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Abstract 
 
The application of approximate string matching and alignment algorithms to either 

DNA or amino acid (protein) sequences is important for determining conserved 

regions, functional sites and to allow for multiple sequence alignments from which 

an evolutionary (phylogenic) tree may be inferred.   

 

Global sequence alignment algorithms attempt to maximise the alignment score by 

placing gaps (which are seen as insertion/deletion evolutionary events) in either 

sequence so as to maximise the number of matching characters and minimise 

mismatches and gaps.  The extension of traditional dynamic programming 

algorithms for aligning two sequences to aligning N sequences leads to a 

polynomial increase in the space and time complexity.  Consequently many 

heuristic multiple sequence alignment algorithms, and improvements in the 

representation of a multiple sequence alignment, have been developed.  This 

honours project has focussed on multiple sequence alignment algorithms, their 

processing and space requirements and the suitability of the alignments of samples 

of chloroplast DNA to further phylogenic analysis.  Since the samples being used in 

the analysis are hypervariable, this research has also looked at algorithms capable of 

handling inversions in the DNA sequences (where a section of DNA has undergone 

the mutation of reversing)
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1. Introduction 
 

In recent years there has been an exponential increase in the amount of biological 

data being collected worldwide (see section 5.1).   This wealth of data and the 

complexity of biological processes has nurtured a growing field of study in 

bioinformatics.  Bioinformatics uses mathematical and informational techniques to 

solve biological problems, typically through computer programs or mathematical 

models.  This research will focus on multiple sequence alignment techniques and 

their subsequent applications in inferring an evolutionary history (or phylogeny). 

 

1.1 Biological Concepts 
 

The cell is the basic structure of life and performs essential functions such as 

respiration, consuming nutrients and expelling metabolic waste.  Within cells are 

DNA (deoxyribonucleic acid) molecules that ‘encode’ all the information necessary 

to produce the proteins essential to all cellular processes.  It is for this reason that 

DNA is considered the ‘blue-print’ of life; and is recognised as distinguishing 

whether two living beings are biologically similar or distinct (Junior 2003). 

  

The double helix structure of DNA was discovered by Crick and Watson in 1953.  

DNA consists of a double chain of simpler molecules called nucleotides.  The 

nucleotides that comprise a strand of the double helix have a nitrogen base that can 

be of four types: adenine (A), cytosine (C), guanine (G) and thymine (T).  These 

bases are the molecules that tie the double helix together.  Each nucleotide consists 

of a sugar (eg deoxyribose in DNA), a phosphate and a base.  The two strands 

comprising the double helix are complementary in the sense that adenine always 

bonds to thymine and cytosine always bonds to guanine.  As such it is sufficient to 

know one strand to be able to deduce the other.  The bonding between nucleotides 

form base pairs (bp), which is commonly used to specify DNA length. 

 

As detailed by D’Antonio (D'Antonio 2003), proteins and nucleic acids are the main  

components of the biochemical processes of life.  Proteins are molecules that 

determine both the shape and structure of a living cell as well as achieving the vital 

cellular functions such as respiration etc.  A protein is a sequence comprised of a 
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combination of 20 simpler molecules called amino acids.  A sequence of three 

nucleotides (called a codon) code for a particular amino acid (see table 1), and the 

contiguous sequence of nucleotides that code for a particular protein is called a 

gene.   In this sense a protein may be viewed as either a sequence of amino acids or 

equivalently a transcribed sequence of nucleotides that code for the specific amino 

acid sequence.  The relationship between codons and amino acids is called the 

genetic code.  Included in the genetic code are three special ‘STOP’ entries that 

indicate the end of a gene. 
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Table 1  Table of codons and their transcribed amino acid 
 

Living organisms are made up of two types of cells prokaryote and eukaryote.  

Prokaryotes (eg bacteria) lack organelles (a structure with a specialised function) 

whilst most organisms including humans and plants are comprised of eukaryotic 

cells.  “A eukaryotic cell has a nucleus, which is separated from the rest of the cell 

by a membrane. The nucleus contains chromosomes, which are the carriers of the 

genetic material- DNA. There are internal membrane enclosed compartments within 

eukaryotic cells, called organelles...which are specialised for particular biological 

processes.” (Lopez) 

 

Suspended in the cytoplasm of plant cells are plastids.  These include amyloplast 

(used for starch storage), chromoplast (for pigment synthesis and storage), 
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chloroplasts (for photosynthesis) and etioplasts (chloroplasts which have not been 

exposed to light). 

 

1.2 Biological Sequences 
 

DNA and protein sequences can be seen as long text strings over restricted 

alphabets.  In the case of DNA there are four possible bases A, C, T and G that 

represent the alphabet, whilst amino acid sequences have an alphabet of 20 

characters. 

 

The comparison of two or more biological sequences can serve a number of 

purposes.  Through the theory of evolution it is widely understood that gene 

sequences may have evolved from a common ancestral sequence.  It is therefore of 

interest to study the evolutionary history of mutations (insertions and deltions of 

DNA as well as rearrangement mutations such as inversions and translocations) and 

other changes.  The study of biological sequences can also be studied to locate 

regions of commonality, which may correspond to regions of similar structure or 

function.   

 

The analysis of two or more sequences often occurs through the application of a 

sequence alignment algorithm and the measure of similarity that results.  In aligning 

two or more sequences there are typically four possible operations that can be 

conducted on either sequence: insertion, deletion, substitution or transposition.  In 

biology an insertion in one sequence can alternatively be seen as a deletion from the 

other.  For this reason insertions or deletions are commonly referred to as indels.  

There are also a number of rearrangement events/mutations that can occur on 

biological sequences such as inversions (whereby a subsegment of DNA changes 

orientation), duplications (where a copy of a subsegment is inserted into the 

sequence), translocations (where a subsegment is removed and inserted in a 

different location) or a combination of the above.  

 

When analysing nucleotide sequences single nucleotide polymorphisms (SNP’s) are 

naturally occurring operations on nucleotides and are an important considerations in 

constructing realistic sequence alignment algorithms. 
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“They [SNP’s] are most commonly changes from one base to 

another - transitions and transversions - but single-base insertions 

and deletions (“indels”) are also SNP’s…Transitions change a 

purine to a purine or a pyrimidine to a pyrimidine – A to G or C to 

T and vice versa.  Transversions change a purine to a pyrimidine 

and vice versa – A or G to C or T; C or T to A or G.  Even though 

there are twice as many possible transversions as transitions, 

transitions tend to be at least equal to transversions in frequency, 

and often more prevalent.” (Gibson & Muse 2002)  

 

1.3 Chloroplast DNA 
 

Chloroplast DNA (cpDNA) is a coding region within plant cells, with many 

chloroplast DNA genes encoding proteins that are involved in photosynthesis.  

Depending on the species, chloroplast DNA has a size ranging from 110 000 bp to 

160 000 bp (Blake).  Samples of cpDNA have been useful in studies that take the 

geographic distribution of species into account when inferring an evolutionary 

history since cpDNA variation is correlated more with geographic distribution than 

with morphological species (Freeman et al. 2001).  Chloroplast DNA is useful in 

studies because it is inherited maternally and is considered “a single, non-

recombining unit of inheritance.” (Schaal et al. 1998) 

 

1.4 Sequence Alignment 
 

Sequence alignment and specifically multiple sequence alignment (MSA) is of 

fundamental importance within bioinformatics.  By analysing the similarities and 

differences of either nucleotide or amino acid sequences it is possible to infer 

structural, functional or evolutionary relationships between the sequences being 

studied (Baxevanis & Ouellette 1998). 

 

The problem of aligning two sequences can be described as follows.  Given two 

sequences of characters and a scoring system that ascribes scores to two matching 

characters, two mismatching characters and penalties for gaps, the aim of the 
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sequence alignment problem is to produce a pairing of characters from one 

sequence with the second sequence so that the total score is optimal.  In pairing 

characters, gaps can be inserted at any position in the sequences; however the order 

of characters in each sequence must be preserved.  A pairwise alignment is an 

alignment of two sequences and if there are more than two sequences the problem is 

called multiple sequence alignment (MSA). 

 

In aligning sequences there are two types of alignment: global and local.  Global 

alignments attempt to align sequences over their entire length, whilst local 

alignments construct the best alignment of segments of the sequences that exhibit a 

high density of matches, ignoring the remaining regions of the sequences.  Table 2 

below shows examples of global and local alignments. 

 

Global Alignment Local Alignment 

ACTGATTA 
|||  ||| 
ACT--TTA 

 

ACTGATTA 
|||| 

--TGAT-- 
 

Table 2 Global and local alignment comparison 
 

Multiple sequence alignment algorithms are global however a number use local 

alignment algorithms to anchor the global alignment. 

 

As detailed in Bioinformatics (Baxevanis & Ouellette 1998, pp. 145-71) when 

analysing two or more sequences the similarity between these sequences is an 

observable quantity (for example a percentage identity score).  The similarity score 

or scores may then be used to infer homology.  Based on the similarity of two or 

more sequences it may be concluded that the sequences share a common 

evolutionary history and therefore are homologous.
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2. Sequence Alignment 
 

2.1 Introduction 
 

Approximate string matching has been an important tool in computational biology 

since small variations within DNA or protein sequences are common.  Biologists 

often require searching the online databases with particular sequences so as to 

detect homologous sequences in other species.  These searches allow biologist to 

analyse the similarities and differences of either nucleotide or amino acid sequences 

to aid in inferring structural, functional and/or evolutionary relationships between 

the sequences (Baxevanis & Ouellette 1998).  It is also necessary to align sequences 

in the first stage of the process of creating phylogenic trees. 

 

There is no such thing as a single best alignment with biological sequences since 

optimality always depends upon the assumptions made in the alignment algorithm 

such as the penalty ascribed to gaps or particular substitutions as well as the 

mutational events the algorithm is capable of handling.  These decisions must be 

carefully considered according to the observed variations in the DNA or protein 

samples being considered (Baxevanis & Ouellette 1998).  Furthermore, most 

sequence comparison methods use sequence alignment algorithms that inherently 

“assumes conservation of contiguity between homologous segments” (Vinga & 

Almeida 2003).  This assumption is at odds with genetic recombination such as 

translocations and inversions.   Stochastic modeling of sequences using hidden 

Markov models (Muckstein, Hofacker & Stadler 2002) and recently alignment-free 

sequence comparison methods (Vinga & Almeida 2003) are new techniques to 

overcome this. 

