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Abstract

Abstract

The application of approximate string matching and alignment algorithms to either
DNA or amino acid (protein) sequences is important for determining conserved
regions, functional sites and to allow for multiple sequence alignments from which

an evolutionary (phylogenic) tree may be inferred.

Global sequence alignment algorithms attempt to maximise the alignment score by
placing gaps (which are seen as insertion/deletion evolutionary events) in either
sequence so as to maximise the number of matching characters and minimise
mismatches and gaps. The extension of traditional dynamic programming
algorithms for aligning two sequences to aligning N sequences leads to a
polynomial increase in the space and time complexity. Consequently many
heuristic multiple sequence alignment algorithms, and improvements in the
representation of a multiple sequence alignment, have been developed. This
honours project has focussed on multiple sequence alignment algorithms, their
processing and space requirements and the suitability of the alignments of samples
of chloroplast DNA to further phylogenic analysis. Since the samples being used in
the analysis are hypervariable, this research has also looked at algorithms capable of
handling inversions in the DNA sequences (where a section of DNA has undergone

the mutation of reversing)
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1. Introduction

1. Introduction

In recent years there has been an exponential increase in the amount of biological
data being collected worldwide (see section 5.1). This wealth of data and the
complexity of biological processes has nurtured a growing field of study in
bioinformatics. Bioinformatics uses mathematical and informational techniques to
solve biological problems, typically through computer programs or mathematical
models. This research will focus on multiple sequence alignment techniques and

their subsequent applications in inferring an evolutionary history (or phylogeny).

1.1 Biological Concepts

The cell is the basic structure of life and performs essential functions such as
respiration, consuming nutrients and expelling metabolic waste. Within cells are
DNA (deoxyribonucleic acid) molecules that ‘encode’ all the information necessary
to produce the proteins essential to all cellular processes. It is for this reason that
DNA is considered the ‘blue-print’ of life; and is recognised as distinguishing

whether two living beings are biologically similar or distinct (Junior 2003).

The double helix structure of DNA was discovered by Crick and Watson in 1953.
DNA consists of a double chain of simpler molecules called nucleotides. The
nucleotides that comprise a strand of the double helix have a nitrogen base that can
be of four types: adenine (A), cytosine (C), guanine (G) and thymine (T). These
bases are the molecules that tie the double helix together. Each nucleotide consists
of a sugar (eg deoxyribose in DNA), a phosphate and a base. The two strands
comprising the double helix are complementary in the sense that adenine always
bonds to thymine and cytosine always bonds to guanine. As such it is sufficient to
know one strand to be able to deduce the other. The bonding between nucleotides

form base pairs (bp), which is commonly used to specify DNA length.

As detailed by D’ Antonio (D'Antonio 2003), proteins and nucleic acids are the main
components of the biochemical processes of life. Proteins are molecules that
determine both the shape and structure of a living cell as well as achieving the vital

cellular functions such as respiration etc. A protein is a sequence comprised of a
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combination of 20 simpler molecules called amino acids. A sequence of three
nucleotides (called a codon) code for a particular amino acid (see table 1), and the
contiguous sequence of nucleotides that code for a particular protein is called a
gene. In this sense a protein may be viewed as either a sequence of amino acids or
equivalently a transcribed sequence of nucleotides that code for the specific amino
acid sequence. The relationship between codons and amino acids is called the
genetic code. Included in the genetic code are three special ‘STOP’ entries that

indicate the end of a gene.

First Second position Third
position G A C T position
G Gly Glu Ala Val G

G Gly Glu Ala Val A

G Gly Asp Ala Val C

G Gly Asp Ala Val T

A Arg Lys Thr Met G

A Arg Lys Thr Ile A

A Ser Asn Thr Ile C

A Ser Asn Thr Ile T

C Arg GIn Pro Leu G

C Arg GIn Pro Leu A

C Arg His Pro Leu C

C Arg His Pro Leu T

T Trp STOP Ser Leu G

T STOP STOP Ser Leu A

T Cys Tyr Ser Phe C

T Cys Tyr Ser Phe T

Table 1 Table of codons and their transcribed amino acid

Living organisms are made up of two types of cells prokaryote and eukaryote.
Prokaryotes (eg bacteria) lack organelles (a structure with a specialised function)
whilst most organisms including humans and plants are comprised of eukaryotic
cells. “A eukaryotic cell has a nucleus, which is separated from the rest of the cell
by a membrane. The nucleus contains chromosomes, which are the carriers of the
genetic material- DNA. There are internal membrane enclosed compartments within
eukaryotic cells, called organelles...which are specialised for particular biological

processes.” (Lopez)

Suspended in the cytoplasm of plant cells are plastids. These include amyloplast

(used for starch storage), chromoplast (for pigment synthesis and storage),
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chloroplasts (for photosynthesis) and etioplasts (chloroplasts which have not been

exposed to light).

1.2 Biological Sequences

DNA and protein sequences can be seen as long text strings over restricted
alphabets. In the case of DNA there are four possible bases A, C, T and G that
represent the alphabet, whilst amino acid sequences have an alphabet of 20

characters.

The comparison of two or more biological sequences can serve a number of
purposes. Through the theory of evolution it is widely understood that gene
sequences may have evolved from a common ancestral sequence. It is therefore of
interest to study the evolutionary history of mutations (insertions and deltions of
DNA as well as rearrangement mutations such as inversions and translocations) and
other changes. The study of biological sequences can also be studied to locate
regions of commonality, which may correspond to regions of similar structure or

function.

The analysis of two or more sequences often occurs through the application of a
sequence alignment algorithm and the measure of similarity that results. In aligning
two or more sequences there are typically four possible operations that can be
conducted on either sequence: insertion, deletion, substitution or transposition. In
biology an insertion in one sequence can alternatively be seen as a deletion from the
other. For this reason insertions or deletions are commonly referred to as indels.
There are also a number of rearrangement events/mutations that can occur on
biological sequences such as inversions (whereby a subsegment of DNA changes
orientation), duplications (where a copy of a subsegment is inserted into the
sequence), translocations (where a subsegment is removed and inserted in a

different location) or a combination of the above.

When analysing nucleotide sequences single nucleotide polymorphisms (SNP’s) are
naturally occurring operations on nucleotides and are an important considerations in

constructing realistic sequence alignment algorithms.
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“They [SNP’s] are most commonly changes from one base to
another - transitions and transversions - but single-base insertions
and deletions (“indels”) are also SNP’s...Transitions change a
purine to a purine or a pyrimidine to a pyrimidine — A to G or C to
T and vice versa. Transversions change a purine to a pyrimidine
and vice versa— A or Gto Cor T; Cor T to A or G. Even though
there are twice as many possible transversions as transitions,
transitions tend to be at least equal to transversions in frequency,

and often more prevalent.” (Gibson & Muse 2002)

1.3 Chloroplast DNA

Chloroplast DNA (cpDNA) is a coding region within plant cells, with many
chloroplast DNA genes encoding proteins that are involved in photosynthesis.
Depending on the species, chloroplast DNA has a size ranging from 110 000 bp to
160 000 bp (Blake). Samples of cpDNA have been useful in studies that take the
geographic distribution of species into account when inferring an evolutionary
history since cpDNA variation is correlated more with geographic distribution than
with morphological species (Freeman et al. 2001). Chloroplast DNA is useful in
studies because it is inherited maternally and is considered ‘“a single, non-

recombining unit of inheritance.” (Schaal et al. 1998)

1.4 Sequence Alignment

Sequence alignment and specifically multiple sequence alignment (MSA) is of
fundamental importance within bioinformatics. By analysing the similarities and
differences of either nucleotide or amino acid sequences it is possible to infer
structural, functional or evolutionary relationships between the sequences being

studied (Baxevanis & Ouellette 1998).

The problem of aligning two sequences can be described as follows. Given two
sequences of characters and a scoring system that ascribes scores to two matching

characters, two mismatching characters and penalties for gaps, the aim of the
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sequence alignment problem is to produce a pairing of characters from one
sequence with the second sequence so that the total score is optimal. In pairing
characters, gaps can be inserted at any position in the sequences; however the order
of characters in each sequence must be preserved. A pairwise alignment is an
alignment of two sequences and if there are more than two sequences the problem is

called multiple sequence alignment (MSA).

In aligning sequences there are two types of alignment: global and local. Global
alignments attempt to align sequences over their entire length, whilst local
alignments construct the best alignment of segments of the sequences that exhibit a
high density of matches, ignoring the remaining regions of the sequences. Table 2

below shows examples of global and local alignments.

Global Alignment Local Alignment
ACTGATTA ACTGATTA
R LTI
ACT--TTA ——TGAT——
Table 2 Global and local alignment comparison

Multiple sequence alignment algorithms are global however a number use local

alignment algorithms to anchor the global alignment.

As detailed in Bioinformatics (Baxevanis & Ouellette 1998, pp. 145-71) when
analysing two or more sequences the similarity between these sequences is an
observable quantity (for example a percentage identity score). The similarity score
or scores may then be used to infer homology. Based on the similarity of two or
more sequences it may be concluded that the sequences share a common

evolutionary history and therefore are homologous.
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2. Sequence Alignment

2.1 Introduction

Approximate string matching has been an important tool in computational biology
since small variations within DNA or protein sequences are common. Biologists
often require searching the online databases with particular sequences so as to
detect homologous sequences in other species. These searches allow biologist to
analyse the similarities and differences of either nucleotide or amino acid sequences
to aid in inferring structural, functional and/or evolutionary relationships between
the sequences (Baxevanis & Ouellette 1998). It is also necessary to align sequences

in the first stage of the process of creating phylogenic trees.

There is no such thing as a single best alignment with biological sequences since
optimality always depends upon the assumptions made in the alignment algorithm
such as the penalty ascribed to gaps or particular substitutions as well as the
mutational events the algorithm is capable of handling. These decisions must be
carefully considered according to the observed variations in the DNA or protein
samples being considered (Baxevanis & Ouellette 1998). Furthermore, most
sequence comparison methods use sequence alignment algorithms that inherently
“assumes conservation of contiguity between homologous segments” (Vinga &
Almeida 2003). This assumption is at odds with genetic recombination such as
translocations and inversions.  Stochastic modeling of sequences using hidden
Markov models (Muckstein, Hofacker & Stadler 2002) and recently alignment-free
sequence comparison methods (Vinga & Almeida 2003) are new techniques to

overcome this.

2.2 Dot Plots

Dot Plots are an effective visual representation of the similarities between two
sequences. A Dot Plot is a 2-dimensional image whereby each axis represents one
of the two sequences being compared. A small window size is set, along with a rule
that determines when two sequence windows are similar. When one window in one
sequence is similar under the rule to another window from the other sequence, a dot

or small diagonal line is drawn. This gives an overall representation of the
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similarity globally and locally of the two sequences. That is global similarity is
represented by a diagonal line from the top left to the bottom right of the dot-plot,
whilst local similarity is shown by smaller diagonal lines within the dot-plot

(Maizel & Lenk 1981). Dot plots of the data set examined are shown in section 7.1.

