
University of Tasmania Open Access RepositoryUniversity of Tasmania Open Access Repository

Cover sheetCover sheet

Title
Coalescing Idle Workstations as a Multiprocessor System using JavaSpaces and Java Web Start

Author
Atkinson, AK

Bibliographic citationBibliographic citation
Atkinson, AK (2003). Coalescing Idle Workstations as a Multiprocessor System using JavaSpaces and Java
Web Start. University Of Tasmania. Thesis. https://doi.org/10.25959/23212361.v1

Is published in:

Copyright informationCopyright information
This version of work is made accessible in the repository with the permission of the copyright holder/s under
the following,

Licence.

If you believe that this work infringes copyright, please email details to: oa.repository@utas.edu.au

Downloaded from University of Tasmania Open Access Repository

Please do not remove this coversheet as it contains citation and copyright information.

University of Tasmania Open Access RepositoryUniversity of Tasmania Open Access Repository

Library and Cultural CollectionsLibrary and Cultural Collections

University of TasmaniaUniversity of Tasmania

Private Bag 3Private Bag 3

Hobart, TAS 7005 AustraliaHobart, TAS 7005 Australia

EE oa.repository@utas.edu.au oa.repository@utas.edu.au CRICOS Provider Code 00586B | ABN 30 764 374 782CRICOS Provider Code 00586B | ABN 30 764 374 782 utas.edu.auutas.edu.au

http://doi.org/
http://rightsstatements.org/vocab/InC/1.0/
mailto:oa.repository@utas.edu.au
https://figshare.utas.edu.au
https://utas.edu.au

Coalescing Idle Workstations as a Multiprocessor

System using JavaSpaces and Java Web Start

by

Alistair Kenneth Atkinson, BComp.

A dissertation submitted to the
School of Computing

in partial ful�llment of the requirements for the degree of

Bachelor of Computing with Honours

November 2003

Declaration

I, Alistair Kenneth Atkinson, certify that this thesis contains no material which
has been accepted for the award of any other degrees or diploma in any tertiary
institution, and that, to the best of my knowledge and belief, this thesis contains
no material previously published or written by another person except where due
reference is made in the text of this thesis.

Signed: ... Date:

i

Abstract

Many of an organisation's workstations spend the majority of their time either
unused or relatively idle. If the wasted processing capacity of these workstations
could be aggregated, it could be used to provide processing for computationally
intensive applications. Such a system could potentially provide an inexpensive
alternative to costly custom built parallel computers or clusters.

This thesis presents the design, development and evaluation of a system which
aims to meet this goal. There are two main parts to the system: a distributed
environment to which users can submit jobs for execution, and a development
framework which can be used to build distributed applications suitable for de-
ployment on the system.

The development framework greatly eases the development of applications for
the system, and also provides general coordination mechanisms to control the
execution of reasonably complex applications.

The distributed environment is based on the master/worker distributed sys-
tem architecture. This allows large, computationally-intensive tasks to be divided
up into smaller subtasks and distributed out to worker computers, in this case
idle workstations, for processing. This generally results in increased performance
for the application.

The system is evaluated using two sample applications: the n-Queens problem,
and a parallel sorting (shearsort) application. These applications have relatively
contrasting characteristics, highlighting several important properties of the sys-
tem. The evaluation of the system indicated that it is indeed capable of utilising
the wasted capacity of idle workstations. It was found that applications are able
to achieve excellent performance gains. However, the contrasting performance of
the two sample applications unambiguously showed that if an application is too
�ne-grained, or includes too much sequential execution, then the performance
gain actually realised will be much less.

ii

Acknowledgements

I �rstly wish to thank Dr Vishv Malhotra for supervising this research over the
course of the year. His assistance, guidance, and helpful suggestions were invalu-
able, and really helped to improve this dissertation.

Also, I would like to thank everyone at the School of Computing for making the
place such an enjoyable place to study. In particular, I would like to acknowledge
the work done by Jacky Hartnett and Dr Mike Cameron-Jones in coordinating
the course. Their advice and encouragement were a great help. Thankyou also
to my fellow Honours students, who have made the year a very enjoyable one.

Finally, I wish to extend all of my gratitude to my parents, and my partner,
Bonne, for their constant support and encouragement over the past year, without
which this would not have been possible.

iii

Contents

Declaration i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Overview . 2
1.3 Bene�ts System Delivers . 2
1.4 Thesis Structure . 3

2 Literature Review 4
2.1 Distributed Systems . 4

2.1.1 Desired Properties of Distributed Systems 5
2.1.1.1 Reliability . 5
2.1.1.2 Scalability . 5
2.1.1.3 Security . 6
2.1.1.4 Transparency . 7
2.1.1.5 Performance & E�ciency 7

2.1.2 Motivation for Distributing Systems 8
2.2 Distributed Computing Technologies 8

2.2.1 Remote Procedure Call . 8
2.2.2 CORBA . 10
2.2.3 DCOM . 11
2.2.4 Linda . 11

2.3 Java Distributed Computing . 12
2.3.1 RMI . 13

iv

2.3.2 Jini . 14
2.3.3 JavaSpaces . 16
2.3.4 Servlets . 18
2.3.5 Applets . 19
2.3.6 Web Start . 20

2.4 Research in Distributed Computing 21
2.4.1 Utilising Idle Workstations 21
2.4.2 Networks of Web Browsers 22
2.4.3 Adaptive Cluster Computing using JavaSpaces 23
2.4.4 Distributed Middle Tier 24
2.4.5 Distributed JVMs . 25

2.5 Summary . 26

3 Methodology 28
3.1 System Overview . 28

3.1.1 Goals . 29
3.1.2 Application Development 29
3.1.3 Architecture . 29

3.2 Core Components . 31
3.2.1 Master . 31
3.2.2 Worker . 32

3.2.2.1 Task Executor 34
3.2.2.2 Interface . 36

3.2.3 Coordination . 37
3.2.3.1 Entries . 37
3.2.3.2 Execution Control & Data Dependencies 38

3.3 Applications . 40
3.3.1 The n-Queens Problem . 40

3.3.1.1 Overview . 40
3.3.1.2 Implementation 41

3.3.2 Shear Sort . 42
3.3.2.1 Overview . 42
3.3.2.2 Implementation 42

3.4 Summary . 46

v

4 Results & Discussion 47
4.1 Overview . 47
4.2 Testing Environment . 48
4.3 Performance Measurement . 48
4.4 The n-Queens Problem . 48
4.5 Shearsort . 51
4.6 Discussion . 54
4.7 Summary . 58

5 Conclusion & Further Work 59
5.1 Further Research . 59

5.1.1 Non-Intrusiveness . 59
5.1.2 Scalability . 60
5.1.3 Transparency . 60

5.2 Summary . 61

References 63

A Generic Master & Worker 67

B Entries 84

C Coordination 87

D n-Queens Application 95

E Shearsort Application 100

c

Chapter 1

Introduction

This chapter provides an introduction and overview of the research that has been
carried out, including the motivation for the research and also the bene�ts of the
solution that was developed.

1.1 Motivation

The traditional means of supplying high performance computing have been with
custom-built parallel computers, or perhaps clusters of computers, among other
alternatives. Organisations that required access to this kind of processing power
had the choice to either build their own supercomputer or cluster, or lease time
on an existing system. Either choice has serious cost implications.

Many of these same organisations have a large number of workstations, which
are often under-utilised. These workstations, even when in use, may only require
a small fraction of the total processing power of the machine. If all of this wasted
processing capability could be aggregated, the resultant computing power could
potentially be comparable to the other methods mentioned previously. Further-
more, the cost of doing so would be vastly less than the traditional approaches,
as the infrastructure is already in place, and all that is required is appropriate
software to put it to use.

1

1.2 Overview

This thesis presents research into the design and development of a suitable dis-
tributed system to allow computers to be easily donated by their users to a pool
of other underutilised computers. Computers may be added to and removed
from the system dynamically, without a�ecting its correct operation. The soft-
ware required for a computer to join the system is automatically downloaded
and launched when the user clicks on an appropriate hyperlink on a web page,
avoiding the need for the software to be installed and con�gured manually.

A development framework is also provided to facilitate the implementation
of applications for deployment on the system. The framework allows the pro-
grammer to specify the structure of an application, including which parts can be
parallelised and which should execute sequentially. It is also possible to specify
any data dependencies between each part of the application.

An evaluation of the system is performed to determine whether it is successful
in meeting its stated goals, namely whether it is capable of e�ectively putting to
use the wasted processing power of underutilised computers on a network.

1.3 Bene�ts System Delivers

The bene�ts provided by this system can be summarised as providing potentially
large amounts of processing capacity at very low cost. The system takes advan-
tage of infrastructure that is generally already in place, generally workstations
connected by a local area network. The systems is able to leverage this (possibly
heterogeneous) environment, and aggregate the wasted processing capacity for
the processing of computationally intensive tasks.

As the system is able to use an organisation's existing infrastructure, the cost
of accessing this potentially large amount of processing capacity would be only a
small fraction of the amount of, say, a custom-built parallel machine, or a cluster
of computers.

An additional bene�t of the system is that its processing capacity is not �xed;
computers can be dynamically added and removed from the system at any time,
thereby dynamically changing the overall processing capability. Depending on its
scalability, the addition of extra machines to the system will result in a relative
increase in processing capacity (ie. doubling the amount of computers will result

2

in a doubling of processing capacity). This is in contrast to custom-built machines
or clusters, which must be upgraded to increase the available processing capacity.
This upgrade generally requires a complete system shutdown, during which time
no processing will be performed.

Finally, the process a user must follow in order to join their workstation to
the system is very simple, due mostly to the client-side software being deployed
as a Java Web Start application. Similarly, a user can also easily remove their
workstation from the system at any time they wish. It is hoped that this ease of
use would encourage users to take part in the system were it ever deployed.

1.4 Thesis Structure

Chapter 2 explores the relevant literature for this research, including an overview
of the basic concepts of distributed computing, and also speci�c distributed com-
puting technologies. We will also detail the various Java based distributed com-
puting frameworks, focusing particularly on those pertinent to this research. Fi-
nally, we will discuss some current research in distributed computing, with a spe-
ci�c emphasis on dynamic utilisation of computers, and Java based distributed
computing.

In Chapter 3, we present the system that was developed, including an overview
of its architecture and details of its operation. We also detail the development
framework that can be used to build parallel applications suitable for deployment
on the system. Finally, we look at two example applications that were developed
for the system using this development framework.

Chapter 4 details some performance results and analysis of some testing con-
ducted using the two example applications that were developed for the system.
An analysis of the meaning and consequences of these results is also given.

Chapter 5 discusses the conclusions that can be drawn from the research
presented, particularly whether or not the proposed system successfully meets its
stated goals, and can e�ectively make use of the wasted processing capabilities
of underutilised computers. This chapter also discusses some worthwhile future
directions for research in this area.

All program source code that comprises the system and the tested applications
is included in the appendices.

3

Chapter 2

Literature Review

The potential processing power of distributed systems has resulted in much re-
search e�ort in the area of distributed computing. Distributed systems can pro-
vide an e�ective alternative to expensive high-performance computers, an option
that businesses and organisations are beginning to take advantage of.

This review will explore the fundamental aspect of distributed computing,
along with some important technologies in use. The Java platform from Sun Mi-
crosystems will be discussed, speci�cally its distributed computing technologies,
as it is widely used in distributed computing. Finally, past and current research
in distributed computing will be detailed.

2.1 Distributed Systems

Coulouris et al (1994, p. 1) de�ne a distributed system as �a collection of au-
tonomous computers linked by a network, with software designed to produce an
integrated computing facility.�

The advances made in microprocessor design and the emergence of high speed
networks have seen distributed systems' emerge as a solution to many computa-
tionally intensive problems. Massively distributed systems have been made pos-
sible by the rise of the Internet, some systems growing as large as hundreds of
thousands of computers. Also, many large organisations have realised the bene�ts
of utilising the unused CPU cycles of their idle workstations.

This section will detail some essential properties that all distributed systems
aim to achieve, and the motivation for the distribution of systems.

4

2.1.1 Desired Properties of Distributed Systems

The development of distributed systems is a complex task. The increased com-
plexity involved raises many issues which are not often as critical when developing
a traditional, non-distributed system. Nonetheless, if these issues can be dealt
with, distributed systems can provide numerous advantages over traditional, stan-
dalone systems.

2.1.1.1 Reliability
Applications can bene�t from the potentially increased reliability of a distributed
system relative to a standalone system. Tel (1994, pp. 3-4) states that this is due
to distributed systems' partial failure property, also known as graceful degrada-
tion. This property allows some nodes in the system to fail, and their tasks taken
over by the other correctly-operating nodes. In contrast, a standalone application
will experience complete failure if the computer, on which it is running, crashes.

