UNIVERSITY of
TASMANIA

University of Tasmania Open Access Repository

Cover sheet

Title
Investigation of Distributed and Parallel Performance of a Genetic Algorithm

Author
Uren, PJ

Bibliographic citation

Uren, PJ (2004). Investigation of Distributed and Parallel Performance of a Genetic Algorithm. University Of
Tasmania. Thesis. https://doi.org/10.25959/23213060.v1

Is published in:

Copyright information

This version of work is made accessible in the repository with the permission of the copyright holder/s under
the following,

Licence.

Rights statement: Supervisor: Prof Arthur Sale

If you believe that this work infringes copyright, please email details to: oa.repository@utas.edu.au

Downloaded from University of Tasmania Open Access Repository

Please do not remove this coversheet as it contains citation and copyright information.

University of Tasmania Open Access Repository

Library and Cultural Collections

University of Tasmania

Private Bag 3

Hobart, TAS 7005 Australia

E oa.repository@utas.edu.au CRICOS Provider Code 00586B | ABN 30 764 374 782 utas.edu.au

http://doi.org/
http://rightsstatements.org/vocab/InC/1.0/
mailto:oa.repository@utas.edu.au
https://figshare.utas.edu.au
https://utas.edu.au

Investigation of Distributed and Parallel
Performance of a Genetic Algorithm

by
Philip James Uren, BComp

A dissertation submitted to the
School of Computing
in partial fulfilment of the requirements for the degree of

Bachelor of Computing with Honours

University of Tasmania
November 2004

Philip Uren
November 2004

DECLARATION

I, Philip James Uren, declare that this thesis contains no material which has been
accepted for the award of any other degree or diploma in any tertiary institution. To
my knowledge and belief, this thesis contains no material previously published or
written by another person except where due reference is made in the text of the
thesis.

II

Philip Uren
November 2004

ABSTRACT

Genetic algorithms, a stochastic evolutionary computing
technique, have demonstrated a capacity for robust, efficient
problem solving through highly parallel search space
exploration. This work demonstrates how an improvement in
performance and efficiency over the traditional serial
approach can be achieved by exploiting this highly parallel
nature to produce parallel genetic algorithms. Furthermore, it
is shown that by incorporating domain specific knowledge
into a genetic algorithm near optimal solutions can be located
in minimal time.

III

Philip Uren
November 2004

ACKNOWLEDGEMENTS

As the deadline for thesis submission approaches and the year draws to an end, I find
my thoughts are divided between looking forward to the future and remembering the
year that has just past. Certainly many people deserve my thanks for their help during
this endeavour; some for their assistance with my work, others for less direct support.
All are equally appreciated and I hope this small token is sufficient to express my
gratitude to them.

It is logical to begin with the inception of this work, so I shall do just that. My first
thanks are to my supervisor, Professor Sale. Without his help this work would never
have begun let alone be reaching completion. I wish to offer my thanks for the ideas,

suggestions and constant proof reading that you have provided me with over the year.

Continuing with my gratitude to the staff here, two other people stand out in my
mind. Firstly, I would like to thank Dr. Peter Vamplew for his guidance as the
honours co-ordinator, proof reading, and patient handling of questions. Secondly, my
thanks also go to Mr. Mark Hepburn for his thorough proof reading and for making
my workload in tutoring his subject more manageable than he was reasonably
obliged to do. Of course, I would like to extend my thanks to all the staff here within
the school of computing for their support over the past year and indeed for my entire

time here.

To my fellow honours students I thank you for a most vibrant and interesting year. It
would not have been so without you all. I have come to appreciate your company and
welcome distractions. It is perhaps this that I will miss most.

Finally, I turn my attention to those who are not directly connected to my work. In
many ways it is to them that I owe the most. To my girlfriend, Sarah, thankyou for
your support and love over this past year, it has meant a great deal to me. To my
friends, I have greatly appreciated the chance to unwind and relax with you all. 1
have left extending my gratitude to my family as the final acknowledgement because
it is them that I wish to thank the most. I am truly grateful for their support and love

over this year and within everything I have undertaken.

1A%

1.
2.
3.

Philip Uren

November 2004
TABLE OF CONTENTS

INEOAUCTION ...t 1
L0021 11« OO U RO PSORUPTOPRRPRRRPON 2
LIterature REVIEWcc.eiiiiiiiiiiieieeee et 3
3.1, OVEIVIEW ottt sttt sttt st e st es 3
3.2, Structure and SCOPE ...ccccuveeeiuiiieiiieeiieeeieeesieeerree e e e eeteeeereesaeeesseeesnaeeenns 3
3.3, Genetic AIZOTItRIMScooiiiiiiiiiiii e 3
3.3.1 Background and Conceptual Originscccceeeveveeerieeesieeencieeenieeenne 3
3.3.2 The Basic Genetic AlgOrithmcccoooiiiiiiiiniiiiiiieeceeee 4
333 GENELIC OPETALOTS ...vvveeeniiieeiiieeieeeeieeeeieeesteeesereeesereeeareessreessseeensseens 5
334 Parent SEleCtion........cocueeviiiiiiiiiiiicccee e 6
3.35 SCHEMALAiiiiiiiieie e e 7
3.3.6 Success of Genetic AIZOrithmscoovviiiiiiiiiiiiiieeceeen 8
3.3.7 Convergence in Serial Genetic Algorithmsccccceeevveeriieenneennnne. 10
3.4. Parallel Genetic AIOTItRMS........eiiiiiiiiiiiiiieeieeeeeeeeeee e 11
34.1 Algorithm MOdelScooviiieiiiieiiie e 11
342 Desi@n GOalScoouviiiiiiiiiiieiee e 12
343 Population Granularitycccceeceeereieeeriieenieeesieeeiieeeiee e evee e 13
3.4.3.1. Global ParalleliSation.............coecuieeriiiiniiiienieeeieeeieeeiee e 13
34.3.2. Coarse-Grainedcocueeiieeiiiinieeieet ettt 13
3.4.3.3. Fine-Grainedcoooiiiiiiiiiiiiieceeeeee e 14
34.34. MiCTO-Grained.........cooueiiiiiiiiiieeieeiteee et 16
344 Hybrid, Hierarchical and Disjoint Algorithms............ccocceeeviiennneenn. 16
34.5 Migration SChEMEcoocuiiiiiiieiiieeee e 17
3.4.6 Domain Knowledgeoooviiiiiiiiniiiiiiieeieeeieceeeeeeee e 17
3.4.7 Convergence in Parallel Genetic Algorithms..........cccoeeveeeciieenneeennee. 18
3.5. Capacited Vehicle Routing Problem.............ccoooveiiiiiiniiiiniiiiiiiieeeen 19
3.5.1 COMEXT ettt ettt ettt e e 19
3.5.2 Problem Definition..........cceeviiiiiiiiiiiiiiieeeieeeeeeeeee e 19
353 Genetic Algorithms Applied to CVRP........ccooviiieiiiiiiiieieeeeee 20
354 Heuristics and Domain Knowledgecccceevviiiniieiniiiiniieenieenns 21
3.6. Grid Engine ArcChiteCtureccccueeriuiieriiiieiiieerieeeeieeeieeeeireeeveeeevee e s 23
3.7, SUIMNIMATY .eeeiiiieiiiee ettt ettt ettt e ettt e st e e s bt e e sabeeesabeeenanee s 24
Methodology and General Experiment Design.........c.cccccveeeriveeeiieeniiieenieeeeneenn 25
4.1, INErOAUCHION ...ttt et et 25
4.2, MEtrIC SEIECHION ...coutiiiiiiiiiiiieeee ettt 25
4.3. Test Problem and Algorithm Mechanicsc.cccceevveeriiiiniiiiniiennieeene. 26
4.3.1 Problem Refinementccoccoiiiiiiiiiiiiiiiccceeeen 26
432 Encoding Scheme............cccooiiiiiiiiiiiiieeeeee e 27
433 GENELIC OPETALOTS ...vvveeeeiiieeiieeeiieeeieeeeieeesereeeseteeeseaeeeareessneeesseeennnes 28
434 Selection SChEMEcevuiiiiiiiiiiieeieee e 28
4.3.5 Migration SChEMEceeviiiiiiiiieiieeteeeeeee e 29
4.4. General Experiment Designccovuieiiiiiiiiiiiiiiieniieeeiieeeteeeee e 29
4.4.1 Requirements Separationccccceceerieriieenieiiienieeieeneecieeseeeen 29

Philip Uren

November 2004

442 Serial and Parallel compariSon...........cocceeeviieiiieeniieenieeriieeeeeee 29
4.4.3 Distributed and Non-Distributed Comparisonc.ceeevveeeeueeerveenns 30
444 Heuristic COMPATISONeeeriiiiriiiieiiieeiieeeieeeieeeete et 30
4.5. General EXPeCtationsc..ccccuiieriieeniieeniieerieeeireeeieeesieeesaneesneeeseseeeenns 30
Architecture, Topology and Configuration..............cceeevvieeniieeniienniiieenieeneeen, 32
S5.10 ENVIFONMENT....ooiiiiiiiiiiiiiiieeiceet ettt 32
5.1.1 Serial and Parallel Execution Environments............cccecueeeviiieenneennne. 32
5.1.2 Distributed Execution Environment............ccocceveeniiniiinicnncennennen. 32
5.2, AlZOrithm TeStINGceeviiiiiiiiiiiie ettt 34
Detailed Experiment Design and EXpectations...........cccccueeevuveencieeencieeenieeennnennn 40
6.1. Serial — Scaling Computational POWercccccceeviiiniiiiniiiinieiiieeen 40
6.2. Naive Parallel and Serial CompariSONceccveeerieeerieeerireenieeeeieeenneens 40
6.3. Non-Distributed Parallel and Serial Comparison............cceceeevvieeneeeenneen. 41
6.4. Distributed Parallel and Serial CompariSOn..........ccceeevuveeeiveencrieenieeennneenn 41
6.5. Increasing CIUSIET SQZE......ccccueiiiiiiriiiiiiiiieiee ettt 42
6.6. Effect of Naive HEUTiStiC ..ccceeruiiiiiiiniiiiieiiceieeteeeete e 42
6.7. Problem Decomposition Parallelisation.........c..ccceeeveeriieeniieeniieinieeenneen. 43
Results and ODSErVAtIONSc...eevuieiiiiiiieiieiiieeie ettt 45
7.1. Serial — Scaling Computational POWeTcccccceeviiiniiiiniiiinieiniieeen 45
7.2. Naive Parallel and Serial COmpPariSonccceeeveeevuveerieieeniiieenieeeeieeennes 46
7.3. Non-Distributed Parallel and Serial Comparison............cceceeevveeerieeennneen. 47
7.4. Distributed Parallel and Serial CompariSon..........cccccueeeeuveeeciieeniueeenneeennnes 51
7.5. Increasing CIUSIET SQ1ZE......ccccueiviiiiniiiiiniiieiee ettt 53
7.5.1 Results and Observed Trends.........ccceoveerieinieiiienieieeniecceeeeeen 53
7.5.2 Four Host Cluster Variance...........ccecvevverieenieeiieenienieeneeeieeseeeeeen 57
7.5.3 SUIMIMATY ..eeiivieiiiieiiiee ettt ettt e e e s 59
7.6. Effect of Naive HEUTTSHC .ooouvveiiiiiiiiieiiiiieieeeee et 59
7.7. Problem Decomposition Parallelisation.............cccceeeuvierriiencieeniieennieeennne 62
7.7.1 Naive Four-Way Decompositioncccceevieernieeniieeniieeniieenieeenns 62
7.7.2 Conceptual DecoOmMPOSILIONcccvveerivieeeiieerieeeriee et eireeeeeeeeaee e 64
7.7.3 SUIMIMATY ..ottt ettt e et e et e st e e st eesabeeenaees 65
Further Observations and EXperimentationcccceeevveeeriieenciieeniieeencieeeneneenn 67
8.l COMVEIZENCE. ...uueiieiiieeiieeeitee ettt ettt et ebe e e et e st e et e e abeesanee s 67
8.2. Parallel Work Duplicationcocceeeieeiiiniiiiiiniiieeeeeee e 69
8.3. Objective Convergence Measur€mentcocueeerveeeriueeenieeenueeenveesnneens 71
8.3.1 SPECIIICAION. ..eeeivieiiiie ettt et e et e e e e e ae e e e e enaeeeennes 71
8.3.2 RESULES ..ot 72
8.3.3 DISCUSSION ..ttt st 73
8.4. Expanded CIUSIEr S1Z€cccoueeriiiiiiiiieiiieeeiieeeiteeete ettt e 74
8.4.1 EXPETIMENT.....uviiiiiiiiiieeciieeciee ettt ettt eaee e sebeeeeeree e 74
8.4.2 RESULES ..ot 74
DISCUSSION ..ttt ettt e st s e e saa e e e e 77
10. CONCIUSIONS ...ttt ettt et eanees 82
. FUrther Work ..o 84
12. REEIENCES ..c.veiiieeeeee e 86
13. APPEINAICS ettt ettt s 91

VI

Philip Uren
November 2004

1. INTRODUCTION

Inspired by observations of adaptation in natural systems, genetic algorithms
attempt to capture the essence of evolutions robust, clean, efficient approach to
problem solving. A unique take on the classic artificial intelligence concept of
problem solving by search, these techniques and approaches have proven themselves
to be quite efficient at handling otherwise intractable problems.

Possessive of a highly parallel implicit structure, numerous approaches have been
proposed for improving the efficiency of genetic algorithms by employing
concurrent programming techniques. This work has as its aim the exploration of such
efforts. The goal being to establish whether parallel genetic algorithms produce
better results than serial approaches. It is expected that owing to a more efficient
search of the problem space, parallel algorithms will possess superior performance.
However the possibility that the extra computation power and organisational
structure provided by a parallel approach leads to little or no improvement in
performance is also explored. Throughout the remainder of this work, these two

disjunct points are referred to simply as the hypothesis.

To this end, a review of the current literature is presented first, enabling a more in
depth understanding of the characteristics of genetic algorithms. This is also the basis
for classifying the large number of disparate parallel versions of the technique into
categories. An exploration of the performance, benefits, and drawbacks offered by
approaches which exemplify their class of genetic algorithm is presented. From this
information a basis for designing and deploying several parallel genetic algorithms is
arrived at. The design of these algorithms is elaborated and test results are presented
to validate their performance. Following this, an argument for the general structure
of an experimental approach aimed at establishing the proof or otherwise of the
above hypothesis is presented. This approach is further refined and a final detailed
description is presented.

Having deployed and evaluated the performance of the developed algorithms using
several metrics the results are presented and within local scope are analysed and
discussed for relevance. Drawing all of this empirical evidence together, a final
discussion of the arguments for and against the proposed hypothesis is made and
conclusions are expounded as to its validity. Finally, a discussion of items of interest
and suggested approaches to further work on this topic is presented with several
directions of intriguing research identified.

Philip Uren
November 2004

2. CONTEXT

The context and environment within which these experiments and observations
are made is given thorough treatment in chapter 5, but a brief overview is given here
to allow the reader a better perspective from which to view the focused exploration

presented within the literature review.

As an aside to the main goal of this work, the application of grid computing as the
mechanism for deploying parallel genetic algorithms upon an extensible dynamic
platform is explored. As a result, the use of Sun Grid Engine' is not presented as a
reasoned decision, but rather a fixed assumption upon which an evaluation of its
performance and suitability to such tasks can be made.

The execution environment will consist of two platforms. The first of these is an
800MHz PC running windows XP upon which evaluation of most non-distributed
algorithms will be possible. The second of these platforms is the grid cluster
organised by way of the grid engine software, as described above. It contains four
machines with processor speeds of 233MHz, each running Linux Fedora.

A problem of interest has been selected upon which to test the performance of the
genetic algorithms. This problem, the capacited vehicle routing problem or CVRP, is
the logical intersection of the well known travelling salesman problem (TSP) and the
bin-packing or knapsack problem (often abbreviated as BPP). The details of the
CVREP are given later, however its selection as the desired application was made due
to its NP-complete nature and its conceptual composition of two sub-problems (the
TSP and the BPP).

! Sun Grid Engine (SGE) is an open source grid computing software package, the details of which are
elaborated later.

Philip Uren
November 2004

3. LITERATURE REVIEW

3.1. OVERVIEW

The purpose of this review is to present an exploration of techniques for
implementing a parallel genetic algorithm on a small cluster of machines running the
automated distributed computing engine, grid engine. The goal of the algorithm will
be to solve a standardised capacited vehicle routing problem. Various approaches
and techniques will be explored within this review to determine which are suitable to
the architecture and application. In addition, the factors which influence, favourably
or otherwise, the performance of the algorithms are also investigated. The major goal
of this literature review is to provide an understanding from which to select

appropriate algorithms for the investigation of the issues raised in the hypothesis.

3.2. STRUCTURE AND SCOPE

Section 3.3 will outline genetic algorithms in their serial implementation, giving
a brief background and defining several important concepts, such as genetic
operators, schemata, and convergence. Section 3.4 will extrapolate these concepts to
parallel implementations of genetic algorithms, exploring styles of parallelism and
their effect on performance and efficiency. Section 3.5 will define the capacited
vehicle routing problem, upon which the performance of the genetic algorithms will
be benchmarked. Finally, section 3.6 will introduce the grid engine software and

briefly describe its function.

A complete description of the field of genetic algorithms, both parallel and serial, is
beyond the scope of this review. Rather, the purpose is to provide a level of
understanding and justification from which to select and implement appropriate
algorithms to test the hypothesis presented above.

3.3. GENETIC ALGORITHMS

3.3.1 BACKGROUND AND CONCEPTUAL ORIGINS

The field of Genetic Algorithms (GAs) is commonly attributed to John H.
Holland who devised the concept of “Genetic Plans”, later to become known as
“Genetic Algorithms”. Holland believed that by applying the concept of evolution as
it is found in nature to computational problems, solutions could be discovered in a

3

Philip Uren
November 2004

more robust fashion than other techniques for searching large problem spaces could
provide (Holland, 1975).

Genetic algorithms are search and optimisation methods (Goldberg, 1989a). The
fundamental goal of all genetic algorithms is to find some solution that satisfies
certain criteria amongst many other less efficient solutions. Most often, they are
applied to problems where it is difficult to see how one solution may be modified to

produce a better solution.

For the purpose of this section, an overview of genetic algorithms will be presented
mainly through what might be considered a traditional genetic algorithm (Davis,
1991). That is, one which closely resembles Holland’s work. Extensions and
modifications to this original approach are numerous and designed to meet varying

goals. Some such variants will be discussed where appropriate.

3.3.2 THE BAsSIC GENETIC ALGORITHM

The general concept of a genetic algorithm approach is to represent solutions to
the problem as chromosomes, made up of individual genes which in turn represent
traits of the solution. Within the traditional algorithm, as presented here,
chromosomes are binary strings. A function is then defined, often referred to as the
fitness function, to evaluate the effectiveness of a given solution. Further generations
are developed based on certain criteria and operations of the algorithm, with the
intention of improving the value of solutions. Finally, some termination criteria will
be met and the current best solution will be presented as the output of the genetic
algorithm. Davis provides a top level description of genetic algorithms as the series
of steps in figure 3.3.2.1

The Genetic Algorithm
1. Initialise a population of chromosomes.
Evaluate each chromosome in the population.
3. Create new chromosomes by mating current chromosomes; apply mutation
and recombination as the parent chromosomes mate.
4. Delete members of the population to make room for the new chromosomes.
5. Evaluate the new chromosomes and insert them into the population.
6. If time is up, stop and return the best chromosome; if not, go to 3.

Figure 3.3.2.1: The Traditional Genetic Algorithm. Adapted from Davis (1991)

Philip Uren
November 2004

There are several input parameters that need to be specified when running a genetic
algorithm. For the traditional algorithm described above, these are population size,
crossover rate, mutation rate and number of generations. Insight into the problem
domain is useful in selecting values for these parameters (Osyczka, 2002). This
choice will influence the performance of the genetic algorithm in finding fit solutions

as well as the speed at which it may discover such individuals (Prasanna Jog, 1989).

3.3.3 GENETIC OPERATORS

Holland proposed the fundamental operators of crossover, mutation, inversion
and implicitly replication. These names are drawn from biological processes at the
cellular level, but are not used in exactly the same senses. Various other operators
have been proposed, some of which extend these basic forms or are domain specific.
The replication and crossover operations are sometimes referred to as primary
operators with others being secondary operators (Koza, 1992). The characteristics

and function of each operation will now be explored in more detail.

Often omitted from the definition of a genetic algorithm, replication is the simplest
operator. Reproduction takes a member from generation Gy and reproduces it in
generation Gy4;. This is a unary operation, requiring the input of only one individual.
Due to its simplistic and fundamental nature, reproduction is often not explicitly

defined, even when it has been implemented.

Crossover is the process of deriving a new individual from two existing individuals
by combining their genetic structure. Most often, this is implemented by selecting a
random point within the two parent members, breaking their chromosome at this
point and recombining the two halves with their corresponding complements from
the other parent.

To ensure that the genetic algorithm does not converge to a local maximum, the
mutation operation (as well as variants of it and other techniques) can be applied to
individuals as a way of re-introducing genetic diversity (Ronald, 1995). In its
simplest implementation, the mutation operation will randomly select a gene in the

target chromosome and XOR it with one. This has the effect of flipping the bit value.

The inversion operator reverses the ordering of a subsection of the chromosome in an
effort to bring genes with characteristics which are beneficial to the fitness of the
chromosome into close proximity. This reduces the probability of these genes being
split by the crossover operation and hence lowering the fitness of future offspring.

The usefulness of the inversion operator has been questioned and never conclusively

5

Philip Uren
November 2004

proven (Davis, 1991; Goldberg, 1989a). It is often omitted to simplify
implementation of the genetic algorithm, as its inclusion requires a locus independent
representation scheme.” The inversion operation is expected to be of more use for
representation schemes several orders of magnitude greater than those currently used
(Davis, 1991).

Several more advanced operators exist that are not used within the traditional genetic
algorithm, but rather are devised to cope with more elaborate representation schemes.
Such a scheme may be required in a complex problem, or to more naturally represent

a solution.

One such operator is that of the Partially Matched Crossover, proposed by Goldberg
and Lingle (1985). This operator is designed to deal with representation schemes
where information is encoded via ordering and each chromosome must have a full
gene compliment. In this scheme, a crossover section is defined and swapped
between two parent chromosomes; the duplicated genes in the children are
exchanged to define two children with complete gene compliments. Such an operator
might be useful in a travelling salesman problem, where all cities must be visited (all
chromosomes must have a full gene compliment). Within such a problem the
information of the solution is encoded in the ordering of cities rather than their

presence or otherwise.

