dz
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ζ

 3.8 

The direction of these mid-surface resultant forces and moments is defined in 

 Figure 3-2. 
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3.2.4 Strain-curvature relations of the shallow shell 

Using Reissner Mindlin‟s hypothesis to describe the displacement field, i.e. substituting 

Equation 3.2 into Equation 3.7, the simplified Green‟s strain vector, corresponding to 

the generalized mid-surface stresses presented in Equation 3.8, is now expressed in 

terms of the mid-surface displacements and curvatures as 

1
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ˆ ˆ1

2

ˆ ˆ1

2

ˆ ˆ ˆ ˆ

0

0

0

0

0

w w

x x
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0

0

w

x

w

x

w w

x y  3.9 

Equation 3.9 represents the generalized strains of Marguerre‟s (1938) shallow shell 

theory. By operating in the two last column vectors of Equation 3.9, it is possible to 

separate the linear contribution of the initial deformation from the non-linear 

component of the in-plane strain as 
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 3.10 

where the three column vectors are respectively the linear (
0

ε̂ ), initial (ˆ
I

ε ) and non-

linear (ˆ
NL

ε ) components of the strain of the shallow shell as 

 
0

ˆ ˆ ˆ ˆ
I NL

ε ε ε ε  3.11 

If the panel is free from initial deformations, the initial strains vanish and the second 

vector is dropped from Equation 3.10. In that case Equation 3.11 represents the strains 

of a perfectly flat panel. 

3.2.5 Variation of strain in the shallow shell 

In this Section, the variation of strain ˆdε  due to the virtual displacement ˆdu  is 

discussed. The variation in the generalized mid-surface strains, ε̂ , presented in Equation 

3.11, due to the virtual displacement ˆdu  is defined as 

 
0

ˆ ˆ ˆ ˆ
I NL

d d d dε ε ε ε  3.12 

Since 
0

ε̂  is a linear function of the mid-surface displacements, û , its variation is 

expresses as 

 
0

ˆ ˆd dL uε  3.13 
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where 

 

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 1 0

0 0 0 1

x
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y x

x

y
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and 

 

ˆ

ˆ

ˆˆ

x

y

u

v

wd du  3.15 

In order to obtain the variation of the non-linear, ˆ
NL

ε , and initial strains, ˆ
I

ε , defined in 

the second and third columns of Equation 3.10, the gradient of the lateral deformation, 

1
ŵ , and initial deformations, 

0
ŵ , of the panel are defined first, as suggested by 

Zienkiewicz and Taylor (1994), as 

 
ˆ ˆ
, , 0,1

T

k k
w w

with k
x y

θ  3.16 

Using this expression, and noting that both vectors contribute only to the in-plane 

strains of the shallow shell, their respective variation is obtained in terms of the virtual 

gradient as 
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where 

 

ˆ
0

ˆ
0 , 0,1

ˆ ˆ

k

k
k

k k

w

x
w

with k
y

w w

y x

A  3.18 

and 

 1 1
ˆ ˆ
,

T
w w

d d
x y

θ  3.19 

3.2.6 Stress-strain relations of a shallow shell 

In this Section, the stress-strain relations, or constitutive relations, that characterise the 

individual material and its deformations as a reaction to applied loads, i.e. the 

relationship between stresses and strains, for both isotropic and orthotropic laminated 

materials is presented. 

The stress-strain relations for isotropic materials were obtained following the traditional 

derivation used in plate and shell theory, whereas the stress-strain relations for the 

laminated material were obtained according to an equivalent single layer model based 

on First-order Shear Deformation Theory (FSDT). This theory was adopted following 

the suggestion of Rowher et al. (2004) that, for laminated structures with usual 

slenderness ratios and smooth loading, the FSDT can be regarded as the most efficient 

choice to obtain results with preliminary design level of accuracy. 

3.2.6.1 Isotropic materials 

For a linear elastic isotropic, homogeneous materials, with no stress and strain in the z

direction ( 0
z

), the second Piola-Kirchhoff stresses ζ  are related to Green‟s strain 

ε  by Hooke‟s law as 
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 Dζ ε  3.20 

Where D  is the matrix of constitutive coefficients presented in Equation 3.21, and E  

and  are the modulus of elasticity and the Poisson‟s ratio of the material respectively. 

 
2

1 0 0 0

1 0 0 0

1
0 0 0 0

2
1 1

0 0 0 0
2

1
0 0 0 0

2

E
D  3.21 

Integrating Equation 3.20 explicitly through the plate thickness t  enables the stress 

resultants ζ̂  of Equations 3.8 to be written in terms of the generalized strains ε̂  of 

equations as 

 ˆˆ ˆDζ ε  3.22 

Where D̂ is the matrix of generalized constitutive coefficients or rigidity matrix for 

isotropic materials defined in Equation 3.23. 

 

2 2
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2

t t

Et t t

t

k

k

D  3.23 

Here, k is the shear correction factor to allow for non-uniform shear stress distribution 

throughout the thickness of the plate. 
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3.2.6.2 Laminated material 

An equivalent single layer model assumes that the laminate consists of a number of 

perfectly bonded laminas, or laminate, which are individually treated as homogeneous 

and orthotropic. Furthermore, the material in each lamina is considered to be linear and 

elastic. For the thk  lamina in the laminate, the plane stress-reduced constitutive 

relationship with respect to the lamina coordinate system (
1 2 3
, ,x x x ) defined in  

Figure 3-4 are given by Reddy (1997) as 

 

1 11 12 1

2 21 22 2

6 66 6

4 44 4

5 55 5

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

k k k
Q Q

Q Q

Q

Q

Q

 3.24 

or 

 
12 12 12

k k kζ Q ε  3.25 

with each non-zero compliance coefficient, 
ij
Q , defined as 

 

11 12 22 22
11 12 22

12 21 12 21 12 21

66 12 44 23 55 13

; ; ;
1 1 1

; ;

E E E
Q Q Q

Q G Q G Q G

 3.26 

where, 
11 22 12 13 23 12 21
, , , , , ,E E G G G  are the orthotropic material properties of the thk  

lamina in the laminate. 

The plane stress-reduced constitutive relationship matrix, presented in Equation 3.24, 

can modified to relate the stresses and strains defined in the global coordinate system  

( , ,x y z ), by applying the transformation 

 
12

T
xy

Q TQ T  3.27 
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Figure 3-4 Free body diagram and orientation of a lamina. 

where the transformation matrix of the thk  lamina in the laminate is defined as 

 

2 2 2

2 2 2

2 2

cos sin sin 0 0

sin cos sin 0 0

sin cos sin cos cos sin 0 0

0 0 0 cos sin

0 0 0 sin cos

k k k

k k k

k k k k k k

k k

k k

T  3.28 

In Equation 3.28 the angle 
k

 that defines the orientation of the thk  lamina in the 

laminate, and which direction is defined as described in Figure 3-4. 

Finally stress resultants ζ̂  of a composite laminate can be expressed as a function of the 

mid-surface strains as 

 ˆˆ ˆDζ ε  3.29 

where the rigidity matrix of the laminate, D̂ , is defined as 



Finite Element Formulation 

41 
 

 

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

11 12

21 22

0 0

0 0

0 0

0 0ˆ
0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

A A A B B B

A A A B B B

A A A B B B

B B B D D D

B B B D D D

B B B D D D

S S

S S

D  3.30 

where the in-plane stiffness A , the coupled bending-stretching stiffness B  and the 

bending stiffness D , are calculated for the laminate with n  laminas defined in Figure 

3-5, by integrating the compliance matrix 
xy

Q  in the thickness direction as 

 2

1 1

, , 1, ,
k

k

Z
n

k
xy

k Z

z z dzA B D Q  3.31 

Whilst the coefficients of shear stiffness matrix, S , are determined as 

 
1 1

k

i j

k

Z
n

k
s s xy

k Z

k k dzS Q  3.32 

where 
s
k is the shear correction factor (SCF) used to account for the fact that the 

transverse shear stress is not constant in each lamina of the laminate, as assumed by the 

FSDT. The SCF can be calculated using transverse shear energy and equilibrium 

considerations as suggested by Whitney (1972). 
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Figure 3-5 Details of the laminate. 

 

3.2.7 Formulation of the finite element equations of the master 

element 

The 0C  continuity, isoparametric element having eight nodes and five degrees of 

freedom per node presented by Cook et al. (1989) is used in the present investigation to 

formulate the equilibrium equations of the shallow shell. A diagram that represents the 

interpolation region of the element, as well as the element global and natural coordinate 

systems is presented in Figure 3-6. 
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Figure 3-6 Details of the eight node isoparametric master element. 

3.2.7.1 Nodal displacements of the master element 

The displacement components of all eight nodes of the master element, shown in  

Figure 3-6, are contained within the element nodal displacement vector δ as 

 

1

2

8

δ
δ

δ

δ

 3.33 

where the mid-surface translations and normal rotations at the thi  node of the master 

element,
i

δ , are defined as  

 ˆ ˆˆ , , , ,
T

i i i i xi yi
u v wδ  3.34 

3.2.7.2 Interpolation of nodal quantities of the master element 

The master element is termed isoparametric since the shape functions are used to 

determine both the geometry and displacements (as well as other field variables) within 

the interpolation region defined by the element nodes. 
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The bi-dimensional, 0C , nodal shape functions, 
i
N , with reference to the master 

element nodes defined in Figure 3-6 are respectively 
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 3.35 

Using these shape functions, the Cartesian coordinates of any point located within the 

element can be interpolated using the natural coordinates of the point ( , ) and the 

element nodal coordinates ( , ,
i i i
x y z ) as 

 
8 8 8

1 1 1

; ; ;
i i i i i i

i i i

x N x y N y z N z  3.36 

By taking advantage of the isoparametric formulation, the same shape functions are 

used to interpolate the translation and rotation components of the mid-surface 

displacement of any point, with natural coordinates ( , ), from the nodal displacement 

defined in Equation 3.34 as 

 

8 8 8

1 1
1 1 1
8 8

1 1

ˆ ˆ ˆ ˆˆ ˆ ; ;

;

i i i i i i
i i i

x i xi y i yi
i i

u N u v N v w N w

N N
 3.37 

It is important to note that the same approach is followed to interpolate the magnitude 

of the initial deformation, 
0
ŵ , at any point within the element from the nodal 

deformations as 
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 0 0
1

ˆ ˆ
n

i i
i

w N w  3.38 

The interpolation of the mid-surface translations and normal rotations from the nodal 

displacement within the element described in Equation 3.37 can be written in compact 

form as 

 û Nδ  3.39 

where δ represents the element nodal displacements, defined in Equation 3.33, and N is 

the element shape function matrix defined as 

 
1 2 3 8
, , , ,N N N N N  3.40 

where 
i

N  is the nodal shape function matrix of the thi  node of the master element 

defined as 

 
5i i

NN I  3.41 

and 
5

I  is a five by five identity matrix. 

Using a similar approach, the variation of displacements ˆdu , defined in Equation 3.15, 

is written in terms of the nodal virtual displacements dδ  as  

 ˆd du N δ  3.42 

where dδ  represent the variation of the nodal displacements defined as 

 

1

2

8

d d

δ
δ

δ

δ

 3.43 

Finally, the displacement gradients θ defined in Equation 3.16 are written in terms of 

the nodal displacements δ  and Cartesian derivatives of the shape functions as 

 Gθ δ  3.44 

Where G  is defined as 
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 1 2
, , ,

n
G G G G  3.45 

with  

 
0 0 0 0

0 0 0 0

i

i
i

N

x
N

y

G  3.46 

It is important to note that G is a matrix defined purely in terms of the nodal 

coordinates. Similarly the variation of the gradient defined in Equation 3.19 can now be 

written in terms of virtual nodal displacements as 

 d dGθ δ  3.47 

3.2.7.3 Strain-displacement relationship of the master element 

The first term of the generalized Green‟s strain vector defined in Equation 3.11, 
0

ε̂ , 

represents the linear strains in the panel. These strains are expressed in terms of the 

master element nodal displacements as 

 
0 0

ε̂ B δ  3.48 

where 
0
B is the linear strain-displacement matrix defined as 

 0 01 02 08
, , ,B B B B  3.49 

with 
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0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

i

i

i i

i

i
i

i i

i
i

i
i

N

x
N

y
N N

y x
N

x
N

y
N N

y x
N

N
x
N

N
y

B  3.50 

or 

 

p
i
b

i i
s
i

0

0 0

0

B

B B

B

 3.51 

where the sub-matrices 
0

pB , 
0

bB  and 
0

sB represent the in-plane, bending and shear 

components of the linear strains respectively.  

Similarly the initial, ˆ
I

ε , and non-linear , ˆ
NL

ε , components of the generalized strains can 

be expressed in terms of the master element nodal displacements as 

 
1

ˆ ˆ;
2I I NL NL

ε B δ ε B δ  3.52 

where 
I
B  and 

NL
B  are the initial and non-linear strain-displacement matrices of the 

master element defined as 

 
1 2 8
, , ,

I I I I
B B B B  3.53 

and 
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1 2 8
, , ,

NL NL NL NL
B B B B  3.54 

where 
I
B  and 

NL
B  are found by taking the variation of ˆ

I
ε  andˆ

NL
ε  with respect to the 

nodal displacements (Zienkiewicz and Taylor, 1994). 

Since both the initial and non-linear strains contribute only to the in-plane components 

of the generalized mid-surface strain vector, the initial and non-linear strain 

displacement sub-matrices of equations 3.53 and 3.54 can be defined as 

 0 ; 0

0 0

p p
Ii NLi

Ii NLi

B B

B B  3.55 

where p
Ii

B  and p
NLi

B  are found using the variation of strain defined in Equation 3.17 

as 

 

8

0
1

8

0 0
1

8 8

0 0
1 1

8

1
1

8

1 1
1

8 8

1 1
1 1

ˆ 0

ˆ0

ˆ ˆ

ˆ 0

ˆ0

ˆ ˆ

k
k

k

p k
Ii i k i

k

k k
k k

k k

k
k

k

p k
NLi i k i

k

k k
k k

k k

N
w

x
N
w

y
N N
w w

y x

N
w

x
N
w

y
N N
w w

y x

B G G

B G G

A

A

 3.56 

Substituting Equations 3.48 and 3.52 into Equation 3.11 the generalized Green‟s strain 

vector at any point within the element is now defined in terms of nodal displacements 

δ and the displacement gradients as 

 
0

1
ˆ

2I NL
B B Bε δ  3.57 
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It can be observed from Equations 3.57 and 3.56 that the strains are quadratically 

dependent upon the nodal displacements δ . 

Similarly, the variation of strain can be expressed in terms of the virtual nodal 

displacement, dδ , by substituting Equations 3.42 and 3.47 into 3.13 and 3.17 

respectively yields the strain variations  

 
0 0

ˆ

ˆ

ˆ
I I

NL NL

d d

d d

d d

ε B δ
ε B δ
ε B δ

 3.58 

or 

 ˆd dε B δ  3.59 

in which 

 0 I NL
B B B B  3.60 

3.3 Formulation of the slave element 

The stiffener is idealised as a beam, i.e. a structural member whose length to cross-

sectional dimensions is very large and that under load undergoes not only twisting and 

stretching along its length, but also bending about an axis transverse to its length.  

Similarly to the shallow-shell, the displacement field in a beam is not normally 

described using a three dimensional theory but using a simpler, one-dimensional theory 

instead. 

The two more commonly used theories to model the kinematic behaviour of beams are 

Euler-Bernoulli beam theory (EBT), that neglects the transverse shear strain, and 

Timoshenko beam theory (TBT), which assumes a linear variation of the transverse 

shear strain along the beam cross section. As mentioned in Section 3.2.1, transverse 

shear strains are important in the analysis of composite laminates and therefore TBT 

was adopted in this work. 
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3.3.1 Displacement field in a beam 

The three dimensional Cartesian displacement vector ', ', '
T

st
u v wu of any material 

point within the stiffener ', ', '
st

x y zx  can be expressed using the generalised 

displacement vector 
st

u presented in Equation 3.61 

 1

'

'

'

ˆ
st

x

y

u

w
u  3.61 

where 'u , 
1
ŵ  are the centroidal translations and 

'x
, 

'y
 the centroidal rotations defined 

in Figure 3-7. Using expression 3.61 the three dimensional displacement field in a beam 

is defined in the beam coordinate system ' 'x y  as 

 
'

'

0 1 '

'

ˆ ˆ '

st x

st y

st y

u u z

v z

w w w y

 3.62 

Here, 
0
ŵ  is the stress-free, centroidal deformation in the z  direction of the beam. 

 
Figure 3-7 Coordinate system and degrees of freedom of the beam. 
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3.3.2 Strain curvature relations of the beam 

The non-linear strain vector of the beam defined in the ' 'x y  coordinate system and 

expressed using the beam degrees of freedom is given by 

 

2
'

0

'
'1

' ' '

' '

' ˆ1ˆ1
'' ' 2 '2

ˆ
' 0

' '
0

'

x

x
y

st x y x

x z y

ddu dwdwz
dx dx dxdxddw
y

dx dx
d
z
dx

ε

2

0

0

 3.63 

By separating the bending strains from the direct normal strains and by re-arranging the 

last two column vectors in Equation 3.63 the strains in the beam can be expressed as 

 ˆ
st st

ε Hε  3.64 

where 

 

1 0 0

0 0 1 '

0 0 0

z

y

z

H =  3.65 

and 
ŝt

ε  is the generalised strain vector of the beam defined as 

 

0 1
'

'

'

1' '
'

'

'

'

' ˆ ˆ

' '
' 0ˆ

ˆ
0

'
0

'

x
x

x

st
x y

x

x z

y

Linear

du

dx dw dw
d

dx dxk dx
dw

dx
d

dx

ε

2

1
ˆ1

2 '

0

0

0
Initial

Non linear

dw

dx
 3.66 

It should be appreciated that the generalized strain vector presented in Equation 3.66 is 

analogous to that of the shell defined in Equation 3.10. Consequently the generalized 

strain vector of the beam can also be subdivided as 

 0
ˆ ˆ ˆ ˆ
st st I st NLst

ε ε ε ε  3.67 
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Where, 
0

ˆ
st

ε , ˆ
I st

ε and ˆ
NLst

ε  are the linear, initial and non-linear components of the 

strain-displacement relation of the stiffening beam respectively. 

