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ABSTRACT

This thesis develops and expands upon known techniques of mathematical
physics relevant to the analysis of the popular Markov model of phylogenetic
trees required in biology to reconstruct the evolutionary relationships of tax-
onomic units from biomolecular sequence data.
The techniques of mathematical physics are plethora and have been developed
for some time. The Markov model of phylogenetics and its analysis is a rela-
tively new technique where most progress to date has been achieved by using
discrete mathematics. This thesis takes a group theoretical approach to the
problem by beginning with a remarkable mathematical parallel to the process
of scattering in particle physics. This is shown to equate to branching events
in the evolutionary history of molecular units. The major technical result of
this thesis is the derivation of existence proofs and computational techniques
for calculating polynomial group invariant functions on a multi-linear space
where the group action is that relevant to a Markovian time evolution. The
practical results of this thesis are an extended analysis of the use of invariant
functions in distance based methods and the presentation of a new recon-
struction technique for quartet trees which is consistent with the most general
Markov model of sequence evolution.
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Chapter 1

Introduction

The rationale of this thesis is taken from a remarkable analogy between the
stochastic models used to infer phylogenetic relationships in mathematical
biology and the structure of multiparticle quantum physics. There is a di-
rect relationship between Feynman diagrams that describe the interactions
of sub-atomic particles and phylogenetic trees that graphically represent the
evolutionary relationship between taxonomic units. A Feynman diagram gives
the graphical representation of creation and annihilation events of particle in-
teractions. A taxonomic unit may be any biomolecular unit such as a gene,
an amino acid or base pair, and the time evolution of these molecular units is
modelled stochastically under a Markov assumption. Techniques which recon-
struct the evolutionary history of molecular units from present observations
are based on these models. Given the correct framework, these Markov mod-
els and the formalism of multiparticle quantum mechanics can be put into
a mathematical correspondence. This is a very useful observation because
phylogenetics is a relatively new mathematical problem (for example see the
classic paper by Felsenstein [19]) whereas the mathematics of particle physics
has been studied for over a century. (For an outstanding introduction to the
history of theoretical particle physics see [47], and for a comprehensive intro-
duction to mathematical physics see [61].) Given that there is a mathematical
connection between the two problems it would certainly be unfortunate to
see results that have been obtained in physics re-derived independently in the
context of phylogenetics. This thesis looks at a particular aspect of quantum
systems known as entanglement and shows that measures of entanglement can
be utilized to improve the reconstruction of phylogenetic relationships.
We will need to be clear that the probabilities associated with quantum sys-
tems and those of phylogenetic models arise in quite a different scientific way.
Quantum mechanics is a probabilistic theory because the theoretical predic-
tions give the correct statistical behaviour regarding the outcomes of particular
experiments. The theoretical predictions can be used to infer (incredibly accu-
rately) the distribution of results for many repetitions of the same experiment.
(For a popular discussion of the amazing accuracy of quantum theory see Feyn-
man’s discussion of the magnetic moment on the electron as predicted from
quantum electrodynamics [22].) Since quantum theory is (and should be) seen
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as a theory of nature there has been argument for many decades on how to
interpret this probabilistic aspect of quantum theory. This argument raises
quite profound scientific and philosophical issues which, thankfully, we will
not be concerned with in this thesis. Models of phylogenetics are exactly
that – models, and should not be seen as being theories of nature. No one
would argue that the time evolution of molecular units follow the Markov
model of phylogenetics in detail, but rather that these models are the best
(tractable) approximation that give us recourse to establishing properties of
phylogenetic history. Primarily the points of interest are the branching struc-
ture of the evolutionary history and also the evolutionary distance (or time)
between branching events.
After we have made the mathematical analogy between quantum theory and
the Markov model of phylogenetics, we will concentrate on only a small part
of what can be done using techniques known in mathematical physics. We
will focus on the study of entanglement invariants and their generalization to
the phylogenetic case [59, 60]. There is potential for concentrating on other
techniques such as Lie algebra symmetries [6] and the analysis of the path
integral formulation [31, 32], but these techniques will not be explored here.
The distance based technique has been used in phylogenetics as a tree build-
ing algorithm following the discovery that it is possible to calculate a distance
from the observed sequences that is consistent with the Markov model. This
distance function is a well defined mathematical object known as a group in-
variant function and is used in quantum physics to quantify and test for the
phenomenon of entanglement. Entanglement is a general property that can
exist in many different physical systems and the invariant function used as a
distance measure in phylogenetics is used to quantify entanglement for only
the most elementary case. Hence, it seems astute to investigate what the next
most complicated types of entanglement correspond to in phylogenetics.

