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Abstract 

Extensible programming languages allow users to create fundamentally new syntax and 

translate this syntax into language primitives. The concept of compile-time meta-

programming has been around for decades, but systems that provide such abilities 

generally disallow the creation of new syntactic forms, or have heavy restrictions on 

how, or where, this may be done. 

Genesis is an extension to Java that supports compile-time meta-programming by 

allowing users to create their own arbitrary syntax. This is achieved through macros that 

operate on a mix of both concrete and abstract syntax, and produce abstract syntax. 

Genesis attempts to provide a minimal design whilst maintaining, and extending, the 

expressive power of other similar macro systems. 

The core Genesis language definition lacks many of the desirable features found in 

other systems, such as quasi-quote, hygiene, and static expression-type dispatch, but is 

expressive enough to define these as syntax extensions. User-defined macros produce 

only well-formed syntactic structures via the use of a predefined set of classes that 

define a Java abstract syntax. 

At the heart of Genesis is a flexible parser that is capable of parsing any context-free 

grammars — even ambiguous ones. The parser is capable of arbitrary speculation and 

will consider all possible parses. The parser constructs a graph of possible paths, and is 

capable of dynamically pruning this graph, or combining nodes, based on precedence or 

associativity rules. This general parser allows macro programmers to forget about 

parsing, and concentrate on defining new syntax.  

One key goal of this system was to address the programmer’s learning curve by 

providing as simple a system as possible. This was achieved by the use of the flexible 

parser, the introduction of only one new construct to standard Java, and extensions to 

make programming macros more user friendly. 

The expressiveness of Genesis is wide ranging; it is capable of providing small scale 

limited use macros, large scale semantic modifications, through to complete language 

replacements. 
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To demonstrate this expressiveness, we implement many of the simple test cases found 

in other systems, such as a type-safe printf, assertions, and iteration statements. 

These test cases require an ability to perform static type-checking and to manipulate 

compile-time values and abstract syntax trees. As additional examples of Genesis’ 

expressive power we also provide implementations of embedded subsets of SQL and 

Haskell. As a final proof of power, the Haskell subset can operate as a stand-alone 

extension independent of any recognisable Java code. 
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1.1 Overview 

Extensible programming languages allow users to create fundamentally new syntax and 

translate this syntax into language primitives. The concept of compile-time meta-

programming has been around for decades. It originally appeared in the Lisp [Ste90, 

Dyb03] community and similar approaches have been attempted in other languages. For 

example, extensions have been attempted for Haskell [PJ99] and C [KR78] (Template 

Haskell [SPJ02] and MS2 [WC93] respectively). There is also a limited meta-

programming facility in C++ [Str91]. Typically, systems that provide such abilities 

generally disallow the creation of new syntactic forms, or have heavy restrictions on 

how, or where, this may be done. Such restrictions severely limit the forms that can be 

expressed in such languages. 

There have been many attempts of providing meta-programming facilities for Java (eg. 

[BP01, TCKI00, Bak01]) which are reviewed (along with those of Lisp, C, and Haskell) 

in Chapter 4. 

Genesis is an extension to Java that supports compile-time meta-programming and 

provides further support by allowing users to create their own arbitrary syntax. This is 

achieved through macros that operate on a mix of both concrete and abstract syntax, and 

produce abstract syntax. Genesis provides a minimal design whilst maintaining, and 

extending, the expressive power of other similar macro systems. 

The core Genesis language definition lacks many of the desirable features found in 

other systems, such as quasi-quote, hygiene, and static expression-type dispatch. Unlike 

other systems however, Genesis is expressive enough to define these as syntax 

extensions (see section 8.6). 

Like most such systems, Genesis’ user-defined macros produce only well-formed 

syntactic structures via the use of a predefined set of classes (see subsection 5.6.1) that 

define a Java abstract syntax. Programmers are free to extend and add to this set of 

classes to create their own abstract syntax and to define macros that specify translations 

in pure Java syntax.  

At the heart of Genesis is a flexible parser (see Chapter 7) that is capable of parsing any 

context-free grammars — even ambiguous ones. The parser is capable of arbitrary 

speculation and will consider all possible parses. The parser constructs a graph of 
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possible paths, and is capable of dynamically pruning this graph, or combining nodes, 

based on precedence or associativity rules. This general parser allows macro 

programmers to forget about parsing, and concentrate on defining new syntax. This is 

viewed as essential to providing a usable system that allows arbitrary syntax creation. 

Indeed, one key goal of this system was to address the programmer’s learning curve by 

providing as simple a system as possible (see section 5.2 for further rationale behind the 

design). This was achieved by the use of the flexible parser, the introduction of only one 

new construct to standard Java, and extensions to make programming macros more user 

friendly. 

The expressiveness of Genesis is wide ranging: it is capable of providing small scale 

limited use macros, large scale semantic modifications, through to complete language 

replacements. Great care was taken not to limit the scope of applicability of Genesis’ 

macros. 

To demonstrate this expressiveness, we implement many of the simple test cases found 

in other systems, such as a type-safe printf, assertions, and iteration statements (see 

subsection 3.4.1 for descriptions of these test cases and section 9.2 for their 

implementations). These test cases require an ability to perform static type-checking and 

to manipulate compile-time values and abstract syntax trees. Whilst these test cases 

require sophisticated facilities for implementation, they are still limited in scope. 

As further examples of the expressive power of Genesis we also provide 

implementations of embedded subsets of SQL and Haskell (see subsection 3.4.2 for 

their description and section 9.2 for their implementations). To provide a direct 

comparison with Maya (the most comparable of the Java extensions) the possibility of 

MultiJava implementation is discussed in subsection 9.4.2. In addition to these, a 

generator function (similar to that of Icon [GG90]) implementation is also provided (see 

subsections 3.4.2.2 and 9.2.5). These extensions require much more sophisticated syntax 

creation and manipulation facilities than simple statement macros. 

As a final proof of power, the Haskell subset can operate as a stand-alone extension 

independent of any recognisable Java code (see section 9.2.6.6). 

1.1.1 Assessment of Success 
 

The successfulness of this work will be assessed by three factors: 
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• Qualitative evaluation against a developed list of criteria for a “good” extensible 

language (see section 3.3). Other extensible languages will also be rated by these 

criteria also (see chapter 4). 

• Implementation of the benchmark test cases from section 3.4. These test cases 

are carefully chosen to illustrate the ability to add simple confined constructs, to 

add outwardly simple but inwardly sophisticated constructs, and to make 

wholesale changes to the syntax and semantics of the language.  

• Direct comparison with implementations of examples from Maya, which, as we 

shall see in section 4.8, is the most comparable of those languages from previous 

research. Code length can be used as a real metric of comparison (brevity is one 

of the criteria identified in section 3.3). Maya and Genesis are also compared 

across the full range of these criteria. 

1.1.2 Conventions 

Throughout this work a number of conventions are used for the layout of code 

examples, grammars, and internet addresses. 

Code appearing within text is emphasised by the use of a fixed width font. Code 

Examples are also in a fixed width font, and use the following conventions: 

• Keywords (or equivalent) appear in boldface, eg. while. 

• Indentation distance is two spaces. 

• Gaps in code where effectively any form is appropriate is specified by ellipses, 

i.e. “…”. 

Context-free grammars appear in a fixed width font and use the following conventions: 

• Terminals appear in boldface, eg. while, ++, etc. 

• Productions have a non-terminal left-hand side, followed by ::=, and an 

Extended BNF right-hand side. 

• Square brackets surround optional elements. 

• A plus symbol indicates one-or-more of the preceding symbol, eg. 

identifier+. 

• An asterisk indicates zero-or-more of the preceding symbol, eg. 

identifier*. 
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• Parentheses group symbols and work in conjunction with other EBNF forms, eg. 

for a list of comma separated identifiers: identifier (, identifier)+  

In-text references are in abbreviated author/date form, eg. [Doe99]. 

Internet addresses appear as underlined URLs, eg. http://somewhere.com/somefile.html. 
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1.2 Sources of Code Examples  

In this work, example code is drawn from a large variety of programming languages, 

either for introduction of the concepts involved, or for direct comparison purposes. Most 

of these languages are mainstream, while others, due to their research nature, are not.  

In order to facilitate the accessibility of these later code examples, all of these languages 

are briefly introduced. These introductions include (where available) references to their 

formal definitions (or closest approximation), downloadable versions of these 

definitions for quick reference, and language homepages. 

1.2.1 Java 

Java is the implementation language for this work, but “Java” has continued to be 

redefined, and as a result two distinct flavours of Java are discussed. The version 

numbers of Java are confusing at best, so it is necessary to define precisely which are 

meant. In particular we are not concerned with versions of the Java Virtual Machine 

(JVM), the Java SDK, or any other auxiliary package/facility. In this context the 

important revisions are those that are made to the language definition and as a result to 

the compiler. 

1.2.1.1 Java1.4 

Java1.4 (a.k.a. Java 2 Standard Edition 1.4) had only one minor addition to the 

language: the introduction of a new statement for handling assertions. 

This work describes an extension of Java1.4, and the implementation is in Java1.4. 

Language specification: [GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad 

Bracha: The Java Language Specification, 2nd Edition, The Java Series, Addison-

Wesley, Boston, Massachusetts, 2000. Available from: 

ftp://ftp.javasoft.com/docs/specs/langspec-2.0.pdf 

Homepage: http://java.sun.com/ 
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1.2.1.2 Java1.5 

Java1.5
1
 is the first revision to provide support for generics (also referred to as: 

templates, parametric polymorphism, etc.) and has a host of other new features, eg. an 

enhanced for loop, automatic boxing/unboxing, typesafe enumerations, variable length 

argument lists, static imports, and embedded class metadata. 

Language specification: [GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad 

Bracha: The Java Language Specification, 3rd Edition, The Java Series, Addison-

Wesley, draft, 2005. Available from: 

http://java.sun.com/docs/books/jls/java_language-3_0-mr-spec.zip 

See also [Bra99] and [Bra02] for further information. 

Homepage: http://java.sun.com/ 

1.2.2 MultiJava 
 

MultiJava is a Java extension that adds open classes and symmetric multiple dispatch 

(multimethods). Open classes allow the addition of methods to existing classes without 

modifying the original class, and multimethods provide run-time polymorphic dispatch 

on all of the arguments of a method, not just the first. 

Language specification: [Cli01] Curtis Clifton: MultiJava: Design, implementation, 

and evaluation of a Java-compatible language supporting modular open classes and 

symmetric multiple dispatch, Master’s Thesis, Iowa State University, December 2001. 

Available from: 

http://www.cs.iastate.edu/~cclifton/papers/MastersThesis.pdf 

Homepage: http://multijava.sourceforge.net/ 

1.2.3 Maya 
 

Maya is a Java extension that allows for new syntax creation. It permits both abstract 

and concrete syntax extension and has a novel approach of lazily interleaving type-

checking and parsing. 

                                                

1 Java1.5 is the revised Java language definition included as part of the (increasingly confusingly named) 

Java 5 platform. 



CHAPTER 1: INTRODUCTION   SOURCES OF CODE EXAMPLES 

 

 •  8  •

Language specification: [Bak01] Jason Baker: Macros that Play: Migrating from Java 

to Maya, Master’s Thesis, University of Utah, December 2001. Available from: 

http://www.cs.utah.edu/~jbaker/maya/thesis.pdf 

Homepage: http://www.cs.utah.edu/~jbaker/maya/ 

1.2.4 Java Syntax Extender 

JSE is a Java extension that provides meta-programming support. 

Language specification: [BP01] Jonathan Bachrach and Keith Playford: The Java 

Syntactic Extender (JSE). In, Proceedings of the 16th ACM SIGPLAN Conference on 

Object Oriented Programming Systems, Languages, and Applications, pp. 31–42, 

Tampa Bay, Florida, 2001. Available from: 

http://people.csail.mit.edu/people/jrb/jse/jse.pdf 

Homepage: http://people.csail.mit.edu/people/jrb/jse/index.htm 

1.2.5 OpenJava 

OpenJava is a Java extension that provides for class-based meta-programming support. 

Language specification: [Tat99] Michiaki Tatsubori: An Extension Mechanism for the 

Java Language, Master’s Thesis, University of Tsukuba, February 1999. Available 

from: 

http://www.csg.is.titech.ac.jp/~mich/openjava/papers/mich_thesis99.pdf 

Homepage: http://www.csg.is.titech.ac.jp/openjava/ 

1.2.6 Haskell 

Haskell is a general purpose purely functional language. Part of the motivation for the 

development of Pizza [OW97] came from a desire to provide some facilities found in 

languages like Haskell. 

Language specification: [PJ99] Simon Peyton Jones (editor): Haskell 98 language and 

libraries: the Revised Report, Cambridge University Press, January 1999; revised 

Decemeber 2002. Available from: 

http://www.haskell.org/definition/haskell98-report.pdf 

Homepage: http://www.haskell.org/ 



CHAPTER 1: INTRODUCTION   SOURCES OF CODE EXAMPLES 

 •  9  •

1.2.7 Template Haskell 
 

Template Haskell is a meta-programming extension of the Haskell language.  

Language specification: [SPJ02] Tim Sheard and Simon Peyton Jones: Template 

Meta-programming for Haskell. In, Proceedings of the ACM SIGPLAN workshop on 

Haskell 2002, Pittsburgh, Pennsylvania, May 2002. Available from: 

http://research.microsoft.com/~simonpj/papers/meta-haskell/meta-haskell.ps 

Homepage: http://www.haskell.org/th/ 

1.2.8 Lisp 
 

Lisp (an acronym for list processing) [Mcc60] is one of the first computer programming 

languages. It first appeared in 1959, which is within a few years of the time of early 

Fortran [For77]. It was originally an interpreted functional language. It is one of the 

earliest programming languages still widely used.  

1.2.8.1 Common Lisp 

The Lisp ANSI standardisation process was started in the early 1980s, and lead to  

Common Lisp in the early 1990s. 

Language specification: [Ste90] G.L. Steele Jr., Common Lisp: The Language, 2nd 

edition, Bedford, Massachusetts, Digital Press, 1990. Available from: 

http://www.supelec.fr/docs/cltl/cltl2.html 

1.2.8.2 Scheme 

Scheme is a statically scoped dialect of Lisp that was the first language to provide 

hygienic macros. 

Language specification: [Dyb03] R. Kent Dybvig: The Scheme Programming 

Language, 3rd edition, MIT Press, 2003. Available from: 

http://www.scheme.com/tspl/ 

Homepage: http://www.swiss.ai.mit.edu/projects/scheme/ 
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1.2.9 C++  

C++ is a multi-paradigm language that was built upon the C language [KR78]. Its major 

additions to C include improved data abstraction, object-orientation, generic 

programming, and exception handling. 

Please note that while mentioned in the text, the code examples do not specifically use 

the C language. 

Language specification: [Str91] Bjarne Stroustrup: The C++ Programming Language, 

2nd edition, Addison-Wesley, Reading, Massachusetts, 1991, reprinted with corrections 

January 1994, ISBN 0-201-53992-6. 

1.2.10 MS2 

MS2 is a meta-programming extension of the C language.  

Language specification: [WC93] Daniel Weise and Roger Crew: Programmable 

Syntax Macros. In, Proceedings of the SIGPLAN ’93 Conference on Programming 

Language Design and Implementation (PLDI ’93), pp. 156–165, Albuquerque, New 

Mexico, June 1993. 

1.2.11 SQL 

SQL (Structured Query Language) is a database query language that has almost 

universal adoption. 

Language reference: [ANS92] American National Standards Institute: Database 

Language SQL, ANSI standard X3.135-1992, 1992. 

Homepage: http://sql.org 

1.2.12 Pro*C 

Pro*C is an Oracle precompiler that adds embedded SQL support to C/C++. All 

embedded SQL statements are translated to normal C/C++ functions and the resultant 

program is compiled by a regular compiler. 

Language specification: [ML+97] Jack Melnick, Paul Lane, et al.: Programmer’s 

Guide to the Pro*C/C++ Precompiler Release 8.0, Part No. A54661-01, Oracle 
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Corporation, June 1997. Available from: 

http://www-rohan.sdsu.edu/doc/oracle/server803/A54661_01/toc.htm 

1.2.13 Icon 
 

Icon is a high-level language that treats all functions as limited co-routines with a 

concept of success or failure (called Generators). Unlike traditional call-return 

semantics, Icon Generators may return multiple (perhaps infinite) independent values. 

Language reference: [GG90] Ralph E. Griswold and Madge T. Griswold: The Icon 

Programming Language, 2nd edition, Prentice Hall, Englewood Cliffs, New Jersey, 

1990. ISBN 0-13-447889-4. 

Homepage: http://www.cs.arizona.edu/icon/ 

1.2.14 Ada 
 

Ada was a result of a ten year design process by the United States Department of 

Defense in an effort to reduce expenditure by providing a single common programming 

base. Ada was first ratified as a standard in 1983 by ANSI, and later by ISO in 1987. It 

was subject to revision in 1995. 

Language specification: [Uni83] Reference Manual for the Ada Programming 

Language, ANSI/MIL-STD-1815A-1983, United States Department of Defence, 

February 1983. 

Homepage: http://www.adahome.com/ 
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1.3 Thesis Structure 

The basic structure of this thesis is as follows: 

• a review of previous work is conducted; 

• a new language is proposed; 

• along the path to implementation, a review of parser techniques is conducted; 

• as a result of this review, a new general parser is proposed; 

• using this parser, the language is implemented; and 

• finally, the success of this new language is examined. 

At the beginning of each chapter, a document map is provided with the current chapter 

highlighted to remind the reader of their current position in this work. A reader well-

versed in parsing may choose to defer reading of the pre-implementation parser review 

and new parser design (chapters 6 and 7) and continue straight to the implementation of 

the Genesis language (chapter 8). 

A chapter-by-chapter breakdown of the structure is as follows: 

• In Chapter 2, a definition of the term extensible is given, uses of this term in the 

field of programming languages are examined, and a comprehensive review 

behind the reasons in providing an extensible system are provided. 

• In Chapter 3, we provide criteria, and a suite of benchmark test cases in order to 

rate the success of this work and other extensible languages. 

• In Chapter 4, an in-depth review of the most applicable languages from Chapter 

2 is conducted — few of these languages are truly extensible, as per the 

definition in Chapter 2.  

• In Chapter 5, the definition of the Genesis language developed in this work is 

provided. This definition consists of the language grammar and semantics. 

• In Chapter 6, a review of parser techniques is conducted, along with an 

examination of their applicability to the language defined in Chapter 4.  

• In Chapter 7, a new parsing technique, Graph Expansion Parsing, is introduced 

and defined. This chapter explains the motivation for this technique, its 

development, and the optimisations performed on the algorithm. 

• In Chapter 8, the full implementation of a Genesis compiler is described, this 

compiler has the parser from Chapter 6 at its core.  
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• In Chapter 9, a comparison of the efficiency of the parser to other techniques is 

given, the implementation of the test examples outlined in Chapter 3 is provided,  

Genesis is rated against the criteria specified in Chapter 3, and comparisons to 

other similar work are provided. 

• In Chapter 10, the conclusions of this work are drawn, and possibilities for 

future research are outlined. 

 

 





 15 

2 Extensibility 

Extensibility 

CHAPTER 
 

1 

2 

3 

4 

5 6 

8 7 

9 

10 

defining 

extensibility 

introduction 

assessing 

extensibility 

reviewing 

extensibility 

 

reviewing 

parsing 

 

implementing 

a parser 

 

designing 

the language 

 

implementing 

the language 

 

evaluation 

 

conclusion 

 



CHAPTER 2: EXTENSIBILITY   OVERVIEW 

 

 •  16  •

2.1 Overview 

Before it is possible to review previous related work, it is necessary to have an exact 

understanding of what extensibility means in the field of programming languages. In the 

beginning of this chapter (section 2.2), we define precisely what extensibility means in 

the context of this work and look at the variety of areas in which the term extensibility 

is used (section 2.3). Uses of the term extensible differ markedly from source to source. 

To review those languages which are considered to satisfy our definition of 

extensibility, we first discuss why extensibility is a desirable property for a 

programming language. This is done in section 2.4. 
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2.2 Defining Extensible 

The term “extensible” is widely used in a variety of contexts. It is necessary to precisely 

define its meaning in this work and to look at some examples of its (mis)use in the field 

of programming languages. 

2.2.1 Other Similar Terminology 
 

Throughout this work the term extensible is used; however other works may refer to an 

equivalent concept as meta-programming, or merely speak of compile-time evaluation. 

As we shall see, both encompass the idea of extensibility partially in that they allow a 

user to write programs that themselves write programs, but extensibility concerns itself 

with more than just this meta-programming. 

In essence, meta-programming differs from extensibility only in that programmers are 

given the ability to give their meta-programs any syntax they choose. 

2.2.2 Previous Extensibility Definitions 
 

In his work arguing for the necessity of extensible languages, Gregory Wilson split the 

definition of extensible: 

“A syntactically extensible language allows programmers to define new forms 

by specifying what the new syntax looks like, and how it maps back to the 

language’s primitives.” 

“A semantically extensible language allows programmers to define entirely new 

kinds of operations, or to change the behavior of built-in ones.” [Wil04] 

These two definitions seem appropriate within the context of this work, but the 

following statement introduces doubt as to the exact meaning of these definitions: 

“C macros and C++ operator overloading are probably the most familiar 

examples of each kind of extensibility, although both are severely restricted.” 

[Wil04] 

It is unclear how C/C++ macros can be said to extend the syntax as they are so severely 

restricted in their use as to appear as library calls, or as identifiers (if being used with no 

arguments). Also, it would seem that they allow for semantic extensibility because it is 
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possibly to modify the default behaviour of many language constructs (see section 2.3.3 

for a more in-depth discussion, and particularly section 2.3.3.5, for an example).  

Also, C++ operator overloading satisfies only the second part of the definition of 

semantic extensibility, as it is possible to overload the built-in operators, but not 

possible to create new ones. However, operator overloading can satisfy the first part of 

the definition: Haskell [PJ99] provides such facilities. 

In the description of the language Maya, extensibility is explained loosely by: 

“Syntax extension can be used to embed a domain-specific language within an 

existing language” [BH02§1, pp. 1] 

This explanation alone implies that extensibility is only useful for projects that 

fundamentally change the original language. While useful, language embeddings are 

only one of desirable capabilities of extensible languages. In addition, extensibility can 

be employed to add minor features perhaps very specifically targeted. Indeed, many of 

the examples that follow in the Maya work are of far smaller macros.  

In the description of the language Template Haskell, meta-programming, a key aspect of 

extensibility, is defined as follows: 

“The purpose of [meta-programming] is to allow programmers to compute some 

parts of their program rather than write them, and to do so seamlessly and 

conveniently.” [SPJ02§1, pp. 1] 

This definition says that programs can be written that write programs, and also that 

these programs should be simple to construct and should be written in the same 

language as ordinary programs. Much of this definition concerns itself with matters of 

language quality that should not be confused with any definition of the term extensible 

— it should be clear that a language need not be convenient before it can be considered 

extensible. 

2.2.3 Definition of Extensible 

The definition of extensible used for the purposes of this work, and strictly within the 

domain of programming language design can be stated simply as: 

The term extensible can be applied to a programming language that provides 

constructs that allow for the creation of new syntax and semantics. 
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It follows from this definition that: 

An extensible programming language is one that allows for the creation of new 

syntax and semantics. 

Meta-programming facilities are considered a requirement of this definition. Although it 

may be possible to define a programming language that was extensible but does not 

allow for meta-programming we will not concern ourselves with such possibilities. 

This seemingly simple definition has some heavyweight casualties — as we shall see in 

section 4.2 even Scheme does not allow the programmer to create new syntax. 

Other definitions of extensible tend to allude to particular abilities of any given 

extensible language, but these can be viewed as merely a measure of the language’s 

quality. Such properties include, but are not limited to: 

• the embedding of another domain-specific language within itself; 

• the creation of small syntax additions of limited scope; 

• overriding the behaviour of built-in syntax; and 

• creation of optimisations. 

A comprehensive set of criteria for rating extensible languages appears in section 3.3. 
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2.3 Language Extension Mechanisms 

This section introduces systems that either claim extensibility via various means, or 

attempt to provide an extension mechanism that would not fall under our definition of 

extensible from section 2.2.3. These range from simple libraries, through to open 

compilers, and even languages that are extensible but not via first-class language 

constructs.  

The systems examined here demonstrate what is possible with traditional systems, and 

illustrates the various work-around approaches taken due to their lack of extensibility. 

These systems are reviewed here in increasing order of relevance, with the final 

subsection (2.3.5) merely introducing languages that are examined further in chapter 4. 

2.3.1 Library Systems 

We regard extensions provided through the use of the normal library mechanism, to not 

fit the definition of extensible. While libraries are important, and features may be added 

to the language via them, it is only in a very rigid and constricting form that must still fit 

the syntax of the original language exactly. As a result many things that may be 

desirable are still impossible. Other constructs, whilst possible, are not easy to 

implement, or must be implemented in an undesirable form — an often seen example is 

that SQL support is generally provided by forcing all queries to be written as strings 

(see subsection 2.3.1.1).  

It is possible to provide new facilities through traditional libraries, but never new syntax 

or semantics. Library mechanisms can only use the primitives of the base language, be 

they classes, procedures, functions, or some other form of definition. All such primitives 

have a rigid syntax which is unalterable. 

The major advantage of providing extra functionality through libraries is that the 

facilities are (ideally) available to all programmers — Java’s threading support shows 

how seamlessly this can be achieved2 (see section 2.3.1.1). 

                                                

2 Although Java does rely on the use of  synchronized in order to implement many features. 
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The examples provided here are typical of the kind of facilities provided through library 

systems, and in particular we look at how this support can rarely match the power and 

flexibility of direct language support. 

2.3.1.1 Threading 

A typical example of where facilities are provided through libraries is with many 

threading mechanisms.  

C/Unix systems provide a host of different libraries to enable threading (eg. POSIX 

threads [Mue93, DM05] and UI threads [Nor96]). C++ systems on most platforms have 

similar approaches (e.g. Boost Threads [Gur04§9]).  

Java’s threading mechanism (see Code Example 2.1), whilst not overly different to 

those of other languages (especially those of C++), is provided through a class that is 

part of Java’s Development Kit (JDK) [GJSB00§17.12], and is, as a result of being 

standard, available to all Java programmers. This universality results in the belief that 

threading is part of Java, even though it is only a feature of its standard libraries. 

classclassclassclass AtTheSameTime extendsextendsextendsextends Thread { 
  publicpublicpublicpublic voidvoidvoidvoid run() { 
    // implementation goes here 
  } 
} 

Code Example 2.1: Java Threading 

Facilities such as inter-thread communication are left very much up to the programmer, 

Java does provide a synchronized keyword so that the programmer is not required to 

program mutual exclusion locks, but no other direct support is given. 

Improved Approach 

In stark contrast to Java are languages such as Ada [Uni83] which provide direct 

support for threads through syntactic constructs, they provide functionality generally not 

provided in library systems - either due to complexity of implementation or sheer 

impossibility. Synchronisation of tasks is provided through a mechanism known as a 

rendezvous. Multiple rendezvous attempts are handled through an extended version of 

Ada’s select statement [Bar 91§14]. Ada allows programmers more power than the 

equivalent library based constructs.  
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tasktasktasktask PROTECTED_VARIABLE isisisis 
  entryentryentryentry READ(x: outoutoutout ITEM); 
  entryentryentryentry WRTIE(x: inininin ITEM); 
endendendend; 
 
tasktasktasktask bodybodybodybody PROTECTED_VARIABLE isisisis 
  V: ITEM 
beginbeginbeginbegin    
  acceptacceptacceptaccept WRITE(X: inininin ITEM) dodododo V:= X; endendendend; 
  looplooplooploop    
    selectselectselectselect    
      acceptacceptacceptaccept READ(X: outoutoutout ITEM) dodododo X:= V; endendendend; 
    orororor    
      acceptacceptacceptaccept WRITE(X: inininin ITEM) dodododo V:= X; endendendend; 
    endendendend selectselectselectselect; 
  endendendend looplooplooploop; 
endendendend PROTECTED VARIABLE; 
 
... // somewhere else 
 
PROTECTED_VARIABLE.WRITE(someValue); 
PROTECTED_VARIABLE.READ(someVariable); 
 
... // somewhere else again 
 
PROTECTED_VARIABLE.READ(someVariable2); 
PROTECTED_VARIABLE.READ(someVariable3); 

Code Example 2.2: Ada Threading (modified from [Bar91§14.4, pp. 291]) 

Java’s use of the synchronized keyword on variables can be expressed in Ada as 

shown in Code Example 2.2. This example defines a task that has two entry points: 

READ and WRITE. This task will automatically execute when the program starts. The 

body of the task stores insists that the first allowed access to the variable is a write (read 

attempts will just be queued until at least one write has completed), it then allows either 

read or write access in any order, but ensures that only one access to the variable can 

take place at any given time. This is a simple version that implements only a single 

protected variable of a fixed type, and Ada is expressive enough to remedy both of these 

flaws, but not quite expressive enough to provide access to the variable without function 

calls. 

Ada provides for much more powerful uses of these constructs, such as task types, and 

timed and conditional rendezvous. Most of these features are impossible to provide in 

such a convenient form in other languages that support threading via library 

mechanisms. 

2.3.1.2 SQL 

SQL [ANS92] is the language of choice for communicating with databases. For this 

reason, most mainstream languages have SQL libraries available (eg. Java’s JDBC/SQL 

[EH01] and Visual Basic’s ODBC [Mic05b]). SQL support in such languages is 
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typically provided through allowing programmers to specify SQL queries in strings 

which are then passed to a SQL library for evaluation.  

There are two notable aspects of this: the language is providing no real direct support 

for SQL (support for any language can be provided through parsing embedded strings), 

and syntax-checking must be performed at run-time. A SQL interpreter is provided 

within the library to check the validity of any given SQL query, and to execute once 

validated. Whilst this approach is highly desirable in some circumstances that require 

true run-time SQL creation, in those that don’t, it forces the programmer into an 

effective double-compilation situation.  

// give all dynamic qualities a value, but normally this kind of SQL would 
// appear inside a function wrapper 
 
String tableSource = "Movies"; 
String searchField = "Title"; 
String searchString = "Star"; 
String sortField = "Year"; 
 
Connection connection = null; 
// perform some database connection code and hopefully succeed 
 
try { 
  Statement stmt = connection.createStatement(); 
  ResultSet resultSet = stmt.executeQuery( 
    "SELECT * FROM " + tableSource +  
    " WHERE " + searchField + " LIKE /"*" + searchString + "*/"" + 
    " ORDER BY " + sortField);  
 
  // now pull apart the ResultSet object and do something useful 
} catch (SQLException e) { 
  // do something useful with error information 
} 

Code Example 2.3: Java Embedded SQL 

The example in Code Example 2.3 shows typical embedded SQL in Java. The obvious 

inelegance of this approach compared to the three line SQL query it represents is 

immediately apparent from this example. Notice that the table to search, the field to 

search for, what the field is supposed to be “like”, and how the presentation order are all 

dynamic qualities. However, what is particularly important to note here, is that this is 

not truly dynamic SQL, as the structure of the SQL query never changes. 

Improved Approach 

Ideally, SQL queries would be syntax checked at compile time, and would actually be 

expressed directly in the base language – and indeed that is the approach taken in many 

languages. For such languages, such facilities are part of their sales pitch. In fact, 
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embedded SQL is common enough for the ISO SQL standard to specify how it should 

be done [ANS89].  