3.3.3 Variation of strain in the beam 

The variation of strain in the beam 
ŝt

dε  due to the virtual displacement 'du  is defined 

in a similar way to the variation of the strain in the shell. Here the variation in the 

generalized beam strain is defined as 

 
0

ˆ ˆ ˆ ˆ
st st I st NLst
d d d dε ε ε ε  3.68 

since 
0

ˆ
st

ε is a linear function of the centroidal displacements 'u  its variation is 

expressed as 

 
0

ˆ '
st st

d dLε u  3.69 

where 

 

0 0 0
'

0 0 0
'

0 1 0
'

0 0 0
'

st

d

dx
d

dx
d

dx
d

dx

L  3.70 

and 

 1

'

'

'

ˆ
'

x

y

u

w
d du  3.71 

In order to obtain the variation of the non-linear, ˆ
NLst

ε , and initial strains, ˆ
I st

ε , defined 

in the second and third columns of Equation 3.66, the gradient of the lateral 

deformation, 
1
ŵ , and initial deformations, 

0
ŵ , of the beam as 
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ˆ
, 0,1
'
k

st

dw
with k

dx
θ  3.72 

Using this expression, and noting that both vectors contribute only to the axial strains of 

the beam, their respective variation is obtained in terms of the virtual gradient as 

 
ˆ

ˆ

a
I st st

a
NLst st

d d

d d
0

1

A

A

ε θ

ε θ
 3.73 

where 

 
ˆ
, 0,1
'
k

k

dw
with k

dx
A  3.74 

and 

 1
ˆ

'

dw
d d

dx
θ  3.75 

3.3.4 Stress-strain relations of a beam 

In this Section the stress-strain relation for isotropic and laminated stiffening beam 

cross-sections shown in Figure 3-8 are presented. 

 
Figure 3-8 Definition of stress components and stiffener cross section dimensions. 
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3.3.4.1 Isotropic stiffening beams 

The generalised stresses in an isotropic stiffening beam of arbitrary cross section shown 

in diagram a of Figure 3-8, are expressed in terms of the normal and shear strains as 

suggested by Mukhopadhyay and Satsangi (1984) as 

 
st st st

ζ D ε  3.76 

where  

 

0 0

0 0

0 0
st

E

G

G

D  3.77 

where the beam stresses 
st

ζ are defined as 

 
'

' '

' '

x

st x y

z x

ζ  3.78 

Combining Equation 3.64 and 3.76, and integrating the stresses over the cross section of 

the beam, the generalized stress vector of the beam is obtained as 

 ˆˆ ˆ
st st st

ζ D ε  3.79 

where the generalized centroidal stresses in the beam, ˆ
st

ζ , are defined as 

 ˆ

st

st

st
st

st

N

M

T

Q

ζ  3.80 

and the rigidity matrix, ˆ
st

D , of the isotropic stiffening beam of arbitrary cross section, 

is defined as 
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2

2 2

0 0

0 0
ˆ ' '

0 0 '

0 0 ' '
st st

T
st

A A

E Ez

Ez Ez
dy dz dy dz

G Gy

Gy G y z

D H DH  3.81 

If the expression ' '

stA

Gy dy dz is assumed to be zero, as proposed by Mukhopadhyay 

and Satsangi (1984), then the integration of Equation 3.81 yields 

 

( ) 0 0

( ) 0 0
ˆ

0 0 0

0 0 0

st st st

st st st

st
st st

st

EA E A e

E A e EI

GA k

GJ

D  3.82 

where 
st
e , 

st
A , 

st
I ,

st
J  represent the eccentricity, area, second moment of area and polar 

moment of inertia of the stiffening beam cross section, whilst E ,G and 
st
k  are the 

modulus of elasticity, shear modulus and the shear correction factor respectively. 

It is important to note that the second moment of area of the stiffener is calculated with 

respect to the panel mid-surface using the parallel axis theorem. 

3.3.4.2 Laminated stiffening beams 

Since the derivation of the stress-strain relationship and the rigidity matrix, ˆ
st

D , of 

laminated stiffening beams is very extensive and since it has been discussed in detail by 

other authors (Chattopadhyay et al., 1993, Ray and Satsangi, 1996, Prusty and Satsangi, 

2001b), only the final rigidity matrices, ˆ
st

D , are presented in this Section. For all the 

mathematical details, the reader is advised to refer to the cited literature. 

According to Chattopadhyay et al. (1993), the rigidity matrix of a laminated beam of 

rectangular cross section of vertical lamination, as shown in diagram b of Figure 3-8, is 

defined as 
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11 11 13 13

2

11 11 13 13

13 13 13 33

3

13 13 33 44 66

12ˆ

1

6

st st st

st

st st

st st

A h A hecc A h B h

h
A hecc A e A he B he

A h A he A hk B h

B h B he B h Q Q ht

D  3.83 

Similarly, the rigidity matrix of a laminated beam of rectangular cross-section with a 

horizontal lamination, as shown in diagram c of Figure 3-8, is defined as 

 

22 22 23

22 22 23

11

3
23 23 55 66

0

0
ˆ 0 0 0

1
0

6

st st st

st st st

st st st

st st st

A t B t B t

B t D t D t

S t k

B t D t Q Q ht

D  3.84 

where h  and 
st
t  represent the stiffener height and thickness respectively. The in-plane 

 (
ij
A ), bending (

ij
D )and bending-stretching (

ij
B ) constitutive coefficients as well as 

the compliances (
ij
Q ) of the beam‟s laminate are calculated as described in Section 

3.2.6.2.  

It must be noted that the rigidity matrix for other laminated open or closed cross-

sections can be formulated, as suggested by Chattopadhyay et al. (1993), by dividing 

the cross section of the stiffener into horizontal and vertical components. The rigidities 

of each component are then calculated separately using Equation 3.83 or 3.84 to then be 

combined by considering their locations with respect to the panel mid-surface.  

For further details the reader is referred to the works of Prusty and Satsangi (2001b) for 

open „T‟ sections and Ray and Satsangi (1996) for closed hat sections. 

3.3.5 Formulation of the finite element equations of the slave 

element 

A one dimensional, isoparametric element, having three nodes and four degrees of 

freedom per node is used in the present investigation to formulate the equilibrium 

equations of the stiffening beam. 
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A diagram that represents the interpolation region of the element, as well as the 

elements global and natural coordinate systems is presented in Figure 3-9. 

 
Figure 3-9 Details of the three node isoparametric slave element. 

3.3.5.1 Nodal displacements of the slave element 

The nodal displacement components of all three nodes of the slave element, shown in 

Figure 3-9, are contained within the element nodal displacement vector 
st

δ as 

 
1

2

3

st

st st

st

δ
δ δ

δ
 3.85 

Where the centroidal translations and normal rotations at the thj  node of the master 

element,
i

δ , are defined in the skew axes system ' 'x y , as  

 
1 ' '

ˆ' , , ,
T

st j j i x i y i
u wδ  3.86 

In order to obtain the unique set of nodal unknowns required to describe the master-

slave element system, the displacement field of the beam element is described using the 
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nodal unknowns of the master element û by introducing the coordinate transformation 

suggested by Thompson et al. (1988) as 

 ˆ'u Λu  3.87 

where 

 

0 0

0 0

0 0

j

j

j

Λ
Λ Λ

Λ
 3.88 

and 

 

cos sin 0 0 0

0 0 1 0 0

0 0 0 cos sin

0 0 0 sin cos

j
Λ  3.89 

The angle  defines the orientation of the slave element 'x axis (stiffener trajectory) 

with respect to the master element x  axis as shown in Figure 3-9. 

3.3.5.2 Interpolation of nodal quantities of the slave element 

The interpolation functions of the isoparametric beam element with reference to the 

slave element node numbering defined in Figure 3-9, are respectively 

 1 2 3

'(1 ') (1 ') '(1 ')

2 2 2st st st
N N N   3.90 

Using these shape functions, the Cartesian coordinates of any point located within the 

element can be interpolated using the natural coordinates of the point ( ' ) and the 

element nodal coordinates ( '
j
x ) as 

 
3

1
st j j

j

x N x   3.91 

Since the nodes of the slave element are located within the interpolation region of the 

master element, it is possible to interpolate the nodal displacements, and any other 

nodal quantity, of the slave element from the master element nodal displacements. 
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In this work the interpolation expression suggested by Ray and Satsangi (1996) is 

adopted to interpolate the slave element displacements 
st

δ  as 

 
st

δ ΛTδ  3.92 

Where Λ  is the orientation matrix, defined in Equation 3.88, and T  represents the 

interpolation matrix of the slave element unknowns, from the master element nodal 

displacements , δ , defined as 

 
1,1 1,8

3,1 3,8

T T
T

T T
 3.93 

and 

 
5ji ji

NT I  3.94 

where 
5

I  is a five by five identity matrix and 
ji
N  is shape functions of the thi  node of 

the master element, defined in Equation 3.35, used to interpolate the displacements of 

the thj  node of the slave element. 

Using a similar approach, the variation of displacements 'du , defined in Equation 3.71 

are written in terms of the nodal virtual displacements of the master element dδ , 

defined in Equation 3.43, as  

 'd du ΛT δ  3.95 

Finally, the displacement gradients 
st

θ defined in Equation 3.72 are written in terms of 

the nodal displacements δ  and Cartesian derivatives of the shape functions as 

 Gθ ΛTδ  3.96 

Where G  is defined as 

 1 2 3
, ,G G G G  3.97 

with  
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 0, ,0,0
'
j

j

dN

dx
G  3.98 

As in the case of the master element, here it is important to note that G is a matrix 

defined purely in terms of the nodal coordinates of the slave element. The variation of 

the gradient defined in Equation 3.75 can now be written in terms of virtual nodal 

displacements of the master element as 

 d dGθ ΛT δ  3.99 

3.3.5.3 Strain-displacement relationship of the slave element 

The first term of the generalised strain vector defined in Equation 3.67, 
0

ˆ
st

ε , represents 

the linear strains in the stiffener. Using Equation 3.92, these strains are expressed in 

terms of the master element nodal displacements as 

 
0 0

ˆ
st st

ε B ΛTδ  3.100 

Where 
0st
B is the linear strain-displacement matrix of the slave element defined as 

 
0 0 1 0 1 0 1

, ,
st st st st

B B B B  3.101 

with 

 0

0 0 0

0 0 0

0 0

0 0 0

j

j

st j
j

j

j

N

x
N

x
N

N
x

N

x

B  3.102 

Similarly the initial, ˆ
Ist

ε , and non-linear , ˆ
NLst

ε , components of the generalised strains 

can be expressed in terms of the master element nodal displacements as 

 
1

ˆ ˆ;
2Ist Ist NLst NLst

ε B ΛTδ ε B ΛTδ  3.103 
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Where 
Ist
B  and 

NLst
B  are the initial and non-linear strain-displacement matrices of the 

slave element defined as 

 
1 2 3
, ,

Ist Ist Ist Ist
B B B B  3.104 

and 

 
1 2 3
, ,

NLst NLst NLst NLst
B B B B  3.105 

where 
Ist
B  and 

NLst
B  are found by taking the variation of ˆ

Ist
ε  andˆ

NLst
ε  with respect to 

the nodal displacements. Since both the initial and non-linear strains contribute only to 

the axial component of the generalised centroidal strain vector, the initial and non-linear 

strain displacement sub-matrices of Equations 3.53 and 3.54 can be defined as 

 
0 0
;

0 0

0 0

a a

Ist j NLst j

Ist j NLst j

B B

B B  3.106 

where a

Ist j
B  and a

NLst j
B  are found using the variation of strain defined in  

Equation 3.73 as 

 

3

0 0
1

3

1 1
1

ˆ

ˆ

a k
Ij j k j

k

a k
NLj j k j

k

dN
w

dx

dN
w

dx

B G G

B G G

A

A

 3.107 

Substituting Equations 3.100 and 3.103 into Equation 3.67 the generalised strain vector 

at any point within the slave element is now defined in terms of nodal displacements of 

the master element δ  as 

 
0

1
ˆ

2st st Ist NLst
B B Bε ΛTδ  3.108 
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It can be observed from Equation 3.108 that the strains are quadratically dependent 

upon the nodal displacements δ . In a similar fashion, the variation of strain in the slave 

element can be expressed in terms of the virtual nodal displacement of the master 

element, dδ , by substituting Equations 3.95 and 3.99 into 3.69 and 3.73 respectively 

yields the strain variations  

 ˆ
st

d dε B ΛT δ  3.109 

where 

 0st st Ist NLst
B B B B  3.110 
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Chapter 4.  Derivation and solution of non-

linear equations 

 

4.1 Introduction 

In the previous Chapter the discrete finite element expressions that define the 

displacement, strains and stresses as a function of the nodal quantities within their 

respective interpolation regions were derived for both the master and slave elements. 

In this Chapter the non-linear equilibrium expressions are derived and discretised. 

Available solution techniques are discussed and the most suitable to solve the non-

linear problem in hand is selected. 

The elemental and global finite element expressions required to solve the non-linear 

problem are derived. A method to include panel initial deformations in the arbitrarily 

stiffened finite element model is developed. 

The techniques required to represent the boundary conditions as well as the loads acting 

on the stiffened panel are discussed. A new method to account for uniform in-plane 

compressive load acting on the cross sectional area of stiffeners at the edges of the 

master element is formulated for both concentrically and eccentrically stiffened 

elements. 

4.2 Virtual work equilibrium equations 

The virtual work equilibrium expression, for a continuum under the action of 

conservative body forces and surface tractions, in a Total Lagrangian frame of 

reference,  is defined by Pica and Wood (1980) as 

 
T T T

V V a

d dv d dv d dau q u pε ζ  4.1 
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The left hand expression represents the internal virtual work, 
int

dW , integrated over the 

undeformed volume at the reference configuration where ζ  represents the second 

Piola-Kirchhoff stresses and dε  represents the virtual Green‟s strains due to the virtual 

displacements du . The expression on the right side of Equation 4.1 represents the 

external virtual work 
ext

dW  containing the body forces and surface tractions. Here, the 

mass density is represented by , whilst the body forces per unit mass and the surface 

tractions acting over the undeformed area a  are represented by q  and p  respectively. 

Substituting the generalized strain, ε̂ , and the mid-surface stress resultant, ζ̂ , into the 

left side integral, 
int

dW  can be re-written as an area integral giving 

 ˆ ˆT
int

A

dW d dAε ζ  4.2 

In which the second Piola-Kirchhoff stress resultant vector ζ̂  and the generalised 

Green‟s strain vector ε̂  are given by Equations 3.8 and 3.11 respectively. 

As previously mentioned, the right side integrals in Equation 4.1 represent the external 

virtual work, 
ext

dW , and can be separated into virtual work done by body forces 

b
ext

dW  and by surface tractions t
ext

dW  as 

 b t
ext ext ext

dW dW dW  4.3 

As the magnitude of the body forces acting in the panels is normally of several orders of 

magnitude smaller than the surface tractions they have not been included in this 

investigation (i.e. 0b
ext

dW ). 

The virtual work done by the surface tractions t
ext

dW  is expressed in terms of mid 

surface quantities as 

 ˆ ˆˆ ˆ

s

t T T
ext e

a s

dW d da d dsu P u P  4.4 
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Where ˆdu  is the mid-surface virtual displacement vector and P̂  and ˆ
e
P  are the 

generalised surface and edge tractions evaluated over the plate surfaces 
s
a , and the 

plate edges s  respectively. 

Finally, by substituting Equations 4.2 and 4.4 into Equation 4.1 an expression that 

represents the balance of internal and external virtual work in the shallow-shell, written 

entirely in terms of mid-surface quantities, is obtained as 

 ˆ ˆˆ ˆ ˆ ˆ

s

T T T
e

A a s

d dA d da d dsu P u Pε ζ  4.5 

This virtual work expression is discretised, substituting the strain-displacement and 

constitutive expressions derived in the previous chapter for ˆdu  and ˆdε  respectively 

giving 

 ˆ 0T T

ext

A

d daB Rδ ζ  4.6 

Where the equivalent nodal vector 
ext
R  due to the external body forces and tractions is 

 ˆ ˆ

s e

T T
ext e

a a

da dsR N P N P  4.7 

The load vector 
ext
R  may also contain nodal point loads. Since the nodal virtual 

displacements dδ  are arbitrary, the element non-linear equilibrium equations become, 

 int ext
R

δ
ψ R  4.8 

where 
δ

ψ  represents the difference between the external and internal forces. The 

internal forces, 
int

R , are calculated as 

 ˆT
int

A

daBR ζ  4.9 
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4.3 Solution to non-linear equilibrium equations 

Numerical solution techniques for non-linear problems such as the one expressed in 

Equation 4.8 are normally classified as incremental, iterative, or incremental-iterative 

techniques. 

In an incremental solution the non-linear load-displacement path is obtained by 

applying the external loading as a sequence of sufficiently small increments so that the 

structure can be assumed to respond linearly within each increment. The major 

advantage of incremental methods is their simplicity. In this regard, these schemes are 

particularly attractive for the analysis of structures exhibiting moderate non-linearity. 

However, since the equilibrium between external loads and internal forces is not 

evaluated in purely incremental methods; the calculated response curve can drift from 

the true response. This drift can accumulate and lead to gross and undetectable errors 

and even solution instabilities. 

In contrast to a purely incremental solution, a purely iterative solution is intended to 

correct, in an iterative fashion, the imbalances between the linear approximation and the 

actual non-linear response or to reduce the drift in the solution to a tolerable level 

(McGuire et al., 2000). 

In this investigation, the non-linear equilibrium equations 4.8 are solved using the 

Newton-Raphson method. To illustrate the discussion a graphical representation of the 

method is presented in Figure 4-1 for a single degree of freedom system. 

In this method the non-linear equilibrium equations are expanded in a Taylor‟s series 

and truncated to only two terms. If an initial estimate iδ  for the total displacement 

vector gives a residual (unbalanced) force such that 

 0iψ δ  4.10 
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Figure 4-1 Graphical representation of the Newton-Raphson method. 

Then, an improved value 1iδ  is obtained by equating to zero the linearised Taylor‟s 

series expansion of 
1iδ

ψ  in the neighbourhood of iδ  as  

 
1

0
i i

i
T
K

δ δ
ψ ψ δ  4.11 

Where 
T
K  is the tangent stiffness matrix evaluated at iδ  and given by 

 
i

d
T
K

δ
ψ  4.12 

Equation 4.11 is the linear incremental equilibrium equation which gives a linearised 

approximation to the relation between the residual forces and incremental displacement, 
iδ , at a point iδ  on the equilibrium path. The improved solution is then found as, 

 1i i iδ δ δ  4.13 

Equations 4.11 and 4.13 represent the Newton-Raphson solution to the non-linear 

Equations 4.8. The terms 
iδ

ψ  and iδ  give a measure of the convergence of the 

solution. 
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By successively solving the corrected linearised equations for displacements produced 

by the corrected forces of the previous cycle and correcting the node forces each time 

using the nonlinear equations, an iterative scheme is established. 

Nevertheless, for a solution method to be reliable and adoptable, both economy in 

computer cost and accuracy of the obtained results must be considered. The major 

computational expense of the Newton-Raphson method is the calculation of the tangent 

stiffness matrix and its factorization (Geradin et al., 1981). 

In some structural problems however, the tangent stiffness matrix, 
T

K , may be quite 

stable. Consequently, several authors (Bathe and Gracewski, 1981, McGuire et al., 

2000, Kao, 1974) have suggested that updating this matrix in each cycle of the Newton-

Raphson iteration is no longer necessary and therefore computing time can thus be 

reduced considerably. This modification to the full Newton-Raphson iteration is known 

as the modified Newton-Raphson iteration. 

