

University of Tasmania Open Access Repository

Cover sheet

Title

Structure and sedimentology of the Dundas Group, Western Tasmania

Author

Selley, D

Bibliographic citation

Selley, D (1997). Structure and sedimentology of the Dundas Group, Western Tasmania. University Of Tasmania. Thesis. https://doi.org/10.25959/23211533.v1

Is published in:

Copyright information

This version of work is made accessible in the repository with the permission of the copyright holder/s under the following,

Licence.

Rights statement: Copyright the Author - The University is continuing to endeavour to trace the copyright owner(s) and in the meantime this item has been reproduced here in good faith. We would be pleased to hear from the copyright owner(s).

If you believe that this work infringes copyright, please email details to: oa.repository@utas.edu.au

Downloaded from University of Tasmania Open Access Repository

Please do not remove this coversheet as it contains citation and copyright information.

University of Tasmania Open Access Repository

Library and Cultural Collections University of Tasmania Private Bag 3 Hobart, TAS 7005 Australia E oa.repository@utas.edu.au

- Adams, C. L., Black, L. P., Corbett, K. D. & Green, G. R. 1985. Reconnaissance isotopic studies bearing on the tectonothermal history of early Palaeozoic and late Proterozoic sequences in western Tasmania. *Australian Journal of Earth Sciences* 32, 7-36.
- Aerden, D. G. A. M. 1991. Foliation-boudinage control on the formation of the Rosebery Pb-Zn orebody, Tasmania. *Journal of Structural Geology* 13, 759-775.
- Agar, S. M. 1988. Shearing of partially consolidated sediments in a lower trench slope setting, Shimanto Belt, southwestern Japan. *Journal of Structural Geology* 10, 21-32.
- Ahmad, R., Tipper, J. C. & Eggleton, R. A. 1994. Compositional trends in the Permian sandstones from the Denison Trough, Bowen Basin, Queensland reflect changing provenance and tectonics. *Sedimentary Geology* 89, 197-217.
 Allen, P. A., Homewood, D. & Williams, G. D. 1986. Foreland Basins: an introduction.
- Allen, P. A., Homewood, D. & Williams, G. D. 1986. Foreland Basins: an introduction. In: Foreland Basins (edited by Allen, P. A. & Homewood, D.). International Association of Sedimentologists Special Publication 8, 3-14.
- Anderson, A. T., Jr., Swihart, G. H., Artioli, G. & Geiger, C. A. 1984. Segregation vesicles, gas-filter-pressing, and igneous differentiation. *Journal of Geology* 92, 55-72.
- Antonellini, M. A., Aydin, A. & Pollard, D. D. 1994. Microstructure of deformation bands in porous sandstones at Arches National Park, Utah. *Journal of Structural Geology* 16, 941-959.
- Arai, A. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. *Mineralogical Magazine* 56, 173-184.
- Aydin, A. 1978. Small faults formed as deformation bands in sandstone. *Pure and* Applied Geophysics 116, 913-930.
- Aydin, A. & Johnson, A. M. 1978. Development of faults as zones of deformation bands and as slip surfaces in sandstone. *Pure and Applied Geophysics* **116**, 913-942.
- Bacon, C. R. 1986. Magmatic inclusions in silicic and intermediate volcanic rocks. Journal of Geophysical Research 91, 6091-6112.
- Bacon, C. R. & Metz, J. 1984. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California. *Contributions to Mineralogy and Petrology* 85, 346-365.
- Bagnold, R. A. 1956. The flow of cohesionless grains in fluids. *Philosophical* Transactions of the Royal Society of London 249, 235-297.
- Baillie, P. W. & Williams, P. R. 1975. Sedimentary and structural features of the Bell Shale correlate (Early Devonian), Strahan Quadrangle, western Tasmania. Papers and Proceedings of the Royal Society of Tasmania 109, 1-13.
- Ballance, P. F. & Gregory, M. R. 1991. Parnell Grits; large subaqueous volcaniclastic gravity flows with multiple particle-support mechanisms. In: Special Publication Society of Economic Paleontologists and Mineralogists 45, 189-200.
- Banks, M. R. 1956. The Middle and Upper Cambrian Series (Dundas Group and its correlates) in Tasmania. In: *El Sistema Cambrico, su Paleografica y el Problema de su Base* 2. 20th International Geological Congress, Mexico, 165-212.
- Banks, M. R. 1982. Cambrian fossils and fossil localities in Tasmania a catalogue and range chart, 48 pp. University of Tasmania, Hobart.
- Barrett, T. J. & Spooner, E. T. C. 1977. Ophiolitic breccias associated with allochtonous oceanic crustal rocks in the East Ligurian Apennines: a comparison with observations from rifted oceanic ridges. *Earth and Planetary Science Letters* 35, 79-91.
- Behrmann, J. H. 1987. A precautionary note on shear bands as kinematic indicators. Journal of Structural Geology 9, 659-666.
- Berry, R. F. 1989a. Microstructural evidence for a westward transport direction during Middle Cambrian obduction in Tasmania. In: Australasian Tectonics-SGTSG Conference 24. Geological Society of Australia, Kingscote, 8-9.

Berry, R. F. 1989b. The history of movement on the Henty Fault Zone, western Tasmania: an analysis of fault striations. *Australian Journal of Earth Sciences* 36, 189-205.

Berry, R. F. 1994. Tectonics of western Tasmania: Late Precambrian - Devonian. In: *Contentious issues in Tasmanian geology*. Geological Society of Australia, Tasmania Division, Hobart, 5-7.

- Berry, R. F. & Crawford, A. J. 1988. The tectonic significance of the Cambrian allochthonous mafic-ultamafic complexes in Tasmania. Australian Journal of Earth Sciences 35, 523-533.
- Berry, R. F. & Keele, R. A. 1993. Structure and mineralistation in western Tasmania. Final summary. In: Structure and mineralisation of western Tasmania; AMIRA Project P.291 Final Report. University of Tasmania, 69-94.
- Berry, R.F. & Fulton, R. 1994. Heavy minerals, provenance and lithostratigraphy. In: Structure and mineralisation of western Tasmania; AMIRA Project P.291A 3. University of Tasmania, 1-20.
- Berry, R. F., Selley, D. & White, M. J. 1995. Lithogeochemistry. In: Structure and mineralisation of western Tasmania; AMIRA Project P.291A 4. University of Tasmania, 1-22.
- Bhatia, M. R. & Crook, K. A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. *Contributions to Mineralogy and Petrology* **92**, 181-193.
- Bischoff, K. 1983. The geology of the Rocky Boat Inlet-Surprise Bay area. Unpublished B.Sc.Hons thesis, University of Tasmania.
- Blake, D. H. 1981. Intrusive felsic-mafic net-veined complexes in North Queensland. BMR Journal of Australian Geology and Geophysics 6, 95-99.
- Blake, S., Wilson, C. J. N., Smith, I. E. M. & Walker, G. P. L. 1992. Petrology and dynamics of the Waimhia mixed magma eruption, Taupo Volcano, New Zealand. *Journal of the Geological Society of London* **149**, 193-207.
- Blissett, A. H. 1962. Zeehan. In: *Geological Survey Explanatory* **K155-5-50.** Tasmania Department of Mines, .
- Blissett, A. H. & Gulline, A. B. 1962. Zeehan. 1:63,000. Tasmania Department of Mines
- Borradaile, G. J. 1978. Transected folds: a study illustrated with examples from Canada and Scotland. *Geological Society of America Bulletin* **89**, 481-493.
- Borradaile, G. J. 1981. Particulate flow of rock and the formation of cleavage. *Tectonophysics* **72**, 305-321.
- Boullier, A. M. 1980. A preliminary study on the behaviour of brittle minerals in a ductile matrix; example of zircons and feldspars. *Journal of Structural Geology* 1, 211-217.

Bouma, A. H. 1962. Sedimentology of some Flysch deposits: a graphic approach to facies interpretation, 168 pp. Elsevier, Amsterdam.

- Branney, M. J. & Suthren, R. J. 1988. High-level peperitic sills in the English Lake District; distinction from block lavas, and implications for Borrowdale Volcanic Group stratigraphy. *Geological Journal* 23, 171-187.
- Group stratigraphy. Geological Journal 23, 171-187.
 Briggs, R. M., Gifford, M. G., Moyle, A. R., Taylor, S. R., Norman, M. D., Houghton, B. F. & Wilson, C. J. N. 1993. Geochemical zoning and eruptive mixing in ignimbrites from Mangakino Volcano, Taupo volcanic zone, New Zealand. Journal of Volcanology and Geothermal Research 56, 175-203.
- Brooks, E. R., Wood, M. J. & Garbutt, P. L. 1982. Origin and metamorphism of peperite and associated rocks in the Devonian Elwell Formation, northern Sierra Nevada, California. *Geological Society of America Bulletin* **93**, 1208-1231.
- Brown, A. V. 1986. Geology of the Dundas-Mt Lindsay-Mt Ramsay area. Bulletin of the Geological Survey of Tasmania 62, 221pp.
- Brown, A. V., Findlay, R. H., Goscombe, B. D., McClenaghan, M. P. & Seymour, D. B. 1994. Zeehan (geological atlas). 1:50,000. Geological Survey of Tasmania
- Bryan, W. B. 1972. Morphology of Quench Crystals in Submarine Basalts. Journal of Geophysical Research 77, 5812-5819.

Busby-Spera, C. J. & White, D. L. 1987. Variation in peperite textures associated with differing host-sediment properties. *Bulletin of Volcanology* **49**, 765-775.

- Bull, S. W. 1995. Sedimentology of the Dundas Group and correlates with reference to a possible syn-depositional growth fault west of Rosebery. In: *Structure and mineralisation of western Tasmania; AMIRA Project P.291A* 3. University of Tasmania, 35-43.
- Byrne, T. 1984. Early deformation in melange terranes of the Ghost Rocks Formation, Kodiak Islands. In: *Melanges: Their Nature, Origin and Significance* (edited by Raymond, L. A.). *Geological Society of America Special Paper* **198**, 21-52.
- Calver, C. R., Bailiie, P. W., Everard, J. L., Seymour, D. B., Williams, P. R., Forsyth, S. M., Turner, N. J. & Williams, E. 1997. Lyell. 1:50,000. Tasmanian Department of Mines
- Cas, R. 1979. Mass-flow arenites from a Paleozoic interarc basin, New South Wales, Australia; mode and environment of emplacement. *Journal of Sedimentary Petrology* **49**, 29-44.
- Cas, R. A. F. 1983. Submarine 'crystal tuffs': their origin using a Lower Devonian example from southeastern Australia. *Geological Magazine* **120**, 471-486.
- Cas, R. A. F. & Wright, J. V. 1987. Volcanic Successions, 528 pp. Allen & Unwin, London.
- Casey, M., Dietrich, D. & Ramsay, J. G. 1983. Methods for determining deformation history for chocolate tablet boudinage with fibrous crystals. *Tectonophysics* 92, 211-239.
- Cawood, P. A. 1991. Nature and record of igneous activity in the Tonga Arc, SW Pacific, deduced from the phase chemistry of derived detrital grains. In: *Developments in sedimentary provenance studies.* (edited by Morton, A. C., Todd, S. P. & Haughton, P. D. W.). *Geological Society Special Publication* 57, 305-321.
- Chiocchini, U. & Cipriani, N. 1992. Provenance and evolution of Miocene turbidite sedimentation in the central Apennines, Italy. *Sedimentary Geology* 77, 185-195.
- Coe, K. 1959. Boudinage structure in west Cork, Ireland. Geological Magazine 96, 191-200.
- Condie, K. C. & Martell, C. 1983. Early Proterozoic metasediments from north-central Colorado; metamorphism, provenance, and tectonic setting. *Geological Society of America Bulletin* 94, 1215-1224.
- Corbett, K. D. 1984. Stratigraphy of the Mt. Read volcanics and associated sedimentary sequences in the Henty River-Williamsford area, and some implications. In: *Mineral exploration and tectonic processes in Tasmania: abstract volume and excursion guide* (edited by Baillie, P. W. & Collins, P. L. F.). Geological Society of Australia, Tasmanian Division, Burnie, 21-22.
- Corbett, K. D. 1984a. The Rosebery Group in the Ring River-Moores Pimple area: a Cambro-ordovician disrupted zone. In: *Mineral exploration and tectonic processes in Tasmania: abstract volume and excursion guide* (edited by Baillie, P. W. & Collins, P. L. F.). Geological Society of Australia, Tasmanian Division, Burnie, 18-20.
- Corbett, K. D. 1992. Stratigraphic-volcanic setting of massive sulphide deposits in the Cambrian Mt. Read Volcanics, Tasmania. *Economic Geology and the Bulletin of the Society of Economic Geologists* 87, 564-586.
- Corbett, K. D. & Lees, T. C. 1987. Stratigraphic and structural relationships and evidence for Cambrian deformation at the western margin of the Mt. Read Volcanics, Tasmania. *Australian Journal of Earth Sciences* 34, 45-67.
- Corbett, K. D. & McNeill, A. W. 1988. Geological compilation map of the Mt Read Volcanics and associated rocks Hellyer to south Darwin Peak (Map 6). 1:100,000. Geological Survey of Tasmania
- Corbett, K. D. & Solomon, M. 1989. Cambrian Mt Read Volcanics and associated mineral deposits. In: Geology and mineral resources of Tasmania (edited by Burrett, C. F. & Martin, E. L.) 15. Geological Society of Australia Special Publication, 84-153.

 Corbett, K. D. & Turner, N. J. 1989. Early Paleozoic deformation and tectonics. In: Geology and mineral resources of Tasmania (edited by Burrett, C. F. & Martin, E. L.). Geological Society of Australia Special Publication 15, 154-181.

Cousineau, P. A. 1994. Subaqueous pyroclastic deposits in an Ordovician fore-arc basin; an example from the Saint-Victor Formation, Quebec Appalachians, Canada. Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes 64, 867-880.

 Cowan, D. S. 1982. Deformation of partly dewatered and consolidated Franciscan sediments near Piedras Blancas Point, California. In: Trench Forearc geology; sedimentation and tectonics on modern and ancient active plate margins, conference. (edited by Leggett, J. K.). Geological Society of London Special Publication 10, 439-457.

Cowan, D. S. 1985. Structural styles in Mesozoic and Cenozoic melanges in the western Cordillera of North America. *Geological Society of America Bulletin* **96**, 451-462.

Cowan, D. S. 1990. Kinematic analysis of shear zones in sandstone and mudstone of the Shimanto Belt, Shikoku, SW Japan. *Journal of Structural Geology* **12**, 431-441.