Theoretical outcomes of the thesis

We present a group representation theoretic analysis of the Markov model
of phylogenetic trees. Specifically this formalism is used to construct all the
one-dimensional representations of the (appropriately defined) Markov semi-
group. These one-dimensional representations occur as polynomials in the
(discrete) probability distributions predicted from the Markov model which
we coin Markov invariants. We establish the connection between these one-
dimensional representations and that of phylogenetic invariants [11, 15, 20, 55]
and pairwise distance measures [25, 40]. This representation theoretical ap-
proach touches upon existing techniques and can be incorporated into known
algorithms to give novel results and insights to the problem of phylogenetic
reconstruction. The main theoretical outcome of the thesis is this use of rep-
resentation theory. We will also develop the theory of invariants of the general
linear group on a tensor product space and show how to infer existence of these
invariants in different cases. We develop a procedure for computing the ex-
plicit form of these invariant functions, firstly developed for the general linear
group and then generalized to the Markov semigroup.
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Practical outcomes of the thesis

We study a group invariant function, well known in quantum physics as the
tangle, in the context of phylogenetics. The tangle is used in physics to give
a measure of the amount of entanglement between three qubits. Qubits are
two state objects in quantum physics and correspond in phylogenetics to a
probability distribution on two states. In phylogenetics the classic example is
to use the DNA as a state space and hence the case of four state objects is
of interest. To this end we have generalized the tangle to the case of three
and four character states. This is a new result that to the best of the author’s
knowledge was previously unknown. Having successfully generalized the tangle
we investigate how the tangle can be used to construct improved phylogenetic
distance matrices. Additionally we study a set of Markov invariants which
exist for the case of phylogenetic quartet tree. In the case of the evolution
of four taxa there are three possible historical evolutionary relationships. We
show that these Markov invariants can be used to distinguish these three cases
under the assumption of the most general Markov model. It is expected that
the use of the tangle to construct distance matrices and using the Markov
invariants to distinguish the three possible quartets will lead to improvements
of the reconstruction of phylogenetic relationships from observed biomolecular
data.

Structure of the thesis

Chapter 2 begins by introducing the mathematical material needed to under-
stand the results presented in this thesis. This includes a short introduction to
group representation theory, group characters and tensor product; a presenta-
tion of the Schur/Weyl duality and the Schur functions; a definition of group
invariant functions and their relation to one-dimensional representations. The
chapter ends with several relevant examples of invariants of the general linear
group.
Chapter 3 begins with a light speed introduction to the formalism of quantum
mechanics, the concept of entanglement and mathematical analysis thereof
using group invariant functions. The Markov model of phylogenetic trees is
then developed in its usual presentation, followed by a change of formalism
which makes apparent the analogy between phylogenetic trees and multiparti-
cle quantum systems. The chapter ends with a detailed analysis of the mathe-
matical analysis of the invariant functions when evaluated upon a phylogenetic
tree.
Chapter 4 gives a review of phylogenetic distance measures and shows how
the tangle invariant function used to analyse three qubit entanglement can
be generalized to the phylogenetic case and used to improve popular distance
measures. This is done by defining the branch lengths of a phylogenetic tree,
reviewing the standard measure known as the log det and then using the tangle
invariant to give a consistent distance measure for the case of quartets.
Chapter 5 returns to the mathematical detail of Chapter 2 and derives in-
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variant functions that are more closely relevant to the Markov model of a
phylogenetic tree. This is done by first defining the Markov semigroup. The
invariant functions of the general linear group are rederived using a technique
which is generalized to derive the Markov invariants. Finally we examine
the structure of the Markov invariants on a phylogenetic tree. In particular
we concentrate on the quartet case where there exists four Markov invariants
which can be used to distinguish between the three possible quartet trees.
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