Since the Newton-Raphson method requires repeated calculations and inversions of the 

tangent stiffness matrix, 
T
K , a modified Newton-Raphson method is also employed 

whereby 
T
K  is calculated once only on the second iteration of each load increment. 

As a result of the modified Newton-Raphson iteration, the use of the original tangent 

stiffness matrix not only accelerates the convergence but also prevents divergence of 

the solution for slowly stiffening problems, such as the post-buckling of stiffened 

plates. 

Although the modified iteration could theoretically function with the tangent stiffness 

matrix being formed and factorized only for the first cycle of the iteration, practically it 

is recommended (Kao, 1974) that the stiffness matrix is updated and factorized after 3-5 

iterations cycles to improve the efficiency of the solution. 

According to Kao (Kao, 1974), the solution obtained by both the full Newton-Raphson 

iteration and its modified form may be taken as an exact solution because examination 

of convergence criteria are included. It should be noted, however, that the use of this 

technique may be inadequate for the analysis of structures that exhibit extreme 

deformations or large internal tensile forces (McGuire et al., 2000). 
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A drawback of using a purely iterative technique on its own is that it can only provide a 

single point solution. To overcome this limitation a more flexible technique that 

combines the advantages of both iterative and incremental schemes is required. In an 

incremental-iterative solution the applied load, R , is subdivided into a number of 

incremental load steps, for each one of which an iterative process aimed at satisfying 

the requirement of equilibrium to within a specified tolerance is performed. 

The full or modified Newton-Raphson iteration procedure works well provided the load 

level is below the critical load or limit point. At a limit point, the Newton-Raphson fails 

to converge as the stiffness of the structure is zero or negative. To overcome this 

limitation, common to the snap-back and snap-through analysis of deep shells under 

transverse load, it is recommended that the Newton-Raphson method is constrained by 

using a suitable displacement control scheme as suggested by Riks (1979) and  

Crisfield (1981). 

However, since this behaviour is not expected in the analysis of flat stiffened panels 

under transverse load or in the post-buckling analysis of stiffened panels under in-plane 

load, this investigation uses an incremental-iterative solution procedure, that combines 

Euler incrementation with either a full or modified Newton-Raphson iteration. 

4.3.1 Tangent stiffness matrix 

The tangent stiffness matrix given in Equation 4.12 may be written as  

 ˆT
int ext ext

A

d d da
T
K BR R ζ R  4.14 

For conservative loading, the partial derivative of the external load vector with respect 

to the nodal displacements is equal to zero. Hence, Equation 4.14 is reduced to 

 ˆT

A

d da
T
K B ζ  4.15 

or 

 ˆ ˆ
T T

T

A A

d da d daK B ζ B ζ  4.16 
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In the first integral, the variation B  is defined as 

 
0 I NL

d dB B B B  4.17 

Noting that both 
0

B  and 
I

B are not a function of the nodal displacements δ ,  

Equation 4.17 is reduced to 

 
NL

d dB B  4.18 

by substituting Equation 3.55 into 4.18 

 
1

p
NL NL

d d dB B A G  4.19 

Using this expression, the first integral of Equation 4.16 can be re-arranged into 

 
1 1

ˆ ˆ ˆ
T T T T

A A A

d da d da daB ζ A G ζ G dA ζ  4.20 

Finally using the special property of the matrix 
1

A , defined by Zienkiewicz and Taylor 

(Zienkiewicz and Taylor, 1994) as  

 
1
ˆ x xyT

xy y

N N
d

N N
A ζ G  4.21 

the first integral in Equation 4.16 becomes the initial stress stiffness matrix depending 

on the stress level within the element 

 x xyT

xy yA

N N
da

N N
K G G  4.22 

In the second integral expression of Equation 4.16 the stress resultants ζ̂  are a linear 

functions of the strains ε̂ . Hence, the variation of the stress may be written as, 

 ˆˆ ˆd dζ D ε  4.23 

Substituting for ˆdε  from Equation 3.59 gives ˆdζ  in terms of the variation of δ  as 

 ˆˆd DBζ  4.24 
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Hence the second integral becomes 

 
0 0

ˆT

I NL I NL

A

daDB B B B B B  4.25 

or 

  

0 0 0
ˆ

ˆ

T

A
T

NL I NL I NL

A

da

da

D

D

K B B

K B B B B
 4.26 

where 
0

K  and 
NL

K represent the small displacement and the large displacement 

stiffness matrices respectively.  

Finally, combining Equations 4.26 and 4.22 the tangent stiffness matrix is found as 

 
0T NL

K K K K  4.27 

The tangent stiffness matrix of the slave element,
Tst

K , is defined in a similar fashion as 

 
0Tst st NLst st

K K K K  4.28 

where the initial stress stiffness, linear and non-linear stiffness matrices of the slave 

element expressed as function of the master element degrees of freedom are defined as 

 

0 0 0
ˆ

ˆ

T T T
st st st st

l

TT T
NLst Ist NLst st Ist NLst

A

T T T
st st st st

l

ds

ds

N ds

D

D

K T Λ B B ΛT

K T Λ B B B B ΛT

K T Λ G G ΛT

 4.29 

Finally the tangent stiffness matrix of the stiffened element, i.e. the combined master-

slave element, is obtained as 

 
1

n

T total T Tst i
i

K K K  4.30 
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where n represents the total number of slave elements for which trajectories cross the 

master element interpolation region. 

4.3.2 Secant stiffness matrix 

To evaluate the residual nodal force vector 
δ

ψ  of Equation 4.8 the equivalent nodal 

forces due to the stress resultant vector ζ̂  may be written for a typical element as 

 ˆT
i

A

daP B ζ  4.31 

or, expressing the stresses using the constitutive relations given in Equation 3.22 

 ˆˆT

i

A

daP B Dε  4.32 

Substituting B  with Equation 3.60 and expressing ε̂  as function of the nodal 

displacements using Equation 3.57 yields 

 
i S
P K δ  4.33 

where 
S
K  is the secant stiffness matrix of the master element defined as 

 
1ˆ
2

T

S

A

dA
0 L 0 L
B B D B BK  4.34 

Similarly, the secant stiffness matrix of the slave element,
S st

K , expressed as function 

of the master element degrees of freedom is defined as 

 
0 0

1ˆ
2

TT T

S st st Lst st st Lst

l

dsB B D B BK T Λ ΛT  4.35 

Finally the secant stiffness matrix of the stiffened element, i.e. the combined master-

slave element, is obtained as 

 
1

n

S total S S st i
i

K K K  4.36 



Derivation and solution of non-linear equations 

73 
 

where n represents the total number of slave elements for which trajectories cross the 

master element interpolation region. 

4.3.3 Panel initial deformations 

The panel initial deformation, 
0
ŵ , required for the non-linear buckling analysis of 

unstiffened and stiffened panels are calculated in this investigation by conducting a 

preliminary Eigen-value buckling analysis. The analysis has two functions: first it 

determines a critical buckling load (Eigen-value) and secondly, and most importantly, it 

defines the buckled shape of the panel (Eigen-vector). 

The linear buckling analysis has been discussed in detail by other authors 

(Mukhopadhyay and Mukherjee, 1990, Ray, 1997, Prusty and Satsangi, 2001a), and 

therefore only the final global matrices are presented in this Section. For all the 

mathematical details, the reader is advised to refer to the cited literature. The Eigen 

value problem is defined as 

 
0

0
total total v

K - K δ  4.37 

were  and 
v

δ represent the Eigen-value and Eigen-vector respectively whilst 
0total

K  

and 
total

K  represents the linear and geometrical stiffness matrices respectively defined 

in Section 4.3.1. 

A major difference with respect to previous investigations (Mukhopadhyay and 

Mukherjee, 1990, Ray, 1997, Prusty and Satsangi, 2001a) is that in the present work a 

linear static analysis was conducted in order to calculate, and not to assume, the  

in-plane stresses required to evaluate the geometrical stiffness matrix.  

Equation 4.37 is solved using the simultaneous iteration technique presented by Corr 

and Jennings (1976). Once the solution is obtained, the Eigen-vector, 
v

δ , is normalised 

as 

 
1

ˆv v
ref
w

δ δ  4.38 

where ˆ
ref
w represents the maximum out of plane deformation of the panel. 
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Finally the initial deformation vector, 
ini

δ , is obtained by multiplying the normalised 

Eigen-vector by the initial deformation factor, 
ini
f ,defined by the user as a percentage 

of the panel thickness, as 

 
0ini ini
fδ δ  4.39 

It is important to note that this vector contains only the initial deformations of the 

master element. 

In order to calculate the initial deformations of the slave element, 
ini st

δ , it is suggested 

that the master element initial deformations are transformed using the expression 

defined in Equation 3.92, as 

 
ini st ini

δ ΛTδ  4.40 

4.4 Loads 

Stiffened panels on a ship are normally subjected to two types of loadings: in-plane 

and/or transverse loads. 

Transverse loading, as shown in diagram a of Figure 4-2, is created by hydrostatic 

pressure acting on the submerged plating below the water line. 

In-plane loads (diagram b of Figure 4-2) on the other hand are created by the bending of 

the hull girder. Depending on the direction of the hull girder bending, these forces will 

be either tensile or compressive. 

Both loads cases must be accurately represented in the finite element model in order to 

be of practical use for designers of marine structures. 

As part of the non-linear incremental-iterative solution method discussed in Section 4.2, 

these loads are applied in a stepwise fashion, where each load step represents a fraction 

of the final load. 
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Figure 4-2 Loads in a ship stiffened panel 

4.4.1 Transverse Loads 

Transverse loads are applied using a consistent load vector for the element. Here the 

interpolation functions are used to obtain the loads at each node of the element. 

 
Figure 4-3 Transverse loads in the stiffened element 

The consistent load vector for the stiffened shallow shell element due to a uniformly 

distributed load q  is given by 
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 T

e

A

qdAp N  4.41 

The direction of the distributed load q  is given by the normal of the element. Where the 

orientation of the element normal is defined using the right hand rule. 

4.4.2 In-plane loads 

In finite element models, in-plane tensile and compressive loads are normally applied as 

either a distributed linear load or as a constant edge displacement along the edges of the 

panel. 

As discussed in Section 2.2.3, previous investigations on stiffened panels under in-plane 

loads have assumed a uniform stress field to obtain linear buckling loads. However that 

approach is not applicable for non-linear buckling calculations as the in-plane stress 

field is non-uniform. Furthermore, this non-uniformity changes along the non-linear 

response path. 

Consequently, in this Section a new and original procedure for correctly modelling in-

plane loads is now discussed for concentrically and eccentrically stiffened panels. 

4.4.2.1 Concentric Stiffeners 

When a concentrically stiffened panel is loaded in compression, as shown in diagram a 

of Figure 4-4, both the stiffener and plate cross sectional areas are able to receive load. 

However, in a finite element model created using arbitrarily stiffened elements, such as 

the one shown in diagram b of Figure 4-4, the stiffener cross sectional area, 
st
A , is not 

physically represented in the model. 
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Figure 4-4 Edge load for concentrically stiffened elements. 

Consequently if a uniform in-plane load is to be applied to the entire edge of the panel 

(plate and stiffener), a fraction of the total force acting on the edge of the panel will be 

missing. This absence causes the in-plane deformations to be erroneous and, since an 

incorrect displacement field generates an incorrect in-plane stress field, this modelling 

issue will affect not only the strength calculations but also the stability calculations that 

are dependent on the in-plane stress field. 

In order to address this previously unreported modelling issue, an equivalent 

concentrated force method is proposed in this investigation. The first step of the method 

is to determine the magnitude of the missing stiffener load, 
st
F . Here it is suggested that 

this force is calculated as: 

 in st

st

q A
F

t
 4.42 

Where 
in
q  is the normal force per unit length applied to the thi  edge of the panel, 

st
A  is 

the stiffener cross sectional area and t  is the thickness of the panel. 

 

 



Derivation and solution of non-linear equations 

78 
 

The second step requires determining how this load is to be applied to the edge nodes of 

the stiffened element. It is evident that, since the stiffness of the stiffener element is 

distributed over the plate element according to the position of its nodes, the force has to 

be distributed following a similar consideration. 

 
Figure 4-5 Stiffener load application for case 1. 

The first and simplest scenario, designated as case 1, is when the location of the end 

node of a stiffener coincides with the location of any of nodes lying on the edge of the 

shallow shell element. 

In such a configuration it is suggested that the extra load due to the stiffener, 
st
F , is 

assigned directly to the corresponding degree of freedom of the coinciding node as 

shown in Figure 4-5. It must be noted that the suggested procedure is also valid for 

users of general purpose finite element codes attempting to model stiffened panels 

under in-plane loads by placing beam elements along the edges of shell elements as 

shown in diagrams a and c of Figure 4-5. 



Derivation and solution of non-linear equations 

79 
 

 
Figure 4-6 Stiffener load application for case 2. 

The second and more complex scenario, designated as case 2, is shown in Figure 4-6. In 

this case the end node of a stiffener does not coincide with the location of any of the 

nodes lying on the edge of the shallow shell element and therefore the load must be 

distributed among all the edge nodes. Since the stiffness of the stiffener element is 

distributed over the shallow shell element using the shape functions of the shallow shell 

element (see Section 3.2.7.2), it is suggested that the extra load is distributed along the 

edge node in a similar fashion: 

 
,

,

,

st st

st st

st st

A A st

B B st

C C st

F N F

F N F

F N F

 4.43 

Here, 
st
F is the stiffener load calculated using Equation 4.42, and 

A
N ,

B
N  and 

C
N  are 

the shape functions, defined in Equation 3.35, of nodes A, B and C respectively 

evaluated where the end point of the stiffener, ,
st st

, touches the edge of the shallow 

shell element as represented in Figure 4-6. 
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4.4.2.2 Eccentric Stiffeners 

When the stiffener is eccentric the problem becomes more complicated. In the 

concentric case both plate and stiffener share a common neutral surface for bending. 

However, when a panel is reinforced by placing stiffeners at only one side of the plate, 

separation exists between the plane of bending of the stiffener and the plane of bending 

of the plate. This offset between bending planes is responsible for coupling terms in the 

stiffness matrix of the arbitrary orientated stiffened element that link in-plane 

displacements with out of the plane displacements.  

Moreover, in an eccentrically stiffened panel the force applied to the stiffener is applied 

at a distance from the middle surface of the shell element as shown in Figure 4-7. 

 
Figure 4-7 Extra stiffener moment for eccentrically stiffened panels. 

Therefore, if the stiffener load is neglected, not only non-uniform in-plane 

displacements but also artificial out of plane displacements are generated due to the 

now coupled terms in the stiffness matrix of the arbitrarily stiffened shallow shell 

element. 
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To overcome this unrealistic behaviour it is suggested that, in addition to a concentrated 

load, a couple is also applied to the loaded edge of the panel. The magnitude of this 

couple, 
st
C , is determined by 

 
st st st
C F e  4.44 

Where 
st
F is the magnitude of the extra load due to the stiffener calculated using 

Equation 4.42 and 
st
e is the eccentricity of the stiffener. 

The application of this moment to the corner and mid-side nodes of the shallow shell 

element follows the same principles discussed for case 1 of Section 4.4.2.1. However, 

when the stiffener end does not coincide with the location of a shallow shell element 

edge node (case 2), it is suggested that the magnitude of each nodal couple be 

calculated as 

 
A A st

B B st

C C st

C F e

C F e

C F e

 4.45 

where 
A
F , 

B
F  and 

C
F  are the distributed nodal forces calculated using Equation 4.43. 

It is crucial to note that the displacement boundary conditions on the unloaded side of 

the panel will not generate the reaction couple necessary to maintain static equilibrium. 

It is therefore necessary to also apply the couple 
st
C  to the unloaded edge of the panel 

following the procedure discussed above. 

The application of this new method is discussed and validated for both concentric and 

eccentric stiffening configurations in Sections 6.3.1, 6.3.2 and 6.3.3. 

4.4.3 Load vector assembly 

The global load vector ext
R  is obtained by assembling the equivalent nodal loads e

R  at 

element level. For concentrated loads the load value is applied to the corresponding 

degree of freedom of the particular node. 
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4.5 Boundary conditions and nodal constraints 

Once all the elemental tangent stiffness matrices have been assembled into the global 

stiffness matrix, 
T

K , it is necessary to apply the essential boundary conditions before 

the linearised equilibrium equations can be solved for the unknown nodal incremental 

displacements. The physical reason for this is that without supports the structure will 

float away if the slightest external load is applied. Mathematically the tangent stiffness 

matrix 
T

K  is singular and cannot be inverted so long rigid-body motions are still 

possible.  

Consequently, the singularity of 
T

K  must therefore be removed in order to solve for the 

unknown incremental displacements. In this investigation the boundary conditions are 

introduced using the penalty method (Cook et al., 1989). In this scheme any or all 

structural nodal degree of freedom can be constrained by incorporating a very large 

diagonal stiffness coefficient, known as the penalty number, to 
T

K . 

Moreover, using the penalty method it is possible to prescribe a single or multiple 

nonzero nodal degrees of freedom. In this case, in addition to having a very large 

diagonal stiffness coefficient added to 
T

K , a large load is added to the corresponding 

component of the external load vector R . The magnitude of this load is equal to the 

product of the penalty number and the magnitude of the prescribed nonzero degree of 

freedom. This feature of the penalty method allows the modelling of uniform edge 

shortening in non-linear buckling problems. 

It is important to note that, although the global secant stiffness 
S

K  does not need to be 

inverted, it also must be constrained using the previously mentioned scheme in order to 

correctly evaluate the internal forces in the finite element model. 

The nodal constraints used in this investigation to represent the essential simply 

supported boundary conditions, described graphically in Figure 4-8, are listed in Table 

4-1, whilst the clamped boundary conditions, described graphically in Figure 4-9, are 

listed in Table 4-2. 
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Figure 4-8 Simply supported boundary conditions along the edge of the panel. 

 

 
Figure 4-9 Clamped boundary conditions along the edge of the panel. 
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Table 4-1 Nodal constrains used to represent simply supported boundary conditions. 

S1 S2 S3 S4 

0w  0w  0w  0w  

0
dw

dt
 0
dw

dt
 0
dw

dt
 0
dw

dt
 

0
n
u

 
0

t
u

 
0

n
u

 
 

0
t
u

 
   

 

Table 4-2 Nodal constrains used to represent clamped boundary conditions. 

C1 C2 C3 C4 

0w  0w  0w  0w  

0
dw

dn
 0
dw

dn
 0
dw

dn
 0
dw

dn
 

0
dw

dt
 0
dw

dt
 0
dw

dt
 0
dw

dt
 

0
n
u

 
0

t
u  0

n
u   

0
t
u

 
   

 

This notation is analogous to that suggested by Almroth‟s (1966) where the subscripts 

n  and t  denote the directions in the plane of the panel normal and tangential to the 

edge under consideration as defined in Figure 4-10. 