- Cox, S. F. & Etheridge, M. A. 1989. Coupled grain-scale dilatancy and mass transfer during deformation at high fluid pressures: examples from Mount Lyell, Tasmania. *Journal of Structural Geology* 11, 147-162.
- Crawford, A. J. & Berry, R. F. 1992. Tectonic implications of Late Proterozoic-Early Palaeozoic igneous rock associations in western Tasmania. *Tectonophysics* 214, 37-56.
- Crawford, A. J., Corbett, K. D. & Everard, J. L. 1992. Geochemistry of the Cambrian volcanic-hosted massive sulphide-rich Mt. Read Volcanics, Tasmania, and some tectonic implications. *Economic Geology and the Bulletin of the Society of Economic Geologists* 87, 597-619.
- Crook, K. A. W. 1974. Lithogenesis and geotectonics; the significance of compositional variation in flysch arenites (graywackes). Special Publication Society of Economic Paleontologists and Mineralogists 19, 304-310.
- Crook, K. A. W. 1979. Tectonic implications of some field relations of the Adelaidean Cooee Dolerite, Tasmania. *Journal of the Geological Society of Australia* **26**, 353-361.
- Decker, P. L. 1990. Style and mechanics of liquifaction-related deformation, lower Absaroka Volcanic Supergroup (Eocene), Wyoming. *Geological Society of America Special Paper* 240, 71 pp.
- Dickinson, W. R. & Suczek, C. A. 1979. Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin 63, 2164-2182.
- Dorsey, R. J. & Becker, U. 1995. Evolution of a large Miocene growth structure in the upper plate of the whipple detachment fault, north-eastern Whipple Mountains, California. *Basin Research* 7, 151-163.

Duncan, A. C. 1985. Transected folds: a re-evaluation, with examples from the 'type area' at Sulphur Creek, Tasmania. *Journal of Structural Geology* 7, 409-419.

Dunn, D. E., LaFountain, L. J. & Jackson, R. E. 1973. Porosity Dependence and Mechanism of Brittle Fracture in Sandstones. *Journal of Geophysical Research, A, Space Physics* 78, 2403-2417.

Eichelberger, J. C. 1980. Vesiculation of mafic magma during replenishment of silicic magma reservoirs. *Nature* 288, 446-450.

- Elliot, C. G. & Williams, P. F. 1988. Sediment slump structures: a review of diagnostic criteria and application to an example from Newfoundland. *Journal of Structural Geology* **10**, 171-182.
- Elliot, C. G., Woodward, N. B. & Gray, D. R. 1993. Complex regional fault history of the Badger Head region, northern Tasmania. *Australian Journal of Earth Sciences* 40, 155-168.
- Elliston, J. 1954. Geology of the Dundas District, Tasmania. Papers and Proceedings of the Royal Society of Tasmania 88, 161-182.
- Elliston, J. N. 1950. Dundas Mineral Field. Unpublished B.Sc.Hons thesis, University of Tasmania.

Findlay, R. 1993. Summary of structural and stratigraphic observations on the Proterozoic/Eocambrian/Cambrian units of the Zeehan 1.50000 Quadrangle. In: 1993/29. Mineral Resources Tasmania, .

Fisher, D. & Byrne, T. 1987. Structural Evolution of Underthrusted Sediments, Kodiak Islands, Alaska. *Tectonics* 6, 775-793.

Fiske, R. S. & Matsuda, T. 1964. Submarine equivalents of ash flows in the Tokiwa Formation, Japan. *American Journal of Science* 262, 76-106.

- Flood, R. H., Shaw, S. E. & Chappell, B. W. 1980. Mineralogical and chemical matching of plutonic and associated volcanic units, New England Batholith, Australia. *Chemical Geology* 29, 163-170.
- Floyd, P. A., Shail, R., Leveridge, B. E. & Franke, W. 1991. Geochemistry and provenance of Rhenohercynian synorogenic sandstones: implications for tectonic environment discrimination. In: *Developments in sedimentary provenance studies* (edited by Morton, A. C., Todd, S. P. & Haughton, P. D. W.). *Geological Society Special Publication* 57, 173-188.

Floyd, P. A., Winchester, J. A. & Park, R. G. 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, northwestern Scotland. *Precambrian Research* **45**, 203-214.

Forshee, E. F. & Yin, A. 1995. Evolotion of Monolithological breccia deposits in supradetachment basins, Whipple Mountains, California. Basin Research 7, 181-198.

Freund, R. 1974. Kinematics of transform and transcurrent faults. *Tectonophysics* 21, 93-134.

Fyson, W. K. 1962. Tectonic structures in the Devonian rocks near Plymouth, Devon. Geological Magazine 99, 208-226.

Gallagher, J. J., Friedman, M., Handin, J. & Sowers, G. 1974. Experimental studies relating to microfracture in sandstone. *Tectonophysics* **21**, 203-247.

Gaudemer, Y. & Tapponnier, P. 1987. Ductile and brittle deformations in the northern Snake Range, Nevada. *Journal of Structural Geology* 9, 159-180.

Gawthorpe, R. L. & Clemmey, H. 1985. Geometry of submarine slides in the Bowland Basin (Dinantian) and their relation to debris flows. *Geological Society of London* 142, 555-565.

Ghosh, S. K. 1988. Theory of chocolate tablet boudinage. *Journal of Structural Geology* **10**, 541-553.

Ghosh, S. K., Mandal, N., Khan, D. & Deb, S. K. 1992. Modes of superposed buckling in single layers controlled by initial tightness of early folds. *Journal of Structural Geology* 14, 381-394.

Ghosh, S. K. & Ramberg, H. 1968. Buckling experiments on intersecting fold patterns. *Tectonophysics* 5, 89-105.

Gimeno, D. 1994. Genesis of crystal-rich epiclastic rocks from subaqueous silicic lava domes; role of thermal shock on quartz phenocrysts. *Sedimentary Geology* **90**, 33-47.

Gonthier, E. G., Faugeres, J. C. & Stow, D. A. V. 1984. Contourite facies of the Faro Drift, Gulf of Cadiz. In: *Fine-grained sediments: deep-water processes and facies* (edited by Stow, D. A. V. & Piper, D. J. W.). *Geological Society Special Publication* 15, 275-292.

Gray, D. R. 1977. Morphologic classification of crenulation cleavage. *Journal of Geology* **85**, 229-235.

- Gray, D. R. & Woodward, N. B. 1994. Thin-skinned deformation and allochthonous models for the tectonic evolution of northern Tasmania. In: *Contentious issues in Tasmanian geology*. Geological Society of Australia, Tasmania Division, Hobart, 1-3.
- Green, G. R. 1983. The geological setting and formation of the Rosebery volcanichosted massive sulphide orebody, Tasmania. Unpublished Ph.D thesis, University of Tasmania.

Green, G. R. 1984. The structure of the bedded rocks west of Rosebery and their significance in a regional context. In: *Mineral exploration and tectonic processes in Tasmania: abstract volume and excursion guide* (edited by Baillie, P. W. & Collins, P. L. F.). Geological Society of Australia, Tasmanian Division, Burnie, 28-32.

Greenhill, P. 1995. The Geological Setting and Mineralisation of the Cuni Copper and Nickle Deposits. Unpublished B.Sc.Hons thesis, University of Tasmania.

- Haines, J. B. 1991. Stratigraphy and sedimentology of the Crimson Creek formation and relationship to gabbro intrusives. Unpublished B.Sc.Hons thesis, University of Tasmania.
- Hammond, R. L. 1987. The influence of deformation partitioning on dissolution and solution transfer in low-grade tectonic melange. *Journal of Metamorphic Geology* 5, 195-211.

Hanmer, S. 1986. Asymmetrical pull-aparts and foliation fish as kinematic indicators. Journal of Structural Geology 8, 111-122.

Hanmer, S. & Passchier, C. 1991. Shear-sense indicators: a review. In: 90-17. Geological Survey of Canada, .

- Hein, F. J. 1982. Depositional mechanisms of deep-sea coarse clastic sediments, Cap Enrage Formation, Quebec. *Canadian Journal of Earth Sciences* 19, 267-287.
- Hiscott, R. N. & Gill, J. B. 1992. Major and trace element geochemistry of Oligocene to Quaternary volcaniclastic sands and sandstones from the Izu-Bonin Arc. In: Proceedings of the Ocean Drilling Program: scientific results: Bonin Arc-Trench System (edited by Maddox, E. M.). Joint Oceanographic Institutions/National Science Foundation 126, 467-486.
- Hiscott, R. N. & Middleton, G. V. 1979. Depositional mechanics of thick-bedded sandstones at the base of a submarine slope, Tourelle Formation (Lower Ordovician), Quebec, Canada. *Special Publication Society of Economic Paleontologists and Mineralogists* 27, 307-326.
- Hower, J., Eslinger, E., Hower, M. E. & Perry, E. A. 1976. Mechanism of burial metamorphism of argillaceous sediment; 1, Mineralogical and chemical evidence. *Geological Society of America Bulletin* 87, 725-737.
- Hsu, K. J. 1968. The principles of melanges and their bearing on the Franciscan-Knoxville paradox. *Geological Society of America Bulletin* **79**, 1063-1074.
- Hudleston, P. J. 1973. Single-layer viscous buckling under conditions of non-planar strain. Abstracts with Programs Geological Society of America 5, 676.
- Jago, J. B. 1978. Late Cambrian fossils from the Climie Formation, western Tasmania. Papers and Proceedings of the Royal Society of Tasmania 112, 137-153.
- Jago, J. B. 1979. Tasmanian Cambrian biostratigraphy; a preliminary report. Journal of the Geological Society of Australia 26, 223-230.
- Jamison, W. R. & Stearns, D. W. 1982. Tectonic deformation of Wingate Sandstone, Colorado National Monument. American Association of Petroleum Geologists Bulletin 66, 2584-2608.
- Jeanbourquin, P. 1994. Early deformation of ultrahelvetic melanges in the Helvetic nappes (western Swiss Alps). *Journal of Structural Geology* **16**, 1367-1383.
- Jell, P. A., Hughes, N. C. & Brown, A. V. 1991. Late Cambrian (Post-Idamean) trilobites from the Higgins Creek area, western Tasmania. *Memoirs of the Queensland Museum* 30, 455-485.
- Jones, A. (in prep.). Volcanic facies architecture, alteration and mineralisation of the Mount Read Volcanics in the Basin Lake area, western Tasmania. Unpublished MSc thesis, University of Tasmania.
- Jones, J. G. 1969. A lacustrine volcano of central France and the nature of peperites. Proceedings of the Geologists' Association 80, 177-188.
- Karson, J. A. & Dick, H. J. B. 1984. Deformed and metamorphosed ocean crust on the Midatlantic Ridge. *Ofioliti* 9, 279-302.
- Kimbrough, D. & Brown, A. V. 1992. Zircon Pb/U age of 520 Ma for a tonalite associated with the Heazlewood Ultramafic/Mafic Complex, western Tasmania. In: 1992/24. Tasmania Department of Mines, .
- Kimura, G. & Mukai, A. 1991. Underplated units in an accretionary complex: melange of the Shimanto Belt of eastern Shikoku, southwest Japan. *Tectonics* **10**, 31-50.

- Kneller, B. 1995. Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. In: *Characterization of Deep Marine Clastic Systems* (edited by Hartley, A. J. & Prosser, D. J.). *Geological Society Special Publication* 94, 31-49.
- Knipe, R. J. 1986. Deformation mechanism path diagrams for sediments undergoing lithification. In: Structural fabric in Deep Sea Drilling Project cores from forearcs. (edited by Moore, J. C.). Geological Society of America Memoir 166, 151-160.
- Knipe, R. J. 1989. Deformation mechanisms; recognition from natural tectonites. *Journal* of Structural Geology **11**, 127-146.
- Knipe, R. J., Agar, S. M. & Prior, D. J. 1991. The microstructural evolution of fluid flow paths in semi-lithified sediments from subduction complex. *Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences* 335, 261-273.
- Knipe, R. J. & McCaig, A. M. 1994. Microstructural and microchemical consequences of fluid flow in deforming rocks. In: *Geofluids; origin, migration and evolution of fluids in sedimentary basins*. (edited by Parnell, J.). *Geological Society Special Publications* 78, 99-111.
- Kokelaar, B. P. 1982. Fluidization of wet sediments during the emplacement and cooling of various igneous bodies. *Journal of the Geological Society of London* **139**, 21-33.
- Kokelaar, P. 1986. Magma-water interactions in subaqueous and emergent basaltic volcanism. *Bulletin of Volcanology* **48**, 275-289.
- Krynauw, J. R., Hunter, D. R. & Wilson, A. H. 1988. Emplacement of sills into wet sediments at Grunehogna, western Dronning Maud Land, Antarctica. *Journal of the Geological Society of London* 145, 1019-1032.
- Lafrance, B. 1989. Structural evolution of a transpression zone in north central Newfoundland. *Journal of Structural Geology* **11**, 705-716.
- Langmuir, C. H., Vocke, R. D., Jr., Hanson, G. N. & Hart, S. R. 1978. A general mixing equation with applications to Icelandic basalts. *Earth and Planetary Science Letters* 37, 380-392.
- Lash, G. G. 1985. Accretion-related deformation of an ancient (early Paleozoic) trenchfill deposit, central Appalachian origin. *Geological Society of America Bulletin* **96**, 1167-1178.

Laurie, J. R., Jago, J. B. & Jin-Song, B. 1995. Review of Tasmanian Cambrian Biostratigraphy. In: *Tasmania National Geoscience Mapping Accord Project* AGSO Record 1995/69. Australian Geological Survey Organisation, 29pp.

- Leaman, D. E. 1992. Cambrian Keys. Bulletin of the Geological Society of Australia 70, 124-148.
- Leaman, D. E., Brown, A. V. & Williams, E. 1987. Stratigraphic and structural relationships and evidence for Cambrian deformation at the western margin of the Mt. Read Volcanics, Tasmania. *Australian Journal of Earth Sciences* 34, 531-532.
- Lees, T. & Wright, J. 1994. Tectonostratigraphy of the Dundas Trough. In: *Contentious issues in Tasmanian geology*. Geological Society of Australia, Tasmania Division, Hobart, 9-10.
- Leigh, S. & Hartley, A. J. 1992. Mega-debris flow deposits from the Oligo-Miocene Pindos foreland basin, western mainland Greece; implications for transport mechanisms in ancient deep marine basins. *Sedimentology* **39**, 1003-1012.
- Lister, G. S. & Williams, P. F. 1983. The partitioning of deformation in flowing rock masses. *Tectonophysics* 92, 1-33.
- Lloyd, G. E., Ferguson, C. C. & Reading, K. 1982. A stress-transfer model for the development of extension fracture boudinage. *Journal of Structural Geology* 4, 355-372.
- Lloyd, G. E. & Knipe, R. J. 1992. Deformation mechanisms accommodating faulting of quartzite under upper crustal conditions. *Journal of Structural Geology* 14, 127-143.
- Lofgren, G. 1971. Spherulitic textures in glassy and crystalline rocks. Journal of Geophysical Research, A, Space Physics 76, 5635-5648.