 

2.2 Dot Plots 
 
Dot Plots are an effective visual representation of the similarities between two 

sequences.  A Dot Plot is a 2-dimensional image whereby each axis represents one 

of the two sequences being compared.  A small window size is set, along with a rule 

that determines when two sequence windows are similar.  When one window in one 

sequence is similar under the rule to another window from the other sequence, a dot 

or small diagonal line is drawn.  This gives an overall representation of the 
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similarity globally and locally of the two sequences.  That is global similarity is 

represented by a diagonal line from the top left to the bottom right of the dot-plot, 

whilst local similarity is shown by smaller diagonal lines within the dot-plot 

(Maizel & Lenk 1981).  Dot plots of the data set examined are shown in section 7.1. 

 

2.3 Sequence Alignment Techniques 
 
Most formulations of sequence alignment consist of an objective function which 

assigns a score to each possible alignment of the sequences.  The computational 

problem is to find an alignment which either optimizes the objective function 

through heuristic techniques, or guarantees an optimal score such as through a 

dynamic programming technique. 

 

2.3.1 Dynamic Programming 
 

Dynamic programming algorithms were initially developed to calculate the minimal 

edit distance between two sequences (Needleman & Wunsch 1970; Sellers 1974).  

The first dynamic programming algorithm to compute the edit distance and search 

for a pattern sequence within a text was developed by Sellers in 1980 (Sellers 

1980).  Many variations have been rediscovered and both theoretical and practical 

improvements have since been made (Chang & Lawler 1994; Chang & Marr 1994; 

Galil & Park 1990; Ukkonen 1985).  These improvements have yielded an average 

case O( (kn)/�σ ) and worst case O(kn) algorithms (Navarro 2001), where σ is the 

size of the alphabet being considered and n is the size of the largest sequence. 

   

Dynamic programming algorithms are particularly flexible in handling different 

distance functions, although they are not the most efficient algorithms in general.  

Dynamic programming routines guarantee the mathematically optimal alignment, 

and can easily be generalised to optimally align N sequences, however they process 

in O(LN) time where L is the length of the longest sequence and hence are 

unsuitable for any reasonable number of sequences. 

   

Dynamic programming is a method of constructing a solution gradually by using 

recurrences.  In calculating the minimum edit distance between two sequences A 
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and B, we first introduce the notation D(i,j) to represent the edit distance between 

the first i characters of A and the first j characters of B.  The minimal edit distance 

of A and B (as defined in section 3.1) is D(n,m) and is calculated by first computing 

D(i,j) where i<n and j<m.  This is achieved through the construction of a dynamic 

programming matrix and by a simple recurrence (Gusfield 1999). 

 

The edit-distance metric scores a 1 for each mismatch or inserted gap and a 0 for a 

match.  To calculate the optimal alignment of A and B (using the simple edit-

distance metric) a matrix D0..n, 0..m is first constructed, where each element Di,j 

represents D(i,j) and Dn,m represents the minimum edit distance between A and B.    

The matrix is firstly initialised such that Di, o = i and D0, j = j since this represents 

the edit distance between strings of length i or j respectively and the empty string 

which is equivalent to i/j deletions from the non-empty string.  Then all the matrix 

values are calculated according to the formula: 

  

Di, j = min(Di-1 , j-1 + d(Ai , Bj) , Di-1 , j +1 , Di , j-1 +1) where d(Ai , Bj) is 1 if  Ai � Bj 

and 0 otherwise.   

 

To find the optimal global alignment requires a traceback through the matrix, and to 

achieve this it is necessary to know the path by which each new value in the matrix 

was calculated.  That is, in finding Di, j , we also store a pointer to cell Di-1, j if Di-1 , j 

+1 was minimal, and/or a pointer to cell Di, j-1 if Di , j-1 +1 was minimal and/or a 

pointer to cell Di-1, j-1 if Di-1 , j-1 + d(Ai ,Bj) was minimal.  By storing pointers 

indicating the direction from which the minimal value(s) were found an optimal 

alignment can simply be found through following any path from Dn m to D0,0 . 

 

D( i ,j ) 0 1 (A) 2 (G) 3 (A) 4 (P) 5 (E) 

0 0 �  1 �  2 �  3 �  4 �  5 

1 (G) �  1 �  1 �  1 �  2 �  3 �  4 

2 (R) �  2 � �  2  � �   2 �  2 � �  3 � �  4 

3 (A) �  3 �  2 �� �  3 �  2 ��  3 ��   4 

4 (P) �  4 �  3 ��  4 �  3 �  2 �  4 

5 (E) �  5 �  4 �  4 �  4 �  3 �  2 

Figure 1  Dynamic programming matrix example 
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In the above example (figure 1) the edit distance between “GRAPE” and “AGAPE” 

is found to be two and to find the optimal alignment a traversal back through the 

matrix following the direction of the pointers.  When cell (2,2) is reached a choice 

between two optimal alignments must be made (either a substitution of G to R or a 

deletion of “R” from “GRAPE”.  The two possible global alignments of the two 

sequences is shown below, both have an edit distance of 2: 

 

Unaligned Aligned 

AGAPE AG-APE     AGAPE 

GRAPE -GRAPE     GRAPE 

  

The above method can be easily altered to find localised regions of similarity by 

allowing for sequences that match the pattern to begin anywhere within the text.  A 

locally matching region is found by selecting those areas within the matrix where 

the score is above some similarity threshold.  The basic routine outlined above can 

also be easily extended to handle various other distance functions (include affine-

gap penalties where the penalty ascribed to x insertion or deletions is given by a γ + 

λx where γ is the gap-initiation cost and λ is the gap-extension cost). 

 

2.3.2 Anchoring 
 
Anchoring methods make use of a local alignment algorithm to first find regions of 

high similarity within the sequences, and then solve the problem of finding the best 

chain of the local alignments around which a global alignment is fixed.  A local 

alignment can be represented by a series of diagonal pointers in the dynamic 

programming matrix.  To chain two local alignments we require that a monotonic 

conservation map can be created.  That is, if local alignment A is defined by (x1A , 

y1A) and (x2A , y2A) and local alignment B is defined by co-ordinates (x1B , y1B) and 

(x2B , y2B) we require that x2A < x2B and y2A < y2B.  A typical approach used by 

anchoring algorithms are to select the optimal chain of local alignments and then to 

use a global alignment approach in the areas between each local alignment. 
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There are a number of global pair-wise alignment algorithms which chain together 

regions of high similarity such as CHAOS, BLAST and LAGAN, as well as 

multiple sequence alignment algorithms DiAlign and Mavid. 

 

2.4 Sequence Alignment Algorithms 
 

2.4.1 NEEDLEMAN-WUNSCH 
 

The Needleman-Wunsch (NW) algorithm (Needleman & Wunsch 1970) was the 

first algorithm to determine an optimal global alignment of two sequences.  The 

algorithm developed a dynamic programming approach to calculating the 

mathematically optimal alignment over all residues of the sequences.   

 

The original method is rarely used due to its cubic runtime (Gusfield 1999, p. 234), 

however through numerous improvements the run time has been improved (see 

section 2.3.1).  

 

2.4.2 CHAOS (Chain of Scores) 
 

The CHAOS algorithm (Brudno et al. 2003) is a heuristic local alignment algorithm 

that builds a global alignment using a set of local alignments called anchor points.  

CHAOS can be used as a stand-alone local sequence alignment program or as a pre-

processing step for a global alignment algorithm (eg LAGAN, SLAGAN). 

 

The algorithm works by chaining seeds – a pair of words of length k that has at least 

n identical characters.  Two seeds, s1 and s2 can be linked together if: the indices of 

s1 are higher than those of s2 in both sequences and the two seeds are ‘near’ to each 

other.  Two seeds satisfy this second condition if they are within a region defined by 

a gap score and distance cut-off, as illustrated in figure 2. 

 
The seeds are located using a variation of the Aho-Corasick algorithm (Aho & 

Corasick 1975) which uses a variation on the trie data structure, the threaded-trie 

(T-trie).  The trie is a tree like data structure that stores all the k-mers of one 

sequence, with one node for each common prefix.  The T-trie differs in that nodes 
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representing the string w1..wp also store back-pointers to the node containing the 

string w2..wp. 

 

The algorithm begins by inserting all of the k-mers of one sequence (database 

sequence) into the T-trie.  The root of the T-trie is made the current node, and for 

every letter of the other (query) sequence: 

1. If the current node has a child node corresponding to the letter under 

consideration this node is made the current node and any seeds stored in it 

are returned. 

2. Otherwise make the node pointed to by the back-pointer the current node 

and return to step 1. 

 

To keep a track of the available seeds to chain to, a probabilistic data structure 

called a skip list is used.  A distance, D, specifies the maximal distance for which 

two seeds must be under to be chained together (see figure 2).  Any seeds 

generated whilst examining the last D base pairs of the query sequence are stored 

in the skip-list.  The seeds are ordered by the difference of its indices in the two 

sequences (diagonal number).  For each seed s found at the current location, its 

diagonal number is found and a search of the skip-list is made to find any seeds in 

the skip-list whose diagonal number is within the allowable gap cut-off.  This finds 

all possible previous seeds that s can be chained to, and the highest scoring chain is 

chosen.   
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Figure 2  CHAOS illustration from (Brudno et al. 2003) 

 

2.4.3 LAGAN 
 

Limited Area Global Alignment of Nucleotides — Lagan — is a fast heuristic 

pairwise alignment algorithm developed by Michael Brudno (Brudno et al. 2003).  

The algorithm first uses the CHAOS algorithm to find the set of all local 

alignments.  These alignments are then weighted and the optimal chain (based upon 

the longest increasing subsequence algorithm) is chosen, with each local alignment 

in this chain an anchor to the global alignment.  LAGAN then calls CHAOS 

recursively between two anchors when they are more than a threshold apart to 

overcome sparse regions.  A Needleman-Wunsch like global alignment algorithm is 

then called in the areas between two anchors, and in a restricted area surrounding 

the anchors (ie. those cells within a distance of r from the anchor).   

 

LAGAN uses memory proportional to the largest area between two local alignments 

plus the memory needed to hold the alignment (Brudno et al. 2004).  
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2.4.4 SLAGAN 
 

Shuffle-Lagan (SLAGAN) is an extension of the LAGAN algorithm to handle 

rearrangement mutations (such as inversions or translocations) as well as indels.  