Code Example 2.4 demonstrates embedded ISO SQL in Pro*C. In this example, the 

colon is necessary to distinguish a from a database identifier. Pro*C allows fixed 

structure queries to be mixed with variables from the surrounding code but does not 

allow tables or fields to be specified dynamically within such queries. A more complete 

embedded SQL implementation would suffer from no such restrictions.  

intintintint a; 
intintintint taxFileNumber = 876543210; 
 
EXECEXECEXECEXEC SQLSQLSQLSQL SELECTSELECTSELECTSELECT Salary IIIINTONTONTONTO :a 
  FROMFROMFROMFROM Employee 
  WHEREWHEREWHEREWHERE TFN=:taxFileNumber; 
 
printf("The salary is %d\n", a); 

Code Example 2.4: Pro*C Embedded SQL 

2.3.1.3 Summary 

As we have seen, language extensions via library definition will almost certainly lead to 

imperfect extensions due to the necessity of compromises forced by the library 

mechanism. Direct language modification always provides more power; the major 

argument against adding direct language support is that of complexity.  

2.3.2 Open Compilers 

Any language that claims to be extensible by merely opening the source of the compiler 

is another example of misuse of the term extensible as it has been defined in this work. 

Any compiler for which the source is available can be extended, and hence so too the 

language it compiles. This, however, does not provide extensibility in any truly useful 

way – any new features force a new compiler to be provided to all that wish to use 

them. If two modifications are made independently there is no way  for these to be 

reconciled. 

When implementing new features in this way, great care must be taken in order to retain 

the robustness of the compiler. Future revisions only serve to make this task more 

arduous. 
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The major advantage of this approach is that with full compiler source, any modification 

is possible: the language can be altered in any way, from minor changes to entirely new 

typing systems.  

Although not developed with the aid of an open source compiler, the language Pizza 

made such wholesale changes to Java’s type system, and in part to the development of 

the Java 1.5 specification.  

2.3.2.1 Glasgow Haskell Compiler 

The Glasgow Haskell Compiler (GHC) [GHC02] is an open-source compiler for which 

many extensions have been made for research purposes. Examples of such extensions 

include Concurrent Haskell [MPJT04], Parallel Haskell [TPL01] and Template Haskell. 

Template Haskell was considered interesting enough that its implementation has been 

added into GHC as an extension. Indeed, Template Haskell satisfies many of our 

properties of an extensible language, and is described further in section 4.3. 

2.3.2.2 Summary 

Open compilers facilitate the modification of a language as it is easier for people to 

realise extension ideas they may have. In section 2.4.2 we shall further examples of how 

in the most successful cases, such modification has led to adoption within the evolving 

original language. 

2.3.3 Text Macros 
 

This subsection gives us our first look at meta-programming facilities, albeit in a far-

from-perfect form. In order to demonstrate their usefulness, a large number of examples 

are provided, the bulk of which are revisited in later sections, and actually serve as part 

of the benchmark test suite (see section 3.4).  

Text macros (or token macros), were the earliest form of macro system [WC93], their 

development followed close behind that of assembly language. 

“[Text] Macro systems support a limited form of syntax extension. In most 

systems, a macro call consists of the macro name followed by zero or more 

arguments.” [Bak01§1, pp. 1] 



CHAPTER 2: EXTENSIBILITY   LANGUAGE EXTENSION MECHANISMS 

 

 •  26  •

Macro systems, such as those found in C++ [Str00§7.8] provide direct manipulation of 

the source text/tokens. This manipulation is via rigid macro syntax (which may be 

somewhat different from the language’s normal syntax), and is unable to provide any 

error checking.  

The classic example of macro misuse is demonstrated in Code Example 2.5. Unlike a 

function call, 10+10 is not evaluated before the macro is applied, so the result of 

sqr(10+10) is actually 10+10*10+10 which, due to precedence, evaluates to 120. 

In this case the macro can be rewritten with liberal use of parentheses to ensure correct 

evaluation for simple arguments. However, nothing can be done to ensure intuitiveness 

if the argument to sqr contains side-effects. 

#definedefinedefinedefine sqr(x) x*x 
... 
sqr(10+10) 

Code Example 2.5: C++ Macro Misuse 

In more pathological cases, macros can appear to the programmer as normal library 

extensions, but can break if certain arguments are supplied. The rather contrived 

example in Code Example 2.6 will fail due to the fact that the template call 

sum<3,5>() is not resolved when the macro is expanded, and as a result the stream of 

tokens appears to contain two arguments rather than one. This problem can be resolved 

by bracketing the expression on the calling side. For a user, this situation is intolerable 

and may be many calls deep within macro code. 

templatetemplatetemplatetemplate<intintintint a, intintintint b> sum() { return a + b; } 
#define#define#define#define negate(x) -x 
 
intintintint i = negate(sum<3,5>()); 

Code Example 2.6: C++ Macro Parsing Difficulties 

Due to their unchecked nature however, macros can provide powerful constructs. In 

Code Example 2.7, typically the function f would be implemented with exceptions, and 

that is the preferred approach, but this macro does have its advantages: there is no run-

time penalty for its graceful exit, and it is able to take any type that defines an output 

operator as its argument. This kind of code is often used for complicated operations 

such as compiler state unwinding on detection of syntax errors. 
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#definedefinedefinedefine FAIL(x) { cerr << "error: " << x << endl; \  
                RELEASE_SYSTEM_RESOURCE(someLocalVariable); \ 
                returnreturnreturnreturn false; } 
 
boolboolboolbool f() { 
   someLocalVariable = OBTAIN_SYSTEM_RESOURCE(); 
   ... 
   ifififif (somethingBadHappend) FAIL("oh no!"); 
   ... 
   ifififif (somethingElse) { 
      intintintint errorCode = ...; 
 
      FAIL(errorCode); 
   } 
   ... 
 
   returnreturnreturnreturn true; 
} 
 

Code Example 2.7: Powerful C++ Macro Construct 

Text macros can provide much more complex and useful macros than these however, 

and we provide many examples of macro use in this section. What the following 

examples show is the power that these macros provide, even if it is in an imperfect 

form. Many of these examples are simplified versions of what could be possible using 

more advanced techniques such as templates, and template meta-programming (see 

section 2.3.4.1), for examples of such improvements see the Boost Libraries [AG04]. 

2.3.3.1 Assertions 

It is often useful to test a condition and flag an error if the check fails. C++ macros can 

handle this with ease. 

Almost all elements of the macro in Code Example 2.8 are heavily platform dependent, 

but the intent should be clear. If the condition passed to the assert does not evaluate 

to true, the macro will display the error and cause the program to break. Passed to the 

error display function is the current file, the line number that failed the assertion, and 

the text of the expression that caused it. 

#definedefinedefinedefine ASSERT(x) { ifififif (!(x)) { \ 
                    DISPLAY_ERROR(THIS_FILE, __LINE__, #x); \ 
                    DEBUG_BREAK(); } } 

Code Example 2.8: C++ Assertion Macro 

C++ has other conditional compilation facilities that allow this macro to effectively 

vanish from release code. Languages without such facilities often need to provide 

explicit support for assertions, and it has been a recent addition to Java for this reason. 

See section 3.4.1.1 for a fuller treatment on the rationale behind assertions. 
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2.3.3.2 Iteration 

An often performed programming task is that of iterating through a list of values. If we 

wish to iterate through a C++ collection, using the standard iterator classes, the macro in 

Code Example 2.9 can be used. 

The variable _i is named in such a fashion as to reduce the chances of that name 

appearing within either of the macro’s arguments or within its body; in general, this 

problem is called name capture [SPJ02]. Macros that eliminate this problem are called 

hygienic [SPJ02], see section 3.2.1 for more information. 

#define define define define FOREACH(element, container) { \ 
  container::iterator _i = container.begin(); \ 
  whilewhilewhilewhile (_i != container.end()) { \ 
    container::value_type element = *_i; 
#definedefinedefinedefine ENDFOREACH }} 
 
... 
 
vector<intintintint> v; 
 
FOREACH(x, v) 
  cout << x << endl; 
ENDFOREACH 

Code Example 2.9: C++ Iteration Macro 

It would seem that nesting this macro would create problems due to the repeated use of 

the variable _i but, surprisingly, it does not. Since we require a uniquely named 

variable, element, as a parameter, the variable _i is used for a limited scope, and no 

name clashes will occur. 

2.3.3.3 Generators  

Generators are procedures that can produce multiple return values, not as a list, but one 

at a time, as new values are needed. The programming language Icon uses generators to 

great effect. 

“The greatest difference between Icon and other programming languages is this: 

in Icon, expressions are generators. Expressions generate sequences of values.” 

[Chr96§3.1, pp. 35] 

The Icon language is considered interesting enough for there to be a full Java 

implementation: Jcon [PT99]. 

The Icon code for defining a procedure that will generate all elements of the Fibonacci 

sequence is shown in Code Example 2.10. In this example, suspend is similar to 
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return in other languages, but the state of the procedure fib is retained, and the 

procedure can be restarted from the point of suspension.  

In Code Example 2.10, every is analogous to the FOREACH macro from the previous 

section; by design, this usage would not terminate; it will continue printing the 

Fibonacci sequence indefinitely.  

procprocprocprocedureedureedureedure fib() 
  local x, y 
  x = 0 
  y = 1 
  repeatrepeatrepeatrepeat { 
    suspendsuspendsuspendsuspend y 
    x = x + y 
    suspendsuspendsuspendsuspend x               
    y = x + y 
  } 
endendendend    
 
... 
 
everyeveryeveryevery x := fib() dodododo write(x) 

Code Example 2.10: Icon Fibonacci Generator 

Icon provides other facilities for limiting the number of times we retrieve a value from a 

generator. For example if we wished to output all Fibonacci numbers below 100, we 

could simple use the expression in Code Example 2.11.  

everyeveryeveryevery x := fib() & x < 100 dodododo write(x) 

Code Example 2.11: Icon Fibonacci Sequence 

In Icon every procedure has a concept of success or failure, and it is actually possible to 

write expressions such as that found in Code Example 2.12. In this example, when < 

fails to produce any more values (i.e. the last Fibonacci number is greater than or equal 

to 100), the whole expression terminates. 

everyeveryeveryevery write(fib() < 100) 

Code Example 2.12: Improved Icon Fibonacci Sequence 

In the following subsections, we demonstrate a text-macro system that can reproduce 

the use of Icon’s suspend construct. Although a little lengthy, this macro example is, 

perhaps, the best example provided here that demonstrates C++ macros ability to almost 

introduce new syntactic forms, but as previously stated ‘new’ syntax is still constrained 

to either macro calls, or identifiers. 
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Helper Class Definitions 

Code Example 2.13 introduces a pair of classes: Iterator and Generator. The 

Iterator class is more similar to a Java iterator than a C++ iterator. The 

Generator class has slightly stronger conditions for use than a traditional iterator in 

that it requires that hasNext and next are called alternatively for the duration of the 

iteration. In fact hasNext is responsible for determining whether or not there exists 

another value in the sequence by performing a calculation and buffering its result. 

templatetemplatetemplatetemplate<classclassclassclass T> 
classclassclassclass Iterator { publicpublicpublicpublic: 
   virtualvirtualvirtualvirtual boolboolboolbool hasNext() = 0; 
   virtualvirtualvirtualvirtual T next() = 0; 
}; 
 
templatetemplatetemplatetemplate<classclassclassclass T> 
cccclasslasslasslass Generator : publicpublicpublicpublic Iterator<T> { 
privateprivateprivateprivate: 
  T nextVal; 
  intintintint reentry; 
 
protectedprotectedprotectedprotected: 
  Generator() : reentry(0) { } 
  
  boolboolboolbool suspend(constconstconstconst T& x, int r) {  
    nextVal = x;  
    reentry = r;  
    returnreturnreturnreturn truetruetruetrue;  
  } 
 
  intintintint position() { returnreturnreturnreturn reentry; } 
 
publicpublicpublicpublic: 
  typedeftypedeftypedeftypedef T valueType; 
  
  virtualvirtualvirtualvirtual boolboolboolbool hasNext() = 0; 
  virtualvirtualvirtualvirtual T next() { returnreturnreturnreturn nextVal; } 
}; 

Code Example 2.13: C++ Generator Helper Classes 

The internal workings of this class are hidden from end-users, but all overriding classes 

need access to the suspend method in order to take advantage of the cached next 

element.  

Basic Macro Definitions 

This macro example relies on an odd, generally unknown, and (thankfully) almost 

unused property of the C++ switch statement: case labels are just a special example 

of arbitrary labels, and as such can appear anywhere within code. As a result of this it is 

possible to use a switch to jump into the middle of a heavily nested structure. 
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Writing generator style code by overriding the Generator class directly would be 

tedious at best, and would unduly expose the use of switch in such an unusual way — 

a set of macro definitions shields users from this. 

The macros in Code Example 2.14 define primitives that can be used to write macros in 

a similar fashion to the Icon example in Code Example 2.10. 

#definedefinedefinedefine GENERATOR switchswitchswitchswitch (position()) { casecasecasecase 0: 
#definedefinedefinedefine SUSPEND(value) \ 
  returnreturnreturnreturn suspend(value, __LINE__); \ 
  casecasecasecase __LINE__: ; 
#definedefinedefinedefine ENDGENERATOR } returnreturnreturnreturn falsefalsefalsefalse; 

Code Example 2.14: Basic C++ Generator Macros 

In Code Example 2.14, the GENERATOR and ENDGENERATOR macros provide a 

hidden switch statement that allows for re-entry into the generator code at predefined 

points. The SUSPEND macro controls the definition of these points, and is also 

responsible for returning the current value from the generator. Notice the use of the 

special pre-processor value __LINE__, this will always be equal to the current line 

number of the source file. Without this special value each use of SUSPEND would be 

forced to explicitly specify a unique identifier to enable the correct resumption of the 

generator. 

On the calling side, in order to provide a limited form of the Icon every statement we 

simply use a macro very similar to FOREACH from section 2.3.3.2, but modified to 

work on the newly introduced Iterator. 

Fibonacci Example 

classclassclassclass fibIterator : publicpublicpublicpublic Generator<intintintint> { 
  intintintint x; 
  intintintint y; 
 
publicpublicpublicpublic: 
  fibIterator() { } 
 
  boolboolboolbool hasNext() { 
    GENERATOR 
      x = 0; 
      y = 1; 
      whilewhilewhilewhile (truetruetruetrue) { 
        SUSPEND(y);  
        x = x + y; 
        SUSPEND(x);  
        y = x + y; 
      } 
    ENDGENERATOR 
  } 
}; 

Code Example 2.15: C++ Fibonacci Generator 
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Code Example 2.15 demonstrates how to implement the Fibonacci example using these 

primitives. In this simple implementation it is still necessary to write a great deal of 

surrounding setup code. A more complicated set of macro definitions (see the following 

subsection entitled “Extended Macro Definitions and Example”) would remove this 

complexity also. What is most important here is that, despite the different syntax, what 

appears within the GENERATOR / ENDGENERATOR macros is equivalent code to the 

Icon definition from Code Example 2.10. 

Code Example 2.16 demonstrates how the previous code of Code Example 2.16 would 

appear if all of the macros were expanded to their full form. A couple of things are 

worth noting here. Firstly, without the ‘versatile’ switch statement this macro would 

not be possible, and secondly, while it would be possible to write code directly in this 

fashion and get the benefits of using generators, the code produced is not particularly 

elegant or maintainable. 

classclassclassclass fibIterator : publicpublicpublicpublic Generator<intintintint> { 
  intintintint x; 
  intintintint y; 
 
publicpublicpublicpublic: 
  fibIterator() { } 
 
  boolboolboolbool hasNext() { 
    switchswitchswitchswitch (position()) {  
    casecasecasecase 0: 
      x = 0; 
      y = 1; 
      whilewhilewhilewhile (truetruetruetrue) { 
        returnreturnreturnreturn suspendsuspendsuspendsuspend(y, 13);  
    casecasecasecase 13: 
        x = x + y; 
        returnreturnreturnreturn suspendsuspendsuspendsuspend(x, 15); 
    casecasecasecase 15: 
        y = x + y; 
      } 
    } 
 
    returnreturnreturnreturn falsefalsefalsefalse; 
  } 
}; 

Code Example 2.16: C++ Fibonacci Generator After Macro Expansion 

Extended Macro Definitions and Example 

In Code Example 2.17 the definitions for generator macros are expanded upon, to create 

less burden on the generator programmer. They hide the definition of both the class 

extending Generator and the call to hasNext. In  Code Example 2.18 these new 

definitions are used to write in a form even closer to that of the original Icon definition. 
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Even these improved macros still have limitations: we are working only with generators 

that have no arguments and further work is required to produce macros that support 

arguments. In order to reduce programmer burden, it is likely that any such system 

would require a different macro definition to be defined for each number of arguments. 

#definedefinedefinedefine GENERATOR_DECLARATION(type, name) \ 
  Generator<type>* name() { returnreturnreturnreturn newnewnewnew name(); } 
  classclassclassclass name : publicpublicpublicpublic Generator<type> { \ 
  publicpublicpublicpublic: \ 
    name() { } \ 
  privateprivateprivateprivate:  
 
#definedefinedefinedefine GENERATOR \ 
  publicpublicpublicpublic: \ 
    boolboolboolbool hasNext() { \ 
      switchswitchswitchswitch (position()) { casecasecasecase 0: 
 
#definedefinedefinedefine ENDGENERATOR } returnreturnreturnreturn falsefalsefalsefalse; } }; 

Code Example 2.17: Extended C++ Generator Macros 

GENERATOR_DECLARATION(intintintint, fibIterator) 
  intintintint x; 
  intintintint y; 
 
GENERATOR 
  x = 0; 
  y = 1; 
  whilewhilewhilewhile (truetruetruetrue) { 
    SUSPEND(y);  
    x = x + y; 
    SUSPEND(x);  
    y = x + y; 
  } 
ENDGENERATOR 

Code Example 2.18: Improved C++ Fibonacci Generator 

2.3.3.4 Message Maps 

Operating systems generally allow processes to communicate by passing messages. In 

such an operating system, a large portion of programming involves handling these 

messages. For example, every time an input event (such as a keystroke or mouse input) 

occurs, a message is sent to the appropriate process, which then must handle this event. 

This code is typically referred to as a message map, i.e. it maps messages to appropriate 

handling routines. Writing message handling code is a repetitive process. 

The Microsoft Visual C++ programming platform for Windows applications makes 

extensive use of macros to eliminate repetitive tasks [Mic05a]. 

Code Example 2.19 declares a message handling routine that handles a window paint 

message with a call to the standard window class member (OnPaint), calls a specified 

member function on detection of a click on a button (identified by IDC_START), and 
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calls a specified member function (SaveAnimationFrame) on detection of any 

thread finishing messages. 

BEGIN_MESSAGE_MAP(CMandelDlg, CDialog) 
  //{{AFX_MSG_MAP(CMandelDlg) 
  ON_WM_PAINT() 
  ON_BN_CLICKED(IDC_START, OnStartDrawing) 
  ON_MESSAGE(WM_THREAD_FINISHED, SaveAnimationFrame) 
  //}}AFX_MSG_MAP 
END_MESSAGE_MAP() 

Code Example 2.19: C++ Message Map Macro Usage 

This construct is defined in order to remove the repetition inherent in Windows message 

handling routines. These multiple calls to macros actually define a function that simply 

returns a datastructure which captures all of the event handlers that the user defines for 

use in a generalised pre-defined function. All of this is hidden from the user, however, 

and a message map could be implemented in a variety of other ways. 

A message map has rather odd syntax (compared to standard C++ constructs), but is 

very easy to use. Macros in this case remove repetitive constructs simply and 

effectively.  

2.3.3.5 DEBUG_NEW 

In order to be able to better track down memory leaks, it is useful during debugging to 

retain information on all memory allocations and where they take place within code. It 

would be possible to manually replace normal memory allocation calls with a function 

that recorded this information, but the C++ macro system provides an elegant solution. 

In Code Example 2.20, despite the rather esoteric C++ syntax, the macro simply 

replaces any instance of the new keyword with a macro DEBUG_NEW and this in turn 

expands to a call to an overloaded new operator that takes two extra arguments: the 

current filename and the current line number. The #ifndef/#endif pair checks that 

the compiler is producing a debug executable, and ensures that this macro will only 

operate in debug mode. When not in debug mode, run-time performance is not 

hampered by the extra overhead the overloaded new operator would require. 

#ifdefifdefifdefifdef _DEBUG 
  #definedefinedefinedefine newnewnewnew DEBUG_NEW 
  #definedefinedefinedefine DEBUG_NEW newnewnewnew(THIS_FILE, __LINE__) 
  voidvoidvoidvoid* operatoroperatoroperatoroperator newnewnewnew(size_t size, charcharcharchar* filename, intintintint line); 
#endifendifendifendif 

Code Example 2.20: C++ Debugging Macro 
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For example, consider Code Example 2.21, when performing a debug build. After 

macro expansion this code will expand to that of Code Example 2.22. 

intintintint* a = newnewnewnew intintintint; 
SomeClass* x = newnewnewnew SomeClass; 
SomeClass* y = newnewnewnew SomeClass(42, "junk"); 

Code Example 2.21: C++ Debugging Macro Usage 

intintintint* a = newnewnewnew("thisfile.cpp", 1) int; 
SomeClass* x = newnewnewnew("thisfile.cpp", 2) SomeClass; 
SomeClass* y = newnewnewnew("thisfile.cpp", 3) SomeClass(42, "junk"); 

Code Example 2.22: C++ Debugging Macro After Expansion 

This macro will only operate when the compiler is run in debug mode. Debugging 

facilities are improved by this macro, and run-time performance is not hampered as the 

macro is not used when a release build is performed. 

2.3.3.6 Summary 

Text macros are a powerful tool in the right hands, but their use is constrained by the 

rigid syntax they can provide. As we shall repeatedly see, much use has been made of 

such imperfect systems, and this is strong evidence that any improvement to meta-

programming facilities is of great interest. 

It should be stressed that the examples presented here are simplistic compared to some 

of the techniques used by experienced C++ macro programmers. In particular, real-

world assert macros are defined in such a fashion as to be usable in places where 

statements would cause a syntax error. 

2.3.4 Two-tier Languages 
 

A few languages have attempted to provide more sophisticated meta-programming 

facilities than text macros by providing a secondary language that enables the user to 

write extensions that are executed at compile-time. 

Such systems may be able to provide extensibility as defined, but do so at the cost of 

requiring the user to learn this secondary language. This has many disadvantages:  

• often this secondary language is either harder to program in, or less expressive, 

than the main language;  

• programmers must clearly understand two languages instead of one, and must be 

able to reconcile the differences between them; and   
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• in the majority of cases there is no apparent correspondence between the 

extension code itself, and the code produced by executing the extension. 

“Asymmetry between the static and dynamic language is bad… It might be 

desirable to have near-perfect symmetry between the static and dynamic 

languages, even to the extent of allowing side-effects at compile-time.” [Vel99] 

Examples of such two-tier systems are Pliant [TS+] and C++. In the following 

subsection we briefly examine the approach taken by C++. 

2.3.4.1 C++ Template Meta-programming 

One of the most startling accidents [Rob01] in programming language design is C++ 

template meta-programming. Programmers realised that they could utilise the type 

system of C++ templates to perform calculations — a use never intended by the 

language designers. 

 “C++ has an elaborate meta-programming facility known as templates. The 

basic idea is that static, or compile-time, computation takes place entirely in the 

type system of C++.” [SPJ02§10.1, pp. 12] 

This was first discovered by Unruh [Unr94] in 1994, when he produced a program that 

would produce compilation errors that contained a prime number calculation.  

As a simple example of this template meta-programming functionality, consider the set 

of template definitions to calculate integer powers at compile-time in Code Example 

2.23. Here, the second template definition is a partial specialisation, and it provides the 

base case for a recursive calculation of a power (functional programmers may notice 

that this is a common functional programming idiom with horrendous syntax). The C++ 

template type system is being tricked into performing calculations for us. 

templatetemplatetemplatetemplate<intintintint X, intintintint Y> structstructstructstruct pow { 
  staticstaticstaticstatic constconstconstconst intintintint result = X * pow<X, Y-1>::result; 
}; 
 
templatetemplatetemplatetemplate<intintintint X> structstructstructstruct pow<X, 0> { 
  staticstaticstaticstatic constconstconstconst intintintint result = 1; 
}; 
 
constconstconstconst intintintint z = pow<5, 3>::result; 

Code Example 2.23: C++ Template Meta-programming 
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This type system is considered to be a functional language in its own right — so C++ 

effectively has one imperative language for the majority of work, and an embedded 

functional language (with an awful syntax) that can be used for meta-programming. 

“The type system is rich enough that one can construct and manipulate arbitrary 

data structures (lists, trees, etc) in the type system, and use the computations to 

control what object-level code is generated.” [SPJ02§10.1, pp. 12] 

This kind of code often bears little resemblance to the code it is going to produce, and 

the mechanism at work here is generally little-understood by the end user. Nonetheless 

there has been a recent flurry of activity in the C++ meta-programming community, 

with many projects relying on this facility. The most extensive set of libraries 

commonly using meta-programming is Boost [AG04]. The facilities it provides include: 

mathematical calculation, string processing, function-objects, and memory management 

facilities. One of the most extraordinary examples of template meta-programming is to 

produce a Lisp subset which is interpreted by the type system [CE98].  

“The fact that C++ templates are so widely used [for meta-programming] is very 

strong evidence of the need for such a thing: the barriers to their use are 

considerable.” [SPJ02§10.1, pp. 12] 

If meta-programming in C++ is so baroque, and yet so often utilised, then it should be 

clear that its power is considerable. Any system that provides the power of meta-

programming but with improved usability should be considered a great improvement 

[Wil04]. 

Mathematical Calculation 

Matrix operations (as well as other linear algebra calculations) are a classic example of 

C++ template meta-programming. Specialised code that can be as efficient as hand 

generated code can be produced for matrix operations, and this process is transparent to 

the user. This enables users to forget about efficiency, and to program with matrices in 

the usual way, e.g. A=B+C*D.  

This has traditionally been the domain of Fortran, and specifically its BLAS library 

[Bla01]. A concerted effort was made by many developers to try and match Fortran’s 

efficiency for these kinds of operations [AG04, RJHC+96]. 
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In explanation of the rationale for the creation of Boost [AG04], the following quote 

appears: 

“It would be nice if every kind of numeric software could be written in C++ 

without loss of efficiency, but unless something can be found that achieves this 

without compromising the C++ type system it may be preferable to rely on 

Fortran, assembler or architecture-specific extensions.” [Str94§6.5.2] 

Libraries such as Blitz++ [Vel99, Vel01] and POOMA [RJHC+96] relied heavily on the 

use of template meta-programming, and claim to match the performance of Fortran. In 

these libraries, efficiency issues are the concern of the meta-programmer who is free to 

apply specialisations depending on the size and shape of the matrices. Small statically 

sized matrices can have their operations fully unrolled and can utilise lazy evaluation, 

while the largest matrices can utilise other highly optimised techniques. 

Of major concern to the optimisation of C++ code is the elimination of temporary 

values and virtual function calls. To solve the problems of ‘temporaries’, the Boost 

library defers calculation until enough information is known to produce a suitable 

optimisation: 

“[using] lazy evaluation as known from modern functional programming 

languages. The principle of this approach is to evaluate a complex expression 

element wise and to assign it directly to the target.” [WK00]  

To remove virtual function calls, the Boost library found a solution: 

“… called expression templates. Expression templates contain lazy evaluation 

and replace dynamic polymorphism with static, i.e. compile time 

polymorphism.” [WK00] 

These systems show that C++ meta-programming is expressive enough to provide the 

library designer with many powerful optimisation strategies and, as a result, abstraction 

has been maintained without significant performance penalties. An extensible language 

could provide these facilities and, when properly designed, would make their 

implementation more natural. 
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2.3.5 Integrated Language Features 
 

As discussed in the previous section, it is generally considered undesirable to provide 

meta-programming facilities in a form that greatly differs from the usual programming 

idiom [Vel99, SPJ02]. Instead, meta-programming should be provided in the language 

itself. Template Haskell is one language that uses this approach: 

“… the static computation language is the same as the dynamic language, so no 

new programming idiom is required.” [SPJ02§10.1, pp. 12] 

Meta-programming in such a language has available to it the full power of the base 

language, and as such can produce the most powerful constructs. Examples of languages 

that provide integrated meta-programming facilities are Lisp/Scheme, Template 

Haskell, Java Syntax Extender, OpenJava, and Maya. We discuss these languages, the 

differences in expressive power, and their claims to extensibility in Chapter 4. 

Before we can adequately cover these languages, we will first look at the need for 

extensibility, and mechanisms for comparing extensible languages. 
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2.4 Is Extensibility Necessary? 

In [Bar91], the evolution of programming languages is described as having undergone 

three major advances in abstraction:  

• expression abstraction (introduced, with constraints, in languages such as 

Fortran [For77]);  

• control abstraction (introduced in Algol60 [Nau60]);  and 

• data abstraction, which (due to the age of the book) is “still occurring” 

(introduced with language such as Simula [BDMN73], Smalltalk [GD83] and 

ML [Mil84]).  

Expression abstraction allowed the programmer to ignore such issues as machine 

registers. Control abstraction freed the programmer from such house-keeping issues as 

labelling and gotos. Data abstraction allows the details of the actual physical 

representation of data to be separated from the operations defined upon the data; from 

the introduction of records, through to classes, and then parameterised classes. 

Each stage saw a reduction in the number of tedious and error-prone tasks that would 

normally be the responsibility of the programmer. Existing programming languages still 

require many repetitive and error-prone tasks to be performed. The programmer often 

has no choice as the language itself is not expressive enough for their needs. In many 

situations, programmers resort to using different languages for each often-performed 

task. Repetitive tasks lead to the creation of new languages to alleviate this repetition — 

just as there were once an abundance of ‘new’ text processing languages (eg. SNOBOL 

[FGP64], Perl [WCS96], etc.), recent trends have spawned a host of scripting languages 

(eg. Python [RD04], Ruby [Mat98], etc.), and Web/HTML languages (e.g. PHP 

[Ach+05], etc.).  

It could be argued then, that the next stage in abstraction is that of syntax abstraction, so 

that these repetitive tasks could be handled where they appear. 

“The next big improvement in programmer productivity is going to come from 

making programming languages more extensible.” [Her04] 

There are reasons for continued development of programming languages other than 

repetition. Looking at any reasonably extensive list of programming languages would 
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tell us that there are at least a few thousand world-wide, and it is likely that many never 

make it into the public domain. The reason for the creation and characteristics of a new 

language are varied. For example, a new language might:  

• offer new previously unthought of constructs, or even entire evaluation 

strategies; 

• be built upon old languages, or merely based upon them; 

• attempt to provide the best features of other languages (eg. multi-paradigm 

languages such as C++); 

• be tailored to a particular machine architecture (eg. as C originally was), or as 

part of the infrastructure of another program (eg. QuakeC [Mon96] and 

UnrealScript [Swe98]); and/or 

• be created to test purely to see if an idea will work, or with a single specific 

goal, i.e. ‘research languages’ (eg. the language BrainF*** [Wik95] was 

designed to be Turing complete but with minimal compiler executable size).  

But even all these reasons are just a tiny proportion of all reasons behind language 

design. We will look at a few more of these motivations in some of the following 

subsections. Many of these reasons can be supported by providing an extensible 

language, if such a language were available much language development could actually 

become libraries of such a language. 

“In order to make that happen, we need to make compilers, debuggers, and other 

tools extensible frameworks.” [Her04] 

One strong argument in favour of extensible languages is the abundance of situations in 

which they can be useful, and in the number of these where they could easily replace 

traditional methodologies: 

“From now on, a main goal in designing a language should be to plan for 

growth.” [Ste99, pp. 6–7]  

The creators of Template Haskell consider that their system could be used for: 

• conditional compilation (i.e. replacing a pre-processor);  

• program reification, i.e. program introspection (eg. automatic generation of 

serialisation code);  

• algorithmic program creation;  
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• abstractions impossible in the base language; and  

• optimisations (such as algebraic laws and function in-lining). 