The reliability of a distributed system is not only determined by the reliability
of its nodes but also the reliability of the network by which it is connected. For
systems implemented on a local area network (LAN) this may not be a critical
issue, as a LAN typically provides highly reliable communications. However for
systems that use the Internet as its underlying network it must be taken into
consideration, and also it must handle issues such as higher latency and reduced
bandwidth.

2.1.1.2 Scalability
Tanenbaum & Steen (2002, p. 10) state that with widespread connectivity avail-
able through the Internet, �scalability is one of the most important design goals for
developers of distributed systems�. However, they also add that scalable systems
often exhibit some performance loss as a consequence. Therefore it is desirable
to minimise the overhead associated with achieving scalability.

The scalability of a system can be measured in terms of size, geography and
administration (Tanenbaum & Steen 2002, p. 10). A system is said to be scalable
in terms of its size if computers, or nodes, can be easily added to the system, and
the bene�ts of adding these computers is not outweighed by the overhead incurred
in doing so, thus defeating the purpose. A geographically scalable system can have
nodes separated by long distances. An administratively scalable system is easy to

5

administer even if the system spans multiple organisations, something especially
important in decentralised systems.

2.1.1.3 Security
Security is one of the most di�cult properties to instill into a system, because
it must be pervasive throughout the entire system (Tanenbaum & Steen 2002, p.
413). A single vulnerability could be used to compromise the entire system. The
security requirements for any given distributed system will vary depending on the
environment in which it will be deployed. Obviously, a dynamic Internet-based
system with thousands of nodes will have di�erent security risks than a system
consisting of three computers connected by a LAN. There are, however, some
security threats that are common to all networked systems. Stallings (2001, pp.
6-7) identi�es interception, interruption, modi�cation and fabrication as threats
which should be considered.

An interception attack involves some unauthorised party gains access to sys-
tem resources, compromising the con�dentiality of the system. An example of
such an attack would be someone, whether a person, program or computer, cap-
turing data packets o� the network.

Interruption occurs when a system resource becomes unavailable or is rendered
unusable for some reason, a�ecting the availability of the system. The highly
publicised denial of service attacks perpetrated on the Internet are an example
of interruption, as are hardware failures and loss of network communications.

Modi�cation involves an unauthorised party tampering with or corrupting a
system resource, usually data, thus compromising the integrity of the system.
Examples include modi�cation of data �les or the contents of network messages.
Fabrication attacks are similar to modi�cation attacks, however they involve new
objects being inserted into the system instead of existing objects being modi�ed.
Such an example would be the transmission of bogus messages on the network.

Various cryptographic tool are available to counter these threats. IPSec can
be used to address the lack of security in IP networks, including con�dentiality of
data and also authentication of users of the system. Kerberos is another system
that can provide authentication of users trying to access resources on a system.
The e�ectiveness of any security systems implemented is, however, dependant on
the correct identi�cation of the threats to the system.

6

2.1.1.4 Transparency
A fully transparent distributed system is de�ned by Tanenbaum & Steen (2002,
p. 5) as one that is �able to present itself to users and applications as if it were
only a single computer system.� They also suggest that there are several aspects
of transparency, including access, location, migration, relocation, replication, con-
currency, failure and persistence.

While transparency is certainly an important goal when designing a dis-
tributed system, total transparency is not always desired, or in fact possible.
The exact nature of a distributed system will dictate the degree of transparency
possible for each of the criteria listed above. For example, a distributed �le sys-
tem may be almost fully transparent to the end user, however in the occurrence of
a disk crash the �le systems may become unusable. Therefore this system could
not be classed as being failure transparent.

An important note is made by Tel (1994, p. 2), who suggests that �the imple-
mentation of this transparency requires the development of intricate distributed
control algorithms�, inferring that the inclusion of transparency as a required
property of a distributed system is too restrictive. Tanenbaum & Steen (2002,
p. 7) state that �there is also a trade-o� between a high degree of transparency
and the performance of a system.� Therefore it seems prudent to stay mindful
of these trade-o�s when designing a distributed system, along with the bene�ts
that it can provide.

2.1.1.5 Performance & E�ciency
For many applications, a distributed approach can result in signi�cant perfor-
mance gains. Parallelisation is often a natural consequence of a distributed sys-
tem, which can be viewed as a collection of interconnected processors each able
to perform computation concurrently. Distributed applications can be designed
to take advantage of this feature by dividing up large tasks into smaller subtasks
and sending each subtask to a processor in the system for computation.

Distributed systems that are highly e�cient generally have low overheads as
a consequence of their distribution, and hence experience a god scalability as a
result.

7

2.1.2 Motivation for Distributing Systems

There are many possible motivating factors for using a distributed system, the
most obvious being performance. As mentioned in Section 2.1.5, distributed sys-
tems allow the parallelisation of applications which often results in performance
gains. There are many applications that could use this property to harness the
processing power of a number of computers to perform some computation, par-
ticularly in large organisations where workstations are idle for large periods of
time.

Carriero & Gelernter (1990, p. 1) claim that parallelism is the natural way
for humans to solve complex problems. They suggest the example of a watch or
a steam engine, which are built out of many components acting simultaneously.
Therefore, it can be said that many complex problem solving tasks could be aided
by a distributed system.

Applications may also wish to exploit the scalability and reliability of a dis-
tributed system. These factors were discussed in previous sections.

2.2 Distributed Computing Technologies

There are numerous technologies which can aid in the development of a dis-
tributed system, from basic interprocess abstractions such as sockets through to
elaborate enterprise-level component systems. Distributed systems can generally
be classi�ed, based on their communication mode, as message passing, remote
procedure calling, remote method invocation, or shared memory systems.

This section details some notable distributed computing technologies, signi�-
cant because of either their widespread use or historical signi�cance.

2.2.1 Remote Procedure Call

All distributed computing technologies are based, at their core, on passing mes-
sages over a network (Tanenbaum & Steen 2002, p. 57). However this is a
complex and error-prone process if done manually, and it does not provide any
transparency at all to the programmer as every piece of communication had to
be done explicitly. Remote Procedure Call (RPC) provides this missing trans-
parency.

8

The idea of RPC was �rst proposed by Andrew Birrell and Bruce Nelson
(1984). The basic concept is to allow programs to call procedures on another
computer. They reasoned that procedure calls were a well understood concept for
the transfer of control in a program, and therefore could be extended for use over a
communications network. RPC successfully hides the underlying message passing
from the programmer, making calls to remote procedures indistinguishable from
calls to local procedures, and thus transparent.

Tanenbaum & Steen (2002, p. 69) suggest, however, that �subtle problems
exist� with this idea. Firstly, the calling and called procedures in an RPC are on
di�erent machines, and hence in di�erent address spaces. This complicates the
passing of parameters and accessing return values to and from procedures. For
example, consider parameters that are pointers. Also, it is inevitable that either
one of the computers will crash or the network connection will be lost during a
remote procedure call, thereby causing the system to experience partial failure.

The concept introduced by RPC to address these problems and enable RPC
to to work e�ectively are stubs. Stubs on a client machine act as a proxy for
a remote procedure, providing a local interface for the programmer to use to
make a remote procedure call. The client stub will handle all of the details
of sending messages over the network, including packing parameters into valid
network messages (known as marshalling) and unpacking (unmarshalling) any
values returned. Once the remote procedure call has been made, the stub will
wait for a response from the corresponding server stub (Tanenbaum & Steen 2002,
pp. 71-72).

A server stub is analogous to a client stub, characterised by Tanenbaum &
Steen (2002, p. 71) as �a piece of code that transforms requests coming in over the
network into local procedure calls.� A server stub unmarshalls any parameters
needed for the procedure call, makes the actual procedure call, and then marshalls
any values returned before sending them over the network back to the client stub.

The client and server stubs provide conversion facilities if they are situated on
incompatible systems. For example, if one system interprets bytes using the big
endian format, and the other uses little endian. These compatibility issues are
handled by the stubs on either machine. Stubs also handle the problem of passing
pointers as parameters mentioned earlier; usually the pointers are dereferenced
and passed by value.

RPC was an innovative technology that simpli�ed the complex task of de-

9

veloping a distributed system. It introduced many concepts that are still in use
in many current distributed technologies, including remote method invocation
systems such as Java RMI.

2.2.2 CORBA

The Common Object Request Broker Architecture is a distributed systems spec-
i�cation developed by the Object Management Group (OMG), a group of more
than 800 members, many from within the commercial computing �eld. CORBA
was developed to address the issue of interoperability between networked systems.
It is an open standard, and as a consequence vendors are free to make their own
changes and extensions if they wish.

The central component of any CORBA system is the Object Request Broker
(ORB). Brose et al (2001, p. 31) state that

It acts as a message bus between objects that may be located on any
machine in a network, implemented in any programming language,
and executed on any hardware or operating system platform. The
caller needs only an Object Reference and well-formed arguments in
the language mapping of choice to invoke an operation as if it were a
local function and receive results.

Another core piece of the CORBA speci�cation is the Interface De�nition Lan-
guage (IDL). IDL is a language-independent way to produce well de�ned inter-
faces between object in the system. Brose et al (2001, p. 34) IDL is used to
�inform clients of an object o�ering an interface exactly what operations an ob-
ject supports, the types of their parameters, and what return types to expect.�
Compiled IDL produces stubs, similar to those seen in RPC, that allow the pro-
grammer to invoke methods in another object in a very transparent way.

CORBA is a very detailed speci�cation, o�ering various services, communi-
cation models, naming services, and interoperability capabilities that will not be
covered here. It is important to note, however, that CORBA is an industry stan-
dard that can be used many client/server systems, and is especially suited for
systems that require interoperability between platforms.

10

2.2.3 DCOM

The Distributed Component Object Model is an object based distributed system
from the Microsoft Corporation. DCOM is an extension of COM, which is used
extensively throughout the Microsoft Windows 9x and NT operating systems.
DCOM supports communication among objects located on di�erent computers,
similar in many ways to CORBA.

DCOM is an example of a component architecture, whereby individual compo-
nents are speci�ed that can interact and be dynamically activated (Tanenbaum
& Steen 2002, p. 526). Components can take the form of a dynamically linkable
library or an executable program.

The remote-object model common to most object-based distributed systems
can also be found in DCOM. DCOM is programming language independent, due
to the use of the Microsoft Interface De�nition Language (MIDL). This is very
similar to the IDL found in CORBA, except DCOM uses binary interfaces which
eliminate the requirement for language-speci�c bindings (Tanenbaum & Steen
2002, p. 527).

One major di�erence between DCOM and CORBA is the fact that it is a pro-
prietary technology, whereas CORBA is an open standard designed by committee.
As a result, DCOM has little support for interoperability between di�erent plat-
forms. The popularity of the Windows operating system has placed DCOM as
one of the most widespread distributed computing technologies in use.

2.2.4 Linda

The Linda coordination language is an example of a space-based distributed sys-
tem. This style of system was �rst proposed by David Gelernter (1985) at Yale
University. Linda di�ers from all previous distributed computing technologies
in that it is distributed not only in space but also in time (Gelernter 1985, p.
81). Its notable features included a persistent shared memory which could be
used to store tuples, along with operations to read from and write to the mem-
ory. Another characteristic of Linda is the loose coupling of processes; instead of
communicating directly via message passing, processes communicate through the
persistent tuple space. This feature was referred to by Gelernter (1985, p. 80) as
generative communication, and it formed the basis of the Linda system.

The goal of Linda was not the development of a platform as such; in fact,

11

Linda was implemented in many languages, including C, Prolog and Fortran.
Rather, it was a model that could be used to implement parallel algorithms and
develop distributed data structures in a very simple and elegant way. The model
also resulted in very robust and scalable distributed systems.

The development of Linda introduced an innovative new paradigm for dis-
tributed computing. Space-based simplify the implementation of otherwise com-
plex parallel algorithms. Recent systems such as JavaSpaces and TSpaces are
based heavily on Linda.

2.3 Java Distributed Computing

Sun Microsystems' Java platform was designed to be an �Internet programming
language�, and as a result it incorporates strong support for networking, secu-
rity and multi-threading (Farley 1998, p. 6). These important features, along
with Java's inherent architecture neutrality, make it a platform ideally suited for
distributed computing.

Distributed systems that are built with the Java platform are somewhat dif-
ferent than non-Java systems. Instead of a collection of cooperating computers,
processes or processors, we instead have a collection of cooperating Java Virtual
Machines (JVMs). This gives a distributed system the important property of
homogeneity; all nodes are JVMs, and all objects in the system are pure Java ob-
jects. This removes many of the problems that found in heterogeneous systems,
where interoperation between nodes can be much more di�cult.