The algorithm relaxes the restriction that both indices from two local alignments 

must be strictly increasing in order to chain the local alignments so that only one of 

the indices must be strictly increasing.  This relaxation allows local alignments that 

align a region of one sequence with a region in the other sequence whose 

orientation is reversed (ie. an inversion) so long as order is preserved in at least one 

of the sequences.
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3. Multiple Sequence Alignment 
 

3.1 Introduction 
 

All MSA algorithms require an objective function to determine the relative quality 

of each possible multiple sequence alignment.  The sum-of-pairs (SP) objective 

function scores a MSA by the sum of the induced pair-wise alignments.  For 

example, considering the following simple MSA: 

 

A: ACT-GGT 

B: -CTGGGT 

C: CCTGG-T 

 

This alignment induces the following pair-wise alignments 

 

A: ACT-GGT 

B: -CTGGGT 

 

A: ACT-GGT 

C: CCTGG-T 

 

B: -CTGGGT 

C: CCTGG-T 

 

The sum of pairs objective function then scores the MSA M as S(M) = <lk
lks ),(  

where s(k,l) is the pair-wise score of sequences k and l from MSA M.  If a guide 

tree is known the weighted sum of pairs may be used to down-weight induced 

alignments which are less related than those closely related. 

 

Multiple sequence alignment has been shown to be an NP-complete problem using 

the sum of pairs objective function (Bonizzoni & Vedova 2001; Wang, L. & Jiang 

1994).  All the multiple sequence alignment algorithms that are practical for 

realistic data sets and reflect real-world models of evolution are heuristic (Vision & 

McLysaght 2004), and as such they do not guarantee an optimal alignment.   
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Multiple sequence alignment (MSA) algorithms can be classified into three classes: 

iterative, progressive and exact.  The most widely used heuristic algorithms are 

based on the progressive alignment of sequences to create a multiple sequence 

alignment (Vision & McLysaght 2004).  Typically however, expert knowledge is 

needed to review and for manual editing of a MSA to produce a ‘good’ alignment 

(Baxevanis & Ouellette 1998, p. 173; Thompson, J., Higgins & Gibson 1994). 

 

A list of MSA applications is provided in section 5.2.2 

 

3.2 Concepts 
 

Progressive alignment methods are the most commonly used and have the 

advantage of speed and simplicity (Notredame 2002).  Progressive alignment 

successively aligns pairs of sequences using pairwise alignment algorithms (such as 

Needleman-Wunsch etc).  Progressive alignment algorithms differ in several key 

ways: the way they choose the order in which to do the alignment, if they involve 

the alignment of a single sequence to a single growing alignment or if subfamilies 

are built up leading to alignments of alignments, and the method of aligning and 

scoring sequences or alignments against existing alignments.  The most important 

heuristic used in progressive alignment algorithms is to align the most similar 

sequences first (those with the smallest edit distance).  Progressive sequence 

alignment algorithms are sensitive to the order of the pairwise alignments which is 

determined solely by alignments of only two sequences at a time (Morgenstern, 

Dress & Wener 1996).  This has been addressed recently by using a travelling 

salesman approach to determine the order of alignments (Chantal & Gaston 1999). 

 

Feng and Doolittle (1996) developed the key idea that the strings with minimal edit 

distance are most likely to be from species that have most recently diverged, and 

therefore these strings provide the most ‘reliable’ information contained in the 

multiple sequences.  The method of Feng and Doolittle preserves gaps within these 

closely related sequences and progressively aligns sequences with greater edit 

distances. 
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Iterative methods produce a MSA and then refine the alignment through stochastic 

or deterministic iterations (or cycles).  Hidden Markov Models, and other 

statistically-based methods, have been used to attempt to associate a probability 

value to an alignment, and to encapsulate some of the known evolutionary 

information into the MSA.  

 

3.3 Multiple Sequence Alignment Algorithms 
 

3.3.1 Aligning Alignments Exactly 
 

Kececioglu and Starret (Kececioglu & Starrett 2004) recently published the first 

algorithm to align alignments exactly (AAE) using linear gap costs and under the 

sum of pairs objective function.  “Aligning Alignments is the problem of finding an 

optimal alignment of the columns of two multiple sequence alignments under the 

sum-of-pairs objective with linear gap-costs.  The sum-of-pairs objective scores a 

multiple alignment by the sum of the scores of the two-sequence alignments 

induced on all pairs of sequences.  With linear gap-costs a run of either x insertions 

or deletions costs γ + λx where γ is the gap-initiation cost and λ is the gap-extension 

cost.”(Kececioglu & Starrett 2004)  Although an NP-complete problem, the 

algorithm was published with a number of speed-ups leading to a linear run time.  

The algorithm is based upon a dynamic programming routine where each alignment 

is treated as a sequence of columns.  When aligning an alignment A of k rows and m 

columns to an alignment B of l rows and n columns an m+1 by n+1 grid structured 

graph is constructed.   The graph is traversed in row-major order until the final cell 

(m,n) has been calculated.  Costs within the dynamic programming table are 

calculated according to the cost of composing a column to the current alignment.  

 

To calculate the number of gaps initiated over all the sequences by composing a 

column to an alignment it is necessary to introduce the notion of a shape.  A shape 

is an ordered partition of the rows (of both alignments) which indicate the order in 

which each rows final character finishes.  For example the shape {(3)(0)(1 2)} 

indicates that the alignment being considered has row 3 finishing first (followed by 

gaps), then row 0, with the sequences in positions 1 and 2 having their final 
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character last.  That is, row 3 underhangs rows 0,1 and 2, whilst row 0 overhangs 

row 3 in the alignment.  Each cell in the table can have a number of shapes and 

corresponding scores for the optimal alignment ending in that shape. 

 

The column to be added to the current alignment is determined through the position 

in the table and the direction of the cell under consideration.  If we let the set of 

shapes at a particular entry (i, j) in the table be denoted by S(i,j).  When at position 

(i, j) in the dynamic programming table and considering shape s ∈ S(i, j) the 

calculation of the score at the adjacent cells is detailed below: 

 (i, j+1) =  The cost of composing a column consisting of gaps in alignment A 

and characters from column j+1 in alignment B to the shape s.  

(i+1, j) =  The cost of composing a column of characters from column i+1 in 

alignment A and gaps in alignment B to the shape s. 

(i+1 , j+1) = The cost of composing a column of characters from column i+1 in 

alignment A and characters from column j+1 in alignment B to the shape s. 

 

Using the following notation: 

A[i, j]  = the character at row i and column j of alignment A 

A[j]  = column j from alignment A 

S(i ,j)  = the set of shapes at entry (i, j) in the dynamic programming table 

C(i, j, s) = the cost of the alignment of prefixes A[1:i] and B[1:j] that ends in shape 

s. 

S(i,j)o c = the set of shapes obtained by composing column c to the set of shapes 

S(i,j) . 

 

“To find an optimal alignment of A and B, the subproblem we solve is to determine 

for a given shape s and indices 0 <= i <= m and 0 <= j <= n, the cost of an optimal 

alignment of the prefixes A[1: i] and B[1: j] that end in shape s.”(Kececioglu & 

Starrett 2004) 

 

Starting from cell (0,0) the shapes and scores contained in the table are calculated 

using the following recurrences: 
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To count the number of gaps initiated the following notation is introduced.  For 

rows p and q in an alignment of shape s and column c: 

• qsp if, and only if, p overhangs q in the alignment 

• psq if, and only if, p underhangs q in the alignment 

• qcp if, and only if, p has a letter and q has a gap in column c 

• pcq if, and only if, q has a letter and p has a gap in column c 

 

Using the notation (a,b) to denote a column where a is either a column from 

alignment A or a column of gaps(‘-‘) and b is either a column from alignment B or 

a column of gaps.  The total number of gaps initiated by composing a column (a,b) 

onto an alignment that has shape s is: 
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where � denotes logical negation (NOT), || denotes logical OR and the & denotes 

logical AND.  In the above summation a true value maps to 1 and false maps to 0. 

 

The recurrences for C(i,j,s) is based on the fact that an optimal alignment of A[1:i] 

and B[1:j] ending in shape s must have a final column c and removing this column 

one must be left with an optimal alignment ending in shape �  such that � ο c = s.  

So for 0 <= i <= m and 0 <= j <= n 
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Where |c| is the number of characters in the column, and ba,  is the substitution 

cost for a match/mismatch of a character a from alignment A with a character b 

from alignment B. 

To illustrate the basic principles of the algorithm consider the following example of 

aligning two alignments of two sequences each: 

Sequence number Alignment A Sequence number Alignment B 

0 ATG 2 ACTG 

1 ATG 3 -CTG 

 

A dynamic programming table is constructed (table 3) starting with the ‘flat’ shape 

of score 0.  From this initial cell (0,0) the shapes and scores for cells (0,1), (1,0) and 

(1,1) are calculated.  The calculations then move onto cell (0,1) and for all shapes in 

this cell the resulting shapes and scores for cells (0,2), (1,1) and (1,2) are calculated.  

This process continues until all cells in the table have been filled.   
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((1234)) = 0 ((013)(2)) = -42  ((01)(23))= -96 ((01)(23))=-120 ((01)(23))=-144 

((23)(01)) =-84  ((3)(012))=-28 

((3)(2)(01))=-126 

((3)(01)(2))=-126 

((0123))=-42 

((23)(01)=-180 

((01)(23))=-112 

((0123))=-96 

((23)(01))=-204 

((01)(23))=-126 

((0123))=-120 

((23)(01))=-228 

((01)(23))=-150 

((23)(01))=-108 ((3)(012))=-84 

((3)(2)(01))=-82 

((3)(01)(2))=-150 

((0123))=-28 

((23)(01))=-126 

((01)(23))=-166 

((0123))=-38 

((23)(01))=-180 

((01)(23))=-112 

((0123))=-96 

((23)(01))=-204 

((01)(23))=-122 

((23)(01))=-132 ((3)(012))=-108 

((3)(2)(01))=-106 

((3)(01)(2))=-174 

((0123))=-82 

((23)(01))=-112 

((01)(23))=-190 

((0123))=-28 

((23)(01))=-122 

((01)(23))=-166 

((0123))=-34 

((23)(01))=-180 

((01)(23))=-112 

Table 3 Aligning Alignments example 
 

The optimal alignment is then constructed through a traceback procedure similar to 

that used in the NW dynamic programming algorithm.  The shape with the highest 

score at cell (m,n) is first selected (see shaded cell at position (3,4) ).  The 

corresponding shape ((0123)) indicates that characters from both alignment A and B 

are in the final column of this alignment.  This, in-turn, indicates that a substitution 

column must have been composed to give this shape and score.  Consequently a 

move to cell (m-1, n-1) can be made (ie. back one column in each alignment to cell 

(2,3) ).  From cell (2,3) we consider all shapes in S(2,3) and determine the shape 

which under composition of a substitution column (A[3],B[4]) gives a score of -34.  

This calculation yields shape ((0123)) of score -38.  This process continues until the 

cell (0,1) is reached where the shape is ((013)(2)).  This shape indicates that only 

row 2 has a character in the final column and hence that gaps must have been 

inserted in alignment A (rows 0 and 1).  This brings us to the original cell (0,0).   