Lofgren, G. 1974. An experimental study of plagioclase crystal morphology; isothermal crystallization. *American Journal of Science* 274, 243-273.

Loftus-Hills, G. D. 1964. The geology of the Dundas-Pieman River area (+maps). Unpublished B.Sc.Hons thesis, University of Tasmania.

- Lowe, D. R. 1979. Sediment gravity flows: their classification and some problems of application to natural flows and deposits. Society of Economic Paleontologists and Mineralogists Special Publication 27, 75-82.
- Lowe, D. R. 1982. Sediment gravity flows:II. Depositional models with special reference to the the deposits of high-density turbidity currents. *Journal of Sedimentary Petrology* 52, 279-297.
- Lucas, S. E. & Moore, J. C. 1986. Cataclastic deformation in accretionary wedges: Deep Sea Drilling Project Leg 66, southern Mexico, and on-land examples from Barbados and Kodiak Islands. In: Structural Fabric in Deep Sea Drilling Project Cores from Forearcs (edited by Moore, J. C.). Geological Society of America Memoir 166, 89-104.
- Macaire, J. J., Cocirta, C., Karrat, L. & Perruchot, A. 1994. Basalt weathering and fluvial sedimentary particles; comparison of two watersheds in the middle Atlas Mountains, Morocco. *Journal of Sedimentary Research* 64, 490-499.
- Malavieille, J. 1987. Kinematics of compressional and extensional ductile shearing deformation in a metamorphic core complex of the northeastern Basin and Range. *Journal of Structural Geology* 9, 541-554.
- Malavieille, J. & Lacassion, R. 1988. 'Bone-shaped' boudins in progressive shearing. Journal of Structural Geology 10, 335-345.
- Maltman, A. 1984. On the term 'soft-sediment deformation'. Journal of Structural Geology 6, 589-592.
- Mawer, C. K. 1987. Shear criteria in the Grenville Province, Ontario, Canada. Journal of Structural Geology 9, 531-539.
- Mawer, C. K. & Williams, P. F. 1991. Progressive folding and foliation development in a sheared, coticule-bearing phyllite. *Journal of Structural Geology* 13, 539-555.
- McLennan, S. M., Taylor, S. R., McCulloch, M. T. & Maynard, J. B. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. *Geochimica et Cosmochimica Acta* 54, 2015-2050.
- McPhie, J. & Allen, R. L. 1992. Facies architecture of mineralized submarine volcanic sequences: Cambrian Mt. Read Volcanics, western Tasmania. *Economic Geology* and the Bulletin of the Society of Economic Geologists 87, 587-596.
- McPhie, J., Doyle, M. & Allen, R. 1993. Volcanic Textures: a guide to the interpretation of volcanic textures, 198 pp. Tasmanian Government Printing Office.
 McPhie, J. & Hunns, S. R. 1995. Secondary welding of submarine, pumice-lithic
- McPhie, J. & Hunns, S. R. 1995. Secondary welding of submarine, pumice-lithic breccia at Mount Chalmers, Queensland, Australia. Bulletin of Volcanology 57, 170-178.
- Menendez, B., Zhu, W. & Wong, T. 1996. Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. *Journal of Structural Geology* 18, 1-16.
- Miall, A. D. 1995. Collision-related Foreland Basins. In: Tectonics of Sedimentary
 - Basins (edited by Busby, C. J. & Ingersoll, R. V.). Blackwell Science , 393-424.
- Middleton, G. V. 1970. Experimental studies related to problems of flysch sedimentation. In: Flysch sedimentology in North America (edited by Lajoie, J.). Geological Association of Canada Special Paper 7, 253-272.
- Middleton, G. V. & Hampton, M. A. 1973. Sediment gravity flows: mechanics of flow and deposition. In: *Turbidities and deep-water sedimentation* (edited by Sect, P.). *Society of Economic Paleontologists and Mineralogists*, 1-38.
- Mitra, G. 1978. Ductile deformation zones and mylonites; the mechanical processes involved in the deformation of crystalline basement rocks. *American Journal of Science* 278, 1057-1084.
- Mosher, S. & Berryhill, A. W. 1991. Structural analysis of progressive deformation within complex transcurrent shear zone systems: southern Narragansett Basin, Rhode Island. *Journal of Structural Geology* 13, 557-578.

Naylor, M. A. 1981. Debris flow (olistostromes) and slumping on a distal passive continental margin; the Palombini limestone-shale sequence of the Northern Apennines. *Sedimentology* **28**, 837-852.

Needham, D. T. 1987. Asymmetric extensional structures and their implications for the generation of melanges. *Geological Magazine* **124**, 311-318.

Needham, D. T. 1995. Mechanisms of melange formation; examples from SW Japan and southern Scotland. *Journal of Structural Geology* **17**, 971-985.

- Needham, D. T. & Mackenzie, J. S. 1988. Structural evolution of the Shimanto Belt accretionary complex in the area of the Gokase River, Kyushu, southwest Japan. Journal of the Geological Society of London 145, 85-94.
- Nesbitt, H. W. 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. *Nature* **279**, 206-210.

Nesbitt, H. W., Markovics, G. & Price, R. C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. *Geochimica et Cosmochimica Acta* 44, 1659-1666.

Newnham, L. A. 1975. A Lower Cambrian marker sequence in the Renison-Mount Lindsay area. In: Synposium on Lower Palaeozoic Geology of western Tasmania. Geological Society of Australia, Tasmanian Division.

Odonne, F. & Vialon, P. 1987. Hinge migration as a mechanism of superimposed folding. *Journal of Structural Geology* 9, 835-844.

Onishi, C. T. & Kimura, G. 1995. Change in fabric of melange in the Shimanto Belt, Japan: Change in relative convergence? *Tectonics* 14, 1273-1289.

Opik, A. A. 1951. Cambrian fossils from Leven Gorge, northern Tasmania. Bureau of Mineral Resources, Geology and Geophysics 59, 2pp.

Padmasiri, S. 1974. The geology of the Razorback Mine. Unpublished B.Sc.Hons thesis, University of Tasmania.

Passchier, C. W. & Simpson, C. 1986. Porphyroclast systems as kinematic indicators. Journal of Structural Geology 8, 831-843.

- Patterson, D. J. 1979. Geology and Mineralisation at Renison Bell, western Tasmania. Unpublished PhD thesis, University of Tasmania.
- Pearce, A. J. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Continental basalts and mantle xenoliths; papers prepared for a UK volcanic srudies group meeting at the University of Leicester (edited by Hawkesworth, C. J. & Norry, M. J.). Shiva , 230-249.

Pettijohn, F. J., Potter, P. E. & Siever, R. 1972. Sand and Sandstone, 618 pp. Springer-Verlag, Berlin.

Pickering, K. T., Hiscott, R. N. & Hein, F. J. 1989. Deep-marine environments: clastic sedimentation and tectonics, 416 pp. Unwin Hyman, London.

Platt, J. P. & Vissers, R. L. M. 1980. Extensional structures in anisotropic rocks. Journal of Structural Geology 2, 397-410.

Postma, G. 1986. Classification for sediment gravity-flow deposits based on flow conditions during sedimentation. *Geology* 14, 291-294.

Powell, C. M. 1974. Timing of slaty cleavage during folding of Precambrian rocks, northwest Tasmania. *Geological Society of America Bulletin* **85**, 1043-1060.

Powell, C. M. 1979. A morphological classification of rock cleavage. *Tectonophysics* 58, 21-34.

Ramsay, J. G. 1967. Folding and fracturing of rocks, 568 pp. McGraw-Hill, New York.

Ramsay, J. G. & Huber, M. I. 1983. The Techniques of Modern Structural Geology: Volume 1, 307 pp. Academic Press, London.

Ramsay, J. G. & Huber, M. I. 1987. The Techniques of Modern Structural Geology: Volume 2, 391 pp. Academic Press, London.

Rawlings, D. J. 1993. Mafic peperite from the Gold Creek Volcanics in the middle Proterozoic McArthur Basin, northern Territory. Australian Journal of Earth Sciences 40, 109-113.

Raymond, L. A. 1984. Classification of Melanges. In: Melanges: their Nature, Origin and Significance (edited by Raymond, L. A.). Geological Society of America Special Paper 198, 7-20. Roser, B. P. & Korsch, R. J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. *Chemical Geology* 67, 119-139.

Rubenach, M. J. 1967. The Serpentine Hill Complex. Unpublished B.Sc.Hons thesis, University of Tasmania.

Rubenach, M. J. 1973. The Tasmanian ultramafic-gabbro and ophiolite complexes. Unpublished Ph.D thesis, University of Tasmania.

Rubenach, M. J. 1974. The origin and emplacement of the Serpentine Hill Complex, western Tasmania. *Journal of the Geological Society of Australia* 21, 91-106.

Rutter, E. H., Maddock, R. H., Hall, S. H. & White, S. H. 1986. Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. *Pure and Applied Geophysics* **124**, 3-30.

Rutter, E. H. & White, S. H. 1979. The microstructures and rheology of fault gouges produced experimentally under wet and dry conditions at temperatures up to 400 degrees C. *Bulletin de Mineralogie* **102**, 101-109.

Sanderson, D. J. & Marchini, W. R. D. 1984. Transpression. Journal of Structural Geology 6, 449-458.

- Scott, T. E. & Nielsen, K. C. 1991. The effects of porosity on the brittle-ductile transition in sandstones. *Journal of Geophysical Research, B, Solid Earth and Planets* **96**, 405-414.
- Selkman, S. 1978. Stress and displacement analysis of boudinages by the finite-element method. *Tectonophysics* 44, 115-139.
- Selley, D. 1992a. A structural cross-section through the Boco Road area. In: Structure and mineralisation of western Tasmania: AMIRA Project P.291 4. University of Tasmania, 39-50.
- Selley, D. 1992b. Structure of the Dundas Mineral Field. In: *Project P.291: Structure and mineralisation of western Tasmania* **3.** University of Tasmania, 74-75.
- Selley, D. 1994. The depositional setting of basal Dundas Group sediments, western Tasmania. In: *Contentious issues in Tasmanian geology*. Geological Society of Australia, Tasmanian Division, Hobart, 102.
- Seymour, D. M. & Calver, C. R. 1995. Time-space diagram for Tasmania. NGMA TASGO Project
- Shanmugam, G., Bloch, R. B., Mitchell, S. M., Beamish, G. W. J., Hodgkinson, R. J., Damuth, J. E., Straume, T., Syvertsen, S. E. & Shields, K. E. 1995. Basin-floor fans in the North Sea: sequence stratigraphic models vs. sedimentary facies. *American Association of Petroleum Geologists Bulletin* 79, 477-512.
- Shanmugam, G., Spalding, T. D. & Rofheart, D. H. 1993. Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands (sandy contourites): an example from the Gulf of Mexico. American Association of Petroleum Geologists Bulletin 77, 1241-1259.
- Simonian, K. O. & Gass, I. G. 1978. Arakapas fault belt, Cyprus; a fossil transform fault. Geological Society of America Bulletin **89**, 1220-1230.
- Skilbeck, C. G. & Cawood, P. A. 1994. Provenance history of a Carboniferous Gondwana margin forearc basin, New England Fold Belt, eastern Australia: modal and geochemical constraints. Sedimentary Geology 93, 107-133.
- Smith, R. B. 1975. Unified theory of the onset of folding, boudinage, and mullion structure. *Geological Society of America Bulletin* **86**, 1601-1609.
- Sparks, S. R. J. & Sigurdsson, H. 1977. Magma mixing: a mechanism for triggering acid explosive eruptions. *Nature* 267, 315-318.

Stanley, D. J. 1987. Turbidite to current-reworked sand continuum in Upper Cretaceous rocks, U.S. Virgin Islands. *Marine Geology* 78, 143-151.

- Stanley, D. J. 1988. Turbidites reworked by bottom currents: Upper Cretaceous examples from St. Croix, U.S. Virgin Islands. Smithsonian Contributions to the Marine Sciences 33.
- Stanley, D. J. 1993. Model for turbidite-to-contourite continuum and multiple process transport in deep marine settings; examples in the rock record. Sedimentary Geology 82, 241-255.

Stauffer, P. H. 1967. Grain-flow deposits and their implications, Santa Ynez Mountains, California. Journal of Sedimentary Petrology 37, 487-508.

Stel, H. 1981. Crystal growth in cataclasites; diagnostic microstructures and implications. *Tectonophysics* **78**, 585-600.

- Stix, J. 1991. Subaqueous, intermediate to silicic-composition explosive volcanism; a review. *Earth Science Reviews* **31**, 21-53.
- Stow, D. A. V. & Holbrook, J. A. 1984. North Atlantic contourites: an overview. In: *Fine-grained sediments: deep-water processes and facies* (edited by Stow, D. A. V. & Piper, D. J. W.). *Geological Society Special Publication* 15, 245-256.
- Stow, D. A. V. & Lovell, J. P. B. 1979. Contourites: their recognition in modern and ancient sediments. *Earth Science Review* 14, 251-291.
- Stow, D. A. V. & Shanmugan, G. 1980. Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient Flysch sediments. *Sedimentary Geology* 25, 23-42.
- Swanson, M. T. 1992a. Late Acadian-Alleghenian transpressional deformation: evidence from asymmetric boudinage in the Casco Bay area, coastal Maine. *Journal of Structural Geology* 14, 323-341.
- Swanson, M. T. 1992b. Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation. *Tectonophysics* **204**, 223-242.
- Talbot, C. J. & Sokoutis, D. 1992. The importance of incompetence. *Geology* 20, 951-953.
- Tanner, L. H. & Hubert, J. F. 1991. Basalt breccias and congomerates in the lower Jurassic McCoy Brook Formation, Fundy Basin, Nova Scotia: differentiation of talus and debris-flow deposits. *Journal of Sedimentary Petrology* 61, 15-27.
- Taylor, S. R. & McLennan, S. M. 1985. The continental crust: an examination of the geochemical record preserved in sedimentary rocks, 321 pp. Blackwell, Oxford.
- Tchalenko, J. S. 1970. Similarities between shear zones of different magnitudes. Geological Society of America Bulletin 81, 1625-1640.
- Thomas, D. E. & Henderson, J. Q. 1945. Some fossils from the Dundas Series, Dundas. Papers and Proceedings of the Royal Society of Tasmania, 1-8.
- Turner, N. J. 1979. The boundary relationship of the Concert Schist and the Oonah Quartzite and Slate Correlate at Dundas. Papers and Proceedings of the Royal Society of Tasmania 113, 15-20.
- Turner, N. J. 1989. The Precambrian rocks. In: Geology and mineral resources of Tasmania (edited by Burrett, C. F. & Martin, E. L.). Geological Society of Australia Special Publication 15, 5-46.
- Turner, N. J., Black, L. P. & Kamperman, M. 1994. Pre-middle Cambrian stratigraphy, orogenesis and geochronology in western Tasmania. In: *Contentious issues in Tasmanian geology*. Geological Society of Australia, Tasmanian Division, Hobart, 37-46.
- Urai, J., Means, W. D. & Lister, G. S. 1986. Dynamic recrystallization of minerals. In: Mineral and Rock Deformation: Laboratory Studies - The Patterson Volume (edited by Hobbs, B. E. & Heard, H. C.). American Geophysical Union Geophysical Monograph 36, 161-199.
- Vollmer, F. W. & Bosworth, W. 1984. Formation of melange in a foreland basin overthrust setting: Example from the Taconic Orogen. In: *Melanges: their Nature, Origin and Signicance* (edited by Raymond, L. A.). *Geological Society of America Special Paper* 198, 53-70.
- Waldron, J. W. F., Turner, D. & Stevens, K. M. 1988. Stratal disruption and development of melange, western Newfoundland; effect of high fluid pressure in an accretionary terrain during ophiolite emplacement. *Journal of Structural Geology* 10, 861-873.
- White, J. D. L. & Busby, S. C. J. 1987. Deep marine arc apron deposits and syndepositional magmatism in the Alisitos Group at Punta Cono, Baja California, Mexico. Sedimentology 34, 911-927.
- White, M. (in prep.). Stratigraphy, volcanology and sedimentology of the Cambrian Tyndall Group, Mount Read volcanics, western Tasmania. Unpublished Ph.D thesis, University of Tasmania.