Another advantage of Java's architecture neutrality is the powerful notion of
code and object mobility. Once a class has been compiled into byte code, it can
migrate and be executed on any host JVM (Farley 1998, p. 8). Furthermore,
actual instantiated objects can be dynamically loaded into a running program as
long as the object's byte code is available to the recipient JVM. This is made
possible by Java's powerful object serialisation capabilities (Sun Microsystems
2001), of which all Java distributed computing technologies can take advantage.
The dynamic loading of objects allows the function of a program to be changed
or extended while it is running, by executing the dynamically loaded object. This
feature was �rst used to execute Applets in web browsers, and it is also extremely
useful in distributed systems.

The possibility for untrusted code to be executed on a host JVM raises many

12

security concerns. Originally, Java handled this problem by using a sandbox

security model, whereby untrusted code executed with no privileges on the host
machine. However, Java 2 (versions later than 1.2) has a �ne-grained security
model which allows speci�c rights to be granted or revoked, along with code
signing (McGraw & Felten 1999, pp. 22-25) which should prevent the execution
of malicious code and ease user concerns. Java also has APIs that provide various
encryption and hashing algorithms.

The Java platform o�ers several distributed computing technologies, each one
roughly corresponding to one of the broad categories of distributed systems out-
lined in Section 2. They are discussed in more detail below.

2.3.1 RMI

Java's RMI (Remote Method Invocation) technology provides a simple and trans-
parent way to invoke the methods of remote objects, even if the objects involved
in this interaction may be in di�erent JVMs and potentially on di�erent hosts
(Öberg 2001, p. 32). It is conceptually very similar to RPC, however it has
been adapted for use in distributed object systems (Sun Microsystems 2002, p.1),
and it takes advantage of the capabilities that a homogeneous Java-based sys-
tem o�ers, such as object serialisation, �ne-grained security and dynamic class
loading.

RMI has been a part of the core Java API since version 1.1. Before its in-
clusion, the only distributed computing capabilities that Java had were sockets.
Sockets are relatively low-level, and require the programmer to implement custom
application-level protocols for communication. Wollrath et al (JavaSoft 1996), the
designers of RMI, identi�ed this as a cumbersome and error-prone process, and
it was the goal of RMI to simplify matters and make the development of reliable
distributed systems easier.

The procedures that must be followed to invoke methods of remote objects is
not entirely transparent to the programmer. This is intentional, as the designers
of RMI identi�ed the need to deal with distributed objects in di�erent ways than
local objects for reasons such as latency, memory access, concurrency and partial
failure (Waldo et al 1994).

Objects in an RMI system that wish to make their methods available to accept
remote calls, known as remote objects, must do so explicitly by implementing the

13

java.rmi.Remote interface. Remote objects are treated di�erently than non-
remote objects in an RMI system. Non-remote objects are passed by copy between
JVMs (as long as they can be serialised) when included as method arguments or
return values, whereas remote objects have a stub object transferred in their place
(Sun Microsystems 2002, pp. 10-11).

A stub object acts as a proxy for a remote object. They serve a similar
purpose as the RPC client/server stubs discussed in Section 2.1. Once the stub
object has been transferred to the recipient JVM, it can be used to invoke the
methods of its corresponding remote object. The stub object is treated just like
any normal local object, and therefore calls to remote objects are practically
transparent to the programmer. The stub object takes care of all of the details of
the actually communication, including initiating the connection and marshalling
and unmarshalling of parameters and return values (Sun Microsystems 2002,
pp. 15-16). One factor that di�erentiates stubs from ordinary local objects is
that their methods throw a java.rmi.RemoteException if an error occurs when
communicating with its corresponding remote object.

The �nal major requirement for the RMI system is some mechanism to obtain
stubs objects. Öberg (2001, p. 69) suggests that this can be achieved in numerous
di�erent ways due to the convenience of Java serialisation. An e�ective naming
service is included with the Java Software Development Kit, called rmiregistry.
This program is used to bind stubs to names, and then lookup stubs using the
known names (Öberg 2001, p. 69). A web server can be used to deliver the actual
class code.

An overall view of a simple RMI system is shown in Figure 2.1.

2.3.2 Jini

Jini allows individual services, whether they are hardware devices or software, to
be grouped into a network, or federation, and have their services o�ered to other
members of the federation. Jim Waldo (1999, p. 77), the lead Jini architect,
states that

Jini allows anything with a processor, some memory, and a network
connection to o�er services to other entities on the network or to use
the services that are so o�ered. This class of devices includes all the

14

Figure 2.1: Overview of a basic RMI system. (Sun Microsystems 2002)

things we traditionally think of as computers but also most of the
things we think of as peripherals, such as printers, storage devices,
and specialised hardware.

One of Jini's key strengths is its ability to adapt to a dynamic network environ-
ment. It assumes a changing network, and supports the �incremental upgrading of
network components� (Waldo 1999, p. 76). Adding and removing services to and
from a Jini federation is very straightforward, and does not e�ect the operation
of the rest of the network.

Jini is built on top of RMI, and as such there are some similar concepts in
both systems. Jini has a lookup service, similar to RMI's naming service, which
allows entities to register a service that they are o�ering and to �nd services that
other entities are o�ering. Jini's lookup service stores service objects, and these
serve a similar purpose to the stub objects in RMI. However, Jini also provides
features not found in RMI, such as transactions and distributed events.

The central part of a Jini system are three protocols; discovery, join and
lookup. A brief overview of these protocols is given below; for more detail refer
to the Jini Architecture Speci�cation (Sun Microsystems 2001, pp. 12-15).

When an entity wishes to join a Jini network, or federation, it �rst needs to
�nd the lookup service(s) in the network using the discovery protocol. This is
basically a broadcast request on a local network, to which any existing lookup
services should respond and inform the requester of their existence.

If the entity joining the federation wishes to o�er a service, it will use the
join protocol to register its service with the lookup service. To o�er a service, a

15

service object must be sent to the lookup service. A copy of the service object
will be sent to any other entity in the federation who requests the service. The
service object acts as a proxy to the actual service, just like a stub does for a
remote object in RMI.

Finally, the lookup protocol is used by entities in a Jini federation to �nd
services, via the lookup service, being o�ered by other entities. The lookup is
done by matching a service with its Java type, along with speci�c attributes.
For example, if we wanted to �nd a printer on a Jini network that has at least
one hundred pages left, we might use the lookup protocol to �nd an object of
type PrinterService with an attribute pages >= 100. If a match is found, the
PrinterService object will be transferred to the requester. This object can be
used to invoke the actual service, in this case a printer.

2.3.3 JavaSpaces

JavaSpaces is a distributed computing technology that provides a persistent
shared memory and simple yet powerful object exchange mechanisms. It is very
closely related to Jini in that a JavaSpace is a speci�c Jini service. Hence, many
similar concepts can be found between the two technologies. This allows JavaS-
paces to take advantage of all of the features provided by Jini, and therefore RMI,
such as object serialisation, code mobility, distributed events and transactions.

Freeman et al (1999, p. 4-5) states that
(JavaSpaces) is a departure from conventional distributed tools, which
rely on passing messages between processes or invoking methods on
remote objects. JavaSpaces technology provides a fundamentally dif-
ferent programming model that views an application as a collection
of processes cooperating via the �ow of objects into and out of one or
more spaces.

The design of JavaSpaces was heavily in�uenced by a previous space-based dis-
tributed computing technology called Linda. The Linda coordination language
was developed by David Gelernter at Yale University in the early 1980s. It pro-
vided a tuple-space where processes could store and retrieve tuples. A character-
istic of these systems was the loose coupling of processes, whereby processes com-
municate through a persistent store rather than through direct messages (Free-
man et al 1999, p. xv). For other similarities and di�erence between Linda

16

and JavaSpaces refer to the JavaSpaces Speci�cation (Sun Microsystems 2002, p.
6-8).

The JavaSpaces shared memory is provided by a service called a space. A space
is used to hold entries, that is, a Java object that implements the net.jini.core-
.entry.Entry interface. A space has some useful properties, namely persistence,
and the ability to be associatively searched. Entries stored in a space remain
there until they are explicitly removed or their lease expires, even if the process
that placed the object there ceases to exist. Furthermore, it is possible to locate
objects stored within a space by performing a search based on an objects type
and values of its attributes (Freeman et al 1999, p. 31-32). This method of object
location is the same as for the Jini lookup service detailed in the previous section.

There are four fundamental operations that can be performed on a JavaSpaces
service; read, write, take and notify.These operations are very simple, and yet
expressive enough to facilitate the development of complex distributed systems.
(Sun Microsystems 2002, p. 11) states that write is a store operation, read and
take are combination search and fetch operations, and notify sets up repeated
search operations as entries are written to the space.

Multiple operations can be performed across multiple JavaSpace services atom-
ically, a feature based on the transactions model provided by Jini. The use of
transactions results in either all or none of the operations being applied, even
if the operations modify multiple spaces. This feature ensures that the system
remains in a consistent state and can help to protect against certain problems
caused by partial failures, as discussed in Section 2.1.1.

The standard Java programming language facilitates an event-based style of
programming. Events may occur when certain designated objects, called event

sources, react to some internal state change, and it is possible to listen for these
events, using event listeners, and handle them accordingly. Events are assumed
to be delivered reliably and instantaneously in a single-JVM system, however this
is not always the case in a distributed system. (Sun Microsystems 2001, pp. 55-
56) suggests that noti�cation of events may arrive to clients out of order or not
at all, or noti�cation may take an indeterminate amount of time due to latency.
These issues are dealt with by the distributed events features of JavaSpaces.

The distributed event model in JavaSpaces allows object to register interest
in entries in a space that match a given template. This is achieved using the
notify operation mentioned previously. If an object matching the description of

17

the template is written into the space, an event is ��red� to notify the object that
registered interest (Freeman et al 1999, p. 219).

JavaSpaces is described by (Sun Microsystems 2001, p. 4) as a tool for building
distributed protocols, and for distributed applications that can be modelled as
�ows of objects through one or more servers. Its use can greatly decrease the
complexity inherently encountered when developing a distributed system.

2.3.4 Servlets

Java has great potential for use as a server-side development platform, and this is
supported by the Java 2 Enterprise Edition (J2EE). Servlets are one of the cen-
tral technologies in the J2EE platform, and they provide a powerful and �exible
platform for building server applications or producing dynamic web content.

Hunter & Crawford (2001, p. 1) de�ne a Servlet as �a small, pluggable exten-
sion to a server that enhances the server's functionality.� Servlets are, when used
as an add-on to a web server, an alternative to the Common Gateway Interface
(CGI) web technology. They o�er many advantages over CGI, including perfor-
mance and portability. However, Servlets can be used for a wide variety of other
purposes, including client/server applications.

A servlet container is required to execute a servlet. There are three types of
servlet container: standalone, add-on and embedded. These are described in more
detail below:

• Standalone - A standalone container is a server with built-in servlet support
(Hunter & Crawford 2001, p. 7). An example is the Apache Tomcat server,
an o�cial reference implementation for servlet containers.

• Add-on - An add-on servlet container acts as a pluggable module for an
existing server, often a web server. These containers add servlet support
to servers with a poor, outdated or non-existent servlet implementation
(Hunter & Crawford 2001, p. 9). There are add-on containers for most web
servers, including Apache and Microsoft's Internet Information Server.

• Embedded - Servlet containers can be embedded into an application, ulti-
mately making the application a container in its own right. The Apache
Tomcat's open source license has made it popular as a solution as an embed-

18

ded container, as it can be modi�ed without restriction and thus adapted
for many purposes.

There are a number of features which make servlets suited to client/server ap-
plications, including portability, e�ciency, simplicity, integration with the server,
along with all the capabilities provided by the core Java APIs.

Servlets are portable between servlet containers, as long as the containers
supports the required version of the Servlet API. Like any Java program, servlets
can execute on any JVM without recompilation, and are thus truly portable. Also
like any Java program, servlets can take advantage of the capabilities provided
by the Java platform API, such as networking, object serialisation, and database
connectivity.

Multithreading is an inherent property of servlets; each servlet request is
handled by a separate thread, as opposed to CGI where are new process has to
be spawned to handle each request. Furthermore, once a servlet has been loaded
into memory, it remains there are an object instance (Hunter & Crawford 2001,
p. 12). Hence, a servlet maintains its state between requests, and therefore hold
onto resources which might otherwise takes time to obtain. These features make
servlets highly e�cient and scalable.

Servlets are highly extensible and �exible, and can be easily adapted for spe-
ci�c tasks. They are relatively simple, as the Servlet API handles many of the
routine tasks of development. Servlets are therefore a very powerful solution for
a wide variety of client/server applications.