 

By following the path through the table and using the direction and positions in the 

table to determine the column of composition the optimal alignment is constructed 

as shown below. 

    

-ATG 

-ATG 

ACTG 

-CTG 
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The processing time and memory requirements are dependant upon the number of 

shapes, which in turn is dependant upon the gap structure of each alignment.  

Kececioglu and Starret developed two techniques  (dominance pruning and bound 

pruning) which reduce the number of shapes added to the dynamic programming 

table.  Bound pruning is very effective, with a large proportion of the table 

containing empty shape lists (Kececioglu & Starrett 2004). 

 

3.3.2 Partial Order Alignment 
 

A directed acyclic graph (DAG) representation of aligned sequences using a partial 

order graph has allowed for the development of an efficient alignment algorithm 

called Partial Order Alignment (POA) (Lee, Grasso & Mark 2002). 

 

During progressive multiple sequence alignment algorithms there is the problem of 

incorrect scoring due to artifactual gap counts.  When constructing a MSA through 

aligning a sequence to the current MSA, the MSA is first reduced to a consensus 

sequence or profile.  This reduction results in a loss of information which inturn can 

lead to incorrect gap costs. 

 

Artifactual gap counts are a legacy of aligning a sequence(s) to the profile of an 

alignment as illustrated in the simple example adapted from Lee et. al (Lee, Grasso 

& Mark 2002) below: 

 
Consider the sequences: 
A) TGACTCGATATATCG 

B) CAGTCCGATAAGTCGTATCG 

C) CAGTCCGATAAGTCGTATCG 

 

A possible global alignment of sequences A and B is shown below, with its 

corresponding profile sequence (with sequence C shaded along its length): 

Alignment 1: 

-----TGACTCGATA-----TATCG 

CAGTC-----CGATAAGTCGTATCG 

  *              ^ 
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profile 1: 

CAGTCTGACTCGATAAGTCGTATCG 

 

The problem of artifactual gap costs can be seen when examining the gaps in the 

two shaded columns of the alignment, and the effect of adding sequence C to this 

current alignment.  Whilst the gap above the ^ is a true gap, the gap above the * is 

an artefact of the alignment, as another equivalent alignment demonstrates: 

 

Alignment 2: 

TGACT-----CGATA-----TATCG 

-----CAGTCCGATAAGTCGTATCG 

profile 2: 

TGACTCAGTCCGATAAGTCGTATCG 

 

If sequence C was aligned to alignment 1 there would be a 5 residue gap penalty, 

however this does not occur in alignment 2. 

 

The partial order alignment represents alignments 1 and 2 as the same partial order 

graph.  Sequence A and B are represented as a graph in a process shown below 

adapted from Lee et. al (Lee, Grasso & Mark 2002): 

 

a) The standard row-column representation of the sequence alignment 

TGACT-----CGATA-----TATCG 

-----CAGTCCGATAAGTCGTATCG 

b) Each sequence is represented as a linear graph with each character a node and the 

order preserved. 

T�G�A�C�T�C�G�A�T�A�T�A�T�C�G 

C�A�G�T�C�C�G�A�T�A�A�G�T�C�G�T�A�T�C�G 

c)The nodes/characters from each sequence that align are fused to create a graph 

structure as shown below 
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T�G�A�C�T 
��

C�G�A�T�A
�
>T�A�T�C�G 

C�A�G�T�C 
�

     A�G�T�C�G 
�

  

 

The MSA using POA algorithm is essentially a progressive dynamic programming 

algorithm.  The algorithm uses a standard Needleman-Wunsch routine, however 

instead of aligning a profile sequence to another sequence, the partial order 

(alignment) is used.  To cope with multiple sequences without going into an N 

dimensional space each bifurcation in the graph structure becomes another dynamic 

programming plane whose cells must be considered when tracing back through the 

grid to determine the optimal alignment.  

 

3.3.3 ClustalW 
 

ClustalW (Thompson, J., Higgins & Gibson 1994) is a progressive multiple 

sequence alignment algorithm that improves the sensitivity through selective 

weighting of sequences and substitution scores.  ClustalW performs a pairwise 

alignment on all the sequences in order to construct a binary tree of their 

evolutionary relationship.  This is then used to build a MSA by aligning the most 

recently diverged sequences first.  ClustalW creates N/2 alignment profiles, which 

are then aligned to each other resulting in N/4 profiles.  This process is continued 

until all the sequences have been aligned. 

 

ClustalW has been widely used by biologists, as the algorithm was developed to try 

and overcome local minimum problems and incorrect alignments through the choice 

of alignment parameters.  ClustalW dynamically varies the alignment parameters 

according to the sequence order and residue position so that gap insertions are 

penalised more heavily in highly conserved areas than in variable regions.   

 

There are a number of factors influencing the changes in parameters (specifically 

the gap opening penalty or GOP) made by ClustalW throughout the alignment 

procedure.  When a mismatch is scored the average cost is used as a scaling factor 
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in an attempt minimise the dependance on the choice of weight matrix.  Closely 

related sequences (based on the percentage identity score) use a higher GOP, with 

less similar sequences having a linearly reducing GOP. Longer sequences increase 

the alignment scores, so the GOP is logarithmically scaled based on the length of 

the shorter sequence being aligned.  These three factors alter the GOP so that for 

sequences of length N and M: 

 

GOP = {GOP+log[min(N,M)}*(average residue mismatch score)*(% identity 

scaling factor)  

 

The gap extension penalty - GEP, is modified according to the difference in lengths 

of the two sequences.  If there is a large difference in lengths of the two sequences, 

then the GEP is increased to limit the number of long gaps in the shorter sequence.  

So that: 

 

GEP = GEP*[1.0+ |log(N/M)|] 

 

The GOP and GEP are also then altered throughout the alignment procedure 

depending upon the position.  If there is a gap at a position then the GOP and GEP 

are lowered so that: 

 

GOP = GOP*0.3*(number of sequences without a gap / no of sequences) 

GEP = GEP*0.5 

 

If the position being considered does not contain any gaps but a gap is within 8 

positions then the GOP is increased so that: 

 

GOP = GOP*{2 + [(8- distance from gap)*2]/8} 

 

ClustalW also alters the GOP based on amino acid properties of the sequences.  All 

of these factors, and the speed of the algorithm have led to arguably the most 

effective MSA algorithm for biologists today. 
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3.3.4 DiAlign 
 
DiAlign (Morgenstern 1999; Morgenstern, Dress & Wener 1996) is an anchor based 

algorithm that works by aligning gap-free segments of variable lengths from both 

sequences.  The segments under comparison appear as a diagonal on a dot-plot, and 

are the basis of the diagonal alignment – DiAlign algorithm.   

 

To compute the best alignment, DiAlign finds the maximal scoring set of consistent 

diagonals.  Diagonals D1 and D2 are consistent diagonals if the positions (residues) 

aligned to each other in D1 precede those aligned in D2, or vice-versa (see section 

2.3.2).  To determine the significance of a diagonal the following formulae are used: 

 

For a fixed diagonal D, of length l and containing m matches, with p the probability 

of a point in the dot plot (ie. 0.25 for nucleic acids). 
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A high scoring weight indicates that a random diagonal of length l is unlikely to 

contain as many as m matches by chance.  DiAlign scores highly for short segments 

with a large number of matches or for longer segments with fewer matches, so long 

as the segment is long enough.   

 

For a set of diagonal D1, D2, D3,…, Dk the score is defined as: 
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A consistent set of diagonals with a maximum score is a maximum alignment.  The 

maximum alignment of two sequences is then calculated using a dynamic 

programming algorithm based upon maximising the score of the alignment of 

prefixes of both sequences.  This is achieved through the following definitions and 

recurrences: 

(D) := the maximum sum of weights up to and including diagonal D (D must 

have a positive weight). 

(D) := the diagonal preceding D. 

score(i, j) := the score of the maximum alignment of A 1…i and B1..j  

So, (D) = score (i-k-1, j-k-1) + w(D)  and 

(D) = prec(i-k-1, j-k-1) 

Now a recursive formulation of the score is given by: 

score(i, j) =max{score(i ,j-1) , score(i-1, j) , (Di,j) } , where Di,j is any diagonal 

ending at point (i, j) that satisfies (Di,j) = max{ (D): D ends at point (i, j)}. 

 

To generalise DiAlign to N sequences “…we try to select a consistent set of 

diagonals with a maximal sum of weights.  However, now diagonals originate from 

all the 1/2N(N-1) possible pairwise sequence comparisons.”(Morgenstern, Dress & 

Wener 1996).  DiAlign sorts diagonals according to their weights, irrespective of 

which sequence the diagonal originates from.  The set of all diagonals from all the 

maximal pairwise alignments is sorted by weights and the overlap score (favouring 

diagonals that occur over multiple sequences), and diagonals are added individually 

in order to the multiple alignment so long as the diagonal being considered is 

consistent. 

 

Recently CHAOS has been used to find anchor points that enables a speed-up of 

DiAlign by 1-2 orders of magnitude (Brudno et al. 2003).  DiAlign is advantagous 

in that it can be applied to sequences that are both globally and locally related 

sequences. 
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3.3.5 Mavid 
 

Mavid is a progressive global multiple alignment algorithm based upon the 

alignment algorithm AVID (Bray, Dubchak & Pachter 2002) and using maximum 

likelihood phylogenic techniques. 

 

The sequences to be aligned are first aligned in a pairwise manner to produce a 

guide tree.  This guide tree is used to determine the order in which sequences are 

aligned.  The key difference in the MAVID algorithm to other progressive 

alignment algorithms is that instead of aligning two alignments directly through a 

consensus sequence, MAVID firstly infers ancestral sequences using standard 

phylogenetic models and then uses the alignment of these ancestral sequences using 

AVID to dictate the actual alignment. 

 

AVID is a global alignment algorithm, that finds local alignments (matches) by 

concatenating the two sequences in question and then solving the maximal repeated 

substring problem using suffix trees.  Maximal matches between two sequences are 

subsequences (one from each sequence) whose neighbouring bases are mismatches.  

AVID then uses a recursive approach to anchor and align the sequences based on 

the set of maximal matches.  The anchors are selected by scoring each match based 

on its length and the alignment score (found through a variation of the Smith-

Waterman local alignment algorithm) of the neighbouring regions 10 bp on either 

side of the match.  The set of matches are then used to anchor the global alignment 

(Bray, Dubchak & Pachter 2002). 

 



3. Multiple Sequence Alignment 

 28

 

Figure 3 MAVID MSA procedure from (Bray & Pachter 2004) 
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4. Phylogenic Reconstruction 
 

‘This is a huge, complicated, and highly contentious field.  