 
Figure 4-10 Normal and tangential directions along the edges of the panel. 
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4.6 Convergence criteria and convergence tolerance 

As stated by Bathe and Cimento (1980), the solution results should be checked at the 

end of each iteration, to assess whether it has converged within a preset tolerance(s), 

whether more iteration is necessary or whether the iteration process is diverging. If the 

convergence tolerance is too loose, inaccurate results are obtained, and if the tolerance 

is too tight, excessive computational effort is spent obtaining needless accuracy. 

Although convergence criteria based on stress and energy considerations exist, most 

authors (Crisfield, 1979, Bergan, 1972) recommend the use of convergence criteria 

based on either a residual force criterion or a displacement criterion. 

4.6.1 Residual force criterion 

The residual force convergence criterion is normally based on a comparison between 

the current unbalanced or residual forces within the structure and the external loads. 

The total residual force convergence criterion is defined as 

 
0

T

T
ext ext

conv
ψ ψ

R R
 4.46 

where ψ  is the internal-external force imbalance vector and 
ext

R  is the external force 

vector. As the geometrically non-linear analysis of stiffened plate involves mixed loads, 

i.e. forces and moments, this expression must be modified appropriately. The most 

commonly used approach is to scale both the internal/applied force imbalance and the 

applied external force. Here an obvious choice for the scaling is 

 1

t
diagS K  4.47 

Which yields, 

 
0

T

T
ext ext

conv
ψ Sψ

R SR
 4.48 
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4.6.2 Displacement criteria 

Given that the deformations in each iteration are the base of any equilibrium 

requirement, it has been suggested (McGuire et al., 2000) to adopt a convergence 

criterion based on these calculated values. 

Such criterion should verify that the change in the last iterative displacement, measured 

in an appropriate norm, does not exceed a given tolerance. To obtain such displacement 

criterion a non-dimensional iterative displacement vector is first defined as: 

 1 2

1 2

, , , , ,

i

i k m

ref ref k ref m ref

u u u u
u

r r r r
 4.49 

Where m  is the total number of degrees of freedom, and i
k
u  is the incremental 

change in the thk  degree of freedom during the thi  iteration. Every degree of freedom is 

scaled by a reference displacement quantity k ref
r , which represents the largest degree of 

freedom of the corresponding type. In other words, the translational degrees of freedom 

are scaled by the largest translation, and the rotational degrees of freedom are scaled by 

the largest rotation. As suggested by Bergan and Clough (1972), three different 

convergence criteria can be established by using three alternative norms for measuring 

the size of the iu .  

 
1

1

1 m
k

k k ref

u
conv

N r
 4.50 

 

1
2 2

2
1

1 m
k

k k ref

u
conv

N r
 4.51 

 
3
max k

k
k ref

u
conv

r
 4.52 

Where equations 4.50, 4.51 and 4.52 represent respectively the absolute Euclidian, 

modified Euclidean and maximum norms of the non-dimensional iterative displacement 
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vector. Both, the absolute and the Euclidean norm are modified by dividing them by N

to obtain quantities that are independent of the total number of degrees of freedom.  

4.6.3 Convergence tolerance 

For any of the previously mentioned criterion, the following expression can be used, 

 
i

conv  4.53 

where represents the convergence tolerance defined by the user. 

Normally the tolerance value is chosen between 10-2 and 10-6 depending on the type of 

structural problem in hand. 

Stiffening (hardening) problems, such as the large deflection of a transversely loaded 

stiffened panel, require a tight force tolerance since a small error in the equilibrium 

state (force vector norm), can be correlated to a large error in the displacement variables 

(Bathe and Cimento, 1980). 

On the other hand, softening problems, such as the non-linear buckling response of in-

plane loaded imperfect stiffened panels requires a tight displacement tolerance since a 

small error in the displacement configuration (displacement vector norm) can be 

correlated to a large error in the equilibrium of force values (Bathe and Cimento, 1980). 
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4.7 Computer code implementation 

In order to study the geometrically non-linear response of stiffened panels, the 

formulation was coded into a FORTRAN 90 computer program named NLSPAN (Non-

Linear Stiffened Panel ANalysis) using the Intel Visual Fortran compiler. 

The development of this computer code was aimed only at validating the proposed 

arbitrarily stiffened element formulation and is not expected to have the extensive 

analysis and modelling capabilities of commercially available Finite Element packages. 

Consequently, only a general overview of this code is included in this section. 

Following common finite element programming practice, the computer code was 

divided into three main modules, namely a pre-processor, a non-linear solver and a 

post-processor. 

In the pre-processor module, the details of the given structure such as geometry, initial 

deformations, boundary conditions, material properties, loading, stiffener location and 

properties, lamination in the panel skin and the stiffener are defined using a single or 

multiple (batch) input file(s). Using this information the panel domain is first 

discretised using the master elements. 

Once the master element mesh is defined, the stiffener trajectory is used to intercept the 

master element mesh lines. This procedure defines the virtual slave element mesh, i.e. 

location of the slave elements within the master elements. 

The non-linear solver module, described in the flow chart presented in Figure 4-11 is 

then used to generate and solve the non-linear equilibrium equations described in 

Section 4.2 using the Newton-Raphson procedure described in Section 4.3. 

For each load increment an external load vector is calculated first as described in 

Section 4.4. 

Next the global tangent stiffness is computed by assembling first the linearised equation 

of the master elements and then augmenting them with the stiffness contribution of the 

slave elements as described in Equation 4.30. 
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Figure 4-11 General flow chart of NLSPAN non-linear solver. 

For numerical efficiency the global tangent stiffness matrix is assembled and stored as a 

one-dimensional array using a sky-line storage scheme (Akin, 1994). Then, the nodal 

constraints used to represent the boundary conditions described in Section 4.5 are 

incorporated to the global tangent stiffness matrix. 
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Next, the set of linearised equilibrium equations are solved for each iterative load 

increment using SKYSOLVE, a Gauss-Choleski algorithm coded in FORTRAN77 

capable of solving a set of linear equations which coefficients stored using a skyline 

storage scheme (Akin, 1994). 

The internal force of the structure is calculated next by solving Equation 4.31. This 

requires the evaluation of the product of global secant stiffness matrix and the 

incremental displacement vector. 

The convergence of the iterative solution process in evaluated by calculating the 

convergence criteria, discussed in Section 4.6, and comparing them against a predefined 

convergence tolerance. 

If convergence is not achieved the process is repeated using the inbalance of internal 

and applied forces as the new iterative load. If convergence is achieved the next load 

increment is analysed. 

Once the solution for every incremental load is obtained, all nodal results obtained in 

the non-linear solver are recorded to file in the post-processor module.  
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Chapter 5.  Large deflection analysis 

validation 

 

5.1 Introduction 

In the previous Chapters, the development of a finite element formulation has been 

presented for the large deflection analysis of arbitrarily stiffened and unstiffened panels 

under transverse and in-plane loads. In this Chapter, the performance, accuracy and 

applicability of NLSPAN for the analysis of stiffened and unstiffened panels under 

transverse loading is validated through a series of numerical examples. 

A wide range of stiffened and unstiffened panels were modelled using NLSPAN. The 

results obtained were compared with those available in the open literature and those 

obtained using ANSYS commercial finite element package (2004). 

As discussed in Chapter 3, the finite element model of a stiffened panel, generated 

using arbitrarily stiffened elements, normally includes both stiffened and unstiffened 

element. Consequently the validation work was divided into two Sections:  

1. Analysis of unstiffened panels under transverse load (Section 5.2) 

2. Analysis of stiffened panels under transverse load (Section 5.3) 

The validation of unstiffened panels not only ensures that the master element is capable 

of representing the behaviour of a unstiffened panel but also gives guidance on the 

mesh density required in the subsequent validation of NLSPAN stiffened panel analysis 

capability.  

The validation work of NLSPAN‟s stiffened panel analysis capability was focused to 

verify the capability of the proposed formulation in representing panels where the 

stiffener was placed at truly arbitrary orientations. 
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Both the unstiffened and stiffened test cases include isotropic and composite laminated 

panels with different boundary conditions. 

An illustration that summarizes important details of the investigated panel (panel 

dimensions, coordinate system, material properties and finite element mesh) has been 

provided in each validation problem. The boundary conditions are detailed in each 

illustration according to the notation defined in Table 4-1 and Table 4-2 of  

Section 4.4.2. The illustration also defines, using the letter w , the point where the out 

of the plane deflection is measured.  

The non-dimensional results of each validation problem are presented in both graphical 

and tabular form in order to facilitate the study of the difference between the presented 

data sets. The non-dimensional quantities defined in order to present the validation 

results are listed in Table 5-1. 

Table 5-1 Non-dimensional quantities for panels under transverse load. 

w
t

 Non-dimensional out of the plane deflection (w ) 

2 2

x
a Et  Non-dimensional normal stress 

4

4

qa

Et
 Non-dimensional transverse load (q ) of the isotropic panels 

4

4

22

qa

E t
 Non-dimensional transverse load (q ) of the composite laminated panels 
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5.2 Unstiffened panels under transverse load 

Several problems available in the open literature were chosen to benchmark the 

performance of the proposed formulation in modelling the geometrically non-linear 

response of unstiffened plates under transverse loads. 

In Sections 5.2.1 and 5.2.2 large deflection results for isotropic panels with both 

clamped and simply supported boundary conditions obtained using the present 

formulation are presented and compared with analytical and numerical results available 

in the open literature. 

Laminated composite panels under transverse loads are investigated in Sections 5.2.3, 

5.2.4 and 5.2.5. Analysed problems consider different lamination schemes; boundary 

conditions as well as different panel length to thickness ratios. 

5.2.1 Clamped isotropic square unstiffened panel 

The first problem to be considered is the large deflection of a clamped unstiffened panel 

under transverse load. Levy (1942) presented a double Fourier series solution for the 

large deflection of clamped panels having C1 boundary conditions on all edges. This 

analytical solution is quoted as having a possible error of less than 2% (Pica et al., 

1980). For that reason it has been adopted by several authors as a benchmark problem 

for new geometrically non-linear finite element formulations (Pica et al., 1980, Rao et 

al., 1993, Chattopadhyay et al., 1995). 

In order to obtain the non-linear response path, and by taking advantage of symmetry, 

only a quarter of the domain was discretised in NLSPAN. It is important to note that, 

for comparison purposes, the same plate dimensions and mesh density used by other 

authors were adopted in the NLSPAN model (Pica et al., 1980, Rao et al., 1993, 

Chattopadhyay et al., 1995). These dimensions, as well as the finite element mesh, and 

the material properties are detailed in Figure 5-1. 

The non-dimensional plate centre deflection and plate centre stress results, obtained at 

different non-dimensional load steps using a force convergence tolerance of 1%, are 

presented in Table 5-2 and Table 5-3 respectively. 



Large deflection analysis validation 

94 
 

The results obtained with the proposed formulation (NLSPAN) have been compared 

with Levy‟s analytical results as well as with the finite element results of Pica et al. 

(1980), Rao et al. (1993) and Chattopadhyay et al. (1995). 

The centre deflection results shown in Table 5-2 compare well with Levy‟s analytical 

solution, having an average absolute error of 1.3%. Moreover, the current results are 

slightly better than those of Pica et al. (1.4%), Chattopadhyay et al. (1.4%) and Rao et 

al. (1.4%). 

A similar trend exists in the non-dimensional central stress results shown in Table 5-3, 

the current formulation shows an average absolute error of 2.0% compared with Levy‟s 

analytical solution, and again performs better than Rao et al. (2.1%), Pica et al. (2.2%), 

and Chattopadhyay et al. (4.0%). 

 
Figure 5-1 Details of the isotropic clamped square panel. 
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Table 5-2 Non-dimensional out of the plane deflection of a clamped square panel. 

4

4

qa

Et
 

w
t

 

Levy (exact)  Pica et al. (QS) Rao et al. 
Chattopadhyay 

et al. 
NLSPAN 

17.79 0.237 0.235 (0.8%) 0.235 (1.0%) 0.236 (0.4%) 0.235 (0.8%) 

38.39 0.471 0.467 (0.8%) 0.466 (1.1%) 0.468 (0.6%) 0.470 (0.3%) 

63.40 0.695 0.689 (0.9%) 0.686 (1.3%) 0.690 (0.7%) 0.691 (0.6%) 

95.00 0.912 0.900 (1.3%) 0.899 (1.5%) 0.902 (1.1%) 0.903 (1.0%) 

134.90 1.121 1.104 (1.5%) 1.103 (1.7%) 1.105 (1.4%) 1.107 (1.2%) 

184.00 1.323 1.299 (1.8%) 1.298 (1.9%) 1.301 (1.7%) 1.302 (1.6%) 

245.00 1.521 1.491 (2.0%) 1.489 (2.1%) 1.493 (1.9%) 1.494 (1.8%) 

318.00 1.714 1.677 (2.1%) 1.675 (2.3%) 1.679 (2.1%) 1.680 (2.0%) 

402.00 1.902 1.868 (1.8%) 1.853 (2.6%) 1.856 (2.4%) 1.857 (2.3%) 

Note: Figures in brackets denote the absolute percentage error 

 

Table 5-3 Non-dimensional central stress of a clamped square panel. 

4

4

qa

Et
 

2 2

x
a Et  

Levy (exact) Pica et al. (QS) Rao et al. 
Chattopadhyay 

et al. 
NLSPAN 

17.79 2.640 2.657 (0.6%) 2.628 (0.5%) 2.680 (1.5%) 2.575 (2.4%) 

38.39 5.220 5.514 (5.6%) 5.481 (5.0%) 5.590 (7.1%) 5.389 (3.2%) 

63.40 8.030 8.353 (4.0%) 7.823 (2.6%) 8.502 (5.9%) 8.164 (1.7%) 

95.00 11.070 11.115 (0.4%) 11.133 (0.6%) 11.347 (2.5%) 10.898 (1.6%) 

134.90 13.330 13.817 (3.7%) 13.869 (4.0%) 14.137 (6.1%) 13.590 (2.0%) 

184.00 15.890 16.461 (3.6%) 16.548 (4.1%) 16.873 (6.2%) 16.227 (2.1%) 

245.00 19.240 19.160 (0.4%) 19.274 (0.2%) 19.659 (2.2%) 18.936 (1.6%) 

318.00 21.880 21.902 (0.1%) 22.040 (0.7%) 22.488 (2.8%) 21.692 (0.9%) 

402.00 25.120 24.805 (1.3%) 24.822 (1.2%) 24.660 (1.8%) 24.466 (2.6%) 

Note: Figures in brackets denote the absolute percentage error 

 

5.2.2 Simply supported isotropic square unstiffened panel 

In this Section, Rushton‟s (Rushton, 1970) finite difference dynamic relaxation solution 

for the large deflection of simply supported plates having S1 boundary conditions on all 

edges was used to benchmark the proposed formulation. This analytical solution is 

quoted as having a possible error of less than 0.5% (Pica et al., 1980). 
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For comparison purposes the same plate dimensions, mesh density and material 

properties used by other authors (Pica et al., 1980, Chattopadhyay et al., 1995) were 

used in this example. A summary of the problem parameters and boundary conditions is 

presented in Figure 5-2. 

Results for centre deflection and centre stress, obtained at different non-dimensional 

load steps using a force convergence tolerance of 1%, are presented in Table 5-4 and 

Table 5-5 respectively. The results obtained with the proposed formulation (NLSPAN) 

have been compared with Rushton‟s, (1970) analytical results as well as with the finite 

element results of Pica et al. (1980), Rao et al. (1993) and Chattopadhyay et al. (1995). 

It must be noted that Rao et al. (1993) did not benchmark their formulation against 

Rushton‟s solution. 

The deflection results shown in Table 5-4 compare well with Rushton‟s analytical 

solution having an average absolute error of 1.0%. The current deflection results do not 

compare as well as to those of Pica et al. (0.9%) but are better than those of 

Chattopadhyay et al. (1.3%). 

However, in Table 5-5, it can be seen that the current formulation clearly outperformed 

the other finite element formulations for the stress calculation. Indeed, NLSPAN centre 

results show only 1.0% averaged absolute error compared to Rushton‟s analytical 

solution whilst Pica et al. and Chattopadhyay et al. averaged absolute error are 1.9% 

and 4.4% respectively. 



Large deflection analysis validation 

97 
 

 
Figure 5-2 Details of the isotropic simply supported square plate. 

 

 

 

Table 5-4 Non-dimensional out of the plane deflection of a simply supported square panel. 

4

4

qa

Et
 

w
t  

Rushton (exact) Pica et al. (QS) 
Chattopadhyay 

et al. 
NLSPAN 

9.16 0.335 0.348 (3.8%) 0.344 (2.6%) 0.347 (3.5%) 

36.60 0.818 0.818 (0.0%) 0.809 (1.1%) 0.815 (0.4%) 

146.50 1.470 1.466 (0.3%) 1.454 (1.1%) 1.463 (0.5%) 

586.00 2.400 2.393 (0.3%) 2.375 (1.1%) 2.389 (0.5%) 

2344.00 3.830 3.812 (0.5%) 3.785 (1.2%) 3.808 (0.6%) 

9377.00 6.070 6.052 (0.3%) 6.009 (1.0%) 6.046 (0.4%) 

Note: Figures in brackets denote the absolute percentage error 
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Table 5-5 Non-dimensional central stress of a simply supported square panel. 

4

4

qa

Et
 

2 2

x
a Et  

Rushton (exact) Pica et al. (QS) 
Chattopadhyay 

et al. 
NLSPAN 

9.16 2.460 2.621 (6.6%) 2.665 (8.3%) 2.616 (6.3%) 

36.60 6.900 7.003 (1.5%) 7.156 (3.7%) 6.979 (1.1%) 

146.50 14.500 14.644 (1.0%) 15.034 (3.7%) 14.625 (0.9%) 

586.00 30.000 30.183 (0.6%) 31.011 (3.4%) 30.151 (0.5%) 

2344.00 65.200 65.673 (0.7%) 67.480 (3.5%) 65.607 (0.6%) 

9377.00 148.300 149.660 (0.9%) 153.780 (3.7%) 149.433 (0.8%) 

Note: Figures in brackets denote the absolute percentage error 

 

5.2.3 Simply supported unidirectional laminated square 

unstiffened panel 

The benchmark problem presented in this Section, investigates the correlation between 

results obtained with current formulation and both experimental and finite element 

results for a simply supported unidirectional laminated plate under transverse loads. 

The experiment was conducted by Zaghloul and Kennedy (1975) on a 12 in (304.8 mm) 

long and 0.138 in (3.5 mm) thick, square simply supported specimen. The specimen 

was loaded by applying a monotonically increasing uniform pressure of up to 2.0 psi 

(13.7 kPa). 

The finite element results were presented by Zhang and Kim (2006) using two different 

displacement-based elements, RDKQ-NL20 and RDKQ-NL24, and by Argyris and 

Tenek (1994) using a 3-node multilayered triangular facet element based on the natural 

mode method. Elements RDKQ-NL20 and RDKQ-NL24 were developed by Zhang and 

Kim using the linear displacement interpolation functions of the standard 4-node 

quadrilateral isoparametric plane element and the in-plane displacement functions of a 

quadrilateral plane element with drilling degrees of freedom respectively. 