White, M. J. & McPhie, J. 1996. Stratigraphy and palaeovolcanology of the Cambrian Tyndall Group, Mt Read Volcanics, western Tasmania. Australian Journal of Earth Sciences 43, 147-160.

White, S. H., Burrows, S. E., Carreras, J., Shaw, N. D. & Humphreys, F. J. 1980. On mylonites in ductile shear zones. *Journal of Structural Geology* 1, 175-187.

- Williams, E. 1978. Tasman Fold Belt System in Tasmania. *Tectonophysics* 48, 159-205.
- Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. *Chemical Geology* 20, 325-343.
- Wohletz, K. H. 1983. Mechanisms of hydrovolcanic pyroclast formation; grain-size, scanning electron microscopy, and experimental studies. *Journal of Volcanology* and Geothermal Research 17, 31-63.
- Woodcock, N. H. 1990. Transpressive Acadian deformation across the Central Wales Lineament. *Journal of Structural Geology* **12**, 329-337.
- Woodward, N. B., Gray, D. R. & Elliot, C. G. 1993. Repeated thrusting and allochthoneity of Precambrian basement, northern Tasmania. Australian Journal of Earth Sciences 40, 297-311.
- Wronkiewicz, D. J. & Condie, K. C. 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. *Geochimica et Cosmochimica Acta* 51, 2401-2416.
- Zhang, J., Wong, T. F. & Davis, D. M. 1990. Micromechanics of pressure-induced grain crushing in porous rocks. *Journal of Geophysical Research* 95, 341-352.

Appendix A Whole Geochemical analyses of sedimentary rocks

:•.

	Suit	e 1A sandste	one					Suite 1A muds	one			
Sample		336	340	341	958	917	919	320	324	817	823	446
SiO2		55.36	52.02	54.76	52.07	54.93	54.49	53.86	52.91	53.99	57.51	58.51
TiO2		2.03	2.01	2.05	2.02	2.08	1.91	2.33	2.18	1.80	2.08	1.73
AI2O3		12.09	12.07	11.65	12.93	12.46	11.21	15.64	15.72	15.34	13.90	14.95
Fe2O3		12.32	12.42	12.38	12.14	14.64	12.44	13.34	14.02	11.42	12.33	11.47
MnO		0.14	0.17	0.14	0.11	0.07	0.12	0.05	0.30	0.12	0.38	0.12
MgO		4.74	4.66	4.84	5.30	5.86	5.76	4.87	4.82	4.54	4.30	4.36
CaO		3.79	5.78	4.78	4.68	0.55	3.27	0.32	0.66	2.47	1.14	0.32
Na2O		1.98	2.16	1.79	1.88	1.79	1.98	1.60	1.31	1.37	1.97	1.85
K20		1.49	1.41	1.35	1.52	1.47	1.05	2.72	2.53	2.82	1.25	2.22
P2O5		0.24	0.25	0.23	0.24	0.28	0.26	0.26	0.26	0.22	0.21	0.19
Loss(inc. S)		5.58	6.59	5.75	6.57	5.12	6.34	4.40	4.67	5.37	4.54	3.65
Sulphur	nd	nd	nd	nd	nd	nd	I	nd nd	nd	nd	nd	
Total		99.77	99.55	99.73	99.47	99.26	9 8 .83	99.40	99.38	99.47	99.59	99.37
La		29	31	37	28	46	41	41	39	35	26	30
Ce		56	61	60	62	86	72	85	83	73	59	64
Nd		30	32	31	32 .	48	41	43	40	35	30	30
Nb		22	24	25	24	36	35	28	27	25	25	21
Zr		211	219	223	229	274	267	258	245	227	236	200
Sr		88	102	92	92	91	112	37	38	80	80	46
Cr		188	187	207	362	876	1255	235	229	195	194	159
Ba		213	174	200	247	195	148	183	311	263	179	367
Sc		29	31	28	33	27	29	35	35	30	28	29
v		276	258	261	228	234	223	277	265	234	209	223
Y		40	42	41	36	50	46	44	48	40	43	39
Rb		71	56	53	64	59	45	110	110	126	57	91
Th		6	6	8	7	8	7	9	8	10	8	9
Ni		1.05	128	101	187	250	290	122	239	110	102	95
Pb		17	18	25	6	37	26	12	13	12	11	23

Table A.1 Analyses of lithic sandstones, mudstones and one basalt clast from suites 1 and 2 (Dundas and Que River regions)

Table A.1 (cont.)

	Suite 1B sandst	one			Suite	1B mudst	one			Basalt clast
Sample	196	211	1925	868		167	210	214	192M	339
SiO2	52.61	45.57	47.55	45.16		61.42	48.06	40.92	50.61	40.36
TIO2	2.87	2.65	3.10	2.66		2.44	2.53	3.50	2.48	2.52
AI2O3	12.15	14.61	12.44	12.83		15.09	16.54	11.10	14.08	14.19
Fe2O3	9.20	15.27	14.86	13.95		12.22	14.67	16.39	13.09	9.24
MnO	0.14	0.10	0.16	0.18		0.02	0.15	0.30	0.16	0.21
MgO	4.02	5.99	4.89	4.56		1.41	3.62	5.70	4.03	3.45
CaO	4.15	2.93	4.07	5.25		0.24	3.05	5.91	2.29	12.70
Na2O	0.22	1.04	3.15	5.36		0.56	0.66	0.61	5.06	5.56
K2O	1.96	0.96	0.13	0.01		2.73	2.57	1.78	0.29	0.34
P2O5	0.28	0.31	0.24	0.25		0.30	0.29	0.22	0.28	0.27
Loss(inc. S)	11.37	10.07	9.28	9.21		3.44	7.34	12.98	7.73	10.44
Sulphur	nd nd	nd	nd		nd	nd	nd	nc	1	nd
Total	98.97	99.49	99.87	99.43		99.87	99.48	99.42	100.09	99.28
La	22	24	26	22		49	36	28	27	14
Ce	57	56	55	52		104	75	59	59	36
Nd	26	29	27	27		51	38	30	29	24
Nb	29	31	33	26 ·		38	27	29	30	12
Zr	244	280	271	219		304	251	236	254	177
Sr	77	95	159	237		153	210	317	139	474
Cr	224	199	369	265		262	202	246	152	135
Ba	93	102	216	49		408	487	505	226	188
Sc	31	31	36	40		30	41	42	39	42
v	312	289	402	347		212	305	474	302	300
Y	33	36	45	38		47	46	43	41	38
Rb	100	40	7	1		109	107	105	14	9
Th	5	6	7	5		8	7	4	6	2
Ni	119	120	112	141		121	142	87	85	82
Pb	8	7	6	9		8	10	17	2	9

· * •

•

A2

Table A.1 (cont.)

	Suite 1C sandst	one		Suite 1C mudstone	Suite 2 sandsto	ne
Sample	218	386	890	216	D94	RL1
SIO2	67.89	66.65	60.97	57.12	56.18	64.40
TiO2	1.99	2.61	2.29	1.87	0.93	1.02
AI2O3	11.83	13.01	10.87	17.05	10.99	12.72
Fe2O3	8.16	8.46	11.58	11.06	7.85	8.54
MnO	0.09	0.03	0.12	0.03	0.19	0.13
MgO	2.27	2.19	3.20	3.33	4.45	4.17
CaO	0.41	0.36	1.83	0.37	7.72	2.92
Na2O	2.53	0.04	0.13	2.44	0.19	2.45
K2O	0.99	2.56	1.75	2.05	1.80	1.38
P2O5	0.16	0.28	0.27	0.26	0.13	0.15
Loss(inc. S)	3.40	3.22	6.07	3.76	9.47	2.10
Sulphur	nd nd	nd		nd	nd nd	
Total	99.73	99.41	99.07	99.34	99.89	99.98
La	24	40	57	30	22	25
Ce	60	84	126	60	43	48
Nd	28	46	61	32	21	23
Nb	24	33	37	24	10	12
Zr	286	333	379	219	125	163
Sr	59	16	53	56	120	148
Cr	132	306	231	132	254	284
Ba	178	614	169	402	705	198
Sc	21	31	20	36	35	27
v	187	290	172	211	198	142
Ŷ	36	40	49	45	32	32
Bb	39	110	79	86	115	126
Th	14		15	12	. 10	8
Ni	49	113	77	80	71	93
Pb	19	7	9	6	4	7
	. 5	-	-	-	•	-

.

	Suite	3 sandston	e			Suite	3 mudstor	ne				
Sample		835	839	858	222		899	824	D9 0	238	308	390
SiO2		53.60	67.82	68.71	67.93		59.50	57.87	61.75	66.25	70.83	57.83
TIO2		0.87	0.68	1.16	1.23		1.17	1.10	1.32	0.98	0.96	0.91
A 2O3		12.26	11.03	15.55	11.29		15.44	14.53	16.01	14.48	12.98	14.76
Fe2O3	5	8.00	5.66	3.24	6.65		7.91	8.87	8.20	6.61	4.02	5.73
MnO		0.34	0.10	0.01	0.05		0.07	0.15	0.04	0.03	0.01	0.11
MgO		4.95	2.24	1.31	2.97		3.86	3.54	3.65	3.48	2.01	3.19
CaO		5.63	2.66	0.21	1.87		1.61	3.25	0.33	0.13	0.04	4.26
Na2O		0.73	0.89	1.01	0.18		1.14	1.50	0.72	0.09	0.73	0.09
K2O		2.60	2.38	3.70	1.83		2.79	2.63	3.38	2.96	3.00	3.97
P2O5		0.16	0.15	0.15	0.16		0.19	0.22	0.24	0.15	0.13	0.14
Loss(inc. S)		10.78	5.91	3.94	5.29		5.58	5.73	4.08	4.83	5.21	8.57
Sulphur	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	
Total		99.92	99.52	98.99	99.46		99.27	99.39	99.72	100.00	99.91	99.56
La		28	28	36	39		33	38	37	30	28	31
Ce		63	57	81	82		71	80	63	64	63	68
Nd		28	25	36	35		32	36	34	26	29	29
Nb		13	11	16	17		16	17	16	16	16	16
Zr		171	166	258	275		177	182	172	164	160	205
Sr		105	56	36	39		104	123	73	12	26	76
Cr		171	201	530	327		161	175	168	166	169	171
Ba		341	209	453	215		503	364	382	502	373	515
Sc		21	18	23	18		24	26	26	22	23	24
v		148	126	173	153		242	176	186	164	215	144
Y		36	24	33	31		33	37	33	30	28	31
Rb		144	124	144	75		134	121	181	137	133	164
Th		11	· 10	13	12		11	12	9	13	14	14
Ni		66	60	160	91		98	82	94	62	72	81
Pb		20	5	129	1		30	13	16	16	34	10

11.

Table A.2 Analyses of lithic sandstones and mudstones from suite 3 (Dundas region)

Table A.2 (cont.)

	Suite 3 mudsto	one (cont.)									
Sample	884	22	456	135	808	813	452	453	458	367	811
SIO2	47.41	35.97	63.40	59.62	61.45	58.88	62.76	75.54	63.16	70.52	62.18
TIO2	0.85	0.78	1.44	1.23	1.35	1.38	1.12	0 .70	1.03	0.95	1.16
AI2O3	9.85	8.95	13.69	15.15	15.71	15.05	14.73	9.30	15.80	10.85	13.98
Fe2O3	4.64	5.77	9.41	8.41	8.55	9.59	9.49	6.64	8.05	6.27	8.66
MnO	0.17	0.23	0.06	0.10	0.09	0.12	0.05	0.05	0.05	0.03	0.09
MgO	5.33	7.71	3.95	5.22	4.16	5.02	3.46	2.74	3.46	4.36	4.37
CaO	10.77	14.41	0.24	3.21	0.22	2.70	0.17	0.07	0.09	0.07	3.03
Na2O	0.70	0.68	0.06	3.53	0.14	1.94	0.04	0.08	0.30	0.04	1.87
K20	2.63	2.40	3.01	0.15	4.03	2.04	3.47	1.63	3.18	2.30	1.96
P2O5	0.16	0.12	0.18	0.22	0.17	0.19	0.16	0 .09	0.13	0.16	0.17
Loss(inc. S)	16.98	22.39	3.97	3.13	3.39	2.68	3.97	2.85	4.21	3.72	1.92
Sulphur	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Total	99.48	99.41	99.40	99.97	99.26	99.59	99.42	99.69	99.49	99.29	99.39
La	28	30	27	30	27	31	37	24	43	25	23
Ce	60	62	62	65	59	55	74	55	87	53	50
Nd	27	31	26	34	28	28	33	28	45	26	23
Nb	16	16	22	18	17	16	19	12	18	12	15
Zr	245	174	261	226	193	200	242	200	230	147	161
Sr	196	256	18	370	27	133	25	32	23	15	169
Cr	269	284	223	185	185	19 8	190	128	180	141	155
Ba	544	519	246	44	542	312	295	206	290	261	254
Sc	19	22	26	21	26	27	23	12	24	24	25
v	108	111	186	157	206	217	166	95	155	186	228
Y	33	28	35	39	35	34	40	30	44	35	29
Rb	119	111	115	24	154	90	137	65	135	104	85
Th	14	11	11	13	11	10	13	10	15	9	9
Ni	49	179	107	85	99	87	100	56	77	45	74
РЬ	3	17	32	6	1	7	18	23	14	17	4

	Suite 4 sandsto	ne								
Sample	D3	D4	D9	D16	D35	D59	D7	D32	F7	Henry
SiO2	90.26	87.77	95.29	89.23	92.61	89.66	91.69	92.94	77.87	81.81
TIO2	0.25	0.26	0.39	0.34	0.28	0.39	0.28	0.19	0.50	0.49
AI2O3	3.25	3.85	2.53	3.82	3.95	6.11	3.48	2.49	11.66	8.45
Fe2O3	2.23	3.34	0.17	2.41	0.18	0.29	1.78	1.84	2.10	3.19
MnO	0.01	0.04	0.00	0.04	0.00	0.00	0.06	0.04	0.00	0.01
MgO	0.56	0.76	0.09	0.78	0.15	0.21	0.15	0.38	0.82	1.00
CaO	0.07	0.09	0.01	0.03	0.01	0.06	0.02	0.08	0.01	0.04
Na2O	0.09	0.10	0.04	0.02	0.05	0.11	0.05	0.04	0.11	0.12
K2O	0.44	0.66	0.62	0.91	1.03	1.60	0.91	0.57	3.34	1.88
P2O5	0.04	0.04	0.03	0.02	0.02	0.08	0.03	0.06	0.03	0.03
Loss(inc. S)	2.62	2.97	0.61	2.25	0.83	1.20	1.43	1.80	2.72	2.10
Sulphur	nd nd	nd	nd	nd	nd		0.58	0.06 nd	nd	
Total	99.82	99.88	99.76	99.84	99.11	99.71	99.88	100.43	99.15	99.14
						•				
La	22	20	27	22	19	27	18	18	38	36
Ce	49	45	60	45	43	61	55	47	84	73
Nd	21	19	25	22	17	25	21	22	37	32
Nb	8	9	8	8	7	10	6	4	13	13
Zr	242	195	492	313	193	273	257	171	272	267
Sr	20	19	31	18	20	18	11	17	27	16
Cr	15	16	11	15	14	26	12	9	62	37
Ba	48	75	77	103	106	190	74	74	684	206
Sc	1	3	1	3	1	6	2	1	11	9
v	20	24	13	19	17	30	17	18	58	46
Y	17	17	23	21	15	24	16	13	33	29
Rb	35	48	35	42	43	75	80	28	154	88
Th	7	7	7	6	5	10	7	3	15	11
Ni	15	14	3	3	2	3	5	4	25	17
Pb	59	26	82	4	9	8	1175	3	109	3

.