Other advanced operators are often modified version of the basic ones described
here. For example, Goldberg (1989a) explains a modified version of the crossover
operation to deal with a representation scheme that allows for chromosomes of
varying length. This modified operator simply adds the step of alignment to allow for
the selection of crossover point within the two variable length structures.

3.3.4 PARENT SELECTION

The operation of determining parents from a population for reproduction is
crucial for emulating the natural selection process. That is, the purpose of this
operation is to identify parents with a bias towards those with a higher fitness (Davis,
1991). Without this bias the algorithm would perform no better than a random
search. This selection focuses the search on areas of the problem space that appear to

contain promising solutions (Vamplew, 2004).

% That is, a scheme where the meaning of the gene is not determined from its location in the
chromosome

Philip Uren
November 2004

A commonly applied selection scheme is that of Roulette Wheel selection. As
described by Goldberg (1989a) and Davis (1991), this selection scheme is analogous
to assigning a portion of a roulette wheel to each individual based on their fitness
(fitter individuals receiving greater slices). The selection is then achieved by
‘spinning’ this hypothetical wheel and picking an individual based on where the
wheel stops. More mathematically, each individual is assigned a segment of the
number line {0..1} proportional to their fitness; a random number in {0..1} is then

chosen which selects one individual.

Whitely (1989) explains how selection so tightly tied to fitness can cause the
algorithm to stagnate or prematurely converge due to either a lack or oversupply of
selective pressure respectively. He instead advocates the use of rank based selection,
where each individual is ranked based on their fitness and each rank is assigned a

certain number of reproductive trials.

For a more thorough exploration of selection and its effects on efficiency and
effectiveness of genetic algorithms, the reader is referred to (Davis, 1991; Goldberg,
1989a; Koza, 1992). For further explanation of another common selection scheme,
namely Tournament Selection, the reader is referred to (Goldberg & Deb, 1991).

3.3.5 SCHEMATA

Holland proposed the concept of schemata as a way of grouping chromosomes
with similarities (Holland, 1975). The following representation of the schema
theorem is derived from Tomassini’s notation (Tomassini, 1995). Holland’s Schema
Theorem states that if the chance of reproduction is proportional to chromosome

fitness, then the number of individuals m representative of a schema H at time ¢ is

related to that at time £+1 as follows:

m(H, t+1) = m(H.)(() / (f2(0))

where f4(t) is the average fitness of chromosomes in the population and f(¢) is the

average fitness of those chromosomes in the population which contain the schema in
question (Davis, 1991; Goldberg, 1989a; Holland, 1975).

The importance of the result is that Holland’s Schema Theorem proves that a genetic
algorithm allocates exponentially more trials to fitter schemata (Tomassini, 1995).
This concept underpins the rationale for the effectiveness of genetic algorithms as
well as the issue of convergence, both to be explored in more detail in sections 3.3.6
and 3.3.7 respectively.

Philip Uren
November 2004

The full equation, which also includes the effects of the mutation and crossover
operators, is included for reference. A complete exploration of the schema theorem is
beyond the scope of this review, but refer to (Holland, 1975) and (Goldberg, 1989a)
for a more complete treatment of this fundamental concept. The complete schema
theorem is as follows:

m(H, t+1) = m(H.)(f1(6)/ f @) [L - (Pe(*(H)/U-1)) — o(H)pn]

Where I - o(H)p., represents the probability of a schema H surviving mutation and

-(P.(*(H)/(I-1))) represents the disruption of schema by crossover, proportional to

schema length.

There is, however, a major caveat: the schema theorem relies upon the genetic
algorithm holding to the fundamental design, involving just the limited set of
operators. Should the algorithm not conform to these specifications, the theorem is
less applicable (Altenberg, 1995; Tomassini, 1995). Goldberg (1989a) provides
further exploration of the schema theorem and elaborates upon the building block

hypothesis which underpins it.

3.3.6 SUCCESS OF GENETIC ALGORITHMS

Various arguments have been presented as to why this non-deterministic
approach can produce effective results in highly complex, non-linear problem spaces.
Koza (1992) states that Genetic Algorithms violate many of the fundamental
principles established in solving problems using Artificial Intelligence as well as

other disciplines of not only computing but various fields of science.

Holland’s justification for the success of genetic algorithms revolves around his
schema theorem. He states that the algorithms work by creating combinations of
genes in the chromosomes which contribute favourably to its fitness. Hence these
combinations will likely be reproduced in the next generation. This is the basis for
his inversion operation, which is intended to be a way of bringing certain genes
within close proximity to each other. This increases the probability of the

combination surviving to the next generation (Holland, 1975).

There has been significant debate into the validity of the Schema Theorem however
and some believe that it provides no validation for the success of genetic algorithms.
Nevertheless, the empirical data which exists demonstrates that Genetic Algorithms

8

Philip Uren
November 2004

do work. While many argue as to the success of the schema theorem in capturing the
fundamental reasons, it is essentially accepted by all that the approach is successful
(Koza, 1992). Discussion on formally proving the effectiveness of genetic algorithms
is ongoing and many varying perspectives have been offered. Altenberg (1995)
examines some of these in his paper and presents an alternative theorem for

explaining the success of genetic algorithms.

Goldberg categorises possible search algorithms as belonging to roughly three
groups: calculus-based, enumerative and “robust” search techniques. Calculus-based
search techniques3 are highly effective within a limited domain, but perform very
poorly in general. In addition, they are not readily applicable to combinatorial
problems” (Vamplew, 2004). Enumerative approaches perform equally well in all
domains, but are of limited success on generic problems. Genetic algorithms then are
an attempt to attain the performance characterised by the “robust” search techniques.
That is, somewhat sacrificed performance in a limited domain, for overall good
performance (Goldberg, 1989a). Figure 3.3.6.1 shows this hypothetical efficiency
versus problem type relationship. De Jong (1975) demonstrates how genetic
algorithms out-perform random search by making use of previously-learned
information and avoid the problem of local maxima by searching the problem space

from a number of different points.

Robust Scheme

Specialized Scheme

Efficiency

Enumeration or

Random Walk

=

combinatorial unimodal multimodal

Problem Type

Figure 3.3.6.1: A hypothetical representation of algorithm efficiency plotted against problem
type (Goldberg, 1989a).

? Such as Hill Climbing or Gradient Descent
* Combinatorial Problems are those within which solutions are found by making a number of
interdependent choices.

Philip Uren
November 2004

3.3.7 CONVERGENCE IN SERIAL GENETIC ALGORITHMS

Convergence refers to the situation where genetic diversity is lost in a population
and many of the individuals are of similar genetic structure. In the context of the
search space, this means that the genetic algorithm has produced many solutions that
are almost exactly the same. Visually represented, the population is clustered around
a single or small number of points, often local maxima. Generally this is an
undesirable condition, as it means the algorithm has been restricted to a very limited
section of the problem space (Holland, 1975). It has been shown that elitist selection

strategies, where the best individual (or individuals) of generation G are

automatically included into generation G+1, can cause premature convergence (Davis,

1991). Goldberg (1989a) notes that elitism improves local search but degrades the
global search capability of the algorithm. As stated above, much of the robustness
characterised by genetic algorithms is derived from their ability to spread search
points broadly throughout the problem space. A narrowing of this broad approach is
detrimental to the capability of the genetic algorithm to effectively search the
problem space.

The reason for such convergence is the allocation of trials to members of the
population that perform well based on the fitness evaluation. Davis (1991) and
Goldberg (1989a) discuss the two-arm and k-arm bandit problems5 which can be
used to explain convergence. Briefly, the problem states that there is a slot machine,
with two ‘arms’. The user does not know which arm will produce the greatest
winnings, but one will yield the optimal reward (call it the ‘jackpot’). The problem
then is how to allocate trials in such a way that the arm which appears to be best is
used most, but the other arm is not completely neglected, in case it does eventually
prove to hold the ‘jackpot’. This represents a fundamental issue in adaptive systems,
namely balancing exploration against exploitation of already known information
(Goldberg, 1989a).

Generalising the problem to k possible ‘arms’, one can see how this applies to
selection in genetic algorithms. Convergence occurs when the solution that appears
to be the best is constantly being allocated trials, while other solutions are neglected
even though they may ultimately lead to the optimal solution. Holland (1975) and
De-Jong (1975) present this as allocation of trials to schema within the genetic

algorithm.

> A common metaphor for selection criteria of Genetic Algorithms

10

Philip Uren
November 2004

One can also draw comparison to the concept of greedy algorithms, which follow the
‘best next step” approach and can miss global optima if they are surrounded by
minima in the search space. Although not afflicted by this particular issue, premature
convergence can result in genetic algorithms exhibiting similar characteristics. They
are unable to reach the optima because it is not associated with the currently found

best solution, which is dominating the search.

Many approaches have been introduced to the genetic algorithm design to control
convergence, mostly through the use of meta-information gathered as the algorithm
is running (Davidor, 1991; De-Jong, 1975; Goldberg & Deb, 1989). Such approaches
most often focus on lowering the speed of convergence to allow a more thorough
search or modifying the selection scheme to relax selective pressure (Lin, Goodman,
& Punch-II1, 1994). Avoiding convergence by maintaining genetic diversity allows
the algorithm to distribute the search widely through the problem space. This
improves the robustness of the algorithm and increases the probability and speed by

which an optimal solution is found.

3.4. PARALLEL GENETIC ALGORITHMS

It is commonly accepted that genetic algorithms represent a highly parallel search
mechanism. As such, the implementation of these algorithms upon parallel or
distributed technology would allow for a more natural and complete exploitation of
their power (Holland, 1975; Spiessens & Manderick, 1991; Whitley, 1993). Parallel
implementations also allow for the application of GAs to more complex problems
than would be possible with a serial approach, due to improvements in computational

efficiency and speed.

3.4.1 ALGORITHM MODELS

Various models have been proposed to adapt the basic Genetic Algorithm to run
on parallel hardware. In general, it is not possible to distinctly categorise these
models, as many implement techniques from various styles of genetic and parallel
genetic algorithms. For the purposes of this review then, different techniques and
approaches will be outlined with reference to their effects on accuracy and efficiency
of the algorithm. The comparison of separate techniques in parallel genetic
algorithms is complicated by the changes to the fundamental operation which are
introduced by various modifications. To this end, it is important to explicitly state
what characteristics of the algorithm are being compared, for example quality of
solution (Cant'u-Paz, 1997).

11

Philip Uren
November 2004

Each approach has characteristics which may or may not be favourable to certain
applications. As Goldberg states, a general purpose algorithm that can be applied
across a large number of domains with good performance is desirable. However,
there always exists the ability to tailor the algorithm to a specific application by the
use of heuristics and similar domain specific knowledge to improve performance.
The key here is to be aware that such a narrowing of the algorithm’s focus means
that the robustness inherent in the concept of genetic algorithms is lost. Such search
algorithms are redirected back towards calculus-based and similar approaches
(Goldberg, 1989c).

3.4.2 DESIGN GOALS

To design a Parallel Genetic Algorithm (PGA) that can take advantage of the
distributed nature of GAs it is necessary to distribute the workload across multiple
processors. Based on the granularity, this may constitute large almost independent
populations or smaller more interacting populations. The method of implementation
and control of the genetic algorithm will influence how much data needs to be
exchanged between the processors and whether a master processor need be
designated.

Gorges-Schleuter (1989) states that to achieve an efficient parallel implementation,
the following need to be satisfied: no central control, local interaction and fault
tolerance. Spiessens and Manderick (1989; 1991) also argue for the global control
structures of a GA to be eliminated. They cite the dependence of reproductive
mechanisms on knowing the average fitness of the population as a drawback to
developing parallel Gas. This is because it requires constant information exchange
between processors/populations. Collins and Jefferson (1991) agree, stating that
natural systems have no such global control. They continue by showing that applying
appropriate population dynamics6, the effects afforded by such controls are shown to
be emergent behaviour. It has also been Goldberg’s (1989c) finding that attempts to
over-control or over-specialise the algorithms lead to a reduction in robustness. Such
arguments also implicitly promote the use of steady-state algorithms, as the strictly
enforced generations of a traditional approach are also artificial.

® A local mating scheme and conflicts, amongst other additions

12

Philip Uren
November 2004

3.4.3 POPULATION GRANULARITY

3.4.3.1. GLOBAL PARALLELISATION

The simplest approach to implementing a parallel genetic algorithm is to
maintain the single large population of a serial algorithm but distribute the
computation of fitness and application of the genetic operators across multiple
processors. This approach is easy to implement, but as it leaves the behaviour of the
algorithm unchanged, does not afford any improvement in premature convergence. A
potential drawback to this approach is the excessive communication needed between
processors. Evaluation of fitness and production of the next generation requires
information about all individuals within the population, requiring all processors to
exchange large amounts of data for every generation. This can cause a bottleneck in

the system, limiting improvements in computational speed (Cant'u-Paz, 1997).

3.4.3.2. COARSE-GRAINED

Consider a starting point for parallelising a genetic algorithm as taking a standard
GA as described in section 3.3.2 and running this algorithm in parallel on multiple
processors. From time to time, the parallel processors would exchange information,
and/or individuals. Such an approach is often called a distributed or coarse-grained
genetic algorithm (Tanese, 1989). The sub-populations are often referred to as
islands or demes (biological analogues) and the period where a subpopulation
evolves in isolation is often referred to as an epoch. Such an approach has several
advantages, not least of which is the ease of conceptualisation and implementation.
Put simply, one may implement a standard serial genetic algorithm, with some minor
additions for communication between the processors, and run instances on as many

processors as desired.

Tanese (1989) concluded that such an algorithm with no migration of individuals
between processors could produce a near linear speed-up over a standard serial
genetic algorithm. It consistently out-performed the serial implementation by
discovering fitter individuals. However, the algorithm was unable to maintain
average population fitness comparable to the serial implementation. With the
introduction of migration, Tanese demonstrated that this drawback could be
eliminated. More recent work has confirmed these findings, showing that global
optima are found more often using a coarse-grained algorithm with migration than a
serial algorithm (Belding, 1995). Furthermore that migration of individuals between
the populations in a coarse-grained algorithm can improve execution time (Wang,
Maciejewski, Siegel, & Roychowdhury, 1998).

13

Philip Uren
November 2004

Such models promote genetic diversity due to the isolation of the populations. As a
result, premature convergence is less of an issue in a coarse-grained parallel genetic
algorithm (Baluja, 1993b; Li & Kirley, 2002). In addition Coohon et al. (1991) cite
work in the genetics field, most notably by Wright (1932; 1964; 1982), into rapid
evolution as supporting the sub-population model with occasional inter-population
communication as a method of “extensive search of the adaptive landscape”. In
addition, exchange of individuals should occur when subpopulations reach
equilibrium — a state at which evolution has halted because phenotypic improvement
is balanced with phenotypic degradation (J.P. Cohoon, Hegde, Martin, & Richards,
1988).

Baluja (1993a) notes the drawbacks to this approach however, in that once a
subpopulation reaches equilibrium, introduction of new genetic material may not be
sufficient to perturb this condition. Selection of migration rate and the number of
individuals to transfer determines the effectiveness of the algorithm (Cant'u-Paz,
1997).

Investigation into coarse-grained parallel genetic algorithms where serial algorithms
are being executed in parallel with occasional transfer of individuals can be shown to
conform to De-Jong’s proof of efficient allocation of trials to schema (De-Jong,
1975; Petty & Leuze, 1989). This is an important consideration, as it means theory
developed in regard to serial implementations is equally applicable in these parallel
algorithms.

Communication between subpopulations is generally limited in a coarse-grained
genetic algorithm, allowing for more flexible deployment over parallel architectures.
That is, low bandwidth, intermittent or unreliable network connections will restrict
implementation of such an algorithm less than a fine-grained approach. Application
on relatively cheap hardware is also possible, as no high-end parallel architecture is
required (Cant'u-Paz, 1997). Finally, processing of the subpopulations may be more
efficient due to the lack of any need to maintain global control structures and conduct

extensive communications to maintain synchrony with other processors.

3.4.3.3. FINE-GRAINED

A fine-grained approach to parallel genetic algorithms involves splitting the
population into many smaller populations (or demes). The term massive parallelism
is commonly used to describe this style of parallel approach, as many small,
interacting populations are evolved in parallel. Many fine-grained parallel genetic

14

Philip Uren
November 2004

algorithms define a geographical construct upon which individuals or populations are
placed, often a two dimensional Cartesian plane. This allows the definition of the

distance between individuals or populations (commonly via Cartesian geometry).

It is common for subpopulations in a fine-grained algorithm to overlap. That is, a
member may belong to multiple populations. This addresses the issue of equilibrium
of subpopulations described in section 3.4.3.2, as the probability of a subpopulation

reaching equilibrium while its neighbour populations have not is unlikely (Baluja,
1993b).

Fine-grained algorithms suffer from the loss of genetic diversity, due to the small
population size. That is, a high performance schema can quickly dominate a small
population. Because of constant population interaction, this schema can be spread
quickly amongst the other populations, leading to premature convergence (Baluja,
1993b). This can be overcome by having a large number of populations. Separating
populations by a large distance (that is, number of population ‘hops’) allows for the
uncontrolled spread of dominant schema to be retarded (Collins & Jefferson, 1991).

ASPARGOS, a fine-grained algorithm proposed by Gorges-Schleuter and
Muhlenbein exhibits a self organising nature, such that global control is not required,
with interacting demes leading to speciation. It requires relatively little
communications and exploits natural parallelism (Gorges-Schleuter, 1989). The
neighbourhood model, as used in ASPARGOS, is highly efficient on parallel
computers (Muhlenbein, 1989) and does not require a sharing function’ or any other
external control parameters. However, the algorithm is dependent on an expensive
dedicated parallel architecture, which severely limits its general application
(Davidor, 1991). It also contains a local hill-climbing optimisation, making it
difficult to determine the effectiveness of the genetic algorithm component (Cant'u-
Paz, 1997).

Spiessens and Manderick (1989) provide two motivations for eliminating global
control and promoting massively parallel computation of a genetic algorithm. The
first of these is that, as Goldberg states, the optimum size of a population is
proportionate to the chromosome length used for the problem representation
(Goldberg, 1989b; Goldberg & Richardson, 1987). Thus, as genetic algorithms are
applied to more complex problems, larger populations will be required, complicating
global control and requiring more overhead. Their second argument relates to

" Goldberg (1989a) suggested a ‘sharing function’ as a method of curtailing the loss of genetic
diversity, however it requires global information to function

15

Philip Uren
November 2004

approximating natural selection more accurately, where there of course exists no

global control.

There exist numerous other hardware-dependent fine-grained genetic algorithms,
which have outperformed their serial and coarse-grained counterparts. The reader is
referred to Baluja (1993a) for an explanation of several implementations of the fine-
grained parallel genetic algorithm. There is, however, a caveat: since these
algorithms are often only executable on large-scale, highly-parallel architectures, an

accurate empirical comparison is difficult to produce.

3.4.3.4. MICRO-GRAINED

Micro-grained parallel genetic algorithms spread the evaluation of the fitness
function across multiple processors. They do not split the population, maintaining a
single large group. This approach does not address the issue of convergence, but
simply allows for speed improvements. Punch et al. (1993) demonstrated that a
micro-grained algorithm will allow for a halving of computation time for every
doubling in processors up to the population size. That is, a linear speedup over a
serial algorithm is achieved. Micro-grained algorithms are employed where
evaluation of the fitness function is computationally intense in comparison to other
operations of the genetic algorithm (Lin et al., 1994).

3.4.4 HYBRID, HIERARCHICAL AND DISJOINT ALGORITHMS

One final observation on the topology of parallel genetic algorithms can be made
in regard to the ability to combine certain techniques to create hybrid algorithms; the
intention of which being to capture the positive qualities of various approaches while
balancing or eliminating the negative ones. The reader is referred to Cant’u-Paz
(1997) for an exploration of this concept, which is at best on the periphery of this
review.

Hierarchical models, as described by (Noda, Coelho, Ricarte, Yamakami, & Freitas,
2002), allow for levels or tiers of algorithms. In such an approach, one tier may

compute solutions which are then combined and processed further at a higher tier.

Certain parallel genetic algorithms have been developed that employ more than
one serial algorithm specification. This is most applicable to coarse-grained genetic
algorithms where each subpopulation may be evolved by a different serial algorithm.
Each such algorithm can possess different rates of mutation and crossover plus a

16

Philip Uren
November 2004

unique population size. Such algorithms are sometimes referred to as heterogeneous
(Noda et al., 2002). Running separate subpopulations with different control rates can
allow selective pressure to be tailored, balancing exploration and exploitation
(Tanese, 1989).

3.4.5 MIGRATION SCHEME

Migration of individuals between various subpopulations of the algorithm is
crucial to its effectiveness. Too low a migration rate and the subpopulations can
reach permanent equilibrium. Too high and the algorithm performs much as a serial
implementation, losing the benefits of parallelisation and potentially even exhibiting
slower performance due to communication overhead (Cant'u-Paz, 1997).

Generally, migration can be classified as either the Island Scheme or the Stepping
Stone Scheme. The island model allows for the migration of members from any
population to any other population. That is, consider the processors/populations to be
vertices in a complete mesh. The stepping stone model restricts communications
between subpopulations based on an imposed logical or physical limitation (Noda et
al., 2002).

The choice of scheme reflects the balance desired between exploration and
exploitation in concert with the balance between computation and communication
(Noda et al., 2002).

3.4.6 DoMAIN KNOWLEDGE

Several approaches to implementing problem specific information into the
execution of a genetic algorithm exist. Generally, domain knowledge is incorporated
in the genetic operators and the fitness function. Individuals that breach certain
constraints or rules of the problem domain may be penalised when assigned their

fitness.

Using a travelling salesman problem, (Wang et al., 1998) implemented an approach
whereby solutions are evolved to sub-tours. These sub-solutions are then recombined
at various instances in the execution of the algorithm based on selecting appropriate
re-combination points. Separate populations are used to derive solutions to each sub-
tour and operate essentially independent from other sub-populations. Improved

performance was gained through the implementation of this heuristic.

17

Philip Uren
November 2004

Cooperating genetic algorithms are also possible, where each algorithm computes
solutions to sub-problems. Combining this with the hierarchical model, Noda et al
(2002) discusses the prospect of having one tier of algorithms generate solutions to
sub-problems of a higher controlling algorithm. That is, specialised sub populations
for solving sub problems generate their results, which then represent a combinatorial
problem for the higher tier. Such an approach can be generalised to an n-tier system,

but requires domain knowledge to select sub-problems.