2.3 Sequence Alignment Techniques

Most formulations of sequence alignment consist of an objective function which
assigns a score to each possible alignment of the sequences. The computational
problem is to find an alignment which either optimizes the objective function
through heuristic techniques, or guarantees an optimal score such as through a

dynamic programming technique.

2.3.1 Dynamic Programming

Dynamic programming algorithms were initially developed to calculate the minimal
edit distance between two sequences (Needleman & Wunsch 1970; Sellers 1974).
The first dynamic programming algorithm to compute the edit distance and search
for a pattern sequence within a text was developed by Sellers in 1980 (Sellers
1980). Many variations have been rediscovered and both theoretical and practical
improvements have since been made (Chang & Lawler 1994; Chang & Marr 1994;
Galil & Park 1990; Ukkonen 1985). These improvements have yielded an average
case O( (kn)/No) and worst case O(kn) algorithms (Navarro 2001), where o is the

size of the alphabet being considered and 7 is the size of the largest sequence.

Dynamic programming algorithms are particularly flexible in handling different
distance functions, although they are not the most efficient algorithms in general.
Dynamic programming routines guarantee the mathematically optimal alignment,
and can easily be generalised to optimally align N sequences, however they process
in O(LY) time where L is the length of the longest sequence and hence are

unsuitable for any reasonable number of sequences.

Dynamic programming is a method of constructing a solution gradually by using

recurrences. In calculating the minimum edit distance between two sequences A
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and B, we first introduce the notation D(i,j) to represent the edit distance between
the first i characters of A and the first j characters of B. The minimal edit distance
of A and B (as defined in section 3.1) is D(n,m) and is calculated by first computing
D(i,j) where i<n and j<m. This is achieved through the construction of a dynamic

programming matrix and by a simple recurrence (Gusfield 1999).

The edit-distance metric scores a 1 for each mismatch or inserted gap and a O for a
match. To calculate the optimal alignment of A and B (using the simple edit-
distance metric) a matrix Dg_, ., 1s first constructed, where each element D;;
represents D(i,j) and D, ,, represents the minimum edit distance between A and B.
The matrix is firstly initialised such that D; , = i and Dy, ; = j since this represents
the edit distance between strings of length i or j respectively and the empty string
which is equivalent to i/j deletions from the non-empty string. Then all the matrix

values are calculated according to the formula:

Di,j= min(Di_J 1t d(Al y BJ) s Di.],j +1 s Dl',j_] +1) where d(A,‘, BJ) is 1if A,?ﬁ Bj

and O otherwise.

To find the optimal global alignment requires a traceback through the matrix, and to
achieve this it is necessary to know the path by which each new value in the matrix
was calculated. That is, in finding D; ; , we also store a pointer to cell D, ;if D;.; ;
+1 was minimal, and/or a pointer to cell D; ;; if D; ;; +1 was minimal and/or a
pointer to cell D;; j; if Di;  j.; + d(A; ,Bj) was minimal. By storing pointers
indicating the direction from which the minimal value(s) were found an optimal

alignment can simply be found through following any path from D, ,,to Dy .

D(ij) |0 1 (A) 2(G) 3(A) 4 (P) 5(E)
0 0 < 1 « 2 < 3 « 4 <5
1(G) ™1 N1 RN 1 « 2 « 3 < 14
2 (R) T2 TN 2 TN 2 K2 N3 &K 4
3 (A) T3 N 2 TR 3 K2 eR3 R 4
4 (P) ™4 T3 <1 4 T3 N2 N 4
5(E) T5 T4 N4 T4 T3 N2
Figure 1 Dynamic programming matrix example
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In the above example (figure 1) the edit distance between “GRAPE” and “AGAPE”
is found to be two and to find the optimal alignment a traversal back through the
matrix following the direction of the pointers. When cell (2,2) is reached a choice
between two optimal alignments must be made (either a substitution of G to R or a
deletion of “R” from “GRAPE”. The two possible global alignments of the two

sequences is shown below, both have an edit distance of 2:

Unaligned Aligned
AGAPE AG-APE AGAPE
GRAPE —GRAPE GRAPE

The above method can be easily altered to find localised regions of similarity by
allowing for sequences that match the pattern to begin anywhere within the text. A
locally matching region is found by selecting those areas within the matrix where
the score is above some similarity threshold. The basic routine outlined above can
also be easily extended to handle various other distance functions (include affine-

gap penalties where the penalty ascribed to x insertion or deletions is given by a ¥ +

Ax where 7 is the gap-initiation cost and A is the gap-extension cost).

2.3.2 Anchoring

Anchoring methods make use of a local alignment algorithm to first find regions of
high similarity within the sequences, and then solve the problem of finding the best
chain of the local alignments around which a global alignment is fixed. A local
alignment can be represented by a series of diagonal pointers in the dynamic
programming matrix. To chain two local alignments we require that a monotonic
conservation map can be created. That is, if local alignment A is defined by (x4,
v14) and (x24, y24) and local alignment B is defined by co-ordinates (x;s, y;5) and
(x2, y2) we require that x,4 < xpp and y»4 < yzp. A typical approach used by
anchoring algorithms are to select the optimal chain of local alignments and then to

use a global alignment approach in the areas between each local alignment.
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There are a number of global pair-wise alignment algorithms which chain together
regions of high similarity such as CHAOS, BLAST and LAGAN, as well as

multiple sequence alignment algorithms DiAlign and Mavid.

2.4 Sequence Alignment Algorithms

2.4.1 NEEDLEMAN-WUNSCH

The Needleman-Wunsch (NW) algorithm (Needleman & Wunsch 1970) was the
first algorithm to determine an optimal global alignment of two sequences. The
algorithm developed a dynamic programming approach to calculating the

mathematically optimal alignment over all residues of the sequences.

The original method is rarely used due to its cubic runtime (Gusfield 1999, p. 234),
however through numerous improvements the run time has been improved (see

section 2.3.1).

2.4.2 CHAOS (Chain of Scores)

The CHAOS algorithm (Brudno et al. 2003) is a heuristic local alignment algorithm
that builds a global alignment using a set of local alignments called anchor points.
CHAOS can be used as a stand-alone local sequence alignment program or as a pre-

processing step for a global alignment algorithm (eg LAGAN, SLAGAN).

The algorithm works by chaining seeds — a pair of words of length k that has at least
n identical characters. Two seeds, s; and s, can be linked together if: the indices of
s; are higher than those of s, in both sequences and the two seeds are ‘near’ to each
other. Two seeds satisfy this second condition if they are within a region defined by

a gap score and distance cut-off, as illustrated in figure 2.

The seeds are located using a variation of the Aho-Corasick algorithm (Aho &
Corasick 1975) which uses a variation on the trie data structure, the threaded-trie
(T-trie). The trie is a tree like data structure that stores all the k-mers of one

sequence, with one node for each common prefix. The T-trie differs in that nodes

10
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representing the string w;..w, also store back-pointers to the node containing the

string ws..w).

The algorithm begins by inserting all of the k-mers of one sequence (database
sequence) into the T-trie. The root of the T-trie is made the current node, and for
every letter of the other (query) sequence:

1. If the current node has a child node corresponding to the letter under
consideration this node is made the current node and any seeds stored in it
are returned.

2. Otherwise make the node pointed to by the back-pointer the current node

and return to step 1.

To keep a track of the available seeds to chain to, a probabilistic data structure
called a skip list is used. A distance, D, specifies the maximal distance for which
two seeds must be under to be chained together (see figure 2). Any seeds
generated whilst examining the last D base pairs of the query sequence are stored
in the skip-list. The seeds are ordered by the difference of its indices in the two
sequences (diagonal number). For each seed s found at the current location, its
diagonal number is found and a search of the skip-list is made to find any seeds in
the skip-list whose diagonal number is within the allowable gap cut-off. This finds
all possible previous seeds that s can be chained to, and the highest scoring chain is

chosen.

11



2. Sequence Alignment

2x gap distance seed

cutoff cutoff
/ guery

n u
- %
LY

J

-.7,.:;------.

database

v / ' /

Search location Range of
box in query search
Figure 2 CHAOS illustration from (Brudno et al. 2003)

2.4.3 LAGAN

Limited Area Global Alignment of Nucleotides — Lagan — is a fast heuristic
pairwise alignment algorithm developed by Michael Brudno (Brudno et al. 2003).
The algorithm first uses the CHAOS algorithm to find the set of all local
alignments. These alignments are then weighted and the optimal chain (based upon
the longest increasing subsequence algorithm) is chosen, with each local alignment
in this chain an anchor to the global alignment. LAGAN then calls CHAOS
recursively between two anchors when they are more than a threshold apart to
overcome sparse regions. A Needleman-Wunsch like global alignment algorithm is
then called in the areas between two anchors, and in a restricted area surrounding

the anchors (ie. those cells within a distance of r from the anchor).

LAGAN uses memory proportional to the largest area between two local alignments

plus the memory needed to hold the alignment (Brudno et al. 2004).

12
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2.4.4 SLAGAN

Shuffle-Lagan (SLAGAN) is an extension of the LAGAN algorithm to handle
rearrangement mutations (such as inversions or translocations) as well as indels.
The algorithm relaxes the restriction that both indices from two local alignments
must be strictly increasing in order to chain the local alignments so that only one of
the indices must be strictly increasing. This relaxation allows local alignments that
align a region of one sequence with a region in the other sequence whose
orientation is reversed (ie. an inversion) so long as order is preserved in at least one

of the sequences.

13
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3. Multiple Sequence Alignment

3.1 Introduction

All MSA algorithms require an objective function to determine the relative quality
of each possible multiple sequence alignment. The sum-of-pairs (SP) objective
function scores a MSA by the sum of the induced pair-wise alignments. For

example, considering the following simple MSA:

A: ACT-GGT
B: -CTGGGT
C: CCTGG-T

This alignment induces the following pair-wise alignments

A: ACT-GGT
B: -CTGGGT
A: ACT-GGT

CCTGG-T
B: -CTGGGT
C: CCTGG-T

The sum of pairs objective function then scores the MSA M as S(M) = Z e<tS (k,0)

where s(k,[) is the pair-wise score of sequences k and I from MSA M. If a guide
tree is known the weighted sum of pairs may be used to down-weight induced

alignments which are less related than those closely related.

Multiple sequence alignment has been shown to be an NP-complete problem using
the sum of pairs objective function (Bonizzoni & Vedova 2001; Wang, L. & Jiang
1994). All the multiple sequence alignment algorithms that are practical for
realistic data sets and reflect real-world models of evolution are heuristic (Vision &

McLysaght 2004), and as such they do not guarantee an optimal alignment.
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3. Multiple Sequence Alignment

Multiple sequence alignment (MSA) algorithms can be classified into three classes:
iterative, progressive and exact. The most widely used heuristic algorithms are
based on the progressive alignment of sequences to create a multiple sequence
alignment (Vision & McLysaght 2004). Typically however, expert knowledge is
needed to review and for manual editing of a MSA to produce a ‘good’ alignment
(Baxevanis & Ouellette 1998, p. 173; Thompson, J., Higgins & Gibson 1994).