.

Table A.3 Analyses of quartz sandstones, mudstones and schistose rocks from suite 4 (Dundas and Farrell Rivuelt regions)

Table A.3 (cont.)

	Suite 4 Mudsto	one				
Sample	D2	D22	D33	D34	D52	
SIO2	62.26	63.98	71.46	68.61	68.53	
TIO2	0.66	0.64	0.78	0.85	0.67	
AI2O3	17.61	18.70	16.85	20.06	15.45	
Fe2O3	5.66	4.44	1.56	0.68	4.48	
MnO	0.07	0.03	0.02	0.00	0.04	
MgO	1.71	0.59	0.86	0.68	1.42	
CaO	0.11	0.00	0.04	0.01	0.10	
Na2O	0.32	0.24	0.28	0.22	0.16	
K2O	4.34	4.69	4.21	5.06	4.02	
P2O5	0.09	0.04	0.07	0.11	0.08	
Loss(inc. S)	6.53	6.40	3.77	3.87	4.69	
Sulphur	nd	3.27 nd	nd		0.08	
Total	99.36	99.75	99.91	100.13	99.64	
La	48	47	49	62	48	
Ce	102	96	105	141	99	
Nd	45	45	48	68	44	
Nb	21	13	19	21	21	
Zr	238	203	344	313	255	
Sr	73	51	70	85	43	
Cr	75	108	66	82	65	
Ba	549	508	594	592	432	
Sc	17	17	15	25	15	
v	102	121	85	112	101	
Y	40	44	47	83	40	
Rib	212	200	185	222	187	
Th	19	17	18	24	17	
NI	20	42	11	15	18	
Pb	6	45	11	5	12	

Table A.3 (cont.)

	Suite 4 schist							
Sample	D45	402	446	465	472	477	D48	D50
SiO2	60.93	62.08	67.60	63.42	62.05	60.58	61.79	60.31
TIO2	1.04	1.28	1.08	0.99	1.22	1.01	1.18	1.01
AI2O3	18.61	22.82	18.29	18.48	20.39	19.65	19.92	23.23
Fe2O3	7.41	1.79	2.07	5.94	4.18	7.08	5.38	1.98
MnO	0.04	0.00	0.00	0.01	0.00	0.02	0.00	0.00
MgO	2.16	0.86	1.64	1.60	1.59	2.20	1.98	1.56
CaO	0.04	0.00	0.01	0.00	0.14	0.05	0.01	0.03
Na2O	0.25	0.46	0.24	0.30	0.30	0.28	0.28	0.35
K20	4.22	6.13	5.68	4.39	5.44	4.69	5.78	6.99
P2O5	0.12	0.07	0.04	0.06	0.14	0.09	0.05	0.07
Loss(inc. S)	4.12	3.68	3.28	4.29	3.74	3.97	3.87	3.60
Sulphur	nd nd	nd	nd	nd	nd		0.42 nd	
Total	98.94	99.16	99.92	99.48	99.19	99.61	100.24	99.11
	50	60	50	. 46	60	57	60	60
	101	145	107	40	122	113	125	124
Nd	. 50	62	48	41	50	53	57	56
Nb	22	29	23	20	25	26	26	24
Zr	218	276	296	231	275	233	277	228
Sr	97	194	84	120	355	265	121	120
Cr	133	166	110	119	143	137	133	137
Ba	551	620	478	387	864	663	305	511
Sc	27	31	24	26	29	27	27	32
v	190	228	157	189	203	193	166	188
Y	44	49	47 ·	40	50	42	50	55
Rb	194	275	214	189	248	230	250	273
Th	17	22	19	19	18	18	18	19
Ni	35	6	9	27	55	53	1138	21
Pb	6	56	34	9	9	34	5	5

2 7 <u>2</u> 2

A8

Appendix B

Electron microprobe analyses of Cr-spinels in sedimentary rocks

Sample	924	924	924	924	924	924	924	924	924	924		
Ident	1	2	3	4	5	6	7	8	9	10		
SIO2	0.03	0.01	0.01	0.02	0.00	0.02	0.01	0.00	0.01	0.00		
TIO2	0.06	0.06	0.09	0.08	0.08	0.05	0.09	0.09	0.06	0.05		
A12O3	12.68	12.87	17.37	9.90	12.62	9.09	20.16	20.66	13.00	14.60		
Cr2O3	55.82	55.11	50.89	57.23	56.10	57.65	45.31	44.50	54.09	51.88		
Fe2O3	2.86	3.16	2.30	3.29	2.82	4.13	4.78	4.46	2.86	2.47		
MgO	11.32	11.17	11.88	8.71	11.58	9.09	10.93	10.72	8.90	7.78		
MnO	0.32	0.48	0.31	0.56	0.47	0.50	0.39	0.35	0.38	0.33		
FeO	16.01	16.02	15.76	19.38	15.54	18.67	7.84	18.05	19.68	21.67		
NIO	0.09	0.10	0.11	0.05	0.00	0.11	0.07	0.10	0.06	0.00		
ZnO	0.05	0.07	0.03	0.05	0.07	0.07	0.07	0.05	0.08	0.07		
TOTAL	99.24	99.05	98.74	99.26	99.27	99.38	99.64	98.99	99.12	98.85		
Sample	917	917	917	917	917	917	917	917	917	917	917	917
Ident	1	2	3	4	5	6	7	8	9	10	11	12
SiO2	0.00	0.00	0.05	0.00	0.00	0.00	0.05	0.01	0.05	0.01	0.03	0.03
TIO2	0.05	0.07	0.09	0.02	0.04	0.12	0.01	0.09	0.06	0.05	0.06	0.22
AI2O3	10.00	11.41	14.41	10.24	17.39	10.32	11.37	14.49	12.12	11.59	11.48	14.92
Cr2O3	56.11	55.96	53.61	57.30	47.21	56.18	55. 77	47.90	51.33	56.86	54.89	46.23
Fe2O3	4.28	3.86	2.66	3.65	5.61	4.34	3.59	7.33	6.34	3.11	3.73	7.99
MgO	7.74	9.60	10.34	9.46	9.45	8.49	9.14	7.66	7.34	11.23	7.51	6.40
MnO	0.52	0.48	0.34	0.42	0.43	0.54	0.45	0.48	0.61	0.37	0.44	0.41
FeO	21.18	18.57	17.85	18.62	19.64	20.05	19.15	21.87	21.91	15.91	21.84	24.05
NIO	0.00	0.08	0.10	0.02	0.14	0.05	0.05	0.15	0.04	0.12	0.04	0.14
ZnO	0.03	0.03	0.06	0.04	0.07	0.06	0.08	0.07	0.07	0.06	0.05	0.09
TOTAL	99.90	100.06	99.50	99.75	99.98	100.14	99.67	100.04	99.87	99.32	100.06	100.47

. 11.

Table B.1 Analyses of detrital Cr-spinels from suite 1A (Dundas region)

L.

Sample	917	917	917	917	917	917	917	917	917	917	917	917
Ident	13	14	15	16	17	18	19	20	21	22	23	24
SiO2	0.03	0.00	0.02	0.03	0.02	0.22	0.00	0.00	0.00	0.00	0.05	0.02
TIO2	0.01	0.02	0.01	0.03	0.16	0.18	0.08	0.03	0.04	0.05	0.04	0.20
AI2O3	11.70	12.28	19.37	12.56	14.28	14.63	14.51	12.47	12.30	14.33	16.69	15.28
Cr2O3	57.00	54.15	48.41	55.11	52.03	35.86	48.87	54.48	54.75	52.21	50.59	46.53
Fe2O3	2.77	4.05	3.42	3.19	3.85	18.26	6.55	3.79	3.56	3.83	3.30	6.58
MgO	10.71	9.14	12.27	9.67	9.21	5.61	7.74	10.21	8.73	9.18	9.81	5.98
MnO	0.45	0.44	0.33	0.36	0.40	0.39	0.50	0.32	0.45	0.41	0.47	0.46
FeO	16.86	19.25	15.79	18.68	19.55	25.09	21.87	17.66	20.06	19.65	19.14	24.48
NIO	0.03	0.00	0.07	0.05	0.05	0.11	0.08	0.04	0.06	0.05	0.07	0.15
ZnO	0.04	0.09	0.04	0.04	0.05	0.10	0.07	0.05	0.05	0.06	0.07	0.08
TOTAL	99.59	99.42	99.73	99.71	99.60	100.45	100.26	99.04	100.00	99.76	100.23	99.77

Sample	917	336	336	336	336	336	336	336	336	336	336	336
ident	25	1	2	3	4	5	6	7	8	9	10	11
SIO2	0.00	0.04	0.11	0.11	0.04	0.07	0.05	0.06	0.05	0.08	0.03	0.27
TIO2	0.02	2.88	1.15	1.13	2.12	4.04	1.47	1.36	1.39	1.70	2.00	0.71
AI2O3	10.87	14.67	11.37	12.31	12.72	15.56	13.56	12.72	12.04	12.26	14.13	11.70
Cr2O3	55.48	41.80	46.84	52.14	44.89	32.47	47.99	48.72	47.22	46.48	41.63	43.74
Fe2O3	3.45	9.94	9.42	5.98	11.34	19.49	8.00	8.24	8.08	10.57	12.28	8.28
MgO	7.61	7.47	5.20	11.22	10.17	11.85	10.23	10.33	5.91	10.16	8.17	2.45
MnO	0.40	0.41	0.37	0.34	0.35	0.27	0.33	0.68	0.39	0.29	0.36	1.92
FeO	21.45	22.05	25.26	16.07	17.57	15.25	17.66	16.83	24.06	17.53	20.94	25.26
NIO	0.02	0.07	0.03	0.16	0.20	0.27	0.27	0.17	0.07	0.20	0.21	0.14
ZnO	0.01	0.05	0.06	0.02	0.02	0.03	0.05	0.30	0.06	0.07	0.01	1.61
TOTAL	99.32	99.38	99.80	99.48	99.43	99.30	99.60	99.39	99.26	99.32	99.75	96.07

Table B.1 (cont.)

,

Sample Ident	336 12	336 13	336 14	336 15	336 16	336 17	336 18	336 19	336 20	336 21	336 22	336 23
SIO2	0.08	0.01	0.09	0.04	0.06	0.06	0.11	0.09	0.06	0.01	0.07	0.05
TIO2	1.65	0.51	1.72	1.33	1.20	0.81	1.52	1.12	3.07	1.55	1.02	1.30
AI2O3	11.84	21.76	12.23	10.16	13.55	10.76	12.86	11.95	18.75	10.28	12.21	13.83
Cr2O3	47.82	37.87	46.89	49.90	48.13	54.68	46.56	49.77	32.59	47.52	46.67	47.88
Fe2O3	8.40	9.43	10.12	8.93	7.75	4.12	9.29	9.37	15.05	11.98	8.78	8.37
MgO	8.31	9.72	10.10	8.00	9.53	10.05	9.90	12.33	8.90	9.74	5.60	10.33
MnO	0.26	0.44	0.31	0.46	0.34	0.75	0.26	0.93	0.33	0.49	0.34	0.35
FeO	20.23	19.75	17.67	20.51	18.79	16.81	17.93	13.60	20.41	17.78	24.70	17.74
NIO	0.19	0.14	0.18	0.11	0.21	0.17	0.16	0.19	0.16	0.13	0.01	0.25
ZnO	0.04	0.07	0.00	0.05	0.05	0.05	0.01	0.02	0.05	0.04	0.08	0.02
TOTAL	98.82	99.71	99.29	99.49	99.59	98.26	98.59	99.36	99.36	99.51	99.48	100.10
Sample	336	336	336	958	958	958	958	958	958	958	958	958
Ident	24	25	26	1	2	3	4	5	6	7	8	9
SiO2	0.04	0.21	0.09	0.04	0.04	0.02	0.00	0.07	0.02	0.01	0.03	0.02
TiO2	1.44	3.19	1.27	0.03	0.04	0.03	0.01	0.04	0.00	0.02	0.04	0.00
AI2O3	12.41	18.04	12.84	6.93	6.76	6.91	3.17	6.88	2.15	3.26	6.94	6.78
Cr2O3	48.92	29.61	48.52	61.64	61.94	61.82	68.76	62.26	69.31	68.80	61.83	61.69
Fe2O3	8.37	16.77	7.93	2.05	1.68	1.53	0.00	4.24	0.00	0.00	1.79	1.89
MgO	10.21	6.24	10.43	8.03	7.78	7.33	9.58	13.39	7.94	9.56	7.95	7.66
MnO	0.27	0.74	0.20	0.49	0.65	0.37	0.64	0.18	0.44	0.42	0.40	0.61
FeO	17.65	23.69	17.17	20.10	20.29	21.32	16.75	12.03	19.59	17.03	20.33	20.43
NIO	0.15	0.15	0.19	0.05	0.00	0.00	0.08	0.17	0.04	0.12	0.01	0.03
ZnO	0.05	0.13	0.04	0.03	0.03	0.04	0.08	0.00	0.08	0.08	0.05	0.10
TOTAL	99.50	98.78	98.68	99.41	99.22	99.38	99.08	99.27	99.56	99.29	99.35	99.20

.

