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Abstract 
Supervised classification of satellite imagery largely removes the user from the 

information extraction process. Visualisation is an often ignored means by which 

users may interactively explore the complex patterns and relationships in satellite 

imagery. Classification can be considered a “hypothesis testing” form of analysis. 

Visual Data Mining allows for dynamic hypothesis generation, testing and revision 

based on a human user’s perception. In this study Visual Data Mining was applied to 

the classification of satellite imagery. 

After reviewing appropriate techniques and literature a tool was developed for the 

visual exploration and mining of satellite image data. This tool augments existing 

semi-automatic data mining techniques with visualisation capabilities. The tool was 

developed in IDL as an extension to ENVI, a popular remote sensing package. 

The tool developed was used to conduct a visual data mining analysis of high-

resolution imagery of Heard Island. This process demonstrated the positive impacts 

of visualisation and visual data mining when used in the analysis of satellite imagery. 

These impacts consist of: increased opportunity for understanding and hence 

confidence in classification results, increased opportunity for the discovery of subtle 

patterns in satellite imagery and the ability to create, test and revise hypotheses based 

on visual assessment.  
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Chapter 1 Introduction 

1.1 Problem Description 

Satellite imagery is increasingly being used to monitor the surface of the Earth. 

There are numerous satellites orbiting the Earth equipped with powerful instruments 

for remote observation of entities and events on the ground. The data collected by 

these instruments is used for various purposes, such as monitoring of climate change 

and resource mapping. The science and art of acquiring and interpreting these images 

is known as remote sensing (Lillesand & Kiefer 2000; Richards 1986; Schowengerdt 

1997). The extraction of spatial features is usually carried out by image interpretation 

and/or quantitative analysis (Richards 1986, p. 69). Image interpretation (also known 

as photointerpretation) requires a human analyst to visually inspect the imagery and 

extract information based on their experience and expert knowledge. This process 

can become extremely tedious due to the manner in which the data is presented and 

even the most expert analysts occasionally make avoidable oversights. Quantitative 

analysis aims to automate the interpretation stage and is generally favoured over 

manual image interpretation.  

Classification is a quantitative analysis technique in which each pixel is assigned a 

thematic class based on its spectral values. This process involves statistical 

comparison of each pixel’s properties to that of a reference class. The problem with 

classification and other quantitative methods is that the user is removed from the 

interpretation process. This results in decreased confidence in, and understanding of, 

the results of such analyses (Keim, D A 2002). 

Visual Data Mining (VDM) (Soukup & Davidson 2002) involves the user in the 

classification process. Visualisation and VDM can play an important role in 

exploring patterns and relationships in satellite imagery. Visualisation can also reveal 

the functioning of classification algorithms (Thearling et al. 2001). Most, if not all, 

commercial remote sensing software packages are lacking tools for VDM and 

explorative visual analysis. The provision of visualisation and visual data mining 

tools in a remote sensing software package would allow the exploration of the use of 

these technologies for analysis of satellite imagery. 
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1.2 Research Objectives 

1.2.1 Hypothesis 
It is hypothesised that combining interactive visualisation capabilities with existing 

techniques for data mining of remotely sensed imagery can enhance understanding of 

the image classification process, reveal trends in the data and produce more 

insightful image analyses. 

1.2.2 Aim 
The aim of this study is to test the hypothesis by: 

• Designing and implementing a prototype visualisation system for data 

mining of remotely sensed imagery, and 

• Applying the visualisation prototype to a classification study based on high-

resolution satellite imagery of Heard Island to showcase and assess the value 

of visualisation in semi-automated image classification. 
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Chapter 2 Background 

2.1 Remote Sensing 

2.1.1 Introduction 
Remote sensing is broadly defined as the acquisition of information regarding a 

particular entity or event without requiring the data acquisition device to be in close 

proximity to the entity or event (Lillesand & Kiefer 2000). Most commonly the term 

refers to the use of satellite and aircraft mounted sensors for mapping and monitoring 

of the Earth’s surface. Numerous remote sensing satellites are orbiting the Earth. 

Each satellite is referred to as a platform and is home to one or more instruments or 

sensors. Multiple satellites with identical sensors are sometimes referred to as a 

system, eg: the Landsat system (Richards 1986). 

Remote sensing is more than remotely obtaining data regarding the Earth’s surface, 

eg: taking photographs from space. It is the science of drawing useful conclusions 

from the raw data, or put simply, extracting information. This process of extracting 

information is known as interpretation. There are two approaches to interpretation: 

image interpretation and quantitative analysis. These are discussed in section 2.1.4. 

2.1.2 Remotely Sensed Data 
Remotely sensed data is usually available in a digital format suitable for computer 

processing. The data is composed of discrete picture elements or pixels. A 2-

dimensional (2D) array of pixels makes up an image. Each of these pixels contains 

one or more data components (one per band) relating to one or more wavelengths in 

the electromagnetic spectrum. This is an important characteristic of remotely sensed 

imagery. A remotely sensed image comprises one or more bands.  A band is a 2D 

array of values recording a measure of energy in some part of the electromagnetic 

spectrum. Bands may represent reflected visible light, infrared, microwave 

wavelengths or any other part of the spectrum. Bands in an image have equal sizes in 

each dimension and represent the same spatial area. By simultaneously indexing each 

band array with an (x,y) coordinate pair the component values for the pixel with 

coordinates (x,y) of the image can be determined. 

3 



Background 

Properties of remotely sensed data that are commonly discussed are its spectral, 

spatial and radiometric resolutions. Spectral resolution refers to the number and 

range of the bands in the image. Spatial resolution refers to the size, in ground units 

(square kilometres or metres), that each pixel represents. Finally, radiometric 

resolution refers to the number of discrete brightness levels available for components 

of each band. This is usually stated in terms of the number of binary digits used to 

represent the range of values. 

For example, the Landsat Thematic Mapper (TM) instrument measures 61 distinct 

wavelength ranges; blue (0.45-0.52 µm), green (0.52-0.60 µm),  and red (0.63-0.69 

µm) visible light bands, a near infrared (0.76-0.90 µm) and two middle infrared 

(1.55-1.75 µm and 2.08-2.35 µm) bands (Richards 1986). Images from this 

instrument have 6 bands, one for each wavelength range. Each of these bands is 

recorded with a spatial resolution of 30 m; that is, each pixel represents a 30x30 m 

square on the ground. Each band is recorded with a radiometric resolution of 8 bits 

which means each element of each band can only be one of 256 discrete brightness 

levels. 

Bands for different wavelengths within an image are illustrated in Figure 2-1. The 

figures shown are Landsat TM images of Hobart, Tasmania, Australia acquired on 

28/9/1999. Each band is displayed independently of the others in a grey scale image 

composition of the data for that band. The brighter any pixel in the image is, the 

higher its reflectance in that particular band. 

                                                 
1 The Landsat Thematic Mapper does in fact have a seventh band representing thermal energy with a 
spatial resolution of 120m which has been excluded for the sake of simplicity 
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(a) (b) (c) 

(d) (e) (f) 

Figure 2-1: Reflectance in each of the Landat TM satellites 6 bands:  (a), (b), (c) Blue, green and 
red visible light, (d) near infrared, (e) middle infrared 1, (d) middle infrared 2. 

Bands can be combined and viewed as a (false) colour composite. In this process 

three bands are selected and allocated to represent the red, green and blue 

components of pixels on the display. By allocating bands 3, 2 and 1 of the Landsat 

TM image in Figure 2-1cba to represent red, green and blue colour components, the 

image in Figure 2-2 is composed. This is known as a colour composite. A false 

colour composite is one in which higher wavelength bands are used or visible light 

bands are assigned out of order. Figure 2-3 shows a false colour composite of the 

Hobart image where red represents near infrared, green represents blue visible light 

and blue represents middle infrared. False colour composite images enable visual 

identification of spectrally distinct land cover features. 

5 
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Figure 2-2: Landat TM image of Hobart, 
Tasmania in visible light (bands 3, 2 and 1). 

 

Figure 2-3: False colour composite using 
bands 4, 1 and 5 of the Landsat TM image of 
Hobart. 

2.1.3 Pre-processing 
Prior to interpretation, remotely sensed imagery is often subjected to rectification 

and/or enhancement. Rectification of imagery is important for obtaining accurate 

results. Radiometric correction is used to counter the effects of sensor noise and 

atmospheric refraction. Geometric correction is used rectify the geometric distortions 

cause by the curvature of the Earth, the angle of acquisition and topographic relied 

distortion. A summary of rectification techniques can be found in (Lillesand & 

Kiefer 2000; Richards 1986; Schowengerdt 1997). Enhancement refers to the use of 

image filters to stretch, smooth and sharpen imagery for visual analysis (Gonzalez & 

Woods 1983). 

2.1.4 Interpretation 
Interpretation is the key stage in the process of remote sensing. Up until this point no 

actual information has been gained. This section presents the two exclusive yet 

complementary, traditional approaches to interpretation of remotely sensed data and 

introduces the use of a third non-traditional approach. 

Traditional image interpretation (sometimes referred to as photointerpretation) 

involves a human analyst/interpreter extracting information by visual inspection. The 

data is usually displayed as a false colour composite and the analyst makes decisions 

about what information is contained in the image based on their experience and 

6 
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expertise. This visual inspection based approach is usually quite effective in the 

process of segmentation. Segmentation involves extracting objects (road, buildings, 

lakes, rivers, etc) from the image and displaying their extent in the image. Image 

interpretation is not suited to the task of accurately determining the area or extent of 

land cover classes. Not only is it tedious for an analyst to examine every pixel in an 

image (as would be needed to obtain an accurate area estimate) but it is difficult for 

them to take into account the full reflectance profile of each pixel as only three bands 

are being displayed at once. Multiple false colour composites can be used to 

somewhat alleviate the latter issue but the problem still exists. 

Whilst it is impractical for a human analyst to examine every pixel in an image, and 

when doing so to take into account the full dimensionality of (i.e., the number of 

bands in) the image the task is well suited to a computational approach. A 

quantitative analysis may consist of classifying each pixel in the image. 

Classification is a method by which labels may be attached to pixels according to 

their spectral characteristics (Richards 1986). This is discussed in Section 2.3. 

Having obtained a classification for each pixel, a colour coded thematic map of the 

image can be constructed (Figure 2-4). From this map the area of coverage for a 

given land cover class can be extracted, as well as many other measurements. 

Quantitative analysis more readily yields the information that remote sensing 

analysts require. However, interpretation can take another key form; Visual Data 

Mining (VDM) or more generally scientific visualisation. This is essentially the 

middle ground between quantitative analysis and image interpretation. Visual data 

mining presents the user with a more appropriate representation of their data so that 

they can visually explore the relationships and patterns it contains. Like image 

interpretation VDM is highly subjective. This does not detract from its usefulness in 

remote sensing. Indeed Lillesand & Kiefer highlight the artistic nature of remote 

sensing: 

Remote Sensing is the science and art of obtaining information about an object, 

area, or phenomenon through the analysis of data acquired by a device that is 

not in contact with the object, area, or phenomenon under investigation. 

(Lillesand & Kiefer 2000) 
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Visualisation was used in combination with remote sensing successfully by Lucieer 

(2004). Visualisation and Visual Data Mining are discussed extensively in section 

2.6. Its use in remote sensing is discussed in section 2.7. 

 
(a) 

 
(b) 

Figure 2-4: (a) Thematic map of the Landsat TM Hobart image, (b) Land cover classes by 
colour 

2.2 Data Mining 

2.2.1 Introduction 
Witten & Frank (2005) define data mining as follows: 

Data mining is defined as the process of discovering patterns in data. The 

process must be automatic or (more usually) semiautomatic. The patterns 

discovered must be meaningful in that they lead to some advantage, usually an 

economic advantage. The data is invariably present in substantial quantities. 

Machine Learning (ML) is the common set of methods or algorithms applied to 

computationally extract these patterns. ML techniques require data to be represented 

in an attribute-value style format. An example ML dataset is given in Table 2-1. The 

dataset describes the properties of various specimens of Iris plants. In this dataset 

there are four instances – one for each specimen –, and four attributes. Each instance 

has a value for each attribute as well as a class label indicating the species of Iris to 

which an expert has decided it belongs. 
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Table 2-1: Sample from the Iris Plants Database (Fisher 1988) 

Instance 
No. 