Goldberg cautions that by using problem-specific heuristics and complicating the
genetic algorithm design, the algorithm performance is shifted away from the natural
origins of the technique. The robust search space is then restricted back to the spike
of calculus based and similar approaches (Goldberg, 1989c).

On a related point, Davidor (1991) supports the argument that PGAs can be designed
that have naturally occurring speciation such as in the ASPARAGOS model. He uses
a geographic construct and models his approach on natural forces seen to influence
genetics. In this way, Davidor demonstrates how organisation is emergent from the
genetic algorithm when appropriate pressures are applied.

3.4.7 CONVERGENCE IN PARALLEL GENETIC ALGORITHMS

Characteristics of certain parallel genetic algorithm approaches minimise the
probability of premature convergence. As it is possible to run a parallel genetic
algorithm on a single processor, it is not uncommon to find such a technique being
employed simply to control convergence. This is in contrast to the intuitive speed
and computational advantages that can be gained from a parallel implementation
(Gondra & Samadzadeh, 2003; Lin et al., 1994; Noda et al., 2002).

Selection pressure is what leads to convergence of the population. That is, the weak
members are eliminated from the population by reproductive processes that are
biased towards preserving individuals with high fitness ratings. Thus, diversity in the
population is lost, due to the fittest schemata becoming dominant (See section 3.3.7).
Spiessens and Manderick (1989) discuss how the reduction of selection pressure in a
fine-grained algorithm helps alleviate this. That is, they allow for schemata that do
not perform as well to remain in the population and hence maintain diversity.

As discussed, the use of global information gathered during the running of the

genetic algorithm is of detriment to the efficiency of the parallel algorithm. Instead,

several approaches have been formulated that eliminate the need for such global

18

Philip Uren
November 2004

information, allowing the control of convergence through the creation of implicit

species.

Collins and Jefferson (1991) also identify the problem of convergence, where
diversity is lost and the population is localised to a single peak in the search space.
They acknowledge attempts to eliminate this problem via crowding, sharing and
restrictive mating, but dismiss these as requiring global knowledge. They conclude
that convergence can be avoided and more peaks within the search space can be
explored by introducing a local mating scheme.

Davidor (1991) developed a model to allow rapid local convergence by imposing
population interactions, which leads to niche and species like behaviour. Through
this controlled convergence, the algorithm can concentrate on promising areas of the
search space. Importantly however, it does not lose the generality which allows
genetic algorithms to be applied effectively to complex and deceptive problems. In
addition, the model does not require global information to be collected, which
facilitates application on parallel hardware.

3.5. CAPACITED VEHICLE ROUTING PROBLEM

3.5.1 CONTEXT

While exploring the proposed test problem, the Capacited Vehicle Routing
Problem or CVRP, the main objective of the project should not be overshadowed.
There exist several methods of solving CVRP instances that may or may not
outperform genetic algorithm solutions. This fact is beyond the scope of this projects
objective, which is to evaluate speed improvements gained through a parallel
implementation of genetic algorithms and integration of heuristics. To this end, the
CVRP has been selected as a means, rather than an end, because it represents a
problem within which heuristic approaches are intrinsic. By no means does this
project set out to provide an efficient, effective genetic algorithm based solution to
the CVRP. The purpose of this section then is to provide a brief introduction and
exploration of previous work on applying genetic algorithms to the CVRP. Heuristic

techniques will also be explored.

3.5.2 PROBLEM DEFINITION

The Capacited Vehicle Routing Problem is essentially a graph optimisation
problem. There exist a number of vertices in the graph, each one representing a

customer with a specified, finite demand for a single commodity (there is only one

19

Philip Uren
November 2004

commodity in the problem). One of the vertices will be marked the depot, which is
where the commodity is served from. The commodity is delivered by a number of
vehicles, with a fixed carrying capacity. Distance between vertices is commonly
determined using Cartesian geometry.

The goal of the problem is to find an optimal graph which satisfies all the demands
but minimises the travel time and number of vehicles required. A feasible solution is
defined as being a set of routes, where for each route the sum of demands for each
customer on that route does not exceed the capacity of the vehicle servicing the route
and each customer is present in one and only one route. This is graphically
represented in figure 3.5.2.1:

/\
/

\
=
/

Depot 7 i,\
a)
Figure 3.5.2.1: a) A distribution of clients and a depot.

b) A graph defined to supply clients
(Alba & Dorronsoro, 2004)

3.5.3 GENETIC ALGORITHMS APPLIED TO CVRP

For the purpose of investigating the application of genetic algorithms to solving
CVREP instances, this review will consider the more general Vehicle Routing Problem
(VRP) and variants of it. Approaches to solving these similar set of problems can
often be directly applied or grant insight into solutions to the CVRP.

Research into providing fast, accurate solutions to the capacited vehicle routing
problem have revolved mostly around applying advanced heuristics and augmented
hill-climbing techniques. Application of genetic algorithms techniques, however,
have been limited and in many cases shown to be less efficient than current best
known approaches (Machado, Tavares, Pereira, & Costa, 2002). Berger and Barkaoui
(Berger & Barkaoui, 2003) argue that this is simply because genetic algorithm

20

Philip Uren
November 2004

approaches have not been explored to their fullest extent and, with a more thorough

investigation, can provide improved performance.

A standard approach to solving the CVRP using genetic algorithms is described in
(Machado et al., 2002). The technique uses a representation scheme within which
each gene represents a destination customer and the order which they are in defines
the order or delivery. A special gene separating each route is introduced. The
algorithm uses a fixed chromosome size, which is desirable as it simplifies
implementation; however it also constrains the search. Combine this with the fact
that candidate solutions are discarded if they violate the capacity constraint and the
reproductive scheme is specific to the problem space and it becomes apparent that
the algorithm is very tightly controlled.

Other approaches have focused on applying simple, general purpose genetic
algorithms. One such approach is that outlined in Alba & Dorronsoro (2004), where
a cellular genetic algorithm8 is used with certain heuristics to improve performance.
Rather than rejecting solutions that violated constraints within the problem, these
solutions simply had their fitness values penalised. Alba and Dorronsoro demonstrate
in their paper that a genetic algorithm with multiple populations outperformed those
with one single large population. Furthermore, with the inclusion of local search
approaches and heuristics it was demonstrated that the Genetic Algorithm approach

exhibited comparable performance to other well known techniques.

3.5.4 HEURISTICS AND DOMAIN KNOWLEDGE

The incorporation of domain knowledge and heuristics into the GA allows for an
improvement in performance, but with the loss of generality in the algorithm.” What
follows is a brief explanation of several insights into the domain of the CVRP, which

can be used to improve a solution algorithm.

Notice that if the edge values in the graph (that is, distance from the depot to each
customer) are zero, the problem simplifies to a bin-packing problem (often called the
knapsack problem). The CVRP is sometimes considered a union of the bin-packing
problem and the travelling salesman problem (Machado et al., 2002; T. K. Ralphs,
Kopman, Pulleyblank, & Trotter, 2001). As such, the possibility of splitting the
CVRP into its constituent BPP and TSP halves represents an intriguing method of

¥ A cellular genetic algorithm is one where the population is mapped to a landscape and individuals
may only interact with their neighbours.

® Meaning that the algorithm can now only be applied to a single set of problems, rather than being
applicable to any problem for which a representation could be found.

21

Philip Uren
November 2004

applying problem specific knowledge to its solution. Ralphs et al. (2001) further
describe the division of the graph, to form small, distinctly separate travelling
salesman problems. These are then optimised to provide the smallest travelling
distance for each sub-problem, and finally checked to ensure they meet the capacity
constraint.

Another common heuristic optimisation that is often incorporated into the solution of
such problems is that of the nearest neighbour operation. Put simply, this is an
attempt to optimise the destinations in a route such that for each destination the next
destination is the one closest to it (its nearest neighbour). Intuitively, this should
reduce the travel distance, but it is possible to produce problem instances where this
greedy approach is not successful. Similar approaches are used in travelling salesman
problems, which can be considered a sub-part of the CVRP. An extension of this idea
is that sub-graphs can be formed by applying a k nearest neighbour algorithm
(KNN).'? Yang used this technique to show that population size can be reduced if
representative chromosomes can be created for the initial population (Yang, 1997).
However, another intriguing application is in splitting the problem into constituent
parts. Wang, Maciejewski et al. explored this approach to solving instances of the
travelling salesman problem and concluded that by dividing the problem into sub-
problems, better solutions can be found faster (Wang et al., 1998). A cautionary note
is necessary however; such results are clearly reliant on providing a suitable break-up
of the problem. Within problems of a similar geometric based distribution as the
TSP, of which the CVRP is one such instance, a clustering algorithm can be an
effective method of dividing the problem into sub-problems. The simple KMeans
algorithm (MacQueen, 1967) is one such clustering approach.

Yang (1997) investigated applying heuristic data to a genetic algorithm based
solution of the travelling salesman problem. It was demonstrated that the
combination of the heuristics to guide the GA in an appropriate direction and the
GAs ability to avoid local optima could be balanced to provide efficient solutions.
The approach incorporated domain knowledge in the genetic operators, such that
reproduction was artificially biased towards producing offspring that satisfied certain
heuristics.

Other heuristic approaches to solving the TSP and related problems (such as the

CVRP) function by exchanging cities within a tour to decrease the length. For more

' This works by picking a random city and selecting its K nearest cities to form a sub-graph. If one of
the k nearest cities is already present in another sub-graph, a random city is selected from those yet to
be allocated to a sub-graph.

22

Philip Uren
November 2004

details on these and other approaches to solving the travelling salesman and related
set of problems, the reader is referred to (Nilsson, 2003).

Finally, Goldberg (1989c) offers the following cautionary note on the specialisation
of GAs by incorporation of heuristics; such approaches should be recognised for
their effects on the methodology and balanced by considering what is being achieved
and at what cost. By augmenting a genetic algorithm to better handle a single set of
problems, all (or many) other problems are likely to be excluded from its potential
applications. As with all things, balance is important.

3.6. GRID ENGINE ARCHITECTURE

Grid engine is an open source distributed computing framework within which
parallel and distributed applications can be developed. The project is sponsored by
Sun Microsystems and provides “distributed resource management software for wide
ranging requirements from compute farms to grid computing.” (Grid-Engine
Homepage, 2001)

The grid engine architecture provides for resource sharing, allowing tasks be
submitted to the software and distributed to machines based on load and performance
requirements. The general purpose of the software is to allow for more efficient use
of networked computational power (Lee, 2002).

Automated decision making is beyond the current capabilities of the system
(Andrzejak, Graupner, Kotov, & Trinks, 2002). The architecture allows for remote
execution of tasks at a level of granularity roughly equivalent to that of processes.
Thus, it is the responsibility of the developer to ensure that the application is
separated into sufficiently many processes to achieve the level of parallel execution
desired. In addition, grid engine does not provide automated communication between
the processes distributed to separate processors. If inter-process communication is
required (as it often is in parallel executions, if only to return results to a “master”
process) the developer is required to implement a mechanism to provide this.

Grid engine does not allow for dynamic allocation and removal of resources to the
grid, requiring all machines to be pre-configured and listed as members of the grid.
In addition, all grids require that one host be designated the master, requiring at least
some hierarchy for the development (Balachandran, 2003). The software does
however provide automated auditing facilities, allowing for the collection of statistics

regarding resource usage and execution times.

23

Philip Uren
November 2004

3.7. SUMMARY

This review has provided a high-level overview of the issues inherent in the use
of genetic algorithms to solve complex problems. A description of the concepts that
underpin the operation of genetic algorithms was presented, including the schema
theorem, convergence and the genetic operators. This was followed by an exploration
of past research into exploiting the parallel nature of genetic algorithms and in
particular classified approaches based on criteria such as granularity. Advantages and
drawbacks of techniques were highlighted and several algorithms and heuristics
designed specifically for capacited vehicle routing and associated problems were

presented.

Throughout the review, the context of the project was emphasised in an attempt to
prevent the focus from digressing. From the perspective provided by this review, it is
now possible to select and deploy genetic algorithms upon the grid engine topology
that meet appropriate criteria to test the hypothesis. The design and specification of

these algorithms is explored within the subsequent chapters.

24

Philip Uren
November 2004

4. METHODOLOGY AND GENERAL EXPERIMENT DESIGN

4.1. INTRODUCTION

In formulating an approach with which to either prove or disprove the hypothesis
presented above, the requirements must be more formally specified. This chapter will
begin by selecting a series of metrics upon which to base comparative assessment of
several approaches to parallel, distributed and augmented (i.e. heuristic based)
genetic algorithms. Following this, an acceptable representation scheme will be
formulated based on the test problem characteristics. Thereafter, genetic operators
and a selection scheme will be identified that satisfy the requirements of the domain.
Finally, general experiment design will be described and the expected results will be
explored such that a comparison with measured empirical results can be made in a

later chapter.

4.2. METRIC SELECTION

Of initial concern is a metric, or a series of metrics, upon which it will be
possible to assess the efficiency and execution characteristics of any given approach.
As stated by Lobo, Lima, & Martires (2004), there are three main metrics to consider
in measuring efficiency in genetic algorithms: execution time, solution quality, and
memory usage. Although dismissed as essentially constant in a traditional genetic
algorithm by Lobo et al., memory usage within different parallel implementations
may vary and could be of significance. In addition, the communication overheads of
a distributed approach and CPU usage of an augmented algorithm are of concern.
Therefore, the values of execution time, solution quality, memory and CPU usage,
and communication requirements will be used to gauge the efficiency and
effectiveness of algorithms.

As an aside, the metric of final solution quality is in fact rather coarse-grained insofar
as it does not provide insight into the characteristics of the algorithm in achieving
this final output. Indeed there are several concerns when considering the quality of
solutions generated by the genetic algorithm. Primarily, due to the fact that the
algorithm will be run over a predefined number of generations, the consideration of
whether the algorithm is converging prematurely or continues to exhibit genetic
diversity is of consideration. That is, having allowed the algorithm to continue
running past the end of this set number of generations, would it be likely to improve

the quality of its solutions or simply waste the extra computational time? At this

25

Philip Uren
November 2004

point a description of the techniques available for determining this are not presented.
However, a more thorough motivation for their need and a complete specification of
the methods used for measuring this are presented in chapters 7 and 8 respectively.

Obviously, within certain applications, some metrics may not be applicable, for
example communications overhead within a single processor implementation.
Furthermore, the weights attributed to each metric may vary. That is, a metric may
sometimes be important and sometimes not. For example, one may desire an
algorithm that produces good quality solutions no matter the execution time required.
In many cases, where the measurement of a particular metric did not demonstrate any
observations of interest, it is omitted from the results in an effort to avoid obfuscating
important findings.

All metrics are measured over multiple executions of the algorithm in question and
the observed results are averaged. Outliers are discarded where they are significantly
disparate from observed trends. In comparing metrics, the stochastic nature of
genetic algorithms is taken into consideration and the standard deviation of results is
measured. From this, it can be determined if observed discrepancies in measurements
are in fact representative of algorithmic performance differences or are simply
artefacts of the implicit random nature of genetic algorithms. Throughout the
remainder of this work, these metrics will be referred to by the terms performance
metrics and qguality metrics. The distinction between these two is made by whether
the metric is measuring the quantitative performance of the algorithm, such as CPU
time, run time, memory usage, etc. or the qualitative performance of the algorithm,

such as quality of solutions or amount of genetic diversity.

4.3. TEST PROBLEM AND ALGORITHM MECHANICS

4.3.1 PROBLEM REFINEMENT

The test problem employed for these experiments will be that of the capacited
vehicle routing problem, as described in section 3.5. A single instance of the
problem, M n101- k10, which is described in full within appendix B, will be used
for every experiment to ensure there is no variance in results due to problem
complexity. Note that all problem instances used within this work, excepting the test
instances, are from a standard library of capacited vehicle routing problems. Their
optimal solutions are also provided from this library (T. Ralphs, 2003). A variable
sized vehicle fleet will be assumed with uniform, fixed vehicle capacity originating
from a single depot. The test problem is a means rather than an end, and as such the
effective and efficient solution of the capacited vehicle routing problem is not the

26

Philip Uren
November 2004

ultimate goal of these experiments; rather a uniform comparison of the algorithms
employed is the desired outcome.

4.3.2 ENCODING SCHEME

The appropriate selection of encoding scheme requires consideration of the
problem at hand. A complete solution to an instance of the capacited vehicle routing

problem requires the selection of multiple routes containing a number of destination

nodes each. All distances are symmetrical, that is D;; = D;; where D, represents the
distance from node X to node Y, and in addition D, = 0. Every destination node has
a demand, d,. Therefore, a solution to the problem is a permutation of the nodes into
several routes where each route R, satisfies the equation:

aPiC

."_._pg_R‘

where C is the vehicle capacity which is fixed for all routes within the problem

(Pereira, Tavares, Machado, & Costa, 2002).

Consider the following scheme for representing such a solution within a genetic
algorithm. Each gene will represent a single destination in the problem space or a
vehicle. All destinations following a vehicle designation are considered to be a route.

A graphical example is given in figure 4.3.2.1, which shows two routes.

Depot

Route A

T

J

Figure 4.3.2.1: Graphical representation of a sample chromosome within the initial

o~ >

W A N

representation proposition

This representation does not enforce restrictions on solutions, allowing for poor
solutions with good fragments to still exist. It is partially locus-independent because
a destination retains its value regardless of location within the chromosome, but its

27

Philip Uren
November 2004

location does imply the order of a route. Undesired characteristics (for example, a
solution with routes that exceed the vehicle capacity) can be penalised in the
evaluation of fitness for the chromosome. There are, however several serious
problems with this style of representation. Because of the order dependence and
variable length of the chromosomes, the crossover operation is likely to produce a
high number of invalid chromosomes; that is, chromosomes which do not represent a
possible solution to the problem. Partially Matched Crossover (PMX — see section
3.3.3) can be used to deal with the order dependence of the chromosomes but its
application is complicated by variable length.

As an alternative to the scheme presented above, consider instead separating the
destination information from the route delineators. Each individual would now be
represented by two interrelated chromosomes; one for destination order and one for
route delineation. This allows for the application of the PMX operator to the now
fixed length destination chromosome and the modified crossover operation (see
section 3.3.3) to the variable length route delineation chromosome. This also
eliminates all possibility of invalid individuals.

4.3.3 GENETIC OPERATORS

Standard genetic operators (i.e. crossover, mutation and replication) will be
employed, with minor augmentations in some cases to deal with the representation
scheme developed. Each will be weighted at a fixed amount for all experiments to
avoid variance due to changes in operator application probability. As stated already,
PMX will be used to ensure each solution contains a full gene complement. Variable
length crossover will be employed to deal with the mutable size of the route
delimitation chromosome. The genetic operators used within this work are described
in more detail during section 5.2, where they are tested for correct performance.

4.3.4 SELECTION SCHEME

A simple rank based selection scheme where all individuals in a population are
sorted based on fitness value and assigned a rank will be employed (see section
3.3.4). This will minimise the effects of super individuals on selection pressure
(Goldberg, 1989a; Whitley, 1989). Probability of being selected for reproduction will
be proportional to rank. That is, members with a high rank will be allocated more
reproductive trials than those with lower rank.

28

Philip Uren
November 2004

4.3.5 MIGRATION SCHEME

The migration scheme used within the parallel variants of the algorithm will
involve the migration of a random individual from each island to a random island
every generation. Although the algorithm has been developed with the capacity to
vary this migration scheme by selecting only high fitness individuals for migration or
reducing the migration frequency, preliminary observations suggest that modification
of these attributes does not result in significant improvement of performance within
this domain and experimentation involving this is not explored further. Unless
otherwise sated, the migration scheme in use is that which is described here.

4.4. GENERAL EXPERIMENT DESIGN

4.4.1 REQUIREMENTS SEPARATION

The stated hypothesis can be separated into several smaller intermediate goals,
some of which are not directly dependent. The first of these goals is to prove or
disprove the assertion that parallel genetic algorithms outperform their serial
counterparts. Following this, there is the need to show that a distributed approach is
either more efficient or less efficient. Finally, the effects of adding heuristics to the
algorithm must be measured and determined to either improve performance or not.
Measurements of performance, efficiency, and effectiveness will be based upon the
metrics outlined in section 4.2. The following sections will present an experiment

design aimed at addressing each of these requirements.

4.4.2 SERIAL AND PARALLEL COMPARISON

As stated in section 3.4.7, a parallel genetic algorithm need not be distributed
over multiple processors. To make the comparison between the serial and non-
distributed parallel variants of the genetic algorithm, the design explained in section
4.3 will be implemented and tested on the capacited vehicle routing problem as
specified in section 3.5. The algorithm will then be parallelised, maintaining the
operator structure and essentially all of the mechanics of the algorithm. The two
algorithms will be measured based on the metrics presented in section 4.2 and

comparisons drawn.

Fine-grained parallel algorithms are generally designed for specific, high end
hardware. Indeed the concept of assigning a single member of the population to each
processing element is not applicable to a single processor implementation. Therefore,

29

Philip Uren
November 2004

a coarse-grained approach will be taken within this and all further experiments

herein.

The selected parallel implementations will employ a coarse-grained, multi-
population approach with migration between the populations in a timely manner. In
this model, each island will select another for migration to which it will send a
random member of its population. There will be no restriction on the destination
island for migration; that is, no topographical or geographical structure is imposed
conceptually upon the island organisation.

4.4.3 DISTRIBUTED AND NON-DISTRIBUTED COMPARISON

A distributed version of the parallel algorithm introduced in section 4.3 will be
tested and its results compared to that of its non-distributed and serial counterparts.
The purpose during this step is to ascertain the validity of the claim that a distributed
parallel algorithm will outperform the serial and non-distributed variants.
Improvements from the non-distributed parallel to the distributed parallel are
expected to be performance improvements only; that is, the quality of solutions
found are expected to be comparable. During this stage, the number of processors
available for the distributed algorithm will be incrementally increased to determine
the relationship between cluster size and algorithm efficiency. All machines will

have the same memory and CPU characteristics.

4.4.4 HEURISTIC COMPARISON

The final stage of experimentation will involve adding heuristics to each of the
algorithms. Two heuristics based on domain knowledge of the problem will be
incorporated. The first of these will allow for the re-ordering of chromosomes such
that the destination selected first in any particular route is that which is closest to the
depot. The second will be used within a conceptual decomposition of the problem

into sub-problems for parallel evaluation.

4.5. GENERAL EXPECTATIONS

Based on the review of genetic algorithms presented in chapter 3, it is possible to
make educated predictions of the results that should be expected from these
experiments. This section will present the outcomes that are expected, allowing for
comparison with actual observed empirical results at a later stage.