Table B.1 (cont.)

,

.

Table B.1 (cont.)

.

Sampie	958	958	
Ident	10	11	
SIO2	0.01	0.03	
TiO2	0.03	0.06	
AI2O3	16.71	6.91	
Cr2O3	51.29	61.60	
Fe2O3	2.07	1.94	
MgO	10.00	7.87	
MnO	0.46	0.43	
FeO	18.67	20.34	
NIO	0.00	0.05	
ZnO	0.01	0.05	
TOTAL	99.25	99.27	

1., "

Sample	924	924	924	924	924	924	924	924	924	924		
ldent	1	2	3	4	5	6	7	8	9	10		
SIO2	0.03	0.01	0.01	0.02	0.00	0.02	0.01	0.00	0.01	0.00		
TIO2	0.06	0.06	0.09	0.08	0.08	0.05	0.09	0.09	0.06	0.05		
A12O3	12.68	12.87	17.37	9.90	12.62	9.09	20.16	20.66	13.00	14.60		
Cr2O3	55.82	55.11	50.89	57.23	56.10	57.65	45.31	44.50	54.09	51.88		
Fe2O3	2.86	3.16	2.30	3.29	2.82	4.13	4.78	4.46	2.86	2.47		
MgO	11.32	11.17	11.88	8.71	11.58	9.09	10.93	10.72	8.90	7.78		
MnO	0.32	0.48	0.31	0.56	0.47	0.50	0.39	0.35	0.38	0.33		
FeO	16.01	16.02	15.76	19.38	15.54	18.67	7.84	18.05	19. 6 8	21.67		
NIO	0.09	0.10	0.11	0.05	0.00	0.11	0.07	0.10	0.06	0.00		
ZnO	0.05	0.07	0.03	0.05	0.07	0.07	0.07	0.05	0.08	0.07		
TOTAL	99.24	99.05	98.74	99.26	99.27	99.38	99.64	98.99	99.12	98.85		
Sample	917	917	917	917	917	917	917	917	917	917	917	917
Ident	1	2	3	4	5	6	7	8	9	10	11	12
SiO2	0.00	0.00	0.05	0.00	0.00	0.00	0.05	0.01	0.05	0.01	0.03	0.03
TiO2	0.05	0.07	0.09	0.02	0.04	0.12	0.01	0.09	0.06	0.05	0.06	0.22
AI2O3	10.00	11.41	14.41	10.24	17.39	10.32	11.37	14.49	12.12	11.59	11.48	14.92
Cr2O3	56.11	55.96	53.61	57.30	47.21	56.18	55.77	47.90	51.33	56.86	54.89	46.23
Fe2O3	4.28	3.86	2.66	3.65	5.61	4.34	3.59	7.33	6.34	3.11	3.73	7.99
MgO	7.74	9.60	10.34	9.46	9.45	8.49	9.14	7. 6 6	7.34	11.23	7.51	6.40
MnO	0.52	0.48	0.34	0.42	0.43	0.54	0.45	0.48	0.61	0.37	0.44	0.41
FeO	21.18	18.57	17.85	18.62	19.64	20.05	19.15	21.87	21.91	15.91	21.84	24.05
NIO	0.00	0.08	0.10	0.02	0.14	0.05	0.05	0.15	0.04	0.12	0.04	0.14
ZnO	0.03	0.03	0.06	0.04	0.07	0.06	0.08	0.07	0.07	0.06	0.05	0.09
TOTAL	99.90	100.06	99.50	99.75	99.98	100.14	99.67	100.04	99.87	99.32	100.06	100.47

Table B.1 Analyses of detrital Cr-spinels from suite 1A (Dundas and Que river regions)

	.)											
Sample	917	917	917	917	917	917	917	917	917	917	917	9 1
Ident	13	14	15	16	17	18	19	20	21	22	23	2
SIO2	0.03	0.00	0.02	0.03	0.02	0.22	0.00	0.00	0.00	0.00	0.05	0.0
TiO2	0.01	0.02	0.01	0.03	0.16	0.18	0.08	0.03	0.04	0.05	0.04	0.2
AI2O3	11.70	12.28	19.37	12.56	14.28	14.63	14.51	12.47	12.30	14.33	16.69	15.2
Cr2O3	57.00	54.15	48.41	55.11	52.03	35.86	48.87	54.48	54.75	52.21	50.59	46.5
Fe2O3	2.77	4.05	3.42	3.19	3.85	18.26	6.55	3.79	3.56	3.83	3.30	6.5
MgO	10.71	9.14	12.27	9.67	9.21	5.61	7.74	10.21	8.73	9.18	9.81	5.9
MnO	0.45	0.44	0.33	0.36	0.40	0.39	0.50	0.32	0.45	0.41	0.47	0.4
FeO	16.86	19.25	15.79	18.68	19.55	25.09	21.87	17.66	20.06	19.65	19.14	24.4
NIO	0.03	0.00	0.07	0.05	0.05	0.11	0.08	0.04	0.06	0.05	0.07	0.1
ZnO	0.04	0.09	0.04	0.04	0.05	0.10	0.07	0.05	0.05	0.06	0.07	0.0
TOTAL	99.59	99.42	99.73	99.71	99.60	100.45	100.26	99.04	100.00	99.76	100.23	99.7
Sample	917	336	336	336	336	336	336	336	336	336	336	33
Ident	25	1	2	3	4	5	6	7	8	9	10	1
SiO2	0.00	0.04	0.11	0.11	0.04	0.07	0.05	0.06	0.05	0.08	0.03	0.2
TIO2	0.02	2.88	1.15	1.13	2.12	4.04	1.47	1.36	1.39	1.70	2.00	0.7
AI2O3	10.87	14.67	11.37	12.31	12.72	15.56	13.56	12.72	12.04	12.26	14.13	11.7
Cr2O3	55.48	41.80	46.84	52.14	44.89	32.47	47.99	48.72	47.22	46.48	41.63	43.7
Fe2O3	3.45	9.94	9.42	5.98	11.34	19.49	8.00	8.24	8.08	10.57	12.28	8.2
MgO	7.61	7.47	5.20	11.22	10.17	11.85	10.23	10.33	5.91	10.16	8.17	2.4
MnO	0.40	0.41	0.37	0.34	0.35	0.27	0.33	0.68	0.39	0.29	0.36	1.9
	21.45	22.05	25.26	16.07	17.57	15.25	17.66	16.83	24.06	17.53	20.94	25.2
FeO		0.07	0.03	0.16	0.20	0.27	0.27	0.17	0.07	0.20	0.21	0.1
FeO NIO	0.02	0.07										
FeO NiO ZnO	0.02 0.01	0.05	0.06	0.02	0.02	0.03	0.05	0.30	0.06	0.07	0.01	1.6

a Cara

÷...

B6

Table B.1 (cont	i.)											
Sample	336	336	336	336	336	336	336	336	336	336	336	336
Ident	12	13	14	15	16	17	18	19	20	21	22	23
SiO2	0.08	0.01	0.09	0.04	0.06	0.06	0.11	0.09	0.06	0.01	0.07	0.05
TIO2	1.65	0.51	1.72	1.33	1.20	0.81	1.52	1.12	3.07	1.55	1.02	1.30
AI2O3	11.84	21.76	12.23	10.16	13.55	10.76	12.86	11.95	18.75	10.28	12.21	13.83
Cr2O3	47.82	37.87	46.89	49.90	48.13	54.68	46.56	49.77	32.59	47.52	46.67	47.88
Fe2O3	8.40	9.43	10.12	8.93	7.75	4.12	9.29	9.37	15.05	11.98	8.78	8.37
MgO	8.31	9.72	10.10	8.00	9.53	10.05	9.90	12.33	8.90	9.74	5.60	10.33
MnO	0.26	. 0.44	0.31	0.46	0.34	0.75	0.26	0.93	0.33	0.49	0.34	0.35
FeO	20.23	19.75	17.67	20.51	18.79	16.81	17.93	13.60	20.41	17.78	24.70	17.74
NiO	0.19	0.14	0.18	0.11	0.21	0.17	0.16	0.19	0.16	0.13	0.01	0.25
ZnO	0.04	0.07	0.00	0.05	0.05	0.05	0.01	0.02	0.05	0.04	0.08	0.02
TOTAL	98.82	99.71	99 .29 .	99.49	99.59	98.26	98.59	99.36	99.36	99.51	99.48	100.10
Sample	336	336	336	958	958	958	958	958	958	958	958	958
Ident	24	25	26	1	2	3	4	5	6	7	8	9
SIO2	0.04	0.21	0.09	0.04	0.04	0.02	0.00	0.07	0.02	0.01	0.03	0.02
TIO2	1.44	3.19	1.27	0.03	0.04	0.03	0.01	0.04	0.00	0.02	0.04	0.00
AI2O3	12.41	18.04	12.84	6.93	6.76	6.91	3.17	6.88	2.15	3.26	6.94	6.78
Cr2O3 /	48.92	29.61	48.52	61.64	61.94	61.82	68.76	62.26	69.31	68.80	61.83	61.69
Fe2O3	8.37	16.77	7.93	2.05	1.68	1.53	0.00	4.24	0.00	0.00	1.79	1.89
MgO	10.21	6.24	10.43	8.03	7.78	7.33	9.58	13.39	7.94	9.56	7.95	7.66
MnO	0.27	0.74	0.20	0.49	0.65	0.37	0.64	0.18	0.44	0.42	0.40	0.61
FeO	17.65	23.69	17.17	20.10	20.29	21.32	16.75	12.03	19.59	17.03	20.33	20.43
NiO	0.15	0.15	0.19	0.05	0.00	0.00	0.08	0.17	0.04	0.12	0.01	0.03
ZnO	0.05	0.13	0.04	0.03	0.03	0.04	0.08	0.00	0.08	0.08	0.05	0.10
TOTAL	99.50	98.78	98.68	99.41	99.22	99.38	99.08	99.27	99.56	99.29	99.35	99.20

• • •

B7

.

-

Sample	958	958	958	958	958	958	958	958	958	958	958	958
Ident	10	11	12	13	14	14 15	16	17	18	19	20	21
SIO2	0.01	0.03	0.03	0.05	0.02	0.05	0.05	0.08	0.08	0.01	0.05	0.06
TIO2	0.03	0.06	0.05	0.05	0.04	0.05	0.04	0.03	0.00	0.06	0.02	0.00
AI2O3	16.71	6.91	6.92	7.12	7.55	6.86	7.00	5.63	7.00	7.07	2.35	3.34
Cr2O3	51.29	61.60	61.66	61.65	60.81	61.56	61.70	65.03	61.93	61.43	69.02	68.96
Fe2O3	2.07	1.94	1.40	2.22	2.27	1.83	1.91	0.82	4.56	2.18	0.15	0.00
MgO	10.00	7.87	7.33	8.02	7.88	7.63	7.96	9.56	13.57	7.89	8.11	9.73
MnO	0.46	0.43	0.49	0.40	0.42	0.55	0.41	0.94	0.33	0.49	0.59	0.37
FeO	18.67	20.34	21.03	20.45	20.55	20.59	20.29	17.05	11.70	20.34	19.31	17.24
NIO	0.00	0.05	0.02	0.04	0.00	0.00	0.09	0.02	0.08	0.07	0.00	0.00
ZnO	0.01	0.05	0.08	0.03	0.06	0.06	0.03	0.07	0.02	0.09	0.03	0.02
TOTAL	99.25	99.27	99.01	100.03	99.66	99.17	99.48	99.24	99.26	99.63	99.62	99.73

.

.

1.12

.

Sample	958	958	958	958
Ident	22	23	24	25
SIO2	0.03	0.05	0.01	0.04
TIO2	0.06	0.03	0.08	0.08
AI203	6.98	7.11	7.54	7.58
Cr2O3	61.71	61.29	60.68	60.26
Fe2O3	2.28	2.12	2.23	2.24
MgO	8.05	7.65	8.32	7.32
MnO	0.57	0.49	0.47	0.40
FeO	20.14	20.77	19.68	21.38
NIO	0.05	0.00	0.03	0.00
ZnO	0.05	0.07	0.03	0.07
TOTAL	99.92	99.59	99.06	99.36

Table B.1 (cont.)

Sample	192	192	192	192	192	192	192	192	192	192	192
Ident	1	2	3	4	5	6	7	8	9	10	11
SiO2	0.04	0.04	0.94	0.05	0.08	0.07	0.04	0.25	0.06	0.09	0.09
TiO2	2.07	1.70	1.78	1.82	1.58	1.92	1.58	2.34	1.20	0.83	1.32
AI2O3	14.27	11.46	15.65	11.86	10.72	14.75	13.83	10.98	12.81	10.22	14.17
Cr2O3	44.06	48.73	46.28	47.86	50.60	41.67	46.73	43.34	46.52	45.61	47.80
Fe2O3	10.91	9.59	7.58	9.18	9.03	9.98	7.87	11.56	7.63	2.15	7.26
MgO	11.40	10.50	13.98	9.16	11.79	6.57	8.48	4.44	5.17	0.03	11.03
MnO	0.44	0.25	0.25	0.31	0.27	0.50	0.40	0.46	0.39	0.14	0.29
FeO	15.80	16.99	12.32	19.11	14.84	23.00	20.51	26.11	25.14	25.61	16.36
NiO	0.15	0.24	0.14	0.18	0.16	0.20	0.08	0.07	0.18	0.27	0.15
ZnO	0.03	0.03	0.05	0.05	0.02	0.09	0.02	0.06	0.10	4.63	0.05
TOTAL	99.17	99.54	98.96	99.57	99.07	98.76	99.54	99.62	99.21	89.60	98.50
Semole	192	192	192	192	192	192	192	192	192	192	192
Ident	12	13	14	15	16	17	18	19	20	21	22
SiO2	0.10	0.04	0.12	0.03	0.06	0.07	0.06	0.06	0.05	0.06	0.01
TiO2	1.40	1.39	1.89	2.05	1.29	1.81	1.99	1.71	1.26	1.74	1.65
AI203	12.59	12.71	11.27	12.78	12.68	12.85	11.22	12.76	13.76	15.91	13.30
Cr2O3	48.75	44.79	43.93	45.32	47.73	45.52	47.27	45.70	45.95	46.74	43.86
Fe2O3	7.75	10.04	8.39	10.96	8.60	10.50	9.40	10.17	8.30	6.63	8.82
MgO	9.40	6.28	4.62	9.78	8.95	9.21	8.54	9.45	7.17	11.05	4.00
MnO	0.37	0.38	0.37	0.30	0.42	0.46	0.47	0.37	0.32	0.28	0.92
FeO	18.75	23.57	23.36	18.32	19.48	19.17	19.37	18.51	22.50	16.95	26.66
NIO	0.17	0.08	0.11	0.18	0.07	0.09	0.24	0.20	0.10	0.17	0.04
ZnO	0.05	0.07	1.52	0.08	0.08	0.04	0.13	0.07	0.05	0.02	0.08
TOTAL	99.34	99.35	95.57	99.79	99.35	99.71	98.68	98.99	99.45	99.53	99.32

Table B.2 Analyses of detrital Cr-spinels from suite 1B (Dundas region)

.