In particular, allowing users to define optimisations takes the emphasis off the compiler 

(and the compiler writer), and provides power to those that best understand the 

possibility for optimisation for a given programming domain. Many optimisations are 

just not cost-effective to include in a compiler: 

“…many interesting optimizations have too narrow an audience to justify their 

cost… An alternative is to allow programmers to define their own compile-time 

optimizations.” [Rob01, pp. 1] 

Extensible languages could also alleviate many of the reasons for language revision, 

reduce the frequency/complexity of standardisation, and allow for a faster pace of 

language development for end users.  

Language revision often occurs to correct design deficiencies or in order to provide new 

functionality in such a form that is impossible to provide through any other means. 

Generally such new functionality is provided with syntax unmatchable by 

library/module mechanisms. 

Such language revision can lead to revision of associated standards, which can be a 

slow process. Language revisions are often embraced by programmers before 

standardisation is complete, but each compiler may provide a different set of non-

standard extensions. A system that allows language extension without compiler 

modification could allow the adoption of new extensions by the programming 

community without any compiler, language, or standard revision.  

As we shall see, many of the arguments against extensibility are the same as those 

arguments that were (and in some cases continue to be) levelled against other, now 

common-place, language features. Also, extensibility can be viewed as the next step in a 

natural trend of language development. 

2.4.1 What is Necessary? 

The most likely question to be asked is whether or not we need extensibility.  

We could also ask ourselves whether or not we need generics / parametric 

polymorphism and, strictly speaking, the answer is no, they are not necessary —  you 

can write essentially equivalent code without language support for generics, but in a far 
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less desirable form. Indeed, for a programmer that uses a language that features generics 

as a matter of course, it is quite painful to switch to one that does not. 

Being slightly facetious for a moment, we could also ask if we need classes, procedures, 

conditional loops, etc. We could all still be programming in assembly, without a pre-

processor, or better still, machine-code was good enough for all our purposes. 

“We write programs in high-level languages because they make our programs 

shorter and more concise, easier to maintain, and easier to think about.” 

[SPJ02§3, pp. 2] 

If the standard facilities of current high-level languages have these benefits, then a well 

constructed extensible language should only serve to increase them. 

“Many low level details (such as data layout and memory allocation) are 

abstracted over by the compiler, and the programmer no longer concerns himself 

with these details.” [SPJ02§3, pp. 2–3] 

This is but part of a continuing trend for increased abstraction from the conception of 

computer programming. 

2.4.2 Language Modifications 
 

It should be clear from the previous section that programming languages have continued 

to evolve over time, newer languages provide facilities that were not available in their 

predecessors. Also when designing a language it is impractical to attempt to cater for 

every use from the outset, it is simply impossible to anticipate every desire of every 

future user. However, language designers do attempt to provide enough functionality 

that everything should still be at least possible, even if not simple. A better solution is to 

make the language extensible: 

“There is a limit to the number of features any compiler writer can put into any 

one compiler. The solution is to construct the compiler in a manner in which 

ordinary users can teach it new tricks.” [SPJ02§3, pp. 3] 

Language revision has always been part of the process of language design and is a 

phenomenon more noticeable in mainstream languages, eg. Fortran [For77], C/C++, 

Ada, Java, HTML [RLHJ99], Perl [WCS96], etc. For those languages that go 
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mainstream, what tends to happen is as time goes by and more unsupported common 

programming styles emerge, the language is revised and re-released.  

A prime example is Java: the Java programming language was designed with simplicity 

in mind, but as it became clear that programmers were tiring of explicit casts in their 

code (both writing them, and maintaining them), a concerted effort was made to provide 

generics. From the original call for revision [Bra99] in May 1999, it took over five years 

for the corresponding final release of Java1.5.  

Previous Java revisions added the concept of assertions, and bundled with generics in 

Java1.5 were the addition of automatic boxing/unboxing, type-safe enumerations, 

variable length argument lists, a revised import mechanism, and class metadata [Bra02]. 

If Java had been created extensible from the outset, then these features could have been 

provided as libraries. 

2.4.2.1 Language Standards Revision / Development 

Language revisions take time, but they are nothing compared to the slow process of 

standardisation and re-standardisation. 

Standards exist to try and constrain language development to a degree, so that (in 

theory) compiler divergence does not occur. If left unchecked, so many people will 

want to modify any given language, that a concerted effort must be made to provide a 

common ground for the base user. 

If the language itself allows for these modifications to occur, without the need for a new 

compiler, then the need for a periodic creation of a revised language standard should all 

but disappear. 

“An extensible language is one which puts this power in everyone’s hands, 

instead of reserving it for a standards committee.” [Wil04] 

2.4.2.2  Research Languages 

Research languages are typically small single purpose languages created for 

experimentation or teaching purposes. Due to their nature they tend to have custom built 

compilers and little or no tool support. Implementing these languages in an extensible 

language gives the benefits of pre-existing tools, and hopefully would simplify the 

process of creating them to begin with. 
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2.4.2.3 Embedded Languages 

As previously covered in section 2.3.1.2, SQL is an example of a language that is 

frequently embedded in other languages; in this section we describe this as preferable to 

adding SQL support via strings and the normal library mechanism.  

The problem with providing an embedded language is that support is only provided at 

the language definition level. If we wish to embed HTML, XML, or something else 

unforeseen then the language must be revised, and again this could require the 

intervention of a standards committee. 

An extensible language could provide embeddings of many other popular languages, 

and would have the ability to provide new embeddings as the needs of users change. 

Design Patterns 

Design patterns have been the focus of much research in recent times (eg. [Haa02], 

[BFYV96]), much of the hype about them is very similar to that of object-orientation 

from a few years previously. However,  

“Design patterns can be viewed as workarounds for specialized features missing 

from general-purpose languages. For instance, the visitor pattern implements 

multiple-dispatch in a single-dispatch language.” [Bak01§1, pp. 1] 

Indeed, it should be obvious to anyone who has used design patterns extensively that 

they end up writing very similar looking code, over and over. In order to remove this 

repetition, some languages have started supporting some common design patterns 

explicitly. A recent example is C# [HW01]: it provides explicit support for both the 

state/observer pattern and delegation [Bak01]. 

It is clear that this approach has benefits for the programmer. However, this kind of 

technique is reliant upon the programmer language designer recognising a common 

need, and then addressing it.  

“… unless we are willing to wait for a new language each time a design pattern 

is identified, such an approach is unsatisfactory. Instead, a language should 

admit programmer-defined syntax extensions.” [Bak01§1, pp. 1] 

Allowing extensibility to take care of design patterns has added benefits: if a 

programmer does not use a particular design pattern, they are not burdened with having 

to understand it, and are unlikely to use it in an inappropriate manner. Often, the same 
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cannot be said for concepts that are directly supported by a language. Indeed, this is one 

of the great criticisms levelled against C++ in particular (see section 2.4.4 for a 

discussion of these kinds of issues). 

2.4.2.4 Java1.5 

Java1.5 was a result of work done on Pizza and Generic Java (GJ) that lead to a call for 

revision [Bra99]. One of the touted design benefits of GJ was that it used erasure to 

convert programs with parametric polymorphism, to traditional Java programs, and as 

such no change was required to the Java Virtual Machine (JVM)3. 

“GJ is backward and forward compatible… with [the] JVM. GJ compiles into 

JVM code. No change to the JVM is required. The code is verifiable and can be 

executed on any JDK compliant browser.” [BOSW98a, pp. 2] 

Erasure 

Implementations that use erasure systematically translate all language extensions into 

the base language itself. Using erasure Java1.5 programs are (implicitly) converted into 

Java1.4 programs which are then compiled as normal: 

“GJ is translated by erasure: no information about type parameters is maintained 

at run-time. This means GJ code is pretty much identical to Java code for the 

same purpose, and equally efficient.” [BOSW98a, pp. 2] 

The Java1.4 language was not extended in a way that gave the power of extensibility to 

a programmer, but Java1.5 was implemented using a technique fundamental to all 

extensible programming languages. 

This property of erasure is what extensible languages do. Even simpler systems like 

C++ macros are erased from the code during compilation. In fact, generally C++ can be 

translated to equivalent C code, and this is how the language was originally, and often 

still is, implemented. The language of choice for implementing new programming 

languages is typically C, which is often referred to as portable assembly language. If C 

provided an extensible framework, then these languages could actually be implemented 

by erasure in C itself. 

                                                

3 Although a minor addition to class file attributes occurred in order to provide more support to bridge 

methods, this is likely to be for efficiency or merely documentation purposes. 
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2.4.3 How Much Power is Too Much Power? 
 

One criticism of extensibility is that it is too powerful, programmers would misuse it, 

and that too many extensions would start to make the language unusable. 

This is essentially the same argument levelled against operator overloading. An often 

cited example [Wik01] of misuse is in the overloading of the C++ arithmetic shift 

operators (<<, >>) as output primitives — in fact these operators would be recognised 

by most programmers for their use in output, not in arithmetic. This clearly shows that 

the one symbol has been given vastly different meanings, even in the standard libraries. 

This situation could be much worse if programmers can redefine any syntactic structure. 

Operator overloading however, is used to produce concise powerful libraries in C++ 

[AG04, Gur04], Haskell uses operator overloading extensively with great results (eg. for 

recursive-descent parsing [HM98]), and even the Java language uses overloading on the 

+ operator for strings [GJSB00].   

Many reasons can be given as to why string creation is treated specially in Java, but 

primarily the reason is that programmers often wish to build up strings from multiple 

sources of different types and concatenate them together — it is an optimisation of a 

commonly occurring type of code. In reality this is not an uncommon situation, the 

language designers just have more power at their disposal than the programmer. 

Almost any language feature can be misused; many programming style-guides suggest 

never using operator overloading, break statements, return statements anywhere but the 

end of a function, etc. Most of those making such suggestions don’t argue for the 

removal of these facilities altogether, for the simple reason that at times breaking these 

rules produces the most understandable, or efficient code. 

Simply not providing a feature is no solution to the problem of misuse, programmers 

would shy away from languages or libraries misusing extensibility just as they would 

from those misusing any feature. Extensibility can provide power in a form that no other 

language constructs can, and that alone makes it an interesting and important addition to 

a language. 
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2.4.4 Multi-paradigm languages 

C++ and Ada are two well known multi-paradigm languages. Complaints have been 

made against both as being too complex [Pla93, Joy96]. Indeed, it is often said that no 

one person can fully understand all of C++ [Mil00]. Proponents of these systems argue 

that you only need to know the parts of the language that you need, the other features 

are there for you to discover if your needs change. 

C++ can be used as, at minimum: 

• a procedural language in the fashion of C;  

• an object-oriented language;  

• a meta-programming language;  

• a data abstraction language;  

• a generic programming language; and  

• even a limited form of functional programming language.  

It was consciously designed to support multiple paradigms. 

“The idea that there is one right way to solve essentially every problem for 

essentially every user is fundamentally wrong.” [Kal01] 

Furthermore, C++ attempted to provide support for its new paradigms while paying 

close attention to efficiency. 

“… a general-purpose programming language must support multiple paradigms 

and … each paradigm must be supported well and with close-to-optimal runtime 

and space efficiencies.” [Kal01] 

It is also well understood that C++ code can be translated into C code, this is part of the 

reason that efficiency is so well supported. Again, this is the property of erasure. If one 

were to create an extensible version of C, it should be possible to create all of the 

features of C++ within the language. 

Arguments continue as to whether or not multi-paradigm languages or small-is-beautiful 

languages are the most effective way to get a job done [Joy96]. A small-is-beautiful 

extensible language, however, should be able to nicely side-step this argument 

completely. Attention can be paid to creating an elegant base language with powerful 

extensible constructs, and all multi-paradigm support can be provided by the extensions. 

Such a language would provide the best features of both languages. 
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2.4.5 Previous Interest 
 

There has been a fair degree of recent interest in the concept of extensibility. Clearly, 

other researchers are of the opinion that it is at least an interesting language concept.  

“Language extensibility has been around for years, but is still largely an 

academic curiosity. Three things stand in the way of its adoption: programmers’ 

ignorance, the absence of support in mainstream languages, and the cognitive 

gap between what programmers write, and what they have to debug.” [Wil04] 

Some aspects of this argument mirror those that were arguing for mainstream adoption 

of parametric polymorphism in less recent times.  

Part of the reason for programmers being ignorant of extensibility is not just its lack of 

common availability, for those programmers that do bump up against extensible 

languages, there can be great barriers to use. It can be argued that extensibility has to be 

simplified before the common user will choose to use it.  

It is worth reiterating that even without the full power of syntax creation, C++ templates 

do provide meta-programming, and as a result their has been a lot of excitement about 

the kind of things that it is possible to use them to do: 

“The fact that C++ templates are so widely used [for meta-programming] is very 

strong evidence of the need for such a thing: the barriers to their use are 

considerable.” [SPJ02§10.1, pp. 12] 

If meta-programming is becoming so popular, being able to provide syntax creation 

should only add to its appeal. 
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3.1 Overview 

In order to review multiple languages in an objective way, we must first develop a 

suitable mechanism to achieve this goal.  

In this chapter we first review some desirable properties of extensible languages. These 

properties are summarised and formalised into a set of criteria for rating such extensible 

languages (section 3.3). 

In addition to this qualitative assessment, we introduce a suite of benchmark test cases 

that cover the full range of these desirable properties of extensible languages (section 

3.4).  

In chapter 4, we rate other languages against both this set of criteria and their suitability 

to this benchmark suite. 
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3.2 Desirable Language Properties 

As previously quoted in the description of Template Haskell, the purpose of 

extensibility was summarised as follows: 

“The purpose of the [extensible programming language] is to allow 

programmers to compute some parts of their program rather than write them, and 

to do so seamlessly and conveniently.” [SPJ02§1, pp. 1] 

There is a double emphasis here, both on the ability to perform compile-time meta-

programming, and also to do so easily. An extensible language should be convenient 

enough to use so as to allow easy creation of small syntax additions of limited scope, 

but expressive enough to cater for the embedding of another domain-specific language 

within itself. It should support overloading of syntax in some form in order to allow 

both the overriding of the behaviour of built-in syntax and the creation of optimisations. 

“Grammar extension macros allow a programmer to make incremental changes 

to a grammar in order to extend the syntax of the base language.” [BP01§8.4,  

pp. 12] 

A well designed extensible language should also be end-user friendly, great care should 

be taken to provide constructs that ease the burden on the programmer. An extensible 

language should not create barriers to use, to this end it should balance simplicity and 

power — ideally the language would not sacrifice any power whilst maintaining an 

intuitive programming style. 

 “Making it easy for users to manipulate their own programs, and easy to 

interlace their manipulations with the compiler’s manipulations, creates a 

powerful new tool.” [SPJ02§3, pp. 3] 

In particular, macro programmers should not be unduly exposed to the underlying 

implementation of the language. Many previous systems have limitations to macro 

definitions imposed by their parser that require end users to have a large degree of 

background knowledge, and as a result: 

“… it is difficult for programmers to understand and solve static grammar 

ambiguities …” [BP01§8.4, pp. 12] 
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Weise and Crew [WC93] insist that macros arguments be abstract syntax trees not 

tokens, and specify three properties of extensible systems: 

• syntactic abstraction: the ability to define new syntactic forms; 

• non-interference: macro arguments should not suffer from the basic problems of 

C/C++ text macros (see section 2.3.3); and 

• syntactic safety: all macros expansions should result in syntactically valid 

structures. 

Most modern macro systems provide syntactic safety through use of a set of abstract 

syntax structures. Non-interference has been improved with the introduction of hygienic 

macro systems (see the following subsection). Most macro systems compromise on 

syntactic abstraction – despite this being perhaps the most desirable property of 

extensible languages. 

An extensible system should allow macros to be bundled with libraries/classes in much 

the same way as procedures/methods are. The import mechanism should allow easy use 

of such macros with convenient syntax and should shield the programmer from conflicts 

where possible. 

3.2.1 Hygiene and Referential Transparency 

Both hygiene and referential transparency are concerned with the preservation of 

meaning of variables after macro expansion. The difference between them can be hard 

to grasp, and has often led in other systems to both terms being combined into the single 

term hygiene. 

“The basic idea is that each named value reference in a macro expansion means 

the same thing as it meant at the place in the original source code from which it 

was copied into the macro expansion. This is true whether that place was in the 

macro definition or in the macro call.” [Sha96a§10] 

Hygiene ensures that no variable introduced by a macro expansion will collide with 

variables from the surrounding context. Generally, hygienic macro systems ensure that 

any variables declared within a macro expansion are given unique names. 

“… the property that variable references copied from a macro call mean the 

same thing in the expansion is called hygiene.” [Sha96a§10] 
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Referential transparency ensures that variable references within a macro definition that 

refer to the surrounding context still refer to the same variables if they are present in the 

resulting expansion. 

“… the property that variable references copied from a macro definition mean 

the same thing in the expansion is called referential transparency.” [Sha96a] 

In essence, hygiene and referential transparency concern themselves with removing 

inadvertent variable capture; a frequent problem in early macro systems. 

“A hygienic macro system guarantees that variables declared in a macro body 

cannot capture references in a macro argument, while a referentially transparent 

macro system guarantees that variables local to a macro’s call site cannot 

capture references in the macro’s body.” [Bak01§2, pp. 6] 
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3.3 Criteria for Rating Extensible Languages 

The following criteria summarise the desirable properties identified in the preceding 

sections. There are three main criteria on which extensible languages can be rated: 

power, usability, and error handling. These criteria can be further developed into sub-

criteria and this is undertaken in the next section.  

3.3.1 Power 

These criteria concern themselves with the kinds of extensions that can be supported by 

a given system. Both the power of the meta-programming constructs and the ability to 

provide syntax extensions are assessed. In fact, a language that fails to adequately 

address criterion 1.1 does not even meet our definition of extensible. 

A language that meets all of these criteria is providing the programmer with power close 

to that of a compiler writer — all of the extension types described in section 2.4 are 

possible.  

Table 3.1: Criteria for rating an Extensible Language’s Power 

Criterion Assessment 

1.1 Syntax Creation The possibility of defining any new arbitrary syntactic 

form the user wishes. 

1.2 Syntax Interrogation The ability to look at the values of literals, the 

subcomponents of expressions, etc. 

1.3 Syntax Overloading The capacity to override the behaviour of built-in 

syntax, or previously defined extensions in certain 

circumstances. 

1.4 Static Type Interrogation Interrogation of compile-time static types. This allows 

static type checking by macros for robustness, and 

allows the creation of specialisations for specific types 

(specialisations generally require syntax overloading 

also). 

1.5 Expressiveness In order of increased power, an extensible language’s 
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expressiveness can allow: 

• the creation of small syntax additions of limited 

use; 

• the embedding of another domain-specific 

language within itself; and 

• the original system could be completely 

discarded, and a whole new language could be 

built instead. 

3.3.2 Usability 
 

These criteria assess the convenience, safety, and complexity of extensions that can be 

defined within a language. Extensions, where possible, should be simple to 

conceptualise, simple to express, and not likely to produce unexpected errors. 

Of particular importance in assessing simplicity is the breadth of knowledge that is 

required of the programmer. It is desirable that programmers don’t need to know parser 

theory and should be shielded from conflicts that may arise from automatic parser 

generation. 

Table 3.2: Criteria for rating an Extensible Language’s Usability 

Criterion Assessment 

2.1 Simplicity The facilities for extensibility should be as simple as 

possible, in particular, the user should not have to 

understand parser theory. 

2.2 Brevity Where possible, macros should appear as similar to the 

code they expand to. Of particular use here are quasi-

quote and unquote (see section 4.2.2).. 

2.3 Robustness Robustness. The programmer should be shielded from 

writing macros which can unexpectedly conflict with 

the surrounding context. Of particular use here are 

referential transparency and hygiene. 
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3.3.3 Error Handling 

These criteria concern themselves with the correctness of macro expansions, and the 

system’s ability to report errors to the programmer. The language system should allow 

the macro programmer the ability to explicitly detect errors but should be capable of 

reporting any other errors in a useful fashion. 

Table 3.3: Criteria for rating an Extensible Language’s Error Handling 

Criterion Assessment 

3.1 Syntactic Correctness The system should guarantee that all macros produce 

syntactically correct forms. 

3.2 Error Detection The system should allow macro programmers to detect 

errors and report this back to the compiler. 

3.3 Error Reporting When errors occur during expansion, the user should 

be given an idea of what the error was in relation to 

their own code. Of particular importance here are 

errors that are caught by the compiler, and not the 

macro itself. Users should not, where possible, have to 

debug generated code. 

3.3.4 Previous Research 

Previous research (eg. the languages reviewed in chapter 4) has tended to focus most on 

criterion 1.2, 2.2, and 2.3, i.e. the ability to look at compile-time program structure, and 

create robust macros as easily as possible. 

A few systems have addressed criterion 1.3, and 1.4 to some success, these systems are 

concerned with adding power to more traditional systems. 

Criterion 2.1 (simplicity) tends to be either not much of an issue for many systems as 

they do not provide arbitrary syntax, or is larger ignored by those systems that provide 

limited parsers. 

With regard to criterion 1.5 (expressiveness), few systems can embed domain-specific 

languages, and fewer still can effectively discard the base language. 



CHAPTER 3: ASSESSMENT OF EXTENSIBILITY   CRITERIA FOR RATING EXTENSIBLE LANGUAGES 

 •  59  •

Some work has concentrated on error handling, but so far this has mostly been limited 

to criterion 3.1 (syntactic correctness), with some systems addressing criteria 3.2 (error 

detection). 

Surprisingly, the area of least research is criterion 1.1 (syntax creation), most systems 

that support compile-time meta-programming do so effectively, but often make no 

attempt to provide arbitrary syntax creation. As we shall see in chapter 4, there are only 

a few languages that address this issue. 

3.3.5 The Library System 
 

As discussed in section 3.2, a macro system requires a well designed import mechanism. 

Whilst none of the criteria in this section directly assess the quality of this mechanism, a 

poorly designed import mechanism would not meet some of the identified criteria. For 

example, a library system that overly restricts sharing of macros between modules 

would be assessed less favourably in terms of expressiveness, and one that provides too 

few restrictions (such as the C++ macro system) would fail to meet the robustness 

criteria. 
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3.4 Benchmark Test Cases 

In this section a suite of test cases is suggested as benchmarks for the evaluation of the 

capabilities of any extensible languages. The cases range from simple statement macros 

to whole-scale embedded languages and semantic changes. The ability to implement 

these constructs can be viewed as a ‘proof-by-implementation’ for an extensible 

language. 

For the simple constructs, explanation of how these facilities are provided in C++, Java, 

and Maya are provided. These three languages have been chosen for their syntactic and 

semantic similarity, both with each other, and with the target language of this research, 

but their techniques for supplying these constructs are fundamentally different: C++ can 

generally support these constructs via text macros, revision of the Java language is 

typically required, and Maya provides an extensible approach. 

For the complex constructs examples of previous implementation attempts are provided, 

where possible. Unfortunately, these constructs are not, or cannot be, implemented in 

most languages, so this comparison cannot be as comprehensive as would be preferred.  

The benchmark cases are summarised in Table 3.1 with further subsections providing 

full details. 

Table 3.4: Benchmark Test Cases Summary 

Benchmark Summary Description 

1 assert Run-time condition checks. 

2 foreach Improved iteration on containers. 

3 printf Type-safe formatted output. 

4 SQL Embedding of the SQL SELECT statement. 

5 Generators Integration of generator functions. 

6 Haskell Embedding of functional programming declarations 

and mixing of lazy and imperative evaluation. 
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3.4.1 Simple constructs 
 

These simple constructs are chosen to demonstrate some necessary features of any 

extensible language. 

Each of these simple constructs are new statements. Much power can be added to a 

language that would only allow the creation of new statements (for a further set of such 

constructs, and their use, see [Gra93]); as we will see in section 3.4.2 there are many 

more possibilities for language extension.  

3.4.1.1 Assertions 

Assert statements are common in many languages in some form. An assertion checks 

some condition and will cause the program to stop if this condition is not true.  

The code fragment in Code Example 3.1 would stop the program if someVariable 

was not a reference to a defined object. 

assert (someVariable != null); 

Code Example 3.1: Assertions 

In the debugger-less situation, it is desirable that a failed assertion will produce some 

sort of meaningful error message — ideally including the source file and line number 

that caused the exception. 

Assertions can be used as an informal design-by-contract facility [Sun02], allowing the 

programmer to check pre-conditions, post-conditions, and class invariants. The reasons 

for using assertions mirror those arguments for supplying program proofs, but in a more 

pragmatic fashion.  

Necessary Language Features 

This construct merely requires us to be able to produce code that will cause an 

exception to be raised at run-time. This is heavily dependent on the traditional language 

providing such facilities — but this is the case for all macros, it is not possible to 

provide facilities that are inherently impossible to provide in the base language. 

C/C++ ASSERT 

C/C++ provides this facility via pre-processor text macros [Str00§24.3.7.2], generally in 

a form that evaporates when not debugging so that release code suffers no assertion 

overhead. Review section 2.3.3.1 for further explanation. 
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Java assert 

Direct language support was provided for assertions in Java1.4 onwards [Sun02]. 

Interestingly, this is a situation where Java is almost expressive enough to handle 

assertions via the normal library mechanism. It would appear that the choice to add 

direct language support is for both uniformity and efficiency. Programmers typically 

provided their own ad-hoc implementation of assertions, either via a library or with 

direct embedding in code. Often the direct embedding approach was favoured because it 

allowed for greater efficiency as no library based solution could be implemented 

without run-time cost when assertions are “switched off”. As a result, 

“[library-based implementations of] assertions have never become a part of the 

culture among engineers using the Java programming language. Adding 

assertion support to the platform stands a good chance of rectifying this 

situation.” [Sun02] 

It could easily be argued that a vital reason that library solutions would not be uniformly 

accepted is if their efficiency performance was questionable. 

“The library approach was considered. It was, however, deemed essential that 

the runtime cost of assertions be negligible if they are disabled. In order to 

achieve this with a library, the programmer is forced to hard-code each assertion 

as an if statement.” [Sun02]  

The Java language needed to be changed to implement assertions in an efficient manner, 

this is in stark contrast to the ease of providing assertions via the C/C++ pre-processor. 

Another, albeit minor, problem with this implementation is the introduction of assert 

as a new keyword, which can break old code. 

As shown in Code Example 3.2, the Java1.5 implementation of assertions provides a 

convenient syntax that a library designer has no possibility of imitating. 

assertassertassertassert x > y; 
assertassertassertassert (x >= 0) && (x <= 100) : x   // pass x back as helper info 

Code Example 3.2: Java1.5 Assertions 

Maya assert 

As shown in Code Example 3.3, Maya’s assert statement mimics a function call in 

syntax. 
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assert(x > y); 

Code Example 3.3: Maya Assertions 

Maya provides an extra level of checking to either the C++ or Java assertion 

mechanisms by ensuring that no assertion expression may contain side-effects [Bak01] 

— although it is unclear at what level of detail these checks are made. It is unlikely that 

side-effects can be discovered within functions that make up the expression. (It is more 

probable that it is only a shallow side-effects check, masquerading as a deep check, and 

this would likely cause more problems than it would detect.) 

3.4.1.2 Iteration 

A foreach statement provides similar functionality to many uses of a traditional for 

statement, namely iterating over a list of values, but does so without making visible the 

means of iteration. This is considered to be a worthwhile abstraction in its own right, 

but mostly it simply frees the user from writing repetitive iteration code everywhere. 

Typical Java iteration code and the foreach form suggested here for the example of 

printing out a list of strings, is shown in Code Example 3.4. 

forforforfor (Iterator i = list.iterator(); i.hasNext(); ) { 
   String s = (String) i.next(); 
   System.out.println(s); 
} 

(a) Typical Java Iteration  

foreachforeachforeachforeach (String s) inininin list { System.out.println(s); } 

(b) foreach Iteration 

Code Example 3.4: Iteration 

The first argument specifies the types of objects expected to be found within the 

container (the second argument), as well a name binding for each of these that can be 

used freely within the following statement (the third argument), which may or may not 

be a block. 

This form is much more compact, more readable, and less error-prone than the hand-

written code. As an abstraction, it may be that different containers may produce 

different expansions for efficiency reasons. For example, an expansion for the Java class 

Vector could expose its internal array implementation.  
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Necessary Language Features 

The primary feature illustrated here is that of true syntax creation, this foreach does 

not attempt to mimic a function call, or the traditional for statement, it provides an 

almost directly readable statement form. What would be traditionally reserved words, 

foreach and in, do not just appear at the beginning of the statement, but as the first 

and third arguments. 

Other features required to provide this construct are that a use of foreach requires a 

variable declaration that is decoupled from the block which requires its use. A well 

designed version of this construct also requires that we be able to check the type of the 

container argument to ensure that it is indeed Iterable, this requires us to inspect the 

properties of previously defined variables. 

C++ for_each 

The C++ Standard Template Library (STL) [SL94] contains the function for_each 

[Str00, pp. 523] to provide similar support for its rather different concept of iterators — 

this is demonstrated in Code Example 3.5. 

for_each(list.begin(), list.end(), some_function); 

Code Example 3.5: C++ STL Iteration 

The major flaw in the C++ approach is that it does not operate on an arbitrary statement. 

C++ is not expressive enough to allow this, but instead requires a function pointer — 

this in-turn removes the need to specify an iteration variable. This requirement deters 

programmers from using for_each for simple loops, as the extra effort involved in 

writing a helper function outweighs the benefits gained by this abstraction. 

A macro definition is possible (as seen in section 2.3.3.1) but would require the user to 

explicitly provide the name of the hidden variable to guarantee that no name clashes 

occur with external variables. 

Java1.5 for 

As illustrated in Code Example 3.6, Java1.5 provides a similar construct in an amended 

form of the for statement [Bra02]. 

forforforfor(String s : list) { System.out.println(s); } 

Code Example 3.6: Java1.5 Iteration 
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This form is functionally equivalent to the foreach form specified in Code Example 

3.4, it specifies the type of a variable to be used within the body of the statement, and it 

specifies the list to iterate over. Java1.5 also provides an overloading that allows the use 

of arrays in place of general collections. 

Maya foreach 

Maya provides a similar construct [Bak01, BH02], but chooses to mimic method call 

syntax as shown in Code Example 3.7. 

list.foreach(String s) { System.our.println(s); } 

Code Example 3.7: Maya Iteration 

One of Maya’s foreach forms is functionally equivalent to the form proposed here as 

it operates on an iterable object, a formal parameter, and a code block. Further to the 

treatment of arrays in the Java1.5 implementation, Maya provides a specialised version 

for arrays, vectors, and iterators. 

Maya uses overloading to address fundamentally different goals: the array overloading 

provides support for a different type, the iterator overloading provides support for 

iterators that may not come from a class derived from Collection, and the vector 

overloading provides an optimised version for a type that would otherwise by handled 

by the most generalised version. 

3.4.1.3 Typesafe Formatted Output 

Many languages provide a function that yields  formatted output. The first argument to 

this function is a string (in typical use, a literal string) that specifies what normal text to 

output, and, using special placeholders, where to output variable data. These variables 

are specified as an arbitrary number of arguments following the string.  

printf("It took %f seconds to perform %d runs.", millis, runs); 

Code Example 3.8: Typesafe Formatted Output 

In Code Example 3.8, upon execution printf will convert the variable millis to a 

real number, and the variable runs to an integer at the specified positions within the 

format string. 

Typical implementations of these formatted output functions allow placeholders for 

floating-point numbers, integers, characters, and strings, and provides special formatting 
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operations on these basic types. For example it is possible to force floating-point output 

to a specified number of decimal places.  

A well-defined version performs checks to see if the correct number of arguments are 

supplied for the number of placeholders given and that the type of each of these 

arguments matches the corresponding placeholder. In the best implementations these 

checks are performed at compile-time. This is an example used in many other systems 

to demonstrate their power, see [SPJ02, Bak01]. 

Necessary Language Features 

This construct requires us to be able to take a compile-time literal string and inspect it, 

and to be able to verify that the types specified within match the types of an arbitrary 

number of specified actual parameters. Also, we must be able to create new string 

literals and fully create a new series of instructions to output the created string.  