However, always remember that regardless of algorithm used, 

parsimony, any distance method, maximum likelihood, or even 

Bayesian techniques, all molecular sequence phylogenetic 

inference programs make the absolute validity of your input 

alignment their first and most critical assumption.  The accuracy 

of your alignment is the most important factor in inferring 

reliable phylogenies; the results are utterly dependent on its 

quality.’(Thompson, S. M. 2004, p. 11) 

 

4.1 Introduction 
 
Phylogeny is the field of biology that is concerned with identifying and 

understanding the relationship between species based on ancestor/descendant 

relationships.  The phylogeny of organisms is usually represented by an 

evolutionary tree (or a cladogram). 

 

Phylogeography is the study of the relationship between the phylogenic variations 

within or between species and their geographic distribution.  Chloroplast DNA is 

particularly appropriate for phylogeographic studies since cpDNA does not 

recombine and inheritance is mostly maternal (Freeman et al. 2001).   

 

Phylogenetic analysis of DNA or amino acid sequences involves four steps: 

sequence alignment, determination of the substitution model, tree building and tree 

evaluation (Baxevanis & Ouellette 1998).  

 

As detailed in Bioinformatics (Baxevanis & Ouellette 1998, pp. 189-230) the 

alignment procedure is central to the resulting evolutionary tree constructed during 

phyologenetic analysis .  An alignment produces ‘sites’ -which are aligned base 

positions- and these sites are, in effect, assumed to be genealogically homologous.   

Therefore, the alignment procedure is inextricably linked to the phylogenetic 

analysis. 
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The tree building criteria has an effect upon the alignment and substitution models 

applied.  There are three tree building criteria used for calculating the phylogeny: 

distance matrix, maximum parsimony (MP) and maximum likelihood (ML).   

 

“Distance trees use pairwise divergence estimates of all sequences in 

the data to determine tree topology and branch lengths.  Maximum 

parsimony finds the tree that explains with the fewest number of 

discrete steps all the base differences in a multiple sequence 

alignment.  Maximum likelihood finds the topology and branch 

lengths that have the highest probability of producing the observed 

multiple sequence alignment.” (Baxevanis & Ouellette 1998, p. 191) 

 

For even moderate numbers of sequences being analysed there is an exponentially 

large number of possible trees for which the ‘best’ representation of the 

evolutionary relationship must be selected.  As a result the optimal phylogenic 

tree(s) may only be found when examining generally fewer than 11 species.   When 

the number of sequences being analysed exceeds 11 but is less than approximately 

20, branch-and-bound methods can be used to find optimal phylogenic trees.  For 

larger data sets most tree estimates are found using an uphill searching algorithm.  

Uphill searching heuristics are employed in the common phylogenic software 

packages PAUP (Swoffard 1998) and Phyllip (Felsenstein 1993) (Salter 2000).   

 

4.2 Substitution Models 
 
The first stage in deducing an evolutionary tree is the multiple sequence alignment 

(section 3).  During and after the alignment of the sequences in question a 

substitution model is required to aid in estimating the divergence and hence 

evolutionary relationship between each sequence.  A substitution model is a square 

matrix (4x4 in the case of nucleotide sequences) that reflects the ‘cost’ of 

substituting one base for another, the diagonal entries represent the ‘cost’ of having 

the same base in different sequences (which must be 0 for parsimonious methods).  

Weighted parsimony is when such a substitution matrix is fixed prior to computing 

a tree.  In distance matrix and maximum likelihood tree building the costs are 

calculated from instantaneous rate matrices whereby the costs are a relative rate 



4. Phylogenic Reconstruction 

 31

between the different substitutions and the frequency of the target base. (Baxevanis 

& Ouellette 1998, pp. 189-230) 

 

There are numerous available substitution models as summarised in the table below 

(further details of the substitution models can be seen in appendix A). 

 
Model Summary Assumptions 
Number of 
Differences 

Counts the number of sites at which two 
sequences being compared are different. 

 

Jukes-Cantor Gives ML estimate of the number of substitutions 
between two sequences. 

Equal 
substitution 
rates. 

Kimura-
2Parameter 

Takes into account transitional and transversional 
substation rates. 

Nucleotide 
frequencies are 
equal and rates 
of substitution 
are invariant. 

p-distance The proportion of nucleotide sites at which two 
sequences being compared are different.  This 
model makes no correction for multiple 
substitutions or for rate biases (eg differences in 
transitional / transversional rates). 

Evolutionary 
rate amongst 
sites constant 
and uniform 
rate bias. 

Tajima-Nei When nucleotide frequencies differ from 0.25 the 
Tajima-Nei distance can give better estimates of 
number of substitutions through weighting the 
substitution matrix based upon the observed 
frequencies. 

Equality of 
substitution 
rates among 
sites and 
between 
transitional and 
transversional 
substitutions 

Tamura-
3Parameter 

Takes into account differences in transitional and 
transversional rates and corrects for multiple hits 

Equality of 
substitution 
rates amongst 
sites 

Tamura-Nei Corrects for multiple hits, takes into account 
differences in substitution rates between 
nucleotides and the inequality of nucleotide 
frequencies.  It also distinguishes between 
transitional substitution rates between purines 
(nucleotides A or G) and transversional rates 
between pyrimidines (C or T). 

Equality of 
substitution 
rates amongst 
sites 

Table 4 Comparison of substitution models 
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4.3 Tree Building 
 

Many tree building methods have been developed, including: branch-and-bound, 

branch swapping, star-decomposition, divide-and-conquer and stochastic search 

methods (such as simulated annealing, genetic algorithms or Markov Chain Monte 

Carlo methods).  One of the most widespread tree building methods is a form of star 

decomposition called neighbour-joining (Saitou & Nei 1987) which uses a distance 

matrix criteria.  This method has also been adapted for MP and ML criteria (Bruno, 

Socci & Halpern 2000; Yang 1997). 

 

For n species or sequences under consideration there is: 

)!|2(|

)!52(

2 3− n

n
n   possible unrooted trees, with an even greater number of possible 

trees for rooted trees.  The methods employed to infer relationships and degree of 

divergence between sequences is beyond the scope of this study as it is a significant 

area of research in itself.   

 

4.4 Tree Evaluation 
 

Tree evaluation methods include: skewness test (randomised trees), permutation 

tests (randomised character data), resampling (bootstrapping, parametric 

bootstrapping, jackknife) and likelihood ratio tests. (Baxevanis & Ouellette 1998, 

pp. 213-7) 

 

Felsenstein’s bootstrap test (Felsenstein 1985) is one of the most widely used 

techniques to add reliability to an inferred phylogenic tree.   Following a tree 

building algorithm (on m sequences of length n) from each sequence n nucleotides 

are randomly selected (with replacement) giving a new set of sequences.  A tree is 

then reconstructed from this set of sequences using the same tree building method.  

The topology of the new tree is compared to the original tree, so that for each 

interior branch of the original tree that is different to the reconstructed tree the 

sequences it partitions are given a score of 0 whilst all other interior branches are 

given a score of 1.  The process of reconstructing trees is repeated several hundred 

times, with the percentage of times an interior branch gains a value of 1 determining 
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the level of bootstrap support for that branch.  As a general rule an interior branch is 

considered “correct” if it receives a 95% or higher bootstrap value (Baxevanis & 

Ouellette 1998, pp. 221-2).    
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5. Bioinformatics Resources 
 

“The computational biology community in general has been very generous with the 

fruits of its labour, making freely accessible tools and specialized databases without 

which elementary sequence analysis could not take place.” (Baxevanis & Ouellette 

1998)  

 

Bioinformatics is a recent and fast moving field.  There is currently a myriad of 

available software packages and online references.  This chapter shall note some of 

the most commonly used packages, languages and websites for those looking at 

analysing DNA sequences. 

  

5.1 Online Databases 
 

The International Nucleotide Sequence Database Collaboration (INSDC) maintains 

the major DNA sequence databases.  INSDC is comprised of the DNA Data Bank 

of Japan (DDBJ Homology Search System), the European Molecular Biology 

Laboratory Nucleotide Sequence Database and the NCBI operated Genbank (see 

table 5 below).  These databases collaborate to share new submissions and as such 

are synonymous although they do use different formats (Vision & McLysaght 

2004).   

 

Database URL 
DDBJ www.ddbj.nig.ac.jp 
EMBL www.ebi.ac.uk/embl/index.html 
GenBank www.ncbi.nlm.nih.gov/Genbank/index.html 

Table 5 Major DNA databases and locations 
 

There also exists databases holding protein sequences such as the Protein 

Information Resource (Wu et al. 2003) and Swiss-Prot, databases containing protein 

structure such as the Protein DataBank (Berman et al. 2000) as well as the 

Molecular Modeling DataBase at NCBI (Wang, Y. et al. 2002).  The exponential 

growth in entries within these databases has been a motivating factor for efficient 

heuristic algorithms for sequence comparison.   
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Figure 4 Growth of the nucleotide databases (number of nucleotides held) 
from January 1995 to January 2004 
 

5.2 Software 
 

Coupled with the databases listed above are many freely available online tools for 

searching the databases.  One such collection of tools is ENTREZ which provides 

an entry point for many of the searching tools and resources provided by NCBI 

 

Many of the tools used in analysing DNA and protein sequences are freely available 

and open source software.   There are also programs available for conversion 

between sequence formats, for multiple sequence analysis and for phylogenic 

analysis (sections 5.2.1 and 5.2.2).  A non-complete list of software available is 

included below. 