Sample	192	192	192	192	868	868	868	868	868	868	868
Ident	2 3	24	25	26	1	3	6	7	8	9	10
SiO2	0.062	0.063	0.025	0.096	0.05	0.12	0.05	0.37	0.05	0.05	0.08
TiO2	2.399	1.703	2.853	1.098	1.21	2.13	0.81	1.48	1.55	1.99	1.37
A12O3	12.295	13.334	18.547	12.045	19.21	13.23	25.78	17.66	12.95	13.49	13.62
Cr2O3	42.932	45.62	39.844	49.511	40.44	41.59	34.48	37.63	44.33	44.24	47.16
Fe2O3	10.636	8.759	9.452	7.195	9.57	12.19	9.40	12.72	10.06	11.42	8.14
MgO	5.137	7.686	11.989	7.84	11.35	7.79	13.12	9.88	7.40	11.24	10.09
MnO	0.292	0.253	0.555	0.417	0.19	0.24	0.35	0.34	0.44	0.32	0.40
FeO	24.961	21.503	15.281	21.145	16.95	21.12	15.20	18.81	21.50	15.92	17.67
NIO	0.146	0.222	0.177	0.129	0.17	0.19	0.15	0.07	0.18	0.19	0.14
ZnO	0.348	0.038	0.083	0.016	0.00	0.08	0.01	0.02	0.03	0.03	0.04
TOTAL	99.208	99.181	98.806	99.492	98.67	99.34	98.97	98.49	98.89	98.71	99.81
Sample	868	868	868	868	868	868	868	868	868	868	868
Ident	11	12	13	14	15	16	17	18	19	20	21
SiO2	0.06	0.06	0.09	0.05	0.05	0.08	0.10	0.08	0.08	0.03	0.10
TiO2	1.69	2.75	1.81	1.94	1.58	1.25	1.77	1.73	2.44	2.31	1.28
AI2O3	13.56	14.02	13.20	10.22	12.19	13.77	13.36	12.81	12.80	11.09	14.00
Cr2O3	45.87	40.73	44.87	45.96	45.78	46.84	45.90	45.02	42.21	44.74	46.93
Fe2O3	10.67	13.64	11.04	13.09	11.96	8.17	11.30	11.29	13.77	13.72	7.87
MgO	11.33	10.86	10.31	10.44	10.97	8.81	12.52	10.83	10.66	10.77	9.28
MnO	0.34	0.28	0.29	0.37	0.32	0.40	0.22	0.35	0.20	0.31	0.30
FeO	16.08	16.69	17.45	16.55	16.21	19.89	14.22	16.29	16.82	16.49	19.21
NIO	0.21	0.18	0.22	0.15	0.26	0.12	0.28	0.24	0.29	0.21	0.15
ZnO	0.01	0.04	0.03	0.05	0.01	0.04	0.02	0.03		0.01	0.04
TOTAL	99.25	99.31	98.82	99.34	99.37	99.68	98.66	99.26	99.68	99.15	99.65

Table B.2 (cont.)

Table B.2 (cont.)

Sample	868	868	868	868	868
Ident	22	2 3	24	2 5	26
0100	0.40	0.05	0.40		
5102	0.10	0.05	0.10	0.03	0.06
TIO2	0.61	2.30	1.17	1.84	1.30
A1203	25.62	13.86	13.79	11.41	15.49
Cr2O3	34.37	41.74	46.13	42.43	45.42
Fe2O3	9.84	13.27	7.29	14.89	8.60
MgO	12.72	10.87	6.25	9.08	9.81
MnO	0.34	0.29	0.41	0.39	0.28
FeO	15.85	16.60	23.67	18.85	18.88
NIO	0.18	0.23	0.15	0.17	0.18
ZnO	0.02	0.03	0.03	0.05	0.05
TOTAL	99.24	98.99	99.14	100.07	100.07

;

. 14

Sample	D166	D166	D166	D166	150A	150A	150A	150A	150A	150A
Ident	.1	2	3	4	1	2	3	4	5	6
SIO2	0.00	0.02	0.00	0.00	0.10	0.03	0.02	0.00	0.02	0.00
TiO2	0.01	0.04	0.03	0.06	0.01	0.00	0.01	0.04	0.13	0.00
A12O3	4.01	24.70	16.85	23.36	1.40	3.25	3.18	3.88	8.69	4.26
Cr2O3	63.31	44.64	52.10	43.18	69.37	66.88	67.61	66.77	59.69	66.10
Fe2O3	3.38	0.96	1.12	3.18	3.62	1.13	0.52	0.41	1.74	1.18
MgO	8.08	13.22	10.17	10.97	12.87	8.10	8.73	8.99	8.10	9.49
MnO	1.30	0.32	0.42	0.42	3.90	0.60	0.40	0.44	0.43	0.36
FeO	18.47	14.89	18.30	18.11	8.39	19.30	18.44	17.97	20.23	17.38
NIO	0.07	0.16	0.12	0.16	0.11	0.05	0.02	0.02	0.03	0.09
ZnO	0.02	0.05	0.07	0.08	0.10	0.05	0.04	0.04	0.08	0.04
TOTAL	98.65	99.01	99.17	99.53	99.87	99.37	98.96	98.56	99.13	98.89
Sample	150A	150A	1 5 0 A							
ident	7	8	9							
SiO2	0.03	0.00	0.00							
TIO2	0.02	0.00	0.02							
AI2O3	5.27	3.18	3.09							

Ł.

.

......

Table B.3 Analyses of detrital Cr-spinels from suite 2 (Dundas region)

Sample	150A	150A	150A
Ident	7	8	9
SiO2	0.03	0.00	0.00
TIO2	0.02	0.00	0.02
A12O3	5.27	3.18	3.09
Cr2O3	66.37	68.51	67.55
Fe2O3	0.72	0.46	0.43
MgO	13.32	9.37	7.71
MnO	2.77	0.38	0.53
FeO	14.18	17.57	20.00
NiO	0.02	0.13	0.00
ZnO	0.04	0.05	0.02
TOTAL	99.74	99.65	99.36

Sample	967	967	967	967	967	967	967	967	967	967		
Ident	1	2	3	4	5	6	7	8	9	10		
SIO2	0.05	0.05	0.05	0.07	0.09	0.12	0.06	0.04	0.12	0.06		
TIO2	0.36	0.42	0.38	0.57	0.87	1.05	0.32	0.32	0.95	0.26		
A12O3	16.10	18.63	16.29	23.47	7.67	8.51	11.76	11.48	7.66	13.27		
Cr2O3	48.45	45.38	48.36	38.07	54.27	51.64	52.75	52.72	56.20	54.52		
Fe2O3	6.83	7.19	6.81	8.69	9.06	9.33	8.34	8.59	8.37	5.27		
MgO	14.59	14.98	14.64	14.79	12.87	12.77	15.15	14.85	14.20	15.46		
MnO	0.17	0.27	0.39	0.25	0.34	0.25	0.20	0.28	0.20	0.26		
FeO	11.16	10.86	10.97	11.94	12.04	11.83	9.71	10.05	10.47	9.57		
NIO	0.16	0.18	0.14	0.17	0.25	0.29	0.22	0.23	0.24	0.24		
ZnO	0.03	0.02	0.01	0.03	0.00	0.03	0.02	0.02	0.02	0.02		
TOTAL	97.91	97.97	98.03	98.04	97.48	95.82	98.54	98.58	98.44	98.94		
Sample	970	970	970	970	970	970	970	970	970	970	970	970
Ident	1	2	3	4	5	6	7	8	9	10	11	12
SIO2	0.07	0.09	0.08	0.04	0.17	0.14	0.15	0.03	0.09	0.04	0.05	0.05
TiO2	0.36	0.33	0.67	0.42	0.36	0.47	0.53	0.35	0.44	0.37	0.41	0.62
AI2O3	13.50	14.05	10.61	13.01	13.22	14.19	15.84	14.75	16.61	15.98	13.28	12.86
Cr2O3	51.31	50.91	51.70	50.37	51.88	50.19	43.77	49.77	47.62	48.58	48.50	51.09
Fe2O3	8.31	8.01	8.05	10.46	5.84	6.31	9.27	6.37	7.03	6.54	10.16	7.25
MgO	15.77	15.35	10.90	16.12	12.40	13.71	10.74	12.20	14.49	13.09	13.21	12.77
MnO	0.22	0.21	0.32	0.19	0.29	0.30	0.27	0.35	0.36	0.33	0.31	0.23
FeO	9.11	10.06	16.02	8.65	14.23	12.04	16.70	14.69	11.24	13.55	13.02	13.67
NIO	0.21	0.14	0.12	0.30	0.11	0.09	0.19	0.14	0.19	0.14	0.16	0.11
ZnO	0.07	0.00	0.00	0.03	0.01	0.00	0.07	0.04	0.02	0.00	0.04	0.02
TOTAL	98.93	99.16	98.46	99.60	98.52	97.43	97.52	98.70	98.10	98.61	99.14	98.68

. 11

Table B.4 Analyses of detrital and phenocrystal spinels from a basaltic mass flow unit at CP73726778 (subfacies 5D)

Appendix C

Sample catalogue

Abbreviations: R = rock specimen TS = thin section PD = rock powder

Catalog #	Field #	Lithotype	Group/Formation	Member	Age	Location	AMG grid		Preparation
							easting	nthing	
134575	346	contact of MUC basalt and Dundas Gp conglomerate	MUC/Dundas Group	package 1	mid Middle Cambrian	western Dundas region	36670	536176	R. TS
134576	957	basaltic conglomerate	Dundas Group	package 1	mid Middle Cambrian	western Dundas region	36670	536176	R
134577	350	basaltic conglomerate	Dundas Group	package 1	mid Middle Cambrian	western Dundas region	36670	536176	R
134578	358	basaltic conglomerate	Dundas Group	package 1	mid Middle Cambrian	western Dundas region	36670	536176	R. TS
134579	958	basaltic conglomerate	Dundas Group	package 1	mid Middle Cambrian	western Dundas region	36670	536176	R. PD
134580	301	basaltic conglomerate	Dundas Group	package 1	mid Middle Cambrian	western Dundas region	36933	536455	R, TS
134581	238	mudstone	Dundas Group	package 2	mid Middle Cambrian	western Dundas region	36795	536601	R. PD
134582	308	mudstone	Dundas Group	package 2	mid Middle Cambrian	western Dundas region	36820	536416	B. PD
134583	824	mudstone	Dundas Group	package 2	late Middle Cambrian	western Dundas region	36915	536296	R. PD
134584	95-011	laminated sandstone	Dundas Group	package 2	late Middle Cambrian	western Dundas region	36906	536296	B
134585	450	laminated sandstone	Dundas Group	package 2	late Middle Cambrian	western Dundas region	36906	536296	B
134586	144	inverse-graded sandstone	Dundas Group	package 2	late Middle Cambrian	western Dundas region	36801	536502	B
134587	828	volcaniclastic sandstone	Dundas Group	package 2	late Middle Cambrian	western Dundas region	36930	536292	B. PD
134588	835	quartzose sandstone	Dundas Group	package 2	late Middle Cambrian	western Dundas region	36871	536370	B. PD
134589	839	quartzose sandstone	Dundas Group	package 2	late Middle Cambrian	western Dundas region	36827	536413	B. PD
134590	95-001	vitric-rich volcaniclastic sandstone	Dundas Group	package 2	late Middle Cambrian	western Dundas region	36933	536291	R.TS
134591	95-002	vitric-rich volcaniclastic sandstone	Dundas Group	package 2	late Middle Cambrian	western Dundas region	36930	536292	R, TS
134592	320	mudstone	Dundas Group	package 3	late Middle Cambrian	western Dundas region	36858	536260	R PD
134593	324	mudstone	Dundas Group	package 3	late Middle Cambrian	western Dundas region	36860	536260	B. PD
134594	817	mudstone	Dundas Group	package 3	late Middle Cambrian	western Dundas region	36858	536263	B, PD
134595	818	lithic sandstone	Dundas Group	package 3	late Middle Cambrian	western Dundas region	36858	536263	R, TS
134596	823	mudstone	Dundas Group	package 3	late Middle Cambrian	western Dundas region	36883	536280	B. PD
134597	95-004	crystal-rich volcaniclastic sandstone	Dundas Group	package 3	late Middle Cambrian	western Dundas region	36797	536307	R. TS. PD
134598	95-005	crystal-rich volcaniclastic sandstone	Dundas Group	package 3	late Middle Cambrian	western Dundas region	36802	536310	R. TS
134599	430	normally graded lithic sandstone	Dundas Group	package 3	late Middle Cambrian	western Dundas region	36842	536552	R
134600	446	mudstone	Dundas Group	package 3	late Middle Cambrian	western Dundas region	36891	536578	R. TS. PD
134601	328	lithic sandstone	Dundas Group	package 3	early Late Cambrian	western Dundas region	36838	536239	R
134602	336	basaltic conglomerate	Dundas Group	package 3	early Late Cambrian	western Dundas region	36837	536236	R, PD
134603	338	basaltic conglomerate	Dundas Group	package 3	early Late Cambrian	western Dundas region	36824	536218	R, TS
134604	339	basaltic conglomerate	Dundas Group	package 3	early Late Cambrian	westem Dundas region	36830	536203	R, PD
134605	340	basaltic conglomerate	Dundas Group	package 3	early Late Cambrian	westem Dundas region	36830	536203	R, PD
134606	341	basaltic conglomerate	Dundas Group	package 3	early Late Cambrian	western Dundas region	36829	536196	R, PD
134607	361	conglomerate	Dundas Group	package 4	middle Late Cambrian	western Dundas region	36668	536173	R. TS
134608	452	mudstone	Dundas Group	package 4	middle Late Cambrian	western Dundas region	36734	536005	R. PD
134609	453	siltstone	Dundas Group	package 4	middle Late Cambrian	western Dundas region	36736	536009	R. PD
134610	454	siliceous conglomerate	Dundas Group	package 4	middle Late Cambrian	westem Dundas region	36744	536025	TS
134611	456	mudstone	Dundas Group	package 4	middle Late Cambrian	western Dundas region	36748	536035	R, PD
134612	458	mudstone	Dundas Group	package 4	middle Late Cambrian	westem Dundas region	36760	536055	R. PD