C/C++ printf 

C/C++ provides a standard library feature printf [Pla92§12], that matches the syntax 

from the previous section. However, the C/C++ version has many flaws. For example, 

no checking is performed on the types or the arguments supplied, or even whether the 

correct number is supplied — the latter is particularly poor as too few arguments to 

printf can cause program crashes. Indeed, it is not possible within C/C++ itself to 

provide printf as defined here with these problems remedied4. C/C++ is simply not 

powerful enough to inspect the structure of a literal string at compile-time. 

As a result, some compilers provide direct support for the printf function and inspect 

the string literal and the number and types of the arguments (e.g. [Sta+04]). This again 

illustrates the tendency for compiler-writers to explicitly provide support for language 

deficiencies. 

Java1.5 printf 

In the Java1.5 specification, direct support has been added for arbitrary numbers of 

parameters (in the form of “Varargs”, [Bra02]); due to this, a function very similar to 

                                                

4 It may be possible to define a series of macros that produce a printf-like result, or use run time type 

information (RTTI) to check the types of the arguments, but the fundamental structure of the function 

would have to be altered. 
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the C++ printf is now provided, with an even more extensive selection of 

placeholders.  

Unlike the C++ printf, the Java version illustrated in Code Example 3.9 will catch all 

errors in argument number and type, but will only do so at run-time. This is clearly 

undesirable for every call of printf that uses a literal string. For such calls, it is 

possible at compile-time to check every aspect of the call, and give a guarantee of 

correctness. 

System.out.printf("%f %c %s", 45.3, 'q', new SomeObject()); 

Code Example 3.9: Java1.5 Typesafe Formatted Output 

It is worth noting that Java1.4 does not provide facilities for passing an arbitrary number 

of arguments to a function. Arbitrary length argument lists were added to Java1.5 

specifically to provide adequate support for functions such as printf. 

Maya printf 

The Maya implementation of printf [Bak01§5.1.4] provides a subset of the 

functionality of the Java1.5 version, but it forces the format string to be literal, and 

performs all checks at compile-time. 

3.4.2 Complex Constructs 
 

The constructs provided here are more sophisticated extensions than the simple 

statements from section 3.4.1, they provide facilities that range from expression 

extensions, to embedded languages and new flows of control. 

3.4.2.1 SQL Subset 

As demonstrated in section 2.3.1.2, SQL is often added to a language via the normal 

library system by using embedded SQL strings. A better solution is to provide this 

functionality via syntax extensions, such as those described in section 2.4.2.3. 

Whereas previously discussed syntax extensions required modification of a base 

language, or creation of a new language (e.g. Pro*C), an extensible language can 

provide these through its internal syntax extension mechanism.  

Rather than provide SQL in the exact same fashion as specified in its standard [ANS89], 

it is possible to provide some of the SQL statements as an extension to the normal 
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expression mechanism, so that it is possible to write examples such as Code Example 

3.10. 

Vector v = SELECTSELECTSELECTSELECT name 
           FROMFROMFROMFROM Employee 
           WHEREWHEREWHEREWHERE Salary < 30000; 
 
System.out.println("Salary is: " + SELECTSELECTSELECTSELECT salary FROMFROMFROMFROM Employee  
                                   WHEREWHEREWHEREWHERE TFN = :x); 

Code Example 3.10: Embedded SQL Subset 

This limited version of the SQL SELECT statement is a very small subset of SQL. It has 

been chosen to demonstrate the feasibility of embedding SQL in such a fashion – not to 

provide a usable SQL implementation. 

SQL Subset Grammar 

The SQL subset grammar is shown in Figure 3.1. 

subset ::= SELECTSELECTSELECTSELECT names FROMFROMFROMFROM tables [WHEREWHEREWHEREWHERE condition] 
 
names ::= name | names ,,,, name | **** 
tables ::= table | tables ,,,, table 
 
name ::= identifier | name .... identifier 
table ::= identifier 
condition ::= condition ANDANDANDAND condition | condition OROROROR condition  
              | expr | ( ( ( ( condition )))) 
expr ::= simple <<<< simple | simple >>>> simple | simple ==== simple  
simple ::= name | :::: java_expression 

Figure 3.1: SQL Subset Grammar 

Within the java_expression part it is possible to place any arbitrary Java 

expression (even another SELECT statement) but this expression cannot use terms local 

to the current SQL statement, only the surrounding context. 

Necessary Language Features 

This extension requires only an addition to the expression grammar. It requires the 

ability to specify grammars for lists, it also requires the overloading of part of Java 

expression grammar to create its own limited expression concept. 

Also it requires the use of * and : in different contexts than how they are used in Java. 

3.4.2.2 Generators 

Generators, as discussed in section 2.3.3.3, are an interesting extension as they require a 

different evaluation strategy.  
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Generators can be provided as an extension, in a much more limited form than in Icon, 

by tagging each generator with a new modifier generator, with just the addition of 

the suspend statement, and the extension of the foreach construct to iterate through 

the generated values.  

For example, this extension applied to Java, would allow code similar to that of Code 

Example 3.11. 

generator intintintint fib() { 
  intintintint x = 0; 
  intintintint y = 1; 
  while while while while (truetruetruetrue) { 
    suspendsuspendsuspendsuspend y; 
    x = x + y; 
    suspendsuspendsuspendsuspend x; 
    y = x + y; 
  } 
} 
 
... 
 
forallforallforallforall x inininin fib() { System.out.println(x); } 

Code Example 3.11: Java Generators 

Necessary Language Features 

In languages without a switch statement similar to that of C++, translating a generator’s 

body into restartable code is far from trivial, and requires sophisticated code 

manipulation techniques. This translation must take place on the entire function, 

translation of the suspend statements cannot take place until their context is known. 

The forall statement must be specialised to work with whatever the translated 

representation of the generator is. 

3.4.2.3 Haskell Subset 

There are many approaches to providing imperative forms within a pure functional 

language. A somewhat unexplored technique is to provide an embedded functional 

language within a mainstream imperative language. This approach has merits (eg. C++ 

is used in different ways to support multiple paradigms) — done well it allows for the 

best of two worlds, both languages can be used for their strengths. 

Of primary interest would be the ability to switch between imperative evaluation and 

lazy evaluation at the user’s behest. Whilst much progress has been made in precisely 

this area by the functional programming community, current solutions still provide 

significant initial barriers to use [PJ02]. 
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The general idea is to allow for functional declarations within Java code, and to provide 

a limited form of calling Haskell functions within Java expressions as demonstrated in 

Code Example 3.12. 

fun { 
  // insert haskell subset declarations here 
} 
 
... 
 
Vector v = fun(take 5 fib) 

Code Example 3.12: Embedded Haskell Subset 

In the following subsections we describe a limited Haskell subset that nonetheless is 

quite expressive. This subset is designed around simplicity over functionality. Features 

that would potentially add a large implementation cost are avoided wherever possible. 

The aim is to demonstrate the feasibility of such an embedding, not to provide a full 

implementation of Haskell. 

Type System 

For simplicity, the subset handles only three types, int, * -> *, and [*] where * 

can be any type. Whilst this is significantly restricted from full Haskell, it is more 

expressive than it appears at first glance. The many occurrences of * mean that we can 

build up quite a complicated set of types. For example, using this type system, with an 

otherwise full Haskell implementation we could still define the function map in the 

standard way as shown in Code Example 3.13. 

map f [] = [] 
map f (x:xs) = f x : map f xs 

Code Example 3.13: map Function 

This definition in fact, is no different to a definition found in standard Haskell, despite 

the fact that it is technically defined over a much simpler range of types.  

This is perhaps cheating a little, as we shall see in the following subsections, since the 

basic primitives of this subset do not provide for declarations with functions or for 

pattern matching, this is quite simple syntactic sugar than can be added later, it is simply 

unnecessary in this reduced definition. 
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Type Inference 

Type inference, while a nice feature of Haskell, and by no means unimplementable 

within language extensions, is not part of the subset for simplicity. Their remains no 

barrier for it to be added at a later date.  

All declarations are required to explicitly specify their type. As a result the previous 

definition of map must become as shown in Code Example 3.14. 

map :: ((A -> B) -> [A]) -> [B] 
map f [] = [] 
map f (x:xs) = f x : map f xs 

Code Example 3.14: map Function with Type Signature 

The type signature is still checked against the type of all arguments, so strong-typing is 

not lost. 

Simple Operations 

The subset contains parameter-less declarations, lambda functions, if-then-else 

expressions, and let expressions. 

Arithmetic Operators 

Operations provided on our single basic type are merely the four basic arithmetic 

operations: +, -, *, and /. With the division operations discarding its remainder. 

List Operations 

The subset provides only : and [] for list creation, everything else is syntactic sugar 

and can be added later. Also provided are the list inspector functions head and tail, 

which respectively provide the first element of a list and the remainder. 

Pattern Matching 

Pattern matching is not in the subset, but again is merely syntactic sugar, albeit an 

incredibly concise one. For example, the map example can be rewritten (in an automatic 

way similar to that in [PJ99]) as in Code Example 3.15.  

Notice that it is clear that this code could be simplified (and the final error case 

removed), but this would actually be considered an optimisation step, and not part of the 

automatic conversion from a pattern-matching form. 
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map :: ((A -> B) -> [A]) -> [B] 
map f xs' =   
   ifififif (xs' == []) thenthenthenthen  
      []  
   else else else else     
      ifififif (xs' != []) thenthenthenthen letletletlet x = head xs' inininin letletletlet xs = tail xs' inininin 
         f x : map f xs 
      elseelseelseelse    
         error                -- no case satisfies 

Code Example 3.15: map Function Without Pattern Matching 

Declarations 

In this subset, declarations take the form of an identifier being held equivalent to a 

value, the value of course can be arbitrarily complex. This does however disallow 

parameters, so our somewhat worn map example now becomes as in Code Example 

3.16. 

map :: ((A -> B) -> [A]) -> [B] 
map = \f -> xs' ->   
   ifififif (xs' == []) thenthenthenthen  
      []  
   else else else else     
      ifififif (xs' != []) thenthenthenthen letletletlet x = head xs' inininin letletletlet xs = tail xs' inininin 
         f x : map f xs 
      elseelseelseelse    
         error                -- no case satisfies  

Code Example 3.16 map Function Using Lambda Functions 

All functions must be defined before they can be used, this is restriction added only for 

simplicity, it does not indicate a failure of power in the macro language. 

Standard Functions 

No standard functions are part of the subset definition, it is part of the proof-by- 

implementation to define functions such as map, take, foldr, etc. in these specified 

primitives. 

Other “Missing” Features 

Perhaps the most seemingly restrictive of the missing features is the lack of a Boolean 

type. Use of the conditional if expression functions as normal, but use of Boolean 

expressions is restricted to this situation alone. However all typical Boolean usages can 

be simulated using integers if required; although this clearly is not a desirable 

permanent solution it is appropriate for this proof-of-concept implementation. 

The following are relatively straightforward additions via expansion to the provided 

standard constructs: 
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• list constructions; 

• tuples; and 

• list comprehensions. 

A little more extravagant are: 

• type classes; and 

• monads, and do notation. 

See [PJ87] for an explanation of how to express the majority of Haskell in more 

primitive Haskell constructs. An example of this is the simple list comprehension in 

Code Example 3.17 (similar to [PJ99§3.11]). 

squares xs = [x * x | x <- xs] 
squares xs = map (\x -> x * x) xs 

Code Example 3.17: List Comprehension Decomposition 

The general case for list comprehensions is a little more (but not overly) involved.  

Haskell Subset Grammar 

The Haskell subset grammar is specified in Figure 3.2. 

subset = (declaration)+ 
 
declaration ::= signature definition 
signature ::= identifier :::::::: type 
definition ::= identifier ==== fun_expr 
 
type ::= intintintint | [[[[    type ]]]] | ((((    type ---->>>> type ))))    | AAAA | ... | ZZZZ 
 
fun_expr ::= expr | list | fun 
 
fun ::= expr expr | fun expr 
list ::= [] | expr : fun_expr 
expr ::= ifififif bExpr thenthenthenthen fun_expr elseelseelseelse fun_expr 
       | \\\\ identifier ---->>>> fun_expr 
       | letletletlet identifier = fun_expr inininin fun_expr 
       | fun_expr operator fun_expr             // no precedences 
       | (((( fun_expr )))) 
       | identifier 
       | literal 
 
literal ::= digits+ 
 
operator ::= ++++ | ---- | **** | //// 
 
bExpr ::= expr bOp expr  
        | bExpr lOp bExpr 
bOp ::= >>>> | <<<< | ======== | !=!=!=!= 
lOp ::= &&&&&&&& | ||||||||       

Figure 3.2: Haskell Subset Grammar 

The Java embedding is specified in Figure 3.3. 
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expression ::= ... | funfunfunfun (((( fun_expr )))) 
class_body_declaration ::= ... | funfunfunfun {{{{ subset }}}} 

Figure 3.3: Haskell Embedding Grammar 

Lazy Evaluation 

Once the a particular group of definitions has been recognised as belonging to this 

subset, an implementation is free to produce compiled code, or to use interpretation in 

order to simulate lazy evaluation. A key reason to implement a Haskell subset is to 

demonstrate mixed imperative and lazy evaluation. 

Necessary Language Features 

Of all the extensions in these test cases this  extension requires the most power to 

implement. The subset grammar is complex and overlaps quite heavily with other Java 

code, for example, any parser has a fair bit of work to do, in order to differentiate 

between a Haskell expression and a Java expression. 

The most powerful implementation of this subset would also allow for files that 

contained nothing but code written in the subset. This would demonstrate the capacity 

of an extensible language to completely rewrite the base language. 
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4.1 Overview 

Now that a basis for reviewing the successfulness of a given extensible language has 

been established, in this section we examine six successful meta-programming 

languages: Lisp and its variants, Template Haskell, MS2,  JTS, JSE, OpenJava, and 

Maya. 

• Lisp, and also Scheme, (section 4.2) macros are so successful and so widely 

used by that programming community that all research into creating new 

extensible languages is essentially trying to reproduce this success. Lisp/Scheme 

has the honour of being both the first implementer of syntax macros and also the 

most successful. 

• Template Haskell (section 4.3) has shown that it is possible to nicely define Lisp 

style macros within a pure functional language, it gathers a large variety of 

previous work and reproduces it in one coherent system. 

• MS
2
, (section 4.4) is an extension of the C programming language and provides 

strong facilities for producing concise macros. The major drawback of this 

system is its overly symbolic syntax which can be blamed on its C heritage. 

• We review multiple Java-based systems: the Jakarta Tool Suite (JTS), the Java 

Syntax Extender (JSE), OpenJava, and Maya. These systems vary wildly in their 

suitability for comparison. Of these, Maya (section 4.8) provides the most 

powerful macro system. It improves upon previous Java extensibility research 

by removing restrictions on the placement of macros without sacrificing power. 

As the best implementation in the target language of this work, Maya is a natural 

choice for qualitative comparison (see section 9.4). 

Most of these three systems share certain common aspects: 

• they provide quasi-quote, unquote, automatic hygiene, and referential 

transparency; 

• each provide an abstract syntax written in the target language itself, where the 

easy to use quasi-quotation mechanism fails, it is always possible to build 

arbitrary programs through this mechanism; and 

• they are all implemented in well-established languages. 
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Where they differ is more interesting: 

• they each provide different limitations on where macros can appear within code; 

• each allows a different level of interaction between macros; and 

• some provide no surrounding context information, whereas others provide the 

entire environment. 

Also interesting is that most of these languages do not adequately meet our 

requirements for extensibility, namely the creation of arbitrary syntax. Even Lisp 

macros must conform to Lisp’s own rigid prefix-notation syntax restraints. 

This chapter examines only the most relevant systems, many others are not examined 

(see Camlp4 [Rau03], MacroML [GST01], EPP [Ich99], JPP [Sha96b], <bigwig> 

[BS02], MPC++ [IHSM+96], ELIDE [BCVM02], and [CMA94]), but all of these have 

been previously reviewed in [GH03], [BP01], [BH02], [Bak01], and [BLS98]). 

These systems have been chosen both to provide examples of meta-programming in 

various base languages, and also to look at previous approaches at providing meta-

programming in Java. All of these systems are examined against the criteria for 

extensibility from section 3.3. 
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4.2 Lisp / Scheme  

The Lisp (an acronym for list processing) programming language5 [Mcc60, Ste90] 

introduced the concept of meta-programming since its inception. Modern Lisp macro 

systems (especially Scheme [Dyb03]) provide facilities that bear little resemblance to 

their origins, although they do still support the original style of programming. This brief 

review looks at the development of the most commonly used Lisp macro facilities and 

does not attempt to provide a comprehensive examination of all available Lisp variants 

and their facilities. To this end we examine only Common Lisp (hereto referred to 

merely as Lisp) and Scheme. 

Macros are identified in Scheme as a solution to a variety of problems: 

“Syntactic extensions, or macros, are used to simplify and regularize repeated 

patterns in a program, to introduce syntactic forms with new evaluation rules, 

and to perform transformations that help make programs more efficient.” 

[Dyb03§8] 

These uses are not new, as Lisp macros have existed for decades [SPJ02]. There would 

be few Lisp programmers who are unaware of the power that macros provide, and many 

apparent language extensions are implemented via macros. Macros are taken so 

seriously in fact, that when undertaking a new project, the standard philosophy of the 

Lisp programmer is to first modify the language to suit the needs of the project: 

“… modern Scheme systems support elaborate towers of language extensions 

based entirely on macros.” [SPJ02§10.2, pp. 12] 

Whilst the techniques behind Lisp macros have evolved and been improved with time, 

they still rely on the fact that every Lisp program is also a Lisp S-expression [Mcc60]. 

Other macro systems that provide an elaborate set of datatypes to provide an abstract 

syntax for meta-programming are mimicking this ability. 

Within the Lisp community there is no general consensus as to which dialect provides 

the better macro system. There are far too many dialects to give them all full treatment 

                                                

5 Despite its origin as a single programming language, in more recent usage, the term Lisp has perhaps 

come to describe a family of related languages. 
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in this section. Common Lisp is chosen to demonstrate early development of Lisp (even 

though it is a mature language itself) and Scheme is chosen to demonstrate the 

development of more powerful features. 

Lisp was definitely the pioneering language for meta-programming and each of the 

systems in the remainder of this chapter are trying to reproduce the power and flexibility 

of Lisp macro constructs.  

4.2.1 Power 
 

At the heart of Lisp’s power is the S-expression. Its use eventually lead to the 

development of macros: meta-programs that could write other programs.  

4.2.1.1 S-expressions 

Every Lisp program is also a Lisp S-expression. An S-expression is a simple tree 

datatype. For example, consider the Lisp program fragment in Code Example 4.1. First 

note that all Lisp functions are written in prefix notation. This program text is converted 

into an equivalent S-expression that represents it in a tree form as shown in Figure 4.1. 

 (+ 1 2 (somefunc 42 (- x y)) 3) 

Code Example 4.1: Simple Lisp Program Fragment 

 

Figure 4.1: Lisp S-expression for Code Example 4.1 

defundefundefundefun func () '(+ 1 2 (somefunc 42 (- x y)) 3) 

Code Example 4.2: Lisp Quotation Expression for Code Example 4.1 

If we wished to write a function to produce this program we could write the function in 

Code Example 4.2, where the quote expression ensures that we do not calculate any part 

of the expression. This quote is just a shorthand, Lisp allows us to construct an S-

expression manually using its list constructor primitives. 

+ 1 2 3 

somefunc 42 

–  x y 
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Lisp provides run-time meta-programming support via the eval function, which will 

evaluate any S-expression at run-time. 

Lisp functions can take an arbitrary number of arguments and each argument can be an 

arbitrary tree. The function is free to interpret its arguments in any way. Through this 

mechanism it is possible to provide new syntax. For example, consider the code 

fragment in Code Example 4.3.  

(infix_exp 5 * 9 - 12 / 4) 

Code Example 4.3: Lisp Simulated Infix Expressions 

We could define infix_exp to take an arbitrary number of parameters and then parse 

this ourselves to provide infix notation with precedences. This function is far from 

perfect and we could foil it by using parentheses as anything within them would be 

evaluated as a lisp expression before the function call. More advanced macro definitions 

can improve on this situation. 

4.2.1.2 Macros: defmacro 

Consider the two definitions in Code Example 4.4 that take two arguments and only 

return the first. 

(defundefundefundefun just-first-function (x y) x) 
(defmacrodefmacrodefmacrodefmacro just-first-macro (x y) x) 

Code Example 4.4: defmacro 

One major difference between these two definitions is what happens upon calling. The 

function version will evaluate all of its arguments, whereas the macro version will pass 

them through as S-expressions.  

A macro defined in this way should return a replacement S-expression that takes the 

place of the original macro call.  

Both brevity and implementation are improved by the use of defmacro: the 

programmer is alleviated from explicitly specifying which arguments should be S-

expressions and explicit use of eval; while the removal of eval allows for the 

possibility of compile-time evaluation (although macros could still be implemented as a 

run-time facility). 
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4.2.1.3 Macros: define-syntax 

Scheme provides a define-syntax macro that is similar to defmacro. Coupled 

with the use of a syntax-rules macro for pattern-matching with pattern translation 

and the result is a powerful, yet simple to use, macro system.  

Whilst the code in Code Example 4.5 is more verbose than the previous definition of 

this macro in Code Example 4.4, this is only due to its simplistic nature. Understanding 

of hygiene (covered in the following subsections) is necessary to comprehend why 

define-syntax is an improvement upon defmacro.  

(definedefinedefinedefine----syntaxsyntaxsyntaxsyntax just-first 
  (syntaxsyntaxsyntaxsyntax----rulesrulesrulesrules () 
    ((just-first x y) 
      x))) 

Code Example 4.5: define-syntax 

The macro syntax-rules is the most high-level facility provided, and also the least 

powerful. It provides the user with an environment free from the possibility of 

unexpected errors but at the cost of expressiveness. There are other facilities for macro 

definition, some with only limited applicability, others with increased power. 

“The language of patterns and templates recognized by syntax-rules… is 

actually a special case of Scheme macros.” [HM04§5.4, pp. 21] 

The general form of the define-syntax macro is shown in Code Example 4.6. 

(definedefinedefinedefine----syntaxsyntaxsyntaxsyntax some-name 
  (lambdalambdalambdalambda (stx) 
    ... )) 

Code Example 4.6: define-syntax General Form 

The argument to the lambda function is similar to a Lisp S-expression but with added 

information about variables and scope. Full macros are written through the use of 

another macro called syntax-case which allows code generation in a more general 

form than syntax-rules: 

“The syntax-case facility allows the construction of macros with pattern 

matching, as with syntax-rules… but with arbitrary expressions in place of 

templates for the result expressions.” [HM04§5.4, pp. 21] 

This macro allows for pattern matching like syntax-rules, but with arbitrary 

expressions instead of pattern templates for the resultant code. As a result, it is possible 
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to allow macros to control their expansion based on properties of their arguments, in 

much the same way as defmacro style code. Again, the major improvement is hidden 

from us until we examine usability and error handling. 

4.2.1.4 Syntax Creation 

As previously discussed, Lisp programs are S-expressions. Lisp macros must be defined 

in a prefix form, but can define new syntax within their arguments — syntax that does 

not fit the S-expression style would need to be manually parsed. 

So, Lisp is not capable of true syntax creation. For example, it is not possible to create a 

macro that would remove the need for large amounts of closing parentheses that affect 

most Lisp programs. In fact complex macros tend to add to this problem rather than 

alleviate it. A system capable of true syntax creation could specify many operations that 

would not require parentheses at all. 

4.2.2 Usability 

Lisp programmers found they were producing cumbersome code when meta-

programming, so the quasi-quote and unquote operators were developed [Ste90]. 

Quasi-quote provides a similar function to the quote operator introduced in section 

4.2.1.1, but allows for the user to escape the quote with the comma operator (generally 

called unquoting).  

Consider the code fragment in Code Example 4.7. This macro will create an S-

expression that adds its argument to one. The necessity of unquoting may not be 

immediately apparent; if the unquoting was not present however, the quasi-quotation 

would include the token x, rather than the value bound to the variable x. 

 Code Example 4.8 demonstrates that the classic variable swap example suffers from the 

same problems in Lisp as it does in C++ macros. 

 (defmacrodefmacrodefmacrodefmacro 1+ (x) (`(+ 1 ,x))) 

Code Example 4.7: Quasi-quote and Unquote 

(defmacrodefmacrodefmacrodefmacro swap (x y) 
  `(letletletlet ((temp ,x)) 
     (setfsetfsetfsetf ,x ,y) 
     (setfsetfsetfsetf ,y temp)))) 

Code Example 4.8: swap Function 
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At first glance this macro definition seems straightforward, but it will fail if an attempt 

is made to use it with a variable named temp.  

It was within the Lisp domain that name capture problems first appeared as a major 

drawback [Ste90], rather than a minor annoyance, and over the years Lisp systems 

produced a variety of solutions. These will now be expanded. 

4.2.2.1 Name Capture: gensym 

Name capture was initially handled by requiring the programmer to manually create 

unique names through the gensym function [Dyb03]. Whilst this is a successful 

solution, it requires the programmer to bear the burden, and program readability 

inevitably suffers. 

Code Example 4.9 corrects the swap macro from the previous subsection. 

(defmacrodefmacrodefmacrodefmacro swap (x y) 
  (letletletlet ((temp (gensym))) 
    `(letletletlet ((,temp ,x)) 
       (setfsetfsetfsetf ,x ,y) 
       (setfsetfsetfsetf ,y ,temp)))) 

Code Example 4.9: Improved swap Function 

This example is only slightly less readable than before using gensym, but the amount 

of unquoting has increased and this becomes more of a problem as code complexity 

increases. 

4.2.2.2 Name Capture: define-syntax Revisited 

Name capture problems eventually lead to the development of hygiene: 

“Early designs suffered badly from the name-capture problem, but this problem 

was solved by the evolution of “hygienic” macros.” [SPJ02] 

Code Example 4.10 contains a syntax-rules based implementation of swap that 

demonstrates the use of hygienic macros. 

(definedefinedefinedefine----syntaxsyntaxsyntaxsyntax swap 
  (syntaxsyntaxsyntaxsyntax----rulesrulesrulesrules () 
    ((swap x y) 
      (letetetet ((tmp x)) 
        (set!set!set!set! x y) 
        (set!set!set!set! y tmp))))) 

Code Example 4.10: Hygienic swap Function 
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In this example set! is equivalent to setf from earlier examples — Scheme has a 

different naming convention from standard Lisp (side-effect operators have an 

exclamation mark). This code also does not use quasi-quotation and requires none of the 

unquoting that is required in the standard Lisp version. 

More importantly, the introduction of the variable tmp is guaranteed not to cause name 

conflicts with the surrounding context. Scheme tracks variable declarations within 

macros and automatically renames any created variables. 

Use of the more powerful syntax-case macro requires us to use syntax quasi-

quotation, but again quoted expressions create S-expression with added contextual 

information. A similar syntax is provided for these syntax-quotations and the rules of 

hygiene still apply however, as demonstrated in Code Example 4.11. 

(definedefinedefinedefine----syntaxsyntaxsyntaxsyntax swap 
  (lambdalambdalambdalambda (stx) 
    (syntaxsyntaxsyntaxsyntax----casecasecasecase stx () 
      [(_ x y) 
        #'(let let let let ([tmp x]) 
          (set! set! set! set! x y) 
          (set! set! set! set! y tmp))]))) 

Code Example 4.11: swap Function using syntax-case 

Again, with even this simple example the code seems overly verbose, but the pattern-

matching of macro arguments is a powerful feature for more complicated macros. 

4.2.3 Error Handling 

Error handling may be handled differently amongst Lisp dialects, but Scheme at least 

has quite extensive facilities. Here we see the major purpose of retaining contextual 

information alongside S-expressions: 

“[it] is essential in allowing… language tools to trace errors and binding 

relationships back to the original source location in the user’s code where a 

macro is invoked.” [HM04§5.4, pp. 21] 

The extra power of the syntax-case macro allows us to make decisions based on the 

compile-time structure of arguments, and provide explicit error control. 

In Code Example 4.12, the purpose of the macro raise-syntax-error is clear, 

and its arguments contain the macro that caused the error, a helpful message and the 
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syntax object that contains the contextual information. This lexical information is used 

by the error macro to highlight the original source of the error [Dyb03]. 

definedefinedefinedefine----syntaxsyntaxsyntaxsyntax swap 
  (lambdalambdalambdalambda (stx) 
    (syntaxsyntaxsyntaxsyntax----casecasecasecase stx () 
      [(_ x y)  
        (if if if if (and (identifier? #'x) (identifier? #'y)) 
          #'(let let let let ([tmp x]) 
            (set! set! set! set! x y) 
            (set! set! set! set! y tmp)) 
          (raiseraiseraiseraise----syntaxsyntaxsyntaxsyntax----error error error error 'swap "needs identifiers" stx))]))))) 

Code Example 4.12: swap Function with Error Handling 

4.2.4 Applicability to Benchmarks 
 

Many of the examples in the benchmark test suite are hindered by the inability of Lisp 

to truly create new syntax, but for the sake of the simple macros we shall ignore 

requirements of extraneous bracketing forms in macro usage. 

Table 4.1: Lisp Applicability to Benchmark Test Suite 

Benchmark Summary Description 

1 assert Simple definition. 

2 foreach Simple definition. Proposed syntax can be matched 

exactly. 

3 printf Simple definition. Can even specialise on the static-

type of the string argument, generating code when it is 

static and calling a run-time function otherwise. 

4 SQL Possible to provide SQL support, but matching SQL 

syntax exactly would require manual parsing of an 

essentially flat S-expression. 

5 Generators Generators can be provided. 

6 Haskell While strictly speaking embedded Haskell would be 

possible, it would again rely heavily on manual 

parsing. 
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4.2.5 Extensibility Criteria Assessment 

Table 4.2: Lisp Extensibility Criteria Assessment 

Criterion Assessment 

1.1 Syntax Creation Arbitrary syntax creation is not provided for. All 

macros are defined with standard Lisp prefix notation 

— in general they are indistinguishable from normal 

Lisp functions.  

S-expressions still drive all macro expansion which 

causes macros to have strict syntactic limitations. The 

simplest example of this limitation is the inability to 

define macros that alleviate (or lessen) the Lisp closing 

parentheses problem. 

1.2 Syntax Interrogation Interrogation is provided through S-expressions. This 

is an extremely powerful and flexible system. 

1.3 Syntax Overloading Partially supported.  

Although syntax-rules does allow for keywords 

in the latter part of a definition to drive different 

expansions, overloadings cannot be provided to replace 

previous or built-in definitions. 

1.4 Static Type Interrogation Supported. 

1.5 Expressiveness Within the confines of Lisp syntax, Lisp macros can be 

used for almost any purpose. However, The 

programmer cannot embed another language within 

Lisp with correct syntax. 

2.1 Simplicity Lisp macros are close to Lisp code, which is simple in 

itself. 

2.2 Brevity Lisp provides quasi-quotation and unquoting. 

2.3 Robustness Depending on implementation, users may be burdened 

with explicit removal of name clashes.  
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3.1 Syntactic Correctness Macros are guaranteed to produce S-expressions, 

which, while syntactically correct, may not be 

meaningful Lisp code.  

3.2 Error Detection Programmers can specify explicit checks and raise 

errors based on the results. 

3.3 Error Reporting Scheme, at least, provides sophisticated targeting of 

error messages with facilities provided to specify the 

exact original source of errors. 
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4.3 Template Haskell 

Extending Haskell to support extensibility is in some ways easier than it is in 

Lisp/Scheme, due to well-known benefits of pure functional languages: 

“Scheme admits side effects, which complicates everything… Haskell is free of 

these complications.” [SPJ02§10.2, pp. 13] 

Template Haskell [SPJ02] provides the ability to execute Haskell functions at compile-

time, called splicing, by use of the operator $ and the function splice (explained 

further in section 4.3.2.1). 