Sepal 
Length 

Sepal 
Width 

Petal 
Length

Petal 
Width 

Class

1 5.1 3.5 1.4 0.2 Iris Setosa
2 4.6 3.1 1.5 0.2 Iris Setosa
3 6.1 2.8 4.7 1.2 Iris Versicolor
4 6.3 2.9 5.6 1.8 Iris Virginica

 

There exist many methods for machine learning; decision trees, classification rules, 

artificial neural networks and instance based methods (Witten & Frank 2005). These 

methods all perform the operation of classification. The result of this operation is the 

construction of a classifier. A classifier embodies the knowledge extracted from the 

dataset and can be used to classify new unclassified instances. For example, if a new 

specimen of Iris needs to be classified, the values of the specimen’s attributes (sepal 

length/width, petal length/width) are given to the classifier and a class label is 

returned. 

In the case of satellite imagery, instances are pixels. The attributes for each pixel are 

the bands in the image. The values are the reflectance values in each band. Class 

labels are assigned by an analyst to a small set of pixels in the image known as the 

training pixels. A classifier can be constructed and used to classify the rest of the 

pixels in the image. 

ML methods can be split in three ways: supervised versus unsupervised, parametric 

versus non-parametric and hard classifying versus soft classifying. Supervised ML 

describes cases in which the algorithm is given the class labels of its training 

instances. Unsupervised ML describes cases in which the algorithm clusters the 

instances and presents the unlabelled clusters to the user for interpretation. The user 

then assigns, based on their perception, the most appropriate label to the cluster 

(Witten & Frank 2005, p. 43). Parametric classifiers are those that summarise their 

training data statistically according to certain assumptions regarding the distribution 

of the class and make classification decisions based on those statistics and 

assumptions. Non-parametric classifiers make no assumptions regarding the 

statistical distribution for each class. Hard classifiers provide a single class label for a 

new instance. Soft classifiers may provide multiple, weighted classifications for a 

new instance. 
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Specific classifiers are described in section 2.3. The descriptions refer specifically to 

remotely sensed data rather than the general case. Many remote sensing authors tend 

to discuss these techniques as if they exist purely for the field of remote sensing; this 

of course is not true, they may be applied to virtually any classification problem. 

2.2.2 Feature Space 
Feature space is an abstract n-dimensional space representing the classification 

problem at hand. Each instance in a dataset can be plotted as a point in this space. 

The value of n is determined by the number of attributes in the dataset. The 

dimensionality can be reduced by simply ignoring certain attributes. If n is reduced 

to 2 or 3 the 2D or 3D feature space can be visualised. 

It is useful when describing various classification algorithms to use some form of 

visual aid. A 3D feature space allows visualisation of the training data clusters and/or 

the decision boundaries used by the classifier. A 3D feature space plot can be 

constructed in the following manner: select three attributes from the dataset to assign 

to the axes of 3D Euclidean space, each instance can then be plotted according to the 

values of these three selected attributes. Likewise, a 2D feature space plot uses two 

attributes from the data set. In Figure 2-5 each instance from a sample dataset is 

plotted as a single point. Points are usually grouped into clusters based on class. 

Shapes can then be used to summarise the points in each cluster (Figure 2-6).  Shapes 

and points allow visual explanation of classifier parameters. 

 

Figure 2-5: A sample feature space plot. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-6: Feature space plots; (a) Greyscale scatter plot of a 3 class dataset, (b) Ellipsoids 
statistically representing the 3 classes, (c) α-shapes representing the extent of classes, (d) 
isosurfaces representing the extent and density of classes. 

2.3 Supervised Remote Sensing Image Classification 

2.3.1 Introduction 
Supervised classification is the most commonly applied quantitative analysis 

technique for remotely sensed imagery. Image classification is the process of 

labelling pixels in the image as representing particular land cover types, or classes 

based on reference or training samples. Many algorithms exist for performing this 

classification. Regardless of the algorithm used, the process of supervised image 

classification is as follows: 

1. Determine and specify the classes into which the image is to be classified. 

2. For each class a training set of pixels must be defined. These pixels are 

deemed to be representative of the class. The location of these pixels can be 

derived in many ways: the user may perform a subjective photointerpretation 

and make a corresponding manual selection of pixels, or the pixels may be 
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selected based on field data (ground truth). This second option is often 

preferred as it removes any subjectivity from the classification. 

3. The classifier is trained on these training pixels. For parametric classifiers the 

data is summarised statistically, for some non-parametric classifiers the 

training data may simply be recorded verbatim. 

4. The trained classifier is then used on every pixel for which classification is 

desired (training pixels are usually excluded from this process). Every pixel 

in the image will now have an associated class label. 

5. A colour coded thematic map or tabular summary can be produced. 

This section presents a selection of classification algorithms popular in remote 

sensing applications. The most popular of these algorithms are parametric. Their 

popularity is largely due to the fact that non-parametric classifiers (excluding the 

parallelepiped) tend to be computationally intensive. Remote sensing data sets are 

becoming larger because of increasing image resolutions causing longer run times for 

these algorithms. 

2.3.2 Maximum Likelihood 
The maximum likelihood classifier is historically the most commonly used 

supervised classifier in remote sensing (Richards 1986). This parametric classifier 

uses the covariance matrix of the training set combined with an assumption of a 

normal distribution for pixel values belonging to this class. In simple terms the 

maximum likelihood classifier works by generating a set of probabilities, one for 

each class. These probabilities are an estimate of how likely the pixel is to belong to 

each class, like a Bayesian classifier (Witten & Frank 2005). The maximum 

probability is selected and the pixel is assigned the corresonding class label. The 

probabilities are based on how close a pixel in feature space lies to the mean of any 

class, weighted according to the covariance matrix (as a measure of the class’ 

spread). In other words the decision boundary for a maximum likelihood classifier is 

a parabola (in 1D feature space), a circle or ellipse (in 2D feature space) or an 

ellipsoid or hyper-ellipsoid (in 3+-dimensional feature space). The closer the pixel is 

to the centre of the ellipsoid, relative to the length of the radial line on which the 
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pixel lies, the higher the likelihood. A pixel on the exact boundary of two decision 

surfaces has the same probability for each class. 

Maximum likelihood classifications usually impose some probability threshold 

below which a pixel will be labelled as unclassified; this avoids the situation of 

selecting the highest from a very low set of likelihoods. In a five class problem 

where one class has probability of 0.201 and the others have probability 0.19975 the 

first will be selected and the relatively high probability of the other classes will be 

totally ignored. The reason for its popularity is the fact that, as a parametric 

classifier, it is fast to classify but still maintains some important properties of the 

training data through the inclusion of the covariance matrix. 

2.3.3 Minimum Distance 
Possibly one of the simplest parametric classifiers is the minimum distance to mean, 

also known as the nearest-mean classifier (Schowengerdt 1997). During training the 

mean vector of each class is calculated and stored. Classification then simply consists 

of finding the nearest mean for a pixel in feature space based on its Euclidean 

distance. The pixel is then assigned the class of the closest mean. Decision 

boundaries for the minimum distance classifier are lines or (hyper-) planes dividing 

feature space. Minimum distance classifications are sometimes performed with a 

maximum distance threshold; pixels outside this range of any mean vector will be 

labelled as unclassified. 

2.3.4 Level-Slice and Parallelepiped 
The parallelepiped classifier is a simple non-parametric classifier. Training consists 

of recording the upper and lower bounds of the training data’s histogram for each 

class, in other words the minimum and maximum values for each band for each 

class. Classification consists of checking if a pixel falls within the bounds of each 

class. In feature space this simply means checking if the pixel falls within a given 

parallelepiped, that is a rectangle or (hyper-) box. The parallelepiped classifier, like 

the minimum distance classifier, is extremely fast to execute. A very minimal 

number of computations need to be carried out. The parallelepiped classifier has 

several drawbacks. Unless a pixel falls in a parallelepiped it cannot be classified (if a 

pixel falls in more than one parallelepiped a random decision must be made between 
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the two classes). By contrast the minimum distance and maximum likelihood 

classifiers can classify any pixel (unless thresholding is applied) (Richards 1986). 

The level-slice classifier is a special case of the parallelepiped. In this instance the 

parallelepipeds are strictly aligned with axes of feature space, as opposed to the 

general algorithm in which the (hyper-) shapes are only restricted to having parallel 

opposing sides (hence they are parallelepipeds). This is illustrated in Schowengerdt 

(1983, p. 178). 

2.3.5 Instance Based Learning 
Instance based classifiers are essentially the pinnacle of non-parametric 

classification. Many of these classifiers simply record their data verbatim. One of 

these types of instance based classifiers is the k-nearest neighbour. During training 

every pixel in the training set is recorded. During classification the k nearest 

neighbours in feature space (based on the Euclidean distance) in the training set are 

found for the pixel to be classified. k is a user defined parameter. The class labels of 

these neighbours are inspected and the most frequently occurring class is assigned to 

the pixel. Instance based methods are not commonly applied in remote sensing as 

they are very computationally expensive. An unoptimised k-nearest neighbour 

classification algorithm has time complexity of O(n2). The k-nearest neighbour 

classifier can produce accurate results when used on remotely sensed data as shown 

by Murray (in-press). Decision boundaries for the k-nearest neighbour are complex 

and vary depending on the value of k. 

2.3.6 Soft Classification 
The classifiers described above all assign a hard class label during classification. 

Fuzzy classification employs fuzzy set theory to provide a classified pixel with 

variable degrees of membership to each class in the image. In this way the user is 

provided with some measure of certainty of the classification. Numerous authors 

have published on the use of supervised fuzzy classification in remote sensing: 

(Lucieer 2004; Schowengerdt 1997; Wang 1999b, 1999a; Zhang & Foody 2001). 

Fuzzy classification allows the exploration of uncertainty in classification. If a pixel 

has near equal fuzzy membership values to multiple classes, this represents a high 

degree of uncertainty of classification. This certainty level can be recorded for each 

pixel and visualised post-classification (Lucieer 2004)(see Section 2.7). The decision 
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boundaries for the fuzzy classifier can be visualised as spheres (Lucieer 2004, p. 23) 

or ellipsoids. 

2.4 Texture 

Classification of remotely sensed imagery as discussed in section 2.3 was limited to 

the use of a single pixel’s spectral properties (its value in each band) to classify the 

pixel. The use of texture measures allows the interpretation of spatial relationships 

between pixels in a local area in classification. 

Texture is a difficult concept to define. Gonzales & Woods (1983) define texture as a 

‘descriptor [that] provides measures of properties such as smoothness, coarseness, 

and regularity.’ Another way of thinking of texture is as an attribute that represents 

the spatial arrangement of the spectral values of the pixels in a region. We can 

quantise texture in a region by a variety of texture measures. 

A popular approach to quantising texture is the grey-level co-occurrence matrix 

(GLCM) (Haralick, Shanmugan & Dinstein 1973). This approach examines how 

often grey level values co-occur within a user specified neighbourhood in a single 

image band. Of course this matrix is of no use in itself as a texture measure but it can 

be statistically summarised using a variety of measures. Common measures include: 

Table 2-2 - Common texture measures derived from the co-occurrence matrix 
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where the matrix C represents the grey level co-occurrence matrix with i and j being 

column and row indices respectively. Murray (in-press) used GLCM measures in the 

classification of sub-Antarctic vegetation types. 

Other well known methods for quantising texture are Fourier and wavelet transform 

based approaches. Numerous authors explain these transforms: (Castleman 1996; 

15 



Background 

Gonzalez & Woods 1983; Randen & Husøy 1999; Richards 1986; Wahl 1987). 

Randen & Husøy (1999) discuss and compare these and a variety of other texture 

based classification techniques. Texture has been shown to improve classification 

results (Haralick, Shanmugan & Dinstein 1973; Lucieer 2004; Murray in-press). 

Visualisation can be used be determine the effects of particular measures before they 

are used for classification. 

2.5 Scientific Visualisation 

2.5.1 Introduction 
Scientific Visualisation can be defined as the process of, and field of research 

relating to, the representation of data graphically as a means of gaining a deeper 

understanding of a complex system. There are subtle (and much debated) differences 

between the field of Scientific Visualisation and the field of Information 

Visualisation. Whilst Scientific Visualisation is considered to be related to 

visualisation of “natural” or spatial data, Information Visualisation is commonly 

regarded as visualisation of non-inherently spatial data, for example email traffic 

flow or relational databases (Ferreira de Oliveira & Levkowitz 2003). Some 

Scientific Visualisation purists would argue that Information Visualisation is only 

about presenting known ideas while Scientific Visualisation can be used to gain new 

understanding of complex problems. 