For comparison purposes the mesh density used by Zhang and Kim (10x10) was 

adopted in the present work. A summary of the plate dimension, material properties and 

lamination details is presented in Figure 5-3. 
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Table 5-6 compares the centre deflection results obtained at different load steps with the 

proposed formulation (NLSPAN), using a force convergence tolerance of 1%, with the 

experimental results of Zaghloul and Kennedy as well as with the finite element results 

of Argyris and Tenek (1994) and Zhang and Kim (2006). It must be noted that the 

Zaghloul and Kennedy experimental results as well as Argyris and Tenek finite element 

results were tabulated by Zhang and Kim from a graph presented by  

Argyris and Tenek (1994). 

The deflection results shown in Table 5-6 present an excellent correlation with Zaghloul 

and Kennedy experimental results having an average absolute error of 1.6% which is 

close to the accuracy of Argyris and Tenek formulation (1.4%). Meanwhile,  

Zhang and Kim elements, RDKQ-NL20 and RDKQ-NL24, showed limited accuracy 

with average errors of 4% and 11.6% respectively. 

 

 
Figure 5-3 Details of the unidirectional laminated, simply supported square panel. 
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Table 5-6 Non-dimensional out of the plane deflection of an 8-ply unidirectional simply 
supported panel under distributed load. 

4

4

22

qa

E t
 

w
t

 

Zaghloul and 

Kennedy 

(experimental) 

Zhang and Kim 

(RDKQ-NL24) 
Zhang and Kim 

(RDKQ-NL20) Argyris and Tenek NLSPAN 

17.9 0.587 0.516 (12.1%) 0.564 (3.8%) 0.609 (3.7%) 0.590 (0.6%) 

35.7 1.014 0.874 (13.9%) 0.951 (6.2%) 1.022 (0.7%) 0.998 (1.6%) 

53.6 1.283 1.141 (11.1%) 1.238 (3.5%) 1.283 (0.0%) 1.292 (0.7%) 

71.5 1.558 1.354 (13.1%) 1.466 (5.9%) 1.558 (0.0%) 1.524 (2.2%) 

89.3 1.667 1.535 (7.9%) 1.657 (0.6%) 1.710 (2.6%) 1.717 (3.0%) 

Note: Figures in brackets denote the absolute percentage error 

 

5.2.4 Clamped symmetric bidirectional laminated square 

unstiffened panel 

In this Section the correlation between results obtained with current formulation and 

both experimental and finite element results for a clamped 4-ply symmetric 

bidirectional laminated square plate under transverse loads is investigated. 

This experiment was also conducted by Zaghloul and Kennedy (1975) on a 12 in (304.8 

mm) long specimen but with a total thickness of 0.096 in (3.5 mm). The rotation and 

translation of the edges of the specimen were constrained whilst the loading was 

applied uniformly, increasing monotonically to a final pressure of 2.0 psi (13.7 kPa). 

The finite element results were presented by Zhang and Kim (2006) using two different 

displacement-based 4-node quadrilateral elements, RDKQ-NL20 and RDKQ-NL24, 

and by Putcha and Reddy (1986) using a refined shear flexible laminated element. A 

summary of the plate dimension, material properties and lamination details is presented 

in Figure 5-4. 

In line with the works of Putcha and Reddy and Zhang and Kim the plate was 

discretised using a quarter symmetry model and a 4x4 mesh density. The non-linear 

solution was obtained using a force convergence tolerance of 1%. 
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Table 5-7 presents the non-dimensional results obtained using the current formulation 

as well as those of Zaghloul and Kennedy and Putcha and Reddy which were tabulated 

by Zhang and Kim from a graph presented by Putcha and Reddy (1986). The results of 

Zhang and Kim for the RDKQ-NL20 and the RDKQ-NL24 elements are shown in a 

single column in Table 5-7 as they are quoted to have the same results (Zhang and Kim, 

2006). 

All finite element results presented in Table 5-7 show an overly stiff behaviour that 

underestimates the plate deflections. Both Putcha and Reddy and Zhang and Kim 

results had an average error of 20% whilst the current formulation shows a slightly 

lesser average error (17%). The difference between the numerical and experimental 

results is attributed to possible difference in the support conditions used in the 

experiment, i.e. the exact nature of the clamped boundary conditions used in the test 

may not be properly represented by the ones used in the finite element analysis (Reddy, 

2006). 

 

 
Figure 5-4 Details of the symmetric bidirectional laminated square plate. 
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Table 5-7 Non-dimensional out of the plane deflection of a 4-ply symmetric bidirectional 
clamped plate under distributed load. 

4

4

22

qa

E t
 

w
t

 

Zaghloul and 

Kennedy 

(experimental) 

Zhang and Kim Putcha and Reddy NLSPAN 

53.3 0.813 0.638 (22%) 0.646 (21%) 0.675 (17%) 

106.6 1.271 1.000 (21%) 1.000 (21%) 1.043 (18%) 

160.0 1.542 1.254 (19%) 1.240 (20%) 1.290 (16%) 

213.3 1.813 1.451 (20%) 1.458 (20%) 1.478 (18%) 

266.6 1.948 1.614 (17%) 1.563 (20%) 1.633 (16%) 

Note: Figures in brackets denote the absolute percentage error 

 

5.2.5 Simply supported symmetric bidirectional laminated 

square unstiffened panels with different a/t ratios 

A simply supported 4-layer symmetric bidirectional laminated square plate with various 

length to thickness ratios ( /a t ) and subjected to a uniformly distributed load, is 

studied here. 

This problem was solved analytically by Gorgi (1986) using double Fourier series and 

was used by Kant and Kommineni (1992) and Zhang and Kim (2006) to study the 

performance of their finite element formulations for different length to thickness ratios. 

A summary of the plate dimension, mesh density, material properties and lamination 

details is presented in Figure 5-5. 

Kant and Kommineni used a C0 element based on a Higher order Shear Deformation 

(HOST). The finite element results presented by Zhang and Kim were obtained using 

the same displacement-based 4-node quadrilateral elements, RDKQ-NL20 and RDKQ-

NL24, mentioned in sections 5.2.3 and 5.2.4. 

Non-dimensional deflection results obtained using a force convergence tolerance of 1% 

for models with length to thickness ratios ( /a t ) of 40, 20 and 10 are presented in 

Table 5-8, Table 5-9 and Table 5-10 respectively. 
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Both Gorgi  and Kant and Kommineni results were tabulated by Zhang and Kim (Zhang 

and Kim, 2006) from a graph presented by Kant and Kommineni (1992). 

The current formulation shows the best results for the thick plate model ( / 10a t ) 

with an average error of 0.6% compared to 1.6% of Kant and Kommineni HOST 

element, and 1.3% and 1.6% for Zhang and Kim RDKQ-NL20 and RDKQ-NL24 

elements respectively. 

The largest error average (2.3%) in results obtained by the current formulation was 

found to occur for a length to thickness ratio of 20. This error is similar to that obtained 

by Zhang and Kim using the RDKQ-NL24 element. The best results for this length to 

thickness ratio, only 0.3% error, were obtained using the Kant and Kommineni HOST 

element. Zhang and Kim RDKQ-NL20 element had only a slightly worse performance 

with an average error of 0.5%. 

For the largest length to thickness ratio ( / 40a t ) Kant and Kommineni HOST 

element outperformed all the other finite element formulation with an apparent perfect 

performance. In this study the average error of the current formulation (1.6%) is 

reasonably low and sits between that of the RDKQ-NL20 element (1.2%) and the 

RDKQ-NL24 element (1.9%). 
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Figure 5-5 Details of the symmetric bidirectional laminated square panel with different a/t 

ratios. 

 

Table 5-8 Non-dimensional out of the plane deflection of a simply supported square composite 
panel with a/t=40. 

4

4

22

qa

E t
 

w
t

 

Gorgi 

(analytical) 

Kant and 

Kommineni 

 (HOST) 

Zhang and Kim 

(RDKQ-NL20) 
Zhang and Kim 

(RDKQ-NL20) 
NLSPAN 

50 0.293 0.293 (0.0%) 0.291 (0.6%) 0.294 (0.4%) 0.288 (1.8%) 

100 0.464 0.464 (0.0%) 0.461 (0.7%) 0.467 (0.7%) 0.457 (1.5%) 

150 0.582 0.582 (0.0%) 0.577 (0.8%) 0.587 (0.8%) 0.572 (1.7%) 

200 0.644 0.644 (0.0%) 0.667 (3.5%) 0.679 (5.4%) 0.660 (2.5%) 

250 0.738 0.738 (0.0%) 0.740 (0.3%) 0.754 (2.2%) 0.733 (0.7%) 

Note: Figures in brackets denote the absolute percentage error 
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Table 5-9 Non-dimensional out of the plane deflection of a simply supported square composite 
panel with a/t=20. 

4

4

22

qa

E t
 

w
t

 

Gorgi 

(analytical) 

Kant and 

Kommineni 

 (HOST) 

Zhang and Kim 

(RDKQ-NL20) 
Zhang and Kim 

(RDKQ-NL20) 
NLSPAN 

50 0.320 0.320 (0.0%) 0.323 (0.9%) 0.327 (2.2%) 0.306 (4.5%) 

100 0.486 0.493 (1.4%) 0.487 (0.2%) 0.495 (1.8%) 0.473 (2.7%) 

150 0.592 0.592 (0.0%) 0.597 (0.9%) 0.608 (2.7%) 0.584 (1.3%) 

200 0.680 0.680 (0.0%) 0.682 (0.2%) 0.695 (2.2%) 0.670 (1.5%) 

250 0.752 0.752 (0.0%) 0.751 (0.1%) 0.766 (1.9%) 0.740 (1.6%) 

Note: Figures in brackets denote the absolute percentage error 

 

Table 5-10 Non-dimensional out of the plane deflection of a simply supported square composite 
panel with a/t=10 

4

4
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Gorgi 

(analytical) 

Kant and 

Kommineni 

 (HOST) 

Zhang and Kim 

(RDKQ-NL20) 
Zhang and Kim 

(RDKQ-NL20) 
NLSPAN 

50 0.356 0.360 (1.1%) 0.363 (2.0%) 0.370 (4.0%) 0.353 (0.9%) 

100 0.510 0.520 (2.0%) 0.514 (0.8%) 0.525 (2.9%) 0.509 (0.2%) 

150 0.610 0.624 (2.3%) 0.616 (1.0%) 0.629 (3.1%) 0.612 (0.4%) 

200 0.689 0.696 (1.0%) 0.695 (0.9%) 0.710 (3.0%) 0.691 (0.3%) 

250 0.747 0.760 (1.7%) 0.761 (1.8%) 0.777 (4.0%) 0.756 (1.2%) 

Note: Figures in brackets denote the absolute percentage error 
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5.3 Stiffened panels under transverse load 

The large deflection response of isotropic and laminated stiffened panels under the 

action of transverse loads is studied in this Section. Four different validation problems 

are analysed and discussed. 

The first two problems (Sections 5.3.1 and 5.3.2 respectively) investigate the 

performance of the current formulation in modelling the large deflection response of 

isotropic and composite laminated cross stiffened panels under uniformly distributed 

loads. 

The third problem (Section 5.3.3) investigates the performance of NLSPAN in 

analysing a diagonally stiffened panel with both concentric and eccentric stiffeners. 

Finally, the fourth problem (Section 5.3.4) demonstrates that the present formulation is 

capable of modelling stiffener placed arbitrarily within the panel. Again, in this new 

validation problem both eccentrically and concentrically stiffened panels are 

considered. 

5.3.1 Cross stiffened isotropic panel 

A simply supported isotropic square panel stiffened by two central stiffeners was 

analysed using the proposed formulation. 

In analysing this problem both Chattopadhyay et al. (1995) and Liao and Reddy (1989) 

took advantage of the symmetry of the panel by discretizing only a quarter of the 

structure with a 2x2 mesh. Although numerically efficient, such a model does not 

strictly use arbitrarily orientated stiffened elements as it places both stiffeners along the 

edges of the stiffened elements and therefore could be analysed in any commercially 

available package by combining shell and beam elements. 

Consequently, in this study, two different models have been investigated. First, and for 

comparison purposes, the structure was discretised using the same quarter symmetry 

model used by Chattopadhyay et al. and Liao and Reddy. In the second model the entire 

panel was discretised using a 5x4 mesh, as shown in Figure 5-6. This new model places 

one stiffener along the edge of the stiffened elements but also places the other stiffener 

across the middle of the stiffened elements. 
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This stiffened panel was previously studied by Liao and Reddy (1990) and by 

Chattopadhyay et al. (1995) using the finite element method. A summary of the 

stiffened panel dimension, mesh densities, lamination details and material properties is 

presented in Figure 5-6. 

It must be noted that the comparison results were obtained by digitizing the data 

presented by Chattopadhyay et al. (1995) in graphical form. 

Figure 5-7 presents a comparison of the results of the non-dimensional central 

deflection of the quarter symmetry model for different non-dimensional transverse load 

levels obtained by the present method with those of Chattopadhyay et al. and Liao and 

Reddy. 

The centre deflection results were found to agree very well with those of Liao and 

Reddy, whilst the results of Chattopadhyay et al. diverge slightly at higher load levels. 

Since the results of the quarter symmetry model were found to agree well with 

published results it was decided to use them to gauge the accuracy of the 5x4 model, i.e. 

the model with truly arbitrarily orientated stiffeners. 

Table 5-11 presents a comparison between the deflection results of the two cross 

stiffened NLSPAN models. An excellent correlation exists between the two set of 

results. 
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Figure 5-6 Details of the cross stiffened isotropic panel. 
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Figure 5-7 Non-dimensional load-deflection results for a cross stiffened isotropic panel. 

 

Table 5-11 Comparison of the out of the plane deflection results for the two NLSPAN cross 
stiffened models. 
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NLSPAN (2x2) NLSPAN (5x4) 

20 0.443 0.429 (3.3%) 

40 0.706 0.692 (2.0%) 

60 0.884 0.873 (1.4%) 

80 1.021 1.011 (1.0%) 

100 1.133 1.125 (0.7%) 

120 1.229 1.222 (0.6%) 

140 1.313 1.307 (0.4%) 

160 1.388 1.383 (0.3%) 

180 1.456 1.452 (0.2%) 

200 1.518 1.515 (0.2%) 

220 1.576 1.574 (0.1%) 

240 1.629 1.629 (0.1%) 

Note: Figures in brackets denote the absolute percentage 
differences 
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5.3.2 Cross stiffened composite panel 

A simply supported cross stiffened composite plate, as shown in Figure 5-8, was 

analysed for cross-ply and angle ply lamination schemes. Results for this example were 

previously reported by Chattopadhyay et al. (1995) and Liao and Reddy (1990). 

The full stiffened plate was modelled in NLSPAN since, as stated by Reddy (1997), the 

non-linear response of a quarter symmetry for anti-symmetric angle ply laminated 

model do not agree, in general, with those of the corresponding full-plate model.  

As for the cross stiffened isotropic panel study, two different meshes were considered 

here. Firstly a 4x4 full mesh is used to validate the results obtained using the current 

formulation against those of Chattopadhyay et al. and Liao and Reddy and secondly a 

5x4 mesh is used to test the performance of the arbitrarily stiffened element when the 

stiffener is not placed along mesh lines of the model. 

It must be noted that the comparison results were obtained by digitizing the data 

presented by Chattopadhyay et al. (1995) in graphical form. 

In Figure 5-9 the non-dimensional results of the central deflections of the 4x4 cross ply 

laminated stiffened panel model are compared with those by Chattopadhyay et al. and 

Liao and Reddy. Excellent agreement was found at all load levels. 

Figure 5-10 presents the non-dimensional results of the central deflections of the 4x4 

angle ply laminated stiffened panel model. In this figure the results obtained using 

NLSPAN were compared with those by Chattopadhyay et al. and Liao and Reddy. The 

results compare well with those obtained by Chattopadhyay et al, however there is 

discrepancy for the angle ply lamination where the results of Liao and Reddy 

overestimate the deflection values. 

The divergence increases with the intensity of the transverse load. This discrepancy can 

be explained by the modelling approach adopted by Liao and Reddy. These authors 

used a quarter-symmetry model to represent the stiffened plate. As previously 

mentioned, this approach gives the same non-linear results as the full plate model for 

anti-symmetric cross-ply laminates but not for anti-symmetric angle ply laminates. 
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Since the results of the 4x4 model were found to agree well with published results it 

was decided to use them to gauge the accuracy of the 5x4 model, i.e. the model with 

truly arbitrarily orientated stiffeners. 

Table 5-12 presents a comparison between the deflection results of the two cross 

stiffened NLSPAN models. An excellent correlation exists between the two modelling 

approaches, with an average absolute difference between both set of results of only 

1.6% and 0.8% for the cross ply and angle ply models respectively. 
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Figure 5-8 Details of the cross stiffened laminated panel. 
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Figure 5-9 Non-dimensional load-deflection response of the cross ply laminated stiffened panel. 

 
Figure 5-10 Non-dimensional load-deflection response of the angle ply laminated stiffened 

panel. 
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Table 5-12 Comparison of the out of the plane deflection results for the two NLSPAN cross 
stiffened laminated models. 

4

4

22

qa

E t
 

w
t

 

Cross Ply Angle Ply 

NLSPAN (4x4) NLSPAN (5x4) NLSPAN (4x4) NLSPAN (5x4) 

15.5 0.082 0.084 (2.9%) 0.112 0.116 (2.7%) 

38.6 0.197 0.203 (2.7%) 0.256 0.262 (2.1%) 

77.3 0.352 0.360 (2.2%) 0.428 0.434 (1.3%) 

115.9 0.468 0.477 (1.8%) 0.549 0.554 (0.9%) 

154.5 0.559 0.568 (1.6%) 0.643 0.647 (0.6%) 

193.2 0.635 0.643 (1.4%) 0.721 0.724 (0.4%) 

231.8 0.699 0.707 (1.2%) 0.787 0.789 (0.3%) 

270.4 0.755 0.763 (1.1%) 0.845 0.847 (0.2%) 

309.0 0.805 0.813 (1.0%) 0.897 0.898 (0.2%) 

347.7 0.850 0.858 (0.9%) 0.944 0.945 (0.1%) 

386.3 0.891 0.899 (0.9%) 0.987 0.988 (0.0%) 

Note: Figures in brackets denote the absolute percentage differences 

 

5.3.3 Square panel with diagonal stiffeners 

The large deflections of a simply supported square plate with two stiffeners along the 

diagonals of the plate were analysed, for both concentric and eccentric stiffeners. 

This panel was analysed by Samanta and Mukhopadhyay (1999), who modelled the 

stiffened panel using quarter-symmetry and 8x8 triangular mesh. Samanta and 

Mukhopadhyay presented load-deflection results for only two load levels: an initial load 

of 6.897 kPa and a final load equal to 200 times the initial load. 