2.3.5 Applets

Applets are small Java programs that are embedded into a web page. When
the web page is loaded into a web browser, the Java byte-code is downloaded
and executed within the web browser. The Java Runtime Environment plugin is
required for a web browser to run applet code.

There is little di�erence in capability between an applet and a standalone Java
application. However, applets are generally restricted to the sandbox security
model found in versions of Java previous to version 1.2. This prevents malicious
applets from causing any damage to computers they are downloaded and executed
on, however it also restricts the capabilities of trusted applets.

19

Applets are a useful technology for use in distributed systems, as they o�er a
simple method to download and execute code on on worker computers without any
software installation or con�guration overhead. This is especially true considering
that Java-enabled web browsers are practically ubiquitous on general-purpose
workstations.

2.3.6 Web Start

Java Web Start is a technology that allows standalone Java applications to be
deployed over the world wide web. A Web Start applications can be launched
simply by clicking on a hyperlink embedded in a web page, and spares the user
from having to install and con�gure the software manually (Sun Microsystems
2003).

Web Start technology is enabled by the Java Network Launching Protocol
(JNLP). This protocol allows Java applications to be packaged for deployment
on a web server, and speci�es how the application should be downloaded and
launched (Sun Microsystems 2001, p. 8). The JNLP also allows incremental
updates and local caching of an application. The core component of a JNLP
application is its descriptor �le; this is an XML-based �le that is used to specify
all of an application's attributes, such as the location of the Java class code, and
the security model employed.

The Web Start software is installed as a plugin to a web browser, and is
launched when the user click on a hyperlink to a JNLP descriptor �le. Web Start
acts mainly as a JNLP client, and takes care of the downloading and launching
of the application.

Web Start has many advantages over Applets, most notably that it is com-
pletely independent of the web browser once the application has been launched,
and also that an application's class code is cached locally once it has been down-
loaded. Therefore, the class code will only be downloaded the �rst time that
an application runs, and only ever again is the class code is modi�ed. This also
allows the application to be launched again when the computer is not connected
to the network.

20

2.4 Research in Distributed Computing

Distributed computing has been the focus of much research in the past from
those in the �elds of parallel and high-performance computing. The widespread
adoption of the Internet has sparked interest in so-called massively distributed
systems, which could harness the power of potentially huge numbers of comput-
ers to form a supercomputer with unprecedented processing capabilities. On a
slightly smaller scale, many are recognising the potential for exploiting the wasted
processing power of idle workstations within an organisation.

This section will examine some of the research that has been done in these
areas.

2.4.1 Utilising Idle Workstations

Many organisations have large numbers of computers that, for the vast majority of
the time, are performing very little computation. This is the case when users are
only running a word processor or web browser on their machine, and especially at
night when the computers might be doing nothing at all. The amount of wasted
processing power could potentially equal that of very expensive high performance
computers. Phillips (1997) identi�ed this as the idle-workstations problem, and
put forth several ideas about how the problem could be addressed.

A situation such as this is a prime candidate to run some form of distributed
system to perform computations when workstation load is low. Shoch & Hupp
(1982) developed one of the �rst such systems, calling them �worm� programs.
They were named as such due to their behaviour, being described as �a program
or computation that can move from machine to machine, harnessing resources
as needed, and replicating itself when necessary� (Shoch & Hupp 1982, p. 172).
Each segment, or computational section, of a worm is located on an individual
computer, and communicates with each other segment to form a complete system.
Shoch & Hupp (1982, p. 173) observed that �as segments (machines) join and
leave the computation, the worm itself seems to move through the network.�
They also highlighted the need for control algorithms that monitor how large the
worm grows and ensures that system resources are released to users when needed.

Several applications were built using this system, ranging from the simple bill-
board worm through to a complex real-time multi-machine animation program.
The development of this system clearly illustrated the potential of this kind of

21

system, but also some of the issues such as releasing resources back to users and
controlling how and where the worms can spread.

Phillips (1997, pp. 3-8) identi�es several other models which may be applied
to the idle-workstations problem. Four of these model are detailed brie�y be-
low, along with some example systems, to give an idea of some of the available
approaches.

• Processor pool - Avoid idle workstation problem by logically decoupling the
processor from the desktop platform. Examples include the Amoeba, Plan
9 and Clouds systems.

• Supervisor-worker model - Divides tasks into a supervisor process and mul-
tiple worker processes. Workers are given subproblems to complete, and
results are merged by the supervisor. Example include the SETI@Home
and distributed.net systems.

• Location-transparent execution - Processes may appear to be executing on
a single machine but may in fact be distributed, however their behaviour
remains unchanged whether executing locally or remotely. For example, the
Sprite operating system.

• Process migration - Allows processes to migrate between machines; more
general than remote execution mentioned above. Examples include the V,
Locus and Accent operating systems.

Organisations could reap huge bene�ts from harnessing their wasted computing
resources, and one feels that if a general purpose platform were available to enable
this then it would be a much more widespread practice.

2.4.2 Networks of Web Browsers

Fletcher (2002) and Tan (2002), each Honours and Masters students respectively
at the School of Computing, University of Tasmania, successfully demonstrated
the feasibility of a network of web browsers as a way to build a distributed system.
This was made possible by a web browser's ability to download and run Java
Applets; the near-ubiquity of these browsers on personal computers hints that
this may be a possible approach to solve the idle-workstations problem.

22

Fletcher and Tan used Java Servlets and Java RMI as the underlying technol-
ogy in their respective systems to facilitate communications between an Applet in
a web browser and the server. Both systems conformed to the supervisor-worker
model described in Section 4.1; the Applets were workers who request jobs from
the server, complete the jobs and return the results. Fletcher successfully devel-
oped a crossword program to run on his system, and achieved an almost linear
performance increase up to three computers. Tan achieved similar results for
a sorting program. Neither system scaled well with more than �ve computers,
however Fletcher & Malhotra (2003, p. 4) suggest that some of the scalability
problems are due to server saturation and could be addressed using well known
strategies. They also suggest that robustness, fault tolerance and a suitable in-
terface for submitting tasks to the system would be needed to make the systems
more general purpose.

Networking web browsers to form a distributed system is an innovative idea,
with a lot of potential when one considers the massive numbers of computers
connected to the Internet. In fact, Fletcher & Malhotra (2003, p. 1) describe the
system as �a network of browsers that combines available free computers into a
huge multi-processor supercomputer.�

2.4.3 Adaptive Cluster Computing using JavaSpaces

Batheja & Parashar (2001) propose a framework for an opportunistic, adaptive
distributed system using the JavaSpaces technology. Their aim was the exploit
the idle processing resources on a cluster of workstations in a non-intrusive man-
ner. The homogeneity provided by a purely Java system assisted them in meeting
their goals, however issues such as intrusiveness, system management and adapt-
ability were still encountered.

This system is based on a model similar to the supervisor-worker model de-
scribed by (Phillips 1997, p.3), whereby tasks are divided into smaller subtasks by
the master and distributed among the workers for computation, before the results
are returned to the master to be merged. However, the distribution of subtasks
to workers is not quite as explicit as this; the subtasks are actually place into
the space provided by the JavaSpace service. The workers themselves query the
space for available tasks, and when one is found they remove it, complete the
computation and return the results to the space. Batheja & Parashar (2001, p.

23

8) refer to this as the bag-of-tasks model. They assert that this model provides
natural load balancing, in that workers will be kept busy as long as there are
tasks to be completed, however each workers will only do as much work as it is
capable of. They also note that this model is naturally scalable, and consequently
additional workers will provide improved performance. The bag-of-tasks model
is suitable for coarse-grained applications that can be partitioned into relatively
independent subtasks.

One of the key characteristics of this system was its ability to be both oppor-
tunistic and non-intrusive at the same time. The system was opportunistic so far
as it took advantage of any available processing capabilities of idle workstations
on the network. However, it did not intrude on users' access the these resources
when they were needed. Batheja & Parashar (2001, p. 2) suggest that �a local
user should not be able to perceive that local resources are being stolen for for-
eign computations.� The system achieved its goal of non-intrusiveness by using
the Simple Network Management Protocol (SNMP) along with the Java Native
Interface (JNI) to monitor the state of the network and of the worker machines.

Several �real-world� applications were used to test this system, including a
�nancial simulation program, a scienti�c ray tracing application and a web page
pre-fetching optimisation application. Each application had di�erent character-
istics, such as varying memory, task dependency and scalability requirements.
The results of these tests revealed good scalability, at least for up to �ve workers,
and performance increase for coarse-grained tasks, along with minimal intrusive-
ness upon the cluster. The performance gains were most apparent for extremely
parallel applications such as the ray tracing program.

This system demonstrates that the idle resources of a network of workstations
can be exploited to form a powerful distributed system in a dynamic and non-
intrusive manner. It also demonstrates that the space-based paradigm can be
used for applications with varied requirements.

2.4.4 Distributed Middle Tier

Chuang & Cheng (1999) identify the three tiers of a web based application as
the presentation and computation of results, and the data source. They propose
an extended version of this programming model, called a distributed middle tier,
where there are a pool of worker machines at the computation tier. Tasks are

24

partitioned and distributed to workers in this pool for computation.
A straightforward way to partition tasks is also suggested by Chuang & Cheng.

A simple interface, Split-and-Merge, can be implemented by a program to spec-
ify how it should be partitioned, executed and �nally merged. This method of
task partitioning separates the policy and the method of partitioning (Chuang &
Cheng 1999, p. 1): the application programmer speci�es how a task should be
divided, and the system does the actual partitioning accordingly.

The distributed middle tier system was developed using standard Java tech-
nologies, including Applets and Servlets, similar to the system described in Sec-
tion 4.2. An example application was developed for the system which distributed
the computation of a Mandelbrot fractal set over several workers (Chuang &
Cheng 1999, p. 5). These workers were Java Applets running on a number of
computers. Test runs of this program showed results of almost linear speedup for
up to four machines.

Chuang & Cheng successfully demonstrated the feasibility of web-based dis-
tributed systems, along with a simple method for a programmer to specify how
a task should be divided. Their system did not allow, however, for any relation-
ship between sub-tasks, and did not consider issues such as fault tolerance and
robustness.

2.4.5 Distributed JVMs

An alternative approach to distributed computing which is currently experiencing
considerable research e�ort are distributed Java Virtual Machines (JVMs). Dis-
tributed JVMs aim to make the distribution of an application implicit by creating
a JVM that spans multiple computers, whilst making it appear to the application
that it is running on a single system, in essence a multi-processor computer.

Remote object systems such as Java RMI provide an e�ective way to transfer
�ow of control between JVMs and provides mechanisms for objects to migrate
between JVMs. However, RMI does not provide any means for threads to migrate
between JVMs. A solution to this problem was proposed by Haumacher et al
(2003), who developed a replacement for Java RMI called KaRMI. Their system
not only o�ered superior performance than traditional RMI, but also provides
threads with a global identity in a distributed system, and preserves the normal
Java thread semantics so that synchronisation still works in a distributed setting.

25

Their KaRMI system forms the basis of the JavaParty platform.
Various approaches have been taken to developing a distributed JVM. Some

systems introduce new keywords to the Java language and have developed their
own preprocessors or compilers, such as the JavaParty system. Other system,
such as JavaNOW (Thiruvathukal et al, 2000), used freely available Java libraries
to construct a framework for parallel applications. Unfortunately, such systems
require the application programmer to explicitly tailor the application for these
systems, thus limiting the transparency provided.

However, there is a system developed by IBM called the Cluster Java Virtual

Machine (cJVM) that can potentially provide total transparency (Aridor et al
1999). The cJVM provides a single system image to an application, allowing it
to execute unmodi�ed using the entire resources of a cluster of computers. The
objects and threads of an applications are automatically managed by the cJVM,
being distributed around the cluster to achieve scalability and performance ben-
e�ts. A Java application containing over ten-thousand lines of code was suc-
cessfully executed on a cluster using the cJVM without any code modi�cations
whatsoever, obtaining promising scalability and performance results (Aridor et al
2000). Currently the cJVM is not very �exible in terms of network con�guration
or hardware platforms, however if these issues could be addressed then this style
of distributed computing could prove extremely e�ective.

2.5 Summary

This review has explored the fundamental concepts of distributed computing, and
looked at various tools which can be used when developing a distributed system.
We have detailed some of the past and current research in the �eld, focusing
particularly on e�orts that utilise idle computers or systems that are deployed on
the web using the Java platform.

The wasted processing potential of idle workstations has long been known to
be a problem. Carriero & Gelernter (1990, p. 6) stated that

The typical modern o�ce or lab environment - many workstations or
personal computers, networked together - is another promising envi-
ronment for parallelism, arguable the most promising of all. If you
sum up total computing power over all nodes of a typical local area
network, you often wind up with a signi�cant power tool.