Scientific Visualisation can take many forms. Parallel coordinate plots, feature space 

plots, surface and contour plots, volume renderings and a myriad of other 

visualisations are commonly used. Dynamically linked views are often used to 

represent multi-dimensional data in different ways. The dynamic link between 

visualisation and the original data enables exploration of patterns and relationships. 

This study makes frequent use of feature space plots. Chapter 3 describes the use of a 

dynamic link between feature space and geographic image space to visualise 

relationship Sections 2.5.3 and 3.5 describe techniques from the field of 3D computer 

graphics which can be employed to represent class clusters in 3D feature space. 

The use of interactive scientific/information visualisation for visual analysis of data 

is known as Visual Data Mining (Section 2.6). 
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(a) (b) 
 

(c)  
(d) 

Figure 2-7: Examples of different scientific visualisations: (a) Parallel coordinate plot (Carr, 
Wegman & Luo), (b) feature space scatter plot, (c) surface and contour plot, (d) volume 
rendering. 

2.5.2 Volumes 
A 3D array of data is referred to as a volume. A volume is made up of volume 

elements or voxels. Each voxel is represented by a density value. Volume data is 

prevalent in fields such as medical imaging, engineering, archaeology and many 

others. Medical imaging techniques such as Magnetic Resonance Imaging (MRI) and 

Computed tomography (CT) produce volume data. For example an MRI machine can 

be used to examine tissue within a human head at small, regular intervals. The 

machine produces a set of measurements as 2D slices; these are then stacked together 

to form a 3D volume (Figure 2-8). 
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Figure 2-8: MRI of the human head and 2 slices extracted from the volume. MRI data by (RSI 
2003a) rendering and slice view created using iVolume (RSI 2003b). 

2.5.3 Computer Graphics for Displaying Feature Space 
The field of 3D computer graphics is too large to discuss in detail in a study such as 

this. Numerous authors have published on the subject (Firebaugh 1993; Foley et al. 

1993; Hearn & Baker 2003; Mortenson 1999). In this study the primary concern is 

with displaying 3D objects with volume such as ellipsoids and polyhedra. These 

shapes can be used to represent class clusters in feature space. These shapes are 

usually represented by a boundary representation (Hearn & Baker 2003). In a 

boundary representation a shape is defined by a list of vertices in 3D space which 

define its points and a table defining how these vertices are linked to form faces. 

These are known as the vertex array and connectivity (or polygon) table respectively 

(Hearn & Baker 2003). By appropriately defining vertices and the linkages between 

them, shapes can be represented in 3D space. The construction of these shapes for 

visualisation of class clusters is described in section 3.5. 

As shown in Figure 2-5 feature space can be represented by a simple scatter plot. 

Facilities for plotting points in 3D space are common in graphics libraries (Hearn & 

Baker 2003). However, plotting a point for every pixel in a region or image may be 

too computationally expensive. Plotting a large number of points can cause 

unacceptable degradation of response times for interactive applications. The high and 

ever increasing resolution of satellite imagery means a large number of points need 

to be plotted. 

Feature space can also be feasibly represented by one or more volumes. This volume 

representation is usually a generalisation of true feature space. This allows a trade 
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off between visual accuracy and processing speed to be obtained, the higher the 

degree of generalisation, the less accurate and less computationally intensive the 

scene is to process. Specific means of constructing feature space volumes and the 

issues involved in this performance trade off are discussed in section 3.2.  

Volumes may either be rendered directly or have surface representations extracted 

from them. Extraction of surfaces for boundary representation is discussed in section 

3.5. Many techniques exist for the direct rendering of volumes (Drebin, Carpenter & 

Hanrahan 1988). Two popular methods are volumetric ray-casting and texture 

mapped volume rendering. Others of interest include: splatting and shear warp 

(Lacroute & Levoy 1994).  

Volumetric ray-casting produces high quality volume renderings as demonstrated in 

Figure 2-9a. However, it is computationally intensive and cannot normally be used in 

real time processing2. Texture mapped volume rendering can produce results 

rivalling ray-casting with significantly lower computational cost, allowing its use in 

real time processing. Whereas ray casting samples the volume many times for each 

ray, texture mapping samples, or rather slices the volume at a similar number of 

regular intervals but only once. The trade off comes when extracting the slices. The 

slices may be either viewport aligned or volume aligned. Viewport aligned slices 

produce high quality output but require the use of graphics hardware supporting 3D 

textures. Volume aligned slices produce poorer quality output as demonstrated in 

Figure 2-9b but have no hardware requirements. 

                                                 
2 Modern graphics hardware (GPUs supporting pixel and vertex shaders) is now being employed to 
accelerate and parallelise traditional techniques such as ray-casting making them practical for real 
time processing. 
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(a) 

 
(b) 

Figure 2-9: Volume rendering of a CT scan of an engine component. (a) Ray-casting, (b) Volume 
aligned texture mapping. 

2.6 Visual Data Mining 

2.6.1 Introduction 
Visual Data Mining (VDM) can be thought of as the melding of (interactive) 

scientific or information visualisation (Section 2.5) with data mining (Section 2.2). 

The term is believed to have first been used by Cox et al. (1997). This study limits 

the definition of VDM to the use of scientific visualisation because remotely sensed 

data is spatial in nature. 

VDM uses interaction to allow a human user to visually extract and explore patterns 

in data. When conducting a non-visual data mining, no matter how unbiased it may 

seem, the fact is that by simply choosing to carry out an automated analysis a priori 

assumptions have been made about what form the important results will take before 

analysis has actually begun (Simoff 2002). By visually mining the data this prior bias 

can be removed. Whilst the bias is removed, subjectivity of the analysis is vastly 

increased as it is based on a user’s perception, a point highlighted by many machine 

learning purists. However, this increased subjectivity is compensated for by a vastly 

increased degree of confidence in the analysis (Keim, D A 2002). VDM not only 

seeks to allow a human user to visually mine data but also to augment the non-visual 

data mining process. This augmentation usually takes the form of making the 

automated process more transparent to the user, hence providing increased 

confidence. 

As stated above, when conducting a non-visual analysis, bias is inherently present in 

the choice of conducting a particular quantitative analysis. When conducting such 
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analyses a hypothesis must be pre-determined. The analysis is then run to test the 

hypothesis. By contrast VDM can be seen as a hypothesis generation process (Keim, 

D A 2002). Visualisation of the data helps the user create new hypotheses. These 

hypotheses may then be tested by purely visual or non-visual data mining, or by a 

combination of the two. The results of the test can also be visualised. This allows for 

effective revision of the hypothesis. 

The Information Seeking Mantra (Shneiderman 1996) defines the normal process of 

visual data mining: ‘Overview first, zoom and filter, and then details-on-demand’ 

(Keim, D A 2002). This is the visual analogy of a divide-and-conquer style 

algorithm. However, only interesting parts of the data are analysed. 

Visual Data Mining is more than the application of scientific visualisation to 

attribute-value style data. There must be interaction that allows the user to mine the 

data for patterns (Ferreira de Oliveira & Levkowitz 2003). This usually means the 

incorporation of non-visual, automated data mining, into the visualisation system. 

The system should allow the user to create new hypotheses and test them using the 

automated tools. The tests may be applied at varying scales and to various subsets of 

the original data. 

A true visual data mining system has one more key component: the visual 

representation of the automated data mining algorithms to be applied. Many users of 

data mining have no need to be concerned with the underlying implementation of the 

quantitative analysis they are performing. However, a basic understanding of what 

the algorithm does to achieve its goal is important in order to understand what effect 

the analysis will have on a given set of data. From a classification perspective this is 

the visualisation of decision boundaries and parameters in feature space. 

Visual Data Mining can deal with inhomogeneous and noisy data. Many 

classification algorithms struggle to deal with noise and unexpected structure in 

training data. Human visual perception can easily deal with these issues. The user’s 

visual perception can be used to reduce possible sources of classifier confusion or to 

visually conduct the analysis themselves.  
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2.6.2 Exploratory Data Analysis 
Visual Data Mining is a type of Exploratory Data Analysis (EDA). Non-visual data 

mining is a form of Confirmatory Data Analysis (CDA). This is essentially 

formalises the statements in Section 2.6.1; EDA in the form of Visual Data Mining is 

used to explore the data prior to the use of, or in place of, CDA in the form data 

mining. Wegman (2001) states: 

In the original EDA framework, both visual and analytical tools were used to 

explore data and confirm that the data conformed to the assumptions 

underlying the confirmatory statistical methods employed to analyze the data. 

With the advent of high performance personal computing, more aggressive 

exploration of data has come into vogue. No longer was EDA simply used to 

verify underlying assumptions, but also was used to search for unanticipated 

structure. 

2.6.3 Summary 
The key benefits of Visual Data Mining can be summarised as follows: 

• The ability to deal with inhomogeneous and noisy data, 

• Light expectations concerning user knowledge of data mining algorithms, 

• The ability to educate users regarding the operation of these algorithms, 

• The removal of prior notions regarding the form of the important information 

in the data, and; 

• Higher confidence factors in findings as the user has been involved in the 

process and understands the steps carried out by any automated analysis that 

may be performed. 

Visual Data Mining’s major drawback is the subjective a nature of any results 

obtained. In a purely visual situation, it may become tedious to conduct a large 

number of analyses, but instances where purely visual DM is the optimal strategy are 

relatively few. Most analyses would combine visual and automated techniques. 
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2.7 Visual Data Mining of Remotely Sensed Data 

Interpretation is an important stage in the process of remote sensing (Section 2.1.4). 

Visual Data Mining can be used at this stage to aid in image interpretation or 

quantitative analysis. It can also be employed in conjunction with both of these 

traditional techniques. Few studies have investigated and discussed the use of VDM 

in remote sensing: Braverman & Kahn (2004), Keim, D. A. (2001), Keim, D. A. et 

al. (2004), Lucieer (2004), Lucieer & Kraak (2004). Many prior studies have focused 

largely on the visualisation rather than the data mining element. Lucieer (2004) 

visualised the fuzzy classification of remotely sensed imagery. A tool was developed 

whereby a user could visually adjust parameters of the fuzzy classifier. The use of 

such a system improved insight into fuzzy classification of remotely sensed imagery. 

Also, Lucieer (2004) investigated the use of visualisation of object segmentation and 

related uncertainty. This part of the study can be considered post-processing VDM; 

quantitative analysis was applied and results visualised.  

The aim of this study is to investigate the effect providing VDM tools within a 

remote sensing software package has on analyses performed using such a system. 
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Chapter 3 Methods 

3.1 Overview 

In order to assess the value of Visualisation and Visual Data Mining of satellite 

imagery, a system with these features has been constructed. Most commercial remote 

sensing software packages lack visual exploratory analysis tools. ENVI (the 

Environment for Visualising Images) is a leading remote sensing package with an 

extensible framework. This framework has been used to create a visual data mining 

environment for satellite imagery. 

This chapter details the algorithms and technologies used in the construction of a 

prototype visualisation system. The system features a volume based feature space 

representation. The volumes are derived from regions of interest (ROIs) within a 

digital image. Direct volume rendering can be applied to directly visualise these 

volumes. Ellipsoids are used to show the mean and variance of a region. Surface 

representation is used to show the full extent of regions in feature space. This 

representation is by means of isosurfaces and α-shapes. The prototype is written in 

IDL (the Interactive Data Language, created by Research Systems Inc.) as an 

extension to ENVI; a leading commercial remote sensing package written in IDL. 

Combined with ENVI, the prototype forms a visual data mining system for satellite 

imagery. 

Figures in this chapter have been generated by the prototype visualisation software 

unless otherwise cited. Unless otherwise stated the dataset used to generate the 

figures is a Landsat TM image of Hobart, Tasmania, Australia captured on 

28/9/1999. This image has 6 bands as described in Section 2.1.2. The spatial 

resolution is 30 m and the radiometric resolution is 8-bit. 

The axes for most of the figures in this chapter were set to use 5 numbered tick 

marks regardless of volume size in use. The tick marks are only present to provide a 

reference between figures and are not indicative of volume size (see section 3.2). 