 

5.2.1  Multiple Sequence Alignment 
 

A list of the many algorithms and programs available for multiple sequence 

alignment problems are shown below: 
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Program Algorithm URL Reference 

MSA Exact ftp://fastlink.nih.gov/pub/msa/ (Lipman, Altschul & 
Kececioglu 1989) 

DCA Exact http://bibiserve.techfak.uni-
biefeld.de/dca 

(Stoye, Moulton & 
Dress 1997) 

OMA Iterative DCA http://bibiserve.techfak.uni-
biefeld.de/oma 

(Reiner, Stoye & Will 
2000) 

ClustalW Progressive ftp://ftp-igbmc.u-strasbg.fr/pub/clustalW (Thompson, J., Higgins 
& Gibson 1994) 

MultAlin Progressive http://ww.toulouse.inra.fr/multalin.html (Corpet) 
DiAlign Consistency-

based 
http://www.gsf.de/biodv/dialign.html (Morgenstern, Dress & 

Wener 1996) 
ComAlign Consistency-

based 
http://www.daimi.au.df/ocaprani (Bucka-Lassen, 

Caprani & Hein 1999) 
T-Coffee Consistency-

based, 
Progressive 

http://igs-server.cnrs-mrs.fr/~cnotred (Notredame, Holm & 
Higgins 1998) 

IterAlign Iterative http://giotto.Stanford.edu/~luciano/iterali
gn.html 

(Brocchieri & Karlin 
1998) 

SAM Iterative/Stoch
astic/HMM 

rph@cse.ucsc.edu (Hughey & Krogh 
1996) 

HMMER Iterative/Stoch
astic/HMM 

http://hmmer.wustl.edu/ (Eddy 1995) 

SAGA Iterative/Stoch
astic/GA 

http://igs-server.cnrs-mrs.fr/~cnotred/ (Notredam & Higgins 
1996) 

POA Partial order 
alignment 

http://www.bioinformatics.ucla.edu/poa (Lee, Grasso & Mark 
2002) 

GA Iterative/Stoch
astic/GA 

czhang@watnow.uwaterloo.ca (Zhang & Wong 1997) 

Table 6  Multiple sequence alignment algorithms 

 

5.2.2  Phylogenic Analysis 
 
Some of the major phylogeny programs are shown below: 
 
Application Criteria URL Operating System 

PHYLIP MP & 
ML 

http://evolution.genetics.washington.edu
/phylip.html 

Windows, Mac, Unix 

PAUP  http://paup.csit.fsu.edu/ Mac, Unix, Dos, 
Windows 

HYPHY ML http://www.hyphy.org/ Mac, Windows, Unix 
PAML ML http://abacus.gene.ucl.ac.uk/software/pa

ml.html 
Windows, Unix, Mac 
OSX, Linux 

Table 7  Phylogenic packages 

 

5.3 Programming 
 

There are currently many tools available to computer scientists and those with an 

interest in bioinformatics to program tailored solutions to particular or generic 

bioinformatics problems.  The Open Bioinformatics Foundation is an organisation 
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supporting open source programming in bioinformatics.  The Open Bioinformatics 

Foundation (O|B|F OPEN BIOINFORMATICS FOUNDATION) contains projects 

in BioPerl, BioJava, BioPython, BioRuby, BioPipe, BioSQL / OBDA, Moby and 

DAS.   These projects include freely available methods and scripts to handle 

standard tasks such as file conversion and database searching amongst others.   

 

There is also the R project for statistical computing (Ihaka & Gentleman 1996).  

The bioconductor project is an open-source and open-development software project 

for the analysis of genomic data making use of the R program (BioConductor; Ihaka 

& Gentleman 1996). 
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6. Methodology 
�

6.1 Aims 
 

The JLA and an extended JLA+  region of cpDNA of eucalypts has been found to be 

hypervariable (Freeman et al. 2001; Vaillancourt & Jackson 2000).  The cpDNA 

sequences from these regions have been used to investigate the evolution and 

biogeography of eucalypts (Freeman et al. 2001; Whittock 2000).  The high level of 

variation within the JLA+ region of E. globulus has led to difficulties in creating an 

unambiguous alignment of the sequences for phylogenetic analysis.  As a 

consequence sequences have been aligned by eye using Sequence Navigator 

software (Karplus K & Hu 2001; Whittock 2000).  The treatment of gaps in 

constructing a multiple sequence alignment on such variable sequences is 

problematic.  For this reason an exact multiple sequence alignment algorithm was 

implemented and compared with new and existing heuristic MSA algorithms. 

 

The alignment generated by the biologist was used as a benchmark alignment to 

compare the MSA generated with POA, clustalW, MAVID, DiAlign and AAE.  

Descriptive features of these alignments were analysed along with other statistics 

detailed in section 6.4.  Phylogenic trees were then constructed from the alignments 

and analysed for differences, and support (see section 6.5). 

 

The analysis of cpDNA samples also aimed to identify inversions and other 

rearrangement mutations within the data set and to determine if inversions (if any) 

were having a detrimental effect upon the multiple sequence alignment.   

 

The data set of cpDNA was provided by Simon Whittock from the school of Plant 

Science.  The analysis was conducted on the subgenus Symphyomyrtus data set 

(which displayed a maximum sequence divergence of 5%), and more specifically on 

the maidenaria subset which displayed a reduced sequence divergence of 3% 

(Whittock 2000). 
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6.2 Implementation 
 
The raw data sequences obtained from plant science were of all samples of 

Symphomytrus (71 species).  The sequences were already aligned in the nexus file 

format.  This format is used by PAUP and other programs and aims to be an 

extensible multiple sequence format.  The Nexus file format contains a header block 

with information regarding the number of species, the aligned length and 

information on the types of sequences (DNA/Amino Acid) the gap character and the 

character for any missing data.   

 

A number of Perl scripts were written to parse out the individual sequences from 

this file and remove all gaps so that the raw sequence data was available for 

analysis.  This was achieved through Perls extensive regular expression 

functionality.  Perl scripts were also written to analyse the alignments generated by 

SLAGAN and to parse out all alignments which contained inversions (see code 

snippet below). 

 

if ($gdata =~ m/\-/){ 

 print logf "found an inversion in: $filea\_$fileb \n"; 

 @nums = ($gdata =~ m/(\d+\.?\d*|\.\d+)/g); 

     $x1 = $nums[1]; 

 $y1 = $nums[2]; 

 $x2 = $nums[8]; 

 $y2 = $nums[9]; 

 print logf "* $filea\_$fileb - between: \($x1 , $y1 ) \($x2 , 

$y2) "; 

 
The Aligning Alignments Exactly (Kececioglu & Starrett 2004) algorithm was 

developed in C++ based on the grid structure and recurrences detailed in section 

3.31.  The AAE program requires its input to be: sequence(s) file A, sequence(s) 

file B, output filename, substitution matrix filename, “-dom” for dominance pruning 

speedup.  The AAE program is able to read in a substitution matrix in the following 

format:  
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     A    C    G    T    -    N 

A   91 -114  -31 -123    0  -43 

C -114  100 -125  -31    0  -43 

G  -31 -125  100 -114    0  -43 

T -123  -31 -114   91    0  -43 

-    0    0    0    0    0    0 

N  -43  -43  -43  -43    0  -43 

 

-750 -25 

   

In the above substitution matrix (nucmatrix), substitutions between different DNA 

bases are prescribed different penalties, with matching DNA characters all scoring 

highly (either 100 or 91), the numbers in the final line of the matrix represent the 

gap open penalty (-750) and the gap extension penalty (-25).  Most substitution 

matrices are developed for amino acid substitutions; with the exception of the above 

matrix as used in LAGAN (Brudno et al. 2003), the clustalW1.6 matrix and the IUB 

matrix (see Appendix A). 

 

The AAE algorithm was implemented using modified sequence and multi-sequence 

objects developed by Brudno as a part of the LAGAN source code (licenced under 

GPL).  The algorithm was implemented with the dominance pruning speedup and 

was capable of aligning all sequences in the maidenaria set.  Descriptive features of 

the resultant alignment are shown in section 7.2 with the MSA shown in Appendix 

B. 

 

6.3 Analysis of Inversions 
 

To detect inversions in the sequences the shuffle-lagan (SLAGAN) algorithm 

(Brudno et al. 2003) was run in a pair-wise manner over all the sequences in the 

data set.  From this algorithm a .mon file containing the co-ordinates and direction 

(+/-) of the chains that make up the best 1-monotonic conservation map is created 

for each pairwise alignment.  The .mon files for these pairwise alignments were 

parsed using Perl’s regular expressions to find any inversions (-) in the 1-monotonic 
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conservation map.  A list of the sequences for which inversions were found in the 

SLAGAN pairwise alignment was written to file. 

 

The initial (21) pairwise alignments generated by clustalW based on the guide tree 

were examined to determine if inversions were present.  The number and length of 

any inversions present give an indication of the extent to which inversions may 

hamper tradition MSA algorithms.  

 

The results for detecting inversions is presented in section 7.1.  

 

6.4 Analysis of Alignments for Phylogenic Reconstruction 
 

Thompson et al. introduced two measures for comparing an alignment to a 

reference alignment: the sum of pairs score (SPS) and the column score (CS) 

(Thompson, J., Plewniak & Poch 1999).  The SPS score increases as more 

sequences are correctly aligned and signifies the extent to which the algorithm 

succeeded in aligning the sequences in the alignment.  The column score gives a 

measure of the ability of an algorithm to align all of the sequences correctly, 

however only one character in any column must be different causing a zero score.  

For this reason the CS was not used as a measure of how the generated alignments 

compared with the benchmark alignment 

 

The SPS statistic used is the ratio of the all residue pairs that are aligned in the test 

alignment against the sum of all residue pairs in the reference alignment.  That is, 

for an alignment A, of N sequences and M columns, and with column i from A 

represented as Ai1, Ai2, .. , AiN .  Then defining pijk = 1 if residues Aij and Aik are 

aligned.  Then the score for the ith column Si is given by: 

 

� �= =
≠= N

j

N

k
kj

ijki pS 1 1
 

 

Then for a reference alignment R, of MR columns and using SRi to denote the score 

for the ith column from alignment R, the SPS score is given by: 

 



6. Methodology 

 42

�� ==
÷= MSPS R

i Ri

M

i i SS 11
 

 

This formula allows for a comparison of the two MSA and the degree to which they 

have successfully aligned all the sequences.  The above formula has also been 

modified to score 2 for identically aligned pairs of residues, a 1 for aligned gaps and 

0 otherwise (Karplus K & Hu 2001).  This scoring has been called the weighted 

sum of pairs score (W-SPS). 

 

Most MSA programs aim to maximise an objective function however when 

analysing constructed alignments against verified alignments (such as those in 

BaliBase test suite) often the weighted sum of pairs score is higher in the test 

alignments than the ‘true’ alignment (Lassman Timo & Erik 2002, p. 127). 

  

In using a MSA for phylogenic analysis each column and the variations within it are 

considered, and as such, those columns which contain the same character over all 

sequences are uninformative.  Maximum parsimony methods of constructing an 

evolutionary tree include only those sites which exhibit at least two different 

nucleotides, and for which those nucleotides occur at least twice, in its analysis.  

For this reason examining the percentage of parsimony informative sites over an 

entire MSA enables a comparison of the informative content of each MSA in 

creating an evolutionary tree using MP methods. 

 

The percentage of singleton sites was scored.  A singleton site is a site containing at 

least two types of nucleotides; with at most one occurring multiple times.  Constant 

sites are sites for which there is only one nucleotide occurring over all the 

sequences.  The percentage of constant sites was scored, along with the percentage 

of variable sites.  A variable site is either parsimony informative or a singleton site 

and as such all sites are either variable or constant. 