26

If this reasoning is extended to include the total computing power of all nodes
on the Internet, obviously the potential processing power is massive; even a tiny
portion of it would su�ce for a powerful supercomputer. There have been many
attempts to harness this wasted processing capability for a worthwhile cause, with
varying levels of success. The ability to access a large untapped pool of processing
power for an extremely small cost is ample justi�cation for further research into
the area.

In Chapter 3, we will look at the system that was developed in an attempt to
further explore ways of utilising idle workstations.

27

Chapter 3

Methodology

This chapter presents the design and implementation of a dynamic distributed
system to which users may easily donate their computer; the unused CPU cycles of
each computer are aggregated to produce a potentially very powerful distributed
processing system.

The �rst part of this chapter presents such a system, which will allow a large,
computationally intensive task to be divided and distributed among whichever
computers have joined the system. This system provides a complete framework
for the development and deployment of a wide variety of distributed applications.

The second part of this chapter details two sample applications that were
developed for the system for testing purposes; namely the n-Queens problem and
a parallel sorting (shearsort) application.

3.1 System Overview

There are two main parts to the system: a distributed environment to which
users can submit jobs for execution, and a development framework which can be
used to build distributed applications suitable for deployment on the system.

The distributed environment enables a user to donate their computer to the
system, e�ectively adding their computer's processing capability to a pool of
other worker computers. These workers are used to collectively process large,
computationally intensive applications.

28

3.1.1 Goals

The goal of this research, as alluded to in Section 1.1, is to develop a distributed
system that attempts to utilise the wasted CPU cycles of workstations in an
organisation. As such, the system should be as e�cient as possible, in order to
maximise performance and scalability and thus realise the full bene�t of adding
extra computers to the system.

Furthermore, the system should be robust and reliable, and be able to han-
dle partial failure in the case of one or more computers unexpectedly becoming
unavailable to the system. For example, there may be a program crash or loss
of network connectivity. In these instances, the system should be able to recover
and still produce the correct result of the task.

The process of joining the system should be as simple as possible for a user,
and ideally not require any software to install or con�gure. The system must be
dynamic; it should be possible to add computers to the system at any time and
at any stage of the execution of a task. Also, a user should be able to end their
computer's participation in the system at any time they wish.

3.1.2 Application Development

A development framework is provided to facilitate the creation of applications
suitable for execution using the distributed environment. Whilst the software
running on the client workstations is generic, the process of preparing jobs for
submission to the system for execution will be unique for each application. At the
same time, there will be many function that will be common to all applications.

Several classes are provided from which a programmer should inherit, namely
GenericMaster, TaskEntry and ResultEntry. An implementation must be pro-
vided by every application for each of these classes. The purpose of each of these
classes will be explained in subsequent sections. The full source code for these
classes can be found in the appendices.

3.1.3 Architecture

The design of the system follows the master/worker, or agenda parallelism design
suggested by Carriero & Gelernter (1991) and similar to that used by Batheja &
Parashar (2001).

29

In such a system, a master process will divide a large task into multiple smaller
sub-tasks. These sub-tasks are distributed out to however many worker processes
are available. The worker processes will execute the sub-task, and return the
results of the computation back to the master. Once all of the sub-tasks have
been executed and the results returned, the master will merge the results into
a meaningful result of the original large task. An arrangement such as this is
illustrated in Figure 3.1.

Master

Worker

Worker

Worker

Server Retrieve Task

Return Result

Return Result

Retrieve Task

Return Result

Retrieve Task

Submit Job

Retrieve Results

��

� �� ��

��

Figure 3.1: An example master/worker system.

The distinguishing characteristics of master/worker systems are discussed in
Section 2.2.4. The most notable advantages are natural load balancing, a loose
coupling of processes, and a generative communication model which allows tem-
poral as well as spatial distribution.

It was decided to build the system using Sun Microsystem's Jini distributed
software architecture, speci�cally the 'Outrigger' JavaSpaces shared memory.
Also used are the 'Mahalo' Transaction Manager and the 'Reggie' Lookup Service.
These technologies provide an ideal platform for building a distributed system to
meet the goals stated above. Consequently, all development work was carried
out with the Java programming language. A more detailed discussion of Jini and
JavaSpaces was given in Sections 2.3.2 and 2.3.3.

30

To allow users to easily join the system and donate their unused CPU cycles,
the client-side software was deployed using Java Web Start. This allows a user
to launch the client-side application, which acts as a worker in the system, by
simply clicking a hyperlink in a web browser. It is assumed that a Java Runtime
Environment (JRE) is installed on the majority of computers, thus sparing the
user from installing any software and making the system open to a large number
of computers. Web Start applications o�er many advantages over Java Applets,
as they are not tied to the browser after being launched, and don't have be
repeatedly downloaded each time the user runs the program. More details on
Web Start were given in Section 2.3.6.

3.2 Core Components

This section will discuss the core components of the system, including the master
and worker programs and the coordination mechanisms that are employed to
control their operation.

3.2.1 Master

It is the role of the master process to split a large task into multiple smaller sub-
tasks and distribute these sub-tasks to whatever worker processes are available.
The sub-tasks are not distributed directly to individual workers, but rather simply
written into the JavaSpace, and workers will take sub-tasks themselves. Once the
master has written the subtask objects into the JavaSpace, it will wait until all
of the sub-tasks have been successfully executed, at which time it will take all
of the resulting result objects from the JavaSpace and assemble them into some
meaningful result. Further details of the task and result objects are given in
Section 3.2.3.1.

The basic operation of the master process is illustrated in Figure 3.2.
Obviously, the process of dividing a task and merging the results of sub-

tasks is going to be di�erent for every application. However, there is a class
core.master.GenericMaster de�ned that contains all of the functions that will
be common to all applications. A programmer should inherit this class and
implement its abstract methods when developing a master program for a speci�c
application.

31

Lookup Service

JavaSpace Service

Master

3. Read results (when available)

2. Submit tasks

1. Find a JavaSpace

� �� �� �� �
���
�

Figure 3.2: Basic operation of the master process.

The GenericMaster class is represented, along with its most notable methods,
by the class diagram in Figure 3.3.

GenericMaster

+ submitTasks()::void

getResults(ResultEntry template)::JobDetails

+ getJobDetails()::JobDetails

+ mergeResults()::void

Figure 3.3: The core.master.GenericMaster class.

The submitTasks() and getResults() methods are used to write tasks and
take results from the JavaSpace respectively. The submitTasks() method calls
the abstract methods getJobDetails() to obtain the set of sub-tasks for a par-
ticular application, as well as other required objects such as those discussed in
Section 3.2.3. The other abstract method, mergeResults(), should also be im-
plemented by the programmer to combine the set of result objects obtained from
getResults() into a meaningful result for that particular application.

The source code for GenericMaster can be found in Appendix A.

3.2.2 Worker

The worker process' sole purpose is to retrieve a task from the JavaSpace, execute
the task, and return any results that are produced to the JavaSpace. It is also

32

possible that the execution of the task will produce additional further tasks.
The worker program in this system is a Java Web Start application, the

main class of which is core.worker.Worker. The core functionality of Worker
is to obtain the service objects for the JavaSpace and a Transaction Manager
services, and then to initialise its graphical interface and also create a new
thread which will carry out the actual execution of tasks. These are de�ned
in core.worker.WorkerGUI and core.worker.TaskExecutor respectively, as il-
lustrated in Figure 3.4.

Worker

startGUI()::void

startWork()::void

stopWork()::void

exit()::void

WorkerGUI

init()::void

addMessage(String s)::void

setStatus(String s)::void

TaskExecutor

+ run()::void

− getTask(Transaction t)::TaskEntry

− returnResults(ResultEntry r, Transaction t)::void

− getTaskInput(ComputationUnit[] cu)::ResultEntry[]

stopWork()::void

1..1

1..1

1..1

Figure 3.4: Classes from the core.worker package.

The Worker is launched by clicking a hyperlink in a web browser to a Java
Network Launching Protocol (JNLP) �le. This �le is used to specify various
properties of the application, and will be used to start the Worker using the
Web Start software. The application is packaged in a signed JAR �le and made
available on a public HTTP server, located at a URL speci�ed in the JNLP �le.
The same Worker program is used for every applications that is built for the
system. It would not be modi�ed or reimplemented for individual applications.

33

3.2.2.1 Task Executor
The TaskExecutor runs as a separate thread, after being started by the Worker,
and it is responsible for carrying out almost all of the work completed by the
application. It is completely general-purpose, and can be used to execute any
component of the application as long as it conforms to the coordination interface
discussed in Section 3.2.3.

Fault Tolerance
The Transaction Manager is utilised by the TaskExecutor to maintain the con-
sistency of the system in the event of partial failure. All objects taken from or
written to the JavaSpace are done so under a transaction. All transactions are
leased from the transaction manager for a given period of time; this lease time
is speci�c when the transaction is created. If a transaction's lease expires, the
transaction is automatically aborted, thus cancelling all operations performed
under it.

The use of transactions becomes especially important in cases where a worker
process fails for some reason after having after having acquired some object from
the JavaSpace. Instead of these objects being lost inde�nitely, they are instead
only rendered unavailable until the expiry of the transaction under which they
were taken from the JavaSpace, at which time they will be made available once
more to other worker processes. The use of transactions also gives the system the
added advantage of preventing potential deadlocks from occurring, as objects are
only acquired for a �nite amount of time. For more details on the Jini transaction
model or distributed leasing refer to (Sun Microsystems 2003).

Execution
The TaskExecutor's cycle of obtaining a task, executing it, and then return the
results that was discussed previously is, in fact, slightly over simpli�ed. The �rst
operation actually performed is to obtain a dependency graph from the JavaSpace.
For now, a dependency graph can be thought of simply as an object specifying the
order in which tasks could be executed; more detail will be provided in Section
3.2.3.

So, the TaskExecutor uses the dependency graph to determine which task
should be executed next, and then obtains and executes the speci�ed task, af-

34

ter returning the dependency graph to the JavaSpace for any other workers in
the system to use. Furthermore, not all tasks will produce results, hence the
TaskExecutor will only return results to the JavaSpace when they are produced.

The operation of the TaskExecutor is illustrated in Figure 3.5.

Transaction Manager

JavaSpace

Worker/TaskExecutor

(2)
(8)
(5)
(4)
(1)

(3)
(6)
(7)

� �� � � �
� �
� �
� �

Figure 3.5: Operation of TaskExecutor.

A description of the operations performed in Figure 3.5 are as follows:

1. Create a new transaction, which we will call transaction A.
2. Take dependency graph using transaction A.
3. Determine which task can be next executed by invoking the dependency

graph's next() method; mark the corresponding computation unit in the
graph as in progress.

4. Write the dependency graph back into the JavaSpace, and commit transac-
tion A.

5. Create a new transaction, which we will call transaction B.
6. Take the task speci�ed by the dependency graph using transaction B.
7. If this task has data dependencies, obtain the relevant result entries to ful�l

these requirements using getTaskInput().
8. Execute the task.
9. Create a new transaction, which we will call transaction C.

35

10. Take the dependency graph from the JavaSpace using transaction C.
11. Update the dependency graph by marking the computation unit correspond-

ing to the current task as executed.
12. Write the dependency graph back into the JavaSpace using transaction C.
13. Write the result object that was produced into the JavaSpace using trans-

action B.
14. Finally, commit both transaction B and transaction C.

Note that steps 2 and 10 will block if the dependency graph is currently held by
another worker. Also, step 6 involves satisfying the data dependencies of a task;
this function is discussed further in Section 3.2.3.

3.2.2.2 Interface
A simple, user-friendly graphical user interface was designed for the Worker pro-
gram, as shown in Figure 3.6. The interface is de�ned in the core.worker.WorkerGUI
class, and uses Java Swing GUI components.

Figure 3.6: The Worker graphical interface.

This interface allows the user to join and leave the system at any time, via the
Start and Stop buttons. More speci�cally, the Start button causes the Worker
to obtain the service objects for the JavaSpace and the Transaction Manager, and
then to create and start running a new TaskExecutor thread. The Stop button

36

terminates the TaskExecutor thread, as soon as all current operations have com-
pleted. The Exit button terminates the Worker application. The current status
of the application (eg. idle, running etc) is displayed in the status bar, and
messages can be printed to the text area below.

3.2.3 Coordination

We have seen the details of how the master and worker each operate. However,
for any meaningful computation to be carried out, there must be a way to co-
ordinate the activities of each independent worker in the system, and to ensure
that the computation will produce a correct result. Many applications designed
for execution on a master/worker system will have dependencies between its sub-
tasks, either requiring that some particular tasks are executed sequentially, or the
results of some tasks may be needed as input for other tasks.