Unless otherwise stated, figures have been generated with a volume size of 64. 
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3.2 Constructing Volume Representations 

Pixels in an image can be thought of as being a 2D array of size b x n (b = number of 

bands, n = number of pixels). One way plot this data in 3D feature space is to create 

a 3D frequency histogram of the 2D data based on three of the image bands. This 3D 

histogram is a volume representing the pixels which can be directly rendered in 3D 

feature space. In this way the frequency of certain pixel values becomes the density 

of the corresponding voxels in the volume. Figure 3-1 shows a volume in which 

every second voxel has been assigned the value zero in order to illustrate individual 

volume elements or voxels. The value at every other voxel could be a frequency at 

which pixels with certain values occur. A volume representation such as this is a 

summary of the set of pixels; each voxel represents the frequency at which pixels 

with certain values occur. For example, a voxel with coordinates (10, 5, 14) might 

represent the frequency of pixels with the exact value (10, 5, 14) in three image 

bands. More commonly each voxel represents a range of pixel values. This is a 

generalisation of feature space. The degree of generalisation is defined by the 

volume size. The volume size is the number of voxels along the x, y and z axes of the 

volume. In Figure 3-1 the volume size is 20 (with only half the voxels visible). 
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Figure 3-1: Example volume rendering showing varying voxel values. The darker voxels have 
higher values, lighter voxels have lower values. Every second voxel has a value of zero. Voxels 
with zero values are rendered as fully transparent in order to illustrate individual voxels.3

Volume size determines the degree of generalisation by adjusting the granularity of 

the volume. For example, take the X dimension of a volume. This dimension 

represents the columns of the volume. Each column is made up of a number of rows 

(in the Y dimension) and slices (in the Z dimension). This X dimension is assigned to 

one band of a satellite image. The radiometric resolution is 8-bits, so the data range is 

0 to 255. However only values between 8 and 215 are used in this band, so empty 

regions of feature space are removed by scaling the pixel values to lie between the 

minimum and maximum. The volume size determines what ranges of pixels will be 

grouped together. 

With a volume size of 5, the columns of the volume might look like4: 

                                                 
3 This volume was rendered with texture mapped direct volume rendering using nearest neighbour 
interpolation for crisp edges. The volume itself was created with the following IDL commands: 
IDL> vol = replicate(1, 20,20,20) 
IDL> vol[*,*,0:*:2] = 0 
IDL> vol[*,0:*:2,*] = 0 
IDL> vol[0:*:2,*,*] = 0 
IDL> vol[where(vol)] = uindgen(1000) 
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Figure 3-2: Ranges of pixel values to be sorted to five columns. 

This means that all pixels with values ≥8 and <59 will be sorted to the first column, 

pixels with values ≥59 and <111 will be sorted to the second, and so on. If the 

volume size is increased to 10, the granularity becomes finer, hence less 

generalisation: 

 

Figure 3-3: Ranges of pixel values to be sorted to ten columns. 

This doubling in volume size doubles the detail expressed by the volume. This also 

doubles the compute time for operations on the volume. In the extreme case the 

volume size may bet set equal to the range of the data. In this case a single pixel 

value will be mapped to each column. The opposite extreme is a volume size of 1, in 

this instance all pixels are sorted to the one existing column, indeed for a cube 

volume, to the one existing voxel. This concept of generalisation can be scaled up to 

the 3 dimensions of feature space by simultaneously applying similar reasoning to 

two more dimensions and bands. 

Rendering one voxel unique pixel value combination, resulting in no generalisation, 

is often too computationally intensive to be considered feasible. Remotely sensed 

data is often of 8-bit, 16-bit integer or 32-bit floating-point type. A volume with one 

voxel per pixel value combination for an unsigned 16-bit image would be 

approximately 32766GB in size. Few remotely sensed images will use this full range 

of the data type in any of their bands. Constructing volumes based on the full data 

type range of the image often gives poor visual results with the volume being largely 

empty and interesting areas being too small to visually explore. For these reasons the 

prototype constructs volumes of a user defined size (the same in each dimension), 

and scales pixel values to fit the user defined size. This scaling takes into account the 

minimum and maximum values in each band for the given set of pixels. This usually 

                                                                                                                                           
4 This range of values (215 – 8 = 207) does not divide evenly. Labelled values have had their decimal 
portions truncated for simplicity. 
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produces a relatively full feature space and increases the users’ opportunity to 

observe different patterns in the data. 

As stated above, volumes constructed in this study are of equal size in each 

dimension. The default size for volumes in the prototype software is 64 in each 

dimension. The user may choose any size they wish, however, sizes larger than 256 

are considered too large for interactive volume rendering. As the array is three 

dimensional, the increase in size from 64 to 255 causes an exponential growth in 

compute time and memory allocation; 643 = 512kB (643 x 2 bytes per voxel) vs 

2563= 32mB (2563x 2 bytes per voxel). 

Volumes are implemented as 3D arrays of 16-bit unsigned integers, yielding a 

maximum frequency in any one voxel of 65535. This should be enough for most 

practical purposes and reasonable volume sizes (volumes with few voxels relative to 

the range of the pixel values would be considered unreasonable). Measures were 

taken to check for overflow and report this to the user. If overflow should occur the 

value will be capped at the maximum representable 16-bit unsigned integer. 

Pixel values must be scaled such that the range of values for each attribute becomes 

equal to the range between zero and the size of the dimensions of the array. Scaling 

is carried out on a per-dataset, per-band basis. The dataset refers to a number of sets 

of pixels to be visualised simultaneously in 3D feature space. 

This process of constructing a volume from a set of pixels is condensed into the 

function bin_volume(volume-size, dataset,...)5 which returns a 

volume of given size in each dimension representing the pixel data given. 

3.3 Intersection of Volumes 

One of the purposes of the prototype is to explore the interactions between training 

regions for different land cover classes.  The prototype allows the user to generate 

and visualise intersections of multiple volumes. Intuitively this involves examining 

where volumes intersect in 3D feature space, which in geographic space translates to 

examining pixels in different training sets for similar values. These similar values 

represent spectral intersection between ROIs. Comparing each pixel in a training set 

                                                 
5 Refer to Appendix B for full function header and code listing. 
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to every pixel in every other training set with some measure of similarity (eg: 

Euclidean distance) has unsatisfactory time-complexity. This brute force style 

method described above would achieve the most accurate result and would allow the 

use of a similarity threshold at which pixels are included in the intersection. However 

a more efficient method is available. 

The existing volumes for each region can be used to perform the intersection 

operation. Having already constructed the volumes it is simply a matter of 

preforming a logical AND operation on every voxel of a volume with the same voxel 

in other intersecting volumes. Although this method is performing a similar 

operation to that described above it is preferred due to the fact that time-complexity 

is constrained by the size of the volume not the range of pixel data. The measure of 

similarity is essentially defined by the volume size. Using an AND style operation 

also allows the process to short-circuit as soon as a zero value is found in a voxel. 

This method has the disadvantage of performing the intersection based on values that 

have been scaled to fit the volume size; potentially causing greater intersection than 

would be desirable. This problem fades as the size of the volume approaches the 

range of the data. This problem is discussed in 3.6.2. 

The intersection routine implemented in the prototype creates a new volume 

consistent with those to be intersected and finds voxels where intersection occurs. 

Each voxel in the new volume where intersection occurs is assigned the value of the 

sum of that voxel over all volumes being intersected (overflow is handled by capping 

at the maximum value and notifying the user). All other voxels have value zero. 

3.4 Direct Volume Rendering 

Section 3.2 describes the technique used to construct a volume representation of a set 

of pixel data. In this study those pixels are extracted from regions of interest in a 

satellite image. The prototype allows for direct volume rendering of one independent 

volume or three consistent volumes with a fourth volume defining opacity. These are 

referred to as single-channel rendering and four-channel rendering respectively. In 

single channel rendering the density at each voxel is used to index a grey-scale 

colour table. This determines the output colour for that voxel. For four-channel 

rendering each of three volumes index one element of an RGB colour table. A fourth 
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volume indexes an opacity table. The outputs of all these volumes are merged to 

form the final rendering. There are two renderers available; a fast, low quality, 2D 

texture-mapped approach and an accurate ray-casting approach. The user may switch 

between these renderers at any time. 

3.5 Boundary Representation and Surfaces 

This section describes 3D surface and boundary representation methods used to 

enhance visualisation of class clusters in feature space. Section 3.5.2 describes how 

basic ellipsoids are formed from statistical measurement of a set of pixels. Sections 

3.5.3 and 3.5.4 describe methods used for constructing 3D meshes which closely 

approximate the true shape of the cluster represented by a volume. 

3.5.1 Problems with Direct Volume Rendering and Point Clouds 
Direct volume rendering is most useful in fields in which the data is inherently in 

volume form, as in the example given of medical MRI. It is less visually useful when 

data is not inherently in this form as is the case when plotting geospatial data in 

feature space. The reason geoscientists usually want to visualise multiple volumes at 

once is to examine how they interact with one another. Without some very ingenious 

use of the colour table it is difficult to show this interaction. For example, consider 

the following scenario referring to Figure 3-4: the user wishes to display the red 

region as clusters tending toward red and the blue and green regions in a similar 

fashion. The alpha channel is defined as the sum over all colour channels per voxel. 

They select a rainbow style colour table in order that each channel will show the 

appropriate colour in varying intensities. The resulting rendering of the volumes in 

feature space is disappointing, with many of the voxels having frequencies too low to 

plot. The blue region volume contains many dark pixels; 2643 of the 9800 pixels in 

the region have values which occur in voxel (1,1,2) of feature space. This is by far 

the maximum frequency in the plot and causes small values to be scaled even lower, 

in some cases to zero. Voxel values are scaled to byte values so that they may be 

used to index the colour and opacity tables. Large values cause smaller values to be 

truncated to zero after scaling. The direct volume rendering of these volumes shows 

the high frequency of blue (water) in the lower corner of the plot and the medium 

concentration of red (vegetation) in the mid-range of band 4 (infrared) and low 
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ranges of two visible light bands. The green region, representing mostly man-made 

land cover, is too sparsely distributed to be recognisable by visual inspection alone. 

 
(a) 

 
(b) 

 
(c) (d) 

Figure 3-4: Screen captures from an example usage scenario. (a) false colour display of Landsat  
TM image of Hobart, TAS. (b) selection of a predefined colour table, (c) unsatisfactory volume 
rendered output (alpha-enhanced), (d) original region data shown as a point cloud 
(ungeneralised feature space). 

It is predicted that standardising the volume prior to direct volume rendering would 

alleviate the scaling issue but this has not been implemented in this prototype. The 

issue of visualising the relationships between clusters still remains. Other means such 

as boundary representations can easily achieve this. 

Point clouds provide a simple representation of clusters in feature space. The 

disadvantages of point clouds were discussed in section 2.5.3. The prototype allows 
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the visualisation of regions as point clouds for the purposes of comparison to other 

surfaces. 

3.5.2 Ellipsoids 
Historically parametric classifiers have been popular in remotely sensed image 

classification. It is useful to visualise the parameters that will be used for 

classification. By visualising a statistics based ellipsoid of a data set against the 

actual shape of the volume as represented by an isosurface or α-shape useful insight 

into maximum likelihood classification results can be obtained (see Figure 4-13). 

A 3D ellipsoid can be constructed based on the statistics of the data set. The mean 

vector of the data represents the centre of the ellipse. Computing the covariance 

matrix allows the calculation of eigenvalues and eigenvectors. Eigenvectors can be 

used represent the direction of the axes of the ellipsoid and eigenvalues to represent 

the length of those axes. Obtaining these values is known as eigen-decomposition 

and can only be carried out on square matrices such as the covariance matrix. Abdi 

(2007 (in-press)) provides an introduction to eigen-decomposition. The use of these 

values to reasonably approximate the shape of a cluster relies on the assumption of a 

normal distribution of points in that cluster. 