Meta-programs are constructed in various ways, either through algebraic datatypes via a 

monad, a set of abstractions built on top of this monad, or using quasi-quotation. These 

three techniques each provide a simplicity/expressiveness trade-off; most programs will 

be written in quasi-quotation, but for those that cannot be expressed in this fashion, the 

programmer will need to fall back to the other techniques. 

Limited facilities are provided for the inspection of the compiler’s internal structures via 

reification (explained further in section 4.3.1.1). 

4.3.1 Power 

Template Haskell provides a set of Haskell algebraic datatypes that represent an abstract 

syntax. Programmers are free to write normal Haskell functions that manipulate these 

datatypes directly, either constructing new syntax, or deconstructing existing syntax 

using Haskell’s powerful pattern matching techniques. 

Calling functions at compile time (splicing) requires explicit annotation (covered more 

in section 4.3.2), and can only appear where an expression or a declaration group would 

be expected. 

“A meta-program can produce a group of declarations, including data type, 

class, or instance declarations, as well as an expression.” [SPJ02§2, pp. 2] 

In many languages this would be unnecessarily restrictive, but in Haskell this covers the 

majority of possible uses of meta-programming. 
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4.3.1.1 Reification 

Haskell provides compile-time information through its reification mechanism: 

“Reification involves making the internal representation of [compiler objects] 

available as a data structure to compile-time computations.” [SPJ02§4, pp. 4] 

This mechanism provides facilities for querying the structure of declarations (both 

datatypes and type classes), the type of declarations, the fixity of operators, and the line 

number of the statement within the source file. 

It is an open question as to which situations reification can be applied. The design of 

Template Haskell does not specify if it is possible to query the type of variables within 

expressions, definitions within where clauses etc.: 

 “It is not yet clear how much reification can or should be allowed. For example, 

it might be useful to restrict the use of reifyDecl to type constructors, 

classes, or variables (e.g. functions) declared at the top level in the current 

module, or perhaps to just type constructors declared in data declarations in 

imported modules.” [SPJ02§8.1, pp. 9] 

4.3.2 Usability 
 

In addition to the basic algebraic datatypes defined for syntax creation, Template 

Haskell provides a quotation monad, that encapsulates meta-programming features such 

as unique name generation, error reporting and the program reification discussed in the 

previous subsection. A library of functions is provided within this monadic framework 

as an easy-to-use interface for the programmer. 

Within the monadic library, a quasi-quote mechanism is provided. Inside quasi-quote 

expressions, Template Haskell performs static scoping and type-checking. It is only 

when using quasi-quotation that hygiene and referential transparency are assured. 

The programmer is free to mix these meta-programming styles, choosing whichever is 

the most appropriate for each component of a particular computation. See section 

4.3.4.2 for an example that mixes both quasi-quotation and monadic library functions. 
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4.3.2.1 Splicing 

In Template Haskell the programmer has a little more work to do when actually using 

macros than in most systems; each macro call must be explicitly annotated to let the 

compiler know that the programmer wishes to execute said code at compile-time: 

“C++ template and Scheme macros have a lighter-weight syntax for calling a 

macro than we do; indeed the programmer may not need to be aware that a 

macro is involved at all.” [SPJ02§12, pp. 14] 

Macro expansion must be prefixed by the splice operator $ or the splice function. 

For example, in order to use Template Haskell’s version of printf, code similar to 

that of Code Example 4.13(a) must be written. Here the printf function takes only a 

literal string as its argument, and produces a function that requires two arguments, 

(loosely) the first being a number and the second a string. So the result of macro 

expansion would be something akin to Code Example 4.13(b). 

$(printf "%d %s") 42 "foo" 

(a) Explicit Use of the Splice Operator for printf Usage  

(\x -> \y -> show x ++ " " ++ y) 42 "foo" 

(b) printf Macro Expansion 

Code Example 4.13: Template Haskell printf Expansion  

The type checking is actually delayed until the macro is expanded, and utilises the 

normal Haskell type-checking mechanism (see section 4.3.3 for more details). 

The operator $ can appear anywhere that an expression is expected, and the result of 

applying it must always produce an expression. Since almost everything in Haskell is an 

expression, this operator is surprisingly versatile. 

The function splice allows the programmer to write meta-programs that produce a 

group of declarations. This allows meta-programs to create type classes, data 

declaration, and functions. 

At times, explicitly alerting the programmer that a macro call is involved can be viewed 

as advantageous, but in general this requires the programmer to understand more than 

they should need to. The Template Haskell design requires this because firstly: 
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“… functions that execute at compile-time are written in the same language as 

functions that execute at run-time, namely Haskell.” [SPJ02§3, pp. 3] 

Secondly, absolutely no distinction is made between compile-time functions and run-

time functions, indeed, the programmer can use template functions at run-time if they 

wish. 

4.3.2.2 Quasi-quotation 

In Template Haskell quasi-quotation appears within [| … |] brackets. Unquoting is 

analogous to splice. Code Example 4.14 demonstrates quasi-quotation, splicing, and 

reification. 

assert :: Expr         -- Bool -> a -> a  
assert = [| \b r -> ifififif b thenthenthenthen r elseelseelseelse errorerrorerrorerror ("Assert fail at "++$reifyLocn) |]  

Code Example 4.14: Template Haskell Assertions 

Quasi-quotations cannot appear within other quasi-quotations. For example, the form in 

Code Example 4.15 is illegal. 

[| f [| 3 |] |] 

Code Example 4.15: Illegal Template Haskell Quasi-quotation 

However it is possible to use splice within a quasi-quote, and within that splice quasi-

quotation may be used again. Inside quasi-quotations the splice operator functions 

similar to unquote. See sections 4.3.4.1 and 4.3.4.2 for examples of interleaving of 

quasi-quotation and splicing. 

4.3.3 Error Handling 
 

The algebraic datatypes, the syntax creation monad, the monadic library, and the quasi-

quotation mechanism all produce syntactically correct programs. In addition to this, it is 

possible for the programmer to explicitly detect some errors, such as inappropriate use 

of a meta-program. This support is provided via the monad: a meta-program can fail, 

allowing the compiler to catch and report such failures along with their location. 

Further to this explicit error checking, Template Haskell interleaves execution of 

compile-time functions and type-checking. This ensures early detection of type errors 

and provides the user with good feedback on their location. 
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As previously mentioned, it is unclear as to the level of reification provided for static 

type checking, and hence it is unclear to the extent of explicit checking the programmer 

can provide. 

4.3.4 Worked Examples 

The following two worked examples demonstrate: 

• a full definition of a macro and its support functions within a module, and usage 

of this module; and 

• a macro that mixes both quasi-quotation and monadic library functions. 

4.3.4.1 Type-safe Formatted Output 

Code Example 4.16 is drawn from both [SPJ02§2] and [GHC02§7.6] and provides a 

printf function similar to that described in section 3.4.1.3 but with marginally 

different syntax. It takes a single argument, that of the literal string and creates a 

function that requires arguments as specified by the placeholders in this string. For 

example, as shown in Code Example 4.13, the string “%d %s” produces a formatting 

function that requires a number then a string as its two arguments. 

{- Printf.hs -} 
module Printf where 
 
-- Import some Template Haskell syntax 
import Language.Haskell.THSyntax 
 
-- Describe a format string 
data Format = D | S | L String 
 
-- Parse a (simple) format string. 
parse :: String -> [Format] 
-- implementation unwieldy and hence not provided 
 
-- Generate Haskell code from parsed representation of a format string. 
gen :: [Format] -> Expr -> Expr 
gen [] x = x  
gen (D : xs) x = [| \n-> $(gen xs [| $x++show n |]) |]  
gen (S : xs) x = [| \s-> $(gen xs [| $x++s |]) |]  
gen (L s : xs) x = gen xs [| $x ++ $(lift s) |]  
 
-- Generate the Haskell code for the splice from an input format string. 
printf :: String -> Expr 
printf s  = gen (parse s) [| "" |] 

Code Example 4.16: Template Haskell printf Definition 

Code Example 4.16 demonstrates a Template Haskell implementation of printf. The 

function parse takes the format string and breaks it into a list of format specifiers. The 

function gen is responsible for the construction of the output function; printf merely 
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uses this with a suitable initial value. This latter function builds an expression from a 

list of format specifiers. 

Here we see for the first time interleaving of quasi-quotation and splicing. Splicing 

operates as one would intuitively expect in this situation, and gen behaves as a would a 

standard Haskell function [SPJ02]. 

On the last line of the definition of gen, the function lift turns its string argument 

into an expression that would evaluate into the original string — lift is actually 

provided via a type class and hence works on a variety of types. This is an example of 

the kind of function provided by the monadic library (see section 4.3.4.2 for an example 

using more of these functions). 

Of particular interest here is the fact that the definitions of meta-programs differ only in 

that they use quasi-quote and splicing. In effect, these are shorthands, and this file could 

contain purely standard Haskell code. Even the type Expr is a standard monadic 

wrapper for the algebraic type Exp.  

The cost of this simplicity is that expansions must be explicitly spliced in order to 

ensure compile-time execution. Code Example 4.17 shows how to import and use the 

printf function. 

{- Main.hs -} 
modulemodulemodulemodule Main where 
 
-- Import our template "printf" 
importimportimportimport Printf ( printf ) 
 
-- The splice operator $ takes the Haskell source code generated at  
-- compile-time by "printf" and splices it into the argument of "putStrLn". 
main = putStrLn ( $(printf "Hello %d green %s") 42 "people") 

Code Example 4.17: Template Haskell printf Usage 

The qualified import statement restricts the import to just the printf function. Notice 

the explicit use of the splice operator to expand the printf form at compile-time. The 

expansion will produce a function that takes two arguments (a number and a string) and 

will produce a string. 

4.3.4.2 Selection From an N-tuple 

Code Example 4.18 demonstrates the use of both quasi-quotation and monadic library 

functions. 
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sel :: Int -> Int -> Expr  
sel i n = [| \ x -> $(caseE [| x |] [alt]) |]  
  where  
    alt = simpleM pat rhs  
    pat = ptup (map pvar as)  
    rhs = var (as !! (i-1))  
    as = [ "a"++show j | j <- [1..n] ]  

Code Example 4.18: Template Haskell N-tuple Selection 

This example allows the selection of an indexed member of an n-tuple — something 

impossible to do in ordinary Haskell. For example, the expression (sel 2 3) 

translates into a lambda function as shown in Code Example 4.19. 

(sel 2 3)  
→ \x -> case x of (a1, a2, a3) -> a2 

Code Example 4.19: Template N-tuple Selection Expansion 

The variable as contains a list of strings to be used as variables. The variable rhs 

contains the selected variable to extract from the tuple. The variable pat constructs a 

pattern which is a tuple containing all of the strings from as. The variable alt 

specifies a list of alternatives (always containing a single alternative) for a case 

expression. The monadic library functions caseE, simpleM, var, ptup, and pvar 

all aid in simplifying this process. These functions create a case expression, a simple 

pattern matching expression, a simple variable expression, a tuple pattern, and a simple 

variable pattern.  

Quasi-quotation in Template Haskell is not powerful enough to directly produce 

arbitrary tuples, and as such the programmer must rely on the previous layer. As a 

result, monadic library code is much more verbose and requires more effort in 

understanding than quasi-quotation code. 

4.3.5 Applicability to Benchmarks 

Template Haskell does not suit our benchmark suite particularly well as many of the 

examples simply aren’t appropriate for a functional language. However, it is still clear 

that the many constructs cannot be supported, unless we compromise syntactically from 

the benchmark suite test case definitions.  
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Table 4.3: Template Haskell Applicability to Benchmark Test Suite 

Benchmark Summary Description 

1 assert Simple definition with quasi-quote. Reification may 

provide facilities for command-line debug-build 

switching. 

2 foreach Not appropriate; standard functions provide iteration 

functionality. 

3 printf Simple definition with quasi-quote. 

4 SQL Possible to provide decent SQL support, but not 

possible to match syntax exactly. 

5 Generators Not appropriate in a functional language; lazy 

evaluation provides better facilities. 

6 Haskell Not appropriate. 

 

4.3.6 Extensibility Criteria Assessment 
 

Table 4.4: Template Haskell Extensibility Criteria Assessment 

Criterion Assessment 

1.1 Syntax Creation Arbitrary syntax creation is not provided for. All 

compile-time functions are simply normal Haskell 

functions run at compile-time. Splice is only allowed 

anywhere an expression or a group of declarations 

occurs. 

1.2 Syntax Interrogation Interrogation of syntax is provided through an abstract 

syntax tree provided as a set of Haskell datatypes. 

Haskell provides excellent support for working with 

user defined datatypes, and this flows through to this 

abstract syntax. 

1.3 Syntax Overloading Not supported. 
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1.4 Static Type Interrogation Provided in a limited form via reification, but its exact 

scope is unclear. 

1.5 Expressiveness Template Haskell provides no facilities for new syntax 

creation. Its usefulness is limited to small scale 

additions to the language. 

2.1 Simplicity Meta-programs are programmed in Haskell, which 

itself tends to lead to simple programs. Each of the 

three layers of syntax creation are provided in standard 

Haskell idioms. 

2.2 Brevity Quasi-quotation and unquote are provided. 

The calling of compile-time functions is burdened with 

the necessity of explicit use of splice. 

2.3 Robustness Automatic hygiene and referential transparency are 

provided when using quasi-quotation.  

The function gensym is provided for explicit fresh 

name creation when working with the syntax creation 

monad. 

3.1 Syntactic Correctness Constructs created in any of the three syntax creation 

layers are guaranteed to be syntactically correct. 

3.2 Error Detection Errors in usage can be caught by the programmer, and 

reported to the system via Haskell’s standard error 

construct. Interleaving of parsing and type-checking 

provides strong support for type checking, although it 

is unclear whether the programmer can aid this process 

through reification. 

3.3 Error Reporting Due to the interleaving of parsing and type-checking 

Template Haskell detects errors as soon as possible, 

and consequentially has a good chance of providing 

useful error reporting. 
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4.4 Meta Syntactic Macro System 

The Meta Syntactic Macro System (MS2) [WC93] extends the C programming language 

to provide meta-programming support. 

4.4.1 Power 
 

In this system macros are only allowed to appear as declarations, statements, or 

expressions. Each macro must begin with a name, but following this, the syntax is quite 

general. For example, it is possible to define a macro for enumerations that has the 

syntax of Code Example 4.20(a). 

new_enum color { red, green, blue }; 

(a) Enumeration Usage 

syntaxsyntaxsyntaxsyntax decl new_enum {| $$id::name { $$+\, id::ids }; |} {  
  returnreturnreturnreturn `[ enum $name $ids; ];  
} 

(b) Enumeration Definition 

Code Example 4.20: MS
2
 Enumerations 

An abstract syntax is provided for compile-time program manipulation. The abstract 

syntax has a limited set of forms and the user is not able to introduce new ones. No 

special facilities are provided for the interrogation of these trees. 

4.4.2 Usability 
 

This system provides multiple quasi-quote forms as well as an unquote operator. A 

general quasi-quote form is provided where the user must specify the type of the result 

as well as three shorthand forms for expressions, statements, and declarations. Each of 

these forms begins with a backquote but has a different bracket form. 

Within these quasi-quotes the user is capable of specifying constructs without adhering 

to exacting concrete syntax. Consider the definition of new_enum in Code Example 

4.20(b). Inside the quasi-quotation, the concrete syntax of the enumeration can be 

ignored; the programmer can merely specify the required parts, i.e. a name, and a list of 

identifiers. Other systems would typically require the user to work with the abstract 

syntax objects directly to provide this kind of functionality. 
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This system provides other programmer shorthands. In the above example the format 

list of identifiers is specified by a pattern that ensures that there is at least one identifier 

and that multiple identifiers are comma-separated. These pattern shorthands provide for: 

• lists of zero or more, or one or more arguments;  

• optional elements, either with or without a leading token; and 

• tuples. 

It was foreseen that much processing would be performed on these lists of abstract 

syntax trees, so support was directly introduced for anonymous functions so that 

functions such as map could be better supported. Anonymous functions reduce the 

programmer’s burden when using higher-order functions and as a result greatly 

facilitate the use this powerful, concise coding practice [WC93]. This in turn leads to 

meta-programs that more closely resemble the code they produce (for an example, see 

section 4.4.4.2). 

These shorthands allow for concise definitions, their drawback being an obfuscating 

syntax that creates a significant barrier to understanding this system. The major source 

of this increased confusion is new bracketing forms; this system introduces six of these. 

4.4.3 Error Handling 

The system produces syntactically correct forms via its quasi-quotations but beyond that 

provides no support for error detection in expanded code: 

“The ease of debugging macros depends upon the quality of the debugger 

provided by the C programming environment being used.” [WC93§3, pp. 7] 

4.4.4 Worked Examples 

The following two examples demonstrate a simple definition of a statement macro, and 

a more complex definition which produces a list of declarations. Both of these examples 

demonstrate the brevity of definitions produced with this system. 

4.4.4.1 Dynamic Binding 

Code Example 4.21(a) demonstrates the use of dynamic_bind to allow the 

temporary redefinition of the value of a variable. The idea here is that printLength 
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is a global variable and it is temporarily changed to the value 10, and reset after the 

function call within the block.  

dynamic_bind {intintintint printlength = 10} { 
  print_class_structure(gym_class); 
} 

(a) Dynamic Binding Usage 

syntaxsyntaxsyntaxsyntax stmt dynamic_bind {|  
  { $$type_spec::type $$id::name = $$exp::init } 
  $$stmt::body  
|} { 
  @id newname = gensym(); 
  returnreturnreturnreturn (`{ 
    $type $newname = $name; 
    $name = $init; 
    $body; 
    $name = $newname; 
  }) 
} 

(b) Dynamic Binding Definition 

Code Example 4.21: MS
2
 Dynamic Binding 

The code for providing this macro is in Code Example 4.21(b). A macro is defined by 

use of the syntax keyword. The macro mimics a C function declaration in that it 

expects a type, then a name, followed by a list of parameters, although these parameters 

are contained within a {| ... |} pair rather than parentheses. The parameter list can 

contain an arbitrary number of terminal symbols as well as a series of formal arguments. 

Each formal argument is specified by the symbol $$, followed by the type, followed by 

::, followed by the variable name. There are shortcuts provided for lists of values (see 

the next subsection for more information). 

In the declaration of the variable newname, we see that when Abstract Syntax Tree 

(AST) types are used within normal code they must be prefixed by @. Also, no 

provision for hygiene is made, and we must acquire unique names directly through use 

of the gensym function. 

Following the return statement is statement quasi-quote `{ ... } and within this 

unquoting is specified by $. 

Despite its obscure syntax, and the necessity of explicit name-capture avoidance, this 

definition is still as succinct as an equivalent definition would be in previously 

examined languages. 
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4.4.4.2 Extended Enumerations 

Code Example 4.22 demonstrates an extension to enumerations that provide for 

automatic generation of input and output functions. 

Code Example 4.22(a) and (b) show an example usage and its automatic expansion. 

This expansion is straight-forward, the creation of the enumeration requires no 

transformation, the output function requires a case for each enumeration element, and 

the input function requires an if statement for each element. 

However, the code defining this macro in Code Example 4.22(c) is less than straight-

forward. 

On line 1 we define a macro that returns a list of declarations; the usual C-syntax for 

arrays is maintained. Within the {| ... |} block, we define two macro parameters: 

the first an identifier called name, and the second is a list of comma-separated 

identifiers called ids.  

On line 3 we see the shorthand provided for creating lists. This list has three elements, 

the enumeration declaration (line 5), the print function(lines 8-19), and the read function 

(lines 22-34). Each of these declarations is defined within a declaration quasi-quote. 

The enumeration is defined without the need for concrete syntax — this is a general 

property of the macro system. The programmer is freed from knowing that the list of 

identifiers to an enumeration must be comma-separated and enclosed within braces. 

Within the print function we have an interesting feature of this system, enclosed by the 

(| ... ) block is an anonymous function definition. Its syntax provides for a list of 

declarations that act as arguments, followed by an expression. Anonymous functions 

were specifically added to C’s existing function-pointer concept to allow for the easy 

use of functions such as map. In this case, map is used to create a list of cases from the 

list of enumeration elements. 

The definition of the read function follows a similar format to that of the print function 

— again utilising map and an anonymous function to provide a brief definition. 
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myenum fruit { apple, banana, kiwi }; 

(a) Printable Enumeration Usage 

enumenumenumenum fruit { apple, banana, kiwi }; 
 
voidvoidvoidvoid print_fruit(intintintint arg) { 
  switchswitchswitchswitch (arg) { 
    casecasecasecase apple: printf("%s", "apple"); 
    casecasecasecase banana: printf("%s", "banana"); 
    casecasecasecase kiwi: printf("%s", "kiwi"); 
  } 
} 
 
intintintint read_fruit() { 
  ccccharharharhar s[100]; 
  getline(s, 100); 
  ifififif (!strcmp(s, "apple")) returnreturnreturnreturn(apple); 
  ifififif (!strcmp(s, "banana")) returnreturnreturnreturn(banana); 
  ifififif (!strcmp(s, "kiwi")) returnreturnreturnreturn(kiwi); 
  returnreturnreturnreturn -1; 
} 

(b) Printable Enumeration Expansion 

1 syntaxsyntaxsyntaxsyntax decl myenum[] {| $$id::name { $$+id,::ids }; |} { 
2   returnreturnreturnreturn ( 
3     listlistlistlist( 
4       // enumeration 
5       `[enum $name $ids;],       
6                      
7        // print function 
8       `[ 
9         $(symbolconc("print_", name))(arg) {         
10           switch (arg) 
11             $(map(             // generate a case for each element 
12               (| @id id; `{ 
13                 casecasecasecase $id: 
14                 printf("%s", $(pstring(id))); 
15               }), 
16               ids 
17             )) 
18         } 
19       ], 
20  
21       // read function 
22       `[ 
23         $(symbolconc("read_", name))() {             
24           charcharcharchar s[100]; 
25           getline(s, 100); 
26           $(map(               // generate an if statement for each element 
27             (| @id id; `{ 
28               ifififif (!strcmp(s, $(pstring(id)))) returnreturnreturnreturn($id); 
29             }), 
30             ids 
31           )) 
32           returnreturnreturnreturn -1; 
33         } 
34       ] 
35     ) 
36   ); 
37 } 

(c) Printable Enumeration Definition 

Code Example 4.22: Printable Enumerations 
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4.4.5 Applicability to Benchmarks 

This system does not provide for static type-checking and has limitations on macro 

definitions, and as a result its performance on the test suite is mixed. 

Table 4.5: MS
2
 Applicability to Benchmark Test Suite 

Benchmark Summary Description 

1 assert Simple definition provided a suitable standard library 

function exists to interrupt program execution. 

2 foreach Simple definition provided a set of C functions exist to 

mimic iterators. Syntax can be matched exactly, as 

terminals may appear anywhere in a macro pattern. 

Type checking on the type of the expression could not 

be provided by the macro itself. 

3 printf This system is not capable of providing the literal 

string argument for printf. 

4 SQL The syntax of the SELECT statement could almost be 

matched exactly, but would fail at the WHERE clause. It 

could only provide an arbitrary C expression, and 

provide no support for the mixing of SQL names and C 

names. 

5 Generators Not supported. 

6 Haskell Not supported due to the requirement that each macro 

begin with a name. 
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4.4.6 Extensibility Criteria Assessment 
 

Table 4.6: MS
2
 Extensibility Criteria Assessment 

Criterion Assessment 

1.1 Syntax Creation All macros must begin with a name, but following this, 

the programmer appears to be free to define new 

syntax, although some restrictions may apply, e.g. it 

appears that parentheses are not allowed within macro 

headers. Macros may only use a limited set of abstract 

syntax types in their argument lists.  

Macros can only appear as declarations, statements, or 

expressions.  

1.2 Syntax Interrogation Syntax interrogation provided via an abstract syntax 

with additions to normal C-syntax to provide for easy 

construction. 

1.3 Syntax Overloading Unspecified. 

1.4 Static Type Interrogation Not provided. 

1.5 Expressiveness It is only possible to use this system for small macros 

with a limited scope, due to strict rules on macro use 

and the requirement that macros begin with names. 

2.1 Simplicity This system introduces much for the programmer to 

understand with many symbolic additions to a syntax 

that already has too many symbols. 

Once these have been learnt, the system is relatively 

easy to use. However, it is unclear whether parsing 

conflicts can arise, and if so, how much burden they 

place on the macro programmer. 

2.2 Brevity A host of programmer shortcuts are provided; of 

particular use are the easing of restrictions in syntax 

within quasi-quotations and the use of patterns within 
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macro headers. 

2.3 Robustness A gensym function is provided, but no attempt is 

made to provide hygiene. 

3.1 Syntactic Correctness All constructs are created within quasi-quotations and 

are guaranteed to be syntactically correct. 

3.2 Error Detection Not supported. 

3.3 Error Reporting Not supported. 
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4.5 Jakarta Tool Suite  

The Jakarta Tool Suite (JTS) [BLS98] is a set of pre-compiler tools for extending 

programming languages. Its meta-programming facilities exist only within a Java 

extension called Jak, which is in turn written in another tool called Bali.  

Bali is in essence a parser-generator, such tools are common-place and a full description 

of this is outside the scope of this work. 

Jak provides a quasi-quotation system, but for a limited set of constructs and the 

resultant type must be specified. The same applies for its unquoting mechanism. It is 

unclear whether quotations can be nested.  Powerful tree traversal and editing functions 

are provided for code manipulation. An attempt at providing hygiene is made, but does 

not produce an automatic system; programmers are left to specify which variables are to 

have their names mangled to avoid collisions. 

Jak provides code generation facilities, but it is unclear as to how they are to be utilised, 

it is left unspecified whether or not compile-time evaluation can take place. It is 

assumed that to define new syntax, or make language extensions one must define them 

in Bali and embed Jak code to perform any transformations. 

Utilising a parser generator for extensions makes this system similar to that of an open 

compiler system (see section 2.3.2). As a result any extension should be possible, but 

each extension stands alone — we are in essence creating an entirely new language 

every time we make a minor change. 

The Jakarta tool suite has several features common with the systems discussed in this 

chapter, but falls too far outside the domain of meta-programming and extensibility to 

be adequately compared to such systems. We make no attempt to test the applicability 

of this system to our benchmark suite, and do not rate this system against our 

extensibility criteria. 
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4.6 Java Syntax Extender 

The Java Syntax Extender (JSE) [BP01] is a macro facility. Its implementation is as a 

pre-processor taking .jse files and producing .java files. 

4.6.1 Power 

JSE recognises that some systems allow for the creation of arbitrary syntax, but 

sacrifices this for simplicity:  

“JSE is less ambitious in that it provides a convenient and powerful mechanism 

for extending the syntax in limited ways. In particular, it provides only a limited 

number of shapes and requires that macros must always commence with a 

name.” [BP01§8.4, pp. 40] 

To this end, JSE provides limited shapes in the form of call macros and statement 

macros. A call macro mimics a simple Java method call and is available to appear 

where a statement or an expression would. A statement macro can only occur where 

normal statements would and have a more complicated form: optional modifiers and 

then a series of clauses.  

call_macro ::= name(...) 
 
statement_macro ::= modifiers [clause]+ 
clause ::= name ... terminator 
terminator ::= ;;;; | }}}} 

Figure 4.2: JSE Call and Statement Macro Grammars 

The loose grammar of Figure 4.2 specifies the structure of both call and statement 

macros. As we shall see, where the ellipses appear in this grammar is where JSE 

provides a deal of flexibility — this is discussed in the next subsection. The restriction 

on each macro ending with a semicolon or a brace is born of simplicity and a restriction 

that fits within Java well: 

“Shapes serve to allow easy location of the end of a macro before handing it to 

the macro expander; shapes are a way to find “the closing bracket”.” [BP01§3.1, 

pp. 35] 

For program manipulation, rather than a full abstract syntax, JSE provides a skeleton 

syntax tree (SST).  
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“In general, a SST has fewer categories than a typical AST and instead 

represents the basic shapes and distinctions necessary for macro processing.” 

[BP01§2, pp. 32] 

The downside to this approach is that no guarantees can be made as to the syntactic 

correctness of the programs produced. 

Macros are expanded in an outside-in fashion which limits interoperability between 

macros. These expansions can contain macro calls; macro expansion continues until all 

macros are removed. 

4.6.2 Usability 
 

Each macro is defined as a class that implements an interface SyntaxExpander. 

Such definitions are unwieldy and require the programmer to perform many 

housekeeping tasks (see section 4.6.4). 

Thankfully, a shorthand exists that is written within JSE itself, the syntax macro 

alleviates all of these housekeeping tasks and allows the programmer to concentrate on 

the macro definition (see section 4.6.4.2). 

A macro is defined to take only one argument: a SST fragment. Within the actual body 

of the macro a syntaxSwitch construct is used to pattern match this fragment. This 

approach was modelled on Lisp and Dylan [Sha96a].  

Patterns may contain an arbitrary number of terminals and non-terminals, and are also 

used to bind matches to variable names. JSE provides a rather odd shorthand for pattern 

names: if the user fails to name a parameter, the system automatically generates a 

default. For example, failing to name a type will lead to it being called type. 

Patterns use a set of pre-defined constraints that allow for non-terminals: patterns accept 

names, types, expressions, statements (either a single semicolon terminated statement, 

or a block), bodies (an enforced block), and switch statement bodies. 

Users are permitted to define new constraints, but it is unclear as to how free this 

process is. Also, there appears to be no direct way to introduce constraints within code, 

they must be included on Java’s CLASSPATH to be used. 
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JSE provides support for both automatic hygiene and referential transparency. A quasi-

quotation form is provided along with unquote. Support is provided for nesting of 

quotations. 

4.6.3 Error Handling 

The use of skeleton syntax trees prevents JSE from providing a guarantee that 

expansions will be syntactically correct. The user is provided with no mechanism for 

manually detecting and reporting errors although failure to match any case of the 

syntaxSwitch will cause a SyntaxMatchFailure exception to be thrown, it is 

supposed that the user could hijack this mechanism. 

JSE does however make some attempt to provide users with debugging support. 

Facilities are provided to allow smart editors to perform macro expansion on program 

strings so that users can witness the result of macro expansion — one expansion at a 

time if they wish. When compiler errors occur, JSE provides the original source of the 

error. This provides programmers with feedback on the code they wrote themselves. It 

is claimed that this simple maintaining of the source location of macro calls gives 

“reasonable results” [BP01]. 

4.6.4 A Worked Example: foreach 

In this section we provide two implementations of the foreach macro. The first 

demonstrates the use of this system is its most low-level form, and the second is an 

abbreviated version using the syntax macro. 

4.6.4.1 Underlying Implementation 

The following code is an implementation of a foreach macro that exposes the 

underlying implementation to the programmer: 

A macro is implemented by implementing SyntaxExpander by providing the two 

methods getClauseNames and expand. It is left unspecified, but it is assumed that 

the syntaxSwitch statement fills in the details of the clauseNames structure.  

The expand method takes as its only argument a fragment of a skeleton syntax tree. 

Within this method the user is expected to use the syntaxSwitch statement to 

correctly match the macro form. A pattern for this statement is enclosed within a #{ 
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... } block and may contain an arbitrary number of terminals and non-terminals. 