 

The number of gaps required to align the sequences is scored, along with the 

(aligned) length and the number of indels.  An indels is an inserted gap greater than 

1 base length, the total number of indels scored was the sum over all the sequences 

of the indels in each sequence.  The p-distance of the alignments was also 

calculated.  The p-distance is the proportion of sites for which two sequences being 
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compared are different.  The p-distance is calculated by dividing the number of 

differences found by the total number of nucleotides compared and is averaged by 

the number of sequences. 

 

The following multiple sequence alignment programs were used in the comparison: 

POA, ClustalW, Aligning Alignments Exactly, DiAlign and MAVID along with a 

number of substitution matrices.  A table of the descriptive features of these 

alignments is presented in section 7.2.2.  The speed, space complexity and other 

advantages/disadvantages of the aforementioned algorithms are detailed in section 

7.2.1.  

 

6.5 Phylogenic Analysis 
 

Phylogenic analysis was conducted using MEGA version 3.0 (Kumar, Tamura & 

Nei 2004) which provides a user-friendly interface to phylogenic analysis.  MEGA 

contains a number of substitution models (p-distance, jukes-cantor etc) as well as a 

number of tree building methods (Distance based -UPGMA, Neighbour-Joining, 

Maximum Parsimony, Minimal Evolution-ML).  Due to the number of species 

under consideration a distance based method of tree building was chosen 

(UPGMA), with 500 replicates for bootstrap support.   Maximum parsimony 

methods were also used on the two most promising alignments.  Similarities and 

variations, along with the level of support for each phylogeny are detailed in section 

7.3. 
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7. Results and Discussion 
 

7.1 Rearrangement Mutations 
 

Due to the hypervariable nature of the chloroplast DNA samples it was decided to 

use the SLAGAN algorithm to detect inversions and determine if these inversions 

(if any) were having a detrimental impact on the MSA.  Using SLAGAN it is also 

possible to analyse other rearrangement events such as translocations and 

duplications. 

 

After running SLAGAN in a pairwise manner over all the sequences, a PERL script 

was used on the SLAGAN output file detailing the components in the highest 

scoring monotonic map to parse out and log any inversions.  89 inversions were 

found (out of a possible 1722).  

 

The inversions found were all of minor length and by using the guide tree calculated 

by clustalW only two of the initial pairwise alignments displayed any inversions.  

The alignment of ovata919 and crenulata displayed inversions (see figure 6), as 

well as the alignment of globHJ13cg9 and ovata924 (see figure 7).  The inversion 

in the globHJ13cg9 and ovata924 alignment was surprising since they have aligned 

well in the clustalW alignment (see Appendix B) as well as other alignments.  The 

inversion in ovata919 and crenulate is less surprising since there is more divergence 

within the first 200 residues of the alignment.  Overall, whilst inversions were 

found, they appear to be few, short in overall length, and amongst more distantly 

related sequences.  For these reasons it does not appear that inversions are a 

problem in creating a good alignment of the maidenaria data set.  
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Figure 5  Dot plot showing the inversion present in ovata919 and crenulata alignment 

 

 
Figure 6  Dot plot showing the inversion present in globHJ13cg9 and ovata924 
alignment 
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Translocation events were also found to be present in a number of the alignments as 

can be seen in figure 8. 

 

Figure 7  Example of translocation rearrangement in the pairwise 
alignment of Eglobulus Tasmaniana1078 and Ebadjensis8001326 
 

7.2 Multiple Sequence Alignment 
 

7.2.1 Algorithmic complexity 
 

The time and space complexity of the MSA alignments used are shown in the 

following table (table 8).  POA is most suitable for MSA alignment problems over a 

large number of sequences since it does not require an initial guide tree calculation 

as used in clustalW and its efficient representation of alignments allows for greater 

speed.  
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Algorithm Background Time Complexity Space 
Complexity 

AAE 
(without 
speedups) 

Alignments of k sequences of 
n columns.  When aligning a 
sequence to a MSA the 
algorithm is polynomial. 

Worst case: 
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Worst case: 
factor of k better 
than time 
complexity 

POA Natural extension of dynamic 
programming for sequences of 
length N and M which is 
O(3NM).  Depends upon 
number of predecessor nodes, 
if average number of 
predecessor nodes is np.  Note 
np tends to increase slowly for 
biological meaningful 
alignments as poa is like a data 
compression algorithm 

O((2np +1)NM) O(N+L) where L 
is the total 
number of letters 
in all the 
sequences  

ClustalW ClustalW first performs 
pairwise alignments to 
construct guide tree before 
performing MSA routine.  For 
N sequences of length L 

O(NL2) to construct 
binary tree 
O(L2logN) to construct 
MSA 
O(NL2+ L2logN) overall 

 

MAVID For N sequence of length L linear in N and almost 
linear in L 

 

DiAlign For N sequences of length L O(N4L2)  

Table 8 Summary of the processing and memory complexity of MSA 
applications 
 

7.2.2 MSA Features 
  

The 42 sequences in the maidenaria subgenus were subjected to the MSA 

algorithms detailed in section 3.3.  The 42 sequences in the maidenaria data set 

ranged in length between 463bp and 548bp (average length 522 bp).  All alignments 

were generated using the default parameters. 

 

The descriptive features of the alignments show that the benchmark alignment 

displayed the second lowest p-distance average, indicating that the biologists 

alignment is good in general.  The MAVID alignment exhibited significantly more 

parsimony informative sites, whilst still retaining the most conserved sites overall 

and the lowest p-distance.  These figures indicate that the alignment of all the 

sequences by MAVID produced a higher number of pairwise character matches, 

however this was at the expense of inserting more gaps leading to a longer 

alignment.  This interpretation is confirmed by MAVID exhibiting the lowest W-

SPS score (see table 10).  The simplistic clustalW substitution matrix without 
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dynamic GOP and GEP control was able to align the sequences over the shortest 

length (609bp) under the AAE algorithm, however this apparent strength is 

weakened by this alignment having a significantly higher p-distance score (see 

figure 8) along with SPS and W-SPS (see figure 11 below). 
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Figure 8  p-distance scores for all MSA 

 

The exact algorithm (AAE) with the nucmatrix substitution matrix was able to align 

the maidenaria data set with significantly fewer indels as shown in figure 9.  POA 

and MAVID aligned with the greatest numbers of indels (810 and 835 respectively) 

compared with the benchmark alignment which included 622 indels. 
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Figure 9  MSA algorithms (with substitution matrix) of maidenaria data set showing 
aligned length (bp) and number of indels 

  
Both AAE with nucmatrix substitution matrix and POA were able to align the 

sequences over a far shorter length (with consequently fewer gaps inserted) and 

with a high number of conserved sites (76.13% and 76.92% respectively as 

compared with the benchmark alignment displaying 75.99%).  Interestingly the 

benchmark alignment also scored the worst for parsimony informative sites (3.47% 

compared to 6.58% average over all other alignments).  This apparent lack of 

informative sites was overcome through conversion of the alignment to a binary 

matrix listing characters as purine or pyrimidine. 
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Alignme
nt Algo 

Subst. 
Matrix Length Gaps 

In-
del
s CS % 

PI S 
% VS % SS% P-dist 

POA blosum80 728 9440 810 76.92 5.63 13.46 7.83 0.0187 
MAVID - 803 12893 730 83.31 7.10 15.44 8.09 0.0063 
AAE clustalW 609 3966 186 34.65 54.0 60.59 2.30 0.1441 
AAE nucmatrix 729 9486 543 76.13 6.72 15.50 7.68 0.0141 
Clustal
W clustalW 734 9719 697 75.75 6.95 14.58 7.49 0.0171 
Clustal
W IUB 728 9440 752 75.27 7.28 15.38 7.97 0.0170 
DiAlign - 786 11058 835 73.16 6.23 11.70 5.34 0.0171 
Biologist  - 779 11786 622 75.99 3.47 8.60 5.13 0.0103 

Table 9  Descriptive features of the aligned maidenaria data set. 
Length is the aligned length of MSA, gaps are the total number of gaps 
inserted, indels is the number of insertion/deletion events over all sequences.  
CS% is the percentage of conserved sites, PI S% is the percentage of 
parsimony informative sites, VS% is the percentage of variable sites, SS% is 
the percentage of singleton sites. 
 
The ability of the generated alignments to align residues over all the sequences 

compared with the benchmark biologist alignment is shown in table 10 as well as 

figure 10 below.  The sum of pairs score and the weighted sum of pairs score give a 

measure of the quality of the generated alignments to the benchmark alignment.  

Whilst it has been noted that often the SPS or W-SPS score is greater than 1 (i.e. the 

test alignment contains a higher score than the ‘good’ reference alignment) , with 

the maidenaria  data set this was never the case (Lassman Timo & Erik 2002).   
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Figure 10 Sum of pairs (SPS) score and Weighted sum of pairs (W-SPS) for all MSA 

 

All the algorithms achieved a close alignment (average 0.908 SPS) with the 

exception of DiAlign whose alignment was significantly poorer.  The AAE 

algorithm with the nucmatrix achieved the highest SPS and weighted-SPS score 

over all algorithms, indicating that the alignment generated by this algorithm was 

able to produce an alignment that was overall very good compared to the 

benchmark alignment. 

 

The SPS and W-SPS scores indicate that the local and global alignments are both 

able to achieve a high quality alignment on the maidenaria set of sequences, with 

MAVID (0.9297) scoring only marginally worse than the AAE (0.9305) algorithm. 

 
Alignment Algo Subst Matrix SPS W-SPS 
POA blosum80 0.9274 0.9547 
MAVID - 0.9297 0.9265 
AAexact ClustalW 0.6865 0.7606 
AAexact nucmatrix 0.9305 0.9570 
ClustalW clustalW 0.9138 0.9426 
ClustalW IUB 0.9261 0.9514 
DiAlign - 0.8249 0.8214 

Table 10  MSA consensus statistics 
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7.3 Phylogenic Inference 
 
Using the MSA generated through Aligning Alignments Exactly and the benchmark 

alignment phylogenic trees were generated using distance based.  All trees were 

bootstrapped for 500 replications to add further support for the consensus tree 

generated. 

  

The consensus tree generated through UPGMA distance based tree building method 

on the benchmark alignment is shown in figure 11.  This tree is compared against 

the tree generated using the same method from the alignment constructed through 

AAE algorithm with the nucmatrix substitution matrix (figure 12). 