 

Figure 3-5: Ellipsoids for regions defined in Figure 3-4a at 60% transparency 

3.5.3 α-shapes 
Basic shapes such as ellipsoids do not provide an adequate representation of the 

extent of a cluster. Ellipsoidal representations make the assumption of a normal 

distribution within the data. This is frequently not the case in satellite imagery. 
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α-shapes can be used to accurately represent the true extent of irregularly shaped or 

concave clusters. Edelsbrunner & Mücke (2000) state ‘The geometric notion of 

“shape” has no associated formal meaning.’ They introduced α-shapes as a formal 

definition and computation of the shape of finite point sets in Euclidean space. For a 

variable parameter α, shapes produced by this computation range from crude to fine 

representations of the cluster. This relationship is such that for α = ∞ the α-shape of a 

point set S is equal to the convex hull of S. As α decreases the shape shrinks and 

moulds to the concavities of the point set. Tunnels and holes may appear and the 

connectivity of the shape may be broken as shown in Figure 3-6.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-6: α-shapes for a sample point set (a), with α values of (b) 784, (c) 100, (d) 50 

Formally, if S is a finite point set in Rd (where d is the number of dimensions) and α 

a real number such that 0  ≤ α ≤ ∞ then the α-shape of S is a polytope (in 2D a 

polygon or in 3D a polyhedron) that is neither necessarily convex nor connected. 

Fischer (1994) provides an excellent metaphor for describing α-shapes: 

One can intuitively think of an α-shape as the following. Imagine a huge mass 

of ice-cream making up the space Rd and containing the points S as “hard” 

chocolate pieces. Using one of these sphere-formed ice-cream spoons we carve 
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out all parts of the ice-cream block we can reach without bumping into 

chocolate pieces, thereby even carving out holes in the inside (eg. parts not 

reachable by simply moving the spoon from the outside). We will eventually 

end up with a (not necessarily convex) object bounded by caps, arcs and points. 

If we now straighten all “round” faces to triangles and line segments, we have 

an intuitive description of what is called the α-shape of S. 

In 3D feature space Rd = R3 as the shape is limited to three dimensions. A graphical 

illustration of Fischer’s metaphor for a point set in R2 is shown in Figure 3-7. In this 

case the ice cream spoon is replaced by a simple circle. 

Edelsbrunner & Mücke’s (Bloomenthal & Wyvill 1997) algorithm for generating α-

shapes takes as input a list of points in Euclidean space; that is, a vertex list and the 

parameter α. It returns a polygon table defining the faces of the calculated shape. 

 

Figure 3-7: Example formation of a 2D α-shape. The parameter α determines the radius of the 
disc connecting any two points on the edge of the final shape (Fischer 2000). 

As stated above, α-shapes can be used to accurately represent concave and irregular 

shapes. This property can be used to accurately visualise clusters in 3D feature space. 

Each voxel with value greater than zero and address (x,y,z) can be considered a point 

in the finite set Z3 (representing Euclidean space) with coordinates (x,y,z). The set is 
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denoted Z3 rather than R3 as the points will be strictly integers. These points make up 

a cluster which defines the “shape” of the set. In this way α-shapes in the prototype 

are still tied to the volume representation. This is important as α-shapes are 

computationally expensive to construct (Lucieer 2004, p. 126). The trade off between 

detail and processing time based on volume size must still be considered. 

α-shapes are implemented in the prototype using hull (Clarkson 2004), an external 

program written in C. Hull takes as input a list of points in 3D space, that is, a vertex 

array, and value for α. It produces a list of faces which defines the polygon 

connectivity for the shape. Each face consists of the three indices of the vertex array 

in right-handed6 order. 

3.5.4 Isosurfaces 
A different approach to volume rendering is the extraction of polygonal meshes from 

the volume data. This gives a surface representation of the volume. Isosurfaces 

(Bloomenthal & Wyvill 1997) are a popular means of doing this. The surface 

generated varies depending on a user specified isovalue. Like α-shapes, isosurfaces 

can be used to represent the extent of clusters in feature space. They also provide a 

visual measure of the density of the clusters. Unlike α-shapes, isosurfaces require the 

initial data to be in volume form. The prototype fulfils this requirement by 

generalising feature space into volume form. 

An isosurface can be thought of as a three dimensional isogram (a line connecting 

points in space having the same numerical value of some variable). A useful analogy 

is that of isobars on a weather map. Barometric pressure is sampled at various points 

across the Earth. A grid of dots could be drawn where each dot represents some area 

on the ground (eg. x km2), Some of the dots would have barometric pressures 

associated with them (where a measurement has been made). Lines are then drawn 

through points of equal pressure forming an isobar. Obviously there is not a 

measurement of pressure for every dot, values are interpolated according to the 

values of neighbouring recordings. Expanding this to three dimensions (a 3D grid of 

dots, each representing an area of x km3) it is possible to imagine a value being 

                                                 
6 In a right-handed system the Z (depth) axis increases toward the viewer. Vertices are ordered anti-
clockwise in polygons tables. Hearn, D & Baker, PM 2003, Computer Graphics with OpenGL, 3rd 
edn, Prentice Hall. 
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available for every point in that 3D space; essentially a volume of barometric 

pressure readings. 

Isosurfaces can be calculated using the Marching Cubes algorithm (Drebin, 

Carpenter & Hanrahan 1988). The algorithm builds a polygonal mesh according to 

the specified isovalue. The mesh will represent a surface around or through the 

volume where voxels have values equal to the isovalue. The effect of the isovalue on 

the extent of an isosurfaces is demonstrated in Figure 3-8. This can be exploited to 

visualise where the more dense portions of a cluster lie. 

 

Figure 3-8: Three isosurfaces for a cluster of points in feature space. The Blue surface has an 
isovalue of 0.1, the green, 0.5 and the red 1.0. 

Recall that the prototype can already construct volumes from ROIs in the image. 

Some voxels in these volumes may contain frequencies greater than zero. These 

voxels can be used to determine potential for each voxel in the volume. The 

construction of an isosurface then is the process of extracting a polygonal mesh from 

the volume representing voxels of equal potential. The isovalue is the user selected 

potential at which to generate the surface. 
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In order to build an isosurface each point in (ungeneralised) feature space must have 

a sensible numeric value. This value can be derived in the following manner, as used 

by (Lucieer 2004): Each pixel when plotted in feature space can be considered a 

source of gravitational potential energy, analogous to a planet in the universe. In the 

general case, potential energy (or simply potential) Ug is calculated: 

r
GU g

21−=
mm  

Equation 3-1: Potential energy in a gravity field 

where G is the gravitational constant7, m1 and m2 are masses and r is the distance 

between them. This can be simplified for an artificial environment such as a feature 

space plot: 

cg r
U 1=

m

                                                

 

Equation 3-2: Potential energy in feature space 

where G = 1.0, m2 = 1.0 and Ug is the potential for a given point in feature space. m1 

is the mass of a source determined by the distance to the closest neighbouring source. 

c may be used to adjust the power of the potential energy. The potential then for any 

point in feature space is the sum over all sources of potential for that point. Potential 

will be high for points near sources and low for points distant from sources. This 

approach works for feature space plots based on point clouds or other individual 

pixel representations. This study uses volumes to represent feature space. A small 

adjustment is needed to generate sensible isosurfaces on these volumes. 

The variable m1 can be thought of slightly differently for constructing isosurfaces 

based on volumes (eg: a 3D frequency histograms). In this case each non-zero valued 

voxel in 3D space already represents a cluster of one or more pixels, that is, it has a 

value that can be treated as the voxel’s mass. Voxels with higher frequencies will 

cause higher potentials in surrounding voxels of feature space. 

 
7 http://physics.nist.gov/cgi-bin/cuu/Value?bg|search_for=Gravitational+Constant 
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Isosurfaces are commonly generated using the marching cubes algorithm (Lorensen 

& Cline 1987). This divide-and-conquer algorithm divides space into cubes, similar 

to the voxels in a volume. Each cube references eight points in feature space, the 

points at each corner of the cube (Figure 3-9).  For each cube, the intersection 

between the cube and the isosurface is calculated. Intuitively, if one or more of the 

points has a value less than the isovalue and one or more other points have values 

equal to or greater than the isovalue then the given cube must contribute some 

component to the final isosurface. Given this there are an enumerable number of 

possible intersections within the cube: 

Since there are eight vertices in each cube and two slates, inside and outside, 

there are only 28 = 256 ways a surface can intersect the cube. By enumerating 

these 256 cases, we create a table to look up surface-edge intersections, given 

the labeling of a cubes vertices. The table contains the edges intersected for 

each case. (Lorensen & Cline 1987) 

However, there are two important symmetries of the cube that reduce the 256 cases 

to just 14. First, the topology of the intersecting surface is unchanged if the 

relationship between the points in the cube is inverted. Removing these 

complementary cases reduces the number of cases to 128. Secondly, the cube 

possesses rotational symmetry; Lorensen & Cline further reduced the number of 

cases to 14 by inspection (Figure 3-10). An 8-bit index is used to index a table of 

edge intersections for a given cube configuration. Each bit in this index corresponds 

to one vertex of the cube and its relationship to the isovalue, thus describing a unique 

cube configuration. 
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Figure 3-9: Marching cube (Lorensen & Cline 1987) 

 

Figure 3-10: Symmetrically 
distinct triangulations 
(Lorensen & Cline 1987) 

Having determined the cube configuration, polygons are generated and the process 

repeats for the next cube. After all cubes have been processed the generated polygons 

are connected into a single mesh by standard triangulation. 

In the prototype system, feature space is represented by a volume. Each voxel in the 

volume can be thought of as a point in the previous description of the algorithm. 

Isosurfaces are implemented in the prototype using IDL’s built in isosurface 

construction routine. This routine uses a slight variation on the marching cubes 

algorithm; until recently marching cubes was covered by a U.S. patent (Cline & 

Lorensen 1985). The user may visualise as many regions as isosurfaces as they 

desire. 

3.6 Highlighting Conflicting Training Data 

3.6.1 Linking Data Spaces 
Section 3.3 described the technique used by the prototype to intersect multiple 

volumes. These volumes can then be visualised alongside others in 3D feature space. 

This feature is designed to allow the user to explore the relationships in their data. 

Whilst they may gain some understanding of their data through this visualisation it is 

difficult to appreciate the impact of this overlap on geographic space (ie: a colour-

composite image view). This section describes the technique used to highlight pixels 

causing overlap in feature space, referred to as offenders in this document, in a 

colour-composite view. 
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The figures shown in this section are derived from regions within the Hobart Landsat 

TM image as shown in Figure 3-11. These regions are selected by visual inspection 

and bear no association with any ground truth data for the region. The purpose is not 

to verify the correctness of any classification based on these regions, but is to serve 

as sample data for visualisation in feature space. Indeed figures in this section 

highlight the vast overlap between the regions. 

3.6.2 Limitations 
Recall that the prototype has been constructed so that the processing layer is closely 

tied to the visualisation layer. For example, volume size is a visualisation parameter 

trading rendering performance for detail. This same trade off will occur for all 

operations on this volume; visual and non-visual. In this instance concern lies with 

the intersection operation. Take for example the yellow (Suburb) and black (City) 

regions in Figure 3-11. These regions overlap in feature space (Figure 3-12). 

However, the range of pixels falling in this overlap is controlled by the volume size 

as illustrated in Figure 3-13. The reduction in volume size will cause more pixel 

values to be captured in the intersection. This in turn will cause more pixels to be 

labelled in geographic space as causing intersection. The user must strike an 

acceptable balance between volume size and performance. This is discussed in 

Section 3.2. 
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(a) 

 
(b) 

Figure 3-11: ENVI display showing: (a) Landsat TM image of Hobart, TAS annotated with 
various regions. (b) Colours of regions and their assigned labels. 

 

Figure 3-12: Feature space intersection between yellow and black regions shown as red (all as 
isosurfaces with isovalue 0.1) with a volume size of 64. 
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Figure 3-13: Feature space intersection between yellow and black regions shown as red (all as 
isosurfaces with isovalue 0.1) with a volume size of 32. 

3.6.3 Determining Pixel Values 
Recall that volumes are constructed from an array of pixels of size 3 x n where n is 

the number of pixels in a given ROI. For a given pixel x in the region, its three 

component values will be [0,x], [1,x] and [2,x]. This pixel will be referred to as pixel 

number x in the region. To construct the volume each pixel component must be 

scaled to lie between zero and the volume size and be converted to an integer value. 

This produces an array of 3D indices into the volume, one triple for each pixel in the 

pixel array, which is stored for later use if the user requests the intersection to be 

mapped to the image display. If a voxel in an intersection volume (the result of 

intersecting two or more volumes) has a value greater than zero then all pixels falling 

in that voxel are deemed to have caused that intersection. Pixel values causing 

intersection (offenders) can then be obtained by the following steps: 

1) Use the voxel indices to search the scaled pixel value arrays (one array per 

volume intersected). 