30

Philip Uren
November 2004

It is expected that the non-distributed parallel algorithm will outperform its serial
counterpart due to the increased parallel exploration of the search space. This is due
to the improved maintenance of genetic diversity and the greater search area afforded
by the parallel approach, as outlined in section 3.4. Expected results are better quality
solutions within the same timeframe as the serial algorithm but greater total memory
and CPU usage. Communications overhead is not applicable to this experiment. In
short, the parallel algorithm is expected to show improved performance at an

increase in computational requirement.

The distributed parallel algorithm is expected to demonstrate an almost linear
speedup over the non-distributed variant as the number of hosts increase. This is in
the number of candidate solutions it can evaluate, not necessarily in the quality of
solutions found. A certain amount of improvement in execution time will be lost to
communications overhead. Distributed memory usage is expected to be essentially

identical to the non-distributed version.

Finally, the heuristic-enhanced versions of the algorithm are expected to show
improved solutions quality in a given execution time over all other variants with
essentially the same memory usage and communications overhead. Average CPU

usage per machine is expected to be slightly greater however.
These experiment designs coupled with the expected results provide a more detailed

specification of the hypothesis. Each of these experiments will be run over a 100
generation period, unless otherwise stated.

31

Philip Uren
November 2004

5. ARCHITECTURE, TOPOLOGY AND CONFIGURATION

5.1. ENVIRONMENT

Within the previous chapter, the general requirements of the analysis and the
overall structure of experiments designed to provide insight into the proof or
otherwise of the hypothesis were presented. It is now relevant to describe the
architecture upon which these experiments will be run. This, of course, is a defining
factor in an appropriate low level specification of the desired experiments. Such low
level specifications are explored in depth within the next chapter.

The execution platforms can be conceptually separated into two classes; the 233MHz
execution class and the 800MHz execution class. These two classes of course refer to
the clock speed of the relevant processors. Moreover, as was done in previous
chapters, the algorithms can be separated into three classes: serial, non-distributed
parallel and distributed parallel. Only the last of these three requires a cluster of
machines. Descriptions of the architecture and topology used for the two former
algorithms are trivial, but presented for completeness. As stated previously, use of
the term parallel does not imply distributed unless this has been specifically stated.

5.1.1 SERIAL AND PARALLEL EXECUTION ENVIRONMENTS

The environments for running the serial and non-distributed parallel algorithm
are the same; the only difference is in their usage. The two execution platforms of
233MHz and 800MHz are employed. In general, it will not be stated which one was
used for a particular experiment unless the speed of execution or memory usage is
being evaluated as part of the given experiments comparison metric. The hosts of
speed 233MHz are, unless otherwise stated within the experiment, running only
command-line Linux with relatively little extra load upon the system. The 800MHz
machine however is running Windows XP and is often under extra load. This
discrepancy in system load has been noted and is discussed within experiments

where it is relevant.

5.1.2 DISTRIBUTED EXECUTION ENVIRONMENT

The execution environment for the distributed parallel algorithm is more complex
and flexible than that of the serial and non-distributed algorithms. Of course, to

provide an effective distributed environment, multiple hosts are required, four of

32

Philip Uren
November 2004

which were available for experiments in this domain. The enabling technologies to
provide the cluster were Sun Grid Engine (SGE), Java Remote Method Invocation
(RMI) and the standard Network File System (NFS). All machines are running the
Linux Fedora operating system, one of which has a graphical user interface installed.

The SGE component provides the method for job scheduling and distribution.
Although in general jobs can be submitted to any host and then distributed to an
appropriate member of the cluster for execution, within the context of this work only
submission to the master execution host was utilised. The master host monitors the
load and characteristics of all hosts within the cluster and submits jobs to the
execution hosts. Within the configuration used here, the master host is also an
execution host. That is, jobs may be executed on the master host. Statistics of all jobs
executed are stored, such as CPU and memory usage, execution time and 10. These
statistics form the basis of many of the performance metrics collected for comparison
purposes. Figure 5.1.2.1 shows the four hosts within the cluster. Each host has been
split into three conceptual components; the grid engine component is shown at the
top of each host and the flow of jobs from the master host to the execution hosts is

marked by the solid line.
|'_”_”_”_”_”_”_”_! |
—p» Code : i
| |
: Master Host :
—--—p Jobs I Execution Host '

(Executable Code Server

< --» Migration I

|ITT ST TS ST T ST msoTT e t--=-7 ===

<

[Execution Host

Executable Code Executable Code

Executable Code

1

1

| |

' A4
i [Execution Host]
|

=)

Figure 5.1.2.1: The topology of the distributed environment

33

Philip Uren
November 2004

The grid engine represents the method for effective job distribution, monitoring and
statistical analysis of performance. However, it does not provide a mechanism for
inter-host communications in a distributed parallel process. The concurrently
executing java virtual machines which represent the islands within the distributed
parallel genetic algorithm are such a parallel process. To facilitate their
intercommunication the Java RMI technology was employed to allow indirect
communication between the islands. The configuration for this is similar to that for
the grid engine topology, in that one host is designated as the master and facilitates
communication between all of the islands. As with the grid engine topology, the
master host may also contain an island of its own. This master host also collects
statistics from each of the islands about the quality of solutions found thus far and
generates logs of the overall performance of the islands and the cluster in general. It
is these logs from which the quality metrics used in comparison are derived. The
lowest layer of the hosts shown in figure 5.1.2.1 represents the flow of migrants.
Those migrants leaving the islands are sent to the master host where they will be
redistributed to another island.

Finally, the NFS facility provided with the Linux distribution was employed to
remove the need for duplicate code, executables and logs. That is, the code and
executables were stored within a master host and this was made available to the other
hosts within the cluster via an NFS share. The central segment of the hosts depicted

in figure 5.1.2.1 represents the distribution of executable code from the master host.

5.2. ALGORITHM TESTING

Standard unit and system testing was carried out during development to ensure
the algorithm functions correctly. To test the final algorithm, several small versions
of the capacited vehicle routing problem were devised with relatively simple
solutions. The motivation for testing on small problems was to reduce the search
space so as to allow a brute force enumeration of the possible solutions. It also
allows visual inspection of the problem to verify solutions and manual computation
of route distances to ensure correctness. One such test instance is presented here, in
several modified states to demonstrate this final testing measure. All three variants
are present in their entirety in appendices A0, A1 and A2.

The instance in question contains five nodes — one depot and 4 destinations. The

vehicle capacity is 33 units. Due to its brevity, the full co-ordinate and demand
specification is presented in table 5.2.1 and displayed graphically in figure 5.2.2.

34

Philip Uren
November 2004

Table 5.2.1: The test CVRP instance; node 1 is the depot. Fully presented in appendix A0

Node X co-ordinate Y co-ordinate Demand
1 30 40 0
2 37 52 19
3 49 49 20
4 52 64 6
5 20 30 10
4
> L2 3
70
60 *
v
50 *: ‘,'
\ 4
40 *
> v
30 *
20
10
0
0 10 20 30 40 50 60
X

Figure 5.2.2: The test CVRP represented graphically. Node 1 is the depot.

The problem was solved first using a brute force enumeration of all the possible
permutations of routes. There exist multiple solutions which minimise the total
distance travelled. One such solution contains three routes, the first being to node 2,
the second to node 4 and the last to nodes 3 and 4 in that order. The total distance
travelled in such a solution is 124 units. Manual computation of edge weights
confirms this value and, in conjunction with other similar tests“, confirms the correct
operation of the distance dependent computation of solution fitness. Manual
inspection, although tedious, also proves this to be a minimum combination of edge

weights within the graph.

Knowing the optimal value for this problem instance, the genetic algorithm was
executed and found the optimal solution on average in less than 3 generations. It is
promising at this stage to note the effective decrease in computational time required

" Which are omitted here as they are essentially repetition of the same approach with different
instances designed to capture boundary conditions etc.

35

Philip Uren
November 2004

by the genetic algorithm over the brute force enumeration. However, this work is in
no way aimed at comparing the performance of genetic algorithms to brute force
search, or other search techniques.

A modified version of the above instance is now presented as an additional
examination of correct operation. The vehicle capacity is changed from its original
33 units to a value of 45 units. The optimal solution found by the brute force
enumeration contains only two routes now; one containing destinations 2, 3 and 4
and one containing only destination 5. The total distance cost is now 96. Visual
inspection and manual computation once again shows this to be the correct trip cost
and the smallest possible combination of edge weights within the problem
constraints. The genetic algorithm finds the same solution on average within the first
few generations.

One final modified version is constructed by changing the demands section of the
problem, the vehicle capacity remains at its original 33 units. The new node demands
are presented in table 5.2.3 and intuitively will require the dispatch of a single
vehicle to each of the nodes. Indeed this is the structure of the solution presented by a
brute force enumeration; one route for every node in the set of 2,3,4,5 resulting in a
total distance of 163 units. Manual inspection once again verifies this trip cost and
the genetic algorithm arrives rapidly at the same result.

Table 5.2.3: the final modified test CVRP instance, fully described in appendix A2

Node X co-ordinate Y co-ordinate Demand
1 30 40 0
2 37 52 33
3 49 49 33
4 52 64 33
5 20 30 33

At this point within testing, the representation and problem specific operation of the
algorithm has been extensively tested and shown to function correctly. However, the
operation of the genetic algorithm — in particular the crossover procedures — has not

been adequately reviewed and will therefore be examined in closer detail.
Within this evaluation, the correct function of the genetic operators is considered

based on their specification by Goldberg (1989a) and as described in section 3.3.3.
Their effectiveness in the problem domain is not considered. That is, this section will

36

Philip Uren
November 2004

validate the function of these operators rather than verifying that they produce useful
results. Exploration of the usefulness of results obtained will be given attention

during the examination of experimental performance in later chapters.

This section reviews the functionality of the partially matched crossover, the variable
length crossover and the mutation operation applied to both the variable length and
fixed length chromosomes. The replication operation is sufficiently trivial that its
testing has been omitted here. This section also gives an opportunity for a more in-
depth view of the function of the selected operators.

Standard white box testing of the partially matched crossover is presented first by
demonstrating the boundary conditions and several ‘internal’ instances are handled
correctly. Intuitively, there are two trivial boundary conditions; the case where the
crossover section is empty or the case where it contains the full chromosome. The

former is presented in table 5.2.4; however the output of both would be identical.

Table 5.2.4: Results of the PMX operator. The crossover points were both 3, forming an empty
crossover section.

Parents Children
1(0) 2(1) 3(2) 4(3) 5(4) 1(0) 2(1) 3(2) 4(3) 5(4)
5(0) 4(1) 3(2) 2(3) 1(4) 5(0) 4(1) 3(2) 2(3) 1(4)

Beyond this, the selection of a crossover section will contain an internal section of
the chromosomes. One such example is presented in table 5.2.5. Here the crossover
section is defined to be the genes in positions O to 3 inclusive. The ‘section
crossover’ column shows the children after exchanging the two crossover sections.
Notice that there are duplicate genes within the child chromosomes at this point.
Following this, the duplicates are removed by selecting appropriate members within
the other child chromosome to swap with. In this case, the 5 and the 1 are swapped in
position 4, but the position need not be uniform.

Table 5.2.5: The PMX operator with boundaries before locus 0 and before locus 4. The
crossover section is underlined.

Parents Section Crossover Final Children
1(0) 2(1) 3(2) 4(3) 5(4) 5(0) 4(1) 3(2) 2(3) 5(4) | 1(0) 4(1) 3(2) 2(3) 5(4)
504 3(2)2(3) 1(4) 1(0) 2(1) 3(2) 4(3) 1(4) | 5(0) 2(1) 3(2) 4(3) 1(4)

Several extra tests were run of this operator and it was concluded to be functioning
correctly.

37

Philip Uren
November 2004

Following this, the variable length crossover is tested. The trivial case of crossing
two chromosomes with a length of 0 is omitted here. The first case of interest is in
crossing a zero-length chromosome with a non-zero length chromosome. The
possible outcomes are not changing either chromosome, which is trivial and is not
shown here, or splitting the non-zero length gene into parts divided between the
children. An example of the later is given in table 5.2.6 where the first three
chromosomes are copied from the top parent to form the second child; the final two

remain to form the first child.

Table 5.2.6: The variable length crossover operator with an empty parent.

Parents Children
1(0) 2(1) 3(2) 4(3) 5(4) 4(0) 5(1)
<empty> 3(0) 2(1) 1(2)

The next case is where both chromosomes contain only one gene each. There is a
chance of the children being identical to the parents, or one child containing both
genes and the other only one. An example is not presented due to simplicity,
however this functionality was verified. The majority of crossovers that occur with
the variable length crossover operation however are with irregular chromosomes of
length greater than one. In this case, the crossover is performed by first aligning the
chromosomes and then selecting a cross point. Table 5.2.7 shows an example
observed during testing this operation. The parents are aligned and the genes for
crossover have been underlined. The 1 and 4 genes are exchanged between the two
chromosomes and they are re-ordered to produce the children.

Table 5.2.7: the variable length crossover operator with irregular chromosomes. The crossover
section is underlined

Parents Children
1) 2(1) 3(2) 2(0) 3(1) 4(2)
5(0) 4D 3(2) 2(3) 1(0) 2(1) 3(2) 5(3)

The final operators considered here are the mutation operators for the variable length
chromosome and the fixed length chromosome. Both were tested for compliance
with the specifications. The results of several test cases are presented here to
demonstrate function and confirm the correct performance of these operations. As
changing the value of a gene randomly would lead to an invalid chromosome, the
fixed length mutation simply swaps two random genes within the chromosome. This
is trivial hence an example test is omitted. The mutation operation for the variable

38

Philip Uren
November 2004

length chromosomes is slightly more complex, allowing an increase and decrease in
chromosomes length in addition to swapping genes as the fixed length mutation does.
In addition, because the variable length chromosome can potential be missing
symbols from the full chromosome alphabet, a random mutation of a single gene into
one of these missing values is also possible. Several example cases from the testing
are presented in table 5.2.8.

Table 5.2.8: The variable length mutation operator. These examples demonstrate the random
mutation, mutation by increasing chromosome length and mutation by decreasing
chromosome length respectively.

Before Mutation After Mutation

1(0) 2(1) 3(2) 5(3) 8(4) 1(0) 2(1) 3(2) 7(3) 8(4)

1(0) 2(1) 3(2) 5(3) 8(4) 1(0) 2(1) 3(2) 5(3)

1(0) 2(1) 3(2) 5(3) 8(4) 1(0) 2(1) 3(2) 5(3) 6(4) 8(5)

This section has presented a verification of the correct function of the algorithm
developed by deploying it upon a small instance of the capacited vehicle routing
problem. Brute force solutions for this small instance can be found and checked
manually for consensus with the developed algorithm. Furthermore, some sample
cases from the unit testing of the genetic operators deployed within this work were
presented. This demonstrated their correct functionality and concurrently gave a
more detailed description of their operation.

39

Philip Uren
November 2004

6. DETAILED EXPERIMENT DESIGN AND EXPECTATIONS

6.1. SERIAL — SCALING COMPUTATIONAL POWER

This experiment was designed to highlight the effects of scaling the
computational power of the host machine that the serial genetic algorithm was being
run upon. Two machine speeds are available; 800 MHz and 233MHz. The other
characteristics of the machines (RAM, etc.) are essentially the same. The serial
algorithm will be executed on both these machines to 100 generations and the

selected metrics measured for each machine over several repeats of the experiment.

The results of this experiment are expected to demonstrate, of course, a decrease in
the time required to complete 100 iterations of the genetic algorithm. Based on the
difference in CPU speed, the expected increase is approximately 3—4 times. Beyond
this, no improvement in quality of solution, convergence or memory usage is

expected.

6.2. NAIVE PARALLEL AND SERIAL COMPARISON

The naive parallel version of the algorithm is simply several concurrently
executing serial algorithms, from which the total best solution is selected upon
completion of all algorithms. Both this and the serial algorithm will be executed on a
single platform of the same characteristics and a comparison between the two will be
made based once again upon the selected metrics. The number of concurrently
executing serial algorithms within the naive parallel algorithm will be increased and
the level of improvement gained in solution quality from these increased ‘cluster’

sizes will be measured.

The results of this experiment are expected to demonstrate that the naive parallel
algorithm in general outperforms the serial algorithm based upon the measure of
solution quality. Beyond this simple expectation, the constituent serial algorithms
that are aggregated by the naive parallel algorithm are expected to perform without

major difference from the serial algorithm.

At this point, the previous two experiments are essentially provided to establish
completeness and several desired properties of the algorithms. The expected
performance to this point is indeed rather intuitive; however the results are included

to confirm that these simple properties hold.

40

Philip Uren
November 2004

6.3. NON-DISTRIBUTED PARALLEL AND SERIAL COMPARISON

This experiment compares the performance of the non-distributed parallel and
serial algorithms. As expounded earlier, the non-distributed parallel algorithm is
executed entirely upon a single host, but incorporates several concurrently executing
serial algorithms. The difference between this and the naive parallel algorithm is that
migration is allowed between the separate serial algorithms which are aggregated by
the parallel algorithms. These constituent parts are often referred to as islands or
demes; both terms were used in previous sections and will continue to be used
essentially interchangeably. This experiment is also aimed at identifying the
relationship between the population size within the distributed and serial algorithms.
The serial algorithm will be executed with a 300 member population and compared
with the results of executing the parallel algorithm with a 100 member population
and 3 islands (effectively 300 members). The parallel algorithm will also be run with
a single island of 300 members.

The result of this experiment is expected to demonstrate an improvement in the
quality of the final solution found by the non-distributed parallel algorithm over
those found by the serial algorithm. Convergence is expected to improve within the
parallel algorithm as genetic diversity is favoured by the migration scheme (as was
explored in section 3.4.7). It is expected that the 300 member parallel algorithm
(with only a single island) will produce relatively similar results to the serial
algorithm with 300 members. The parallel algorithm with three islands is expected to
demonstrated improved performance due to an increase in genetic diversity as a

result of the population segregation.

Trends in CPU and memory usage are expected to perform intuitively.
Measurements are expected to be slightly higher for the parallel algorithms over the
serial algorithm due to an increase in control structures and inter-island
communications. Of course, network usage is an irrelevant metric within this
experiment due to the utilization of only a single host.

6.4. DISTRIBUTED PARALLEL AND SERIAL COMPARISON

At this point within the experimentation, the distributed parallel algorithm is
introduced and its performance was gauged against the serial algorithm. The parallel
distributed algorithm was run with three islands of 100 members each and compared
to the performance of the serial algorithm with a 100 member population. Of course

41

Philip Uren
November 2004

this is the first experiment where the metric of network usage is of concern. However
as the serial algorithm does not generate any network traffic, there is no comparison
to make. Hence it will not be explored as more than a benchmark for the network
performance of the parallel distributed algorithm.

Within the comparison of the distributed algorithm with three islands and the serial
algorithm, the results should demonstrate improved performance. These will be
characterised by higher quality solutions after the same number of generations as the
serial algorithm. Of course, there will be a corresponding increase in performance
metrics for the parallel distributed algorithm due to the increased computation and
the communications overhead. Convergence characteristics of the distributed parallel
algorithm are also expected to offer an improvement over the serial algorithm. This
is due to an increase in genetic diversity as a result of the population segregation.

6.5. INCREASING CLUSTER SIZE

The cluster size within the parallel distributed algorithm will be increased to
measure the effect this has on both the quality metric and performance metrics. The

variation in cluster size will be from one host to a maximum of four hosts.

The effects of the increase are expected to produce results of uniform improvement
within the quality metric. Similar increases within the performance metrics are
expected to reflect the increased computation and resource usage. Convergence is
also expected to lessen as the cluster size increases, owing to a higher genetic

diversity over the total increased population size.

6.6. EFFECT OF NAIVE HEURISTIC

The re-ordering heuristic described in section 3.5.4 is introduced here in an
attempt to improve solution quality. Briefly, this heuristic is based on the concept
that optimal routes will begin with the destination closest to the depot and end with
that which is farthest away. The heuristic applied here is referred to as the naive
heuristic because it is applied without any consideration of its benefit in fitness and

to all solutions within each generation.

The results are expected to show that applying this heuristic increases the execution
time and memory usage, but provides an improvement in the quality of the solutions
found over the 100 generation trial period. Test will be conducted upon both the
serial and distributed parallel algorithm but results are expected to be essentially

42

Philip Uren
November 2004

identical for both algorithm types. Machado et al. (2002) explored the effect of
adding a K-nearest neighbour (KNN) heuristic to a genetic algorithm approach to
solving the vehicle routing problem. Their results were characterised by an increase
in average fitness and best individual found, as summarised in figure 6.6.1.

Cost
m
a
=

700

Time in :Iszrlemnds- 0og 10000

GA

GA+HNN |

Figure 6.6.1: The results of experiments performed by Machado et al. (2002) into the addition
of a KNN heuristic to their GA solution to a VRP. Cost is analogous to the
measure of fitness used within this work.

6.7. PROBLEM DECOMPOSITION PARALLELISATION

The problem decomposition approach to parallelising the genetic algorithm is
significantly different from the parallel algorithms used thus far. The concept of
breaking the problem up into sub-problems and the constituent sub-problem parts of
the capacited vehicle routing problem are is discussed in section 3.5.4. This
experiment will measure the effect of two different decomposition methods. Problem
decomposition is in effect a heuristic, as it requires knowledge of the problem
domain to arrive at a suitable problem separation. For example, it is necessary to
know that the depot node must be duplicated in every sub-problem for the
decomposition to be valid.

The first problem splitting approach examined is a simple split of the problem space
into four groups. This is referred to as the naive four-way decomposition due to the

43

Philip Uren
November 2004

fact that it does not consider the suitability of assigning destinations to each of the
sub-problems. In short, the first 25% of destinations in the problem are assigned to
sub-problem one, the next 25% to sub problem two and so on. The four sub-
problems are presented for reference in appendix CO, C1, C2 and C3. Each sub-
problem is executed in parallel on a separate host and the results are re-unified to

arrive at a final solution.

The second approach explored will be a semantic decomposition of the problem
based on an understanding of its component requirements. As noted in section 3.5,
the CVRP is in fact the intersection of the bin-packing problem and the travelling
salesman problem. Based on this knowledge, a conceptual decomposition of the
problem into these two components is possible. The bin-packing component is
addressed first by finding an optimal number of vehicles and assigning destinations
to vehicles such that each vehicle has as close to its maximum capacity as possible
but no more. That is, minimise the wasted vehicle capacity. Following this, each
vehicle route represents an instance of the travelling salesman problem and can be
optimised for shortest tour length independently of other routes. The only constraint
not immediately addressed here is the need to group destinations which are
geographically similar into the same route. This decomposition is achieved in
practise here by applying the K-means clustering algorithm to solve the bin-packing
component and group close destinations into the same route. Following this, the
genetic algorithm is applied to solve the constituent travelling salesman problems in
parallel.