A list of MSA applications is provided in section 5.2.2

3.2 Concepts

Progressive alignment methods are the most commonly used and have the
advantage of speed and simplicity (Notredame 2002). Progressive alignment
successively aligns pairs of sequences using pairwise alignment algorithms (such as
Needleman-Wunsch etc). Progressive alignment algorithms differ in several key
ways: the way they choose the order in which to do the alignment, if they involve
the alignment of a single sequence to a single growing alignment or if subfamilies
are built up leading to alignments of alignments, and the method of aligning and
scoring sequences or alignments against existing alignments. The most important
heuristic used in progressive alignment algorithms is to align the most similar
sequences first (those with the smallest edit distance). Progressive sequence
alignment algorithms are sensitive to the order of the pairwise alignments which is
determined solely by alignments of only two sequences at a time (Morgenstern,
Dress & Wener 1996). This has been addressed recently by using a travelling

salesman approach to determine the order of alignments (Chantal & Gaston 1999).

Feng and Doolittle (1996) developed the key idea that the strings with minimal edit
distance are most likely to be from species that have most recently diverged, and
therefore these strings provide the most ‘reliable’ information contained in the
multiple sequences. The method of Feng and Doolittle preserves gaps within these
closely related sequences and progressively aligns sequences with greater edit

distances.
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3. Multiple Sequence Alignment

Iterative methods produce a MSA and then refine the alignment through stochastic
or deterministic iterations (or cycles). Hidden Markov Models, and other
statistically-based methods, have been used to attempt to associate a probability
value to an alignment, and to encapsulate some of the known evolutionary

information into the MSA.

3.3 Multiple Sequence Alignment Algorithms

3.3.1 Aligning Alignments Exactly

Kececioglu and Starret (Kececioglu & Starrett 2004) recently published the first
algorithm to align alignments exactly (AAE) using linear gap costs and under the
sum of pairs objective function. “Aligning Alignments is the problem of finding an
optimal alignment of the columns of two multiple sequence alignments under the
sum-of-pairs objective with linear gap-costs. The sum-of-pairs objective scores a
multiple alignment by the sum of the scores of the two-sequence alignments
induced on all pairs of sequences. With linear gap-costs a run of either x insertions
or deletions costs y + Ax where 7 is the gap-initiation cost and A is the gap-extension
cost.”’(Kececioglu & Starrett 2004) Although an NP-complete problem, the

algorithm was published with a number of speed-ups leading to a linear run time.

The algorithm is based upon a dynamic programming routine where each alignment
is treated as a sequence of columns. When aligning an alignment A of k rows and m
columns to an alignment B of / rows and n columns an m+1 by n+1 grid structured
graph is constructed. The graph is traversed in row-major order until the final cell
(m,n) has been calculated. Costs within the dynamic programming table are

calculated according to the cost of composing a column to the current alignment.

To calculate the number of gaps initiated over all the sequences by composing a
column to an alignment it is necessary to introduce the notion of a shape. A shape
is an ordered partition of the rows (of both alignments) which indicate the order in
which each rows final character finishes. For example the shape {(3)(0)(1 2)}
indicates that the alignment being considered has row 3 finishing first (followed by

gaps), then row 0, with the sequences in positions 1 and 2 having their final
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3. Multiple Sequence Alignment

character last. That is, row 3 underhangs rows 0,1 and 2, whilst row 0 overhangs
row 3 in the alignment. Each cell in the table can have a number of shapes and

corresponding scores for the optimal alignment ending in that shape.

The column to be added to the current alignment is determined through the position
in the table and the direction of the cell under consideration. If we let the set of
shapes at a particular entry (i, j) in the table be denoted by S(i,j). When at position
(i, j) in the dynamic programming table and considering shape s € S(i, j) the

calculation of the score at the adjacent cells is detailed below:

@ j+1) = The cost of composing a column consisting of gaps in alignment A
and characters from column j+/ in alignment B to the shape s.

(i+1,j) = The cost of composing a column of characters from column i+/ in
alignment A and gaps in alignment B to the shape s.

(i+1, j+1) = The cost of composing a column of characters from column i+/ in

alignment A and characters from column j+/ in alignment B to the shape s.

Using the following notation:

Al[i, j] = the character at row i and column j of alignment A

Alj] = columnj from alignment A

S(i,j) = the set of shapes at entry (i, j) in the dynamic programming table

C(i, j, s) = the cost of the alignment of prefixes A[1:i] and B[1./] that ends in shape
.

S(i,j)o ¢ = the set of shapes obtained by composing column c to the set of shapes
S@j) -

“To find an optimal alignment of A and B, the subproblem we solve is to determine
for a given shape s and indices 0 <= i <= m and 0 <= j <= n, the cost of an optimal
alignment of the prefixes A[1: i{] and B[1: j] that end in shape s.”(Kececioglu &
Starrett 2004)

Starting from cell (0,0) the shapes and scores contained in the table are calculated

using the following recurrences:
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3. Multiple Sequence Alignment

(L...k,k+1,...k+1)),i=0& j=0

S -1 jo(Ali]l,-)

U S(i, j—Do(=BLj]
US(@i—1,j—-1Do(A[il, Bl j]),otherwise

S@, j)=

To count the number of gaps initiated the following notation is introduced. For
rows p and ¢ in an alignment of shape s and column c:

e sPif, and only if, p overhangs ¢ in the alignment

e Pg,if, and only if, p underhangs g in the alignment

e c"if, and only if, p has a letter and ¢ has a gap in column ¢

e P, if, and only if, g has a letter and p has a gap in column ¢

Using the notation (a,b) to denote a column where a is either a column from
alignment A or a column of gaps(‘-‘) and b is either a column from alignment B or
a column of gaps. The total number of gaps initiated by composing a column (a,b)

onto an alignment that has shape s is:

gla,b,s)=> ((,(a,b)" & ,s")I("(a,b), & "s,))

pEA
qeB

where ~ denotes logical negation (NOT), Il denotes logical OR and the & denotes

logical AND. In the above summation a true value maps to 1 and false maps to 0.

The recurrences for C(i,j,s) is based on the fact that an optimal alignment of A[1:{]

and B[1;j] ending in shape s must have a final column ¢ and removing this column
one must be left with an optimal alignment ending in shape § such that §oc¢ = s.

SoforO<=i<=mand0<=j<=n
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C(, j,t)=min{ min
s€SG,j-1)
so(— B[ j D=t

min
se S, j-1)

.

so(Ali],B[ j])=t

Multiple Sequence Alignment

Ci-1,j,5)+

min
ssG-1)) |yg (Ali],—, s) + ?J|A[i]|

C@i,j-1Ls)+
Ye(=,BLjl, )+ MBI /]
Ci-1j-1s)+

¢eB

Y8(ALil. B[j1.5)+ D 6 (Al p.il. Blg.i])

Py

Where Icl is the number of characters in the column, and G(G’b) is the substitution

cost for a match/mismatch of a character a from alignment A with a character b

from alignment B.

To illustrate the basic principles of the algorithm consider the following example of

aligning two alignments of two sequences each:

Sequence number | Alignment A Sequence number | Alignment B
0 ATG 2 ACTG
1 ATG 3 -CTG

A dynamic programming table is constructed (table 3) starting with the ‘flat’ shape

of score 0. From this initial cell (0,0) the shapes and scores for cells (0,1), (1,0) and

(1,1) are calculated. The calculations then move onto cell (0,1) and for all shapes in

this cell the resulting shapes and scores for cells (0,2), (1,1) and (1,2) are calculated.

This process continues until all cells in the table have been filled.
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((1234)) = 0

((013)(2)) = -42

((01)(23))=-96

((01)(23))=-120

((01)(23))=-144

((23)(01)) =-84

((3)(012))=-28
(3)(2)(01)=-126
(B)(O01)(2))=-126

((0123))=-42
((23)(01)=-180
((01)(23))=-112

((0123))=-96
((23)(01))=-204
((01)(23))=-126

((0123))=-120
((23)(01))=-228
((01)(23))=-150

((23)(01))=-108

((3)(012))=-84
((3)(2)(01))=-82
(3)O1)(2))=-150

((0123))=-28
((23)(01))=-126
((01)(23))=-166

((0123))=-38
((23)(01))=-180
((01)(23))=-112

((0123))=-96
((23)(01))=-204
((01)(23))=-122

((23)(01))=-132

((3)(012))=-108
((3)(2)(01))=-106
((3)(01)(2)=-174

((0123))=-82
((23)(01))=-112
((01)(23))=-190

((0123))=-28
((23)(01))=-122
((01)(23))=-166

((0123))=-34
((23)(01))=-180
((01)(23))=-112

Table 3

Aligning Alignments example

The optimal alignment is then constructed through a traceback procedure similar to
that used in the NW dynamic programming algorithm. The shape with the highest
score at cell (m,n) is first selected (see shaded cell at position (3,4) ). The
corresponding shape ((0123)) indicates that characters from both alignment A and B
are in the final column of this alignment. This, in-turn, indicates that a substitution
column must have been composed to give this shape and score. Consequently a
move to cell (m-1, n-1) can be made (ie. back one column in each alignment to cell
(2,3) ). From cell (2,3) we consider all shapes in S(2,3) and determine the shape
which under composition of a substitution column (A[3],B[4]) gives a score of -34.
This calculation yields shape ((0123)) of score -38. This process continues until the
cell (0,1) is reached where the shape is ((013)(2)). This shape indicates that only
row 2 has a character in the final column and hence that gaps must have been

inserted in alignment A (rows 0 and 1). This brings us to the original cell (0,0).

By following the path through the table and using the direction and positions in the
table to determine the column of composition the optimal alignment is constructed

as shown below.

—-ATG
-ATG
ACTG
-CTG
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3. Multiple Sequence Alignment

The processing time and memory requirements are dependant upon the number of
shapes, which in turn is dependant upon the gap structure of each alignment.
Kececioglu and Starret developed two techniques (dominance pruning and bound
pruning) which reduce the number of shapes added to the dynamic programming
table. Bound pruning is very effective, with a large proportion of the table

containing empty shape lists (Kececioglu & Starrett 2004).

3.3.2 Partial Order Alignment

A directed acyclic graph (DAG) representation of aligned sequences using a partial
order graph has allowed for the development of an efficient alignment algorithm

called Partial Order Alignment (POA) (Lee, Grasso & Mark 2002).

During progressive multiple sequence alignment algorithms there is the problem of
incorrect scoring due to artifactual gap counts. When constructing a MSA through
aligning a sequence to the current MSA, the MSA is first reduced to a consensus
sequence or profile. This reduction results in a loss of information which inturn can

lead to incorrect gap costs.

Artifactual gap counts are a legacy of aligning a sequence(s) to the profile of an
alignment as illustrated in the simple example adapted from Lee et. al (Lee, Grasso

& Mark 2002) below:

Consider the sequences:

A) TGACTCGATATATCG
B) CAGTCCGATAAGTCGTATCG
C) CAGTCCGATAAGTCGTATCG

A possible global alignment of sequences A and B is shown below, with its
corresponding profile sequence (with sequence C shaded along its length):
Alignment 1:

————— TGACTCGATA--——-TATCG

CAGTC————- CGATAAGTCGTATCG

* A
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3. Multiple Sequence Alignment

profile 1:
CAGTCTGACTCGATAAGTCGTATCG

The problem of artifactual gap costs can be seen when examining the gaps in the
two shaded columns of the alignment, and the effect of adding sequence C to this
current alignment. Whilst the gap above the " is a true gap, the gap above the * is

an artefact of the alignment, as another equivalent alignment demonstrates:

Alignment 2:

TGACT——=—- CGATA—————- TATCG
————— CAGTCCGATAAGTCGTATCG
profile 2:
TGACTCAGTCCGATAAGTCGTATCG

If sequence C was aligned to alignment 1 there would be a 5 residue gap penalty,

however this does not occur in alignment 2.