2) Retrieve the pixel numbers whose scaled indices match. 
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3) Retrieve the pixels values by indexing the original array using the pixel 

numbers 

Having obtained the list of offenders the prototype then, based on the user’s 

selection, either: 

• Searches the entire image for pixels with values matching any of those in the 

list, or; 

• Searches the regions involved in the intersection for such pixels. 

Obviously searching only those regions of concern is vastly more efficient than 

searching every pixel in the image. The user may wish to use the entire image option 

to find all occurrences of such offenders. This image searching process is essentially 

that of Table Look Up Classification (Richards 1986, p. 186). 

3.6.4 Displaying Offenders 
Section 3.6.3 describes the process of finding the location of offenders. This yields a 

list of 2D coordinates (x,y) into the image. Pixels at these locations need to be 

highlighted as they represent uncertain areas in the user’s region selection. The 

prototype does this by creating a new ROI containing the offending points. The 

prototype uses ENVI’s built-in routines for creating ROIs from lists of points. This 

feature is implemented using these functions. The new ROI is assigned an arbitrary 

colour and unique descriptive label. 

The user may then manipulate the new region like any other ENVI region; it may be 

merged or intersected (spatially) with others, statistics calculated and details exported 

to other formats. Figure 3-14 shows the result of applying this procedure to the 

spectral intersection of the City and Suburb regions as defined in Figure 3-11, 

followed by a full image search for offending pixels (highlighted in black). This new 

black region is then spatially intersected with each of the City and Suburb regions in 

turn producing two new regions coloured dark red and green. Pixels in these regions 

have values which cause the intersection of these regions in feature space. In this 

instance the conclusion could be drawn that pixel values in the Suburb region are 

largely a subset of the values in the City region. 
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(a) (b) 

 
(c) 

Figure 3-14: (a) Highlighted conflict between regions. Pixels with values that cause intersection 
in feature space between the City (black) and Suburb (Yellow) classes are highlighted as black 
points. Spatial intersection is shown as dark red in the City region and green in the Suburb 
Regions. (b) Zoomed view of boxed area of the image showing spectral intersection between 
regions. (c) ROI details. 

3.7 Configuring the Visualisation 

The user configures and launches the visualisation prototype using a graphical user 

interface (GUI). The first configuration step is the selection of the 3 bands to use as 

axes in 3D feature space. This step is in the form of selecting three bands to use in a 

colour composite image display. The next step is to define ROIs to visualise in 
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feature space. ENVI provides the image display and ROI management features. A 

menu item on the colour composite display launches the visualisation configuration 

GUI. 

This visualisation configuration GUI allows users to select the regions they wish to 

visualise and the manner in which they visualise them (ellipsoids, isosurfaces, direct 

volume rendering, etc). It also allows the volume size parameter to be set. Depending 

on the choice of visualisation type the user may need to specify additional 

information, eg: isovalues, α values and colour tables for direct volume rendering. 

The user then clicks a button and the initial visualisation is presented. This 

visualisation can be rotated, zoomed and panned. The properties (colour, outline 

style, etc) can be changed from the Visualisation Browser window. This window is 

part of the iTools framework within which the prototype operates. The user may 

revise any of their decisions through the configuration GUI at any time. 

3.8 Implementation of the Prototype 

The prototype system is implemented in IDL using ENVI library functions for image 

display functionality and classification. The prototype makes use of the iTools 

(Intellegent Tools) framework. This means that new visualisations can be easily 

added; for example, new shapes for cluster representations. In addition to the iTools 

framework, RSI also supply a number of existing visualisation programs with the 

iTools package. One such program is iVolume, a tool for volume rendering and 

related operations on volume data. This was used a basis for the prototype, with 

features such as ellipsoids and α-shapes being incorporated as additional 

visualisation classes. 

The code for the prototype can be found in Appendix B on the accompanying CD-

ROM. Instructions for running the prototype under IDL 6.0 and ENVI 4.0 are 

included on the CD-ROM.
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Chapter 4 Case Study 

4.1 Introduction 

This case study discusses the features of the prototype software and demonstrates its 

capabilities for: 

• Presenting the opportunity for increased understanding of classification of 

satellite imagery, 

• Communicating patterns in the image to the user, 

• Assessing the quality of the user’s assumptions and conveying possible 

revisions to those assumptions, and; 

• Explaining the results of classification. 

The study has been carried out using the ENVI environment within which the 

prototype operates. Several of ENVI’s built-in supervised classifiers are used to 

classify an image. A k-Nearest Neighbour classifier implemented by Murray (in-

press) is also used. ENVI’s GLCM based texture measures are applied to produce 

texture bands which are used in a feature space visualisation. A Principal 

Components transform is carried out using ENVI. The first three derived principal 

components are used in a feature space visualisation. ENVI provides built-in basic 

statistics and plotting functions and these are used to plot statistics of regions 

highlighted by the prototype. All other VDM activities described are carried out by 

the visualisation prototype as described in Chapter 3. 

4.2 Study Area 

4.2.1 Paddick Valley, Heard Island, Australia 
Heard Island is a sub-Antarctic island situated roughly 4100km south-west of Perth, 

Australia and 1500km north of the Antarctic continent. Remote, unpopulated, sub-

Antarctic islands such as Heard are of particular interest as they are key indicators 

for climate change. Heard Island, along with the neighbouring MacDonald islands, is 

isolated by vast stretches of ocean. No permanent human settlement exists on Heard 

Island. These factors in combination with the island’s highly distinct ecosystems 
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make for a very interesting study area. Paddick Valley is a small valley, roughly 2 

km long, on the south eastern side of the island and is the study area for this case 

study. Further details and maps are attached in Appendix A. 

4.2.2 Dataset 

Imagery 
Imagery of the eastern side of the island was acquired by the IKONOS satellite 

(http://www.geoimage.com.au/) in January 2004. The IKONOS satellite provides 

images with four multi-spectral bands and a panchromatic band. Spectral bands have 

a spatial resolution of 4 m and the panchromatic band 1 m. The panchromatic band 

uses a very wide range of wavelengths (0.45-0.90 µm) to achieve its finer spatial 

resolution. The spectral bands are pansharpened using the panchromatic band, 

improving their spatial resolution to 1 m (Lucieer 2006). The resulting image to be 

analysed contains 4 bands with 1 m spatial resolution representing: blue, green and 

red visible light, and near-infrared (Table 4-1). 

Table 4-1: Multi-spectral wavelengths recorded per band by the IKONOS satellite. 

Band Wavelength (µm)
Blue 0.445-0.516 
Green 0.506-0.595 
Red 0.632-0.698 
Near-IR 0.757-0.853 

 

A subset of the image containing Paddick Valley was extracted. This image was then 

geometrically rectified using differential GPS coordinates and a rubber-sheeting 

transformation (Lucieer 2006). The visible light bands of the image are shown as a 

colour composite in Appendix A. The image origin is at 73°31′51″ S, 58°8′13″ E. 

Regions of Interest 
Regions of interest have been defined within the image representing different land 

cover classes. The definition of these regions is based on ground truth from a site 

survey conducted by a team from the University of Wollongong (Brandner 2005). 

The survey team examined ten 1 m2 plots within several 30 m diameter areas. The 

centres of the areas were recorded and vegetation classes associated with each area 

based on the ten plots examined. Using this field data (Lucieer 2006) constructed 

disc regions representing the centre of the area and a 30 m buffer zone about that 

http://www.geoimage.com.au/
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point. Three sets of regions were created each with a higher degree of detail 

regarding vegetation type. These are summarised in Table 4-2. 

Table 4-2: The three classification levels. 

Region Set Non-vegetation Vegetation 
1c Rock 

Water 
Wave 

Vegetation 

3c Rock 
Water 
Wave 

Dense 
Medium 
Sparse 

6c Rock 
Water 
Wave 

FellField 
Tussock 
ClosedCushion 
OpenCushion 
MossField 
HerbField 

 

From the 30 m discs a random sample of 200 points were extracted for each class. 

These comprise the training regions for each class, denoted as Xc_training 

where X is the detail level for the vegetation regions (1,3 or 6). A further 200 

independently randomly sampled points were extracted for each class for validation 

purposes. These comprise the testing regions for each class, denoted as 

Xc_testing. The region sets comprising the entire 30 m discs are denoted as 

Xc_all. 

4.2.3 Statistics 
For reference, basic statistics for the image are in Table 4-3 and plotted in graphical 

form in Figure 4-1. 

Table 4-3: Statistics for Paddick Valley image. 

Filename: E:\HeardData\iko_jan04_ps_rsrc_paddick.bsq   
Dims: Full Band (3043501 points)   
   
Band          Min          Max        Mean       Stdev   
   1    50.000000  1594.000000  361.020952   62.640973   
   2     5.000000  1924.000000  342.313533   76.998076   
   3     1.000000  1649.000000  217.338314   68.547503   
   4     7.000000  1479.000000  269.702219  244.077425 
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Figure 4-1: Image band statistics of the study area 

4.3 Simple Spectral Classification 

4.3.1 Overview 
This section describes a simplified classification scenario. Only 4 classes are defined, 

Vegetation, Water, Rock and Wave. The 1c-all ROI set will be used to examine the 

relationships between regions. The visualisation prototype is used prior to 

classification to explore these relationships. Assumptions such as band selection are 

revised according to the output of the visualisation prototype. The 1c-training ROI 

set is then used to classify the image with various classifiers. The overall process 

involves several iterations of: assumptions being formed or revised, the effects 

visualised, and results discussed. 

4.3.2 Iteration 1 

Process 
An ENVI RGB display of bands 4, 3 and 2 is loaded and the 1c-all ROI set is 

overlayed on to the display (Figure 4-2). This choice of bands is based on Figure 4-1; 

band 4 has the largest variance and would yield the most information, bands 1, 2 and 

3 all have similar standard deviation properties. The choice between these bands is 

largely arbitrary except for the larger overall range of value in band 2. Visualisations 

and classifications will be derived from these 3 bands alone. Visualisations will 

assign the red display band to the X axis, green to Y (deeper into the scene) and blue 

to Z (higher in the scene). 

The visualisation prototype is invoked and configured to use a volume size of 64 and 

display all four ROI clusters as isosurfaces in feature space, coloured accordingly 

(Figure 4-3). The wave region has high reflectance in all bands. This distorts feature 

space in order to accommodate the cluster. The wave region is of little interest in this 
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process and is disregarded in further visual analyses. This produces a more 

satisfactory feature space rendering, as shown in Figure 4-4. 

Visual inspection of 3D feature space from Figure 4-4 shows some potential 

interaction between the Rock and Water ROIs highlighted in Figure 4-5. The 

visualisation is reconfigured to display any intersection between these regions as a 

new isosurface. Figure 4-6 shows the result of this operation. From visual inspection 

in geographic space this is not what would be expected. 

Whilst both water and rock would be expected to share low reflectance values in 

band 4 (infrared) and relatively low reflectance in other visible light bands, they 

would still be discernable, especially on sensitive equipment like IKONOS’s sensors. 

If plotted in feature space, individually, as shown in Figure 4-7, there is no 

intersection as feature space is not distorted by the presence of other classes. 

However, this intersection in distorted feature space and close proximity otherwise 

still has implications for classification. 

One feature of the prototype is the mapping of pixel values causing overlap in feature 

space to points in geographic space with those values. Figure 4-8 shows the result of 

this operation on the intersection between the Rock and Water regions (Figure 4-6). 

The whole image is searched for pixels with values causing intersection between 

these regions. These locations of these pixels are used to create a new ROI, shown in 

orange. There are 146 points in this new ROI. All pixels in this region have values 

which cause them to fall in the highlighted region of feature space in Figure 4-6 (see 

also Figure 4-7). This is reflected in the following statistics table for the orange 

region: 

Table 4-4: Statistics for orange region shown in Figure 4-8.  

Filename: E:\HeardData\iko_jan04_ps_rsrc_paddick.bsq   
Region: Red-Intersection       0 [Orange1] 146 points   
   
Band         Min         Max        Mean       Stdev   
   1  298.000000  320.000000  308.671233    4.915997   
   2  260.000000  268.000000  264.472603    2.729646   
   3  153.000000  160.000000  157.047945    2.696952   
   4  118.000000  136.000000  125.609589    5.490271   

 

Table 4-4 shows the effect the inclusion of the vegetation (green) region in the 

feature space plot has on the intersection. This region increases the range of 
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reflectance values in band 4 (infrared). In feature space this means more pixels from 

the Water and Rock regions, which have a uniformly lower reflectance in band 4 

occur within a small area of feature space. Figure 4-10a plots the data in Table 4-4 

graphically. Compare this graph with that in Figure 4-10b. Perhaps the initial choice 

of bands has contributed somewhat to this intersection in feature space. For the 

orange region, comprised of pixels with overlapping values in feature space, very 

little variance occurs in two of the bands plotted as axes in feature space: bands 2 and 

3. Band 1, however has variance near that of band 4. Using this band as one of our 

axes in feature space may minimise this overlap. 