Such limited data set does not allow a proper comparison of results. Therefore, in this 

investigation the full non-linear response path of this stiffened panel was calculated 

using the general purpose finite element analysis package ANSYS, where the stiffened 

panels (eccentric and concentric) were modelled with an 8x8 irregular mesh and 

quarter-symmetry. 
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Figure 5-11 Details of the square panel with diagonal stiffeners. 
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The ANSYS models, shown in Figure 5-12, were generated using SHELL93, 8-node, 

shell elements together with BEAM189, 3-node, beam elements to represent the skin 

and the stiffener. It is important to note that, in ANSYS, the mesh quality was limited 

by the position and orientation of the stiffener which limits the flexibility of the panel 

mesh. 

 

 
Figure 5-12 ANSYS finite element models of the diagonally stiffened panel. 

 

The load-deflection results obtained using NLSPAN, with a quarter-symmetry model 

and a 4x4 square mesh, and ANSYS are tabulated in Table 5-13 and presented 

graphically in Figure 5-13. The eccentrically stiffened panel shows, as expected, stiffer 

load-deflection behaviour than the concentrically stiffened panel. 
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Furthermore, ANSYS and NLSPAN results were found to be in close agreement with 

each other in both cases. The average absolute difference in the concentrically and 

eccentrically stiffened panel results was 0.1% and 2.1% respectively. 

Table 5-14 presents the comparison of the results of Samanta and Mukhopadhyay, 

ANSYS and NLSPAN for a load level equal to 200 times the initial load. Relative to 

the results obtained in ANSYS, the performance of both elements is similar for the 

concentric case were the result of Samanta and Mukhopadhyay show a slighty better 

performance (0.4%) than the result obtained in this study using NLSPAN. In the 

concentric case the result obtained using NLSPAN show significantly less variation 

(0.1%) than that obtained by Samanta and Mukhopadhyay (1.0%). 

 

Table 5-13 Comparison of the out of the plane deflection results for the diagonally stiffened 
models. 
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Eccentric Concentric 

ANSYS NLSPAN ANSYS NLSPAN 

29.4 0.157 0.151 (4.2%) 0.444 0.447 (0.5%) 

58.8 0.306 0.294 (4.0%) 0.745 0.743 (0.2%) 

88.2 0.444 0.427 (3.7%) 0.945 0.952 (0.7%) 

117.6 0.570 0.551 (3.4%) 1.114 1.114 (0.0%) 

147.1 0.684 0.664 (3.0%) 1.246 1.247 (0.0%) 

176.5 0.790 0.768 (2.8%) 1.360 1.361 (0.0%) 

205.9 0.886 0.864 (2.6%) 1.461 1.460 (0.0%) 

235.3 0.975 0.952 (2.3%) 1.550 1.550 (0.0%) 

264.7 1.058 1.035 (2.1%) 1.631 1.631 (0.0%) 

294.1 1.135 1.113 (2.0%) 1.706 1.706 (0.0%) 

323.5 1.207 1.185 (1.8%) 1.775 1.775 (0.0%) 

352.9 1.275 1.254 (1.7%) 1.839 1.839 (0.0%) 

441.2 1.458 1.439 (1.4%) 2.011 2.011 (0.0%) 

588.2 1.714 1.696 (1.0%) 2.248 2.247 (0.0%) 

735.3 1.927 1.912 (0.8%) 2.444 2.443 (0.1%) 

882.4 2.112 2.098 (0.7%) 2.614 2.612 (0.1%) 

1029.4 2.275 2.262 (0.6%) 2.764 2.761 (0.1%) 

1176.5 2.423 2.411 (0.5%) 2.900 2.897 (0.1%) 

Note: Figures in brackets denote the absolute percentage differences 

 



Large deflection analysis validation 

118 
 

 

 
Figure 5-13 Non-dimensional load-deflection result of the diagonally stiffened panel. 

 

Table 5-14 Comparison of the out of the plane deflection results for the diagonally stiffened 
models at 200 times the initial load 

w
t

 ANSYS 
Samanta and 

Mukhopadhyay 
NLSPAN 

Eccenctric 2.423 2.413 (0.4%) 2.411 (0.5%) 

Concentric 2.900 2.929 (1.0%) 2.897 (0.1%) 

Note: Figures in brackets denote the absolute percentage differences 

  

0

200

400

600

800

1000

1200

1400

0.0 1.0 2.0 3.0 4.0

qa
4 /
E
t4

w/t

ANSYS ecc NLSPAN ecc
ANSYS con NLSPAN con



Large deflection analysis validation 

119 
 

5.3.4 Square panel with arbitrary stiffeners 

In order to validate the applicability of the proposed formulation for the analysis of 

panels with arbitrary orientated stiffeners, a new problem is suggested. In previous 

examples, the performance of the current formulation was validated for panels where 

the stiffener was located within the shallow shell element. However, it can easily be 

observed that in those examples the stiffener trajectory intercepted either the mid-side 

or corner nodes of the shallow shell element. 

To circumvent mesh limitations, a stiffened element should be able to produce accurate 

results when the trajectory of the stiffener is truly arbitrary, i.e. when it does not 

necessary intercept corner or mid-side nodes of the master element. Authors such as 

Ray and Satsangi (1998) claimed that their stiffened element formulation was capable 

of representing this structural response, though no validation work was presented to 

support their claim. 

To validate the current formulation, and since such a validation example is not, to the 

author knowledge, currently available in the open literature, a new validation problem is 

proposed in this investigation. In this problem the orientation of the stiffener was 

selected in such way that the stiffener trajectory does not necessarily intercept the nodes 

of the master element. Again, both concentric and eccentric stiffener configurations 

were considered. All the relevant problem data is summarized in  

Figure 5-14. 

The comparison data for this problem was obtained by modelling the complete stiffened 

panel in the general purpose finite element analysis package ANSYS. The model was 

generated using an irregular mesh composed of 272 SHELL93 shell and 16 BEAM189 

beam elements. Both ANSYS models (concentric and eccentric) are presented in  

Figure 5-15. 

The creation of each ANSYS model required performing a Boolean operation to 

account for the stiffener trajectory. This operation resulted in the creation of two 

separate areas with different topologies: the four-sided area on the left (upper) side of 

the stiffener and the three sided area on the right (lower) side of the stiffener. 
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Figure 5-14 Details of the square panel with an arbitrary orientated stiffener. 
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In contrast, both NLSPAN models required only a single quadrilateral region to 

represent the same arbitrary stiffened panel, thus simplifying the modelling procedure 

by avoiding the use of Boolean operations. 

Furthermore, although it was possible to discretize the ANSYS models by adopting an 

automatic meshing procedure, the topological constraints had a detrimental effect on the 

shape quality of the finite elements present in the model. This becomes evident when 

comparing ANSYS‟s conventional, finite element discretisation (Figure 5-15.) with 

NLSPAN‟s arbitrarily stiffened, finite element discretisation (Figure 5-14).  

 

 
Figure 5-15 ANSYS finite element models of the arbitrarily stiffened panel. 
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The full non-linear response path was calculated in NLSPAN, using an 8x8 square 

mesh shown in Figure 5-14, and then compared with the one obtained using ANSYS. 

The comparison data for the out of the plane deflections of a point located at / 2x a  

and / 4y a  is presented in Table 5-15 and illustrated in Figure 5-16. 

It can be appreciated in Figure 5-16 that both panels exhibit a stiffening behaviour with 

the concentrically stiffened panel showing, as expected, the largest deformation. 

Furthermore, the low average absolute differences calculated for both the concentric 

(1.1%) and eccentric (1.4%) cases show that a close agreement was obtained between 

the present arbitrarily orientated stiffener formulation (NLSPAN) and ANSYS for both 

stiffener configurations (i.e. eccentrically and concentrically stiffened panels). 

Table 5-15 Comparison of the out of the plane deflection results for the arbitrary stiffened 
models. 
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Eccentric Concentric 

ANSYS NLSPAN ANSYS NLSPAN 

29.4 0.272 0.288 (6.0%) 0.447 0.439 (1.8%) 

58.8 0.452 0.464 (2.7%) 0.670 0.655 (2.3%) 

88.2 0.584 0.592 (1.4%) 0.818 0.803 (1.8%) 

117.6 0.693 0.697 (0.5%) 0.933 0.919 (1.6%) 

147.1 0.785 0.785 (0.1%) 1.029 1.015 (1.4%) 

176.5 0.866 0.864 (0.3%) 1.112 1.098 (1.3%) 

205.9 0.939 0.933 (0.6%) 1.186 1.171 (1.3%) 

235.3 1.005 0.997 (0.8%) 1.253 1.238 (1.2%) 

264.7 1.066 1.056 (1.0%) 1.313 1.298 (1.1%) 

294.1 1.122 1.110 (1.1%) 1.369 1.354 (1.0%) 

323.5 1.175 1.161 (1.2%) 1.420 1.406 (1.0%) 

352.9 1.224 1.209 (1.2%) 1.469 1.455 (0.9%) 

441.2 1.357 1.338 (1.4%) 1.599 1.586 (0.8%) 

588.2 1.539 1.519 (1.3%) 1.780 1.768 (0.7%) 

735.3 1.696 1.672 (1.4%) 1.931 1.920 (0.6%) 

882.4 1.831 1.805 (1.4%) 2.062 2.052 (0.5%) 

1029.4 1.951 1.923 (1.4%) 2.178 2.169 (0.4%) 

1176.5 2.060 2.031 (1.4%) 2.284 2.275 (0.4%) 

Note: Figures in brackets denote the absolute percentage differences 

 



Large deflection analysis validation 

123 
 

 
Figure 5-16 Non-dimensional load-deflection result of the arbitrary stiffened plate. 

 

5.4 Summary 

A validation has been conducted to evaluate the performance of the presented 

formulation in representing both unstiffened and stiffened panels under transverse 

loads. 

The results obtained using the current formulation to represent unstiffened panels under 

transverse loads are in excellent agreement with analytical and numerical results 

presented by other authors. Good agreement was found with experimental results; 

however, due attention must be given to the correct representation of the boundary 

conditions of the panel. 

A thorough validation of the present formulation capability of modelling stiffened 

panels was presented. Special attention was given to verify the claim that the slave 

element can be placed at an arbitrary orientation within the master element and not 

necessarily along the mesh lines. Excellent agreement was found in all investigated 

cases. In all cases the accuracy of the concentrically stiffened panel results normally 

outperforms the accuracy of eccentrically stiffened panels. 
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Chapter 6.  Post-buckling analysis validation 

 

6.1 Introduction 

In the previous Chapter, the performance, accuracy and applicability of NLSPAN in the 

analysis of stiffened and unstiffened panels under transverse loads was validated 

through a series of numerical examples. Similarly, in this Chapter the same qualities 

will be evaluated for the analysis of stiffened and unstiffened panels under in-plane 

loads. 

Following the same approach used in Chapter 5, here the validation work was divided 

into two parts:  

1. Analysis of unstiffened panels under in-plane load (Section 6.2) 

2. Analysis of stiffened panels in-plane load (Section 6.3) 

The validation of unstiffened panels not only ensures that the master element is capable 

of representing the behaviour of a unstiffened panel under in-plane loads but also gives 

guidance on the mesh density required in the subsequent validation of NLSPAN‟s 

stiffened panel analysis capability.  

Section 6.3 includes a validation of the stiffener edge load modelling technique 

suggested in 4.4.2 of Chapter 4. The influence of the suggested method in the accuracy 

of the linear buckling calculations is demonstrated. 

An illustration that summarizes important details of the investigated panel (panel 

dimensions, coordinate system, material properties and finite element mesh) has been 

provided in each validation problem. The boundary conditions are detailed in each 

illustration according to the notation defined in Table 4-1 and Table 4-2 of  

Section 4.4.2. The illustration also defines, using the letter w , the point where the out 

of the plane deflection is measured. 
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The non-dimensional results of each validation problem are presented in both graphical 

and tabular form in order to facilitate the study of the difference between the presented 

data sets. The non-dimensional quantities defined in order to present the validation 

results are listed in Table 6-1. 

Table 6-1 Non-dimensional quantities for panels under in-plane load. 

w
t

 Non-dimensional out of the plane deflection 

2

va

t
 Non-dimensional edge shortening 

2 2 2

y
a Et  Non-dimensional average edge stress 

2 2/
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 Non-dimensional linear buckling load 

st
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Stiffener area ratio 

/h t
 Stiffener height to plate thickness ratio 
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EI Db

 Bending stiffness ratio 

2/ ( / )
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 Effective width of the panel 
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6.2 Unstiffened panels under in-plane load 

The post-buckling behaviour of isotropic and laminated unstiffened panels under the 

action of in-plane loads is studied in this Section.  

Three examples are analysed and discussed. The first two problems (Sections 6.2.1 and 

6.2.2 respectively) investigate the performance of the current formulation in modelling 

the non-linear buckling response of isotropic panels under uniform edge shortening by 

comparing the results obtained using the proposed formulation with analytical and 

numerical results. 

The third problem (Section 6.2.3) investigates NLSPAN‟s performance in representing 

the non-linear behaviour of laminated panels under uniform edge shortening by 

comparing the results obtained in this investigation with experimental and numerical 

results. 

6.2.1 Post-buckling of rectangular simply supported isotropic 

unstiffened panels 

The post-buckling behaviour of a simply supported square plate with small initial 

curvature loaded in edge compression was investigated first. The analytical solution of 

this problem was obtained by Yamaki (1959) using series solution. This problem was 

used by Pica and Wood (1980) to validate their nine node quadratic Lagrangian 

geometrically non-linear finite element formulation. 

Here the post-buckling response was found using a quarter symmetry model with a 4x4 

mesh density. An initial deformation factor, equal to 0.1 times the plate thickness, was 

applied to the linear buckling mode shape (half wave in the x and y directions) to obtain 

the initially deflected shape. Due to symmetry only half of the uniform end-shortening, 

/ 2v , was applied on the edge located at / 2y a in the negative y direction. The non-

linear solution was obtained using force and displacement convergence tolerances of 

1%. A summary of the plate dimension, mesh density and material properties is 

presented in Figure 6-1. 
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The analytical non-dimensional deflection results obtained by Yamaki, the finite 

element results of Pica and those obtained using the proposed formulation are presented 

in Table 6-2. The results obtained using NLSPAN were found to be in excellent 

agreement with those of Yamaki with an average error of only 0.9%. Pica‟s results were 

found to contain a much higher average error (4.8%), however this discrepancy is 

mainly due to a single large error on the first load step (54.3%). 

The analytical non-dimensional average edge stress results obtained by Yamaki, the 

finite element results of Pica and those obtained using NLSPAN are presented in 

 Table 6-3. As expected for a nine node Lagrangian element, the average edge stress 

results of Pica et al. show a better correlation (0.9%) with the analytical results of 

Yamaki than the current formulation (3.1%). 

 

 
Figure 6-1 Details of the simply supported panel under uniform edge compression. 
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Table 6-2 Non-dimensional out of the plane deflection of a simply supported square panel under 
uniform edge shortening. 
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Yamaki 

(analytical) 
Pica NLSPAN 

2.133 0.125 0.057 (54.3%) 0.120 (4.0%) 

2.880 0.249 0.251 (0.6%) 0.242 (2.8%) 

3.805 0.496 0.494 (0.4%) 0.495 (0.1%) 

4.729 0.739 0.740 (0.2%) 0.731 (1.1%) 

5.796 0.976 0.976 (0.0%) 0.975 (0.1%) 

8.533 1.435 1.447 (0.8%) 1.428 (0.5%) 

12.124 1.871 1.879 (0.4%) 1.869 (0.1%) 

16.498 2.288 2.294 (0.2%) 2.288 (0.0%) 

21.760 2.693 2.700 (0.3%) 2.693 (0.0%) 

27.875 3.091 3.097 (0.2%) 3.084 (0.2%) 

34.844 3.487 3.487 (0.0%) 3.471 (0.5%) 

42.737 3.885 3.877 (0.2%) 3.857 (0.7%) 

Note: Figures in brackets denote the absolute percentage error 

 
 

Table 6-3 Non-dimensional average edge stress of a simply supported square panel under 
uniform edge shortening. 
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Yamaki 

(analytical) 
Pica NLSPAN 

2.133 0.212 0.215 (1.3%) 0.205 (3.3%) 

2.880 0.278 0.278 (0.0%) 0.269 (3.2%) 

3.805 0.342 0.342 (0.1%) 0.331 (3.3%) 

4.729 0.390 0.390 (0.1%) 0.372 (4.5%) 

5.796 0.438 0.437 (0.2%) 0.417 (4.9%) 

8.533 0.546 0.540 (1.1%) 0.518 (5.2%) 

12.124 0.672 0.669 (0.4%) 0.637 (5.3%) 

16.498 0.810 0.808 (0.2%) 0.779 (3.8%) 

21.760 0.963 0.959 (0.4%) 0.937 (2.7%) 

27.875 1.126 1.117 (0.8%) 1.107 (1.7%) 

34.844 1.300 1.281 (1.5%) 1.290 (0.8%) 

42.737 1.486 1.451 (2.4%) 1.486 (0.0%) 

Note: Figures in brackets denote the absolute percentage error 
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6.2.2 Post-buckling of rectangular simply supported/clamped 

isotropic unstiffened panels 

In this Section, the post-buckling behaviour of a simply supported/clamped square plate 

with small initial curvature loaded in edge compression has been investigated using the 

current formulation. The analytical solution of this problem was also obtained by  

Yamaki (1959) using series solution.  

Here, the post-buckling response was obtained using a full model with an 8x8 mesh. 

The initial deformation factor used by Yamaki, i.e. 0.1 times the plate thickness, was 

applied to the linear buckling mode shape to obtain the initially deflected shape. In this 

case the clamped boundary conditions, along the edges located at 0x  and x a , 

force the buckling mode shape to adopt a full sine wave in the y  direction whilst 

maintaining a half sine wave in the x  direction. 

Uniform end-shortening v  was applied along the edge located at y a  in the negative 

y direction. The non-linear solution was obtained using force and displacement 

convergence tolerances of 1%. A summary of the plate dimension, mesh density and 

material properties is presented in Figure 6-2. 

The non-dimensional maximum displacement results and the non-dimensional average 

edge stress results obtained by Yamaki, Pica et al. and in the present investigation at 

different non-dimensional edge shortenings levels are presented in Table 6-4 and Table 

6-5, respectively. 

The non-dimensional deflection results obtained using NLSPAN did not perform as 

well as those of Pica. However, the average edge stress results show a similar accuracy. 
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Figure 6-2 Details of the simply supported /clamped panel under uniform edge compression. 

 

Table 6-4 Non-dimensional out of the plane deflection of a simply supported/clamped square 
panel under uniform edge shortening. 