This section explores the components provided in the core.coordination

package which can be used to coordinate applications with a reasonable level of
complexity.

3.2.3.1 Entries
Entries are the name given to objects that can be stored in a JavaSpace, and
accessed by other processes through the JavaSpace's write, read and take op-
erations. The two fundamental units of communication in the system are task

entries, which are used to represent a computation to be performed, and result

entries, which are used to store the resultant data produced by the computation.
There are two classes provided, core.entry.TaskEntry and core.entry.Re-

sultEntry, which can be used to implement entries suitable for an individual ap-
plication. In particular, TaskEntry contains an execute() method which de�nes
the function to be carried out by each individual task. When a Worker ob-
tains a TaskEntry object, it will invoke this method, which will in turn return a
ResultEntry object that will be written back into the JavaSpace. A ResultEntry

will simply act as a wrapper class for some data.
Both type of entries are assigned unique identi�cation numbers; each ResultE-

ntry will have the same identi�cation value as the TaskEntry that produced it.
Some TaskEntry objects will depend on other ResultEntry objects as input,
and so each TaskEntry object has a vector which can be loaded with the re-

37

quired ResultEntry objects. These features are discussed further in the next
section.

Although both TaskEntry and ResultEntry will be inherited from and be
implemented di�erently for each individual application, a Worker process makes
no distinctions between the entries of each application, and will simply invoke the
execute() method and write the resultant ResultEntry back to the JavaSpace,
if there is one produced.

3.2.3.2 Execution Control & Data Dependencies
One of the major di�culties of distributed systems is the lack of a global state.
For applications with even a low level of complexity, it is imperative that each
worker process knows the current status of execution. The system provides a
solution to this problem in the form of a dependency graph.

Dependency Graph
The dependency graph is used to coordinate the execution of, and specify the
relationships between the many sub-tasks that make up an application. By using
a dependency graph, it is possible to specify the order in which sub-tasks should
be executed, along with the data dependencies between these sub-tasks.

The dependency graph is represented by the core.coordination.Dependenc-
yGraph class, and the graph itself is made up of computation units, which are de-
�ned in the core.coordination.ComputationUnit class. There is exactly one
computation unit in the graph for each sub-task in the application; they are
associated via a shared identi�cation number.

The graph itself is a directed acyclic graph, with vertices represented by com-
putation units, and edges denoting the data dependencies between them. Each
computation unit contains a vector which is used to hold references to other com-
putation units denoting the sub-tasks on which it is depending for input data.

An example dependency graph for a small application consisting of four sub-
tasks is shown in Figure 3.7.

A computation unit may have four di�erent states: unscheduled, sched-
uled, in-progress and executed. Generally a computation unit will progress
through these states in the order listed, however this is not always the case.
The initial state of a computation unit will always be unscheduled, and will be

38

ID# 3

ID# 2

ID# 1

ID# 0

Figure 3.7: An example dependency graph.

changed to scheduled only when all of its data dependencies are satis�ed. These
dependencies are known to be satis�ed when all of the computation unit nodes
contained in a given computation unit's preceding tasks vector are marked as ex-
ecuted. The ComputationUnit class provides a method canSchedule() which
will determine if this is the case, and the DependencyGraph's scheduleUnits()
method is called at regular intervals to set the status of schedulable units to
scheduled.

The numerous computation units that form the dependency graph are stored
in an array; the next() method iterates through this array and return the �rst
scheduled unit that it �nds. Therefore, if there are multiple scheduled com-
putation units, it is the one that appears �rst in the array that will be executed
next.

After a worker process retrieves the next computation unit from the depen-
dency graph, the unit will be marked as in-progress. Similarly, after a result en-
try is produced by the execution of a task entry and returned to the JavaSpace, the
corresponding computation unit will be marked as executed. It is important to
note that this sequence (unscheduled/scheduled/in-progress/executed)
is not strict, and if a task does not complete its execution then it's associated
computation unit should be reset to unscheduled. It is also entirely possible
for the dependency graph to be modi�ed directly by an application if required,
as we will see later.

Usage
Before a worker process takes a task entry from the JavaSpace for execution, it
will �rst take the dependency graph, and invoke the next() method to obtain the

39

next scheduled computation unit. Once the dependency graph has been returned
to the JavaSpace, the worker uses the computation unit to retrieve the associated
task entry.

On completion of a task's execution, the worker will again retrieve the de-
pendency graph from the JavaSpace. Assuming that the task produced a result
entry when executed, the task's corresponding computation unit will be marked
as executed. Following this, the dependency graph and result entry are both
written back into the JavaSpace.

3.3 Applications

Two applications were implemented using the framework presented in Section 3.2
to test the suitability and e�ectiveness of the design that was adopted. Each
application has contrasting characteristics in terms of data and communication
requirements. The details of their implementation are discussed below.

3.3.1 The n-Queens Problem

3.3.1.1 Overview
The n-queens problem is a generalisation of the well known eight-queens problem.
The basic premise of the problem is this: �nd the number of ways that n queens
can be arranged on an n× n chess board so that no two queens can attack each
other, according to the rules of the game. One of the ninety-two possible solutions
to the eight-queens problem is shown in Figure 3.8.

. Q . .

. . . Q

. Q .
Q
. Q
. Q
. . . . Q . . .
. . Q

Figure 3.8: A solution to the eight-queens problem.

40

This particular implementation of this combinatorial problem uses a simple
backtracking algorithm. This algorithm has an exponential execution time, which
makes it one of the least e�cient methods of solving the problem. However it
is also one of the most straightforward algorithms to parallelise. A linear-time
algorithm can be found in (Sosic, R. & Gu, J., 1994), and an almost constant-time
parallel algorithm is discussed in (Sosic, R., 1994).

The problem is parallelised by dividing the entire space that needs to be
searched, in this case all possible combinations of queens placings on the chess
board, into smaller sub-tasks that will each search a subset of the space. This
is achieved by placing a queen in each of the �rst two columns of the board, in
positions where they cannot attack each other. This produces (n− 1)× (n− 2)

sub-tasks of approximately equal size, given a board of size n, with each sub-task
involving a search of nn−2 possible combinations. The execution of the sub-task
will result in every possible combination of queens placings being searched for
the remaining columns, and testing if each combination is a valid solution to the
problem, given the position of the queens in the �rst two columns.

3.3.1.2 Implementation
To make use of the framework presented earlier in this chapter, this applica-
tions provides an implementation of the abstract methods in the GenericMaster
class, and extends the TaskEntry and ResultEntry classes. The classes related
to the n-queens problem are located in the app.nQueens package, and include
nQueensMaster, QueensTask and QueensResult.

The application is relatively simple, in that there are no data dependencies
between the sub-tasks, and no need for the sub-tasks to be executed in any
particular order. Thus, given enough workers, this application can be completely
parallelised. The nQueensMaster will still produce a dependency graph, however
all of the computation units will be completely unrelated, and will be scheduled
for execution simply in the order in which they are placed in the array.

Every QueensTask object will contain a board of size n, with a queen placed
in each of the �rst two columns. The execution of this task will produce a
QueensResult object, which will contain a single value denoting the number of
solutions that were found. Once the dependency graph becomes exhausted, the
QueensMaster will take all of the QueensResult objects from the JavaSpace, and
sum all of their values to produce the �nal result.

41

A full listing of the program source code for the n-queens application can be
found in Appendix D.

3.3.2 Shear Sort

3.3.2.1 Overview
Shear sort is a parallel sorting algorithm that we have adapted for a distributed
environment. The shear sort algorithm takes a list of n numbers that are to be
sorted, and arranges them into a two dimensional mesh of size √n ×

√
n. Once

this has been done, exactly √n phases of execution will be completed. If an odd-
numbered phase of execution is being completed, each odd- and even-numbered
row will be sorted in ascending and descending order respectively. If an even-
numbered phase is being completed, then all columns are sorted in ascending
order. After all phases have been completed, the mesh will be sorted. Pseudo-
code for the shear sort algorithm is shown below.

for step = 1 to sqrt(N) do

if odd(step)

if odd(row)

sort_left_to_right(row);

else

sort_right_to_left(row);

else

sort_top_to_bottom(col);

The shear sort algorithm has an average execution time of n1/2 when executed
on √n processors. It can be parallelised by sorting each row or column in parallel,
depending on the phase of execution.

3.3.2.2 Implementation
There are several classes that have been implemented which allow the shearsort
algorithm to run within the system framework. The classes, all located within
the app.shearSort package, include ShearSortMaster, ShearSortTask, Cell,
and StepCounter.

The shear sort program has some signi�cant di�erences to the n-queens pro-
gram, most notably the use of a shared data structure and dynamic updating of

42

the dependency graph. This is in contrast to the relatively static nature of the
n-queens application. These di�erent characteristics uncovered some design con-
siderations that required a slightly modi�ed approach to the relationship between
task and result entries. Speci�cally, ShearSortTask objects, when executed, do
not create a new result object. Rather, they will read in some existing result
objects, in this case Cells, apply the shear sort algorithm to these objects, and
then write them back into the JavaSpace. This will be expanded upon below.

Initialisation & Data
The ShearSortMaster class inherits the GenericMaster class and provides an
implementation of its abstract methods. The application is initialised by the
getJobDetails() method; this method takes the data that is to be sorted, and
creates an equivalent number of Cell objects to store each value. These cells
are arranged into a mesh using relevant row and column indexes. Figure 3.9
illustrates how the data is rearranged.

46 87 12

67 33 9

82 44 13

46

87

12

33

67

82

44

13

0

1

2

3

4

5

6

7

8

1 2

0

1

2

row

col
0

9
0 1 2

5 4 3

6 7 8

Figure 3.9: Initialisation of list of data into mesh.

After the data has been arranged into a mesh, a ShearSortTask object is
created for each row in the mesh, where each object has an identi�cation number
equal to the corresponding row's identi�cation number. A ComputationUnit

object is also created for each task object, and used to create a DependencyGraph
for the application. Finally, a StepCounter object is created, and all of these
objects used to initialise a new JobDetails object.

43

Execution
As mentioned previously, there an equivalent number of ShearSortTask entries
as there are rows or columns in the mesh of data that is being sorted. Each
task will sort the row/column with the same index as its identi�cation number.
There is also a dependency graph which contains a computation unit for every
task entry.

There are no explicit data dependencies between tasks in this application;
however, each task's data dependencies are implied by its identi�cation number.
The dependency graph in this case is used to enforce some ordering in the exe-
cution of the application's tasks. More speci�cally, it ensures that all tasks in a
particular sorting phase are complete before moving onto the next phase.

Another distinction with the n-queens application is that this application
interacts directly with the JavaSpace and Transaction Manager services. The
interaction includes dynamically updating the dependency graph and generating
new task entries. Note that all operations performed on the JavaSpace are done
so under a transaction created by the transaction manager. The details of the
steps involved in the execution of a ShearSortTask entry follow.

1. The task will �rst of all attempt to take the StepCounter entry from the
JavaSpace.

2. If the step counter's value is equal to √n then all of the phases of sorting
have been completed. In this case, the dependency graph will be obtained
and updated by marking the computation unit corresponding to the current
task as executed. The task will then terminate, as there is no data left to
sort. Otherwise, it will continue.

3. If the current task will be sorting the last row or column of the mesh (ie.
the task's identi�cation number is equal to the row/column index), then
the step counter is incremented.

4. The step counter is then written back into the JavaSpace regardless of its
value or which row or column is being sorted. Note that a local copy of the
step counter is retained, as it is needed for the next step.

5. If the step counter has an odd value, then the row of the mesh corresponding
to the current task is retrieved from the JavaSpace. In the other possible

44

case where the step counter is even, the corresponding column is retrieved.
6. The next step is to sort the data that has been retrieved. If a column of the

mesh was retrieved in the previous step, it is sorted in ascending order1, or
from top-to-bottom. If an even numbered row was retrieved, it is also sorted
in ascending order, or from left-to-right. However if an odd numbered row
was retrieved, it is sorted in descending order, or from right-to-left. The
index values of each cell must be updated to re�ect their new ordering.

7. Now that the row/column has been sorted, the dependency graph must be
updated via the updateDepGraph() method. This method attempts to re-
trieve both the dependency graph and the step counter from the JavaSpace.

8. If the previous step is successful, the computation unit in the dependency
graph that is associated with the current task has its status updated. If
the step counter indicates that sorting is complete, then the computation
unit will be set to executed; otherwise, it is set to unscheduled. In the
latter case, a new ShearSortTask object is created and written into the
JavaSpace to facilitate further sorting. In either case, the step counter and
dependency graph are both written back to the JavaSpace.