These two forms of problem decomposition also provide a significant reduction in
the problem space. The naive decomposition reduces the search space by disallowing
combinations of destinations from separate sub-problems and the conceptual
decomposition does the same by disallowing combinations of destinations from
separate clusters. In fact, the conceptual decomposition reduces the search space
even further due to the fact that it separates the original problem into more sub-

problems than the naive approach.

Assuming the validity of the heuristics used for splitting the problem, the solution
quality is expected to be improved over the other variants of the algorithm due to the
greatly reduced search space. Performance metrics are also expected to improve due
once again to the reduced search space and hence lower computational requirements.
Network bandwidth will be essentially zero, since the only stage of communication is

for the initial distribution of sub-problems and the final re-unification of solutions.

44

Philip Uren
November 2004

7. RESULTS AND OBSERVATIONS

7.1. SERIAL — SCALING COMPUTATIONAL POWER

This experiment was aimed at measuring the performance changes in the serial
algorithm by increasing the computational power available to it. The method and

expected results of this experiment were presented in section 6.1.

The results demonstrated no apparent change in quality of solutions found. This can
be seen from figure 7.1.1, which shows the average fitness of solutions over the
sample runs for each machine speed. The average best of population and best ever
results are similarly unaffected by processor speed. Execution speed however is
improved, as was expected, but by a lesser amount than originally anticipated. As
can be seen from figure 7.1.2, there is an effective 2.5 fold decrease in execution
time, although the 800MHz processor is almost three and a half times faster. This
discrepancy can be explained by the difference in operating environment. The
800MHz machine is running windows XP with extra application load, where as the
233MHz machine is running Linux in command line mode only, with relatively little
extra application load. In support of this, the 800MHz machine was measured with a
baseline load of approximately 15% during the execution of the experiments, where
as the 233MHz machines had a baseline load of approximately 1%. Applying these
offset, the effective operating speed of the 800MHz machine for the experiments is
only 680MHz. This is still more than 2.5 times the effective operating speed of the
233MHz machines however. The remaining discrepancy can be put down to
differences in final executable code for the different platforms and 10 bottlenecks.

45

Philip Uren

November 2004
Average Population Fitness
12000
10000
S =
8000 2 —
6000
4000
2000
O TTTTTTTT T
SO RP PR RPREAR S P
&
&
—— AveragePopulation Fitness (233MHz)
Average Population Fitness (800MHz)

Figure 7.1.1: The average population fitness over the 100 generation test period for the serial
algorithm running on both the 800MHz platform and the 200MHz platform.

Average Execution Time
250000
0
2 200000
§ 150000
Z 100000
£ 50000
E
0 TTTT T I T T T T T T T T T T T T T e TTTTTT
= [« s N~ © To} < [30) [aV] — o [=2]
_g - [aV} [$) < [Te} © N~ © (=) [}
©
9]
c
[
0]
‘ — Average Execution Time (233 MHz) —— Average Execution Time (800MHz) ‘

Figure 7.1.2: The Average execution time of the serial algorithm running on the 233MHz and
800MHZz platforms over 100 generations.

The important result of this experiment, rudimentary though it is, was to demonstrate
that external factors influence the results obtained within these experiments.
Apparently small differences can lead to significant discrepancies in the results
obtained. Related to this is the notion that sound theoretical principles often initially
appear not to be backed up by empirical evidence due to uncontrollable variations in
the environment.

7.2. NAIVE PARALLEL AND SERIAL COMPARISON

Briefly, this experiment was intended to highlight the naive approach to
parallelising the algorithm. The method and expectations for this experiment were

46

Philip Uren
November 2004

described in section 6.2. The serial and naive parallel algorithm (with an increasing
number of parallel executions of the serial algorithm) were run multiple times and
the average outcomes were collected. The results produced are consistent with
expectations in that this naive parallel algorithm has, on average, better performance
than the serial algorithm. This can be seen from the graph in figure 7.2.1, where the

average results from the experiment are presented.

Indeed, the importance of this result is that a simple approach to parallel genetic
algorithms can yield benefits which may not originally have been expected. As will
become evident later this simple approach does indeed produce results which are
quite comparable to the more advanced algorithms.

Average Fitness

2540
2520
2500
2480
2460
2440
2420
2400
2380

Serial Average Two Runs Three Runs Four Runs
Average Average Average

Fitness

Figure 7.2.1: The average fitness of the best solutions found within the naive parallel algorithm
with increasing parallel executions.

7.3. NON-DISTRIBUTED PARALLEL AND SERIAL COMPARISON

This experiment, as described in section 6.3, was aimed at comparing the
performance of the non-distributed parallel algorithm with the serial algorithm. The
first set of results compares the average fitness of the best solutions found in two
parallel algorithms and one serial. That is with 3 separate populations (islands) of
one hundred members each'?, one single island with three hundred members'” and
the serial algorithm with three hundred members.'* The results, as presented in
figure 7.3.1, demonstrate that both of the non-distributed parallel algorithms
generated similar performance, whereas the serial algorithm performs slightly worse.

2 Marked “3x Islands” on the graphs
1> Marked “3x Population Parallel” on the graphs
' Marked “3x Population Serial” on the graphs

47

Philip Uren
November 2004

This is somewhat surprising on one count; the parallel algorithm with a single 300
member population is conceptually identical to the serial algorithm with the same
population size, however their performance is different. This will be discussed
further below. The remainder of the conclusions that can be drawn from this data are
in keeping with the expected results however. The two parallel algorithms produce
essentially the same result. The multiple islands variant was slightly more successful.
However, such a small difference could be due to the stochastic nature of the

algorithm or uncontrollable changes within the operating environment.

Average Fitness

2550

2500

2450

Fitness

2400

2350

2300 T T
3x islands 3x Population Parallel 3x Population Serial

Figure 7.3.1: The average fitness of the best solutions found by the increased population serial,
increased population non-distributed parallel and multiple island non-distributed
parallel algorithms

As outlined in section 6.3, it was predicted that all three algorithms would produce
similar results. The only discrepancy then is the difference in average result between
the serial and parallel algorithms. This characteristic can likely be attributed to the
migration scheme within the parallel algorithms during this experiment, which
performed migration of based on fitness. Even within the parallel algorithm with
only a single island, there is a migration scheme — individuals are simply migrated
back to the single island. In affect, this is increasing the elitism of the algorithm, as
members for migration within this algorithm are selected based on their fitness."
There is, perhaps one counterpoint to this suggestion, and that is to note that a small
increase in elitism is unlikely to produce much change in the solutions. In fact, the
improvement shown in figure 7.3.1 is somewhat deceptive; there is only a one
percent improvement in solution quality generated by the parallel algorithms over the

serial one.

' That is, the best individual is selected for migration during each generation which, within the single
island parallel model, allows it automatic inclusion in the next generation.

48

Philip Uren
November 2004

As all the algorithms were executing on a single machine with the same total number
of individuals, it was expected that the execution times would be similar; however
this was not the case. Figure 7.3.2 presents the average execution times for each of
the three types of algorithm. As can be seen, the non-distributed parallel algorithm
with three islands has a significantly longer average execution time.

Average Execution Time

3500
3000
2500
2000
1500
1000
500 1|

; | I —
3x Islands 3x Population Parallel 3x Population Serial

Time (Seconds)

Figure 7.3.2: The average execution time of the three algorithms, demonstrating a sharp
increase in the split population model (3x Islands).

The memory usage of the three algorithms was also expected to be relatively similar,
however experimental results showed quite a large variation between the algorithms

with a single population and that with three separate populations. Figure 7.3.3 shows
this difference.

Average Memory Usage
2.5
2
o 1.5

&

1
0.5

O T T

3x Islands 3x Population Parallel 3x Population Serial

Figure 7.3.3: The average integral memory access, measured in Gb/second of the three
algorithms, demonstrating a sharp increase in the split population model (3x
Islands).

49

Philip Uren
November 2004

Comparing figure 7.3.2 with figure 7.3.3, it is apparent that the algorithm model with
separate populations requires much greater memory access and longer execution
times. Investigation of the structure of the code lends some insight into the memory
usage trends. The parallel algorithm, even with only one island possesses several
extra control structures for migration and communication over the serial algorithm,
leading to the minor increase in memory usage between the 3x Population Parallel
and the 3x Population Serial model. The dramatic increase in memory usage for the
3x Islands model is due to the three fold duplication of these control structures,
although this only accounts for some of the increase. The remained can be explained
by considering the dynamics of the memory access in question. The graph shows the
amount of memory access per second; with multiple threads running concurrently —
as is the case within the multiple population model (3x Island) — the memory access

for context switch is increased.

A similar argument to that provided for the additional memory access is applicable
for the increase in execution time required for the multi-population algorithm.

However in this case the effect of increased iteration in outer loops also contributes.

In general, the complexity of the algorithm is of the order O(rir) where m is the

number of islands within a virtual machine and # is the number of individuals.

Consider the situations presented above where the number of islands is 3, 1 and 1
respectively and the number of individuals is 300 for all experiments. This gives an
expected running time for the multi-population algorithm of approximately 3 times
that of the single population algorithms. The remaining discrepancies in running time
between the two single population models can be explained, as was done above, by
the increased control operations required in the parallel version. Similarly, the extra
increase in computational time for the multi-population model is attributed to the
overhead of context switch (as it is multi-threaded) and increased 1O wait time.

The relevance of these results is in demonstrating the increased computational time
and memory usage of the split population model over the naive parallel and serial
algorithms. In addition, the benefit of the parallel algorithms is shown in terms of
solution quality. However, the results of the single island parallel algorithm suggest
that the improvement is more related to an increase in elitism due to the migration
scheme being used. This could be further confirmed by measuring the change in
result provided by modifying the elitism within the serial algorithm.

50

Philip Uren
November 2004

7.4. DISTRIBUTED PARALLEL AND SERIAL COMPARISON

As described in section 6.4, it was expected that the distributed parallel algorithm
would outperform the serial algorithm by improving convergence characteristics and
hence allowing a more thorough exploration of the search space. Although an
increase in execution time was expected as a result of the inter-island
communication, an increase as profound as that which was observed was not
anticipated. As can be seen from the graph in figure 7.4.1, there is an approximate
two-fold increase in cumulative execution time. Note that the parallel algorithm
running on each of the islands only differs from the serial one by the inclusion of a
communication step. Within this communication the island updates statistics on a
server and performs migration. It must be the case that this communication stage is
taking approximately as long to execute as the remainder of the algorithm. This
follows from the results of the previous experiment, which suggested that more than
one island attempting to communicate with the server caused an increase in required
execution time due to IO blocking.

Average Cumulative Execution Time

— 250000
S
£ 200000
8
& 150000 — Parallel
s 100000 —— Serial
(]
£ 50000
P 0 T I T I TITTT

C 0O © ¥ A O 00 © ¥ N O o ©

o - N O F 0 © N 0 0o O

[

()

c

[

S

Figure 7.4.1: The average cumulative execution time for the serial and distributed parallel
algorithm with three islands. The execution time for the parallel algorithm is an
average of that measured for each island, rather than a total for all hosts.

The performance of the distributed algorithm was marginally better than the serial
algorithm when basing the comparison on the average fitness of the best solution
found after 100 generations. This can be seen in figure 7.4.2, where the two values
are compared. However, the improvement is relatively minor and does not reflect the
fact that the parallel algorithm has three times the computational power at its disposal

and three times the population.16

' This is true of the particular case in question, where there are three islands within the parallel
algorithm with 100 members per island, rather than in general.

51

Philip Uren
November 2004

Average Best Solution

2600

2550

2500

2450

Fitness

2400

2350

2300
Parallel Distributed Serial

Figure 7.4.2: The average best solutions for the distributed parallel and serial algorithms with
100 member populations after 100 generations.

The parallel distributed algorithm was also expected to show improved convergence
characteristics over the serial algorithm. Convergence can be estimated by comparing
the fitness of the best of generation and the average fitness of all individuals in the
generations. When these values are close, there are many other individuals within the
generation that have a similar fitness to that of the best of generation and hence are
likely to have similar genetic makeup. The results of this comparison are presented in
figure 7.4.3, which seems to indicate that genetic diversity is being maintained, due
to the constant separation of average and best fitness. These results are in conflict
with the observed performance however, as all variants of the algorithm demonstrate
an initial good rate of exploration but soon degenerate. Improvements thereafter are
slow and relatively random. Further investigation of the convergence of the

algorithm was clearly called for and is presented in chapter 8.

Average and Best Fitness Seperation

12000
10000 -\

8000 —
6000
4000
2000

—— Awerage Fitness (Total)

—— Average best of Gen

Fitness

0 LR LR R R R LR U AR LR LR IR LA R AR

1 12 23 34 45 56 67 78 89 100

Generation

Figure 7.4.3: The separation of average fitness and the fitness of the best individual per
generation within the distributed parallel algorithm with 3 islands each of 100
members, measured over 100 generations.

52

Philip Uren
November 2004

The results of these experiments demonstrate that the distributed parallel algorithm
demonstrates improved solution quality over the serial algorithm. In fact, comparing
these results with those obtained in section 7.3 for the non-distributed version of the
parallel algorithm shows a slightly worse level of solution. Note however that the
standard deviation within the final fitness measures of the parallel algorithms is
approximately 35 units. The results presented for the distributed parallel algorithm
are, in general, within one standard deviation. Hence, the discrepancy could be
attributed to the stochastic nature of the algorithms. The increase in execution time is
also comparable to that observed with the multi-population model of the non-
distributed parallel algorithm. That is, the parallel distributed and non-distributed
algorithms exhibit results which are reasonably similar. Finally, the first measure of
convergence and genetic diversity made here gives the initial conclusion that
diversity is being maintained within the parallel distributed algorithm. However, this

result will be further explored in chapter 8.

7.5. INCREASING CLUSTER SIZE

7.5.1 RESULTS AND OBSERVED TRENDS

This experiment was aimed at measuring the effects of increasing the cluster size
used to perform the parallel distributed algorithm on. The method and expected

results are given in section 6.5.

The first measure made was that of required CPU time, the results of which are
presented in figure 7.5.11. Generally the required CPU time per island was uniform,
as expected; the times presented for the one, two and three host clusters are all within
one standard deviation of each other. The only exception was that of the four host
cluster. Inconsistencies were observed in the measures for all of the tests involving

the four host cluster and these will be collectively explained shortly.

Wallclock time was also measured and behaves as expected. Increasing the number
of hosts increases the amount of time each host spends to complete the execution of
the algorithm, but does not increase the actual time spent computationally (the CPU
time). Combining this with the results obtained for CPU time, it is clear that the
increase in wallclock time associated with increasing the cluster size is not due to
extra computation. The amount of CPU time required remains relatively constant and
hence the increase is due to blocking on IO. This is either owing to an increased load
on the server, the network or a combination of the two. The results obtained showing
network usage, displayed in figure 7.5.1.6, corroborates this; as the cluster size
increases the usage of the network also increases. Due to the fact that the

53

Philip Uren
November 2004

experiments were carried out on a shared, multiple access medium, the collision rate
also increased. This is likely to have lead to delays in response due to packet
retransmission. This explains the increase in wallclock time, but the relative stability
of computational time. Tanenbaum (1996) provides an excellent description of the
collision characteristics of Ethernet — the network technology that was used within
these experiments.

CPU Time

194.5
194
193.5
193
192.5
192
191.5
191
190.5
190

Time (Sec)

One Host Two Hosts Three Hosts Four Hosts

Figure 7.5.1.1: The execution time spent on the distributed parallel algorithm with varying
cluster sizes for a 100 member population per host. Measured over 100
generations.

Waliclock Time

350
300
250
200
150
100

50

Time (Sec)

One Host Two Hosts Three Hosts Four Hosts

Figure 7.5.1.2: The total running time (wallclock) time for the distributed parallel algorithm
with varying cluster sizes. Measured in seconds, over 100 generations with a
population size of 100 members per host.

The quality of the best solutions found by each of the cluster sizes was also measured
and demonstrated that the major improvement was had by increasing the cluster size
from one to two hosts. Adding a third host provided only minor improvement and

adding a fourth host actually resulted in slightly worse performance. However, the

54

Philip Uren
November 2004

outcomes of the two, three and four host clusters are quite similar, and the variation
is quite possibly due to the stochastic nature of the genetic algorithm. The results are
presented graphically in figure 7.5.1.3. The lack of improvement in solution quality
for the larger clusters is inconsistent with the expected results and implies a lack of
effective search of the problem space. The likely cause of this is premature

convergence, addressed more thoroughly in chapter 8.

Average Best Solution

2600
2550 N
2500

2450
2400 i ——
2350
2300

Fitness

1 2 3 4
Number of Hosts

Figure 7.5.1.3: The average best solutions found by the distributed parallel algorithm with
varying cluster sizes measured over 100 generations with population size of 100
members per host.

The memory access of the varying cluster sizes was also measured. Once again, the
results of the four host cluster were inconsistence. This initially appears to
demonstrate an improvement in memory access for the larger cluster sizes, but is
actually an artefact of the increased wallclock time. The measure of memory access
is the quotient of total memory accessed divided by the total execution time.
Multiplying the memory access by the total time gives the total memory access,
which is graphed in figure 7.5.1.5, showing that all (excepting the four host cluster,
once again) cluster sizes used similar amounts of memory per host. This is in keeping

with the expectations outlined in section 6.5.

55

Philip Uren
November 2004

Memory Access

0.305
0.3
0.295
0.29
0.285
0.28
0.275
0.27
0.265
0.26
0.255

GBytes/second

One Host Two Hosts Three Hosts Four Hosts

Figure 7.5.1.4: Memory access measured in gigabytes per second for the distributed parallel
algorithm with varying cluster size over 100 generations with a population of
100 members per host.

Total Memory Usage

100
90
80 —
70 —
60 —
0]
40 —
30 —

Memory (GBytes)

10 —
0 T T
One Host Two Hosts Three Hosts Four Hosts

Figure 7.5.1.5: The total memory usage measured in gigabytes for the distributed parallel
algorithm with varying cluster size measured over 100 generations with a
population size of 100 members per host.

Network access was also measured and behaved essentially as expected, with a
roughly linear increase in the amount of network traffic generated as the size of the
cluster was increased. Once again, there was an exception to this trend demonstrated
by the four host cluster, which is explained in the following section. The baseline
network activity was measured and found to be almost negligible at approximately
1.93 kilobits per second. Recall that the network usage is not only restricted to the
communication of individuals as part of the migration scheme but also includes an
initial transfer of executable code for the islands as well as transmission of statistical
data to the server. However, since all the cluster sizes possess these overheads,
effective comparison can be made without eliminating their effects.

56

Philip Uren
November 2004

Network Access

600

500

400

300

Kbits/second

200

100

One Host Two Hosts Three Hosts Four Hosts

Figure 7.5.1.6: Network access measured in Kilo-bits per second for the parallel distributed
algorithm with increasing cluster sizes over 100 generations with a population of
100 members per host.

7.5.2 FOUR HOST CLUSTER VARIANCE

As was mentioned several times in section 7.5.1, the results obtained from the
four host cluster were inconsistent with those of the smaller clusters. This is due to
the topology and usage of the four machines, which was detailed in chapter 5. One of
the hosts runs the KDE graphical user interface for Linux, is the master host for the
grid engine, contains the migration and statistical server for the genetic algorithm and
serves the executable code for the other hosts. Not surprisingly then, this machine is
quite heavily loaded. For all cluster sizes of less than four machines, it had been
omitted from the selection of execution hosts for the genetic algorithm by the grid
engine scheduling service. However, this left only three machines suitable for
hosting an island of the genetic algorithm. When the desired number of islands
exceeded three (as was the case with the four host cluster), one of two possible cases
occurred. The heavily loaded master host was selected to contain an island or one of
the other hosts was selected to contain two islands executing concurrently on the
same processor. This decision was made dynamically by the grid engine at execution
time and was the cause of the unexpected results demonstrated by the cluster size of

four.

In the first case, the master host was delegated the control of an island. Of course,
this affected the total running (wallclock) time of the island, increasing it to between
1.5 and 2 times that of the other islands within the cluster. The amount of increase
was quite variable as this was affected by the current execution environment on the
server — something that was in itself quite variable. In the case where two islands

were executing concurrently on a single processor, the execution time of both hosts

57

Philip Uren
November 2004

increased by roughly the same amount. Although the total execution (CPU) time
increased in the four host cluster, it was a relatively small increase and is likely
related to the overhead of context swap. Further tests would be needed to conclude
this with certainty however. This then explains the results presented in figures 7.5.1.1
and 7.5.1.2, where there is a measured increase in both CPU time and wallclock time

within the four host cluster.

Figure 7.5.1.5 also showed an increase in total memory access for the four host
cluster. This is likely the result of the increased running time, requiring more
memory swaps and manipulations due to the fact that other processes were also
heavily using the memory space.

Inconsistencies were also observed in the measure of network usage; the four host
cluster actually utilizing the network slightly less than the three host cluster. This is
in keeping with the above explanation that an island was located on the master server
or co-located with another island in every execution of the algorithm. In the former
case, this reduced total network traffic by a quarter, as the island residing on the
master host could access the server, executables and grid engine master without
needing to access the network. This was confirmed by running a single host cluster
with that host residing on the master server. The results observed showed that
network access was restricted to grid engine control messages only and the observed
usage of 1.54 KBits/second was significantly less than that observed for a single
island residing on a separate processor. This presents another conundrum; following
this logic, the network utilization for the instances where an island resided on the
master host should be almost identical to that for the three host cluster. This was not
the case however, with the results of such a four host cluster showing less network
usage than that of the three host cluster. The explanation for this is once again due to
the nature of the calculation. The measure is made by dividing the total amount of
data transmitted by the total time. It has been shown that the addition of an island to
the master host does not increase network usage, but it does extend the total
wallclock time for the cluster, as the island executing on the master server requires a
much longer time. This of course, decreases the value of network access, as the
denominator is increased. Similar discrepancies appear for the case where two
islands are co-located on the same host. However, further experimentation and
analysis of results is required to state the cause and effects of these with any

certainty.