Catalog #	Field #	Lithotype	Group/Formation	Age	Location	AMG grid		Preparation
						easting	nthing	
134613	282	volcanogenic conglomerate	Dundas Group	?mid Middle Cambrian	central Dundas region	37256	536652	R TS
134614	367	mudstone	Dundas Group	?mid Middle Cambrian	central Dundas region	37055	536681	R PD
134615	380	basaltic conglomerate	Dundas Group	?mid Middle Cambrian	central Dundas region	37060	536655	R TS
134616	811	mudstone	Dundas Group	?mid Middle Cambrian	central Dundas region	37230	536803	R TS PD
134617	812	basaltic conglomerate	Dundas Group	?mid Middle Cambrian	central Dundas region	37230	536933	B TS PD
134618	813	lithic sandstone	Dundas Group	?mid Middle Cambrian	central Dundas region	37220	536933	B TS PD
134619	842	mudstone with prehnite vein	Dundas Group	?mid Middle Cambrian	central Dundas region	37219	536935	B TS
134620	845	lithic sandstone	Dundas Group	?mid Middle Cambrian	central Dundas region	37206	536919	B, TS
134621	858	laminated sandstone	Dundas Group	?mid Middle Cambrian	central Dundas region	37350	536805	R PD
134622	859	laminated sandstone	Dundas Group	?mid Middle Cambrian	central Dundas region	37350	536805	B
134623	D94	basaltic conglomerate	Dundas Group	?mid Middle Cambrian	central Dundas region	37086	536719	R. PD
134624	D166	lithic sandstone	Dundas Group	?mid Middle Cambrian	central Dundas region	37231	536931	BITS
134625	D170	MUC-derived breccia	Dundas Group	?mid Middle Cambrian	central Dundas region	37205	536916	B, TS
134626	96-001	mylonitic fragment contained in	Dundas Group	?mid Middle Cambrian	central Dundas region	37188	536925	TS
		loose boulder of MUC-derived breccia						10
134627	D172	basaltic conglomerate	Dundas Group	?mid Middle Cambrian	central Dundas region	37202	536913	R. TS
134628	D174	basaltic conglomerate	Dundas Group	?mid Middle Cambrian	central Dundas region	37199	536913	B. TS
134629	RL1	basaltic conglomerate	Dundas Group	?mid Middle Cambrian	central Dundas region	37199	536913	R. PD
134630	135	mudstone raft contained in debris flow unit	Dundas Group	?mid Middle Cambrian	central Dundas region	37194	536920	R. PD
134631	136	mud-supported conglomerate	Dundas Group	mid Middle Cambrian?	central Dundas region	37194	536920	R. TS
134632	150	basaltic conglomerate	Dundas Group	mid Middle Cambrian?	central Dundas region	37045	536646	R. TS
134633	151	lithic sandstone	Dundas Group	mid Middle Cambrian?	central Dundas region	37045	536654	R. TS
134634	31	folded quartz-rich sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37405	536763	R.TS
134635	35	quartz-rich sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37405	536763	R.TS
134636	36	quartz-rich sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37405	536763	R,TS
134637	41	conglomerate layer contained in deformed mudstone	Dundas Group	late Middle Cambrian	central Dundas region	37416	536770	R, TS
134638	73	laminated sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37139	536507	R
134639	70	laminated sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37350	536805	R,TS
134640	78	disrupted laminated sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37354	536800	R, TS
134641	88	pumice fragment contained in crystal-rich sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37306	536658	R, TS
134642	293	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37318	536690	TS
134643	294	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37318	536690	TS
134644	386	sandstone	Dundas Group	late Middle Cambrian	central Dundas region	36987	536457	R, TS, PD
134645	390	mudstone	Dundas Group	late Middle Cambrian	central Dundas region	37005	536502	R, PD
134646	808	mudstone	Dundas Group	late Middle Cambrian	central Dundas region	37308	536838	r, pd
134647	867	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R, TS
134648	879	folded sandstone-mudstone couplets	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R, TS
134649	883	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R, PD
134650	884	calcareous mudstone	Dundas Group	late Middle Cambrian	central Dundas region	37384	536773	R, PD
134651	22	calcareous mudstone	Dundas Group	late Middle Cambrian	central Dundas region	37384	536773	R, PD
134652	885	tossiliterous clast-bearing conglomerate	Dundas Group	late Middle Cambrian	central Dundas region	37384	536773	R, TS

 \mathbf{x}_{i}

-

~	Catalog #	Field #	Lithotype	Group/Formation	Age	Location	AMG grid		Preparation
							easting	nthing	
	134653	885	fossiliferous clast-bearing conglomerate	Dundas Group	late Middle Cambrian	central Dundas region	37384	536773	B. TS
	134654	890	quartz-lithic sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37415	536769	B. TS. PD
	134655	897	folded sandstone-mudstone couplets	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R
	134656	899	mudstone	Dundas Group	late Middle Cambrian	central Dundas region	37159	530899	R. PD
	134657	900	quartzose sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37157	536594	PD
	134658	963	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R
	134659	965	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R
	134660	967	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R. TS
	134661	969	mudstone fragment in volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R
	134662	970	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R. TS. PD
	134663	971	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37372	536778	R
	134664	D86	volcaniclastic breccia	Dundas Group	late Middle Cambrian	central Dundas region	37192	536631	R. TS. PD
	134665	D90	siltstone	Dundas Group	late Middle Cambrian	central Dundas region	37182	536644	R. PD
	134666	D152	chert conglomerate	Dundas Group	late Middle Cambrian	central Dundas region	37238	536586	R
	134667	D158	crystal-rich volcaniclastic sandstone	Dundas Group	late Middle Cambrian	central Dundas region	37254	536625	R, PD
	104660	090	voleone certe mudetene						
	134008	980	voicanogenic mudstone	Dundas Group	late Middle Cambrian	eastern Dundas region	37438	536750	R, TS
	134009	981	voicaniciastic conglomerate	Dundas Group	late Middle Cambrian	eastern Dundas region	37438	536750	R, TS
	134670	982	crystal-rich voicaniciastic sandstone	Dundas Group	late Middle Cambrian	eastern Dundas region	37450	536745	R, TS, PD
	134671	985		Dundas Group	late Middle Cambrian	eastern Dundas region	37450	536745	R
	134672	318	voicanogenic sandstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37443	536417	R, TS
	134073	107		?Dundas Group	Middle to Late Cambrian	eastern Dundas region	37418	536520	PD
	134674	222	quartz-litnic sandstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37481	536554	R, TS, PD
	134675	180	basaltic conglomerate	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37440	536512	R, TS
	134676	216	voicanogenic mudstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37480	536623	R, TS, PD
	134677	218	voicanogenic sandstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37480	536623	R, PD
	134678	Henry	quartzose sandstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37470	536730	r, pd
	134679	H2	sneared mudstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37470	536730	R, TS
	134680	H3	sneared mudstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37470	536730	R, TS
	134681	M5	sneared mudstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37470	536730	R, TS
	134682	354	quarzose sanostone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37470	536730	R, TS
	134683	15	sneared mudstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37465	536730	R, TS
	134684	12	sneared mudstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37465	536730	R, TS
	134685	1	folded and brecclated siltstone	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37465	536730	R, TS
	134686	6	veined quartzite	Dundas Group	Middle to Late Cambrian	eastern Dundas region	37465	536730	R, TS
	134687	917	conglomerate	Dundas Group correlate	Late Cambrian	Que River region	37613	530259	BTSI
	134688	919	conglomerate	Dundas Group correlate	Late Cambrian	Que River region	37612	530250	R TC
	134689	920	conglomerate	Dundas Group correlate	Late Cambrian	Que River region	37620	530255	B TS
	134690	923	conglomerate	Dundas Group correlate	Late Cambrian	Que River region	37623	530269	B TS
	134691	924	conglomerate	Dundas Group correlate	Late Cambrian	Que River region	37623	5303500	D TC
	134692	926	conglomerate	Dundas Group correlate	Late Cambrian	Que River region	37640	539248	R. TS
						•			

•

ß

~

.

f к¹ -

ň .

Catalog #	<u> </u>	Lithotype	Group/Formation	Age	Location	AMG grid		Preparation
						easting	nthing	
134693	F7	quartzose sandstone	Dundas Group correlate	Middle to Late Cambrian	Farrell Rivulet	37138	535513	R. TS. PD
134694	172	basaltic breccia	MUC	?Early Cambrian	western Dundas region	36673	536175	R
134695	960	basaltic breccia	MUC	?Early Cambrian	western Dundas region	36673	536175	R
134696	378	sheared serpentinte	MUC	?Early Cambrian	central Dundas region	37032	536361	R, TS
134697	379	sheared serpentinte	MUC	?Early Cambrian	central Dundas region	37032	536361	R, TS
134698	O99	mudstone	Oonah Formation	Late Proterozoic	Stanely River	36250	537895	TS
134699	O100	micaceous siltstone	Oonah Formation	Late Proterozoic	Stanely River	36245	537875	B. TS. PD
134700	0102	silstone	Oonah Formation	Late Proterozoic	Stanely River	36225	537855	TS
134701	O103	micaceous siltstone	Oonah Formation	Late Proterozoic	Stanely River	35645	538110	TS
134702	O104	micaceous siltstone	Oonah Formation	Late Proterozoic	Stanely River	35645	538110	TS
134703	O105	siltstone	Oonah Formation	Late Proterozoic	Stanely River	35645	538110	B. PD
134704	O106	siltstone	Oonah Formation	Late Proterozoic	Stanely River	35645	538110	B. TS. PD
134705	O107	micaceous siltstone	Oonah Formation	Late Proterozoic	Stanely River	35645	538110	TS
134706	0108	micaceous siltstone	Oonah Formation	Late Proterozoic	Stanely River	35645	538110	TS
134707	O110	micaceous siltstone	Oonah Formation	Late Proterozoic	Stanely River	35620	538120	TS
134708	0112	micaceous silty sandstone	Oonah Formation	Late Proterozoic	Stanely River	35620	538120	TS
134709	O115	quartzose sandstone	Oonah Formation	Late Proterozoic	Stanely River	35605	537990	TS
134710	0117	quartzose sandstone	Oonah Formation	Late Proterozoic	Stanely River	35605	537990	R. PD
134711	0122	quartzose sandstone	Oonah Formation	Late Proterozoic	Stanely River	35555	538080	R. TS. PD
134712	0124	quartzose sandstone	Oonah Formation	Late Proterozoic	Stanely River	35495	538080	TS
134713	0127	quartzose sandstone	Oonah Formation	Late Proterozoic	Stanely River	35470	538070	TS
134714	O129	quartzose sandstone	Oonah Formation	Late Proterozoic	Stanely River	35450	538060	TS
134715	O130	quartzose sandstone	Oonah Formation	Late Proterozoic	Stanely River	35425	538045	R. PD
134716	0131	siltstone	Oonah Formation	Late Proterozoic	Stanely River	35400	538035	R. PD
134717	0132	siltstone	Oonah Formation	Late Proterozoic	Stanely River	35330	538025	R, TS, PD
134718	303	stratally-mixed mudstone and guartzose sandstone	Oonah Formation correlate	Late Proterozoic	Comet region	37316	536367	TS
134719	D2	siltstone	Oonah Formation correlate	Late Proterozoic	Comet region	37310	536398	R PD
134720	D3	sandstone	Oonah Formation correlate	Late Proterozoic	Comet region	37305	536398	B PD
134721	D4	sandstone	Oonah Formation correlate	Late Proterozoic	Comet region	37305	536398	R PD
134722	D7	sandstone	Oonah Formation correlate	Late Proterozoic	Comet region	37303	536403	B PD
134723	D9	sandstone	Oonah Formation correlate	Late Proterozoic	Comet region	37295	536393	B. PD
134724	D16	sandstone	Oonah Formation correlate	Late Proterozoic	Comet region	37305	536375	B. PD
134725	D22	siltstone	Oonah Formation correlate	Late Proterozoic	Comet region	37095	536155	B. PD
134726	D32	sandstone	Oonah Formation correlate	Late Proterozoic	Comet region	37080	536225	B. TS. PD
134727	D33	siltstone	Oonah Formation correlate	Late Proterozoic	Comet region	37080	536225	R. PD
134728	D34	mudstone	Oonah Formation correlate	Late Proterozoic	Comet region	37085	536248	R. TS. PD

1. A

Catalog #	Field #	Lithotype	Group/Formation	Age	Location	AMG grid		Preparation
						easting	nthing	
134729	D35	sandstone	Oonah Formation correlate	Late Proterozoic	Comet region	37085	536248	R, PD
134730	D52	siltstone	Oonah Formation correlate	Late Proterozoic	Comet region	37138	536353	R, TS, PD
134731	D59	sandstone	Oonah Formation correlate	Late Proterozoic	Comet region	37050	536273	R, PD
134732	402	phyllite	Concert Schist	Late Proterozoic	Comet region	37153	536362	R, PD
134733	465	phyllite	Concert Schist	Late Proterozoic	Comet region	37232	536386	R, PD
134734	472	phyllite	Concert Schist	Late Proterozoic	Comet region	37191	536268	R, PD
134735	477	phyllite	Concert Schist	Late Proterozoic	Comet region	37210	536274	R, PD
134736	478	phyllite	Concert Schist	Late Proterozoic	Comet region	37214	536273	R, TS
134737	D45	phyllite	Concert Schist	Late Proterozoic	Comet region	37225	536383	R, TS, PD
134738	D48	meta-siltstone	Concert Schist	Late Proterozoic	Comet region	37205	536375	R, TS, PD
134739	D50	meta-siltstone	Concert Schist	Late Proterozoic	Comet region	37160	536373	R, TS, PD
134740	459	phyllite	Concert Schist	Late Proterozoic	Comet region	37102	536155	TS
134741	305	volcaniclastic sandstone	Crimson Creek Fm correlate	Late Proterozoic	eastern Dundas region	37316	536367	R, TS
134742	868	lithic sandstone	Crimson Creek Fm correlate	Late Proterozoic	eastern Dundas region	37493	536681	R, TS, PD
134743	192	graded lithic sandstone and mudstone	Crimson Creek Fm correlate	Late Proterozoic	eastern Dundas region	37510	536625	R, TS, PD
134744	196	lithic sandstone	Crimson Creek Fm correlate	Late Proterozoic	eastern Dundas region	37505	536606	R, TS, PD
134745	210	lithic sandstone	Crimson Creek Fm correlate	Late Proterozoic	eastern Dundas region	37499	536583	R, TS, PD
134746	211	lithic sandstone	Crimson Creek Fm correlate	Late Proterozoic	eastern Dundas region	37499	536583	R, PD
134747	214	mudstone	Crimson Creek Fm correlate	Late Proterozoic	eastern Dundas region	37501	536578	R, PD

`