9. The cells are then written back into the JavaSpace. Execution of the current
task is now complete.

10. Once all sorting phases are complete, the dependency graph will be marked
exhausted, at which time the ShearSortMaster will retrieve all of the
Cell objects from the JavaSpace. Once all of the cells have been fetched
they are reassembled into a correctly sorted list based on their index num-
bers.

It is plain to see that the complexity of this application is signi�cantly greater
than that of the n-queens application, due the the fact that the dependency graph
is dynamically modi�ed during task execution. Also, additional coordination
mechanisms are required as the application's sub-tasks are performing operations
on a shared data structure.

A full listing of the program source code for the shearsort application can be
found in Appendix E.

1All rows and columns are sorted using a modi�ed mergesort provided by the Arrays.sort()

method. This algorithm o�ers a guaranteed n log2(n) performance.

45

3.4 Summary

This chapter has explored the distributed system framework that was developed,
and also two example applications that were built to make use of this system.
The distributed system framework can greatly simplify the process of developing,
deploying and coordinating distributed applications. The example applications
successfully demonstrate the �exibility of the proposed framework, and that it
is extensible enough to allow applications with a variety of requirements to be
deployed.

In Chapter 4, we will present some performance results gathered from the
execution of these applications.

46

Chapter 4

Results & Discussion

This chapter presents the performance results obtained from various testing meth-
ods based on the n-queens and shearsort applications that were described in
Chapter 3. These results will then be used to justify the suitability of the system
for utilising idle workstations.

4.1 Overview

One of the primary motivations for distributing an application is to allow it
to be parallelised; the application may then bene�t for the performance gains
that result. There is, unfortunately, always an overhead associated with the
distribution of an application, usually as a result of slow network communications.
Therefore it is important that the potential gains of distributing an application
outweigh the overhead involved, to make the distribution worthwhile. Generally
speaking, an application should be reasonably computationally intensive to make
the most of these potential performance gains.

As previously stated, the motivation for this research was to devise a way to
utilise the wasted CPU cycles of idle workstations. In Chapter 3, we presented
software that allows a user to simply and easily donate their computer to the
pool of worker machines. This chapter will determine whether the system uses
these donated computers e�ciently, and is able to produce a signi�cant speedup
for large applications.

Testing was carried out using the two applications presented in the previ-
ous chapter. The di�erent characteristics of each application will be used to
test whether the system is capable of supporting applications with a variety of

47

requirements.

4.2 Testing Environment

All testing was conducted using the computer labs in the School of Computing,
Launceston. All required Jini services were set to run on an 800 MHz Pentium
3 machine with 256 MB of RAM, and running Slackware GNU/Linux 9.0. Also
running on this machine was the master process of an application, along with the
Apache web server, which was used to service requests for the client Web Start
application.

The rest of the system consisted of the client (worker) software running on nu-
merous independent computers. Unless otherwise stated, these worker machines
were 400 MHz G4 Apple Mac machines with 512 MB of RAM, and running Mac
OS X. All computers used for testing were connected via a 100 Mb switched
fast-ethernet network. Also, all computers were using the Java SDK 1.4.2.

4.3 Performance Measurement

The usual measures of the performance of a parallel system, suggested by Carriero
& Gelernter (1990, p. 74), are speedup and e�ciency. Following their de�nitions,
speedup is �the ratio of sequential run time to parallel run time�, and e�ciency is
�the ratio of speedup to number of processors�. Both of these measures give a good
indication of the e�ectiveness of a parallel system in using available processors to
their maximum capacity. In particular, the e�ciency of a system is an excellent
indicator of a system's scalability. Parallel applications should therefore strive to
maximise e�ciency in order to achieve the highest possible speedup.

In our case, we will de�ne the sequential run time of an application as the time
it takes to execute when there is a single worker computer present in the system.
The speedup and e�ciency for all other number of workers will be calculated
based on this value.

4.4 The n-Queens Problem

Testing was carried out for the n-queens problem, with a value of n equal to
sixteen (ie. we wish to place sixteen queens onto a chess board of dimension

48

sixteen). This is a non-trivial problem, which requires the search of 1616 possible
states. The process of dividing this job into sub-tasks will yield two-hundred and
ten sub-tasks, each of which will search 1614 possible board states.

The performance results obtained from executions of the n-queens program,
where n is equal to sixteen, are given in Table 4.1. The average and optimal
run times are presented in graphical form in Figure 4.1. The speedup ratios are
presented in Figure 4.2, and a graph of the e�ciency of the application can be
found in Figure 4.3.

Workers Average Time (secs) Optimal Time (secs) Speedup E�ciency
1 6392.6 6392.6 1.00 100.00%
2 3190.8 3196.3 2.00 100.00%
3 2133.9 2130.9 2.99 99.67%
4 1620.4 1598.2 3.95 98.75%
6 1083.7 1065.4 5.90 98.33%
8 810.8 799.1 7.88 98.50%
12 552.5 532.7 11.57 96.42%
16 427.5 399.5 14.95 93.44%

Table 4.1: Execution time of n-queens problem on varying number of computers.

These graphs clearly show that the n-queens application achieves excellent
speedup, made possible by its high level of e�ciency on up to sixteen machines.
The problem took almost two hours to compute using a single computer, however
on sixteen machines the time was reduced dramatically, to around seven minutes.
These results are especially pleasing, as they indicate that doubling the amount
of computers working on the problem will go very close to halving the execution
time. This level of speedup was consistent for up to sixteen computers, made
possible by the high level of e�ciency.

These positive results are mostly due to the problem being relatively coarse-
grained, in that each sub-task requires the worker to do a signi�cantly large
amount of work. Also, the subtasks can be executed in parallel due to the absence
of any data dependencies. Further discussion of these results can be found in
Section 4.6.

49

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0 2 4 6 8 10 12 14 16

Ti
m

e
(s

ec
s)

No. Computers

Execution time of n-Queens problem, where N = 16

Average Time
Optimal Time

Figure 4.1: Graph of average and optimal run times of n-queens problem.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 R
at

io

No. Computers

Speedup Ratio of n-Queens problem, where N = 16

Actual Speedup
Optimal Speedup

Figure 4.2: Speedup ratios of n-queens problem.

50

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8 10 12 14 16

E
ffi

ci
en

cy
 (%

)

No. Computers

Efficiency of n-Queens problem, where N = 16

Actual Efficiency
Optimal Efficiency

Figure 4.3: E�ciency of n-Queens application.

4.5 Shearsort

The shearsort application was �rstly tested on a list of nine-hundred randomly-
generated long integers. Initialisation by the master process arranged these num-
bers into a thirty-by-thirty mesh, and therefore program involved exactly thirty
sorting phases. The results obtained from executions of the application are shown
in Table 4.2. The application's performance is represented graphically in Figure
4.4, and the speedup is shown in Figure 4.5.

Workers Average Time (secs) Optimal Time (secs) Speedup E�ciency
1 2673.9 2673.9 1.00 100.00%
2 1334.2 1336.9 2.00 100.00%
4 1305.4 668.5 2.05 51.25%
8 1229.3 334.2 2.18 27.25%
12 1184.4 222.8 2.26 18.83%
16 1090.0 167.1 2.45 15.31%

Table 4.2: Results of Shearsort on nine-hundred numbers.

51

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16

Ti
m

e
(s

ec
s)

No Computers

Execution time of Shearsort application on 900 Numbers

Average Time
Optimal Time

Figure 4.4: Graph of average and optimal run times of the shearsort application.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

No. Computers

Speedup Ratios of Shearsort application on 900 Numbers

Actual Speedup
Optimal Speedup

Figure 4.5: Speedup of shearsort application on nine-hundred numbers.

52

These results show good speedup on two machines, followed by a dramatic
levelling o� on any additional machines. This coincides with a steep fall in the
e�ciency of the system, as shown in Figure 4.6. The e�ciency of this application
indicates that is does a very poor job of utilising the workstations in the system.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8 10 12 14 16

E
ffi

ci
en

cy
 (%

)

No. Computers

Efficiency of Shearsort application on 900 Numbers

Actual Efficiency
Optimal Efficiency

Figure 4.6: E�ciency of shearsort application.

The main contributing factor to this poor scalability is the very �ne-grained
parallelism of the application. A relatively large amount of JavaSpace operations
must be carried out for each task; however for all of these communications, only
a relatively small amount of actual work is performed by a task.

The CPU usage of the server machine during these tests was observed to be
consistently between 80%-85% when there are two worker machines, and 95%-
100% when there are four or more workers in the system. This would suggest
that the server is not able to service the large amount of JavaSpace operation in
a timely manner, thus explaining the sudden levelling o� of performance.

Coarse-grained Shearsort
To determine whether the �ne-grained nature of shearsort is indeed the cause of
its poor performance, each task was programmed to sleep for �ve seconds during

53

execution. This modi�ed approach was then tested on a list of four hundred
numbers. This had the overall e�ect of producing fewer tasks that will take a
greater amount of time to execute, e�ectively make the application more coarse-
grained, and thereby decrease the communications and server CPU load. Note
that this test was performed using 700 MHz G4 Apple iMacs, with 384 MB of
RAM and running Mac OS X. The performance results of this modi�ed shearsort
are shown in Table 4.3 and Figure 4.7. A graph of the application's speedup can
be found in Figure 4.8.

Workers Average Time (secs) Optimal Time (secs) Speedup E�ciency
1 670.2 670.2 1.00 100.00%
2 337.0 335.1 1.99 99.50%
4 240.9 167.6 2.78 69.50%
6 176.4 111.7 3.80 63.33%
8 151.4 83.8 4.43 55.38%

Table 4.3: Results of Shearsort on four hundred numbers with a �ve second delay.

These results show a marked improvement on those previously presented in
Table 4.2, suggesting that the �ne-grained tasks of the shearsort application are
indeed the cause of the poor speedup. Figure 4.9 clearly shows that this coarser-
grained approach is much more e�cient than when a delay is not used.

4.6 Discussion

The contrasting characteristics of each application tested successfully illustrates
the di�erent properties and limitations of the system. The results show that the
n-queens application achieved a much greater performance gain and experienced
a higher level of scalability than the shearsort application. Some of the reasons
for this are discussed below.

Task Granularity
The most obvious contributing factor to the di�erence in scalability lies in the
granularity of the sub-tasks that make up an application. In this case, the granu-
larity should be thought of as the amount of work done compared to the amount

54

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8

Ti
m

e
(s

ec
s)

No. Computers

Execution times of Shearsort application on 400 Numbers with Delay

Average Time
Optimal Time

Figure 4.7: Execution times of shearsort application, with introduced delay.

 0

 2

 4

 6

 8

 0 2 4 6 8

S
pe

ed
up

No. Computers

Speedup of Shearsort application on 400 Numbers with Delay

Actual Speedup
Optimal Speedup

Figure 4.8: Speedup of shearsort application, with introduced delay.

55

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8

E
ffi

ci
en

cy
 (%

)

No. Computers

Efficiency of Shearsort application on 400 Numbers with Delay

Actual Efficiency
Optimal Efficiency

Figure 4.9: E�ciency of shearsort application, with introduced delay.

of communication overhead (ie. JavaSpace operations) incurred during the exe-
cution of each task.

The shearsort application performs many times the amount of operations of
the n-queens application, as it must read each cell of each row or column of
the data mesh individually, and also the step counter entry, in addition to the
standard dependency graph and task entry. JavaSpace operations are relatively
expensive, both in terms of time and server CPU usage. For all of this commu-
nications overhead, only a relatively small amount of work is actually performed.
For example, if a shearsort is used to sort nine-hundred numbers, each task will
sort only thirty numbers, but will perform over thirty JavaSpace operations. As
the results show, this extra cost prevents the shearsort application from scaling
e�ectively.

The n-queens application is vastly di�erent to shearsort, in that each sub-task
does not need to fetch any data objects in order to execute. All data is encapsu-
lated in the task entry itself, and the task execution involves heavy computation,
which takes a reasonably signi�cant period to complete. This coarse grained
parallelism results in excellent speedup and scalability.

56

Resource Contention
The advantages provided by the dependency graph have been discussed in Chap-
ter 3. However, there is also a signi�cant drawback involved in its use; it must
be obtained by each worker before a new task can be taken from the JavaSpace
for execution. If the graph cannot be obtained, the worker will block until it is
available. Depending on how many workers are present in the system, there may
be a high amount of contention for this single object, and as a result a lot of time
may be wasted by each worker waiting for the graph to become available.