2

va

t
 

w
t

 

Yamaki 

(analytical) 
Pica NLSPAN 

3.9314 0.1020 0.1022 (0.2%) 0.0987 (3.2%) 

5.5035 0.2042 0.2061 (0.9%) 0.1946 (4.7%) 

7.6926 0.4091 0.4107 (0.4%) 0.3932 (3.9%) 

10.0244 0.6152 0.6156 (0.1%) 0.5995 (2.5%) 

12.9370 0.8324 0.8230 (1.1%) 0.8103 (2.7%) 

21.2461 1.2515 1.2586 (0.6%) 1.2443 (0.6%) 

34.0752 1.7060 1.7013 (0.3%) 1.7019 (0.2%) 

52.8774 2.1964 2.1813 (0.7%) 2.1885 (0.4%) 

Note: Figures in brackets denote the absolute percentage error 
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Table 6-5 Non-dimensional average edge stress of a simply supported/clamped square panel 
under uniform edge shortening. 

2

va

t
 

2 2 2

y
a Et  

Yamaki 

(analytical) 
Pica NLSPAN 

3.9314 0.3860 0.3859 (0.0%) 0.3810 (1.3%) 

5.5035 0.5240 0.5189 (1.0%) 0.5165 (1.4%) 

7.6926 0.6750 0.6739 (0.2%) 0.6655 (1.4%) 

10.0244 0.7990 0.7969 (0.3%) 0.7893 (1.2%) 

12.9370 0.9340 0.9307 (0.4%) 0.9264 (0.8%) 

21.2461 1.2690 1.2503 (1.5%) 1.2774 (0.7%) 

34.0752 1.7210 1.6964 (1.4%) 1.7525 (1.8%) 

52.8774 2.3200 2.2647 (2.4%) 2.3543 (1.5%) 

Note: Figures in brackets denote the absolute percentage differences 

 

6.2.3 Post-buckling of rectangular laminated unstiffened panels 

The behaviour of composite panels under uniform edge compression was investigated 

experimentally and analytically by Starnes and Rouse (1981). In this investigation 

various laminated specimens were fabricated from commercially available 

unidirectional Thornel 300 graphite fibre tapes pre-impregnated with 450K cure 

Narmco 5208 thermosetting epoxy resin. The tapes were laid up to a 24-ply orthotropic 

laminate. It must be noted that the 0° ply orientation angle was parallel to the y  axis. 

The specimen considered here was 508 mm long and 177.8 mm wide (panel C4). The 

loading condition assumed for these calculations was uniform edge shortening v along 

on the edge located at y b  in the negative y  direction, and the boundary conditions 

were assumed to be clamped along the loaded edges (C1-C2) and simply supported (S4) 

along the unloaded edges. 

An initial deformation factor of 5% of the specimen‟s thickness was applied to the 

linear buckling mode shape to obtain the initially deflected shape. The geometrically 

non-linear response of the model was obtained at using a force and displacement 

convergence tolerance of 1%. A summary of the model dimension, mesh density, 

lamination details and material properties is presented in Figure 6-3. 
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The non-dimensional deflection behaviour along the longitudinal ( / 2x b ) and 

transverse ( / 4y a ) directions of the plate at different non-dimensional end 

shortening levels are presented in Figure 6-4 and Figure 6-5 respectively. A cubic spline 

was fitted to the nodal results to appreciate the buckled shape of the panel. 

It can be seen that the plate adopts a full sine wave in the longitudinal direction and a 

half sine wave in the transverse direction. In these plots the edge shortening levels were 

normalized using the end shortening at buckling calculated by Starnes and Rouse using 

STAGS general shell analysis computer code ( 0.5
crit
v mm ) whilst the maximum out 

of plane deflection was normalized with the total panel thickness. 

A comparison between the results obtained in this investigation using NLSPAN, the 

experimental results of Starnes and Rouse, as well as the analytical results obtained by 

Starnes and Rouse using the STAGS are presented in Figure 6-6 and Figure 6-7. It must 

be noted that the comparison results were obtained by digitizing the data presented by 

Starnes and Rouse‟s in graphical form (Starnes and Rouse, 1981). 

In Figure 6-7 the maximum out of plane deflections are plotted against the average 

longitudinal edge stress in the y  direction. In this plot the average longitudinal edge 

stress was normalized using the critical edge stress calculated by Starnes and Rouse 

using STAGS ( 70
crit

MPa ). 

NLSPAN results are in excellent agreement with the experimental results that Starnes 

and Rouse over the whole response history. The analytical results obtained by Starnes 

and Rouse using STAGS show stiffer pre-buckling behaviour, however they also are in 

close agreement in the post-buckling zone. 

The edge shortening results are shown as function of the average edge stress in  

Figure 6-7. In this plot edge shortening was normalized using the end shortening at 

buckling calculated by Starnes and Rouse using STAGS ( 0.5
crit
v mm ). Good 

agreement was found with both the experimental and numerical results. 
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Figure 6-3 Details of the rectangular laminated panel. 

 

 
Figure 6-4 Non-dimensional out of the plane deflection along the longitudinal direction of the 

panel at different non-dimensional end shortening levels. 
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Figure 6-5 Non-dimensional out of the plane deflection along the transverse direction of the 

panel at different non-dimensional end shortening levels. 

 
Figure 6-6 Non-dimensional average edge stress-deflection behaviour of the rectangular 

laminated panel. 
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Figure 6-7 Non-dimensional average edge stress-end shortening behaviour of the rectangular 

laminated panel. 
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6.3 Linear buckling of stiffened panels 

The linear buckling behaviour of concentrically and eccentrically stiffened panels under 

in-plane compression is investigated in this Section. 

First, in Section 6.3.1, the compressive edge load modelling method for arbitrarily 

stiffened elements suggested in Section 4.4.2 is discussed and validated. 

After that, the effect of the load modelling method in the linear buckling calculations of 

stiffened panels under the action of edge compression is investigated for stiffened 

panels with different /h t  and /a b  ratios in Sections 6.3.2 and 6.3.3 respectively. 

6.3.1 In-plane stress in stiffened panels under uniform edge 

compression 

In this Section the influence of the in-plane load application method, suggested in 

Section 4.4.2, in the in-plane stress calculations of stiffened panels under in plane 

compressive loads, is discussed and validated for both the concentrically and 

eccentrically stiffened panels. 

First the concentric configuration is investigated by analysing the in-plane behaviour of 

the isotropic stiffened panel shown in Figure 6-8. In this problem the panel resists the 

action of uniform edge compression, of unitary magnitude, applied to both the plate and 

the stiffener cross sectional areas. In such a panel the in-plane displacement field and 

the in-plane stress field should have a unitary value. 

It must be noted that the stiffener was not placed along the edges of the shallow shell 

elements. In addition, the dimensions and mesh density used in this problem were 

selected in such a way that the ends of the stiffener do not coincide with the edge nodes 

of the shallow shell elements. 

First, and in order to highlight the magnitude of the error in the in-plane results 

generated if stiffener load is not accurately modelled, the panel is loaded by only 

applying a uniform in-plane compressive load along the edge of the finite element 

model. 

The magnitude of the error in the in-plane compressive stress calculated at each corner 

node of the concentrically stiffened panel model, in absence of the stiffener load, is 
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presented in Figure 6-9. It can be appreciated that very high levels of error are present 

across the entire model. 

Most significant is the magnitude of error on the section of the loaded edge close to 

which the end point of the stiffener is located ( / 2 / 5x a  and / 1y a ). At this 

location the magnitude of error in the calculated in-plane stress values reaches a 

maximum of more than 80%. 

In comparison, if the stiffener load is modelled using the method suggested in Section 

4.4.2.1, no appreciable error in the in-plane compressive stress results, shown in  

Figure 6-10, can be observed across the entire model. 

 
Figure 6-8 Details of the concentrically stiffened panel under uniform edge compression. 
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Figure 6-9 Magnitude of the error of the in-plane compressive stress of the concentrically 

stiffened panel in absence of the stiffener load. 

 

 
Figure 6-10 Magnitude of the error of the in-plane compressive stress of the concentrically 

stiffened panel when the stiffener load is included. 
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Next, the eccentric configuration is investigated by analysing the in-plane behaviour of 

the stiffened panel shown in Figure 6-11. As in the previous example, here the panel 

resists the action of uniform edge compression applied to both the plate and the stiffener 

cross sectional areas. Again, the stiffener location was selected so it is not aligned with 

the shallow shell element nodes. 

In order to demonstrate the magnitude of the error in the in-plane results, generated if 

both stiffener loads (force and couple) are not accurately modelled, the panel is loaded 

first by only applying uniform in-plane compressive loading along the edge of the finite 

element model. 

The magnitude of the error in the in-plane compressive stress calculated at each corner 

node of the concentrically stiffened panel model, in absence of the stiffener loads, is 

presented in Figure 6-12. 

It can be appreciated that high levels of error are present across the entire model. Most 

significant is the magnitude of error on the section of the loaded edge close to which the 

end point of the stiffener is located ( / 2 / 5x a  and / 1y a ). At this location the 

magnitude of error in the calculated in-plane stress values reaches a maximum close to 

40%. 

In addition, the absence of the stiffener couple generates noticeable out of plane 

deflections (Figure 6-13) along the entire panel. 

Nevertheless, Figure 6-14 and Figure 6-15 demonstrate that, if the in-plane load 

modelling method suggested in Section 4.4.2.2 is utilized, i.e. an extra stiffener force 

and couple are applied to the model, both the in-plane compressive stress error and the 

fictitious out of plane deflections completely vanish from the panel. 
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Figure 6-11 Details of the eccentrically stiffened panel under uniform edge compression. 

 

 
Figure 6-12 Magnitude of the error of the in-plane compressive stress of the eccentrically 

stiffened panel in absence of the stiffener load. 
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Figure 6-13 Non-dimensional out of plane deflections due to stiffener eccentricity in absence of 

the stiffener couple. 

 
Figure 6-14 Magnitude of the error of the in-plane compressive stress of the eccentrically 

stiffened panel when the stiffener load is included. 
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Figure 6-15 Non-dimensional out of plane deflections due to stiffener eccentricity when the 

stiffener couple is included. 

 

6.3.2 Linear buckling of stiffened panels with different h/t ratios 

The effect of a correct stiffener load modelling method in the accuracy of the linear 

buckling calculations is investigated next for stiffened panels with different /h t  ratios. 

The linear buckling calculations are of critical importance for the non-linear buckling 

calculation as they provide the buckling mode shape used to define the initial 

deformations in the panel. 

In this Section, the relationship between the non-dimensional linear buckling load and 

the height of the stiffener (h ) to plate thickness (t ) ratio for a two simply supported 

stiffened panels with a single stiffener running in the direction of the applied load is 

presented and compared with the semi-analytical results obtained by Bedair (1998).  

Both eccentrically and concentrically stiffened panels are considered. All panels were 

analysed using a full model with a 11x11 mesh in order to capture different buckling 

mode shapes caused by the variation in the /h t  ratio. A summary of the panel 

dimensions, material properties and mesh density is presented in Figure 6-16. 
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The non-dimensional linear buckling load results for concentrically and eccentrically 

stiffened panels with different /h t  ratios, and no torsional stiffness, calculated by 

Bedair are presented in Figure 6-17 and Figure 6-18 respectively. It must be noted that 

these results were obtained in this investigation by digitizing the data presented by 

Bedair (1998) in graphical form.  

Each of Bedair‟s results sets, i.e. concentric and eccentric results, was compared with 

two different sets of results obtained in the present investigation using NLSPAN. In the 

first set of results the geometric stiffness matrix was calculated using the in-plane 

stresses obtained for the traditional load case that omits the stiffener load, whilst in the 

second set the geometric stiffness matrix was calculated using in-plane stress results 

obtained following the load calculation method described in sections 4.4.2.1 and 4.4.2.2 

respectively. 

Figure 6-17 and Figure 6-18 show that the absence of the stiffener load in the in-plane 

stress calculation caused an overestimation of the critical buckling load in both the 

eccentric and concentric models. Furthermore, In both the concentric and eccentric 

case, excellent agreement was found for all /h t  ratios when the suggested method was 

followed.  
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Figure 6-16 Details of the stiffened panels with different h/t ratios. 
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Figure 6-17 Non-dimensional linear buckling load for concentrically stiffened panels with 

different h/t ratios. 

 
Figure 6-18 Non-dimensional linear buckling load for eccentrically stiffened panels with 

different h/t ratios. 
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6.3.3 Linear buckling of two-bay stiffened panels with different 

aspect ratios 

The effects of the stiffener load modelling method in the accuracy of the linear stability 

calculations is investigated next for two-bay stiffened panels with different aspect 

ratios. 

Here the relationship between the non-dimensional linear buckling load and the height 

of aspect ratio for a simply supported stiffened panel with two stiffeners running in the 

direction of the applied load is presented and compared with the analytical results 

presented by Barbre (1939). 

All panels were analysed using a full model with a 18x18 mesh in order to capture 

different buckling mode shapes caused by the variation in the /a b  ratio. A summary of 

the panel dimensions, material properties and mesh density is presented in  

Figure 6-19. 

 
Figure 6-19 Details of the two-bay stiffened panels with different aspect ratios. 

  



Post-buckling analysis validation 

147 
 

Babre‟s results were compared with two different sets of results obtained in the present 

investigation using NLSPAN. In the first set of results the geometric stiffness matrix 

was calculated using the in-plane stresses obtained for a load case that omits the 

stiffener load, whilst in the second set it was calculated using in-plane stress results 

obtained following the load calculation method described in sections 4.4.2.1 and 4.4.2.2 

respectively. 

In Figure 6-20, Babre‟s results are compared with two different sets of results obtained 

in the present investigation using NLSPAN. In the first set of results the geometric 

stiffness matrix was calculated using the in-plane stresses obtained for a load cases that 

omits the stiffener load, whilst in the second set the geometric stiffness matrix was 

calculated using in-plane stress results obtained following the load calculation method 

described in sections 4.4.2.1 and 4.4.2.2 respectively. The results obtained by adopting 

suggested load modelling method are in excellent agreement with the analytical results 

of Barbre, whilst the results that omit the stiffener load overestimate the buckling load 

for aspect ratios smaller than 1.0. 

 
Figure 6-20 Non-dimensional linear buckling load for two-bay stiffened panels with different 

aspect ratios. 
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6.4 Non-linear buckling of stiffened panels 

The non-linear buckling of squared stiffened panels is investigated in this Section using 

the proposed formulation. A total of ten models were considered in this analysis. 

Analysed models include both unstiffened and stiffened panels with different levels of 

initial deformations. Stiffened panels models included concentric and eccentric 

stiffeners with different bending stiffness ratios.  

A summary of the main parameters of each panel is presented in Table 6-6. The 

geometric parameters proposed by Bedair (1998), described in Section 6.3.2, were used 

to define the dimensions of the panel. 

It was shown in Section 6.2.1 that an 8x8 mesh density was sufficient to accurately 

model the non-linear buckling of an unstiffened simply supported panel. Consequently, 

in this study, a 16x16 mesh was selected to model the entire panel, as it was expected 

that the models with strong stiffeners will force the panel to buckle into four square 

sub-regions (i.e. full sine wave in the x  and y  direction). All panels were loaded by 

applying uniform edge shortening to the edge located at y a . Boundary conditions 

were simple supports on all edges. 

Changes in the bending stiffness ratio of the panel were obtained by varying the ratio of 

the height of the stiffener to thickness of the plate ( /h t ), whilst keeping the ratio of 

the area of the stiffener to cross sectional area of the plate to ( /
st
A at ) constant at 0.1. 

Models M1/M2 are unstiffened panels ( /h t =0) and are used only to provide a 

comparison of the overall panel behaviour. 

The height of the stiffener to thickness of the plate ratios for models M3/M4 and 

M5/M6 were selected using Figure 6-17. Models M3/M4 were selected to have a 

/ 6h t  in order to induce overall panel buckling whilst panels M5/M6 were selected 

to have a / 12h t  to induce local buckling of the panel skin. The /h t  ratios for 

models M7/M8 and M9/M10 were selected using Figure 6-18 in a similar way. Models 

M3/M4 and M9/M10 were chosen to share the same /h t  ratio in order to compare 

concentrically and eccentrically stiffened panel results. 
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The effect of the magnitude of the initial deformations in the non-linear buckling 

response of the both unstiffened and stiffened panels was studied at two different initial 

deformation values. Nearly perfect and imperfect panels were created by applying an 

initial deformation magnitude equal to 1% and 10 % of the plate thickness to the linear 

buckling mode shape respectively. The linear buckling mode shape of all stiffened 

panels was obtained using the edge load modelling method suggested in Section 4.4.2. 

Table 6-6 Details of the panels used for non-linear buckling analysis. 

Designation st
A at  /h t  st

EI Db  % Deformation Description 

M1 0.1 0.0 0.0 1% unstiffened panel 

M2 0.1 0.0 0.0 10% unstiffened panel 

M3 0.1 6.0 3.3 1% weak concentrically stiffened panel 

M4 0.1 6.0 3.3 10% weak concentrically stiffened panel 

M5 0.1 12.0 13.1 1% strong concentrically stiffened panel 

M6 0.1 12.0 13.1 10% strong concentrically stiffened panel 

M7 0.1 3.0 5.2 1% weak eccentrically stiffened panel 

M8 0.1 3.0 5.2 10% weak eccentrically stiffened panel 

M9 0.1 6.0 16.7 1% strong eccentrically stiffened panel 

M10 0.1 6.0 16.7 10% strong eccentrically stiffened panel 

 

In order to obtain the comparison data necessary to gauge the accuracy of the proposed 

finite element formulation, validation models were created and solved using the general 

purpose finite element code ANSYS. All comparison models were generated using a 

combination of SHELL93 and BEAM189 elements. 

6.4.1 Non-linear buckling of concentrically stiffened panels 

The non-linear buckling of concentrically stiffened panels was analysed first. A 

comparison of the results obtained using the current formulation and ANSYS for model 

M3/M4 and M5/M6 are presented in Table 6-7 and Table 6-8 respectively. Excellent 

agreement was found for both stiffener bending stiffness ratios. 

The results of the nearly perfect and weakly stiffened panel (M3) show very good 

agreement with the ANSYS results with an average absolute difference of 0.15%, 

whilst the nearly perfect and strongly stiffened panel (M5) was found to have an 

absolute average difference of 0.99%. 
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The same conclusion can be drawn in regards to the effects of an increment in the 

magnitude of the initial deformations in the accuracy of the models. The weakly 

stiffened models (M4) and strongly stiffened models (M6) were found to have an 

absolute average difference of 0.09% and 0.21% respectively when the initial 

deformation were increased from 1% to 10%. 

A graphical comparison of the non-linear response of the concentrically stiffened panels 

and the two unstiffened models is presented in Figure 6-21. In general, nearly perfect 

and imperfect models of same bending stiffness ratios show a similar trend in their non-

linear response path. Furthermore, the nearly perfect panels show a much stiffer pre-

buckling behaviour with a clear pre and post buckling zones. The figure also shows that 

the post-buckling stiffness of the panels increases as the bending stiffness ratio of the 

panel is increased. 