The partial order alignment represents alignments 1 and 2 as the same partial order
graph. Sequence A and B are represented as a graph in a process shown below

adapted from Lee et. al (Lee, Grasso & Mark 2002):

a) The standard row-column representation of the sequence alignment
TGACT————-— CGATA————-— TATCG

————— CAGTCCGATAAGTCGTATCG

b) Each sequence is represented as a linear graph with each character a node and the
order preserved.

T-G—>A—->C>T->C>G—>A->T—>A->T—>A->T—>C—>G
C—->A—->G—>T-C—-C—-G—-A->T>A->A->G—>T->C->G->T-2A->T->C—-G
c)The nodes/characters from each sequence that align are fused to create a graph

structure as shown below
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3. Multiple Sequence Alignment

T—->G—>A—-C-T N

C—>G—>A—>T—>A\ >T—>A—->T—->C—-G

2 W
C—>A—->G—->T—-C A—-G—->T—-C—-G

The MSA using POA algorithm is essentially a progressive dynamic programming
algorithm. The algorithm uses a standard Needleman-Wunsch routine, however
instead of aligning a profile sequence to another sequence, the partial order
(alignment) is used. To cope with multiple sequences without going into an N
dimensional space each bifurcation in the graph structure becomes another dynamic
programming plane whose cells must be considered when tracing back through the

grid to determine the optimal alignment.

3.3.3 ClustalW

ClustalW (Thompson, J., Higgins & Gibson 1994) is a progressive multiple
sequence alignment algorithm that improves the sensitivity through selective
weighting of sequences and substitution scores. ClustalW performs a pairwise
alignment on all the sequences in order to construct a binary tree of their
evolutionary relationship. This is then used to build a MSA by aligning the most
recently diverged sequences first. ClustalW creates N/2 alignment profiles, which
are then aligned to each other resulting in N/4 profiles. This process is continued

until all the sequences have been aligned.

ClustalW has been widely used by biologists, as the algorithm was developed to try
and overcome local minimum problems and incorrect alignments through the choice
of alignment parameters. ClustalW dynamically varies the alignment parameters
according to the sequence order and residue position so that gap insertions are

penalised more heavily in highly conserved areas than in variable regions.

There are a number of factors influencing the changes in parameters (specifically
the gap opening penalty or GOP) made by ClustalW throughout the alignment

procedure. When a mismatch is scored the average cost is used as a scaling factor
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3. Multiple Sequence Alignment

in an attempt minimise the dependance on the choice of weight matrix. Closely
related sequences (based on the percentage identity score) use a higher GOP, with
less similar sequences having a linearly reducing GOP. Longer sequences increase
the alignment scores, so the GOP is logarithmically scaled based on the length of
the shorter sequence being aligned. These three factors alter the GOP so that for
sequences of length N and M:

GOP = {GOP+log[min(N,M) } *(average residue mismatch score)*(% identity

scaling factor)

The gap extension penalty - GEP, is modified according to the difference in lengths
of the two sequences. If there is a large difference in lengths of the two sequences,
then the GEP is increased to limit the number of long gaps in the shorter sequence.

So that:

GEP = GEP*[1.0+ llog(N/M)]

The GOP and GEP are also then altered throughout the alignment procedure
depending upon the position. If there is a gap at a position then the GOP and GEP

are lowered so that:

GOP = GOP*0.3*(number of sequences without a gap / no of sequences)
GEP = GEP*0.5

If the position being considered does not contain any gaps but a gap is within 8

positions then the GOP is increased so that:

GOP = GOP*{2 + [(8- distance from gap)*2]/8}

ClustalW also alters the GOP based on amino acid properties of the sequences. All

of these factors, and the speed of the algorithm have led to arguably the most
effective MSA algorithm for biologists today.
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3.3.4 DiAlign

DiAlign (Morgenstern 1999; Morgenstern, Dress & Wener 1996) is an anchor based
algorithm that works by aligning gap-free segments of variable lengths from both
sequences. The segments under comparison appear as a diagonal on a dot-plot, and

are the basis of the diagonal alignment — DiAlign algorithm.

To compute the best alignment, DiAlign finds the maximal scoring set of consistent
diagonals. Diagonals D; and D, are consistent diagonals if the positions (residues)
aligned to each other in D, precede those aligned in D,, or vice-versa (see section

2.3.2). To determine the significance of a diagonal the following formulae are used:

For a fixed diagonal D, of length / and containing m matches, with p the probability
of a point in the dot plot (ie. 0.25 for nucleic acids).

ram=3(4)p (1-p)”

i=m

Then using the negative logarithm, the weighting of D is defined as:

w(D) = {— In(P(l,m)), E(I,m) > T}

0, otherwise

A high scoring weight indicates that a random diagonal of length / is unlikely to
contain as many as m matches by chance. DiAlign scores highly for short segments
with a large number of matches or for longer segments with fewer matches, so long

as the segment is long enough.

For a set of diagonal D, D, D3 Dy the score is defined as:

k
score(i, j) := > w(D,). and
i=1

prec(i, j—1),if score(i, j)=score(i, j —1)
prec(i, j) := Dk = { prec(i —1, j),if score(i, j —1) < score(i, j) = score(i —1, j)

Dl_,j ,if  score(i, j —1),score(i—1, j) < score(i, j) = O-(Di,j)
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A consistent set of diagonals with a maximum score is a maximum alignment. The
maximum alignment of two sequences is then calculated using a dynamic
programming algorithm based upon maximising the score of the alignment of
prefixes of both sequences. This is achieved through the following definitions and
recurrences:

G (D) := the maximum sum of weights up to and including diagonal D (D must
have a positive weight).

T (D) := the diagonal preceding D.

score(i, j) := the score of the maximum alignment of A ;_; and By ;

So, © (D) = score (i-k-1, j-k-1) + w(D) and

T (D) = prec(i-k-1, j-k-1)

Now a recursive formulation of the score is given by:

score(, j) =max{score(i ,j-1) , score(i-1, j) , © (Dij) } , where D;; is any diagonal
ending at point (i, j) that satisfies © (D;j) = max{ G (D): D ends at point (i, j)}.

13

To generalise DiAlign to N sequences “...we try to select a consistent set of
diagonals with a maximal sum of weights. However, now diagonals originate from
all the 1/2N(N-1) possible pairwise sequence comparisons.”(Morgenstern, Dress &
Wener 1996). DiAlign sorts diagonals according to their weights, irrespective of
which sequence the diagonal originates from. The set of all diagonals from all the
maximal pairwise alignments is sorted by weights and the overlap score (favouring
diagonals that occur over multiple sequences), and diagonals are added individually
in order to the multiple alignment so long as the diagonal being considered is

consistent.

Recently CHAOS has been used to find anchor points that enables a speed-up of
DiAlign by 1-2 orders of magnitude (Brudno et al. 2003). DiAlign is advantagous
in that it can be applied to sequences that are both globally and locally related

sequences.
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3.3.5 Mavid

Mavid is a progressive global multiple alignment algorithm based upon the
alignment algorithm AVID (Bray, Dubchak & Pachter 2002) and using maximum
likelihood phylogenic techniques.

The sequences to be aligned are first aligned in a pairwise manner to produce a
guide tree. This guide tree is used to determine the order in which sequences are
aligned. The key difference in the MAVID algorithm to other progressive
alignment algorithms is that instead of aligning two alignments directly through a
consensus sequence, MAVID firstly infers ancestral sequences using standard
phylogenetic models and then uses the alignment of these ancestral sequences using

AVID to dictate the actual alignment.

AVID is a global alignment algorithm, that finds local alignments (matches) by
concatenating the two sequences in question and then solving the maximal repeated
substring problem using suffix trees. Maximal matches between two sequences are
subsequences (one from each sequence) whose neighbouring bases are mismatches.
AVID then uses a recursive approach to anchor and align the sequences based on
the set of maximal matches. The anchors are selected by scoring each match based
on its length and the alignment score (found through a variation of the Smith-
Waterman local alignment algorithm) of the neighbouring regions 10 bp on either
side of the match. The set of matches are then used to anchor the global alignment

(Bray, Dubchak & Pachter 2002).
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v

Figure 1 MAVID architecture overview. (A) Sequences are aligned upward along a guide tree and (B)
alignments of alignments are performed at internal nodes. To align two alignments (C), maximum
likelihood ancestor sequences are inferred from each of the separate alignments, and (D) the ancestor
sequences are aligned with MAVID. The resulting multiple alignment (E) (corresponding to a subset of
leaves of the tree) is then recorded at the internal node.

— /

Figure 3 MAVID MSA procedure from (Bray & Pachter 2004)
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4. Phylogenic Reconstruction

4. Phylogenic Reconstruction

‘This is a huge, complicated, and highly contentious field.
However, always remember that regardless of algorithm used,
parsimony, any distance method, maximum likelihood, or even
Bayesian techniques, all molecular sequence phylogenetic
inference programs make the absolute validity of your input
alignment their first and most critical assumption. The accuracy
of your alignment is the most important factor in inferring
reliable phylogenies; the results are utterly dependent on its

quality.’(Thompson, S. M. 2004, p. 11)

4.1 Introduction

Phylogeny is the field of biology that is concerned with identifying and
understanding the relationship between species based on ancestor/descendant
relationships.  The phylogeny of organisms is usually represented by an

evolutionary tree (or a cladogram).

Phylogeography is the study of the relationship between the phylogenic variations
within or between species and their geographic distribution. Chloroplast DNA is
particularly appropriate for phylogeographic studies since cpDNA does not

recombine and inheritance is mostly maternal (Freeman et al. 2001).

Phylogenetic analysis of DNA or amino acid sequences involves four steps:
sequence alignment, determination of the substitution model, tree building and tree

evaluation (Baxevanis & Ouellette 1998).

As detailed in Bioinformatics (Baxevanis & Ouellette 1998, pp. 189-230) the
alignment procedure is central to the resulting evolutionary tree constructed during
phyologenetic analysis . An alignment produces ‘sites’ -which are aligned base
positions- and these sites are, in effect, assumed to be genealogically homologous.
Therefore, the alignment procedure is inextricably linked to the phylogenetic

analysis.
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The tree building criteria has an effect upon the alignment and substitution models
applied. There are three tree building criteria used for calculating the phylogeny:

distance matrix, maximum parsimony (MP) and maximum likelihood (ML).