This problem is further compounded in the shearsort application, which per-
forms dynamic updating of the dependency graph. This requires the dependency
graph to be obtained an once more per task, thus thus further increasing the
contention for this object. Furthermore, shearsort also involves a shared step
counter object which will pose the same contention problems as the dependency
graph.

This bottleneck problem is related to the granularity problem mentioned
above. A more coarse grained approach will reduce the contention for shared
objects such as the dependency graph, thus increasing e�ciency by reducing the
amount of time that is wasted waiting for an object to become available. An
ideal solution to this problem may involve splitting the dependency graph into
multiple parts, each of which controls a separate part of the application. However
this would only be a viable option for applications that have several relatively
independent parts.

Sequential Execution
The level of performance gain is inevitably associated with the level of parallelism
of an application; it is unlikely that a purely sequential program will achieve any
speedup at all, most likely the opposite would prove to be true.

The n-queens application can be fully parallelised; every task entry can be
executed in parallel if there are enough workers available. However the shearsort
application must execute sequentially in part, due to its di�erent sorting phases
which alternate between sorting rows and columns. This means that every row
or column must be �nished being sorted before all other workers can continue on
in the subsequent phase of execution. This problem would not be pronounced in
a system where the workers each have approximately equal processing capability.

57

However, in a scenario where there is one worker that is particularly slow, the
performance could be seriously degraded as all of the faster workers would be
continually waiting on this slow worker.

4.7 Summary

The results presented in this chapter clearly show that the system that was de-
veloped is capable of using the aggregated processing power of worker machines
to execute computationally intensive applications. However, the contrast in the
speedup and e�ciency of the n-queens and shearsort applications indicated that
the amount of performance gain actually realised is dependent on the granularity
of the application; a coarse-grained application will generally achieve a greater
performance gain than a �ne-grained application.

Granularity is a design issue which will pose di�erent considerations for each
individual application. If the problems that were encountered in relation to the
shearsort application are avoided, then it will be much easier for an application to
achieve performance gains that are scalable up to a reasonable number of worker
machines.

58

Chapter 5

Conclusion & Further Work

In Chapters 3, we detailed the design and operation of the distributed system
that was produced, along with two applications that were implemented in order
to perform performance testing on the system. The results of this testing were
presented in Chapter 4, and further analysis of these results highlighted several
important characteristics of the system.

This chapter will �rstly discuss some possible directions that further research
could explore in this area, to address some of the weaknesses that were underlined
by the testing that was conducted. Finally, the �ndings of this dissertation will
be summarised.

5.1 Further Research

The development and testing of the system highlighted some areas of further
research that would be worthwhile undertaking. They are discussed below.

5.1.1 Non-Intrusiveness

The client (worker) software attempts to use the wasted processor cycles of the
machine on which it is running. However it does not in any way monitor the
processor usage by other applications that the user may also have loaded on the
machine. As a result, the user may experience a performance degradation of their
computer as a direct result of their participation in the system. Obviously, this
is a highly undesirable situation.

There is no clear solution on how to remedy this situation, as the platform

59

independence of the Java language makes interaction with the operating system
very di�cult. It may be possible with the help of the Java Native Interface (JNI),
however this has the disadvantage of losing platform independence.

It is also possible for the user to manually change the priority of the worker
process on their machine, assuming that their operating system allows this to be
done. However it would be more desirable for the worker application to automati-
cally monitor the computer's processor usage, and perhaps also other performance
e�ecting factors such as the amount of free memory and network usage.

5.1.2 Scalability

The shearsort application highlighted some of the factors, namely �ne-grained
sub-tasks, that can cause an application to scale poorly. This produces an in-
crease in the server's CPU load because of the rate at which task requests must
be handled. However it is important to note that, even for coarse-grained appli-
cations, there will come a point where the application will scale no further, and
the addition of extra workers will not produce any further performance gain.

A possible way to remove these limits to scalability would be to allow the
use of multiple JavaSpace services, running on separate machines, for a single
application. The server CPU usage bottleneck would not exist in this situation, as
additional JavaSpace services could be added to the system as they were required.

5.1.3 Transparency

An application must be explicitly tailored and designed to make use of the system,
and the bene�ts provided. Alternatively, an existing non-distributed application
must be modi�ed to enable it to run on the system. Either way, a programmer
must inherit and implement various Java classes, and specify how an application
should be divided and executed. Furthermore, any data dependencies that exist
between subtasks must be explicitly de�ned.

The existence of these requirements prevents the system from achieving a high
level of transparency, as de�ned previously in Section 2.1.1.4. If a system such as
this one was to be widely deployed, and used for a large variety of applications,
then further work would be worthwhile to try to minimise requirements imposed
on the programmer, thereby increasing the level of transparency. Projects such
as those discussed in Section 2.4.5 are good examples; the cJVM system can exe-

60

cute standard Java programs without any modi�cation. These systems typically
use customised preprocessors or compilers, or require highly sophisticated run-
time management features. Such features are beyond the scope of this particular
research.

5.2 Summary

This thesis has presented a dynamic distributed system which aims to make use
of the wasted processing capacity of idle workstations for the execution of compu-
tationally intensive tasks. The system is capable of operating in a heterogeneous
computing environment, and allows workstations to dynamically join and leave
the system at any time, even during the execution of an application. The use of
transactions adds robustness to the system, and keeps the it in a consistent state
in the event of partial failure.

A development framework was developed to allow parallel applications to
be built that are suitable for execution on the system. Suitable coordination
mechanisms are provided to allow a programmer to specify the data dependencies
between an application's sub-tasks, and the order in which these sub-tasks should
be executed. These coordination mechanisms are general enough to be used by
a diverse range of applications.

This thesis also illustrates how the Jini and Java Web Start technologies can
be combined to successfully produce a highly dynamic and �exible distributed
computing environment. The dynamic nature of the system allows a user to
add or remove their machine from the system at any time, without a�ecting the
correct operation of the system. The use of Web Start also avoids the need for a
user to manually install and con�gure the client software. It is hoped that this
�exibility and ease of use would encourage users to donate their workstation to
the system were it ever put to use.

The performance testing that was conducted indicated that parallel applica-
tions executed using the system should be able to achieve good speedup. How-
ever, a comparison of the n-queens and shearsort results clearly illustrated that
an application's subtasks should be relatively coarse grained in order to gain op-
timal results. Also, the number of data dependencies that exist between subtasks
should be minimised; the existence of too many dependencies will result in greater
sequential execution, which in turn will reduce the performance gain realised by

61

an application.
The positive results, especially those of the n-queens application, suggest that

the system that was produced is capable of e�ectively coalescing idle workstations
into a powerful multiprocessor system.

62

References

Aridor, Y., Factor, M. & Teperman, A., 1999, 'cJVM: a Single
System Image of a JVM on a Cluster', 1999 IEEE International

Conference on Parallel Processing, September 1999.

Aridor, Y., Factor, M. & Teperman, A., 2000, 'Transparently
Obtaining Scalability for Java Applications on a Cluster', Journal of
Parallel and Distributed Computing, issue. 60, pp. 1159-1193.

Batheja, J. & Parashar, M., 2001, 'A Framework for Opportunistic
Cluster Computing using JavaSpaces', Lecture Notes in Computer

Science, vol. 2110, pp. 647-674.

Birrel, A. & Nelson, B., 1984, 'Implementing Remote Procedure
Calls', ACM Transactions on Computer Systems, vol. 2, no. 1, pp.
39-59.

Brose, G., et al. 2001, Java Programming with CORBA, John Wiley
& Sons, Inc., Canada.

Carriero, N. & Gelernter, D., 1990, How to Write Parallel Programs,
MIT Press, London.

Chuang, T. & Chen, D., 1999, 'Distributed Middle Tier: A
Programming Model for Web-based Scalable Computing',
International Conference on Parallel and Distributed Processing

Techniques and Applications, June 1999, pp. 843-849.

63

Colouris, G., et al. 1994, Distributed Systems Concepts and Design,
Addison-Wesley, United Kingdom.

Farley, J., 1998, Java Distributed Computing, O'Reilly & Associates,
Inc., Sebastopol.

Fletcher, L., 2002, 'A Dynamic Networked Browser Environment for
Distributed Computing', Honours thesis, School of Computing,
University of Tasmania.

Fletcher, L. & Malhotra, V., 2003, 'Network of Browsers: A
Supercomputer', private communications.

Freeman, E., et al. 1999, JavaSpaces Principles, Patterns and
Practice, Addison-Wesley, Massachusetts.

Gelernter, D., 1985, 'Generative Communication in Linda', ACM
Transactions on Programming Languages and Systems, vol. 7, no. 1,
pp. 80-112.

Haumacher, B. et al, 2003, 'Transparent Distributed Threads for
Java', 5th International Workshop on Java for Parallel and

Distributed Computing, April 2003.

Hunter, J. & Crawford, W., 2001, Java Servlet Programming,
O'Reilly & Associates, Inc., Sebastopol.

Java Object Serialization Speci�cation, 2001, Sun Microsystems,
California.

Java RMI Speci�cation, 2001, Sun Microsystems, California.

JavaSpaces Speci�cation, 2002, Sun Microsystems, California.

Jini Architecture Speci�cation, 2001, Sun Microsystems, California.

64

Jini Technology Core Platform Speci�cation, 2003, Sun
Microsystems, California.

McGraw, G. & Felten, E., 1999, Securing Java, John Wiley & Sons,
Inc., Canada.

Öberg, R., 2001, Mastering RMI, John Wiley & Sons, Inc. Canada.

Phillips, G., 1997, 'Utilizing Idle Workstations', site viewed
5/11/2003, URL -
http://www.geocities.com/grahamgrebe/publications/idle_workstations.ps.gz

Schmidt, R., 2001, Java Network Launching Protocol & API

Speci�cation, Sun Microsystems Inc, California.

Shoch, J. & Hupp, J., 1982, 'The Worm Programs - Early
Experience with a Distributed Computation', Communications of
the ACM, vol. 25, no. 3, pp. 172-180.

Sosic, R., 1994, 'A Parallel Search Algorithm for the N-Queens
Problem', Parallel Computing and Transputer Conference

Proceedings, Woolongong, pp. 162-172.

Sosic, R. & Gu, J., 1994, 'E�cient Local Search with Con�ict
Minimisation: A Case Study of the N-Queens Problem', IEEE
Transaction of Knowledge and Data Engineering, vol. 6, issue. 5,
pp. 661-668.

Stallings, W., 2000, Network Security Essentials Applications and

Standards, Prentice Hall, New Jersey.

Sun Microsystems Inc., 2003,
Java Web Start 1.4.2 Developer Guide, site viewed 15/10/2003, URL -
http://java.sun.com/j2se/1.4.2/docs/guide/jws/developersguide/contents.html

65

Tan, T., 2002, 'A Distributed Computer: Networking Web-Browsers
Using Java RMI', Masters thesis, School of Computing, University of
Tasmania.

Tanenbaum, A. & Steen, M., 2002, Distributed Systems Principles

and Paradigms, Prentice Hall, New Jersey.

Tel, G., 1994, Introduction to Distributed Algorithms, Cambridge
University Press, Cambridge.

Thiruvathukal, G., Dickens, P. & Shazad, B., 2000, 'Java on
Networks of Workstations (JavaNOW): A Parallel Computing
Framework Inspired by Linda and the Message Passing Interface
(MPI)', Concurrency: Practice and Experience, vol. 12, issue. 13,
pp. 1093-1116.

Waldo, J., et al. 1994, 'A Note on Distributed Computing', Technical
Report SMLI TR-94-29, Sun Microsystems Laboratories, Inc.

Waldo, J., 1999, 'The Jini Architecture for Network-centric
Computing', Communications of the ACM, vol. 42, no. 7, pp. 76-82.

Wollrath, A., et al. 1996, 'A Distributed Object Model for the Java
System', Proceedings of the USENIX 1996 Conference on

Object-Oriented Technologies, pp. 219-232.

66

Appendix A

Generic Master & Worker

This section contains a full listing of the source code for the following classes:

• GenericMaster

• Worker

• TaskExecutor

• WorkerGUI

67

Appendix B

Entries

This section contains a full listing of the source code for the following classes:

• TaskEntry

• ResultEntry

• Command

84

Appendix C

Coordination

This section contains a full listing of the source code for the following classes:

• JobDetails

• DependencyGraph

• ComputationUnit

• ServiceFinder

87

Appendix D

n-Queens Application

This section contains a full listing of the source code that comprises the n-queens
application, including:

• nQueensMaster

• QueensTask

• QueensResult

95

Appendix E

Shearsort Application

This sections contains a full listing of the source code that comprises the shearsort
application, including:

• ShearSortMaster

• ShearSortTask

• Cell

• StepCounter

100

	University of Tasmania Open Access Repository
	Cover sheet