For later comparison a spatial intersection is performed between the orange overlap 

region with each of the Water and Rock regions. This results in two new regions 

shown in Figure 4-9. These regions contain the actual pixels responsible for the 

intersection in feature space. In the Water intersection (Figure 4-9a) contains only a 

single pixel whilst the Rock intersection (subset in Figure 4-9b) contains 16 pixels. 

These 16 pixels overlap in feature space with just a single offending pixel from the 

Water region. 
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Figure 4-2: ENVI user interface with false colour composite display of Paddick Valley overlayed 
with 1c-all regions. 

 

Figure 4-3: Isosurfaces for all four ROIs in the 1c-all ROI set with isovalues of 0.1. The light 
blue surface represents the wave ROI which has high reflectance in all bands. 
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Figure 4-4: Isosurfaces for three ROIs in the 1c-all ROI set with isovalues of 0.1 

 

Figure 4-5: Potential intersection in feature space between the Rock and Water ROIs. 
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Figure 4-6: Isosurface (yellow) representing the intersection between Rock and Water ROIs in 
feature space. The Vegetation ROI (Green) has been hidden. 

 

Figure 4-7: Feature space plot showing no intersection between ROIs. The portion of the 
volumes causing intersection in Figure 4-6 is highlighted in green. 
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Figure 4-8: Overlayed false colour composite of Paddick Valley demonstrating highlighting of 
conflicting pixel values. Orange points show pixels with values matching those causing 
intersection between the Rock (Red) and Water (Blue) regions. 

(a) (b) 

Figure 4-9: (a) Maroon point in Water representing pixel with values causing overlap in feature 
space with pixels highlighted in (b) (subset shown) as magenta points in Rock. 
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(a) 

 
(b) 

 
Figure 4-10: (a) Average spectrum plot of orange region showing higher variance in bands 4 and 
1. (b) Average spectrum plot for Paddick Valley image (Figure 4-1). 

Summary 
In this iteration the prototype has:  

• Highlighted a possible flaw in the assumption used during band selection for 

classification, 

• Revealed conflict between regions and the pixels causing that conflict, and; 

• Showcased the effects of distorted feature space in visual data mining. 

The next iteration will revise the band selection assumption, repeat the visualisation 

and compare the results of several classifications. Visualisation will be used to 

explain any misclassification. 

4.3.3 Iteration 2 

Process 
The visualisation prototype is reconfigured to use bands 4, 2 and 1. The intersection 

between Rock and Water is recalculated and visualised in feature space (Figure 

4-11). This overlap is mapped back into geographic space. The prototype creates a 

new region containing 25 points in the image with pixel values matching those 

causing intersection. This region is again intersected with each of the Water and 

Rock regions producing regions shown in Figure 4-12. The new band selection 

produces a slightly larger, but less concentrated overlap in feature space. This 

translates to a more even ratio of pixels from each region and fewer pixels overall 

causing intersection.  

56 



Case Study 

Classification is now carried out using the minimum distance to mean, maximum 

likelihood and k-nearest neighbour classifiers. For each of these classifiers a 

representation of the decision surface or parameters can be shown in feature space. 

Classifiers are trained on 200 randomly sampled pixels for each region (1c-training 

regions). Testing of classifier accuracy is carried out using a further 200 

independently, randomly sampled pixels for each region (1c-testing regions). 

Visualisation will continue to use all of the regions’ pixels to construct shapes (1c-all 

regions). Where possible a classification will be forced for each pixel; pixels will not 

be labelled as unclassified. For the maximum likelihood classifier this means there is 

no probability threshold set. For the Euclidean distance based minimum distance and 

k-nearest neighbour classifier this means there is no maximum distance threshold 

from a mean or neighbour at which classification cannot occur. Thematic maps for 

the entire image produced by these classifiers are shown in Appendix A. 

 

Figure 4-11: Intersection between Rock and Water based on bands 4, 2 and 1. Note now that the 
intersection forms two blobs in space (when rendered as an isosurface) implying two voxels of 
overlap. 

57 



Case Study 

(a) (b) 

Figure 4-12: (a) Pixels causing overlap in the Water region; (b) Pixels causing overlap in the 
Rock region. 

The prototype has the ability to visualise decision boundaries and parameters. Figure 

4-13 presents a comparison of the decision surfaces used by several classifiers 

described in section 2.3. The minimum distance classifier can be represented by 

Figure 4-13a; the centre of the ellipsoids is the class mean. The k-nearest neighbour 

classifier is represented by an α-shape in Figure 4-13c, this is not a precise 

visualisation of the way the classifier works, it merely serves to highlight the true 

maximum extent of a class’ training data in feature space. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-13: Comparison of decision surfaces. (a) maximum likelihood, (b) level-slice, (c) k-
nearest neighbour (representative only of extent), (d) all.  

Figure 4-14 shows the mean points in feature space for each region. The mean is the 

only property of the data used by the minimum distance classifier. Pixels are 

classified according to the closest mean point in feature space. Given this, it can be 

seen that some misclassification may be expected to occur between the Water and 

Rock classes. In fact, we can expect misclassification between all classes. This is 

reflected in Figure 4-15 and Figure 4-16. The lake in the centre left of the image is 

almost completely misclassified as water. Of all figures presented thus far, Figure 

4-7 most clearly highlights the nature of the Water and Rock regions if used for 

classifier training. When plotted in feature space the Water region clearly consists of 

five distinct clusters. Pixels lying in the cluster closest to the origin of feature space 

and those toward the lower end of the next nearest cluster will be misclassified as 

rock due to the Rock class’ mean lying closer to this cluster than the true Water class 

mean. This is visualised in Figure 4-17 in which the ellipse region component from 

the Water region shown in Figure 4-12a has been isolated using ENVI’s ROI 

manipulation tools and shown as a mauve isosurface. 
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Figure 4-14: Mean points for each region in feature space shown, as small spheres. Note the 
close proximity of means for the Rock and Water classes. Isosurfaces are transparently 
rendered indicating the true extent of each region. 

 

Figure 4-15: False colour composite showing bands 4, 2 and 1 of a subset of the Paddick Valley 
image.  
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Figure 4-16: Thematic image showing the result of a minimum distance classification of the 
image subset in Figure 4-15. Red pixels have been classified as Rock, blue as Water and green as 
Vegetation. 

 

Figure 4-17: Means and extent for each region. Pixel values from the ellipse in Figure 4-12a are 
shown as a purple isosurface. 

Figure 4-18 shows ellipsoids representing the statistical distribution of pixels in the 

regions. Configured appropriately, these ellipsoids can represent the decision 

boundaries of a maximum likelihood classifier. The closer a pixel lies toward the 

centre of a class ellipsoid relative the boundary of the ellipsoid the higher the 

likelihood that it belongs to that class. A pixel on the exact edge of two ellipsoids 
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would have exactly equal likelihoods for each class. In this way a pixel has multiple 

likelihoods associated with it. It is classified according to the maximum of these 

likelihoods. Figure 4-18 shows that the Rock and Water classes have much potential 

for misclassification. The distinct clusters within the Water region cause a high 

variance which the classifier takes into account. This causes the decision boundary 

for the Water class to almost completely engulf the Rock class. In this way, pixels 

falling within the Rock class, but on the left side of the Rock ellipsoid may in fact 

have a higher likelihood for the Water class. This is reflected in Figure 4-19; the lake 

is correctly classified but much of the rock in the top right of the subset image is 

incorrectly labelled as water.  

 

Figure 4-18: Ellipsoids representing the decision boundary of a maximum likelihood classifier. 
Note that the disjoint clusters in the Water class cause a large amount of variance for that class. 
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Figure 4-19: Thematic image showing the result of a maximum likelihood classification of the 
image subset in Figure 4-15. Red pixels have been classified as Rock, blue as Water and green as 
Vegetation. 

Visualising a decision boundary for the k-nearest neighbour classifier is more 

complex than the preceding classifiers. The boundary will vary depending on the 

value of k selected. The users own perception will need to be employed to make 

these adjustments. The regions can be displayed as isosurfaces, α-shapes, or simple 

point clouds. Point clouds make it difficult to distinguish the extent of one region 

from another so are not useful in this instance. Figure 4-20 compares the α-shapes 

and isosurfaces for the regions being examined. Isosurfaces provide some visual 

representation of density of occurrence which is important for k values greater than 

1.The α-shape representation however provides a clear cut decision boundary. Figure 

4-20 provides a visualisation of the factors influencing a k-nearest neighbour 

classification.  

Classification is performed with a k value of 7 with no maximum distance threshold. 

The result of this classification can be seen in Figure 4-21. This classifier seems to 

provide the most acceptable result with a balance being struck between the Water 

and Rock classifications. 
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Figure 4-20: Comparison of α-shapes (α computed for joined shapes) and isosurfaces (isovalue 
of 0.1) for the regions. Yellow, orange and purple shapes are α-shapes. Green, red and blue are 
isosurfaces. The shapes represent Vegetation, Rock and Water respectively. 

 

Figure 4-21: Thematic image showing the result of a k-nearest neighbour classification of the 
image subset in Figure 4-15 with a k value of 7. Red pixels have been classified as Rock, blue as 
Water and green as Vegetation. 

An important step in any classification based analysis is accuracy assessment. In the 

above example we have assessed the classifier’s accuracy based purely on visual 

inspection of the thematic images. Table 4-5 presents the error matrices obtained 

when classifying pixels from randomly sampled (exclusive of training pixels) testing 

regions for each class (1c-testing regions).  Overall accuracies reported by the 
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maximum likelihood and k-nearest neighbour classifiers are excellent. From the 

confusion matrices alone it would seem maximum likelihood performs almost as 

well as the k-nearest neighbour. However, there is a vast difference between the 

thematic maps produced by these algorithms. As the prototype was used to visualise 

these regions in feature space, the results in the error matrices can be explained and 

easily understood. 

Misclassification occurred for the minimum distance classifier due to the close 

proximity of class means to the cluster boundaries of other classes. This is reflected 

in the error matrix for this classification. There is a significant amount of 

misclassification between all classes in the testing set. The maximum likelihood 

classification yielded an error matrix which seems close to perfect, however 

inspection of the feature space plot and thematic map produced shows otherwise. 

These qualitative measures suggest revision of training regions may be necessary if 

this classifier is to be used. Both qualitative (feature space, thematic map) and 

quantitative accuracy assessments of the k-nearest neighbour classification show that 

of the three classifiers it provides the most acceptable results. 

Table 4-5: Error matrices for each classification. Key: MD = Minimum Distance, ML = 
Maximum Likelihood, 7-NN = k-nearest neighbour using 7 nearest neighbours. 

MD Overall Accuracy = (670/800)  83.7500%   
Kappa Coefficient = 0.7833   
   
                 Ground Truth (Percent)   
    Class       Vegetation        Water        Waves         Rock        Total  
 Unclassified         0.00         0.00         0.00         0.00         0.00  
Vegetation [G        89.00         0.00         0.00         0.00        22.25  
Water [Blue]          0.00       56.00         1.50         8.50        16.50  
Waves [Cyan]          0.00         0.00        98.50         0.00        24.63  
Rock [Red] 20        11.00        44.00         0.00        91.50        36.63  
        Total       100.00       100.00       100.00       100.00       100.00 

ML Overall Accuracy = (795/800)  99.3750%   
Kappa Coefficient = 0.9917   
   
                 Ground Truth (Percent)   
    Class       Vegetation        Water        Waves         Rock        Total  
 Unclassified        0.00         0.00         0.00         0.00         0.00  
Vegetation [G        99.50         0.00         0.00         0.00        24.88  
Water [Blue]          0.50        99.50         0.50         1.00        25.38  
Waves [Cyan]          0.00        0.00        99.50         0.00        24.88  
Rock [Red] 20         0.00         0.50         0.00        99.00        24.88  
        Total       100.00       100.00       100.00       100.00       100.00  

7-
NN 

Overall Accuracy = (796/800)  99.5000%   
Kappa Coefficient = 0.9933   
   
                 Ground Truth (Percent)   
    Class       Vegetation        Water        Waves         Rock        Total  
 Unclassified         0.00         0.00         0.00         0.00         0.00  
Vegetation [G        99.50         0.00         0.00         0.00        24.88  
Water [Blue]          0.50        99.50         0.00         1.00        25.25  
Waves [Cyan]          0.00         0.00       100.00         0.00        25.00  
Rock [Red] 20         0.00        0.50         0.00        99.00        24.88  
        Total       100.00       100.00       100.00       100.00       100.00  
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Summary 
In this iteration the prototype has, in general: 

• Shown decision parameters in feature space for several classifiers, 

• Revealed the cause of misclassification and; 

• Revealed the true implications of overall accuracy figures. 