“Distance trees use pairwise divergence estimates of all sequences in
the data to determine tree topology and branch lengths. Maximum
parsimony finds the tree that explains with the fewest number of
discrete steps all the base differences in a multiple sequence
alignment. Maximum likelihood finds the topology and branch
lengths that have the highest probability of producing the observed
multiple sequence alignment.” (Baxevanis & Ouellette 1998, p. 191)

For even moderate numbers of sequences being analysed there is an exponentially
large number of possible trees for which the ‘best’ representation of the
evolutionary relationship must be selected. As a result the optimal phylogenic
tree(s) may only be found when examining generally fewer than 11 species. When
the number of sequences being analysed exceeds 11 but is less than approximately
20, branch-and-bound methods can be used to find optimal phylogenic trees. For
larger data sets most tree estimates are found using an uphill searching algorithm.
Uphill searching heuristics are employed in the common phylogenic software
packages PAUP (Swoffard 1998) and Phyllip (Felsenstein 1993) (Salter 2000).

4.2 Substitution Models

The first stage in deducing an evolutionary tree is the multiple sequence alignment
(section 3). During and after the alignment of the sequences in question a
substitution model is required to aid in estimating the divergence and hence
evolutionary relationship between each sequence. A substitution model is a square
matrix (4x4 in the case of nucleotide sequences) that reflects the ‘cost’ of
substituting one base for another, the diagonal entries represent the ‘cost’ of having
the same base in different sequences (which must be 0 for parsimonious methods).
Weighted parsimony is when such a substitution matrix is fixed prior to computing
a tree. In distance matrix and maximum likelihood tree building the costs are

calculated from instantaneous rate matrices whereby the costs are a relative rate
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between the different substitutions and the frequency of the target base. (Baxevanis
& Ouellette 1998, pp. 189-230)

There are numerous available substitution models as summarised in the table below

(further details of the substitution models can be seen in appendix A).

Model

Summary

Assumptions

Number of

Differences

Counts the number of sites at which two
sequences being compared are different.

Jukes-Cantor

Kimura-
2Parameter

Gives ML estimate of the number of substitutions
between two sequences.

Takes into account transitional and transversional
substation rates.

Equal
substitution
rates.
Nucleotide
frequencies are
equal and rates
of substitution
are invariant.

p-distance

The proportion of nucleotide sites at which two
sequences being compared are different. This
model makes no correction for multiple
substitutions or for rate biases (eg differences in
transitional / transversional rates).

Evolutionary
rate  amongst
sites  constant
and uniform
rate bias.

Tajima-Nei

When nucleotide frequencies differ from 0.25 the
Tajima-Nei distance can give better estimates of
number of substitutions through weighting the
substitution matrix based upon the observed
frequencies.

Equality of
substitution
rates among
sites and
between
transitional and
transversional

substitutions

Tamura-
3Parameter

Takes into account differences in transitional and
transversional rates and corrects for multiple hits

Equality of
substitution
rates amongst

sites

Tamura-Nei

Table 4

Corrects for multiple hits, takes into account
differences in substitution rates between
nucleotides and the inequality of nucleotide
frequencies. It also distinguishes between
transitional substitution rates between purines
(nucleotides A or G) and transversional rates
between pyrimidines (C or T).

Comparison of substitution models

Equality of
substitution
rates amongst

sites
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4.3 Tree Building

Many tree building methods have been developed, including: branch-and-bound,
branch swapping, star-decomposition, divide-and-conquer and stochastic search
methods (such as simulated annealing, genetic algorithms or Markov Chain Monte
Carlo methods). One of the most widespread tree building methods is a form of star
decomposition called neighbour-joining (Saitou & Nei 1987) which uses a distance
matrix criteria. This method has also been adapted for MP and ML criteria (Bruno,
Socci & Halpern 2000; Yang 1997).

For n species or sequences under consideration there is:

(2n-95)!
| 2n—3 (n=2)! possible unrooted trees, with an even greater number of possible
trees for rooted trees. The methods employed to infer relationships and degree of
divergence between sequences is beyond the scope of this study as it is a significant

area of research in itself.

4.4 Tree Evaluation

Tree evaluation methods include: skewness test (randomised trees), permutation
tests (randomised character data), resampling (bootstrapping, parametric
bootstrapping, jackknife) and likelihood ratio tests. (Baxevanis & Ouellette 1998,
pp- 213-7)

Felsenstein’s bootstrap test (Felsenstein 1985) is one of the most widely used
techniques to add reliability to an inferred phylogenic tree.  Following a tree
building algorithm (on m sequences of length n) from each sequence n nucleotides
are randomly selected (with replacement) giving a new set of sequences. A tree is
then reconstructed from this set of sequences using the same tree building method.
The topology of the new tree is compared to the original tree, so that for each
interior branch of the original tree that is different to the reconstructed tree the
sequences it partitions are given a score of O whilst all other interior branches are
given a score of 1. The process of reconstructing trees is repeated several hundred

times, with the percentage of times an interior branch gains a value of 1 determining
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the level of bootstrap support for that branch. As a general rule an interior branch is
considered “correct” if it receives a 95% or higher bootstrap value (Baxevanis &

Ouellette 1998, pp. 221-2).
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5. Bioinformatics Resources

“The computational biology community in general has been very generous with the
fruits of its labour, making freely accessible tools and specialized databases without
which elementary sequence analysis could not take place.” (Baxevanis & Ouellette
1998)

Bioinformatics is a recent and fast moving field. There is currently a myriad of
available software packages and online references. This chapter shall note some of
the most commonly used packages, languages and websites for those looking at

analysing DNA sequences.

5.1 Online Databases

The International Nucleotide Sequence Database Collaboration (INSDC) maintains
the major DNA sequence databases. INSDC is comprised of the DNA Data Bank
of Japan (DDBJ Homology Search System), the European Molecular Biology
Laboratory Nucleotide Sequence Database and the NCBI operated Genbank (see
table 5 below). These databases collaborate to share new submissions and as such
are synonymous although they do use different formats (Vision & McLysaght
2004).

Database URL

DDBJ www.ddbj.nig.ac.jp

EMBL www.ebi.ac.uk/embl/index.html

GenBank www.ncbi.nlm.nih.gov/Genbank/index.html
Table 5 Major DNA databases and locations

There also exists databases holding protein sequences such as the Protein
Information Resource (Wu et al. 2003) and Swiss-Prot, databases containing protein
structure such as the Protein DataBank (Berman et al. 2000) as well as the
Molecular Modeling DataBase at NCBI (Wang, Y. et al. 2002). The exponential
growth in entries within these databases has been a motivating factor for efficient

heuristic algorithms for sequence comparison.
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Figure 4 Growth of the nucleotide databases (number of nucleotides held)

from January 1995 to January 2004

5.2 Software

Coupled with the databases listed above are many freely available online tools for
searching the databases. One such collection of tools is ENTREZ which provides

an entry point for many of the searching tools and resources provided by NCBI

Many of the tools used in analysing DNA and protein sequences are freely available
and open source software. There are also programs available for conversion
between sequence formats, for multiple sequence analysis and for phylogenic
analysis (sections 5.2.1 and 5.2.2). A non-complete list of software available is

included below.

5.2.1 Multiple Sequence Alignment

A list of the many algorithms and programs available for multiple sequence

alignment problems are shown below:
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Program | Algorithm URL Reference
MSA Exact ftp://fastlink.nih.gov/pub/msa/ (Lipman, Altschul &
Kececioglu 1989)
DCA Exact http://bibiserve.techfak.uni- (Stoye, Moulton &
biefeld.de/dca Dress 1997)
OMA Iterative DCA | http://bibiserve.techfak.uni- (Reiner, Stoye & Will
biefeld.de/oma 2000)
ClustalW | Progressive ftp://ftp-igbmc.u-strasbg.fr/pub/clustalW | (Thompson, J., Higgins
& Gibson 1994)
MultAlin Progressive http://ww.toulouse.inra.fr/multalin.html (Corpet)
DiAlign Consistency- http://www.gsf.de/biodv/dialign.html (Morgenstern, Dress &
based Wener 1996)
ComAlign | Consistency- http://www.daimi.au.df/ocaprani (Bucka-Lassen,
based Caprani & Hein 1999)
T-Coffee Consistency- http://igs-server.cnrs-mrs.fr/~cnotred (Notredame, Holm &
based, Higgins 1998)
Progressive
IterAlign Iterative http://giotto.Stanford.edu/~lucianof/iterali | (Brocchieri & Karlin
gn.html 1998)
SAM Iterative/Stoch | rph@cse.ucsc.edu (Hughey &  Krogh
astic’cHMM 1996)
HMMER Iterative/Stoch | http://hmmer.wustl.edu/ (Eddy 1995)
astic/HMM
SAGA Iterative/Stoch | http://igs-server.cnrs-mrs.fr/~cnotred/ (Notredam & Higgins
astic/GA 1996)
POA Partial  order | http://www.bioinformatics.ucla.edu/poa (Lee, Grasso & Mark
alignment 2002)
GA Iterative/Stoch | czhang @ watnow.uwaterloo.ca (Zhang & Wong 1997)
astic/GA
Table 6 Multiple sequence alignment algorithms
5.2.2 Phylogenic Analysis

Some of the major phylogeny programs are shown below:

Application | Criteria | URL Operating System
PHYLIP MP & | http://evolution.genetics.washington.edu | Windows, Mac, Unix
ML /phylip.html
PAUP http://paup.csit.fsu.edu/ Mac, Unix, Dos,
Windows
HYPHY ML http://www.hyphy.org/ Mac, Windows, Unix
PAML ML http://abacus.gene.ucl.ac.uk/software/pa | Windows, Unix, Mac
ml.html OSX, Linux
Table 7 Phylogenic packages

5.3 Programming

There are currently many tools available to computer scientists and those with an
interest in bioinformatics to program tailored solutions to particular or generic

bioinformatics problems. The Open Bioinformatics Foundation is an organisation
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supporting open source programming in bioinformatics. The Open Bioinformatics
Foundation (OIBIF OPEN BIOINFORMATICS FOUNDATION) contains projects
in BioPerl, BioJava, BioPython, BioRuby, BioPipe, BioSQL / OBDA, Moby and
DAS.  These projects include freely available methods and scripts to handle

standard tasks such as file conversion and database searching amongst others.

There is also the R project for statistical computing (Ihaka & Gentleman 1996).
The bioconductor project is an open-source and open-development software project
for the analysis of genomic data making use of the R program (BioConductor; Ihaka
& Gentleman 1996).
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6.1 Aims

The J.a and an extended Jp o, region of cpDNA of eucalypts has been found to be
hypervariable (Freeman et al. 2001; Vaillancourt & Jackson 2000). The cpDNA
sequences from these regions have been used to investigate the evolution and
biogeography of eucalypts (Freeman et al. 2001; Whittock 2000). The high level of
variation within the Jpa. region of E. globulus has led to difficulties in creating an
unambiguous alignment of the sequences for phylogenetic analysis. As a
consequence sequences have been aligned by eye using Sequence Navigator
software (Karplus K & Hu 2001; Whittock 2000). The treatment of gaps in
constructing a multiple sequence alignment on such variable sequences is
problematic. For this reason an exact multiple sequence alignment algorithm was

implemented and compared with new and existing heuristic MSA algorithms.

The alignment generated by the biologist was used as a benchmark alignment to
compare the MSA generated with POA, clustalW, MAVID, DiAlign and AAE.
Descriptive features of these alignments were analysed along with other statistics
detailed in section 6.4. Phylogenic trees were then constructed from the alignments

and analysed for differences, and support (see section 6.5).