Non-terminals follow a ? symbol and are specified by a name, and a type separated by a 

colon. If the name is omitted the system uses a default. It is possible to match an 

arbitrary SST by use of the * symbol. 

publicpublicpublicpublic classclassclassclass foreachSyntaxExpander implementsimplementsimplementsimplements SyntaxExpander { 
  privateprivateprivateprivate staticstaticstaticstatic String[] clauseNames = {}; 
  publicpublicpublicpublic String[] getClauseNames() { returnreturnreturnreturn clauseNames; } 
 
  publicpublicpublicpublic Expansion expand(Fragment fragments) throwsthrowsthrowsthrows SyntaxMatchFailure { 
    syntaxSwitchsyntaxSwitchsyntaxSwitchsyntaxSwitch (fragments) { 
    casecasecasecase #{ foreach (?:type ?elt:name in ?:expression) ?:statement }: 
      returnreturnreturnreturn #{  
        Iterator i = ?expression.iterator(); 
        whilewhilewhilewhile (i.hasNext()) { 
          ?elt = (?type) i.next(); 
          ?statement 
        }  
      }; 
    }  
  }  
} 

Code Example 4.23: JSE Iteration Definition 

The #{ ... } block is overloaded to provide the syntax for the quasi-quotation, and 

? is used to mean unquote. These forms can be heavily nested if required. 

It is unclear where the system obtains the name of this macro, it could either be from the 

class name, or more likely it is from the first terminal in the first case of the 

syntaxSwitch. 

4.6.4.2 The syntax Macro 

The syntax macro allows the programmer to dispense with housekeeping tasks and 

provides a more concise understandable definition. Code Example 4.24 is the foreach 

macro expressed in this improved form. 

publicpublicpublicpublic syntaxsyntaxsyntaxsyntax foreach { 
  casecasecasecase #{ foreach (?:type ?elt:name in ?:expression) ?:statement }: 
    returnreturnreturnreturn #{  
      Iterator i = ?expression.iterator(); 
      whilewhilewhilewhile (i.hasNext()) { 
        ?elt = (?type)i.next(); 
        ?statement 
      }  
    }; 
  }  
}  

Code Example 4.24: JSE Improved Iteration Definition 
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Notice here, that this is just the inner part of the definition from the previous subsection, 

but we are no longer exposed to any implementation details. Even the class definition is 

now hidden from us. 

4.6.5 Applicability to Benchmarks 

Unlike many other systems, the use of skeleton syntax trees allows JSE to provide 

access to the code within its clauses at a pretty basic level. To this end it would be 

possible to define macros that consist of little more than a wrapper of a SST structure 

representing whatever the programmer wished — programmers are free to perform 

extra parsing on this representation. As a result there are few limitations to what would 

be possible within a macro, although this approach should always be viewed as a 

workaround. 

Table 4.7: JSE Applicability to Benchmark Test Suite 

Benchmark Summary Description 

1 assert Simple definition. 

2 foreach Simple definition, but not possible to manually enforce 

the expression is indeed iterable. 

3 printf Not possible. It should be feasible to create a user-

defined constraint to allow the use of literal strings, but 

JSE has no capacity to check static types. 

4 SQL JSE may be capable of providing SQL exactly, but 

much work would be required to match SQL 

expressions — the SST would have to be manually 

parsed. 

5 Generators Possible to define generators, but suspend statements 

would have to be manually detected. 

6 Haskell Not possible without full manual parsing of the subset. 
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4.6.6 Extensibility Criteria Assessment  
 

Table 4.8: JSE Extensibility Criteria Assessment 

Criterion Assessment 

1.1 Syntax Creation Syntax creation is only available in a limited form, 

macros must always commence with a name, but may 

appear anywhere within a file. 

1.2 Syntax Interrogation Syntax interrogation is via skeleton syntax trees 

(simpler and more general than abstract syntax trees). 

Inner macro calls can be interrogated before they are 

expanded. 

1.3 Syntax Overloading Not provided. 

1.4 Static Type Interrogation Not provided. 

1.5 Expressiveness JSE is capable of providing small syntax additions 

only. Its limited form of syntax addition would require 

compromises to provide language embeddings.  

Both the shorthand for defining new syntax and the 

pattern-matching construct for ease of use are defined 

in the language itself. 

2.1 Simplicity JSE’s design focussed heavily on making things user 

friendly, and this has been partially achieved. Skeleton 

syntax trees remove the programmer’s need to 

understand an entire abstract syntax. 

However, the syntax for the definition of new macros 

is still a little clunky, and this is due to the limited 

syntax creation abilities of JSE. 

2.2 Brevity The use of quasi-quote, unquote, and combinations of 

these provide ease of use. The defined extensions for 

syntax creation allow the programmer to be relatively 

free of housekeeping tasks. 
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2.3 Robustness Although unimplemented at the time of writing, JSE 

provides a description of support for automatic hygiene 

and referential transparency. 

3.1 Syntactic Correctness Due to the use of skeleton syntax trees, no guarantees 

are given as to the correctness of expansions. 

3.2 Error Detection Meta-programs can throw an exception to indicate a 

syntax error, but it is unclear if this system can be 

extended to support other errors. 

3.3 Error Reporting JSE provides good support for errors with facilities 

provided for editor support, and rather than the 

position in an expansion, the original source of an error 

is provided. 
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4.7 OpenJava 

OpenJava [Tat99] is a Java extension that provides a compile-time meta-object system. 

It allows meta-classes to be associated with class definitions, and these drive the 

translation of the defined class. Typical translation is similar to automatic application of 

the visitor pattern [BH02§2]. 

OpenJava has limited applicability and its main emphasis is on semantic extensions 

rather than syntactic ones [BP01]. OpenJava’s relatively primitive ability to provide 

syntax extension allows an easy implementation without the necessity of handling 

complex parsing problems. 

4.7.1 Power 
 

OpenJava does not permit arbitrary syntax extension. In fact, its ability to add new 

syntax is very limited: 

“Syntactic extension is limited to only a few certain places in class definitions 

(e.g., class adjectives) and their uses (e.g., after class names in callers).” 

[BP01§8.5.4, pp. 41] 

Consider the code in Code Example 4.25 to automate the generation of visitor methods. 

Following the instantiates keyword is the extension being used, and both the 

visits and on suffixes are defined within this extension. OpenJava also admits the 

addition of new modifiers. Suffixes allow a following list; it is unclear what elements 

this list may consist of, but examples show the use of types and literals at least 

[TCKI00]. 

publicpublicpublicpublic interfaceinterfaceinterfaceinterface GUIVisitor instantiatesinstantiatesinstantiatesinstantiates VisitorPattern visitsvisitsvisitsvisits GUIElement { 
  voidvoidvoidvoid visit() onononon Container, Panel, Label; 
} 

Code Example 4.25: Open Java Visitor Methods Usage 

OpenJava has little syntactic freedom, but it was primarily designed for semantic 

extensions rather than syntactic ones [BP01]. 

OpenJava provides interrogation and creation of syntax through a set of abstract syntax 

classes and a compile-time reflection facility. OpenJava metaclasses must be explicitly 
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declared by use of instanstiates, and no extensions are possible for primitive 

types or arrays.  

4.7.2 Usability 

OpenJava requires programmers to write a class that handles translation. Code Example 

4.26 contains a code fragment for defining the VisitorPattern example from Code 

Example 4.25. 

publicpublicpublicpublic classclassclassclass VisitorPattern extendsextendsextendsextends OJClass { 
  staticstaticstaticstatic voidvoidvoidvoid init() { 
    registerDeclarationSuffix( "visits", .. ); 
    registerDeclarationSuffix( "accepts", .. ); 
    registerMethodSuffix( "on", .. ); 
  } 
 
  voidvoidvoidvoid translate() throwsthrowsthrowsthrows MOPException { 
    ...                 // explicit use of syntax construction methods in here 
  } 
} 

Code Example 4.26: Open Java Visitor Methods Definition 

This approach is straightforward to understand, but somewhat tedious. No facilities are 

provided to ease the programmer’s burden; OpenJava has no quasi-quotations or name 

conflict protection. 

“… OpenJava seems to ignore the technology, hygiene and referential 

transparency, that makes macros work.” [Bak01§6.4.5, pp. 88] 

4.7.3 Error Handling 

OpenJava does not provide syntactic safety: 

“OpenJava lacks some features that make compile-time metaprograms robust: 

Its macros can generate illegal pieces of syntax, because they allow 

metaprograms to convert arbitrary strings to syntax.” [BH02§2, pp. 3] 

Translation methods can throw an exception, but it is not described how this exception 

is used by the compiler or whether or not this system can be explicitly used to provide 

useful error reporting from macros. Indeed, the handling of translation errors is not 

described at all. 



CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES   OPENJAVA 

 •  115  •

4.7.4 Applicability to Benchmarks 
 

OpenJava’s extension mechanisms are essentially class-based which makes its 

applicability to the benchmark test suite limited. As a result of this class-based 

approach, any attempts to provide simple statement-level extensions would require 

misuse of the underlying system via a tree traversal to discover statement extensions. 

Each of these benchmarks would require the enclosing class to explicitly declare the use 

of these internally. 

Table 4.9: OpenJava Applicability to Benchmark Test Suite 

Benchmark Summary Description 

1 assert Possible via checking to see if each statement was a 

call to a method called assert, and performing 

translation if so. 

2 foreach Not possible. OpenJava cannot provide the statement 

block. 

3 printf Possible with syntax changes as it is not possible to 

create arbitrary length argument list, but this could be 

handled as an OpenJava prefix specifier. 

4 SQL Not possible. 

5 Generators Possible once using same technique as the assert 

benchmark. 

6 Haskell Not possible. 

4.7.5 Extensibility Criteria Assessment 
 

Table 4.10: OpenJava Extensibility Criteria Assessment 

Criterion Assessment 

1.1 Syntax Creation OpenJava provides very limited forms of additions to 

the syntax in the form of modifiers and suffixes, and 

these in turn are limited to specific places. 
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1.2 Syntax Interrogation Provided via a compile-time reflection mechanism and 

a set of abstract syntax classes. 

1.3 Syntax Overloading Not provided. 

1.4 Static Type Interrogation Definitely provided for methods of the defined class, 

but unclear if it is provided for the surrounding context 

or for variables. 

1.5 Expressiveness OpenJava extensions are limited to those of class scope 

— although it is possible to misuse this mechanism to 

provide other smaller extensions. 

2.1 Simplicity Due to strict limitations on additions that can be made 

by the user there should be no parsing conflicts. 

Defining extensions is a relatively straightforward 

process, but users are exposed to the underlying 

system. 

2.2 Brevity No support is provided for making macros concise. 

2.3 Robustness No support is provided for robustness. 

3.1 Syntactic Correctness OpenJava allows creation of syntax from arbitrary 

strings and as such does not provide syntactic safety. 

3.2 Error Detection Translation methods may throw an exception but it is 

unclear how this is utilised and as to whether the user 

can explicitly use this mechanism for manually 

detecting errors in a meaningful way. 

3.3 Error Reporting Unclear if any support is provided for errors. 
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4.8 Maya 

The Maya programming language [Bak01] is a Java extension that has demonstrated 

that it can be used for sizeable extensions. Its meta-program definitions attempt to 

mimic Java declarations closely. 

4.8.1 Power 
 

Maya allows both extension and reinterpretation of its syntax. The Maya programmer 

has the ability to write both new grammar productions and semantic actions. 

Semantic actions are expanded in an outside-in fashion, and programmers must 

explicitly specify which arguments to a meta-program are to have their parsing delayed 

(see section 4.8.1.2). 

Maya provides an abstract syntax for meta-programming, and provides for automatic 

extension through its ability to define new grammar productions. 

4.8.1.1 Grammar Productions and Semantic Actions  

Grammar productions are treated as generic functions, whereas semantic actions (called 

“Mayans”) on such productions are multimethods (i.e. methods that are polymorphic on 

more than one of their arguments). 

Mayans can be dispatched on tokens, syntax trees, or the static type of an expression. 

A Mayan can add any production to the grammar, but the resulting language must be 

recognisable by Maya’s LALR(1) parser (see section 6.5.3.1 for a description of LALR 

parsing). This is a sizeable restriction, and forces the programmer to be aware of what 

forms can be supported by LALR(1). As stated in section 3.2 it is desirable that the 

programmer need not know how parsers function to be able to use an extensible 

language. 

4.8.1.2 Laziness 

Maya employs laziness in both type checking and parsing. Lazy type checking allows 

Mayans to dispatch based on the static types of arguments and conversely to create 

variable bindings that can be used by other arguments. Both of these properties are 

useful in defining the foreach macro from section 3.4.1.2: the general form of 
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foreach should only work on arguments that implement Iterator (or for the Maya 

example also on Enumeration) but the body of the expansion relies on the definition 

of a loop variable. 

Laziness requires the programmer to explicitly specify how much expansion is required 

for macro expansion to occur. Formal arguments of a macro may be annotated as lazy; 

these arguments will not be parsed until after the macro expands.  

This system facilitates Maya providing static type-checking, but restricts the 

interrogation of lazy arguments. This in turn is prohibitive to close interaction between 

Mayans which limits Maya’s expressiveness. 

“Maya infers the node types and layouts corresponding to interior productions 

based on the built-in Mayans. As a result, user-defined syntax may only appear 

at the root of the tree.” [Bak01§3.3.1, pp. 26–27] 

4.8.1.3 Overloading Mayans 

Maya supports macro overloading. This allows the definition of the same macro for 

wildly differing types, and, more importantly, specifically optimised code can be 

produced for each of these types.  

This overloading facility provides a limited capacity for Maya to override built-in Java 

syntax. 

4.8.2 Usability 

The syntax for declaring Mayans mimics Java method call syntax closely. However, 

pattern matching forms are also provided which simplify many operations but add an 

initial barrier to understanding. These pattern matching forms provide a limited form of 

the functionality that could be provided by tightly nesting macros — this functionality is 

precluded by Maya’s use of outside-in expansion and lazy parsing.  

Also, Maya provides a shorthand for the matching of static types which allows for 

concise powerful definitions (see section 4.8.4 for an example). 

The programmer is required to understand when to use abstract and concrete syntax. 

These definitions require precise understanding of Maya’s implementation as: 
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“To define an abstract Mayan… one must understand Maya’s grammar and 

conflict-resolution techniques.” [Bak01§3.2, pp. 24] 

In addition to manual construction of syntax via the abstract syntax classes, Maya 

provides both quasi-quote and unquote. Its quasi-quote syntax requires the user to 

specify the type being produced. Maya provides both hygiene and referential 

transparency within its quasi-quote construct. 

Maya facilitates concise forms, but requires great programmer understanding, and: 

“It remains to be seen whether Maya is simple enough to be usable.” 

[Bak01§7.3, pp. 91] 

The use of Mayans is lexically scoped, the user must explicitly specify the scope of the 

Mayan with the use statement. This use statement can be at the top-level which 

provides file-scope. 

4.8.3 Error Handling 
 

Maya’s abstract syntax and quasi-quote construct provide a guarantee of syntactic 

correctness of expansions. 

The system will automatically detect type errors when no specialisation can be selected 

to match the types of a macro invocation. In addition to this, the macro programmer can 

manually detect further errors and throw an exception to be handled by the parser. 

These exceptions can be produced by abstract syntax classes themselves in order to 

provide strong support for useful error messages. 

4.8.4 Worked Examples 
 

The following two examples demonstrate the implementation of assertions and iteration 

constructs.  

4.8.4.1 Assertions 

Code Example 4.27 demonstrates a Mayan definition in its most low-level form. Each 

group of Mayans must appear within a class that implements the interface 

MetaProgram, and as a result must implement the method run that modifies the 

parser environment. Each of these Mayan definitions must be explicitly run on the 

environment, and the resultant environment must be returned. As we will see in the next 
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example, this is considered too repetitive for general use, and a Mayan is provided to 

remove this burden from the programmer [Bak01]. 

packagepackagepackagepackage maya.util; 
importimportimportimport maya.grammar.*; 
 
useuseuseuse Syntax; 
 
abstractabstractabstractabstract Statement syntaxsyntaxsyntaxsyntax (assert(Expression);); 
 
publicpublicpublicpublic classclassclassclass Assert implementsimplementsimplementsimplements MetaProgram { 
  publicpublicpublicpublic Environment run(Environment env) { 
    Statement syntaxsyntaxsyntaxsyntax A(assert(Expression e);) { 
      returnreturnreturnreturn newnewnewnew Statement { 
        ifififif (!$e) throwthrowthrowthrow newnewnewnew Error("Assertion failed"); 
      }; 
    } 
 
    returnreturnreturnreturn newnewnewnew A().run(env); 
  } 
} 

Code Example 4.27: Maya Assertions 

This macro requires both an abstract Mayan declaration, and a concrete Mayan.  

The concrete Mayan declaration utilises Maya’s quasi-quote to perform the translation. 

The quasi-quotation has a form similar to a Java object creation except the abstract 

syntax class does not have a list of parameters — if it did this syntax would be initially 

indistinguishable from an anonymous class declaration. Unquote in Maya is specified 

by the $ symbol. 

4.8.4.2 Iteration 

The implementation of iteration constructs provides a demonstration of Maya’s facilities 

for the creation of new abstract syntax, overloading of Mayans, lazy parsing, quasi-

quotation, unquoting, and compile-time static-type checking. 

The Maya implementation of a foreach structure mimics a function call and can be 

applied to many types as shown in Code Example 4.28(a). 

The LinkedList version produces the default expansion which is a simple 

iterator loop, and the Vector version produces an optimised expansion which 

accesses the Vector as an array as shown in Code Example 4.28(b). 
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LinkedList list; 
list.foreach(String st) { 
  System.err.println(st + " = " + h.get(st)); 
} 
 
maya.util.Vector v; 
v.elements().foreach(String st) { 
  System.err.println(st); 
} 

(a) Iteration Usage 

forforforfor (Iterator enumVar$ = h.keys(); enumVar$.hasNext(); ) { 
  String st = (String) enumVar$.next(); 
  System.err.println(st + " = " + h.get(st)); 
} 
 
maya.util.Vector v; 
{ 
  Vector v$ = v; 
  intintintint len$ = v$.size(); 
  Object[] arr$ = v$.getElementData(); 
  forforforfor (intintintint i$ = 0; i$ < len$; i++) { 
    String st = (String) arr$[i$]; 
    System.err.println(st); 
  } 
} 

(b) Iteration Expansion 

Code Example 4.28: Maya Iteration Usage and Expansion 

In order to demonstrate some important points, Code Example 4.29 contains a sub-

section of the Mayan definitions required to support iteration. 

Firstly, we observe the decoupling of grammar productions from their associated 

semantic actions: on line 8 there is a generic function definition that defines a class of 

grammar productions that take a method name, a formal argument in parentheses, and a 

lazily parsed set of statements surrounded by braces. Following this is a number of 

Mayan definitions (on lines 10, 25, and 35). 

These Mayan definitions all have the same basic form, that matches the abstract 

definition. The formal argument and block require no further explanation, but the 

method name part does. Each Mayan specifies that it will expand upon encountering an 

expression, followed by a ., and the “method” name foreach. At first glance this 

does not seem to satisfy the requirements for a method name, however a Maya method 

name is a specialisation of an expression.  

It should be noted here that the programmer is required to have a fairly detailed 

understanding of Maya’s abstract syntax in order to be able to write macros, this is the 

price paid for Maya’s expressiveness.  
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1 packagepackagepackagepackage maya.util; 
2 importimportimportimport java.util.*; 
3 importimportimportimport gnu.bytecode.*; 
4 importimportimportimport maya.tree.*; 
5 importimportimportimport maya.grammar.*; 
6 importimportimportimport maya.tree.ClassType; 
7  
8 abstractabstractabstractabstract Statement syntaxsyntaxsyntaxsyntax(MethodName(Formal) lazylazylazylazy(BraceTree, BlockStmts)); 
9  
10 Statement syntaxsyntaxsyntaxsyntax  
11 iForEach(Expression:Iterator enumExp.foreach(Formal var) 
12   lazylazylazylazy(BraceTree, BlockStmts) body) { 
13   finalfinalfinalfinal StrictTypeName castType = StrictTypeName.make(var.getType()); 
14  
15   returnreturnreturnreturn newnewnewnew Statement { 
16     forforforfor (Iterator enumVar = $(enumExp); enumVar.hasNext(); ) { 
17       $(DeclStmt.make(var)) 
18       $(as Expression Reference.make(var)) = ($castType) enumVar.next(); 
19       $body 
20     } 
21   }; 
22 } 
23  
24 // Walk a collection's iterator 
25 Statement syntaxsyntaxsyntaxsyntax 
26 cForEach(Expression:Collection c.foreach(Formal var)  
27          lazylazylazylazy(BraceTree, BlockStmts) body) { 
28   returnreturnreturnreturn newnewnewnew Statement { $(c).iterator().foreach($var) $body }; 
29 } 
30  
31 // vector specialisation would like very similar to the above 
32  
33 /* The base case assumes that $e is an array, but the concrete syntax 
34  * doens't allow us to write array-of(*) or void */ 
35 Statement syntaxsyntaxsyntaxsyntax 
36 aForEach(Expression e.foreach(Formal var) lazylazylazylazy(BraceTree, BlockStmts) body) 
37 { 
38   finalfinalfinalfinal Type t = e.getStaticType(); 
39  
40   ifififif (!t.isArray())  
41     throwthrowthrowthrow e.error("foreach not defined for " + e.getStaticType()); 
42  
43   ifififif (!var.getType().isAssignableFrom(t.getComponentType()))  
44     throwthrowthrowthrow var.error(var.getName() + " doesn't match array type " + t); 
45  
46   // array specialisation code would go here 
47 } 
48  
49 publicpublicpublicpublic defineMayanContainer(ForEach) { 
50   iForEach, 
51   cForEach, 
52   aForEach 
53 } 

Code Example 4.29: Partial Maya Iteration Definition 

The first Mayan (lines 10–22) is designed to work on expressions that have a compile-

time static type that implements the Iterator interface. For this to be possible the 

surrounding context needs to be available to the compiler when the macro is matched. 

This aspect of Maya’s syntax is on line 11, in the term Expression:Iterator.  
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On line 13, this Mayan pulls type information from the formal parameter in order to be 

able to create a cast expression of the correct type.  

On lines 15–21, is the first example use of Maya’s quasi-quotation; here it is used to 

create a new Statement. Within this quasi-quotation, there are multiple uses of the 

unquote operator $, that allow values from the surrounding macro to be used, all of 

these are type checked when the macro itself is compiled. Also, the variable enumVar 

is guaranteed not to conflict with the surrounding context on expansion due to hygiene. 

On lines 25–29, the specialisation for collections is shown; it simply retrieves the 

collection’s iterator and uses the Mayan for iterators. 

On lines 31–46, a partial definition of the array specialisation is shown. Maya is unable 

to check the static type of the array directly and the programmer is forced to include 

specific checks that the parameter is indeed an array (lines 40 and 41). On line 43, the 

type of the formal argument is checked against the type of the array, this was not 

possible to do for the iterator Mayan as Java (before 1.5) did not provide type 

information for collections. 

The final part of this implementation (lines 49–53), demonstrate the housekeeping that 

the programmer is still required to perform in Maya. In fact, this is a Mayan written to 

reduce Maya’s housekeeping requirements. 

4.8.5 Applicability to Benchmarks 
 

The use of lazy parsing in Maya provides powerful facilities that lend themselves to 

producing concise code for many of the benchmark cases. However, this same system 

severely limits its expressiveness, and as a result, Maya implements part of the test suite 

concisely, but is incapable of implementing the remainder. 

Table 4.11: Maya Applicability to Benchmark Test Suite 

Benchmark Summary Description 

1 assert Simple definition. 

2 foreach Simple definition. 

3 printf Simple definition. 

4 SQL Not possible. 
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5 Generators Not obviously possible. With change of suspend 

syntax to return Maya may be capable of providing 

this extension. 

6 Haskell Not possible. 

4.8.6 Extensibility Criteria Assessment 

Table 4.12: Maya Extensibility Criteria Assessment 

Criterion Assessment 

1.1 Syntax Creation Arbitrary placement of new syntax allowed, but 

outward-in evaluation does not allow for Mayans to 

depend on other Mayans.  

1.2 Syntax Interrogation Abstract syntax classes provided for syntax 

interrogation, although lazily parsed sections can not 

be examined. Pattern matching in formal arguments of 

Mayans simplifies some code. 

1.3 Syntax Overloading It is possible to override the default behaviour of 

languages forms. 

1.4 Static Type Interrogation Maya provide concise syntax for ensuring a parameter 

to a Mayan is of a specified type and provides 

functionality in abstract syntax for direct interrogation. 

Mayans make extensive use of specialisation. 

1.5 Expressiveness Maya is capable of providing small syntax additions 

only. A MultiJava implementation is provided, but this 

is possible because its syntax differs only slightly from 

Java. 

2.1 Simplicity Successful creation of Mayans relies on understanding 

of both the provided abstract syntax and the conflict 

resolution techniques of the parser. If a Mayan 

declaration causes a conflict, users need to understand 

LALR(1) grammars. 
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2.2 Brevity Maya provides quasi-quotation and unquoting 

facilities, and provides a host of programmer shortcuts 

for Mayan definitions.  

Whilst brevity is provided for Mayan definitions, each 

group of Mayans needs to be declared within a class 

that extends MetaProgram, and each exported 

Mayan must be explicitly added to the environment by 

the programmer. 

Before use, each Mayan must be first imported and 

then its scope must be declared via the use statement. 

2.3 Robustness Maya provides automatic hygiene and referential 

transparency. 

3.1 Syntactic Correctness Mayans will always produce valid abstract syntax 

trees. 

3.2 Error Detection Syntactic errors in Mayan declarations are detected at 

compile-time, and the expansion is type checked. 

Mayans can explicitly check for errors and return 

useful information to the programmer. 

3.3 Error Reporting Explicitly detected errors provide useful error 

messages, whereas errors undetected by the macro do 

not. 
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5.1 Overview 

The Genesis language design is inherently very simple, it consists only of a slight 

modification to the Java grammar, and specification of a new compilation strategy. This 

compilation strategy involves the definition of a flexible tokeniser coupled with a 

modification of the standard Java import mechanism. 

Firstly, we explain the Genesis design rationale (section 5.2) following the review from 

the previous chapter. 

We introduce the basic form of the macro definition (section 5.4) and explain the 

subtleties of macro definitions.  

A high-level description of the tokeniser design is provided (section 5.5) with an 

emphasis on its flexibility.  

The process of macro expansion is described (section 5.6) which entails a description of 

the modified import mechanism and a detailed explanation of the order of evaluation of 

macros.  

Finally, the languages standard environment (i.e. facilities that should be available in 

any implementation) is described (section 5.6); this includes a description of the abstract 

syntax classes, standard exception classes, type-checking facilities, and a macro 

reflection mechanism. 
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5.2 Design Rationale 

The Genesis design follows directly from the examination of previous languages in 

Chapter 4. The focus is on the often conflicting goals of power and simplicity. 

5.2.1 Arbitrary Syntax Creation 
 

The major failing of the languages reviewed in Chapter 4 was in arbitrary syntax 

creation. Each language had substantial restrictions on macro use: 

• Lisp allows for  arbitrary placement of macros, but not for new syntax creation, 

all macros are in prefix form. 

• Template Haskell permits macros at the declaration and expression level only, 

requires explicit caller-side identification of macros, and macros must conform 

to its normal function call syntax. 

• MS2 limits macro placement to declaration, statements, and expressions and 

requires all macros to begin with a name. 

• JSE has no restriction on placement within a source file but requires macros to 

commence with a name. 

• OpenJava has strong restrictions on both the placement and syntax of any 

extensions. 

• Maya allows for both arbitrary placement of macros and arbitrary syntax 

creation. Unfortunately, Maya has restrictions on the interoperability of macros: 

only lazy arguments can contain further macro definitions. 

The primary design goal of this work was to provide the greatest flexibility in arbitrary 

syntax creation. Wherever possible when this conflicted with other goals, syntax 

creation flexibility was the winner. 

This aim of flexibility resulted not only in the arbitrary macro definition design (see 

section 5.3) but also in the design of the tokeniser (see section 5.4). 

5.2.2 Compile-time Interrogation 
 

The majority of reviewed languages provided good support for the interrogation of 

syntax, but were greatly varied in their level of support for the overloading of syntax 

and compile-time type interrogation. Many of the most interesting extensions (e.g. 
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Maya’s implementation of forall — see 4.8.4.2) rely on both of these facilities. In 

particular, these kinds of specialisation allow for a host of user-defined optimisations. 

Flexibility of macro definition already covers allowing overloading of macros, and it is 

considered essential that Genesis provide powerful facilities for interrogation of all 

aspects of compile-time information. 

5.2.3 Base Language 

A secondary design goal was not to create any artificial barriers to adoption. As 

previously discussed, programmer adoption of meta-programming has been limited. 

One of the factors behind this is the lack of facilities in most mainstream languages. 

Even Lisp has never seen much use outside a teaching or artificial intelligence setting. 

C++ does provide meta-programming, but in a form too inconvenient for most 

programmers to stomach. 

It is for these reasons that a mainstream language (Java) was chosen as the vehicle for 

this research. Java itself is simpler than many other mainstream languages and this 

simplifies things from a language extension perspective — eg. the lack of persistent 

local stack variables. This choice makes design harder than say extending a functional 

language (eg. surrounding context is more important in Java), but still easier than trying 

to support extensibility in more complex languages. 

5.2.4 Outward Language Simplicity 

A secondary design goal was to provide the flexibility of arbitrary syntax creation in the 

most simple form possible — that is from the perspective of both the macro 

programmers and the macro users. Again, the major reason behind this was to allow for 

easy adoption. 

To this end, it is desirable that macro definition syntax be both as simple as possible and 

as similar to Java method definition syntax as possible. 

Also, programmers should not need to understand the difference between abstract and 

concrete syntax to be able to define or use macros. No artificial barriers should be 

created to differentiate between the concrete and abstract parts of a macro definition.  
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5.2.4.1 Programmer Support 

Of the systems reviewed in Chapter 4 almost all provided a quasi-quotation facility and 

some form of hygiene. Also, most provided guarantees that all code translation would 

result in syntactically correct code (with the exception of JSE). These facilities allow the 

programmer to produce concise code and give some measure of confidence in its 

correctness. It is viewed as essential that Genesis also provides such facilities.  

5.2.4.2 Parser Restrictions 

Each of the reviewed languages that attempted to provide some form of arbitrary syntax 

creation (i.e. only JSE and Maya) are restricted by their choice of parser: 

• JSE provides early structure detection by its use of skeletal syntax trees. These 

force the parse into a set of restricted shapes. 

• Maya provides for a LALR(1) parser (see section 6.5.3.1) and requires the 

programmer to understand why parser conflicts may arise and how to repair 

them. 

Parsers are not discussed in this chapter as Genesis was designed irrespective of parser 

issues. The focus was on providing the most flexible language as possible and to worry 

about how to parse it later. See Chapter 6 for a review of parser theory, and Chapter 7 

for issues relating to the parsing of Genesis. 

5.2.5 Inward Language Simplicity 
 

A secondary design goal is to keep the language definition as minimal as possible. Lisp 

has shown the capabilities of a macro system by defining much of its standard language 

as macros. The Haskell definition contains a minimal core language and merely states 

how the more complicated constructs translate into this core language. Even C++ was 

initially described by a translation to C (i.e. C was the ‘simple’ core language). The 

benefits of this type of design are three-fold:  

• a smaller core language design is easier to reason about, and there is less chance 

of unexpected interactions between language features; 

• if the rest of the language can be defined within your core language, then it 

suggests the core language has a degree of expressive power; and 

• smaller languages require less implementation burden. 
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Of these, the second point is the most important in regard to extensible languages. If the 

majority of the language cannot be expressed via macros, then the macro system is not 

powerful enough. If the language designers are running into restrictions of the language, 

then so will its users.  

5.2.6 Error Reporting 

The reviewed languages varied greatly in their support for the reporting of errors. 

Support varied from ignoring errors completely (eg. MS
2
) to trying to track errors back 

to their source (eg. JSE). Also some languages allow the user to provide their own error 

checking and to explicitly flag errors (eg. Maya). 

Much error handling is typically left as an implementation issue (notable exceptions to 

this are Ada and Java). With an extensible language this is not possible as part of what 

is being defined is compile-time operation. 