More specifically it has provided precise reasons for misclassification between two 

of the defined classes. Visualisation of feature space assisted in determining the pixel 

values that would cause misclassification and how these values change considerably 

for different classifiers. 

4.4 Vegetation Classification 

Thus far a relatively simple analysis has been carried out. A more in-depth analysis 

of the Heard Island imagery is the classification of different vegetation types 

(Murray in-press). However, this is complex problem as illustrated in Figure 4-22. 

 

Figure 4-22: Feature space plot showing extent of regions for a six vegetation class analysis. 

The full visual data mining of such a problem would be difficult to document as 

copious amounts of user interaction would be necessary. This is not to say that VDM 
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applies only to simple problems. The constraint exists purely in the form of reporting 

operations performed. 

4.5 Visualising Texture 

Texture has been shown to be useful in classification of vegetation on Heard Island 

(Murray in-press). Texture bands can be produced using grey level co-occurrence 

matrix measures (see section 2.4). The prototype can be employed to visualise 

regions using texture – optionally combined with spectral – bands as axes in feature 

space. ENVI allows texture bands to be displayed as false colour composites. It is 

difficult to predict based on this image the effect these texture bands will have on 

classification. A feature space plot will make visually apparent the implication of 

using these bands with certain classifiers. 

Murray (in-press) found that of the grey level co-occurrence measures the three most 

useful measures for classification were mean, dissimilarity and entropy. A feature 

space plot based on these bands and the 6c-all ROI set is shown in Figure 4-23.  

 

Figure 4-23: Feature space plot showing the effect of texture on classification of vegetation 
types. 
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4.6 Visualising Principal Components Bands 

Principal Component (PC) bands may be derived in ENVI. As is the case with bands 

derived from texture, the prototype can be employed to visualise the results of 

Principal Components Analysis (PCA) (Richards 1986, p. 214). Figure 4-25 shows a 

feature space plot based on 3 PC bands displayed as a false colour composite in 

Figure 4-24. The interesting point to draw from Figure 4-25a is that is it visually 

similar to the initial plot in Figure 4-25b. Greatly simplified, the aim carrying out 

PCA on an image is to remove correlation between bands by generating a new 

uncorrelated set of bands. This is effectively a rotation of feature space (Richards 

1986, p. 134), as shown by comparing Figure 4-25a and Figure 4-25b. The fact that 

the PCA produces a plot with much the same structure as the selected spectral bands 

indicates low correlation between the initial selection of bands. This has positive 

effects for classifier efficiency and accuracy. 

 

Figure 4-24: False colour composite of three derived principal component bands. PCA carried 
out on all four bands of the image. 
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(a) 

 
(b) 

Figure 4-25: (a) Feature space plot based on 3 generated principal component bands, (b) 
Feature space plot based on bands 4, 2 and 1 of the image. 
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Chapter 5 Discussion 
Chapter 3 discussed issues regarding volume representations of feature space. This 

representation is advantageous as performance and quality can be traded according to 

the user’s needs. The disadvantage comes with the need for the user to understand 

the implications of their choice of volume size. The interpretations of their 

visualisations will need to take this variable into account. 

This case study in Chapter 4 presented a usage scenario for the visualisation 

prototype described in Chapter 3. The prototype was used to perform a visual data 

mining analysis of high-resolution IKONOS imagery of Paddick Valley, Heard 

Island. The visual analysis was combined with non-visual classifications and used to 

explain the underlying algorithms and results of those classifications. 

Interactive visualisation of training region overlap has allowed the discovery of local 

patterns in the data that would otherwise not be immediately apparent. Visualisation 

of this conflict allowed explanation of classification results and revision of classifier 

parameters such as band selection. The link between geographic and feature spaces 

can be used to highlight uncertainty in training regions. The ability to highlight and 

manipulate these uncertain pixels as a region of interest allowed investigation of the 

spatial and statistical properties of these pixels as a single group. This is 

advantageous as overlap in feature space can correspond to classification uncertainty 

(Lucieer 2004). 

It has been shown that different shapes in feature space can be used to visualise the 

decision boundaries and parameters of classification algorithms. Thearling et al. 

(2001) highlight the importance of ‘letting the user understand what is going on’. 

Visualisation of decision boundaries provided insight into the internal functioning of 

the classifiers and presented the opportunity for greater understanding of 

classifications’ results. This not only applies to instances where misclassification 

occurred but also where classification was correct. Insight was gained regarding 

classification and this resulted in increased confidence in the results of the 

classification and understanding of why classification errors occurred. Visualisation 

of classifier decision parameters highlighted the need for careful consideration when 
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defining training regions and the importance of considering revision of those training 

regions. 

The visualisation of the effects of texture and PCA on feature space allows prior 

knowledge of the effects these filters and transformations will have on classification. 

In the case of texture, this allows a qualitative visual assessment of the usefulness of 

different measures before the time consuming process of classification. Although 

Murray (in-press) found particular measures were more effective when used in 

classification of sub-Antarctic vegetation, the usefulness of different measures will 

vary for different imagery. Therefore the ability to visualise the effects of different 

texture measures in feature space is useful. 

Visualising PC bands also yields important information about the nature of the 

spectral bands in an image. By comparing a feature space plot based on PC bands to 

a plot based on spectral bands, key information regarding the correlation of those 

spectral bands can be qualitatively assessed.
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Chapter 6 Conclusion 
Chapter 2 discussed relevant literature regarding visualisation and visual data 

mining. These theories and technologies were then applied in Chapter 3 to create a 

visualisation prototype. The prototype allows the visual exploration and mining of 

patterns in the data and visualisation of classifier decision boundaries. 

Chapter 3 discussed the issues of volume based feature space representation and 

surface representations. It also presented a technique for linking feature space and 

geographic (image) space. This linkage plays a key role in the visual data mining 

process and is a valuable addition to the prototype. 

The core VDM component of the system was the intersection routine. By computing 

and visualising the intersection between clusters in feature space the prototype 

allowed the user to explore the nature of their training data. This allowed for directed 

revision of hypotheses regarding the imagery. 

During the study various shapes were used to represent clusters in feature space. It 

was shown that different 3D shapes can be used to represent the decision boundaries 

and parameters of popular classifiers. Visualisation of these properties allowed 

increased understanding of the image classification process and the results obtained. 

The case study presented in Chapter 4 yields specific evidence for evaluation of the 

hypothesis. It is argued that this evidence supports the hypothesis. The incorporation 

of interactive visualisation with existing software for data mining of satellite 

imagery:  

• provided opportunity for enhanced understanding of the image classification 

process, 

• showed possible revisions to current hypotheses, 

• revealed subtle patterns in satellite image data, and; 

• resulted in more insightful analyses than non-visual data mining alone 

allowing for greater confidence in the results (Keim, D A 2002). 
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In conclusion, the provision of a visual data mining system for satellite imagery 

results in added value for analyses and increased understanding and confidence for 

users. This study highlights the positive impact of visual data mining on satellite 

image classification. Further work, involving feedback from the remote sensing 

community, should be undertaken to provide further support for the hypothesis. This 

work may take the form of a focus group user test.
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Chapter 7 Further Work 
This study has revealed many promising paths for future research. They can be 

categorised as those relating to the extension of the prototype and those relating to 

the use of visual data mining in satellite image classification. 

7.1 Prototype Enhancements 

• It would be interesting to examine the effect of the reversal of the feature 

space to geographic space link. In this scenario the user would highlight 

pixels in the image and be simultaneously shown that pixel’s location in 

feature space. This may be useful in defining training regions based on visual 

inspection. 

• A tighter incorporation of visualisation and automated data mining could be 

achieved by allowing the classification process to be visualised pixel by 

pixel. As a pixel is classified it is shown as a point in a feature space plot. 

The decisions made by the classifier are visualised and the point assigned a 

colour based on its classification. For example, a minimum distance 

classifier could visually show the measurement of Euclidean distance to the 

class means. 

7.2 Visual Data Mining in Remote Sensing 

• A focus group test of a complete (including features described in Section 

7.1) visual data mining system for satellite imagery should be conducted. 

This group should comprise both experienced imagery analysts and novice 

users. The group could be divided in two. One group would conduct a non-

visual analysis and the other conduct an enhanced visual analysis. 

Questionnaires and group discussion could be used to gauge the usefulness 

of the system. 

• Lucieer (2004) mentions the need for research into visualisation for remote 

sensing education. Students may benefit by having the ability to visually 

predict and explain their results. This study has shown that visualisation of 
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classifier decision parameters presents the opportunity for greater 

understanding of the underlying algorithm.   
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Appendix A 

Appendix A Imagery 
This appendix contains (false) colour composites of the imagery used in this study. 

Each image is shown as a visible light colour composite and a false colour 

composite. Greyscale images of Paddick Valley overlayed with Regions of Interest 

are provided for reference. Classification images for Paddick Valley are also 

provided. These are based on the 1c_training pixels and bands 4, 2 and 1 of the 

image. 

Hobart Landsat TM Image 

Description Hobart, Tasmania, Australia and surrounds. 

Source: Centre for Spatial Information Science (CenSIS),

School of Geography and Environmental Studies,

University of Tasmania 

Capture Date 28/9/1999 

Size 600 x 600 pixels 

Radiometric 

Resolution 

8-bit 

 

Band Wavelength Range (µm) 

1 0.45 – 0.52 (blue) 

2 0.52 – 0.60 (green) 

3 0.63 – 0.69 (red) 

4 0.76 – 0.90 (near infrared) 

5 1.55 – 1.75 (mid infrared) 

6 2.08 – 2.35 (mid infrared) 
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Appendix A 

 

Figure A-1: Colour composite of visible light bands of the Hobart Landsat TM image. 

 

Figure A-2: False colour composite of bands 4,5 and 6 of the Hobart Landsat TM image. 
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Appendix A 

 

 

Paddick Valley IKONOS Image 

Description Paddick Valley, Heard Island, Australian Territory.  

Source: Original source: www.geoimage.com.au

Subset extracted and pre-processed by Lucieer (2006), Centre for 

Spatial Information Science (CenSIS),

School of Geography and Environmental Studies

University of Tasmania 

Capture Date January 2004 

Size 1901 x 1601 pixels 

Radiometric 

Resolution 

16-bit 

 

Band Wavelength Range (µm) 

1 0.445 – 0.516 (blue) 

2 0.506– 0.595 (green) 

3 0.632 – 0.698 (red) 

4 0.757 – 0.853 (near infrared) 
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Appendix A 

 

Figure A-3: Colour composite showing visible light bands of the Paddick Valley IKONOS 
image. 

 

Figure A-4: False colour composite of bands 4,3,2 of the Paddick Valley IKONOS image. 
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Appendix A 

 

Figure A-5: The 1c-all regions. 

 

Figure A-6: The 3c-all regions. 
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Appendix A 

 

Figure A-7: The 6c-all regions. 

 

Figure A-8: False colour composite of mean, dissimilarity and entropy texture measures. 
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Appendix A 

 

Figure A-9: False colour composite of three principal component bands overlayed with 1c-all 
regions. 

 

Figure A-10: Thematic map produced by the minimum distance classifier. 
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Figure A-11: Thematic map produced by the maximum likelihood classifier. 

 

Figure A-12: Thematic map produced by the k-nearest neighbour classifier using 7 nearest 
neighbours. 
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Appendix B 

Appendix B Program Code 
IDL code for the visualisation prototype is included on the CD-ROM accompanying 

this thesis. Instructions for installing and running the prototype are included on the 

disc. In order to run the prototype a licensed installation of IDL 6.0 and ENVI 4.0 is 

required.  
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