The analysis of cpDNA samples also aimed to identify inversions and other
rearrangement mutations within the data set and to determine if inversions (if any)

were having a detrimental effect upon the multiple sequence alignment.

The data set of cpDNA was provided by Simon Whittock from the school of Plant
Science. The analysis was conducted on the subgenus Symphyomyrtus data set
(which displayed a maximum sequence divergence of 5%), and more specifically on
the maidenaria subset which displayed a reduced sequence divergence of 3%

(Whittock 2000).
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6.2 Implementation

The raw data sequences obtained from plant science were of all samples of
Symphomytrus (71 species). The sequences were already aligned in the nexus file
format. This format is used by PAUP and other programs and aims to be an
extensible multiple sequence format. The Nexus file format contains a header block
with information regarding the number of species, the aligned length and
information on the types of sequences (DNA/Amino Acid) the gap character and the

character for any missing data.

A number of Perl scripts were written to parse out the individual sequences from
this file and remove all gaps so that the raw sequence data was available for
analysis. ~ This was achieved through Perls extensive regular expression
functionality. Perl scripts were also written to analyse the alignments generated by
SLAGAN and to parse out all alignments which contained inversions (see code

snippet below).

if ($gdata =~ m/\-/){

print logf "found an inversion in: $filea\_S$fileb \n";

@nums = ($gdata =~ m/ (\d+\.2\d*|\.\d+)/9g);

Sx1 = Snums[1];

Syl = $Snums|[2];

S$x2 = Snums[8];

Sy2 = S$nums[9];

print logf "* S$filea\_S$fileb - between: \($x1 , Syl ) \($x2 ,
$y2) ";

The Aligning Alignments Exactly (Kececioglu & Starrett 2004) algorithm was
developed in C++ based on the grid structure and recurrences detailed in section
3.31. The AAE program requires its input to be: sequence(s) file A, sequence(s)
file B, output filename, substitution matrix filename, “-dom” for dominance pruning
speedup. The AAE program is able to read in a substitution matrix in the following

format:
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A C G T - N
A 91 -114 -31 -123 0 -43
c -114 100 -125 =31 0 -43
G -31 -125 100 -114 0 -43
T -123 -31 -114 91 0 -43
- 0 0 0 0 0 0
N -43 -43 -43 -43 0 -43

=750 -25

In the above substitution matrix (nucmatrix), substitutions between different DNA
bases are prescribed different penalties, with matching DNA characters all scoring
highly (either 100 or 91), the numbers in the final line of the matrix represent the
gap open penalty (-750) and the gap extension penalty (-25). Most substitution
matrices are developed for amino acid substitutions; with the exception of the above
matrix as used in LAGAN (Brudno et al. 2003), the clustalW1.6 matrix and the IUB
matrix (see Appendix A).

The AAE algorithm was implemented using modified sequence and multi-sequence
objects developed by Brudno as a part of the LAGAN source code (licenced under
GPL). The algorithm was implemented with the dominance pruning speedup and
was capable of aligning all sequences in the maidenaria set. Descriptive features of
the resultant alignment are shown in section 7.2 with the MSA shown in Appendix

B.

6.3 Analysis of Inversions

To detect inversions in the sequences the shuffle-lagan (SLAGAN) algorithm
(Brudno et al. 2003) was run in a pair-wise manner over all the sequences in the
data set. From this algorithm a .mon file containing the co-ordinates and direction
(+/-) of the chains that make up the best 1-monotonic conservation map is created
for each pairwise alignment. The .mon files for these pairwise alignments were

parsed using Perl’s regular expressions to find any inversions (-) in the 1-monotonic
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conservation map. A list of the sequences for which inversions were found in the

SLAGAN pairwise alignment was written to file.

The initial (21) pairwise alignments generated by clustalW based on the guide tree
were examined to determine if inversions were present. The number and length of
any inversions present give an indication of the extent to which inversions may

hamper tradition MSA algorithms.

The results for detecting inversions is presented in section 7.1.

6.4 Analysis of Alignments for Phylogenic Reconstruction

Thompson et al. introduced two measures for comparing an alignment to a
reference alignment: the sum of pairs score (SPS) and the column score (CS)
(Thompson, J., Plewniak & Poch 1999). The SPS score increases as more
sequences are correctly aligned and signifies the extent to which the algorithm
succeeded in aligning the sequences in the alignment. The column score gives a
measure of the ability of an algorithm to align all of the sequences correctly,
however only one character in any column must be different causing a zero score.
For this reason the CS was not used as a measure of how the generated alignments

compared with the benchmark alignment

The SPS statistic used is the ratio of the all residue pairs that are aligned in the test
alignment against the sum of all residue pairs in the reference alignment. That is,
for an alignment A, of N sequences and M columns, and with column i from A
represented as Aj;; Ap, .., Aix. Then defining pjjx = 1 if residues Aj; and Ay are

aligned. Then the score for the ith column S;is given by:
N N
Si = Zj:l Z,{j ik

Then for a reference alignment R, of Mg columns and using Sg; to denote the score

for the ith column from alignment R, the SPS score is given by:
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SPS :ZZIS,'+Z£ZRSR1'

This formula allows for a comparison of the two MSA and the degree to which they
have successfully aligned all the sequences. The above formula has also been
modified to score 2 for identically aligned pairs of residues, a 1 for aligned gaps and
0 otherwise (Karplus K & Hu 2001). This scoring has been called the weighted
sum of pairs score (W-SPS).

Most MSA programs aim to maximise an objective function however when
analysing constructed alignments against verified alignments (such as those in
BaliBase test suite) often the weighted sum of pairs score is higher in the test

alignments than the ‘true’ alignment (Lassman Timo & Erik 2002, p. 127).

In using a MSA for phylogenic analysis each column and the variations within it are
considered, and as such, those columns which contain the same character over all
sequences are uninformative. Maximum parsimony methods of constructing an
evolutionary tree include only those sites which exhibit at least two different
nucleotides, and for which those nucleotides occur at least twice, in its analysis.
For this reason examining the percentage of parsimony informative sites over an
entire MSA enables a comparison of the informative content of each MSA in

creating an evolutionary tree using MP methods.

The percentage of singleton sites was scored. A singleton site is a site containing at
least two types of nucleotides; with at most one occurring multiple times. Constant
sites are sites for which there is only one nucleotide occurring over all the
sequences. The percentage of constant sites was scored, along with the percentage
of variable sites. A variable site is either parsimony informative or a singleton site

and as such all sites are either variable or constant.

The number of gaps required to align the sequences is scored, along with the
(aligned) length and the number of indels. An indels is an inserted gap greater than
1 base length, the total number of indels scored was the sum over all the sequences
of the indels in each sequence. The p-distance of the alignments was also

calculated. The p-distance is the proportion of sites for which two sequences being
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compared are different. The p-distance is calculated by dividing the number of
differences found by the total number of nucleotides compared and is averaged by

the number of sequences.

The following multiple sequence alignment programs were used in the comparison:
POA, ClustalW, Aligning Alignments Exactly, DiAlign and MAVID along with a
number of substitution matrices. A table of the descriptive features of these
alignments is presented in section 7.2.2. The speed, space complexity and other
advantages/disadvantages of the aforementioned algorithms are detailed in section
7.2.1.

6.5 Phylogenic Analysis

Phylogenic analysis was conducted using MEGA version 3.0 (Kumar, Tamura &
Nei 2004) which provides a user-friendly interface to phylogenic analysis. MEGA
contains a number of substitution models (p-distance, jukes-cantor etc) as well as a
number of tree building methods (Distance based -UPGMA, Neighbour-Joining,
Maximum Parsimony, Minimal Evolution-ML). Due to the number of species
under consideration a distance based method of tree building was chosen
(UPGMA), with 500 replicates for bootstrap support. = Maximum parsimony
methods were also used on the two most promising alignments. Similarities and
variations, along with the level of support for each phylogeny are detailed in section
7.3.
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7. Results and Discussion

7.1 Rearrangement Mutations

Due to the hypervariable nature of the chloroplast DNA samples it was decided to
use the SLAGAN algorithm to detect inversions and determine if these inversions
(if any) were having a detrimental impact on the MSA. Using SLAGAN it is also
possible to analyse other rearrangement events such as translocations and

duplications.

After running SLAGAN in a pairwise manner over all the sequences, a PERL script
was used on the SLAGAN output file detailing the components in the highest
scoring monotonic map to parse out and log any inversions. 89 inversions were

found (out of a possible 1722).

The inversions found were all of minor length and by using the guide tree calculated
by clustalW only two of the initial pairwise alignments displayed any inversions.
The alignment of ovata919 and crenulata displayed inversions (see figure 6), as
well as the alignment of globHJI13cg9 and ovata924 (see figure 7). The inversion
in the globHJ13cg9 and ovata924 alignment was surprising since they have aligned
well in the clustalW alignment (see Appendix B) as well as other alignments. The
inversion in ovata919 and crenulate is less surprising since there is more divergence
within the first 200 residues of the alignment. Overall, whilst inversions were
found, they appear to be few, short in overall length, and amongst more distantly
related sequences. For these reasons it does not appear that inversions are a

problem in creating a good alignment of the maidenaria data set.
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Translocation events were also found to be present in a number of the alignments as

can be seen in figure 8.
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7.2 Multiple Sequence Alignment

7.2.1 Algorithmic complexity

Example of translocation rearrangement in the pairwise

The time and space complexity of the MSA alignments used are shown in the

following table (table 8). POA is most suitable for MSA alignment problems over a

large number of sequences since it does not require an initial guide tree calculation

as used in clustalW and its efficient representation of alignments allows for greater

speed.
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Algorithm Background Time Complexity Space
Complexity
AAE Alignments of k sequences of = Worst case: Worst case:
(without n columns. When aligning a NAERA R PR factor of k better
speedups) sequence to a MSA the G[(}hﬁ) (n—kJk }k ) than time
algorithm is polynomial. @[(3_,_\/5 ) kK n"”),k >n complexity
POA Natural extension of dynamic o((znp+1)NM) O(N+L) where L
programming for sequences of is the  total
length N and M which is number of letters
O(3NM). Depends upon in all the
number of predecessor nodes, sequences
if average  number  of
predecessor nodes is Ny,. Note
n, tends to increase slowly for
biological meaningful
alignments as poa is like a data
compression algorithm
ClustalW Clustal W first performs O(NL*» to construct
pairwise alignments to | binary tree
construct guide tree before O(L’logN) to construct
performing MSA routine. For | MSA
N sequences of length L O(NL’+ L’logN) overall
MAVID For N sequence of length L linear in N and almost
linear in L
DiAlign For N sequences of length L O(N'L?)
Table 8 Summary of the processing and memory complexity of MSA
applications

7.2.2 MSA Features

The 42 sequences in the maidenaria subgenus were subjected to the MSA
algorithms detailed in section 3.3. The 42 sequences in the maidenaria data set
ranged in length between 463bp and 548bp (average length 522 bp). All alignments

were generated using the default parameters.