Error detection both by the compiler and explicitly by the user is necessary for many 

sophisticated extensions — eg. type-system modifications are not possible without 

being able to perform type-checking with the possibility of flagging new errors. It is 

necessary that Genesis provides strong support for explicit errors. 

While poor error tracking can create adoption barriers for end-users, it is not essential 

for the creation of a successful macro system. It is highly desirable however. Genesis 

provides only limited error tracking support (see subsection 8.5.4). 
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5.3 Macro Definitions 

Macro definitions attempt to take the place of arbitrary context-free grammar rules. A 

macro definition closely resembles a Java method definition and consists of a return 

type followed by a list of arguments.  

Being able to represent context-free grammar rules in this fashion and the exact syntax 

of a macro is best demonstrated by an example. In Code Example 5.1 we present a small 

(incomplete) fragment of a set of BNF rules to define a Java statement and the 

equivalent concept as Genesis macros. Neither the full set of Java statements nor the 

macro implementations are shown. 

statement ::= ifififif ((((expr)))) statement elseelseelseelse statement 
              | while (while (while (while (expr) ) ) ) statement 
              | ... 

(a) Partial Statement Grammar 

macromacromacromacro Statement (if, (, Expression expr, ),  
                 Statement left, else, Statement right) { ... } 
macromacromacromacro Statement (while, (, Expression expr, ), Statement statement) { ... } 

(b) Macro Definitions 

Code Example 5.1: Grammar to Macro Translation 

Macro definitions are easily distinguishable from Java methods by the keyword macro. 

This is mostly for clarity; it would be possible with the current form of Genesis macro 

definitions to do away with this entirely. Unlike Java methods, Genesis macro 

definitions are not named by an identifier, and their formal parameter lists admit varying 

forms and hence require a little further explanation. 

5.3.1 Parameters 
 

While still comma separated, formal macro parameters consist of three components: 

tokens (as they are defined in section 5.4), normal formal parameters, and literal strings. 

The latter are only provided for clarity, as it is possible to define a macro as shown in 

Code Example 5.2(a). 

macromacromacromacro Expression (Expression left, ,, Expression right) { ... } 

(a) Raw Tokens 
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macromacromacromacro Expression (Expression left, ",", Expression right) { ... } 

(b) Quoted Tokens 

Code Example 5.2: Raw and Quoted Terminals 

The intent here is to define a comma operator such as found in C++ [Str00§6.2.2], i.e. 

two expressions can be separated by a comma, both will be evaluated in order, but only 

the result of the second will be the result of the comma expression. For clarity, this can 

be rewritten as shown in Code Example 5.2(b). 

Macro definitions admit both abstract syntax (representing grammar non-terminals) and 

concrete syntax (representing grammar terminal symbols) in their parameter lists, and 

always emit abstract syntax. This frees the macro programmer of much of the 

complexity inherent in fully understanding either grammar. The programmer specifies 

which parts are to be matched exactly (the concrete parts) and which parts are to be 

manipulated (the abstract parts) in a very intuitive fashion. The exact form of the 

abstract syntax is discussed further is section 5.6.1. 

5.3.2 Precedence 

A macro definition may also specify a precedence. If two macro definitions successfully 

match the same series of tokens, a precedence can be used to remove the ambiguity. 

Precedences may range from zero to one inclusive, and are specified (at least in 

definition) to an arbitrary degree of precision. Macros that do not specify a precedence 

are given the default precedence of 0.5. 

In the example of the comma operator from the previous section it would be necessary 

to be able to discern whether commas specify use of said operator or actual parameter 

lists. For example, the preferred option would be to recognise f(x, y) as a call to a 

function with two actual parameters x and y, not a call to a function with one actual 

parameter x,y.  

macrmacrmacrmacroooo Expression (Expression left, ",", Expression right) precedenceprecedenceprecedenceprecedence 0.4 { ... 
} 

Code Example 5.3: Precedence Syntax 

So we would like comma operator to receive a lower precedence, this is done as shown 

in Code Example 5.3. Note that the choice of 0.4 is arbitrary, but using real numbers for 
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the precedence means we have, theoretically, an infinite number of precedences in 

between any two precedences, so arbitrary choices are of little impact. 

The use of explicit precedences is a marked departure from the use of relative 

precedences found in many other systems. Relative precedences are specified by 

relating the precedence of functions (often only operators) to one another. This 

approach is unsuitable for the Genesis language as a group of imported macros are not 

necessarily aware of any other previous macros against which relative precedences 

could be defined. 

5.3.2.1 Precedence by Grammar Modification 

For a given grammar, precedence can be simulated by transforming the original 

definitions into multiple other definitions. This is almost always done for expressions. 

Consider the simple expression grammar in Figure 5.1(a). This grammar is ambiguous 

since for expressions such as 1*2+3 there are multiple interpretations.  

expr ::= expr op expr | (expr) | number 
op ::= ++++ | ---- | **** | //// 

(a) Without Precedences 

expr ::= factor aop factor  
factor ::= term mop term 
term ::= (expr) | number 
aop ::= ++++ | ----  
mop ::= **** | //// 

(b) With Explicit Precedences 

Figure 5.1: Expression Grammar 

Most grammars would introduce new terms and rewrite Figure 5.1(a) as shown in 

Figure 5.1(b) [ASU86]. Although, some grammars would not include aop or mop, and 

would instead expand them in the rest of the grammar. This approach is obviously 

possible with multiple macro definitions. For a large number of operator precedences 

however, this quickly becomes hard to follow. For languages such as Java and, to an 

even greater degree, C/C++ the number of precedences makes their expression 

grammars very difficult to follow. 

One of the desirable properties of an extensible language is that extensions are simple 

for the programmer; to that end the precedence scheme for macros is more desirable 

than forcing them to understand grammar transformations. 
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5.3.3 Associativity 

If we have two consecutive applications of the comma operator then there are two 

possible interpretations, e.g. does x,y,z mean (x,y),z or x,(y,z). For the 

comma operator it simply doesn’t matter, both interpretations will evaluate x, then y, 

then z, and return the result of z, but for many other operators/functions it does matter, 

eg. assignment is right-associative, subtraction is left-associative, etc.  

For the vast majority of macro definitions associativity will never be an issue, but 

nonetheless it is necessary to allow the programmer to choose between these 

interpretations. If we chose to specify right associativity for the comma operator we 

would modify our previous definition to that shown in Code Example 5.4. 

macromacromacromacro Expression (Expression left, ",", Expression right)  
  precedenceprecedenceprecedenceprecedence 0.4 rightassociativerightassociativerightassociativerightassociative { ... } 

Code Example 5.4: Associativity Syntax 

Right-associativity is represented by a modifier switch with left-associativity being the 

default as the vast majority of operator definitions are left-associative. For example, the 

only binary operators in Java that are right-associative are the assignment operators 

[Sun02]. 

5.3.3.1 Associativity by Grammar Modification 

There are similar transformations to those covered in section 5.3.2.1 to handle 

associativity, however for the same reasons (i.e. simplicity for the programmer) it was 

deemed that this approach was undesirable. 

5.3.4 Zero Argument Macros 

It is possible in Extended BNF to define optional components in grammars, for 

example, in Java methods have an optional series of modifiers, and a snippet of the 

grammar for defining methods is shown in Figure 5.2(a): 

method ::= [modifiers] return_type name ((((    ... )))) ... 
modifiers ::= modifier modifiers | modifier 
modifier :: = publicpublicpublicpublic | privateprivateprivateprivate | staticstaticstaticstatic | ... 

(a) EBNF Definition with Optional Components 
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method ::= modifiers' return_type name ( ( ( ( ... )))) ... 
modifiers' ::= modifiers | ε 
modifiers ::= modifier modifiers | modifier 
modifier :: = publicpublicpublicpublic | privateprivateprivateprivate | staticstaticstaticstatic | ... 

(b) BNF Definition with Empty Symbol 

method ::= modifiers return_type name ( ( ( ( ... )))) ... 
           | return_type name (((( ... )))) ... 
modifiers ::= modifier modifiers | modifier 
modifier :: = publicpublicpublicpublic | privateprivateprivateprivate | staticstaticstaticstatic | ... 

(c) BNF Definition with Fully Expanded Options 

Figure 5.2: Method Definition Grammar 

Figure 5.2(b) shows the standard approach for representing this in normal BNF: remove 

the optional part and introduce an ε, which specifies that the rule can be satisfied by 

nothing. 

This use of ε would correspond to a macro definition with no arguments. This is not 

supported at this time. This does not restrict the power of the resultant system, it merely 

forces the programmer into expanding out the possibilities. For example an alternative 

BNF definition not using ε is shown in Figure 5.2(c). 

This becomes more of a problem the more optional components a particular definition 

has, for example a method declaration actually has an optional list of modifiers, an 

optional list of formal arguments, an optional throws clause, and in the case of 

abstract methods, an optional body. This situation would require sixteen separate 

definitions were it to be handled in this form. 

Even if this situation was always necessary it is not a significant deficiency, but as we 

shall see in section 8.7.2, the system is powerful enough that we can define macros to 

alleviate this forced repetition.  

5.3.5 Modifiers 
 

No standard Java modifiers are supported for macros. All macros have effectively 

public style visibility. There is one new modifier, delayed,  that modifies the 

normal order of evaluation of a macro (see section 5.3.8). 

5.3.6 Exceptions 
 

Macro definitions may have a throws clause just like normal Java functions. The 

language defines an abstract class ParserException that inherits from 
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Exception, and all exceptions in this throws clause must extend this class. For 

explanation of exceptions provided in the standard environment, see section 5.6.2. 

5.3.7 Macro Body 

The body of a macro is standard Java code. Provided as standard is a set of classes that 

provide a full Java abstract syntax. The body of a macro uses these standard classes to 

create Java programs. This is not a new approach (see [Bak01], [WC93], and [SPJ02]) 

and when using just this technique the code produced is relatively cumbersome. 

“This style of code plagues meta-programming systems.” [WC93] 

Many extensible systems try to provide cleaner support for the body of macros with the 

addition of both quasi-quotation and unquoting. This is always done by providing direct 

language support.  

In Genesis, no direct language support has been provided for these forms, instead the 

language itself is expressive enough to define these as extensions (see section 8.7.1). 

5.3.8 Evaluation Order 

Macro expansion occurs either in an inside-out or outside-in fashion. All inside-out 

macros are expanded before the outside-in macros. To provide this choice to the user, 

macros can use the modifier delayed, which tags the macro for outside-in evaluation. 

The reasons behind this approach and a more comprehensive description of macro 

evaluation order is given in section 5.5.2.  

5.3.9 Placement and Scope 

Macros can appear only in the same locations as normal Java methods. They are 

associated with the enclosing class in a similar fashion to methods. Other classes gain 

access to macro definitions through an extension of the normal import mechanism (see 

section 5.5.1). Unlike normal methods, however, all macros are accessible with 

qualification: i.e. macros do not need to be accessed via objects or in the case of static 

methods via a class name.  

Whilst not currently prevented, it remains to be seen whether there is value in defining 

macros for inner classes or anonymous classes. It is not clear how these definitions 

would be accessed with the current system. 
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5.3.10 Grammar 
 

In addition to the standard Java (Java 1.4 that is6) syntax, only the new grammar rules 

shown in Figure 5.3 are introduced for macro definitions and add the macro declaration 

rule to the list of class member declarations. 

class_member_declaration ::= macro_declaration | ... 
 
macro_declaration ::= [delayeddelayeddelayeddelayed] 
                      mmmmacroacroacroacro return_type identifier (((( [macro_argument_list] ))))    
                      [precedenceprecedenceprecedenceprecedence float_literal] [rightassociativerightassociativerightassociativerightassociative]  
                      [throws_clause] 
                      method_body 
 
macro_argument_list ::= macro_argument (,,,, macro_argument)* 
macro_argument ::= formal_argument | token | string_literal 

Figure 5.3: Genesis Grammar 

In this grammar the throws_clause is a standard Java throws clause. Four new 

keywords have been introduced, although, as demonstrated in the following section, 

Genesis does not have keywords in the traditional sense. However, in most macros the 

only keyword that would appear is the macro keyword. 

New grammar rules are not required for macro calling as each new macro that is loaded 

(via the import mechanism, see section 5.5.1) will add itself directly to the grammar.  

Indeed, it can be considered that the only modification to Java is of a new compiler, 

even the syntax for defining new macros is loaded as an extension to the compiler. In 

fact, the very substance of Java1.4 is loaded by default, but it would be possible to load 

an entirely different group of classes to begin with (see section 8.6.1 for an example of 

this). 

                                                

6 At the time of implementation of Genesis, Java1.4 was chosen over the fledgling Java1.5. Some 

improvements to Genesis could be achieved by migration to Java1.5 — see section 10.2.4.  
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5.4 Tokenising 

Tokenising is the approach of grouping the raw characters of a source file to allow for 

easier parsing. For a description of tokenising see subsection 6.3.3.  

When breaking up any original source file it is desirable that we place as few 

restrictions as possible on user defined macros that will ultimately work with this 

tokenised version. Traditional tokenising methods tend to make early decisions on the 

exact nature of tokens, eg. literal strings, real versus integer numbers, keywords, etc.  

An extensible programming language does not facilitate early decision making as little 

can be guaranteed about the purpose of any given lexical structure. 

Real numbers serve as an appropriate example of the inherent difficulties: if the 

tokeniser matches digits.digits or even simply .digits as a real number, then 

macros that include either of these patterns as part of their definition would be 

impossible to define without treating that subsection of their definition as a “real” token. 

Worse still, suppose we have two macros consecutively, the first one ending in “.”, the 

second beginning with digits. These use of two macros would be rendered 

impossible by the early matching of real numbers. 

Of particular interest here is the case of keywords. It is undesirable to allow users to 

define their own keywords as keywords traditionally can only appear in exacting 

locations. For example, we cannot use a keyword as an identifier, if we allowed users to 

define their own keywords, then code that used those keywords would break upon 

attempting to incorporate these new macros. 

The next few sections describe the development of the tokeniser with the emphasis on 

making it as flexible as possible. 

5.4.1 Tokenising Approach Overview 

Each source file is broken into a series of tokens, the only information removed is the 

position of white space (this itself can be considered a sizeable restriction of flexibility, 

see section 10.2.1 for a possible technique to improve this). 
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The basic idea is to strip all source files of comments, and tokenise the entire file 

treating white space and the change from alphanumeric characters to symbolic 

characters as separators as shown in Figure 5.4. 

ifififif (frogs>toads) ++x; elseelseelseelse y -= 10; 

(a) Source Code 

if ( frogs > toads ) ++ x ; else y -= 10 ; 

(b) Tokenised Version 

Figure 5.4: Simple Tokenising 

This simple tokenising approach needs some refining to handle symbols and some other 

special cases. 

5.4.2 Special Cases 
 

Both string and character literals are treated as exceptions to this basic strategy. These 

literals must be detected by the tokeniser and subsequently treated as a single token. 

Early handling of character literals is perhaps not strictly necessary (although spaces 

could make character literals unreadable), but string literals would suffer badly as a 

result of the removal of whitespace. 

The only restricted symbols are those that are already permitted in Java identifiers, 

namely the dollar-sign and underscore. When encountered, these symbols are essentially 

considered to be “alphanumeric” characters. 

5.4.3 Symbol Handling 
 

It was clear in Figure 5.4 that when multiple symbols characters occurred in sequence 

that they were part of a single symbol (eg. ++ or -=). Consider however the code 

fragment and its associated tokenised version in Figure 5.5. 

x+=(y4++-zebras)*-400.3; 

(a) Source Code 

x +=( y4 ++- zebras )*- 400 . 3 ; 

(b) Tokenised Version 

Figure 5.5: Multi-character Symbol Grouping Tokenising 

Multiple concurrent symbolic characters have been combined into symbolic tokens; 

treating these symbols as a single token is not what programmers expect. 
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5.4.3.1 Traditional Approach 

Most systems disallow the creation of new operators and consequentially sidestep this 

problem. Such languages must precisely specify what multiple occurrences of symbolic 

characters resolve to. For example, in the C/C++/Java program fragment x+++y, the 

tokeniser must consistently return either a post-increment and an addition; or an 

addition and a pre-increment. 

For those systems that allow user-defined operators they typically limit the length of 

operators and treat some symbols as special. These special forms are typically the 

bracketing forms (eg. (, [, and {) and separators (eg. , and ;). Further to these 

restrictions, such systems usually require explicit spaces between operators, or at least 

between user-defined operators.   

These approaches are not appropriate to our extensible language design —  unlike most 

languages, Genesis’ concept of a symbol is extended to include bracketing forms and 

separators/terminators. Any restriction at all to the symbols (and combinations of 

symbols) allowed in a macro definition could have unforeseen consequences at a later 

stage. 

5.4.3.2 Explicit Spaces 

In respect to construction of the tokeniser, the simplest solution would be to require the 

programmer to place explicit spaces between all symbols that are meant to be separate. 

Whilst an attractive solution for simplicity reasons, its use is too impractical, especially 

to those familiar with languages without such restrictions. For example, programmers 

are unlikely to remember to leave a space between consecutive parentheses. 

5.4.3.3 Single-character Symbols 

Another approach to support arbitrary symbol creation is to recognise only single 

character symbols, and to introduce a new grammar rule to provide for multi-character 

symbols at the parsing stage. 

The code fragment from Figure 5.5(a) would simply tokenise as shown in Figure 5.6 

x + = ( y4 + + - zebras ) * - 400 . 3 ; 

Figure 5.6: Single-character Symbol Output Tokenising 
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The new grammar rule would simply take two consecutive symbols and combine them 

into one symbol, i.e. symbol ::= symbol symbol. 

However, this approach does not distinguish between multi-character symbols and 

multiple consecutive single character symbols, eg. “--” and “- -”. This is extremely 

undesirable and worse can lead to ambiguity as the user would never be able to specify 

that consecutive symbols are not to be treated as one. 

This situation may be possible to rectify by allowing whitespace between symbols to 

pass through the tokeniser, where carefully chosen grammar rules could both remove 

the whitespace and produce all possibilities of symbols. This was ultimately rejected 

due to the complexity it would introduce and the parsing method used provides a simple 

solution for symbols.  

5.4.3.4 Symbol Combinations 

The most flexible approach should allow the user to provide for the removal of 

ambiguity explicitly by the insertion of whitespace between symbols whilst providing 

all possible combinations of multi-character symbols. Normal grammar rules would 

then be used to decide the correct interpretation of the multi-character symbols.  

Returning many possible interpretations of character sequences is conceivable for other 

constructs (such as real numbers) but there is no compelling reason to do so. It is 

particularly desirable for symbols due to both the problems it solves with the 

recognition of multi-character symbols and the high frequency of consecutive symbols 

in typical source files.  

The code fragment from Figure 5.5(a) would tokenise as shown in Figure 5.7.  

 

Figure 5.7: Multi-character Symbol Combinations Tokenising 

The choice of grammar rules would be responsible for choosing the “correct” symbol 

combinations, namely: += (, ++ -, and ) * -. 

The result of this is similar to that of the technique using single-character symbols and 

explicit grammar rules, but without the possibility of introducing ambiguity. 

+ = ( 

+= ( 

+ =( 

+=( 

+ + - 

++ - 

+ +- 

++- 

) * - 

)* - 

) *- 

)*- 

x y4 zebras 400 . 3 ;   
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Obviously the number of possible combinations of characters within a multi-character 

symbol grows exponentially with its length, but it seems that occurrences of long 

symbol sequences within source files is rare and almost all are large sequences of 

parentheses as a result of heavily nested expressions. 

This approach is significantly different to traditional tokenising mechanisms that always 

uniquely categorise each sequence. This choice of highly flexible lexical analysis alone 

may have ultimately led to the necessity of a generalised parser, but as we shall see 

(section 6.6) a generalised parser has other benefits as well.  

5.4.4 Tokeniser Algorithm 

The transition diagram in Figure 5.8 summarises the function of the tokeniser. 

The character groups are defined as follows: 

• Alphanum: all alphabetic and numeric characters as well as the underscore and 

dollar sign symbols. 

• Symbol: all symbolic characters except for the underscore and dollar sign. 

• Whitespace: tab, space, newline, endline, etc. 

Upon reaching end state 4, 6, 10, 13, 15, 17, or 19, the tokeniser performs the 

appropriate action and falls back to the start state (state 0). 

States 1, 9, and 11 require further explanation. Each of these are essentially failure 

states for whichever rule is currently being followed, and the next state depends on 

which characters have been previously detected. In each case (except state 1) the 

preceding characters may be a mix of both alphanumeric characters and symbols, but 

always starting with a symbol. In each of these cases the tokeniser falls back to symbol 

handling (state 7) from the beginning of the sequence. 
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Figure 5.8: Tokeniser Transition Diagram 
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5.5 Macro Expansion 

In order to allow the programmer access to previously defined macros, Genesis provides 

both an extension to the standard Java import mechanism and the specification of a 

precise evaluation order for the grammar. 

5.5.1 Import Mechanism 

Before usage, macros must first be imported via the standard import mechanism. Any 

macros associated with an imported class have file scope. 

Each directly imported class (i.e. those import declarations not ending with “.*”) will 

be examined to see if it has associated macro definitions. If so, each one of these macros 

will be added to the current grammar. This is the only method for bringing macros into 

scope. 

Each macro definition is associated with a precedence and an associativity. It is possible 

to add two separate macros to the grammar that differ only by their precedence.  

Imported macros have public visibility for the entire file being compiled. 

5.5.2 Expansion Strategy 

The basic idea is that macros have their bodies executed when their usage is detected, 

and the macros themselves explicitly build the parse tree. There are some extensions to 

this basic idea that allow for some of the more powerful macros to be created. 

No guarantee is given to exactly which macros will be executed in the entire parsing 

process, only to that of the order of execution of macros that comprise the final parse 

tree. In this way we leave the exact parsing technique open to a variety of speculative 

techniques. The perfect parser (if there is such a thing for this language) would only 

execute those macros that make up the final parse tree in the expected order and no 

others, but it remains to be seen if this is possible. Indeed, the implementation provided 

in Chapter 8 performs many unused macro expansions. 

5.5.2.1 Evaluation Order 

As described in section 5.3.8, macros are divided into two groups: non-delayed and 

delayed. the expansion of the former group occurs first in a leftmost-innermost (inside-



CHAPTER 5: GENESIS LANGUAGE DEFINITION   MACRO EXPANSION 

 •  147  •

out) fashion and the latter group’s expansion follows in a leftmost-outermost (outside-

in) fashion. 

Outside-in macros effectively have their execution delayed until the surrounding context 

has been fully determined, and as a result they have access to compile-time static types 

and the entire structure of the code contained within the current file. 

The usage of these macros within code is still detected in an inside-out fashion, and 

their type information still guides the parse, it is merely their expansion that is delayed. 

So if presented with series of nested constructs, the evaluation would expand macros 

from the inside out, and then any delayed macros from the outside in. The exact reasons 

behind this strategy are discussed in the following subsections. 

5.5.2.2 Construction Versus Manipulation 

In development it was noticed that macros tended to serve two basic purposes, either 

they performed manipulations on syntax trees, or they simply constructed these trees. 

This is generally the case with parsers for complex languages, particularly those that 

produce C, or some other high-level language, as an intermediatory; a large proportion 

of grammar rules collect information to allow construction of more complex forms 

further down the parse. 

Take for example, the printf function as described in section 3.4.1.3. It relies on the 

preceding context being available in order to be able to type-check its arguments, and it 

also relies on these arguments being provided (or more accurately: the expression trees 

that represent its arguments).  

For the sake of argument assume that we have to explicitly generate facilities to specify 

the arbitrary length list of arguments (in reality we can simply reuse the standard classes 

for actual parameters), then the macro definitions (minus implementation) required are 

as shown in Code Example 5.5. 

macromacromacromacro Statement (printf, (, LiteralString s, ",", Arguments args, )) { ... } 
 
macromacromacromacro Arguments (Expression arg) { ... } 
macromacromacromacro Arguments (Arguments args, ",", Expression arg) { ... } 

Code Example 5.5: printf Macro Prototypes 

The class Arguments and the two macros that produce objects of it are used to build 

up a list of expressions — i.e. constructing a parse tree. The printf macro takes a 
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number of arguments and performs a complex code-generation procedure — i.e. 

manipulating a parse tree. 

As we saw in Chapter 4, most macro systems provide for manipulation, but either only 

allow the use of pre-built parse tree elements, or provide an entirely different 

mechanism for introducing construction. 

5.5.2.3 Outermost Versus Innermost Evaluation 

Both construction and manipulation have different requirements for the preferred 

evaluation order. 

Take the printf example again: if all macros are evaluated outermost first, then the 

macros to construct this expression list will not have been executed, we will know that 

there is a compilation path that results in an Arguments class being created, but we 

will have not done it yet. This clearly is not what we intended. 

If we evaluated all macros innermost first, then a simple printf usage would function 

as we expect. However, consider a use of the forall function (as defined in section 

3.4.1.3) in Code Example 5.6(a). 

forallforallforallforall (String s) inininin list { printf("%s", s); } 

(a) forall and printf 

String[] array = ...; 
forallforallforallforall s inininin array { printf("%s", s); } 

(b) Specialised forall and printf 

Code Example 5.6: Nested Macro Use 

With innermost evaluation we do not know the type of s when we expand printf. 

This may not be immediately apparent, because there is obviously a declaration for a 

variable s — but the forall has not yet been expanded (indeed, it may not even have 

been detected), and hence this declaration has not be translated to Java code, and as a 

result is not examinable by the type system
7
.  

Indeed, if we had defined a very specialised version of forall for arrays that did not 

require the user to specify the type of the variable (as arrays maintain their typing 

                                                

7 It may be possible to create a system in which macros can be interrogated about the type of their 

arguments even when they have not been expanded, but this idea is beyond the scope of this work. 
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information), then the problem is more obvious as is shown in Code Example 5.6(b). 

The variable s has no declaration available at this time, it is instead created as part of 

the macro. 

5.5.2.4 Non-destructive Restriction 

As previously discussed, the expansion strategy concerns itself only with the production 

of a final parse tree. Macros that contribute to this parse tree are guaranteed to be 

expanded in the order specified. 

Apart from the macros that comprise the final parse tree, an implementation of the 

Genesis language is free to speculatively apply any macro to a matching segment of the 

input even if the resultant application is finally discarded.  

To provide for this, macros should not destructively update their arguments as they may 

be used in future expansions. 

This is not as restrictive as it may seem, as it is typical of meta-programming systems to 

produce code that doesn’t actually modify its arguments. Usage of quasi-quotation is 

true to this idea; it builds new programs from old components, it doesn’t modify any 

arguments it is given. 

5.5.2.5 Standard Usage 

All of the standard macros that create the Java abstract syntax use non-delayed 

innermost evaluation. Generally, this is what the macro programmer intuitively expects; 

if programming a macro that operates on expressions, the structure of the expression is 

expected to be available. Allowing most macros to use innermost expansions allows the 

creation of sophisticated constructs (see sections 8.6, 9.2, and in particular 9.2.6). 

Early innermost evaluation is the default, as it is the most common usage. A macro can 

be tagged as delayed in order to allow it access to the surrounding context. In the 

printf example, the two macros that produce the argument list would not need to be 

delayed, only the printf macro would be, as it requires type-checking of its 

arguments. If all that was required was an unchecked C-style version, the delayed 

modifier could be removed. 
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Standard library extensions to Genesis simplify both the creation of early macros and 

delayed macros. In particular, we introduce an extension to match compile-time types in 

section 8.7.2.4, that means that most explicit uses of the delayed keyword disappear. 

5.5.3 Macro Matching 

Macros are matched based on the run-time types of parse tree fragments. Unlike Java 

which has strict rules for eliminating ambiguity, Genesis allows a single macro to match 

without raising an error even if two macros would be similarly appropriate. For 

example, consider the analogous Java code fragment in Code Example 5.7. 

intintintint f(Object x, String y) ... 
intintintint f(String x, Object y) ... 
 
... 
 
String s, t; 
f(s, t); 

Code Example 5.7: Ambiguous Java Declarations 

This example causes a compile-error due to the ambiguity. The complier is unable to 

decide which method is the most appropriate. Genesis resolves such conflicts, when 

they occur in macro matching, in favour of the most recently imported/defined macro, 

even if the macros were declared in the same file. This would appear to be appropriate 

as it allows macros to override each other. It may prove to be necessary to provide a 

warning to guard against unexpected macro overridings. 

Genesis allows macros with the same arguments to co-exist within the same grammar. 

A variety of techniques are used to resolve ambiguities that arise from such multiple 

similar definitions (see subsections 5.3.2, 5.5.4, and 5.5.6). 

5.5.4 Precedence 

Macro precedence is used to resolve conflicts of ambiguity where appropriate. 

Precedence is only applicable for macros that have exactly the  same return type. 

When resolving conflicts, the macro with the highest precedence contributes to the final 

parse tree. If a macro throws a non-serious exception (see section 5.5.6 for a description 

of the types of exceptions that can be thrown) then a lower precedence macro (or set of 

macros) can take its place. 
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Precedence conflicts are handled differently depending on whether the matched 

sequence implies an ordering conflict or a specialisation: i.e. if the rules preceding the 

conflict are the same or different. 

5.5.4.1 Same Sub-rules 

The following simple arithmetic example demonstrates the case of all sub-rules leading 

up to the precedence conflict being identical. Here we demonstrate two possible parses 

of the expression 3+4*6: 

 

Figure 5.9: Same Sub-rule Precedence 

This example is the classic case of basic arithmetic precedence. The left diagram is what 

is usually expected, the multiplication should take precedence. In this example the 

conflict is detected on the left when we are matching the addition part, and on the right 

when we are matching the multiplication (i.e. whichever rule is at the root of the tree). 

So at the point of detection, it is necessary to decide precedence in favour of the lower 

precedence rule, as the higher precedence rule should be matched earliest. 

In summary, for matching sub-rules, we break precedence conflicts in favour of the 

lowest precedence rule. 

5.5.4.2 Different Sub-rules 

The following matrix specialisation example demonstrates the case of different sub-

rules leading up to a precedence conflict. In Figure 5.10 we examine two possible parses 

of the expression a+b*c. 
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Figure 5.10: Different Sub-rule Precedence 

This is a standard example of how macros can allow users to create their own 

optimisations. The basic idea is that we catch repeated matrix operations and perform 

them in a more efficient fashion. In this case the MatrixAddMul matches on a matrix 

addition followed by a multiplication and would be given a higher precedence than the 

standard infix operators. The sub-rules that make up the tree structure are clearly 

different in each case, and the precedence should be resolved with the macro that is at 

the root of each parse tree with the higher precedence.  

5.5.5 Associativity 

The following simple arithmetic example demonstrates an associativity conflict for the 

simple expression 3+4+6: 

 

Figure 5.11: Associativity 

The Genesis parser will resolve such conflicts in favour of the left associative version 

(i.e. the left-hand diagram), unless the macro has explicitly specified it is right 

associative. 
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Associativity in the Genesis definition applies only to binary definitions as these are 

common in most programming languages. Whilst it is possible to extend the concept of 

associativity to more complicated definitions, this necessity is rare. An example of such 

a form is the ?: conditional operator. For the time being, such occurrences must be 

handled explicitly by the user. 

5.5.6 Exceptions 
 

As described in section 5.3.6, macros can throw exceptions to signal various kinds of 

errors.  

The effect on the parse tree of a macro throwing an exception depends on the type of 

exception being thrown. Exceptions of the type Warning or Error will only be 

visible to the end-user if the macro would have been part of the final parse tree. A 

QuietParserException signals that this macro failed in such a fundamental 

fashion that it should never be considered to be a part of a parse-tree. 

Typically, delayed macros are more likely to raise warnings or errors, and non-delayed 

macros will make extensive use of quiet exceptions. A typical use of quiet exceptions is 

in classifying tokens in the earliest stages of parsing.  