58

Philip Uren
November 2004

7.5.3 SUMMARY

There are several key points to draw from these results. The first is probably the
most obvious. As was demonstrated in section 7.1, theoretically sound expectations
often fail to exhibit themselves in practice due to oversimplification of the operating
environment when making predications about expected performance. Indeed, this is
the reason for much of the data within section 7.5.1 which initially seemed to pose
counterpoint to the initial observations. The next point of consideration is the effect
of increasing the size of the cluster. The promising finding is that increasing the
cluster size does not appear to substantially increase the execution time per host."’
Despite this, however, the results also suggest that increasing the cluster size does
not significantly increase the quality of solutions found by the algorithm. Chapter 8
provides a more in depth description of why this is, but briefly there is a tendency
towards each island searching the same section of the problem space as all the other
islands within the algorithm. Although more wide ranging experiments would be
needed for a conclusive result, these observations suggest that, with the algorithm as
it currently stands, an increase in cluster size is not expected to improve

performance.

7.6. EFFECT OF NAIVE HEURISTIC

This experiment, as detailed in section 6.6, measured the effect of the naive
heuristic upon the execution of the parallel three-host cluster and the serial algorithm.
The most obvious first measurement is that of quality of solution, measured over one
hundred generations. This is presented in figures 7.6.1 and 7.6.2 for the serial and
distributed parallel algorithms respectively by graphing the fitness of the best
solution found so far at each generation. As can be seen, the simple heuristic applied
here improves the quality of solutions at each stage by rearranging the gene structure
of all chromosomes in the population. It does not, however, affect the rate of
improvement nor would it seem to have improved convergence characteristics of the
algorithm. Both the heuristic augmented version of the algorithm and the basic
algorithm show little sign of continued improvement towards the end of the 100
generation trial. This separation of solution quality is similar in nature to that
presented in section 6.6 as an expected result. The improvement in solution quality is
different to those shown within section 6.6, but this is due to the likely premature
convergence of this algorithm (which is explored more fully in chapter 8) and the
fact that more trials are present in the work shown in section 6.6 than are presented
here.

' This is assuming that the network infrastructure and server supports the increased traffic.

59

Philip Uren
November 2004

Heuristic Comparison

5000
4500
4000
3500
3000 —
2500
2000
1500
1000

Fitness

]
o
o

o

o o o o o o o o o
— Al [sp] < Te] © N~ © [«

—— No Heuristic Heuristic

Generation

Figure 7.6.1: Comparison of the best solutions found at each generation for the serial algorithm
with and without the Heuristic augmentation. The results were measured over 100
generations with a population size of 100 members.

Heurisitc Comparison

5000
4000
@ 3000
S
T 2000
1000
0 TTTTTTT TTTTTT
1 8 15 22 29 36 43 50 57 64 71 78 8 92 99
Generation
—— No Heuristic —— Heuristic

Figure 7.6.2: Comparison of the best solutions found at each generation for the distributed
parallel algorithm running 3 islands with and without the Heuristic augmentation.
The results were measured over 100 generations with a population size of 100
members per host.

An apparent increase in network usage can be put down to increased execution time.
Following an argument identical to that of section 7.5, the network usage of both the
heuristic and non-heuristic algorithms proves to be essentially identical — as was

expected.

There is a sizable increase in execution time and a corresponding increase in
wallclock time observed when the heuristic is applied. The particular heuristic
approach used involves sorting each individual into ascending order of distance from
the depot and uses the inbuilt Java Col | ecti ons. sort (Li st |ist) method,

60

Philip Uren
November 2004

which makes use of a modified mergesort algorithm, with complexity of O(n log n).

This must be executed for every individual within the population and must be done

every generation. Therefore the complete complexity of the operation per generation
is O(mn log n),'® where m is the size of the population and # is the size of the

chromosome. The increase in CPU time is shown in figure 7.6.3 for the serial

algorithm and demonstrates a roughly two fold increase when the heuristic is applied.

CPU Time Comparison

250

200

150

100

Time (Seconds)

[6)]
o

No Heuristic Heurisitc

Figure 7.6.3: The observed increase in CPU time for the serial algorithm with a 100 member
population when the simple heuristic was applied. Results measured over 100
generations

By way of explanation for these results, consider the following semi-formal
justification. Without the heuristic, the complexity of a single generation is given by
summing the complexities of the individual operations required to complete the

generation. Within the serial algorithm, the operations that do not have constant

complexity are generating the new population with O(rmn), evaluating the fitness of
all new individuals, also O(mmn), and finding the best solution within the generation

with O(mn log n). Consider then the conditions under which the results in figure 7.6.3

were obtained; population of 100 members and a chromosome size of 100. Without
the heuristic, we can create a metric for the creation of a new generation by summing
the complexity of the operations required:

(100x 100) + (100x 100) + (100 100x log100) = 85,000

For the case where the heuristic is applied, the above metric plus that for the heuristic
application is arrived at:

'8 Throughout this explanation, the logarithmic function is assumed to be base two.

61

Philip Uren
November 2004

85,000 + 65,000 = 150,000

This is approximately a 1.75 fold increase in time complexity, which is comparable

to the empirical result demonstrated by figure 7.6.3.

The simple heuristic demonstrated within this section has quite an extensive impact
on execution time, but provides relatively limited improvement to the results. Within
section 3.4.6 it was suggested that imposing structure upon the results (as is done by
this heuristic) is redundant as the necessary structure will be emergent due to the
selective pressure. Indeed, the results of this experiment suggest that the heuristic
accelerated the adoption of this anticipated structure within solutions, but had little
other effect. Combine this with observations within section 3.4.6 as to the emergent
structure of population members. These points support the argument that the
structures promoted by the re-ordering would have been emergent given sufficient
trials even without the heuristic.

7.7. PROBLEM DECOMPOSITION PARALLELISATION

The problem decomposition approach to parallelising the genetic algorithm is
discussed in section 3.5 and the methodology and expected results for this
experiment are presented in section 6.7. Two problem decomposition approaches
were made and the results compared with the sub-population approaches. The first,
as described in section 6.7 is that of a simple four way split of the problem space.
The second was a conceptual decomposition into the constituent components of the
CVRP - the travelling salesman problem and the bin packing (or knapsack) problem.

7.7.1 NAIVE FOUR-WAY DECOMPOSITION

A simplistic split of the problem space into four distinct segments is made, each
representing a completely self-contained sub-problem. These segments are presented
to a host within the cluster for evaluation by the genetic algorithm — one segment
per host. There is no inter-host communication required; the problems are entirely
disjunct. Results simply need to be combined at the completion of each section to
form the full solution. Each sub-problem is executed in parallel with the others.

The major result of this experiment is the quality of solutions found after 100
generations. As presented in figure 7.7.1.1, the solutions found using this approach

are a significant improvement over all the other algorithm types explored thus far.

62

Philip Uren
November 2004

The graph shows the average best solution found by the naive four-way
decomposition compared to the known optimal solution for the problem and the best
solution found by the parallel distributed algorithm. The result of the parallel
distributed algorithm required approximately 150,000 generations to locate, whereas
the results presented for the naive four-way decomposition algorithm required only
100 generations. The naive problem decomposition algorithm was also augmented
with the route-ordering heuristic discussed in section 3.5.4. With this addition, it
demonstrated results from 100 generations which are comparable to those produced
by the parallel distributed algorithm after approximately 150,000 generations.

1800
1600
1400
1200
1000
800
600
400
200
0 T T
Optimal Parallel Naive Problem Naive Problem

Distributed Decomposition Decomposition
with Heuristic

Fitness of Best Solution

Figure 7.7.1.1: Comparison of best solutions found by the naive problem decomposition
algorithm and the distributed sub-population algorithm. The decomposition
algorithm was measured over 100 generations and the sub-problem algorithm
was measured over approximately 150,000 generations.

One final point on the effectiveness of this algorithm is given by the performance
metrics of CPU usage and memory usage. The results given above comparing the
parallel distributed and naive problem de-composition algorithms are measured over
different total generations and hence a comparison of total CPU time is meaningless.
However the value of CPU time per generation is of interest. Due to the reduced
problem size of the problem de-composition algorithm, the average CPU time per
generation is much lower than that of the parallel distributed algorithm working on
the full problem space. On average a CPU time of 1 second per generation is
required for the naive four-way decomposition algorithm. In comparison, an average
of approximately 10 seconds CPU time per generation is required for the parallel
distributed algorithm. Memory usage per host is also significantly less. Of course,
network usage is irrelevant for the problem decomposition algorithms, as they do not
perform inter-host migration or communication. The full comparison of CPU and
memory usage characteristics is presented in figure 7.7.1.2 and 7.7.1.3.

63

Philip Uren

November 2004
Integral Memory Usage
0.3
0.25
o
é 0.2
_8 0.15
>
8 0.1
0.05
0 T T
Parallel Naive Problem Parallel Naive Problem
Distributed Decompsoition Distributed with Decomposition
Heuristic with Heuristic

Figure 7.7.1.2: The integral memory usage of the sub-problem and sub-population algorithms
measured in gigabytes per second.

CPU Time
12
< 10
2
E 8
e 6
Q
O 4
]
n 2
0 T T | |
Parallel Naive Problem Parallel Naive Problem
Distributed Decompsoition Distributed with Decomposition
Heuristic with Heuristic

Figure 7.7.1.3: The CPU time measured in seconds per generation for the sub-problem and the
sub-population algorithms.

7.7.2 CONCEPTUAL DECOMPOSITION

The parallel algorithm based on a decomposition of the problem into its
constituent conceptual parts follows, by chance, essentially the same structure as the
naive decomposition. The full method is described in section 6.7 and once again the
problem is broken into several sub-instances. In this case ten such instances occur
rather than the four used in the naive decomposition. The number of sub-problems is

determined by the optimal number of clusters for the dataset.

64

Philip Uren
November 2004

Quality of solution is considered first and produces the best results of all algorithms
considered thus far. Discovered solutions are on average only several units short of
the optimal solution for the problem, after only 100 generations. The average quality
of the best solutions found after 100 generations in the conceptual decomposition and
naive decomposition algorithm are presented in figure 7.7.2.1. Once again, the
optimal solution is also presented for comparison. As can be seen, the conceptual
decomposition discovers results that are, in practical terms, within such a small

variation of the optimal solution as to be considered e:quivalent.19

Average Best Solution

1600
1400
1200
1000
800
600
400
200
0 T
Optimal Conceptual Naive Decomposition
Decomposition

Fitness

Figure 7.7.2.1: Average best solution of the conceptual sub-problem algorithm compared to the
naive sub-problem algorithm with the optimal problem solution for comparison.

Considering performance, the conceptual decomposition requires less time per
generation as each sub-problem is smaller. However there are more sub-problems
being executed in parallel and hence the total wallclock time required is essentially

equal to the naive decomposition. The same is true of the memory usage.

7.7.3 SUMMARY

The results observed within the problem decomposition algorithms were as
anticipated; this parallel decomposition is indeed the most efficient regards all of the
metrics. It has the shortest running time of all the parallel algorithms, uses less
memory, requires almost no network bandwidth and produces consistent results that
are close to optimal. However there is a caveat, the algorithm is far from general.
Although standard machine learning approaches can be applied to finding an
appropriate number of clusters (Hamerly & Elkan, 2003) the algorithm is dependent
on a structural heuristic. In the case of the CVRP this is that destinations within close

' In fact, this decomposition of the problem can never result in the optimal solution for this instance,
as the optimal solution has routes with nodes which have been spread between separate clusters.

65

Philip Uren
November 2004

proximity to one another should be serviced in a common route. Indeed, a manual
inspection of the data for the problem instance used shows a highly structured pattern
to the data. In short, although this approach is likely to produce promising results on
other instances of the CVRP and similar problems, the initial choice of method for
decomposition is by no means trivial. It is far from obvious whether this stage can be
automated or is even possible on general problems. In contrast, the sub-population
approach is a general method which can be used with any problem for which a

genetic algorithm is applicable.

As an aside, this decomposition provides an example where the serial algorithm is a
more natural choice than a parallel variant. The sub-problems that are created are
sufficiently small that the serial algorithm finds near-optimal solutions within a few
generations. Although the parallel algorithm would duplicate this result, the
computational complexity of the algorithm is much greater. Within the global scope
of the algorithm however, the serial components are indeed executing in parallel on
sub-problems. It is the application of a further layer of parallelism for the sub-

problems which is unnecessary and in fact wastes resources.

66

Philip Uren
November 2004

8. FURTHER OBSERVATIONS AND EXPERIMENTATION

Several characteristics were observed whilst conducting experiments which were
not initially anticipated, or were more pronounced than expected. This chapter details
the results of extra investigations into these characteristics. In particular,
considerable investigation was conducted into analysing the convergence of the

algorithm in an effort to determine its cause and effect on experiment results.

8.1. CONVERGENCE

Observation of the performance of the algorithm during experimentation seems
to indicate that it suffers from premature convergence. That is, many of the
individuals in the population are of very similar genetic structure. The comparison of
average fitness with the fitness of the best individuals found in each generation
would seem to present a counter point to this. There is a significant difference,
suggesting genetic diversity is still present. However, a closer examination of the
population reveals this to be an artefact of the fitness scaling applied to solutions
which exceed the bounds of the problem. As can be seen from the excerpt of a
generation 200 population in figure 8.1.1, there is a division of the population into
two classes. These two classes are made up of those solutions which are within the
problem bounds and those which are not. Each class has converged. To further
highlight this fact, the fitness penalty applied to the solutions exceeding the problem
bound is removed. It can then be seen that the population is collapsed into a single
class, where full convergence occurs. The population sample presented in figure
8.1.2 demonstrates this. Regardless, convergence can be seen in both populations and

similar results were obtained from further experiments.

To ensure that this characteristic was emerging during execution rather than being
present from initial population construction, the populations of earlier generations
were also sampled. An excerpt from one such generation is presented in figure 8.1.3.
As can be seen the level of convergence in this population is much lower,
characterised by the diversity of values for each allele™.

Finally, to confirm the presence of premature convergence, tests of later generations
were run to confirm that the level of genetic similarity is increased. An excerpt from
one such test is given in figure 8.1.4. This demonstrates that by the 400" generation,

* An allele is any of the alternative forms of a gene that may occur at a given gene locus

67

Philip Uren
November 2004

the level of convergence had increased over that from the 200™ generation. Some

alleles even contain the same gene for every chromosome in the population.

In summary, this experiment proved that the initial population of the genetic
algorithm contained sufficient randomness to give rise to genetic diversity but that as
the algorithm progressed, this diversity was being further and further degraded. Such
a result explains the observed tendency of the algorithm for rapid early improvement
in fitness but little or no improvement as the number of generations progressed. It is
likely that new solutions found in later generations are predominantly the result of

the mutation operation.

Chronosone | Fitness® | Gene Sanple — Gene (Position)

1 3761 101(0) 59(1) 65(2) 35(3) 45(4) 41(5)

2 3773 69(0) 6(1) 71(2) 75(3) 100(4) 41(5)

3 3808 69(0) 6(1) 71(2) 75(3) 100(4) 41(5)

4 3840 69(0) 6(1) 71(2) 75(3) 100(4) 41(5)

5 3859 69(0) 79(1) 71(2) 14(3) 16(4) 41(5)

6 3864 69(0) 6(1) 71(2) 10(3) 33(4) 41(5)

7 3870 59(0) 65(1) 13(2) 25(3) 71(4) 73(5)

8 3873 6(0) 69(1) 71(2) 92(3) 19(4) 41(5)

9 3889 69(0) 6(1) 19(2) 35(3) 33(4) 41(5)

10 3895 26(0) 50(1) 64(2) 99(3) 29(4) 33(5)

52 4472 26(0) 33(1) 13(2) 54(3) 41(4) 69(5)

53 16992 43(94) 61(95) 55(96) 65(97) 54(98) 72(99)
90 20346 58(94) 61(95) 55(96) 65(97) 100(98) 46(99)
91 20430 43(94) 61(95) 55(96) 65(97) 54(98) 72(99)
92 20623 43(94) 61(95) 55(96) 65(97) 54(98) 72(99)
93 20679 69(94) 5(95) 55(96) 76(97) 54(98) 43(99)
94 20682 43(94) 61(95) 2(96) 65(97) 54(98) 58(99)
95 20744 43(94) 61(95) 55(96) 65(97) 54(98) 72(99)
96 21016 69(94) 61(95) 90(96) 65(97) 54(98) 41(99)
97 21339 43(94) 61(95) 55(96) 65(97) 54(98) 72(99)
98 21418 43(94) 61(95) 55(96) 91(97) 54(98) 72(99)
99 21545 69(94) 5(95) 55(96) 76(97) 54(98) 57(99)

Figure 8.1.1: Except from the full record of a generation 200 population with fitness penalty for
exceeding the problem bounds.

*! The difference in fitness values between the two populations (which are both from the 200"
generation) is due to the removal of the scaling factor, which increases the average fitness of solutions
within the problem space, essentially simplifying the problem.

68

Philip Uren

November 2004

Chronmosonme | Fitness | Gene Sanple — Gene (Position)

1 1976 100(0) 10(1) 4(2) 6(3) 25(4) 48(5)

2 2031 100(0) 10(1) 22(2) 25(3) 24(4) 65(5)

3 2073 73(0) 10(1) 4(2) 6(3) 25(4) 48(5)

97 2558 93(94) 96(95) 99(96) 89(97) 83(98) 88(99)
98 2622 93(94) 96(95) 99(96) 100(97) 83(98) 88(99)
99 2628 90(94) 96(95) 99(96) 100(97) 83(98) 88(99)

Figure 8.1.2: Except from the full record of a generation 200 population with no fitness penalty
for exceeding the problem bounds.

Chr onosone Fi t ness Cene Sanple — Gene (Position)

1 4334 39(0) 71(1) 65(2) 40(3) 94(4) 14(5)
2 4456 89(0) 93(1) 7(2) 38(3) 67(4) 65(5)
3 4506 89(0) 50(1) 53(2) 39(3) 56(4) 61(5)
4 4556 66(0) 17(1) 19(2) 43(3) 39(4) 73(5)
5 4563 33(0) 18(1) 90(2) 4(3) 23(4) 79(5)

Figure 8.1.3: Excerpt from a generation 1 population

Chronmosonme | Fitness | Gene Sanple — Gene (Position)

1 3341 59(94) 55(95) 71(96) 77(97) 78(98) 97(99)
2 3429 59(94) 55(95) 72(96) 77(97) 78(98) 91(99)
3 3462 59(94) 55(95) 72(96) 77(97) 78(98) 15(99)
4 3486 59(94) 55(95) 71(96) 77(97) 78(98) 97(99)
5 3488 59(94) 55(95) 72(96) 77(97) 8(98) 76(99)

Figure 8.1.4: Excerpt from a generation 400 population

8.2. PARALLEL WORK DUPLICATION

It is apparent from the results obtained during the investigation of the parallel

algorithms that much of the extra computational power is not being effectively used.

Although the amount of computation is significantly increased, the quality of

solution and number of generations required to reach results similar to the serial

algorithm is not improved. A closer exploration of the computation being undertaken

during the parallel algorithm was made in an attempt to identify where this extra

computational power was being lost. Several excerpts from the full set of results are

presented in figure 8.2.1. It can be seen that during the given generation, the parallel

69

Philip Uren
November 2004

islands contain members with very similar genes in the 99" position. As with the
results presented in section 8.1, this trend was apparent for all alleles within the
chromosomes and increased with generation. The experiment was conducted several
times and the results were similar to those presented in figure 8.2.1. From these
results, it is apparent that each island is concurrently exploring the same section of
the problem space and thus duplicating the work of other islands. In addition, each
island exhibits the convergence characteristics observed in section 8.1 for the serial

algorithm.

It is highly likely that this duplication of work within the parallel algorithm can be
attributed to the convergence characteristics of the serial algorithm and the migration
scheme. The scheme employed herein was fitness based migration. The islands
converge to a point in the search space and the exchange of high scoring individuals
between the islands directs all islands to a similar part of the problem space.
Modification of the migration scheme to explore different techniques and a further
investigation into eliminating premature convergence from the serial algorithm

would be necessary to fully explore this hypothesis and possibly improve

performance.
Chr onpsone Island 1 I sland 2

Cene Val ue (Position) Cene Val ue (Position)

1 57(99) 57(99)
2 57(99) 71(99)
3 57(99) 57(99)
4 27(99) 71(99)
5 27(99) 57(99)
6 27(99) 57(99)
7 57(99) 57(99)
8 57(99) 27(99)
9 27(99) 57(99)
10 27(99) 27(99)
11 27(99) 27(99)
12 27(99) 27(99)
13 27(99) 57(99)
14 27(99) 57(99)
15 57(99) 57(99)
16 27(99) 27(99)
17 27(99) 57(99)
18 66(99) 57(99)
19 57(99) 57(99)
20 57(99) 71(99)

Figure 8.2.1: Examples of the observed values for the 99" allele in two islands of a parallel
distributed genetic algorithm. Note the similar gene values not only within each
island but between the islands also.

70

Philip Uren
November 2004

8.3. OBJECTIVE CONVERGENCE MEASUREMENT

8.3.1 SPECIFICATION

It is clear from the above results and observations that an objective measure for
convergence was needed. Within this experiment, a new metric is introduced to
allow the measurement of convergence, automatically and objectively, such that

comparison of genetic diversity within generations can be made.

The metric is based heavily upon a string difference approach. Each individual is
represented by two chromosomes, each of which can be expressed as a string of
genes with integer values. A measure of the difference between two members of a
population is then simply the string difference between the chromosomes that it
aggregates and those aggregated by the member to be compared against. The
difference algorithm used is the Levenshtein Distance (Levenshtein, 1965), the
specifics of which have been omitted here.

Now having a measure for the difference between two members of a population, the
concept can be scaled to provide a measure of distance within the population as a

whole. The algorithm for doing so has the following structure:

1. For every member, compute the distance to every other member within the
population for which the difference between the two has not already been
computed.

2. Find the average distance of all these values and take this as the average
distance from this member to the rest of the population.

3. Find the average of the distances computed for all members and take this as
the measure of genetic diversity within the population.

a. Large values represent high diversity, small values represent low

diversity.

The major drawback to this approach is the computational complexity. The

comparison of all individuals to all other individuals has a worst-case running time

O(r). The comparison operation has O(nm), therefore the algorithm in general has
O(r’), where n is the number of individuals for comparison and m is their length. If
the metric is to be measured for every generation, the complexity becomes O(pr’)

where p is the number of generations. It is for this reason that the application of the

71

Philip Uren
November 2004

algorithm to obtain experimental results was limited to generalised cases.
Application to all variants of the genetic algorithms to determine their effect on
genetic diversity would have been too computationally expensive. This metric was
measured for both the serial and distributed parallel algorithms without any heuristic
modification; measurements were made every ten generations to reduce run time.