The descriptive features of the alignments show that the benchmark alignment
displayed the second lowest p-distance average, indicating that the biologists
alignment is good in general. The MAVID alignment exhibited significantly more
parsimony informative sites, whilst still retaining the most conserved sites overall
and the lowest p-distance. These figures indicate that the alignment of all the
sequences by MAVID produced a higher number of pairwise character matches,
however this was at the expense of inserting more gaps leading to a longer
alignment. This interpretation is confirmed by MAVID exhibiting the lowest W-

SPS score (see table 10). The simplistic clustalW substitution matrix without
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dynamic GOP and GEP control was able to align the sequences over the shortest
length (609bp) under the AAE algorithm, however this apparent strength is
weakened by this alignment having a significantly higher p-distance score (see

figure 8) along with SPS and W-SPS (see figure 11 below).
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Alignment algorithm and substiution matrix
Figure 8 p-distance scores for all MSA

The exact algorithm (AAE) with the nucmatrix substitution matrix was able to align
the maidenaria data set with significantly fewer indels as shown in figure 9. POA
and MAVID aligned with the greatest numbers of indels (810 and 835 respectively)

compared with the benchmark alignment which included 622 indels.
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Figure 9 MSA algorithms (with substitution matrix) of maidenaria data set showing

aligned length (bp) and number of indels

Both AAE with nucmatrix substitution matrix and POA were able to align the
sequences over a far shorter length (with consequently fewer gaps inserted) and
with a high number of conserved sites (76.13% and 76.92% respectively as
compared with the benchmark alignment displaying 75.99%). Interestingly the
benchmark alignment also scored the worst for parsimony informative sites (3.47%
compared to 6.58% average over all other alignments). This apparent lack of
informative sites was overcome through conversion of the alignment to a binary

matrix listing characters as purine or pyrimidine.
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In-

Alignme | Subst. del Pl S

nt Algo | Matrix Length | Gaps | s CS% | % VS % | SS% | P-dist
POA blosum80 | 728 9440 | 810 |76.92 |5.63 | 1346 |7.83 | 0.0187
MAVID - 803 12893 | 730 | 83.31 7.10 | 15.44 |8.09 | 0.0063
AAE clustalW 609 3966 186 | 34.65 | 54.0 | 60.59 2.30 | 0.1441
AAE nucmatrix | 729 9486 543 | 76.13 | 6.72 | 15.50 7.68 | 0.0141
Clustal

W clustalW 734 9719 697 | 75.75 |6.95 | 14.58 749 |0.0171
Clustal

W IUB 728 9440 752 | 75.27 | 7.28 | 15.38 7.97 10.0170
DiAlign - 786 11058 | 835 | 73.16 | 6.23 | 11.70 5.34 | 0.0171
Biologist | - 779 11786 | 622 | 75.99 | 3.47 | 8.60 5.13 | 0.0103

Table 9 Descriptive features of the aligned maidenaria data set.

Length is the aligned length of MSA, gaps are the total number of gaps
inserted, indels is the number of insertion/deletion events over all sequences.
CS% is the percentage of conserved sites, PI S% is the percentage of
parsimony informative sites, VS% is the percentage of variable sites, SS% is
the percentage of singleton sites.

The ability of the generated alignments to align residues over all the sequences
compared with the benchmark biologist alignment is shown in table 10 as well as
figure 10 below. The sum of pairs score and the weighted sum of pairs score give a
measure of the quality of the generated alignments to the benchmark alignment.
Whilst it has been noted that often the SPS or W-SPS score is greater than 1 (i.e. the
test alignment contains a higher score than the ‘good’ reference alignment) , with

the maidenaria data set this was never the case (Lassman Timo & Erik 2002).
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Figure 10 Sum of pairs (SPS) score and Weighted sum of pairs (W-SPS) for all MSA

All the algorithms achieved a close alignment (average 0.908 SPS) with the
exception of DiAlign whose alignment was significantly poorer. The AAE
algorithm with the nucmatrix achieved the highest SPS and weighted-SPS score
over all algorithms, indicating that the alignment generated by this algorithm was
able to produce an alignment that was overall very good compared to the

benchmark alignment.

The SPS and W-SPS scores indicate that the local and global alignments are both
able to achieve a high quality alignment on the maidenaria set of sequences, with

MAVID (0.9297) scoring only marginally worse than the AAE (0.9305) algorithm.

Alignment Algo | Subst Matrix | SPS W-SPS
POA blosum8&0 0.9274 0.9547
MAVID - 0.9297 0.9265
AAexact ClustalW 0.6865 0.7606
AAexact nucmatrix 0.9305 0.9570
ClustalW clustalW 0.9138 0.9426
ClustalW IUB 0.9261 0.9514
DiAlign - 0.8249 0.8214

Table 10 MSA consensus statistics
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7.3 Phylogenic Inference

Using the MSA generated through Aligning Alignments Exactly and the benchmark
alignment phylogenic trees were generated using distance based. All trees were
bootstrapped for 500 replications to add further support for the consensus tree

generated.

The consensus tree generated through UPGMA distance based tree building method
on the benchmark alignment is shown in figure 11. This tree is compared against
the tree generated using the same method from the alignment constructed through

AAE algorithm with the nucmatrix substitution matrix (figure 12).

The tree topology and distances are quite different in both trees, with subcrenulata
sequence the most divergent in the benchmark tree with globSA showing as most
divergent from the generated alignment. Most of the sequences showed similar
groupings, however there was enough of a variation to warrant further investigation

and analysis of the alignments and the variations within.
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Figure 12 UPGMA consensus tree generated from alignment constructed using AAE with
nucmatrix using the p-distance substitution matrix for tree building
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7. Results and Discussion

8. Future Work

Much research continues to be undertaken in producing efficient and biologically
relevant alignments. Research into incorporating dynamic parameter control, as
used in ClustalW, as an option for partial order alignments and the aligning
alignments exactly algorithms could allow for greater selectivity and specificity in

aligning sequences.

Greater research and a review of the best performing algorithms on sequences
exhibiting ranges of variation (length, divergence, motifs etc), along with parameter
selection choices could be undertaken to allow for a better picture of algorithmic
strengths as well as greater confidence for biologists and others in selecting the best
of the many worthwhile algorithms for MSA. This research could allow for the
development of an approach for pre-processing sequences allowing for a quick
analysis of various rearrangement events and pertinent statistics (divergence,
regions of high similarity) that could contribute information for anchoring based

algorithms or to allow for better (or automated) algorithm and parameter selection.
Further work to improve the speed of the AAE algorithm to replicate those

published would also allow for more efficient exact alignments, and allow

biologists to apply this recent algorithmic advance.
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9. Conclusion

9. Conclusion

The process of aligning multiple biological sequences for phylogenic inference is
inherently difficult. As well as coupling two NP-complete endeavours (multiple
sequence alignment and phylogenic tree building) the final product — an
evolutionary tree — can only ever be correct based on the algorithmic and
evolutionary assumptions made. This difficulty is compounded by the many
competing choices for the alignment parameters, in choosing the alignment
algorithm, in selecting the substitution model and finally in selecting a tree building
criterion. It is a widespread practice for biologist to manually ammend an
alignment to correct for the incorrect placement of gaps, often as a legacy of the

progressive MSA algorithm.

This thesis has examined new and novel multiple sequence alignment algorithms
against popular algorithms such as ClustalW. In examining the multiple sequence
alignment algorithms their advantages and disadvantages both algorithmically and
in terms of processing and space complexity has been studied as well as the

suitability of the resulting alignments for further phylogenic analysis.

All analysis was conducted on 46 samples of chloroplast DNA of average length
522 bp taken from eucalypts provided by the School of Plant Science. The analysis
of the multiple sequence alignments of these sequences showed only minor
variations in the quality of the alignments generated. POA and AAE algorithms
performed the best overall, producing alignments that were of minimal length, with

good p-distance and a high SPS and W-SPS score.

56



10. References

10. References

Aho, A & Corasick, M 1975, 'Efficient string matching: an aid to bibliographic search’,
Communications ACM, vol. 18, pp. 333-40.

Baxevanis, A & Ouellette, BF 1998, Bioinformatics A Practial Guide to the Analysis of Genes and
Proteins, 1 edn, John Wiley & Sons Inc.

Berman, H, Westbrook, J, Feng, Z, Gilliland, G, Bhat, T, Weissig, H, shindyalov, I & bourne, P
2000, 'The Protein Data Bank', Nucleic Acids Research, vol. 30, pp. 235-42.

BioConductor, viewed 7.5.2004 <http://www.bioconductor.org/>.

Blake, T Chloroplast Genome Structure, viewed 26.4.04
<http://hordeum.oscs.montana.edu/class/CHLORLEC.html>.

Bonizzoni, P & Vedova, GD 2001, 'The complexity of multiple sequence alignment with SP-score
that is a metric', Theoretical Computer Science, vol. 259, no. 1, pp. 63-79.

Bray, N & Pachter, L 2004, 'MAVID: Constrained ancestral alignment of multiple sequences',
Genome Research, vol. 14, pp. 693-9.

Bray, N, Dubchak, I & Pachter, L 2002, 'AVID: A Global Alignment Program', Genome Research,
vol. 13, no. 1, pp. 97-102.

Brocchieri, L & Karlin, S 1998, 'Assymetric-iterated multiple alignments of protein sequences’,
Journal of Molecular Biology, vol. 276, pp. 249-64.

Brudno, M, Malde, S, Poliakov, A, Do, C, Couronne, O, Dubchak, I & Batzoglou, S 2003, 'Glocal
Alignment: finding rearrangements during alignment', paper presented to Eleventh
International Conference on Intelligent Systems for Molecular Biology, Brisbane, Australia.

Brudno, M, Do, C, Cooper, G, Kim, M, Davydov, E, Program, NCS, Green, E, Sidow, A &
Batzoglou, S 2004, TAGAN and Multi-LAGAN: Efficient Tools for Large-Scale Multiple
Alignment of Genomic DNA', Genome Research, vol. 13, no. 4, pp. 721-31.

Bruno, W, Socci, N & Halpern, A 2000, 'Weighted Neighbor Joining: A Likelihood-Based Approach
to Distance-Based Phylogeny Reconstruction', Molecular Biology Evolution, vol. 17, no. 1,
pp- 189-97.

Bucka-Lassen, K, Caprani, O & Hein, J 1999, 'Combining many multiple alignments in one
improved alignment', Bioinformatics, vol. 15, no. 2, pp. 122-30.

Chang, W & Lawler, E 1994, 'Sublinear approximate string matching and biological applications',
Algorithmica, vol. 12, no. 4/5, pp. 327-44.

Chang, W & Marr, T 1994, 'Approximate string matching and local similarity', paper presented to
5th Annual Symposium on Combinatorial Pattern Matching.

Chantal, K & Gaston, G 1999, Near Optimal Multiple Sequence Alignment Using a Traveling
Salesman Problem Approach', paper presented to Proceedings of the String Processing and
Information Retrieval Symposium.

Corpet, F 1988, 'Multiple sequence alignment with hierarchical clustering', Nucleic Acids Research,
vol. 16, pp. 10881-90.

D'Antonio, L 2003, 'Incorporating Bioinformatics in an algorithms course', paper presented to

Innovation and Technology in Computer Science Education.