A graphical comparison of the effective width of the unstiffened and concentrically 

stiffened panels, as function of the non-dimensional edge shortening, is presented in 

Figure 6-22. 

As in the case of the deflections, here the effective width of nearly perfect and 

imperfect panels follow a similar trend, with the perfect panels showing consistently 

higher values across all load levels. 

It can also be seen that the increment in the bending stiffness ratio in models M5 and 

M6 helps the panel to maintain an effective width close to unity to higher end-

shortening values. This behaviour can be explained by observing distribution of stresses 

along the loaded edge of the panels at different edge shortening levels of strongly and 

weakly stiffened panels shown in Figure 6-23 and Figure 6-24 respectively. In effect, 

whilst the weakly stiffened panels (M3/M4) behave similar to an unstiffened panel (i.e. 

they show an overall panel buckling mode) the increment in the bending stiffness ratio 

in models M5 and M6 generates an extra support in the middle of the panel that divides 

the panel longitudinally into two sub panels. 

In addition, Figure 6-23 and Figure 6-24 explain the softer pre-buckling behaviour of 

the imperfect panel (M4/M6) over the nearly perfect panel (M3/M5), as it becomes 

evident that the presence of larger initial deformations diminishes the panel‟s ability to 

support compressive stresses. 
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Table 6-7 Comparison of the non-dimensional out of the plane deflection for the weak 
concentrically stiffened panels. 

2

va

t
 

w
t

 

M3 M4 

ANSYS NLSPAN ANSYS NLSPAN 

2.95 0.006 0.006 (0.1%) 0.060 0.061 (0.1%) 

4.00 0.011 0.011 (0.1%) 0.103 0.103 (0.1%) 

5.35 0.022 0.022 (0.2%) 0.201 0.202 (0.2%) 

5.88 0.032 0.032 (0.3%) 0.263 0.263 (0.2%) 

6.60 0.058 0.058 (0.5%) 0.377 0.378 (0.2%) 

8.15 0.495 0.497 (0.5%) 0.694 0.695 (0.2%) 

11.95 1.369 1.369 (0.1%) 1.355 1.355 (0.0%) 

17.00 2.013 2.014 (0.0%) 1.960 1.960 (0.0%) 

23.20 2.583 2.583 (0.0%) 2.515 2.516 (0.0%) 

30.60 3.117 3.117 (0.0%) 3.042 3.043 (0.0%) 

39.15 3.627 3.626 (0.0%) 3.548 3.548 (0.0%) 

48.95 4.127 4.126 (0.0%) 4.046 4.046 (0.0%) 

60.05 4.624 4.623 (0.0%) 4.541 4.541 (0.0%) 

Note: Figures in brackets denote the absolute percentage differences 

 

Table 6-8 Comparison of the non-dimensional out of the plane deflection for the strong 
concentrically stiffened panels. 

2

va

t
 

w
t

 

M4 M5 

ANSYS NLSPAN ANSYS NLSPAN 

2.95 0.003 0.003 (0.2%) 0.025 0.025 (0.2%) 

4.00 0.004 0.004 (0.2%) 0.037 0.037 (0.2%) 

5.35 0.006 0.006 (0.2%) 0.056 0.056 (0.2%) 

5.88 0.007 0.007 (0.2%) 0.065 0.065 (0.2%) 

6.60 0.008 0.008 (0.3%) 0.079 0.079 (0.3%) 

8.15 0.013 0.013 (0.4%) 0.117 0.117 (0.3%) 

11.95 0.047 0.047 (0.9%) 0.284 0.283 (0.4%) 

17.00 0.544 0.504 (7.3%) 0.612 0.611 (0.2%) 

23.20 0.971 0.974 (0.3%) 0.950 0.948 (0.1%) 

30.60 1.308 1.318 (0.8%) 1.259 1.257 (0.1%) 

39.15 1.605 1.618 (0.8%) 1.542 1.541 (0.1%) 

48.95 1.882 1.895 (0.7%) 1.812 1.809 (0.1%) 

60.05 2.143 2.156 (0.6%) 2.069 2.065 (0.2%) 

Note: Figures in brackets denote the absolute percentage differences 
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Figure 6-21 Comparison of the non-dimensional average edge stress-deflection behaviour of the 

unstiffened and concentrically stiffened panels. 

 
Figure 6-22 Comparison of the effective width of unstiffened and concentrically stiffened panels 

at different end-shortening levels. 
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Figure 6-23 Non-dimensional edge stress distribution along the loaded edge of weak 

concentrically stiffened panels at different end-shortening levels. 

 
Figure 6-24 Non-dimensional edge stress distribution along the loaded edge of strong 

concentrically stiffened panels at different end-shortening levels. 
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6.4.2 Non-linear buckling of eccentrically stiffened panels 

The non-linear buckling of eccentrically stiffened panels was analysed next. A 

comparison of the results obtained using the current formulation and ANSYS for model 

M7/M8 and M9/M10 are presented in Table 6-9 and Table 6-10 respectively. 

Good agreement was found for both stiffener bending stiffness ratios. The nearly 

perfect, weakly stiffened model (M7) results were found to have an absolute average 

difference of 5.1%, whilst the nearly perfect, strongly stiffened model (M9) was found 

to have an absolute average difference of 0.3%. The larger differences found in the M7 

model was located at the point of the non-linear response path with a nearly horizontal 

slope where small increments in end-shortening have large effects in the deflection of 

the panel and hence are deemed of low importance. 

The imperfect models (M8/M10) were found to correlate much closer with the ANSYS 

results. The weakly stiffened imperfect model (M8) and strongly stiffened imperfect 

model (M10) were found to have absolute average errors of 1.8% and 0.2% 

respectively. 

A graphical comparison of the non-linear response of the eccentrically stiffened panels 

and the two unstiffened models is presented in Figure 6-25. In general, nearly perfect 

and imperfect models of same bending stiffness ratio show a similar trend in their non-

linear response path with the nearly perfect panels showing a much stiffer pre-buckling 

behaviour. 

A graphical comparison of the effective width of the unstiffened and eccentrically 

stiffened panels, as function of the non-dimensional edge shortening, is presented in 

Figure 6-26. Both the strongly stiffened models (M9/M10) and the nearly perfect 

weakly stiffened model (M7) maintain an effective width close to unity to higher end-

shortening values. 

The distribution of stresses along the loaded edge of the strongly and weakly stiffened 

panels at different edge shortening levels can be observed in Figure 6-27 and Figure 

6-28 respectively. 
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It can be appreciated from Figure 6-28 that the strongly and eccentrically stiffened 

panels show a similar behaviour to that of the strongly and concentrically stiffened 

panel shown in Figure 6-24 in which the stiffener acts as extra support that divides the 

panel into two longitudinal sub-panels. 

The behaviour of the weakly stiffened panels is less straightforward. The edge-stress 

distribution of these panels shows a more complex pattern that combines an overall 

buckling behaviour with a limited local longitudinal support from the stiffener. 

Table 6-9 Comparison of the non-dimensional out of the plane deflection for the weak 
eccentrically stiffened panels. 

2

va

t
 

w
t

 

M7 M8 

ANSYS NLSPAN ANSYS NLSPAN 

2.50 0.001 0.001 (1.0%) 0.010 0.010 (1.0%) 

8.00 0.004 0.004 (1.1%) 0.044 0.043 (1.1%) 

12.00 0.009 0.009 (1.3%) 0.093 0.092 (1.4%) 

15.00 0.018 0.017 (2.2%) 0.175 0.171 (2.1%) 

17.00 0.036 0.034 (7.7%) 0.302 0.292 (3.4%) 

18.00 0.094 0.067 (28.4%) 0.399 0.387 (3.0%) 

19.00 0.280 0.242 (13.6%) 0.503 0.494 (1.8%) 

19.50 0.351 0.328 (6.5%) 0.553 0.547 (1.1%) 

20.00 0.413 0.401 (3.0%) 0.601 0.598 (0.5%) 

20.50 0.469 0.464 (1.0%) 0.647 0.647 (0.0%) 

21.00 0.520 0.522 (0.3%) 0.691 0.695 (0.5%) 

24.00 0.780 0.805 (3.2%) 0.927 0.948 (2.3%) 

30.00 1.198 1.244 (3.8%) 1.311 1.354 (3.3%) 

40.00 1.784 1.843 (3.3%) 1.856 1.911 (3.0%) 

50.00 2.298 2.358 (2.6%) 2.344 2.400 (2.4%) 

60.00 2.768 2.824 (2.0%) 2.812 2.851 (1.4%) 

Note: Figures in brackets denote the absolute percentage differences 
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Table 6-10 Comparison of the non-dimensional out of the plane deflection for the strong 
eccentrically stiffened panels. 

2

va

t
 

w
t

 

M9 M10 

ANSYS NLSPAN ANSYS NLSPAN 

2.50 0.002 0.002 (0.2%) 0.020 0.020 (0.2%) 

8.00 0.012 0.012 (0.3%) 0.113 0.113 (0.3%) 

12.00 0.048 0.048 (1.0%) 0.287 0.286 (0.4%) 

15.00 0.319 0.315 (1.1%) 0.482 0.481 (0.3%) 

17.00 0.544 0.541 (0.4%) 0.612 0.610 (0.2%) 

18.00 0.631 0.629 (0.3%) 0.672 0.671 (0.2%) 

19.00 0.709 0.707 (0.3%) 0.731 0.729 (0.2%) 

19.50 0.745 0.743 (0.2%) 0.759 0.758 (0.2%) 

20.00 0.779 0.777 (0.2%) 0.786 0.785 (0.2%) 

20.50 0.812 0.810 (0.2%) 0.813 0.812 (0.1%) 

21.00 0.843 0.842 (0.2%) 0.839 0.838 (0.1%) 

24.00 1.012 1.011 (0.1%) 0.986 0.984 (0.1%) 

30.00 1.283 1.281 (0.1%) 1.234 1.233 (0.1%) 

40.00 1.630 1.628 (0.1%) 1.566 1.564 (0.1%) 

50.00 1.907 1.904 (0.1%) 1.836 1.833 (0.2%) 

60.00 2.141 2.137 (0.2%) 2.067 2.063 (0.2%) 

Note: Figures in brackets denote the absolute percentage differences 
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Figure 6-25 Comparison of the non-dimensional average edge stress-deflection behaviour of the 

unstiffened and eccentrically stiffened panels. 

 
Figure 6-26 Comparison of the effective width of unstiffened and eccentrically stiffened panels 

at different end-shortening levels. 
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Figure 6-27 Non-dimensional edge stress distribution along the loaded edge of weak 

eccentrically stiffened panels at different end-shortening levels. 

 
Figure 6-28 Non-dimensional edge stress distribution along the loaded edge of strong 

eccentrically stiffened panels at different end-shortening levels. 
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6.4.3 Comparison of the non-linear buckling response of 

eccentrically and concentrically stiffened panels 

Finally the non-linear buckling of eccentrically and concentrically stiffened panels with 

the same /h t  ratio is presented. Here, the weak and concentrically stiffened models 

M3/M4 are compared with the strong and eccentrically stiffened models M9/M10. 

Figure 6-29 presents a graphical comparison of the non-linear load-deflection response 

of all four models, whilst a graphical comparison of the effective width of the 

unstiffened and concentrically stiffened panels, as function of the non-dimensional edge 

shortening, can be found in Figure 6-30. 

Figure 6-29 suggests that both the nearly perfect and the imperfect eccentric models 

experience a much stiffer pre and post buckling behaviour than the concentrically 

stiffened models. Indeed both eccentrically stiffened models are able to carry almost 

twice as much load as the concentrically stiffened models. 

This can be explained by analysing Figure 6-30, where the effective width behaviour of 

the eccentrically stiffened panels remain closer to unit for a much larger interval than in 

the concentrically stiffened panels. 

 
Figure 6-29 Comparison of the non-dimensional average edge stress-deflection behaviour of the 

concentrically and eccentrically stiffened panels. 
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Figure 6-30 Comparison of the effective width of concentrically and eccentrically stiffened 

panels at different end-shortening levels. 

 

6.5 Summary 

A validation has been conducted to evaluate the performance of the presented 

formulation in representing both unstiffened and stiffened panels under in-plane loads. 

The results obtained using the current formulation in representing unstiffened panels 

under the action of compressive loads were found to be in excellent agreement with 

analytical and numerical, and experimental results presented by other authors. 

The new method proposed to model the uniform in-plane compressive load acting on 

the cross sectional area of stiffeners located at the edges of the master element was 

discussed and validated. The importance of this new method in the linear buckling 

calculations was demonstrated. 

A thorough investigation on the non-linear buckling of concentrically and eccentrically 

stiffened panels with different geometric parameters and levels of initial deformation 

was conducted. 
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The investigation demonstrates that the panel load carrying capacity is improved by 

increasing the bending stiffness ratio of the panel. This can be achieved by increasing 

the dimensions of the stiffener or by placing it eccentrically with respect to the panel 

mid-surface. 
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Chapter 7.  Summary and conclusions 

 

The present chapter summaries the main work and findings of the current investigation, 

highlights the implications of the research and identifies possible future work in this 

area. 

7.1 Summary 

The key subjects investigated and developed in this thesis can be summarised as 

follows: 

1. A geometrically non-linear finite element was formulated by combining a 

shallow shell (master) element and beam (slave) element. The displacement 

field at any point within the slave element is defined in terms of the field 

variables of the master element. Therefore, only the master element‟s degrees of 

freedom are needed to discretise the entire stiffened panel. Furthermore, the 

stiffener location across the panel has no influence on the topology of area of the 

panel. 

 

2. An eight node, quadratic, isoparametric, shallow shell element with five degrees 

of freedom at each node was formulated to act as the master element. 

Marguerre‟s shallow shell theory was adopted in the formulation to include the 

effects of initial deformations, whilst Mindlin-Reissener hypothesis was 

considered to take into account transverse shear deformations. 
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3. A three node, isoparametric beam element having four degrees of freedom at 

each node was formulated according to Timoshenko‟s shear deformable beam 

theory to act as the slave element. The stiffener rigidity is initially concentrated 

along the centroidal axis of the beam element, and is later transformed into the 

master element by considering the stiffener location, orientation and eccentricity 

with respect to the mid-surface of the master element. 

 

4. A new method to account for uniform in-plane compressive load acting on the 

cross sectional area of stiffeners at the edges of the master element was 

formulated for both concentrically and eccentrically stiffened elements. 

 

5. Initial deformations of the unstiffened and stiffened panels were calculated by 

performing an Eigen-value buckling analysis followed by a normalization 

buckling mode shape. A new technique to calculate the initial deformation in the 

slave elements from the initial deformations of the master element was 

developed. 

 

6. The formulation was coded into a FORTRAN 90 computer program named 

NLSPAN (Non-Linear Stiffened Panel ANalysis) using the Intel Visual Fortran 

compiler. Both conventional Newton-Raphson and modified Newton-Raphson 

incremental iterative solution algorithm were implemented to obtain the non-

linear response path. 

 

7. A wide range of stiffened panel examples were solved using this program and 

the results compared both with those available in the open literature and those 

obtained using ANSYS commercial finite element package. The range of 

examples covers a variety of panel aspect ratios, load cases, arrangements of 

stiffeners, stiffener geometries, initial deformations and boundary conditions. 

New validation problems were presented for arbitrarily orientated stiffened 

panels. 
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7.2 Conclusions  

The following conclusions are drawn based on the outcomes of the present 

investigation: 

1. The proposed arbitrarily stiffened element finite element formulation was found 

capable of representing the geometrically non-linear behaviour of unstiffened 

isotropic and laminated composite panels under in-plane and transverse loads 

with an excellent level of accuracy. Moreover, since only the degrees of 

freedom of the master element were included in the finite element models the 

present approach has a greater numerical efficiency than conventional finite 

element models. 

 

2. The numerical validation results also demonstrate that the present formulation is 

capable of modelling the geometrically non-linear response of stiffened panels 

in which the slave elements (stiffeners) were placed at arbitrary orientation 

within the master element. This was demonstrated for both concentrically and 

eccentrically stiffened panels. Since this feature lifts the restriction of having to 

place the stiffeners along the mesh lines of the shell elements, the present 

formulation has another significant advantage over conventional discretely 

stiffened finite element models, as it greatly reduces the complexities of the 

solid model topology. This greater topological flexibility makes the current 

formulation an excellent candidate for the generation of finite element models 

for structural optimization. 

 

3. The effects of the edge load modelling method in the in-plane behaviour of 

arbitrarily stiffened elements was discussed and analysed for the first time. 

Large errors in the in-plane stresses as well as fictitious out-of-plane 

displacements were found to occur if the load is not appropriately modelled. A 

new modelling method was suggested to account for this inaccurate behaviour 

and it was found to succeed in overcoming these issues. Furthermore, the 

suggested method is not only applicable for an arbitrarily stiffened finite 

element model but it can also be applied to discretely stiffened models generated 

using general purpose finite element packages. 
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4. The present formulation was found capable of performing the non-linear 

buckling analysis of stiffened panels. The formulation succeeded in representing 

different initial deformation levels generated using the linear buckling mode 

shape. It was found that the non-linear buckling behaviour of eccentrically 

stiffened panels was superior to that of concentrically stiffened panels with the 

same stiffener dimensions. 

 

5. The structural optimization of stiffened panels requires efficient automated 

changes to the panel configuration to allow for a thorough exploration of the 

design space. The present formulation describes the stiffeners parametrically, i.e. 

the stiffeners are not physically modelled but described using numerical 

parameters that define the stiffener(s) position, cross sectional properties and 

eccentricity. Therefore, the panel configuration can be modified without the 

need of manual topological alterations to the finite element model. Also, the 

finite element discretization was proven to be independent of the stiffener 

orientation and hence changes in the stiffener(s) position within the panel do not 

require manual changes to the model mesh. Consequently the present 

formulation becomes an excellent potential candidate for the automated model 

generation required in the structural optimization process of stiffened panels. 
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7.3 Further work 

Should the research into this area be continued, the following subjects would be 

obvious candidates for further investigation:  

1. The main emphasis of this investigation was on the analysis of an isolated 

stiffened panel. However, the author believes that the presented formulation can 

be useful for the future development of an integrated hull girder preliminary 

design model. In such a model, drilling rotational degrees of freedom (those 

whose vector is normal to the analysis plane) should be added to the current 

formulation to allow the representation of hull girder stiffened panels jointed at 

square angles. 

 

2. The application of the present formulation to the ultimate failure analysis of 

stiffened panels could be investigated. This would involve an investigation into 

the material non-linearity, i.e. plasticity/composite failure, to evaluate the 

progression of failure in stiffened panels. In addition, the effect of in-plane shear 

load and combined in-plane and out of plane loads should be included in the 

present formulation to investigate the failure of panels of the hull girder located 

in the side plating and/or under the water plane. 

 

3. Finally, experimental investigations on the geometrically non-linear response of 

isotropic and laminated panels, stiffened at arbitrary orientations should be 

carried out to provide much needed physical validation data for this specific 

structural configuration. 
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