8.3.2 RESULTS

The results of measuring the genetic diversity of the serial algorithm confirmed
the observed trends in genetic diversity made in sections 8.1 and 8.2. It is clear from
the graph presented in figure 8.3.2.1 that a reduction in genetic diversity occurs as
the algorithm progresses. The value found for generation O represents an initial
diversity of a randomly generated population. A reduction from this initial level to
the next reading at generation 10 is expected due to the focussing of the search.
However, the result of interest is the general declination of genetic diversity over the
course of the 100 generations for which it was measured. In fact, the decrease is not
as pronounced as expected and indeed there is no point of reference from which to
base an assertion as to whether such levels of genetic diversity are good or bad.
Rather, what this result provides is a point from which to judge the effect of
parallelising the algorithm on genetic diversity within the population.

As an aside, it is useful at this point to consider the granularity of this measure.
Despite a reasonable measure for general genetic diversity, a loss of diversity per
allele can still occur without necessarily lowering the overall population diversity.
This is the situation that is presented by the analysis in section 8.1.

Applying the same measure to the distributed parallel algorithm demonstrates a more
considerable loss in genetic diversity over the course of 100 generations. The graph
shows an initial genetic diversity similar to the serial algorithm, but a more dramatic
degradation. The increased loss of diversity in the parallel algorithm can be attributed

to the added selective pressure generated by the migration scheme.

72

Philip Uren

November 2004
Genetic Diversity
500
400
2
S 300
s
8 200
o
100
0 T T T T T T T T T T
0O 10 20 30 40 50 60 70 80 90 99
Generation

Figure 8.3.2.1:

The genetic diversity measured periodically over 100 generations within the
serial algorithm in terms of average number of operations required to

transform a member into any other member.

Genetic Diversity

500

D
o
o

w
o
o

.

Operations
N
o
o

—_
o
o

o

30 40 60

Generation

0 10 20 50

70 80 90 99

Figure 8.3.2.2:

The genetic diversity measured periodically over 100 generations within the
distributed parallel algorithm in terms of average number of operations
required to transform a member into any other member.

8.3.3 DiISCusSION

The most relevant conclusion to draw from this experiment, in conjunction with

the other analyses of convergence given throughout chapter 8, is that parallel genetic

algorithms do not necessarily improve convergence. This can be seen by comparing
the two graphs in figures 8.3.2.1 and 8.3.2.2. In section 3.4 parallel algorithms were

discussed as a way to improve premature convergence. The claim clearly needs to be

qualified by stating that improvement, if any, is dependent on the mechanism of

parallelisation. Finally, the issue of whether the level of genetic diversity within

these algorithms is sufficient is an open question. This is tied to the crucial issue of

73

Philip Uren
November 2004

exploitation versus exploration that was presented in section 3.3. Indeed, this is a
fundamental issue in most all forms of artificial intelligence and life. Given a more
thorough exploration of the problem instance this question could possibly be
answered in a very restricted domain. This is definitely beyond the scope of this
work however and would result in little useful information. Hence such an analysis
has been omitted.

8.4. EXPANDED CLUSTER SIzE

8.4.1 EXPERIMENT

Within section 7.5, the performance of the parallel distributed genetic algorithm
was examined within a varying cluster size. It was noted that a cluster size of four
hosts resulted in performance that was not in keeping with the trends observed over
smaller cluster sizes. The explanation provided was that of extra load upon the
master machine due to a need for it to perform as both a server and one of the GA
islands. Within this experiment the cluster size is further increased by two machines,
giving the potential to run a four host cluster without such interference. In addition,
experiments can be conducted with 5 hosts to further support the results obtained in
section 7.5.

8.4.2 RESULTS

The first result of interest is the quality of solutions found within the various
cluster sizes. Without the influence of the heavily loaded 4™ host, the results for the
four host cluster are more indicative of observed trends. As can be seen within figure
8.4.2.1, the fitness of solutions continues to improve as the cluster size is expanded.
However, improvements are relatively small beyond the two host cluster. As has
been addressed earlier, this is due to the lack of genetic diversity across the islands.
This further supports the argument that little advantage can be gained from
continuously increasing the cluster size if the fundamental issue of convergence and

genetic diversity is not addressed.

74

Philip Uren

November 2004
Best Solution Found (after 100 generations)
2600
2550 b\
2500
@
g 2450 _\
2 2400 © —-—
2350
2300
2250
1 2 3 4 5
Cluster Size

Figure 8.4.2.1: The effect of increased cluster size on solution quality within the distributed
parallel genetic algorithm.

Of interest also is the wallclock time, shown in figure 8.4.2.2, of the algorithm as the
cluster size increases. Intuitively, the required total wallclock time increases with the
cluster size due to amplified wait time for 10 as the server becomes more heavily
loaded. This is backed up by the fact that CPU time remains relatively constant,
although the graph is omitted here due to simplicity.

Walliclock Time

240

230 /‘/.\‘/
225
220 /

215

Time (Sec)

210

205 T T T
1 2 3 4 5

Cluster Size

Figure 8.4.2.2: The effect of increased cluster size on wallclock time within the distributed
parallel genetic algorithm.

Network usage also increases as expected, demonstrating an almost linear
relationship with cluster size. There is however another attribute influencing network
usage which is related to the cluster size. With a larger cluster size, there is an
increased wait time for server access. Thus, the measure of network usage over a
time period is less than it would otherwise have been. This can be observed in the
graph by noting that the increase in network usage per second between cluster sizes

75

Philip Uren
November 2004

decreases as the cluster size increases. However, if the 10 blocking could be
eliminated, the relationship would be linear.

Network Usage

700
600

500 /
400 /

300 /

200 e
100

KBits/s

1 2 3 4 5

Cluster Size

Figure 8.4.2.3: The effect of increased cluster size on network usage within the distributed
parallel genetic algorithm.

These experiments have demonstrated that the observed discrepancy in the
performance of the four host cluster was simply an attribute of increased host load.
Furthermore, the observed trends within the one, two and three host clusters are
extensible to the larger clusters. Finally, performance does not greatly improve as a
result of increasing the cluster size within the distributed parallel algorithm due to
poor genetic diversity between and within islands. These results suggest that
arbitrarily increasing cluster size without addressing this issue will yield little or no

improvement.

76

Philip Uren
November 2004

9. DISCUSSION

Having now presented the experiments, expectations, and results aimed at
proving or disproving the hypothesis, the observations can be drawn together to form
a reasoned argument aimed at addressing this issue. First, however, a restatement of
the hypothesis is given. Broadly speaking, the hypothesis is that the parallel
implementation of a genetic algorithm will outperform its serial counterpart and that
with the addition of domain specific knowledge and heuristics, performance will be
further improved. A slightly more constrained version was given in chapter 4, which
defined the metrics upon which the performance and comparison of these algorithms
would be based. It stated that the parallel algorithms would produce results with a
higher average fitness over 100 generations. Furthermore, the inclusion of domain
specific knowledge into the algorithms would additionally improve the fitness of
these results over the 100 generation test period. Finally, it stated a small expected
increase in computation time and memory usage for the heuristic algorithms and an

approximately linear increase in network usage as the cluster size is increased.

It is of some concern that most of the experimentation was carried out on a single
instance of the capacited vehicle routing problem. Of course there is always the
possibility of this being a particularly unusual instance. However, if one examines
the nature of the hypothesis and conclusions it is apparent that this is of limited
concern. The conclusions presented here disprove the vast majority of the hypothesis
due to its generality. Therefore, even a single instance is sufficient for this counter-
proof. There is no reason to expect that these results will not be extensible to other
instances of the capacited vehicle routing problem, however it is realised that such an
extension is not possible based solely on this work. With this in mind though, further
work will be presented within a subsequent chapter aimed at extending the methods

and experimentation of this work to allow more general conclusions to be drawn.

In general, the assertion within the hypothesis that the parallel algorithms will
produce better results is disproved due to its generality. The parallel algorithms did
not always outperform the serial algorithm in terms of solution quality after 100
generations. Where they did, it was sometimes not by great enough margins to
eliminate the possibility of such a result being due to the stochastic nature of genetic
algorithms. That is, it is not possible to state that parallel genetic algorithms will
outperform serial algorithms under all conditions. Indeed, quite the opposite has been
demonstrated; it is possible to engineer problems upon which a serial algorithm is

77

Philip Uren
November 2004

more appropriate than a parallel one. In light of this, it is not possible to prove that
parallel genetic algorithms conclusively outperform their serial counterparts.

The assertions regarding the heuristics are also overly-general and for this reason
cannot be conclusively proved. This work does not demonstrate that heuristic-
augmented genetic algorithms will always outperform those without heuristics.
Indeed, it is quite obvious that a poor heuristic would adversely affect the
performance of a genetic algorithm. However, within the context of this work alone,
it was demonstrated that the simple heuristic can accelerate the incorporation of
desired structure within the solutions generated by the genetic algorithm. Whether
this ultimately leads to improved performance depends entirely upon the accuracy of
the heuristic and characteristics of the problem in question. The problem
decomposition algorithm, which in itself uses a heuristic approach for
decomposition, demonstrates the balance between generality and speed. The optimal
solution was not attainable after applying the heuristic, however much better
solutions were found much faster than with any of the other algorithms. Whether this
improved speed is worth the possibility of eliminating the optimal solution from the
search space is a matter dependent on the desired application and on how much
weight is given to each of the attributes of speed and eventual accuracy. Whether the
use of a specialised approach grants sufficient improvement over a more general
approach to warrant its selection is also not immediately answerable.

With regards to the performance expectations stated within the hypothesis, they were
accurate but the generality of these statements was once again of concern. They are
proved within the limited context of this work, but the results are certainly not
extensible to genetic algorithms in general. As with the other results, they are entirely
dependent on the choice of architecture and algorithm design. The problem
decomposition algorithms present a situation where the application of a heuristic
improves performance due to reducing the complexity of the problem. In general this
will be true of all genetic algorithms. Where the application of a heuristic does not
simplify the problem and hence reduce the computational complexity, at best
comparable run time can be expected to the variant without the heuristic. The naive
heuristic observed in section 7.6 exemplifies this. In contrast, if the heuristic allows a
simplification of problem complexity, as was the case with the decomposition
heuristic used in section 7.7, improvements in execution time can be achieved. In the
worst case however, the execution time is not improved. Memory usage follows an
almost identical argument.

The results of the experiments intended to contrast the performance of the sub-
population parallel algorithms with that of the serial algorithm were inconclusive.

78

Philip Uren
November 2004

They produced no firm evidence to suggest the sub-population algorithms handle the
problem of convergence more effectively or are able to more efficiently explore the
search space. Indeed, considering the computational cost, the sub-problem parallel
algorithms are less efficient. They consume more resources in terms of computation
time and network bandwidth to reach results which are not significantly better than
those of the serial algorithm. It was shown that the extra computational time of the
parallel algorithms can easily be wasted due to a repetitive search of the same area
within the problem space. However, this is not to say that the sub-population
algorithms are incapable of better performance. Genetic algorithms in general depend
on the selection of a number of attributes, relating to such things as selection and
reproduction. Parallelising these algorithms introduce even more attributes upon
which performance depends. Indeed, much research has been conducted into the
performance of these algorithms and yet there is no optimal set of values that will
always produce good results; it is unlikely that such a set exists. Ironically, genetic
algorithms themselves represent an optimisation problem — the exact problem they
are intended to solve.

The Sun Grid Engine was used as a mechanism for allowing the parallel execution of
the genetic algorithm islands. Its use raised several interesting considerations.
Foremost, it was very useful for collecting auditing information and monitoring the
execution of the various algorithm components. However, grid computing is not
necessary within this limited capacity. The cluster size was only four hosts; there was
and is little likelihood of it being increased far beyond this number. For this reason,
the dynamic allocation of tasks was not particularly necessary and indeed the
dedicated nature of the cluster negates the need for effective resource allocation.
Furthermore, the granularity of the application in most cases was large and hence
there was little need for constant rescheduling. This is not to say that grid computing
does not have a use within such an application; this is not the case. Within a larger
cluster which was not dedicated, the dynamic allocation of jobs with effective
resource allocation is most definitely a desirable operation. Moreover, if the
granularity of parallel break-up is small, the need for rescheduling will be greater and
automation is necessary. In short, the problem is amenable to grid computing,
however within this work the environment was sufficiently small and controlled that
it was not necessary. Indeed, the conceptual target of grid computing is not small
i1solated experimental clusters but large scale, multi-purpose collections of machines

— the goal being to reclaim wasted computational capacity.

The programming model used also warrants examination. Although it was not
explained in detail, the design was focused on extensibility and generality. That is,
the problem specifics were very carefully separated from the genetic algorithm

79

Philip Uren
November 2004

mechanics. Although this is good object oriented design, it leads to more verbose
code and in several instances reduced efficiency of execution. The language of
choice was Java, a hybrid interpreted-compiled language with a (perhaps somewhat
unfounded) reputation for slow execution speed. The chosen problem instance is also
quite expansive and combining all these factors lead to some of the algorithms
having quite a slow execution speed. A more efficiency-based approach may have
been beneficial in allowing measurements to be made over a larger number of
generations. The sub-population parallel distributed algorithm was run up to
approximately 150,000 generations on one occasion, which required an execution
time of approximately 4 days. This was certainly a major advantage of the problem
decomposition approach, which had running time in the order of minutes rather than
days. The client-server architecture also presents concerns for scalability. Increasing
the number of host increases the load on the server and will eventually cause a
reduction in execution time per host. A decentralised approach is definitely more
desirable, improving scalability and more closely mirroring the intended target of
grid computing.

The problem decomposition approach to parallel genetic algorithms revisits issues
that were touched upon in section 3.4.6 and are fundamental to the development and
use of genetic algorithms. This is the issue of generality and applicability. The
abstract concept of genetic algorithms provides a general approach to problem
solving and indeed in its original form is applicable to many different problem types.
However, there are problems that are not effectively representable within the
constraints of the traditional genetic algorithm. Many modifications have been
proposed to both the representation component of genetic algorithms and the actual
functional component to cope with this. Numerous modifications are aimed at
addressing specific applications. These either enable the use of genetic algorithms
upon problems that would otherwise not be amenable to such an approach or to
enhance the performance of genetic algorithms within existing applications.
Generality of solution is, with good reason, a desired attribute within computer
science; it simplifies re-application and conceptualisation amongst other benefits.
The problem decomposition approach presented herein cannot be generalised to
arbitrary problems. At best, it can be generalised to capacited vehicle routing and
possibly related problems. In short, what has been found is an effective means for
finding good solutions to the capacited vehicle routing problem in short running

time, but not a general improvement to the function of genetic algorithms.

The issue of convergence was also identified as important within this work. As was
apparent, the one dimensional metric for the comparison of genetic diversity within
different populations was not sufficiently descriptive. It overlooks the fact that the

80

Philip Uren
November 2004

loss of diversity within a single allele can be as detrimental to the explorative
capabilities of the algorithm as the complete loss of diversity on a global scale within
the population. In addition to this, the lack of any sort of measure of acceptable
genetic diversity (i.e. how diverse should the population be to allow continued
exploration) leads to problems in establishing whether the algorithm has achieved

premature convergence or not.

The problem decomposition algorithm presented within this work is indeed quite
efficient at solving the capacited vehicle routing problem. However its characteristics
are highly related to the discussion of algorithm generality which was presented in
section 3.4.6. This algorithm is highly specific and as such, it loses many of the
advantages of genetic algorithms and evolutionary computing techniques in general,
such as an ability to be applied to a large range of problems. Although the concept of
decomposing the CVRP into the BPP and the TSP is not unique, the application of
genetic algorithms to this approach is relatively un-examined. Indeed, this is likely as
a result of the above consideration of generality. The use of a separate approach for
the decomposition does to a certain extent alleviate this as the genetic algorithm used
is indeed still the traditional approach. However purists may consider it a violation of
the generality of the genetic algorithm.

81

Philip Uren
November 2004

10. CONCLUSIONS

This work began by presenting a hypothesis regarding the expected improvement
in performance that could be offered by employing a parallel genetic algorithm in
place of a serial variant. Following an introduction to the concept of genetic
algorithms, the various work regarding parallel and distributed versions was
explored. A method of classification was arrived at and several approaches to
parallelising genetic algorithms that exemplify the apparent classes were examined.
The motivation was the understanding and thereby selection of appropriate
algorithms to explore the hypothesis. A coarse-grained approach was selected and a
test problem of sufficient complexity was identified: the capacited vehicle routing
problem. Metrics for comparison were explored and a collection of measures based
upon solution fitness, memory usage, CPU utilization, and bandwidth usage were
identified. Measures for convergence were also explored and a string difference
approach was selected as an objective metric. A distributed architecture was
presented as the environment for experimentation and several algorithm variants
were constructed to explore the issues presented within the hypothesis statement. The
algorithms developed were tested for consensus with known results. Experiments
were proposed to explore the hypothesis. Finally, results were presented and

discussed which uncovered a more complex nature to the hypothesis.

The empirical evidence shows that parallel genetic algorithms can indeed outperform
their serial counterparts by making use of more computational power. However, the
characteristics of the algorithm and the problem in question bear heavily on this
capacity. It was demonstrated that parallel algorithms can be devised which grant
little or no improvement over the serial variant from which they are derived, despite
being more computational intense. Heuristic enhancement can be used to force
structural requirements to be incorporated into the solutions of a genetic algorithm
more rapidly, and hence lead to better solutions within smaller timeframes. However,
results suggest that these structures will be emergent within the algorithm without the
need for heuristics, a conclusion supported by previous work. The effectiveness of
the heuristics is dependent on their validity and characteristics; it was demonstrated
that heuristic measures can in the long term reduce the effectiveness of genetic
algorithms.

The most promising algorithm presented in terms of the metrics used for comparison

was the problem decomposition approach to parallelising genetic algorithms. This

incorporated heuristic decomposition with parallel processing to produce results

82

Philip Uren
November 2004

comparable to optimal solutions within very minimal run time. Despite excellent
performance however, this algorithm was found to be highly specific and it is not
possible to generalise these results to applications other than the capacited vehicle
routing and related problems.

Ultimately, the general nature of the hypothesis prevents a conclusive proof or
disproof of it from the results obtained. More accurately, the hypothesis that parallel
genetic algorithms outperform their serial counterparts and that heuristic
augmentation can further improve performance can be proven within a restricted

domain and concurrently shown to be untrue in highly general circumstances.

83

Philip Uren
November 2004

11. FURTHER WORK

Several intriguing directions for further exploration and research have been
identified during the course of this work. This chapter presents some of these
observations and a series of directions upon which further work could be based.

As noted in the discussion of results, a useful measure of algorithm convergence was
lacking and caused an inability to effectively determine the effect that genetic
diversity was having on the effective search of the problem space. The one-
dimensional metric presented within section 8.3 allows an approximation of genetic
diversity, but a determination of what level of diversity is sufficient is not available.
Such a measure would no doubt be dependent on the dimensions of the problem
space, and vicariously the frequency of possible gene values for each allele that is
present within the population. The development of an effective metric for this

presents a possible direction for future work.

The problem decomposition approach to parallelising the genetic algorithm
represented an efficient technique in terms of both performance and quality metrics.
In its current form the KMeans algorithm was used to decompose the problem
instance into smaller TSP instances and in doing so solve the BPP component of the
problem. Further work upon this approach could replace the KMeans algorithm with
a hierarchical genetic algorithm. Such an algorithm would have as the goal of its
upper tier the effective solution of the BPP component and at its lower tier an
effective solution of the TSP sub-problem. It is likely this approach will perform less
efficiently in terms of performance metrics such as CPU time and memory usage.
However, it is also likely to be more generally applicable to less well behaved
instances of the capacited vehicle routing problem and possibly more generally
applicable to other applications. Further work upon this could compare an expected
loss in speed and memory usage with observed empirical results. In addition, an
increase in general applicability could be explored by comparing results of both

approaches upon well behaved and less amenable instances.

Although developing genetic algorithms which handle the issues of convergence and
genetic diversity effectively was beyond the scope of this work it did arise as a
serious issue. Effective measures for ensuring a sufficient level of genetic diversity
could be explored as further work, linking with the issue of defining an effective
metric of genetic diversity discussed above. As was covered within the literature

review, determining effective setting for the genetic algorithm regards such

84

Philip Uren
November 2004

influences as selective pressure is very much an unrefined process centralised around
empirical observations. Significant research has been undertaken into this concern
but as yet little in the way of concrete theory has been produced which can be
effectively applied to genetic algorithms in general.

Connected with the issue of ensuring effective genetic diversity is the consideration
of a method for reducing the level of duplicated work in the parallel islands. Several
potential starting points include reducing the frequency of migration or selective
migration based upon the genetic difference between the migrant and the destination
island. This is also connected with determining a more efficient method of measuring
genetic diversity, as the method present herein is too computationally complex to be
used practically. Once this has been achieved an exploration of larger cluster sizes
becomes a much more useful endeavour.

Finally, the centralised model used within this work has several drawbacks, the most
obvious of which is the server load. Within larger cluster sizes there are issues of
asymptotic performance improvements due to a maximum capacity of the server. A
much more efficient mechanism would involve a decentralised approach where
migration was entirely a peer-to-peer operation. Of course, this involves significant

modification of the underlying topology and organisation.

The algorithm performance is quite slow, as is apparent by examining the execution
times presented throughout the results chapter. Developing a more efficient
algorithm in terms of execution would enable a much more thorough investigation of
results by eliminating the considerable time penalty. Preliminary observations
suggest that the evaluation of solution fitness is a major contributor to execution
time. A suggested avenue for exploring a more efficient algorithm is in applying a
parallel algorithm which distributes the evaluation of fitness. Client machines could
compute fitness and return results while the server continues to execute the genetic

algorithm — such an approach was discussed in section 3.4.3 of the literature review.

85

Philip Uren
November 2004

12. REFERENCES

Alba, E., & Dorronsoro, B. e. (2004). Solving the Vehicle Routing Problem by Using
Cellular Genetic Algorithms. Paper presented at the Evolutionary
Computation in Combinatorial Optimization: 4th European Conference,
EvoCOP, Coimbra, Portugal.

Altenberg, L. (1995). The Schema Theorem and Price's Theorem. In Foundations of
Genetic Algorithms 3 (pp. pp23- 49): Morgan Kaufmann Publishers.

Andrzejak, A., Graupner, S., Kotov, V., & Trinks, H. (2002). Control Architecture
for Service Grids in a
Federation of Utility Data Centers. Palo Alto: Hewlett-Packard Laboratories.

Balachandran, R. (2003). Computational Grid Support for Cluster Schedulers.
Unpublished Masters Thesis.