57



10. References

DDBJ Homology Search System, 2004, DDBJ, viewed 27.4.04

<http://spiral.genes.nig.ac.jp/homology/welcome-e.shtml>.

Eddy, S 1995, 'Multiple alignments using hidden Markov models', paper presented to Third
international conference on intelligent systems for molecular biology, Cambridge, England.

Felsenstein, J 1985, 'Confidence limits on phylogenies: An approach using the bootstrap', Evolution,
vol. 39, pp. 783-91.

---- 1993, Phylogenetic Inference Package (PHYLIP), 3.5 edn, University of Washington.

Feng, D & Doolittle, R 1996, 'Progressive alignment of amino acid sequences and construction of
phylogenic trees from them', Methods Enzymol., vol. 266, pp. 368-82.

Freeman, JS, Jackson, HD, Steane, DA, McKinnon, GE, Dutkowski, GW, Potts, BM & Vaillancourt,
RE 2001, 'Chloroplast DNA phylogeography of Eucalyptus globulus', Australian Journal of
Botany, vol. 49, pp. 585-96.

Galil, Z & Park, K 1990, 'An improved algorithm for approximate string matching', SIAM Journal of
Computing, vol. 19, no. 6, pp. 989-99.

Gibson, G & Muse, S 2002, A Primer of Genome Science, Sinauer Associates, Inc.

Gusfield, D 1999, Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology, Cambridge University Press.

Hughey, R & Krogh, A 1996, 'Hidden Markov models for sequence analysis: extension and analysis
of the basic method', Computer Applications in Biological Science, vol. 12, pp. 95-107.

Thaka, R & Gentleman, R 1996, 'R: A language for Data Analysis and Graphics', Journal of
Computational and Graphical Statistics, vol. 5, no. 3, pp. 299-314.

Jukes, TH & Cantor, CR 1969, 'Evolution of protein molecules', in HN Munro (ed.), Mammalian
Protein Metabolism, Academic Press, New York, pp. 21-132.

Junior, SAdC 2003, 'Sequence Alignment Algorithms', M.Sc. in Advanced Computing thesis, Kings
College University of London.

Karplus K & Hu, B 2001, 'Evaluation of protein multiple alignments by SAM-T99 using BaliBASE
multiple alignment test set', Bioinformatics, vol. 17, no. 8, pp. 713-20.

Kececioglu, J & Starrett, D 2004, 'Aligning Alignments Exactly', paper presented to RECOMB, San
Diego, California, USA.

Kumar, S, Tamura, K & Nei, M 2004, MEGA3: Integrated software for Molecular Evolutionary
Genetics Analysis and sequence alignment', Bioinformatics, vol. 5, no. 2 (In Press).

Lassman Timo & Erik, S 2002, 'Quality assesment of multiple alignment programs', FEBS Letters,
vol. 529, pp. 126-30.

Lee, C, Grasso, C & Mark, S 2002, 'Multiple sequence alignment using partial order graphs',
Bioinformatics, vol. 18, no. 3, pp. 452-64.

Lipman, D, Altschul, S & Kececioglu, J 1989, 'A tool for multiple sequence alignment', Proc. Natl.
Acad. Sci., vol. 86, pp. 4412-5.

Lopez, R 2Can Bioinformatics Educational Resource, viewed 29/04/2004

<http://www.ebi.ac.uk/2can/home.html>.

Maizel, J & Lenk, R 1981, 'Enhanced graphic matrix analysis of nucleic acid and protein sequences’,

Proc Natl Acad Sci USA, vol. 78, p. 7665.

58



10. References

Morgenstern, B 1999, 'DIALIGN2: improvement of the segment-to-segment approach to multiple
sequence alignment', Bioinformatics, vol. 15, no. 3, pp. 211-8.

Morgenstern, B, Dress, A & Wener, T 1996, 'Multiple DNA and protein sequence based on segment-
to-segment comparison', Proc. Natl. Acad. Sci., vol. 93, pp. 12098-103.

Muckstein, U, Hofacker, I & Stadler, P 2002, 'Stochastic pairwise alignments', Bioinformatics, vol.
18, no. Supplement 2, pp. S153-S60.

Navarro, G 2001, 'A Guided tour to approximate string matching', ACM Computing Surveys, vol. 33,
no. 1, pp. 31-88.

Needleman, S & Wunsch, C 1970, 'A general method applicable to the search for similarities in the
amino acid sequences of two proteins', Journal of Molecular Biology, vol. 48, pp. 444-53.

Notredam, C & Higgins, D 1996, 'SAGA: sequence alignment by genetic algorithm', Nucleic Acids
Research, vol. 24, pp. 1515-24.

Notredame, C 2002, 'Recent progress in multiple sequence alignment: a survey', Pharmacogenomics,
vol. 3, no. 1, pp. 131-44.

Notredame, C, Holm, L & Higgins, D 1998, 'COFFEE: an objective function for multiple sequence
alignments', Bioinformatics, vol. 14, no. 5, pp. 407-22.

OIBIF OPEN BIOINFORMATICS FOUNDATION, viewed 7.5.2004 <http://open-bio.org/>.

Reiner, K, Stoye, J & Will, T 2000, 'An iterative method for faster sum-of-pair multiple sequence
alignment', Bioinformatics, vol. 16, no. 9, pp. 808-14.

Saitou, N & Nei, M 1987, 'The neighbor-joining method: a new method for reconstructing
phylogenetic trees', Molecular Biology Evolution, vol. 4, pp. 406-25.

Salter, L 2000, 'Algorithms for Phylogenetic Tree Reconstruction', paper presented to International
Conference on Mathematics and Engineering Techniques in Medicine and Biological
Science.

Schaal, B, Hayworth, D, Olsen, K, Rauscher, J & Smith, W 1998, 'Phylogeographic studies in plants:
problems and prospects', Molecular Ecology, vol. 7, pp. 465-74.

Sellers, P 1974, 'On the theory and computation of evolutionary distances', SIAM Journal of Applied
Mathematics, vol. 26, pp. 787-93.

---- 1980, 'The theory and computation of evolutionary distances: pattern recognition', Algorithmica,
vol. 1, pp. 359-73.

Stoye, J, Moulton, V & Dress, A 1997, 'DCA: an efficient implementation of the divide-and-conquer
approach to simultaneous multiple sequence alignment', Computational Applied Bioscience,
vol. 13, no. 6, pp. 625-6.

Swoffard, D 1998, PAUP* Phylogenetic analysis using parsimony (*and other methods), 4 edn,
Sinauer Associates.

Thompson, J, Higgins, D & Gibson, T 1994, 'CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting. position specific gap penalties
and weight matrix choice', Nucleic Acids Research, vol. 22, no. 22, pp. 4673-80.

Thompson, J, Plewniak, F & Poch, O 1999, 'A comprehensive comparison of multiple sequence

alignment programs', Nucleic Acids Research, vol. 27, no. 13, pp. 2682-90.

59



10. References

Thompson, SM 2004, 'Multiple Sequence Alignment and Analysis: A two part introduction and
practical guide to the art and science of comparative genomics.' in RP Grant (ed.),
Computational Genomics: Theory and Applications, Horizon Scientific Press, Norfolk, UK.

Ukkonen, E 1985, 'Finding approximate patterns in strings', Journal of Algorithms, vol. 6, pp. 132-7.

Vaillancourt, R & Jackson, H 2000, 'A chloroplast DNA hypervariable region in eucalypts’,
Theoretical and Applied Genetics, vol. 101, no. 5, pp. 473-7.

Vinga, S & Almeida, J 2003, 'Alignment-free sequence comparison- a review', Bioinformatics, vol.
19, no. 4, pp. 513-23.

Vision, T & McLysaght, A 2004, 'Computational Tools and Resources n Plant Genome Informatics',
in P Christou & H Klee (eds), Handbook of Plant Biotechnology, 1 edn, John Wiley &
Sons., p. 1552.

Wang, L & Jiang, T 1994, 'On the complexity of multiple sequence alignment', Journal of
Computational Biology, vol. 1, no. 4, pp. 337-48.

Wang, Y, Anderson, J, Chen, J, geer, L, He, S, Hurwitz, D, Liebert, C, Madej, T, Marchler, G,
Marchler-Bauer, A, Panchenko, A, Shoemaker, B, Song, J, Thiessen, P, Yamashita, R &
Bryant, S 2002, MMDB: Entrez's 3D structure database', Nucleic Acids Research, vol. 30,
pp- 249-52.

Whittock, S 2000, 'Phylogenetic Reconstruction with Maximum Likelihood', Reading Thesis thesis,
University of Tasmania.

Wu, C, Yeh, L-S, Huang, H, Arminski, L, Castro-Alvear, J, Chen, Y, Hu, Z-Z, Ledley, R, Kourtesis,
P, Suzek, B, Vinayaka, C, Zhang, J & Barker, WC 2003, 'The Protein Information
Resource', Nucleic Acids Research, vol. 31, pp. 345-7.

Yang, Z 1997, Phylogenetic analysis by Maximum Likelihood (PAML), 1.3 edn, Dept. of Integrative
biology, University of California, Berkeley.

Zhang, C & Wong, A 1997, 'A genetic algorithm for multiple molecular sequence alignment',
Computational Applied Bioscience, vol. 13, no. 6, pp. 565-81.

60



11. Appendices

11. Appendices

A. Substitution Matrices

Kimura 2-parameter

A T C G
A - B o o]
T B - o B
C B o - B
G o B B -
Tajima-Neli

A T C G
A - aGr aGe aGg
T aGa - aGe aGg
C aGp aGr _ O(GG
G aGp aGr O(GC _

where Ga, Gr, Gc, Gg are the respective frequencies of
A,T,C and G respectively.

Tamura 3-Parameter

A T C G
A - B(l-o) Be ae
T B(l-e) - ae Be
C R(l-e) a(l-e) - Re
G a(l-e) R(l-e) Re —

Tamura-Nei

A T C G
A - RGr RGc a1Gg
T BGa - o2Ge BGe
C BGa oGy - BGe
G o1Ga BGr  BGe -

clustalW1.6 substitution matrix

H Q a

o o o - »
o o r o 0O
o B O O M
o o o H
o o o o

o o o o Z
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N 0 0 0 0 0 0
-15 -6.6
IUB

A C G T -
A 1.9 0 0 0 0
C 0 1.9 0 0 0
G 0 0 1.9 0 0
T 0 0 0 1.9 0
- 0 0 0 0 0
N 1.9 1.9 1.9 1.9 0
-15 -6.6
Nucmatrix

A C G T - N
A 91 -114 -31 -123 0 -43
cC -114 100 =125 =31 0 -43
G -31 -125 100 -114 0 -43
T -123 =31 -114 91 0 -43
- 0 0 0 0 0 0
N —-43 —-43 -43 —-43 0 -43

=750 -25

Blosum$80

Blosum80

Matrix made by matblas from blosum80.iij

* column uses minimum score

BLOSUM Clustered Scoring Matrix in 1/3 Bit Units
Blocks Database = /data/blocks_5.0/blocks.dat

*+ ¥ H H ¥

Cluster Percentage: >= 80

H O R KB KB KB Z
o VW LV v

Appendices
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B. Multiple Sequence Alignments

See attached CD
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