 

The tree topology and distances are quite different in both trees, with subcrenulata 

sequence the most divergent in the benchmark tree with globSA showing as most 

divergent from the generated alignment.  Most of the sequences showed similar 

groupings, however there was enough of a variation to warrant further investigation 

and analysis of the alignments and the variations within. 
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Figure 11 UPGMA consensus tree generated from benchmark alignment using p-distance 
substitution matrix 
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Figure 12 UPGMA consensus tree generated from alignment constructed using AAE with 
nucmatrix using the p-distance substitution matrix for tree building 
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8. Future Work 

 
Much research continues to be undertaken in producing efficient and biologically 

relevant alignments.  Research into incorporating dynamic parameter control, as 

used in ClustalW, as an option for partial order alignments and the aligning 

alignments exactly algorithms could allow for greater selectivity and specificity in 

aligning sequences.   

 

Greater research and a review of the best performing algorithms on sequences 

exhibiting ranges of variation (length, divergence, motifs etc), along with parameter 

selection choices could be undertaken to allow for a better picture of algorithmic 

strengths as well as greater confidence for biologists and others in selecting the best 

of the many worthwhile algorithms for MSA.  This research could allow for the 

development of an approach for pre-processing sequences allowing for a quick 

analysis of various rearrangement events and pertinent statistics (divergence, 

regions of high similarity) that could contribute information for anchoring based 

algorithms or to allow for better (or automated) algorithm and parameter selection.   

 

Further work to improve the speed of the AAE algorithm to replicate those 

published would also allow for more efficient exact alignments, and allow 

biologists to apply this recent algorithmic advance.
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9. Conclusion 
 
The process of aligning multiple biological sequences for phylogenic inference is 

inherently difficult.  As well as coupling two NP-complete endeavours (multiple 

sequence alignment and phylogenic tree building) the final product – an 

evolutionary tree – can only ever be correct based on the algorithmic and 

evolutionary assumptions made.  This difficulty is compounded by the many 

competing choices for the alignment parameters, in choosing the alignment 

algorithm, in selecting the substitution model and finally in selecting a tree building 

criterion.  It is a widespread practice for biologist to manually ammend an 

alignment to correct for the incorrect placement of gaps, often as a legacy of the 

progressive MSA algorithm. 

 

This thesis has examined new and novel multiple sequence alignment algorithms 

against popular algorithms such as ClustalW.  In examining the multiple sequence 

alignment algorithms their advantages and disadvantages both algorithmically and 

in terms of processing and space complexity has been studied as well as the 

suitability of the resulting alignments for further phylogenic analysis.   

 

All analysis was conducted on 46 samples of chloroplast DNA of average length 

522 bp taken from eucalypts provided by the School of Plant Science.  The analysis 

of the multiple sequence alignments of these sequences showed only minor 

variations in the quality of the alignments generated.  POA and AAE algorithms 

performed the best overall, producing alignments that were of minimal length, with 

good p-distance and a high SPS and W-SPS score.   
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11. Appendices 
 

A. Substitution Matrices 
 
Kimura 2-parameter 
 

A T C G 
A - � � � 
T � - � � 
C � � - � 
G � � � - 
 
Tajima-Nei 
 
 A T C G 
A - �GT �GC �GG 
T �GA - �GC �GG 
C �GA �GT - �GG 
G �GA �GT �GC - 

 
where GA, GT, GC, GG are the respective frequencies of 
A,T,C and G respectively. 
 
Tamura 3-Parameter 
 
 A  T  C  G 
A -  �(1-�) ��  �� 
T �(1-�) -  ��  �� 
C �(1-�) �(1-�) -  �� 
G �(1-�) �(1-�) ��  - 
 
Tamura-Nei 
 
 A T C G 
A - �GT �GC �1GG 
T �GA - �2GC �GG 
C �GA �2GT - �GG 
G �1GA �GT �GC - 
 
 
clustalW1.6 substitution matrix 
 
     A    C    G    T    -    N 

A    1    0    0    0    0    0 

C    0    1    0    0    0    0 

G    0    0    1    0    0    0 

T    0    0    0    1    0    0 
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-    0    0    0    0    0    0 

N    0    0    0    0    0    0 

 

-15 -6.6 

 

IUB 

 
     A    C    G    T    -    N 

A    1.9  0    0    0    0    1.9 

C    0    1.9  0    0    0    1.9 

G    0    0    1.9  0    0    1.9 

T    0    0    0    1.9  0    1.9 

-    0    0    0    0    0    0 

N    1.9  1.9  1.9  1.9  0    1.9 

 

-15 -6.6 

 

Nucmatrix 

 

     A    C    G    T    -    N 

A   91 -114  -31 -123    0  -43 

C -114  100 -125  -31    0  -43 

G  -31 -125  100 -114    0  -43 

T -123  -31 -114   91    0  -43 

-    0    0    0    0    0    0 

N  -43  -43  -43  -43    0  -43 

 

-750 -25 

 

Blosum80 

 
#  Blosum80 

#  Matrix made by matblas from blosum80.iij 

#  * column uses minimum score 

#  BLOSUM Clustered Scoring Matrix in 1/3 Bit Units 

#  Blocks Database = /data/blocks_5.0/blocks.dat 

#  Cluster Percentage: >= 80 
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#  Entropy =   0.9868, Expected =  -0.7442 

GAP-PENALTIES=12 6 6 

   A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X  ?  a  g  t  c  u  ]  n 

A  7 -3 -3 -3 -1 -2 -2  0 -3 -3 -3 -1 -2 -4 -1  2  0 -5 -4 -1 -3 -2 -1 -9 -9 -9 -9 -9 -9 -9 -9 

R -3  9 -1 -3 -6  1 -1 -4  0 -5 -4  3 -3 -5 -3 -2 -2 -5 -4 -4 -2  0 -2 -9 -9 -9 -9 -9 -9 -9 -9 

N -3 -1  9  2 -5  0 -1 -1  1 -6 -6  0 -4 -6 -4  1  0 -7 -4 -5  5 -1 -2 -9 -9 -9 -9 -9 -9 -9 -9 

D -3 -3  2 10 -7 -1  2 -3 -2 -7 -7 -2 -6 -6 -3 -1 -2 -8 -6 -6  6  1 -3 -9 -9 -9 -9 -9 -9 -9 -9 

C -1 -6 -5 -7 13 -5 -7 -6 -7 -2 -3 -6 -3 -4 -6 -2 -2 -5 -5 -2 -6 -7 -4 -9 -9 -9 -9 -9 -9 -9 -9 

Q -2  1  0 -1 -5  9  3 -4  1 -5 -4  2 -1 -5 -3 -1 -1 -4 -3 -4 -1  5 -2 -9 -9 -9 -9 -9 -9 -9 -9 

E -2 -1 -1  2 -7  3  8 -4  0 -6 -6  1 -4 -6 -2 -1 -2 -6 -5 -4  1  6 -2 -9 -9 -9 -9 -9 -9 -9 -9 

G  0 -4 -1 -3 -6 -4 -4  9 -4 -7 -7 -3 -5 -6 -5 -1 -3 -6 -6 -6 -2 -4 -3 -9 -9 -9 -9 -9 -9 -9 -9 

H -3  0  1 -2 -7  1  0 -4 12 -6 -5 -1 -4 -2 -4 -2 -3 -4  3 -5 -1  0 -2 -9 -9 -9 -9 -9 -9 -9 -9 

I -3 -5 -6 -7 -2 -5 -6 -7 -6  7  2 -5  2 -1 -5 -4 -2 -5 -3  4 -6 -6 -2 -9 -9 -9 -9 -9 -9 -9 -9 

L -3 -4 -6 -7 -3 -4 -6 -7 -5  2  6 -4  3  0 -5 -4 -3 -4 -2  1 -7 -5 -2 -9 -9 -9 -9 -9 -9 -9 -9 

K -1  3  0 -2 -6  2  1 -3 -1 -5 -4  8 -3 -5 -2 -1 -1 -6 -4 -4 -1  1 -2 -9 -9 -9 -9 -9 -9 -9 -9 

M -2 -3 -4 -6 -3 -1 -4 -5 -4  2  3 -3  9  0 -4 -3 -1 -3 -3  1 -5 -3 -2 -9 -9 -9 -9 -9 -9 -9 -9 

F -4 -5 -6 -6 -4 -5 -6 -6 -2 -1  0 -5  0 10 -6 -4 -4  0  4 -2 -6 -6 -3 -9 -9 -9 -9 -9 -9 -9 -9 

P -1 -3 -4 -3 -6 -3 -2 -5 -4 -5 -5 -2 -4 -6 12 -2 -3 -7 -6 -4 -4 -2 -3 -9 -9 -9 -9 -9 -9 -9 -9 

S  2 -2  1 -1 -2 -1 -1 -1 -2 -4 -4 -1 -3 -4 -2  7  2 -6 -3 -3  0 -1 -1 -9 -9 -9 -9 -9 -9 -9 -9 

T  0 -2  0 -2 -2 -1 -2 -3 -3 -2 -3 -1 -1 -4 -3  2  8 -5 -3  0 -1 -2 -1 -9 -9 -9 -9 -9 -9 -9 -9 

W -5 -5 -7 -8 -5 -4 -6 -6 -4 -5 -4 -6 -3  0 -7 -6 -5 16  3 -5 -8 -5 -5 -9 -9 -9 -9 -9 -9 -9 -9 

Y -4 -4 -4 -6 -5 -3 -5 -6  3 -3 -2 -4 -3  4 -6 -3 -3  3 11 -3 -5 -4 -3 -9 -9 -9 -9 -9 -9 -9 -9 

V -1 -4 -5 -6 -2 -4 -4 -6 -5  4  1 -4  1 -2 -4 -3  0 -5 -3  7 -6 -4 -2 -9 -9 -9 -9 -9 -9 -9 -9 

B -3 -2  5  6 -6 -1  1 -2 -1 -6 -7 -1 -5 -6 -4  0 -1 -8 -5 -6  6  0 -3 -9 -9 -9 -9 -9 -9 -9 -9 

Z -2  0 -1  1 -7  5  6 -4  0 -6 -5  1 -3 -6 -2 -1 -2 -5 -4 -4  0  6 -1 -9 -9 -9 -9 -9 -9 -9 -9 

X -1 -2 -2 -3 -4 -2 -2 -3 -2 -2 -2 -2 -2 -3 -3 -1 -1 -5 -3 -2 -3 -1 -2 -9 -9 -9 -9 -9 -9 -9 -9 

? -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 

a -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9  4 -2 -2 -2 -2 -9  0 

g -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -2  4 -2 -2 -2 -9  0 

t -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -2 -2  4 -2  4 -9  0 

c -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -2 -2 -2  4 -2 -9  0 

u -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -2 -2  4 -2  4 -9  0 

] -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 

n -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9  0  0  0  0  0 -9  0 
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B. Multiple Sequence Alignments 
 
See attached CD 
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