Baluja, S. (1993a). Structure and Performance of Fine-Grain Parallelism in Genetic
Search. Paper presented at the Fifth International Conference on Genetic
Algorithms, University of Illinois.

Baluja, S. (1993b). Structure and Performance of Fine-Grain Parallelism in Genetic
Search. Paper presented at the Proceedings of the Fifth International
Conference on Genetic Algorithms, University of Illinois.

Belding, T. C. (1995). The Distributed Genetic Algorithm Revisited. Paper presented
at the Sixth International Conference on Genetic Algorithms, San Francisco.

Berger, J., & Barkaoui, M. (2003). A Hybrid Genetic Algorithm for the Capacitated
Vehicle Routing Problem. Lecture Notes in Computer Science, 2723, 646 -
656.

Cant'u-Paz, E. (1997). A Survey of Parallel Genetic Algorithms (Technical Report
No. 97003): University of Illinois at Urbana-Champaign.

Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. (1988). Distributed
Genetic Algorithms for the Floor Plan Design Problem (Technical Report):
School of Engineering and Applied Science, Computer Science Department,
University of Virginia.

Cohoon, J. P., Martin, W. N., & Richards, D. S. (1991). A Multi-population Genetic
Algorithm for Solving the K-Partition Problem on Hyper-cubes. Paper
presented at the Fourth International Conference on Genetic Algorithms,
University of California, San Diego.

Collins, R. J., & Jefferson, D. R. (1991). Selection in Massively Parallel Genetic
Algorithms. Paper presented at the Fourth International Conference on
Genetic Algorithms, University of California, San Diego.

86

Philip Uren
November 2004

Davidor, Y. (1991). A Naturally Occurring Niche & Species Phenomenon: The
Model and First Results. Paper presented at the Fourth International
Conference on Genetic Algorithms, University of California, San Diego.

Davis, L. (1991). Handbook of Genetic Algorithms: Van Nostrand Reinhold.

De-Jong, K. A. (1975). An Analysis of the Behaviour of a Class of Genetic Adaptive
Systems. Unpublished Doctoral Thesis, University of Michigan, Ann Arbor.

Goldberg, D. E. (1989a). Genetic Algorithms in Search, Optimisation, and Machine
Learning: Addison-Wesley.

Goldberg, D. E. (1989b). Sizing Populations for Serial and Parallel Genetic
Algorithms. Paper presented at the Third International Conference on Genetic
Algorithms, George Mason University.

Goldberg, D. E. (1989c). Zen and the Art of Genetic Algorithms. Paper presented at
the Third International Conference on Genetic Algorithms, George Mason
University.

Goldberg, D. E., & Deb, K. (1989). An Investigation of Niche and Species Formation
in Genetic Function Optimisation. Paper presented at the Third International
Conference on Genetic Algorithms, George Mason University.

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes
used in genetic algorithms. Paper presented at the Foundations of Genetic
Algorithms.

Goldberg, D. E., & Lingle, R. (1985). Alleles, loci, and the traveling salesman
problem. Paper presented at the International Conference on Genetic
Algorithms and Their Applications.

Goldberg, D. E., & Richardson, J. (1987). Genetic Algorithms with Sharing for
Multimodal Function Optimisation.

Gondra, 1., & Samadzadeh, M. H. (2003). Al and computational science: A coarse-
grain parallel genetic algorithm for finding Ramsey Numbers.

Gorges-Schleuter, M. (1989). ASPARAGOS An Asynchronous Parallel Genetic
Optimization Strategy. Paper presented at the Third International Conference
on Genetic Algorithms, George Mason University.

Grid-Engine Homepage. (2001). What is the Grid Engine project? Retrieved June,
2004, from http://eridengine.sunsource.net/

Hamerly, G., & Elkan, C. (2003, December). Learning the k in k-means. Paper
presented at the seventeenth annual conference on neural information
processing systems (NIPS).

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: MIT Press.
Koza, J. R. (1992). Genetic Programming: MIT Press.

87

Philip Uren
November 2004

Lee, W. (2002). An Exploratory Study of the Economics of the Computational Grid.
London: Birkbeck College, University of London.

Levenshtein, V. L. (1965). Binary codes capable of correcting deletions, insertions,
and reversals. Doklady Akademii Nauk SSSR, 163(4), 845-848.

Li, X., & Kirley, M. (2002). The Effects of Varying Population Density in a Fine-
grained Parallel Genetic Algorithm. Paper presented at the IEEE World
Congress on Computational Intelligence (Congress on Evolutionary
Computation).

Lin, S.-C., Goodman, E. D., & Punch-III, W. F. (1994). Coarse-Grain Parallel
Genetic Algorithms: Categorisation and New Approach.

Lobo, F. G., Lima, C. F., & Martires, H. (2004, June 26-30). An architecture for
massively parallelization of the compact genetic algorithm. Paper presented
at the Genetic and Evolutionary Computation Conference (GECCO), Seattle,
Washington USA.

Machado, P., Tavares, J., Pereira, F. B., & Costa, E. (2002). Vehicle Routing
Problem: Doing it the Evolutionary Way. Paper presented at the Genetic and
Evolutionary Computation Conference (GECCO).

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of
Multivariate Observations. Paper presented at the Fifth Berkeley Symposium
on Mathematical Statistics and Probability.

Muhlenbein, H. (1989). Parallel genetic algorithms, population genetics and
combinatorial optimisation. Paper presented at the nternational Conference
on Genetic Algorithms, George Mason University.

Nilsson, C. (2003). Heuristics for the Traveling Salesman Problem.

Noda, E., Coelho, A. L. V., Ricarte, I. L. M., Yamakami, A., & Freitas, A. A. (2002).
Devising Adaptive Migration Policies for Cooperative Distributed Genetic
Algorithms. Paper presented at the [IEEE SMC, Hammamet (Tunisia).

Osyczka, A. (2002). Evolutionary Algorithms for Single and Multicriteria Design
Optimisation (Vol. 79): Springer-Verlag.

Pereira, F. B., Tavares, J., Machado, P., & Costa, E. (2002, 12-13 September). GVR:
a New Genetic Representation for the Vehicle Routing Problem. Paper
presented at the 13th Irish Conference on Artificial Intelligence and
Cognitive Science (AICS 2002), Limerick, Ireland.

Petty, C. C., & Leuze, M. R. (1989). A Theoretical Investigation of a Parallel
Genetic Algorithm. Paper presented at the Third International Conference on
Genetic Algorithms, George Mason University.

Prasanna Jog, J. Y. S., Dirk Van Gucht. (1989). The Effects of Population Size,
Heuristic Crossover and Local Improvements on a Genetic Algorithm for the

88

Philip Uren
November 2004

Traveling Salesman Problem. Paper presented at the International Conference
on Genetic Algorithms, George Mason University.

Punch, W. F., Goodman, E. D., Pei, M., Chia-Shun, L., Hovland, P., & Enbody, R.
(1993). Further Research on Feature Selection and Classification Using
Genetic Algorithms. Paper presented at the Fifth International Conference on
Genetic Algorithms, University of Illinois.

Ralphs, T. (2003, October 3). Vehicle Routing Data Sets. Retrieved November, 2004,
from http://branchandcut.org/VRP/data/

Ralphs, T. K., Kopman, L., Pulleyblank, W. R., & Trotter, L. E. (2001). On the
Capacitated Vehicle Routing Problem. Mathematical Programming, 94(2-3),
343 - 359.

Ronald, S. (1995). Preventing Diversity Loss in a Routing Genetic Algorithm with
Hash Tagging. Complexity International.

Spiessens, P., & Manderick, B. (1989). Fine Grained Parallel Genetic Algorithms.
Paper presented at the Third International Conference on Genetic Algorithms,
George Mason University.

Spiessens, P., & Manderick, B. (1991). A Massively Parallel Genetic Algorithm.
Paper presented at the Fourth International Conference on Genetic
Algorithms, University of California, San Diego.

Tanenbaum, A. S. (1996). Computer Networks (Third ed.): Prentice-Hall.

Tanese, R. (1989). Distributed Genetic Algorithms. Paper presented at the Third
International Conference on Genetic Algorithms, George Mason University.

Tomassini, M. (1995). A Survey of Genetic Algorithms. Annual Reviews Of
Computational Physics, 3.

Vamplew, P. (2004). Personal Comunication. In P. Uren (Ed.). Hobart.

Wang, L., Maciejewski, A. A., Siegel, H. J., & Roychowdhury, V. P. (1998). A
Comparative Study of Five Parallel Genetic Algorithms

Using the Travelling Salesman Problem. Paper presented at the 12th. International
Parallel Processing Symposium, Orlando, Florida.

Whitley, D. (1989). The GENITOR Algorithm and Selection Pressure. Paper
presented at the Third International Conference on Genetic Algorithms,
George Mason University.

Whitley, D. (1993). A genetic algorithm tutorial.

Wright, S. (1932). The Roles of Mutation, Inbreeding, Crossbreeding and Selection
in Evolution. Paper presented at the Sixth International Congress of Genetics.

Wright, S. (1964). Stochastic Processes in Evolution. In J. Gurland (Ed.), Models in
Medicine and Biology (pp. 199-241).

89

Philip Uren
November 2004

Wright, S. (1982). Character Change, Speciation, and the Higher Taxa. Evolution,
36(3).

Yang, R. (1997). Solving Large Travelling Salesman Problems with Small
Populations. Paper presented at the Genetic Algorithms in Engineering
Systems: Innovations and Applications (GALESIA), Second International
Conference on.

90

13. APPENDICIS

APPENDIX A(Q — CVRP INSTANCE TEST0-N5-K3

NAME : TESTO-
N5-K3

COMMENT : none
TYPE : CVRP
DIMENSION : 5
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 33

APPENDIX A1 - CVRP INSTANCE TEST1-N5-K2

NAME : TEST1-
N5-K2

COMMENT : none
TYPE : CVRP
DIMENSION : 5
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 45

APPENDIX A2 — CVRP INSTANCE TEST2-N5-K4

NAME : testl_vrp
COMMENT : none
TYPE : CVRP
DIMENSION : 5
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 33

NODE_COORD_SECTION
13040

23752

34949

452 64

52030
DEMAND_SECTION

10

NODE_COORD_SECTION
13040

23752

34949

45264

52030
DEMAND_SECTION

10

NODE_COORD_SECTION
13040

23752

34949

45264

52030
DEMAND_SECTION

10

91

Philip Uren
November 2004

219

320

46

510

DEPOT_SECTION
1
-1

EOF

219

320

46

510

DEPOT_SECTION
1
-1

EOF

233

333

433

533

DEPOT_SECTION
1
-1

EOF

Philip Uren

November 2004
APPENDIX B — CVRP INSTANCE M-N101-K10
NAME : M-n101-k10 44 33 35 99 58 75 52 10
COMMENT : 4532 30 100 55 80 5310
(Christophides et al, 46 30 30 101 55 85 54 20
No of trucks: 10, 47 30 32 DEMAND_SECTION 5540
Optimal value: 820) 48 30 35 10 56 10
TYPE : CVRP 49 28 30 210 57 30
DIMENSION : 101 50 28 35 330 58 40
EDGE_WEIGHT_TY 512632 410 59 30
PE : EUC_2D 522530 510 60 10
CAPACITY : 200 532535 610 61 20
NODE_COORD_SEC 54445 720 62 10
TION 554210 820 63 20
14050 56 42 15 920 64 50
24568 57405 10 10 6510
34570 58 40 15 1110 66 10
4 42 66 59385 1210 67 10
54268 60 38 15 1320 68 10
642 65 61355 14 30 69 10
740 69 62 50 30 1510 70 10
8 40 66 63 50 35 16 40 71 30
938 68 64 50 40 17 40 72 20
103870 65 48 30 18 20 73 10
113566 66 48 40 1920 74 10
123569 67 47 35 20 10 75 50
132585 68 47 40 2110 76 20
142275 69 45 30 2220 77 10
152285 70 45 35 2320 78 10
16 20 80 71 95 30 24 10 79 20
17 20 85 72 95 35 2510 80 10
181875 7353 30 26 40 8110
191575 74 92 30 27 10 82 30
20 15 80 7553 35 28 10 83 20
213050 76 45 65 29 20 84 10
223052 77 90 35 30 10 8520
232852 78 88 30 3110 86 30
24 28 55 79 88 35 3220 87 10
252550 80 87 30 3330 88 20
262552 81 8525 34 40 89 30
272555 82 8535 3520 90 10
282352 837555 36 10 91 10
292355 847255 3710 92 10
302050 857058 38 20 93 20
312055 86 68 60 39 30 94 40
321035 87 66 55 40 20 9510
331040 88 6555 4110 96 30
34 8 40 89 65 60 42 10 97 10
35845 90 63 58 4320 98 30
36535 91 60 55 44 10 99 20
37545 92 60 60 4510 100 10
38240 93 67 85 46 10 101 20
39040 94 65 85 47 30 DEPOT_SECTION
40045 95 65 82 48 10 1
413530 96 62 80 49 10 -1
423532 97 60 80 50 10 EOF
433332 98 60 85 5110

92

APPENDIX C(0 — CVRP INSTANCE Dy-M-N101-K10

NAME : DNO-M-
nl01-k10
COMMENT : (naive
decomposition of M-
nl101-k10)

TYPE : CVRP
DIMENSION : 26
EDGE_WEIGHT_TY
PE : EUC_2D
CAPACITY : 200
NODE_COORD_SEC
TION

14050

24568

34570

4 42 66

542 68

6 42 65

74069

840 66

93868

103870
113566
123569
132585
142275
152285
16 20 80
17 20 85
18 1875
191575
20 1580
213050
223052
232852
2428 55

252550
262552
DEMAND_SEC
TION
10

210
330
410
510
610
720
820
920

10 10
11 10
1210
1320
14 30

APPENDIX C1 — CVRP INSTANCE D\;-M-N101-K10

NAME : DN1-M-
nl01-k10
COMMENT : (naive
decomposition of M-
n101-k10)

TYPE : CVRP
DIMENSION : 26
EDGE_WEIGHT_TY
PE : EUC_2D
CAPACITY : 200
NODE_COORD_SEC
TION

14050

272555

282352

292355

302050

312055

321035
331040
34 840
35845
36535
37545
38240
39040
40045
413530
423532
433332
44 33 35
453230
46 30 30
473032
48 30 35
49 28 30

93

5028 35
512632
DEMAND_SECTION
10
2710
28 10
2920
3010
3110
3220
3330
3440
3520
36 10
3710
3820
3930
4020

Philip Uren
November 2004

1510
16 40
17 40
18 20
1920
2010
2110
2220
2320
24 10
2510
26 40
DEPOT_SECTION
1

-1
EOF

41 10
42 10
43 20
4410
4510
46 10
4730
48 10
4910
5010
5110
DEPOT_SECTION
1

-1
EOF

Philip Uren

November 2004
APPENDIX C2 — CVRP INSTANCE D,-M-N101-K10
NAME : DN2-M- 57405 7553 35 65 10
n101-k10 5840 15 76 45 65 66 10
COMMENT : (naive 59385 DEMAND_SECTIO 67 10
decomposition of M- 60 38 15 N 68 10
n101-k10) 61355 10 69 10
TYPE : CVRP 62 50 30 5210 70 10
DIMENSION : 26 63 50 35 5310 7130
EDGE_WEIGHT_TY 64 50 40 5420 7220
PE : EUC_2D 65 48 30 55 40 7310
CAPACITY : 200 66 48 40 56 10 74 10
NODE_COORD_SEC 67 47 35 57 30 75 50
TION 68 47 40 58 40 76 20
1 40 50 69 45 30 59 30 DEPOT_SECTION
522530 70 45 35 60 10 1
532535 71 95 30 6120 -1
54445 729535 62 10 EOF
554210 73 53 30 63 20
564215 74 92 30 64 50
APPENDIX C3 — CVRP INSTANCE D\;-M-N101-K10
NAME : DN3-M- 828535 100 55 80 90 10
n101-k10 837555 101 55 85 91 10
COMMENT : (naive 847255 DEMAND_SECTIO 92 10
decomposition of M- 8570 58 N 9320
n101-k10) 86 68 60 10 94 40
TYPE : CVRP 87 66 55 77 10 95 10
DIMENSION : 26 88 65 55 78 10 96 30
EDGE_WEIGHT_TY 89 65 60 79 20 97 10
PE : EUC_2D 90 63 58 80 10 98 30
CAPACITY : 200 91 60 55 8110 99 20
NODE_COORD_SEC 92 60 60 8230 100 10
TION 93 67 85 83 20 101 20
1 40 50 94 65 85 84 10 DEPOT_SECTION
7790 35 95 65 82 8520 1
78 88 30 96 62 80 86 30 -1
79 88 35 97 60 80 87 10 EOF
80 87 30 98 60 85 88 20
818525 99 58 75 89 30

94

Philip Uren
November 2004

APPENDIX D0 — CVRP INSTANCE D--M-N101-K10

NAME : DCO-M-
nl01-k10
COMMENT :
(Decomposition of
M-n101-k10)

TYPE : CVRP
DIMENSION : 12
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 200
NODE_COORD_SE
CTION

14050

625030

63 5035
64 50 40
65 48 30
66 48 40
67 47 35
68 47 40
69 45 30
70 45 35
73 53 30
755335
DEMAND_SECTION
10

62 10
63 20

64 50
65 10
66 10
67 10
68 10
69 10
70 10
7310
7550
DEPOT_SECTION
1

-1
EOF

APPENDIX D1 — CVRP INSTANCE D;-M-N101-K10

NAME : DC1-M-
nl01-k10
COMMENT :
(Decomposition of
M-n101-k10)

TYPE : CVRP
DIMENSION : 13
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 200
NODE_COORD_SE
CTION

14050

24568

34570

4 42 66
54268
642 65
740 69
840 66
93868
103870
113566
123569
76 45 65
DEMAND_SECTION
10

210
330
410

510
610
720
820
920
10 10
1110
12 10
76 20
DEPOT_SECTION
1

-1
EOF

APPENDIX D2 — CVRP INSTANCE D,-M-N101-K10

NAME : DC2-M-
nl01-k10
COMMENT :
(Decomposition of
M-n101-k10)
TYPE : CVRP
DIMENSION : 10
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 200
NODE_COORD_SE
CTION

14050

321035
331040
34840
35845
36535
37545
38240
39040
40045
DEMAND_SECTION
10
3220
3330

95

34 40
3520
36 10
3710
38 20
39 30
4020
DEPOT_SECTION
1

-1
EOF

Philip Uren
November 2004

APPENDIX D3 — CVRP INSTANCE D ;-M-N101-K10

NAME : DC3-M-
nl01-k10
COMMENT :
(Decomposition of
M-n101-k10)
TYPE : CVRP
DIMENSION : 14
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 200
NODE_COORD_S
ECTION

14050

413530

423532

433332
44 33 35
453230
4630 30
473032
48 30 35
49 28 30
502835
512632
522530
532535

DEMAND_SECTION

10
4110
42 10

43 20
44 10
4510
46 10
47 30
48 10
49 10
5010
5110
5210
5310
DEPOT_SECTION
1

-1
EOF

APPENDIX D4 — CVRP INSTANCE D4-M-N101-K10

NAME : DC4-M-
nl01-k10
COMMENT :
(Decomposition of
M-n101-k10)
TYPE : CVRP
DIMENSION : 11
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 200
NODE_COORD_S
ECTION

14050

837555
847255
857058
86 68 60
87 66 55
88 65 55
89 65 60
90 63 58
916055
92 60 60

DEMAND_SECTION

10
8320

84 10
8520
86 30
8710
88 20
89 30
90 10
9110
9210
DEPOT_SECTION
1

-1
EOF

APPENDIX D5 — CVRP INSTANCE D s-M-N101-K10

NAME : DC5-M-
nl01-k10
COMMENT :
(Decomposition of
M-n101-k10)
TYPE : CVRP
DIMENSION : 9
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 200
NODE_COORD_S
ECTION

14050
54445
554210
564215
57405
584015
59385
603815
61355

DEMAND_SECTION

10
5420

96

5540
56 10
5730
58 40
5930
60 10
6120
DEPOT_SECTION
1

-1
EOF

Philip Uren

November 2004
APPENDIX D6 — CVRP INSTANCE D x-M-N101-K10
NAME : DC6-M- 223052 23 20
n101-k10 232852 24 10
COMMENT : 242855 2510
(Decomposition of 252550 26 40
M-n101-k10) 262552 2710
TYPE : CVRP 272555 28 10
DIMENSION : 12 282352 29 20
EDGE_WEIGHT_T 292355 3010
YPE : EUC_2D 3020 50 3110
CAPACITY : 200 312055 DEPOT_SECTION
NODE_COORD_S DEMAND_SECTION 1
ECTION 10 -1
1 40 50 2110 EOF
213050 2220
APPENDIX D7 — CVRP INSTANCE D,-M-N101-K10
NAME : DC7-M- 719530 74 10
n101-k10 729535 77 10
COMMENT : 749230 78 10
(Decomposition of 7790 35 79 20
M-n101-k10) 78 88 30 80 10
TYPE : CVRP 79 88 35 81 10
DIMENSION : 10 80 87 30 82 30
EDGE_WEIGHT_T 818525 DEPOT_SECTION
YPE : EUC_2D 828535 1
CAPACITY : 200 DEMAND_SECTION -1
NODE_COORD_S 10 EOF
ECTION 71 30
14050 7220
APPENDIX D8 — CVRP INSTANCE D g-M-N101-K10
NAME : DC8-M- 93 67 85 95 10
n101-k10 94 65 85 96 30
COMMENT : 95 65 82 97 10
(Decomposition of 96 62 80 98 30
M-n101-k10) 97 60 80 99 20
TYPE : CVRP 98 60 85 100 10
DIMENSION : 10 99 58 75 101 20
EDGE_WEIGHT_T 100 55 80 DEPOT_SECTION
YPE : EUC_2D 101 55 85 1
CAPACITY : 200 DEMAND_SECTION -1
NODE_COORD_S 10 EOF
ECTION 93 20
1 40 50 94 40

97

Philip Uren

November 2004

APPENDIX D9 — CVRP INSTANCE D o-M-N101-K10

NAME : DC9-M-
nl01-k10
COMMENT :
(Decomposition of
M-n101-k10)
TYPE : CVRP
DIMENSION : 9
EDGE_WEIGHT_T
YPE : EUC_2D
CAPACITY : 200
NODE_COORD_S
ECTION

14050
132585
142275
152285
1620 80
1720 85
181875
191575
201580
DEMAND_SECTION
10
1320

98

14 30
1510
16 40
17 40
18 20
1920
2010
DEPOT_SECTION
1

-1
EOF

	University of Tasmania Open Access Repository
	Cover sheet