As we will see in section 5.6.2, one of the most basic kind of error that can be raised is 

ConditionsNotMet. If this error is thrown, the parser will not inform the user and 

will merely attempt to find another macro that will match the subsequence currently 

being examined.  

Delayed macros cause a few more complications as it can not be determined in the early 

stages of the parse whether or not they will cause exceptions. Any other possibilities 

that successfully match the same input as a delayed macro must be maintained in case 

the delayed macro fails. 

5.5.7 Restrictions 
 

It is unclear how to parse mutually recursive macros. Neither can be fully parsed 

without previously parsing the definition of the other. For this reason alone, a macro 

cannot be used within the same file it is declared; standard methods are unaffected by 

this restriction.  
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For general simplicity macros can only be used outside the file in which they are 

declared. While this is perhaps overly restrictive it creates less problems (and less 

severe problems) than it removes. 
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5.6 Standard Environment 

Just as the Java language definition must include descriptions of string classes (eg. 

String, StringBuffer, etc.) and exception classes (eg. Throwable, 

Exception, etc.) as they are used within the language itself for such things as literal 

strings, string concatenation, and run-time errors, the Genesis language definition must 

include descriptions of a number of similarly required facilities: 

• the abstract syntax that macros both use as arguments and must produce as a 

result of application; 

• the standard exceptions classes that can be thrown by macros; 

• the standard facilities for compile-time type checking; and 

• a macro reflection mechanism. 

5.6.1 Abstract Syntax Classes 
 

Whilst the abstract syntax classes are too numerous to examine in full detail (see 

Appendix A), the form of the standard abstract syntax still requires a little explanation. 

It is possible to provide an abstract syntax that admits incorrect program — it is 

normally the job of the parser of the concrete syntax to ensure that this does occur. A 

great deal of care has been taken to design the abstract syntax in such a fashion that 

syntactically incorrect programs cannot be generated, while still providing as much 

simplicity as possible. 

All Genesis abstract syntax classes must implement the AbstractSyntax interface. 

This is an empty interface that merely gives all classes a common starting point rather 

than relying on Object. It adds a certain level of trust to objects that are created by 

macros, and at least protects us from simple class of errors such as returning a Java 

String object where a LiteralString was intended. 

The bulk of the hierarchy portion of the Genesis abstract syntax are interfaces, with 

classes only appearing as the abstract syntax becomes quite specific. The following 

diagram represents all classes and interfaces that create the hierarchy. The diagram has 

classes represented in bold type and all other types are interfaces. 
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Figure 5.12: Partial Abstract Syntax Type Hierarchy 

Like AbstractSyntax, the majority of interfaces here are empty, and are merely to 

create this usable hierarchy. 

These interfaces are used for abstract syntax classes to specify their membership into 

some set; for example, instance variable declarations, blocks, and inner classes can all 

be considered to be a ClassMemberDeclaration. This replaces the traditional 

necessity of using some sort of union style datastructure to provide this functionality. 

Each of these classes and interfaces (with the exception of BlockStatement) is 

inherited from by other classes to provide specific functionality; these child classes are 

not shown here to facilitate the understanding of the underlying structure. For example, 

MethodDeclaration has children to represent macros, constructors, and abstract 

methods.  

The hierarchy becomes a little more intertwined than this diagram suggest. For example, 

the abstract method class extends MethodDeclaration and implements 

InterfaceMemberDeclaration.  

A full list of Genesis abstract syntax classes and an associated type hierarchy is 

available in Appendix A. We examine the use of the Typeable interface in section 

5.6.3. 

AbstractSyntax 

ClassMemberDeclaration BlockStatement 

VariableDeclaration Expression MethodDeclaration TypeDeclaration Statement 

Literal StatementExpression LeftHandSide 

Typeable InterfaceMemberDeclaration 
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5.6.2 Exceptions 
 

Macros have the ability to throw exceptions to signal compile-time failure. All 

exceptions thrown by a macro must inherit from a provide ParserException class.  

 

Figure 5.13: Exception Type Hierarchy 

In addition to this base abstract class, defined by default are three children of this class 

Warning, Error, and QuietParserException. Macros that wish to fail without 

signalling the programmer would throw an exception that has 

QuietParserException as its base — this is particularly useful in the early stages 

of parsing when classifying tokens as symbols, identifiers, or the various categories of 

literals. 

Two more standard exception classes are provided: TypeMismatch allows type-

checking errors to be raised explicitly by the macro programmer and 

ConditionsNotMet allows a macro to define extra conditions on its applicability to 

a given set of inputs. The use of the latter allows a context-free grammar to be 

augmented with further conditions and can even be used to control parsing of context-

sensitive grammars. 

5.6.3 Compile-time Typing 
 

Compile-time typing is provided via the Typeable interface shown in Figure 5.12. 

This interface defines a single method type which takes no arguments and returns a 

Type object if successful, or null if the type is undeterminable. Java reflection is 

heavily utilised for the discovery of types of members variables and methods. 

ParserException 

QuietParserException Warning Error 

ConditionsNotMet TypeMismatch 
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Calculating the type of an object may involve recursive calls in order to type some of its 

members. For example, to correctly type a method invocation we must first type all of 

the expressions that make up its actual parameters, and these in turn may require further 

typing. 

The Type class is a wrapper for the Java reflection class Class with some added 

functionality. Some examples of these extensions are: 

• an extended forName method that correctly handles primitive types and checks 

all imported classes for matching names; 

• construction of types from member names and associated information; and 

• construction of corresponding array types from a given object. 

5.6.4 Macro Reflection 

On occasion it can be desirable to manually execute the body of a given macro — 

particularly when working without the quasi-quotation extension (see section 8.7.1). To 

this end a macro reflection facility is provided. The current implementation allows for 

the use of the normal Java reflection system (but at some cost to the user). In particular, 

the implementation details of macros would be overly exposed. 

The macro reflection method attempts to mimic the interface style and operation of the 

getMethod method from Class. Unfortunately, the Java reflection class Class is 

final, so macro reflection must be provided as a utility. Additionally, macros have no 

name, so all matching is performed on the types of the arguments. Parameter lists are 

slightly more complicated due to the possibility of terminals, and a return type must be 

specified. 

publicpublicpublicpublic staticstaticstaticstatic Method getMacro(Class parent, Class returnType,    
  ClassOrTerminal[] parameters)  
        throwsthrowsthrowsthrows NoSuchMethodException, SecurityException ... 
 
publicpublicpublicpublic staticstaticstaticstatic Method getMacro(Class returnType, ClassOrTerminal[] parameters)  
        throwsthrowsthrowsthrows NoSuchMethodException, SecurityException ... 

Code Example 5.8: Macro Reflection Methods 

An additional macro reflection utility is provided that searches all imported classes for a 

suitable definition.  

 



 159 

6 Review of Parsers 

Review of Parsers 
 

 

CHAPTER 
 

1 

2 

3 

4 

5 6 

8 7 

9 

10 

defining 

extensibility 

introduction 

assessing 

extensibility 

reviewing 

extensibility 

 

reviewing 

parsing 

 

implementing 

a parser 

 

designing 

the language 

 

implementing 

the language 

 

evaluation 

 

conclusion 

 



CHAPTER 6: REVIEW OF PARSERS   OVERVIEW 

 

 •  160  •

6.1 Overview 

On the path to the implementation of the Genesis language we first review traditional 

parsing methods. Definitions of macros in the Genesis language have few limitations 

and the choice of parser is critical to the success of any implementation.  

Readers well-versed in parsing theory may choose to defer reading of this parser review 

chapter (and, perhaps, the new parser design in chapter 7) and move straight to the 

implementation of the Genesis language (chapter 8). 

As will become clear, while they are efficient, the methods used for the implementation 

of the majority of programming languages are not well suited to extensible 

programming languages. Compile-time modification of the underlying grammar is 

particularly difficult to incorporate within traditional implementation techniques. Also, 

such techniques require restrictions to be placed on the underlying grammar and these 

restrictions often impose a heavy burden of understanding of the parser creator — in 

this case, the end-user of the language.  

This chapter begins with an introduction to grammars (section 6.2) and in particular, 

representations of context-free grammars are examined in detail. Grammar 

classifications are examined in order to introduce a basis for comparison of traditional 

parsing methods. 

Following a brief general introduction to parsers in section 6.3, we look at often used 

top-down and bottom-up parsing methods (sections 6.4 and 6.5). Emphasis is placed on 

the grammar restrictions that are inherent in these techniques. Almost all real-world 

compilers use one of the techniques from these sections (or a minor variant). 

In section 6.6 we look at general parsing methods that can handle a larger class of 

grammars (even ambiguous ones) than the previous techniques. 

Finally, in section 6.7, we end with a summary of the relative merits of the parsers and 

examine each parser’s suitability to extensible languages. 

6.1.1 Extensible Language Parsing 

A parser for an extensible language suffers from more constraints than standard 

programming languages. The grammar of a language is typically fixed and as a result, 
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many optimisations can be applied to produce a successful parser. It is expected that an 

increase in parser flexibility leads to a corresponding decrease in efficiency. 

A modifiable grammar requires consideration of two issues: the level of parser 

knowledge that is required of the programmer in order to modify the grammar, and the 

ability to modify the grammar during a parse. 

6.1.1.1 Usability 

The primary basis for judging a parser suitability for parsing an extensible language is 

whether the user must understand the parser. As programming languages are 

traditionally fixed entities without users modifying their syntax, it is typical to modify 

the grammar to suit the parser: 

“In practice, grammars are often first designed for naturalness and then adjusted 

by hand to conform to the requirements of an existing parsing method.” 

[GJ90§3.6.4, pp. 75] 

This is unacceptable for use in an extensible language. The macro programmer should 

be shielded from such awkward manipulations. 

Typically, parser efficiency is premium amongst design issues and effort is spent in 

ensuring this above all other concerns. Indeed, efficiency concerns need only be 

addressed once as the grammar is unchanging. 

“… making [an efficient] parser for an arbitrary given grammar is 10% hard 

work; the other 90% can be done by computer.” [GJ90§3.6.4, pp. 75] 

We consider the sacrifice of efficiency essential in order to remove the burden of hard 

work from the macro programmer. Ideally, we would not need to make this choice, but 

as a starting point for an extensible language we should not unduly restrict our parser. 

6.1.1.2 Mid-parse Grammar Modification 

There is another major issue that needs addressing to suit Genesis’ parsing requirements 

(and the same is also true of other similar extensible systems).  

It is clear that an extensible parser must be capable of handling an augmented grammar 

and then use this grammar to parse a given input. In addition to this, extensible 

languages need a mechanism for specifying which modifications are to be made to the 



CHAPTER 6: REVIEW OF PARSERS   OVERVIEW 

 

 •  162  •

grammar. This is typically done with a mechanism similar to that used to import 

functions or classes from libraries. 

In Genesis, this mid-parse grammar modification the grammar occurs at the level of 

import statements contained in the file. The parsing of symbols beyond the import 

statement must be performed with the amended grammar. Maya has a special use 

keyword that modifies the grammar within the current scope. 

Correct handling of such mid-parse grammar modifications is essential to the correct 

function of extensible languages. 

As will be shown, the modification of a grammar midway through a parse places proves 

to be a harder requirement to meet than reducing the burden on the programmer. 
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6.2 Grammars 

Grammars are common-place in the field of language design and are used so often that 

little thought is given to their structure. In this section, we first define the basic structure 

of grammars and introduce some varying classifications of grammars before looking at 

grammars traditionally used in language description. 

6.2.1 Grammar Structure 
 

A grammar (or generative grammar) is a set of rules for string transformation. Each rule 

consists of a left-hand side set of symbols and a right-hand side set of symbols. The 

general form of a grammar rule is shown in Figure 6.1; a set of these rules forms a 

grammar. 

symbol1 + ... + symboln -> symboln+1 + ... symbolm 

Figure 6.1: Generalised Grammar Rule 

To generate a string in the grammar a single start symbol is chosen and rules are applied 

(in any order as many times as necessary) to rewrite the string. The language of a 

grammar is the set of all strings that can be generated in such a manner.  

The reverse of this process can be applied to a given string to test whether or not it is a 

member of the grammar’s language. 

6.2.2 Chomsky Hierarchy 
 

The Chomsky hierarchy [GJ90] classifies grammars in order of decreasing order of 

power (and increasing ease of use), the four types of grammar differ in the type of 

rewriting rule that they allow as shown in Table 6.1 (summarised from [GJ90]). 

Table 6.1: Chomsky Hierarchy 

Benchmark Summary Description 

Type 0: Unrestricted Any number of symbols can be transformed into any 

other number of symbols — there are no restrictions on 

the form the grammar rules can take. Unrestricted 

grammars are extremely powerful, but too difficult to 

use for most purposes. 
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Type 1: Context-sensitive 

(transformational grammar) 

The length of the left-hand side must be less than or 

equal to the length of the right-hand side. 

Type 2: Context-free 

(phrase structure grammar) 

All left-hand sides must contain a single non-terminal 

symbol. The right-hand side is still free to contain as 

many symbols as necessary. 

Type 3: Regular 

(right linear grammar) 

All left-hand sides must contain a single non-terminal 

symbol. The right-hand side may only contain either 

one non-terminal and one terminal symbol; or a single 

terminal symbol. Regular grammars are not powerful 

enough to conveniently describe most languages, but 

sometimes are used for subsets of languages due to the 

ease of construction of fast parsers. 

Type 4: Finite-choice No non-terminals are allowed on the right-hand side. 

Finite-choice grammars are not in the original 

Chomsky hierarchy but are included for completeness 

due to their frequent use as an end-case. 

6.2.3 Context-free Grammars 

The context-free grammars (Type 2 Chomsky) are generally considered to be the best 

trade-off between expressiveness and easy parser construction. These are the typical 

grammars for language specifications — all grammars seen in the work are context-free 

grammars (written in BNF or EBNF as discussed later in this subsection).  

Most parsers are written to operate on context-free grammars. Indeed such grammars 

are preferred for a variety of reasons (summarised from [ASU86]): 

• context-free grammars provide a relatively comprehendible, precise 

specification of the syntax of a language; 

• certain classes of grammar lend themselves to automatic parser construction; 

• a well designed grammar coupled with appropriate tools allows for a reliable 

translation into correct object code; and 

• languages with precise context-free grammars are easier to extend than those 

with hand-written parsers. 
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Despite this, it is surprising that most programming languages aren’t fully describable 

by context-free grammars. The classic example is that of variable declarations: names 

generally have to be declared before they can be used, this is not describable with a 

context-free grammar, and most language systems require an extra type checking phase 

after initial parsing. 

6.2.3.1 Backus-Naur Form 

Backus-Naur Form8 (BNF) is a convenient, and relatively standard, notation for 

context-free grammars. Each BNF grammar contains a series of declarations (often 

called productions) that contain a single non-terminal on the left-hand side, and a series 

of options on the right-hand side.  

For example, consider the grammar fragment in Figure 6.2. This grammar fragment 

contains a single declaration that specifies that a non-terminal A can be derived from: 

• a single non-terminal B; 

• a non-terminal C, followed by a non-terminal D; or 

• a non-terminal E, followed by the terminal with, followed by the non-terminal 

F. 

The definitions for the non-terminals B, C, D, E, and F are not shown. 

A ::= B | C D | E with with with with F 

Figure 6.2: BNF Context-free Grammar 

6.2.3.2 Extended BNF 

Extended BNF (EBNF) has a variety of styles, and is itself derived from regular 

expressions or extensions made to BNF by Niklaus Wirth in [Wir71]. Various 

bracketing styles and operators are introduced to allow such concepts as optional 

elements, choices within choices, and list of elements. The following are the most 

common styles for such concepts: 

• Optional elements: e.g. depending on style [a], or a? means zero or one 

occurrences of the symbol a. 

• Zero-or-more: e.g. a* means zero or more occurrences of the symbol a. 

                                                

8 Originally, and occasionally still, called Backus Normal Form. 
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• One-or-more: e.g. a+ means one or more occurrences of the symbol a. 

• Groupings are introduced by parentheses, and can be combined with the above 

operators as well as the choice operator from standard BNF:  

e.g. (a | b)+ means any sequence made of the symbols a and b, except the 

empty sequence. 

All EBNF forms can be decomposed back into BNF form, it is merely a convenient 

notational shorthand. 

6.2.4 Grammar Properties 

Apart from classification within the Chomsky hierarchy, grammars have a number of 

other properties that are useful to describe, such as whether they are left- or right-

recursive; or ambiguous. 

6.2.4.1 Ambiguous Grammars 

Consider the grammar in Figure 6.3. 

expr ::= expr ++++ expr | expr **** expr | ((((    expr )))) | number 

Figure 6.3: Ambiguous Simple Expression Grammar 

This grammar is ambiguous because, for example, with the input 3+4+6, there are two 

possible parses (as previously demonstrated in Figure 5.11). This raises the rather 

awkward situation where ambiguous grammars lead to parsers needing to discern the 

programmer’s intent. We would prefer our parsers to find just one suitable parse. It 

generally doesn’t make sense to allow ambiguity in programming languages — you 

want each individual program to have exactly one meaning. 

For this reason, most grammars have ambiguity explicitly removed [ASU86]. That is, 

precedence rules are explicitly incorporated into the grammar. For example consider the 

reworking of the grammar from Figure 6.3 in Figure 6.4. 

expr ::= expr ++++ term | term 
term ::= term **** factor | factor 
factor ::= number | (((( expr )))) 

Figure 6.4: Unambiguous Simple Expression Grammar 

This grammar reworking allows for us to specify exactly which is the correct parse for 

each situation, but at some cost to the brevity and simplicity of the grammar. Such a 

reworking of an ambiguous grammar generally requires a detailed understanding or 
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which parse is preferable. The classic example is of a “dangling-else” that is common to 

many programming languages [ASU86] and requires the final parse to match the short 

if statement first (i.e. the outer if statement has no matching else). 

6.2.4.2 Left- and Right-recursive Grammars 

Almost all useful grammars have recursive elements —  eg. even our simple expression 

grammar of Figure 6.4 allows expressions to contain sub-expressions recursively. The 

alternative is to expand the grammar for all possibilities; this is clearly infeasible for 

grammars whose language is infinite. 

A left-recursive production contains its left-hand side non-terminal in the left-most 

position of one of its options, i.e. a rule similar to A ::= A x. A left-recursive 

grammar contains at least one production that is left-recursive. The definition of right-

recursive grammar follows in a similar fashion. 

As we will see in later sections, grammars that are left- or right-recursive can cause 

problems for certain parsing techniques. Modifications are generally made to such 

grammars to remove either the left- or right- recursion in a similar vein to those for 

ambiguous grammars. 

The ambiguous grammar of Figure 6.3 is both left- and right-recursive. The 

unambiguous grammar of Figure 6.4 still contains two left-recursive productions. Figure 

6.5 shows the result of reworking this grammar.  

expr ::= term reste 
reste ::= ++++ expr | ε 
term ::= factor restt 
restt ::= * * * * term | ε 
factor ::= number | (((( expr )))) 

Figure 6.5: Non Left-recursive Simple Expression Grammar 

Again, this translation removes the left-recursion but at the expense of the grammar. 

This grammar is barely recognisable as accepting the same language as the original 

ambiguous one. 

An attempt at the removal of recursion can be performed in an automatic fashion 

[ASU86], but there is no guarantee that such an attempt will succeed [ASU86]. 
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6.3 Parsers 

A parser is designed to recognise inputs that satisfy a particular grammar and reject 

those that don’t. Translation to another form is often performed as part of the 

recognition process. 

Parsers operate on tokens rather than character streams. These tokens are produced by 

lexical analysers, or tokenisers. Normal compiler operation interleaves tokenising and 

the parsing as shown in Figure 6.69. Tokenisers are discussed further in subsection 

6.3.3.  

 

Figure 6.6: High-level Compiler Model 

6.3.1 Derivation 

For any grammar, there are typically a number of different orders in which the rules of 

the grammar can be applied in order to decide membership of a particular input. This 

order of application is called a derivation and it gives a precise description of the 

construction of a parse tree [ASU86]. In fact, the parse tree can be viewed as a graphical 

representation of a derivation that removes information about application order 

[ASU86]. 

Figure 6.7 contains the leftmost and rightmost derivation for the simple expression 

grammar of Figure 6.4, and the input 5*8+2. Both achieve the same final parse, but 

merely apply the rules in different orders. The choice of leftmost or rightmost derivation 

does not affect the language recognisable by a parser, only the order in which they are 

applied. 

 

                                                

9 Production compilers will often produce an intermediate representation from the parser which is then 

subject to optimisation and translation to the target platform. 

source file tokeniser parser object file 
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expr  
⇒ expr + term  
⇒ term + term  
⇒ term * factor + term  
⇒ factor * factor + term 

⇒ number * factor + term  
⇒ number * number + term  
⇒ number * number + factor  
⇒ number * number + number  

 (a) Leftmost Derivation 

expr  
⇒ expr + term  
⇒ expr + factor  
⇒ expr + number  
⇒ term + number  
⇒ term * factor + number  
⇒ term * number + number  
⇒ factor * number + number  
⇒ number * number + number  

 (b) Rightmost Derivation 

Figure 6.7: Derivations 

6.3.2 Naming 
 

A standard naming scheme has evolved to broadly classify different parsers. These 

describe parsers concisely by many parameters, such as order of scan, derivation order, 

and token lookahead requirements. 

6.3.2.1 Derivation Categorisation 

For the most general categorisation, parsers are categorised by the order that they scan a 

program while attempting to interpret it, and the derivation that they produce. 

Generally, parsers scan from left-to-right, so the two most used general classifications 

of parsers are: 

• LL: scans from left-to-right, and produces the leftmost derivation. 

• LR: scans from left-to-right, and produces the rightmost derivation. 

6.3.2.2 Lookahead Categorisation 

In addition, parsers are subcategorised by the number of symbols they need to examine 

in advance before making any decision (called lookahead). This information is added in 

brackets after the original classification, eg. LR(2) specifies a left-to-right, rightmost 

derivation parser that requires two token lookahead. 
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When only one token of lookahead is required the extra information is generally 

omitted, i.e. LL(1) is typically written simply as LL. A general categorisation of all LL 

parsers would be written as LL(k). 

Non-ambiguous grammars exist that cannot be represented by LL parsers and thus 

would require further lookahead. The same applies for LR parsers. Simple grammars 

that cannot be recognised by LL or LR respectively are shown in Figure 6.8. In each 

case, trying to produce a derivation is impossible without further lookahead. 

X ::= aaaa bbbb cccc | aaaa bbbb dddd 

(a) Non-ambiguous Non-LL Grammar 

X ::= aaaa bbbb cccc | Y cccc dddd 
Y ::= aaaa bbbb 

(b) Non-ambiguous Non-LR Grammar 

Figure 6.8: Non-ambiguous Unparsable Grammars 

6.3.3 Tokenising 

Tokenisers convert the raw text input stream into a more manageable token stream. The 

tokeniser typically performs the following tasks: 

• it matches keywords that appear in the input and passes through to the parser as 

special tokens; 

• passes others words through to the parser as identifiers; 

• checks the form of literals (typically characters, strings, and various number 

formats) and passes them to the parser as a single token; 

• ensures that multicharacter symbols are passed through to the parser as a single 

token; 

• rejects input that contains unexpected characters; and 

• removes whitespace. 

Different languages can have their own slightly different parsing strategy though. For 

example, Haskell has strict layout rules that are governed by the correct use of 

whitespace. The Genesis tokeniser performs far fewer early decisions than typical 

tokenisers (see section 5.4). 

A tokeniser is typically implemented as a deterministic finite automaton (DFA) which, 

in turn, are usually pictured as a graph. DFAs are deterministic as there is only one path 
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for any given input, finite as there are a fixed number of states, and automatic as the 

transition from state to state is simply determined by the input. 

In Figure 6.9 a DFA to tokenise whitespace separated identifiers and numbers is shown. 

Each state of the DFA is a node in the graph with transitions between states pictured as 

edges with labels containing character sets. For each character of input the transition to 

the next state is deterministically defined. 

 

Figure 6.9: Deterministic Finite Automaton 

Using DFAs for tokenising is simple and efficient and requires only a single pass of the 

input. Tokenisers are generally written to provide tokens only as the parser requests 

them, so no buffering is required. 

6.3.4 Parsing Methods 
 

There are typically considered to be three types of parsers: top-down parsers, bottom-up 

parsers, and general parsers [ASU86]. Top-down and bottom-up parsers are commonly 

used in production compilers, but are more restrictive than general parsers. 

In the following sections we look at these different parsing methods. The review is far 

from exhaustive (for a fairly comprehensive review see [GJ90]), but highlights the most 

common parsers from each category. 
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6.4 Top-down Parsing 

LL(k) parsers are typically called top-down parsers as their operation can be viewed as 

an attempt to construct the left-most derivation by a pre-order traversal of the resultant 

parse tree [ASU86].  

LL(k) parsers require a non-ambiguous grammar that is free from left-recursion. 

In this section we look at the two major implementations of top-down parsers: the first 

is known as predictive parsing (section 6.4.1) and the second is a parse-table approach 

which is generally just referred to as LL-parsing (section 6.4.2). 

The primary difference, besides the actual implementation, between these two 

approaches is efficiency (of both space and time); with a little effort it should be 

possible to construct parsers for the same grammars using both methods. 

6.4.1 Predictive Parsing 

Recursive descent parsing attempts to apply each grammar rule in turn until a conflict 

occurs at which point it backtracks until an alternative choice is available. This is 

implemented with a set of recursive procedures. In general, recursive descent parsing is 

inefficient and will always fail on left-recursive grammars. As a result, this class of 

parsers are rarely seen [ASU86]. 

Predictive parsing is a special case of recursive descent parsing that does not require 

backtracking. Such parsers are popular because their recursive nature makes them 

highly suited to implementation by hand (the majority of parsing techniques are not). 

The recursive procedure calls that occur as parsing proceeds implicitly define the 

derivation and, hence, the parse tree [ASU86]. The actions to be performed on the parse 

tree are contained within these recursive procedures. 

For a suitable grammar, construction of a predictive parser requires each BNF rule to be 

translated into a single function. This function calls other such functions for non-

terminals and guarantees any terminals match the current token.  

Code Example 6.1 demonstrates a predictive parser implementation for the grammar 

from Figure 6.5. It performs no actions as a result of the parse, it merely checks for 

correct syntax. The implementation relies on an overloaded function match that 
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ensures that the current token matches its argument and if so, moves on to the next 

token and returns success, otherwise it returns failure. 

boolboolboolbooleaneaneanean expr()   { returnreturnreturnreturn term() && rest_e(); } 
boolboolboolbooleaneaneanean rest_e() { returnreturnreturnreturn match("+") ? expr() : truetruetruetrue; } 
boolboolboolbooleaneaneanean term()   { returnreturnreturnreturn factor() && rest_t(); } 
boolboolboolbooleaneaneanean rest_t() { returnreturnreturnreturn match("*") ? term() : truetruetruetrue; } 
boolboolboolbooleaneaneanean factor() {  
  returnreturnreturnreturn match(NUMBER) || (match("(") && expr() && match(")")); 
}; 

Code Example 6.1: Simple Expression Predictive Parser 

This example demonstrates the simplicity of providing ad hoc predictive parser 

implementations.  

6.4.1.1 Advantages 

The major advantage of predictive parsers is the ease that they can be constructed 

manually. The resultant parser is also easy to comprehend which can make it easy to 

discover errors.  

6.4.1.2 Disadvantages 

Predictive parsers can only handle a non-ambiguous non left-recursive grammars. There 

are further transformations that may need to be applied to grammars such as those as the 

example in Figure 6.8(a). Future revisions to the grammar are often difficult to handle, 

especially when many grammar modifications were required to produce a LL(1) 

grammar originally. Such highly-modified grammars are difficult to understand by 

humans and can be unrecognisable from the original [ASU]. 

However, the major disadvantage of predictive parsers is efficiency. Procedure calls are 

expensive and parsing requires many such calls. These procedures also require more 

space than other equivalent techniques: 

“The most important disadvantage of generating a recursive descent parser is the 

size of the parser. A recursive descent parser is usually larger than a table-driven 

one (including the table).” [GJ90§8.2.6, pp. 178] 

Also, in each procedure we may make many failed attempts to match a given input 

token. No systematic approach is used to decide which production branch to chose 

given a particular input token. 
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6.4.2 Parse Table Approach 

In order to overcome the efficiency problems of predictive parsers, top-down parsers 

typically use a non-recursive table-driven approach. Such parsers can be constructed for 

an equivalent class of grammars as predictive parsers but without the overhead of 

recursive procedure calls. This is achieved by maintaining an explicit stack. 

A model of a table-driven parser consists of the input, a stack, a parse table, and the 

output as shown in Figure 6.10.  

 

Figure 6.10: Table-driven Predictive Parser Model 

The input consists of tokens and the stack contains the current sequence of recognised 

grammar symbols. The parser functions by using the current token and the current 

grammar symbol to guide its next action. The actions to be performed are stored in the 

parse table. 

The stack is initialised with the start symbol and at each stage in parsing the parser has 

three possibilities [ASU86]: 

• if both the input stream and the stack are empty the parse has successfully 

completed; 

• if the top of the stack is a terminal and is equal to the current input token, then it 

is removed from the stack and the current token is advanced. When not equal, an 

error has occurred; or 

• if the top of the stack is a non-terminal, both the top of the stack and the current 

input token are used as lookups into the parse table. The parse table entry 

specifies either an error has occurred, or a sequence of grammar symbols 
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(corresponding the right-hand side of the grammar production) with which to 

replace the top of the stack. 

A table-driven parser for the simple expression grammar from Figure 6.5 is shown in 

Code Example 6.2.  

boolean boolean boolean boolean parse(Queue input, Symbol start, Table table) { 
  Stack stack; 
 
  input.add("$");       // add a special terminal symbol to the end of input 
  stack.push(start);    // push start symbol onto the start initially 
 
        whilewhilewhilewhile (!stack.isEmpty()); 
    Symbol top = stack.pop(); 
    Token current = input.front(); 
 
    ifififif (top.isTerminal()) { 
      ifififif (current.equals(top)) returnreturnreturnreturn falsefalsefalsefalse; // error 
      input.dropFront(); 
    } elseelseelseelse { 
      Stack topush = table.lookup(top, current);  
      ifififif (topush == null) return falsereturn falsereturn falsereturn false; // error 
      stack.push(topush); 
    }  
  } 
 
  returnreturnreturnreturn input.isEmpty(); 
} 
    
boolboolboolbooleaneaneanean expr(Queue input) { 
  Table table;          // table is constructed as shown in Table 6.2 
 
  rrrreturneturneturneturn parse(input, Symbol.EXPR, table); 
} 

Code Example 6.2: Table-driven Simple Expression Parser 

Code Example 6.2 is a restatement of the previous description of a table-driven parser. 

The input stream is represented as a queue, the state of the parser is represented as a 

stack, and the exact implementation of the parse table is not specified. Parse table 

lookup errors are returned as null references.  

One minor detail simplifies the implementation a small degree: a special terminal 

symbol  (shown as $) is added to the input to allow easy handling of empty input cases 

within the parse table directly. Having completely parsed the input with non-terminals 

remaining on the stack is not necessarily an error, it merely represents the situation 

where we have successfully parsed and have recursive calls to unwind. 

The parse table for the simple expression grammar of Figure 6.5 is shown in Table 6.2. 

A LL(1) parse table is a two dimensional array with terminal symbols along the column 

axis, and non-terminals down the row axis. Each state contains either: 

• a series of non-terminal and terminal symbols; 
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• the empty symbol, signifying recursive call unwinding; or 

• a blank, signifying a parse error. 

The size of a parse table is proportional to O(terminals * non-terminals). For the simple 

expression grammar of Figure 6.5, the parse-table contains 30 entries. 

Table 6.2: Simple Expression LL Parse Table 

Nonterminal Input Symbol 

 number ( ) + * $ 

expr term reste term reste     

reste   ε + term reste  ε 

term factor restt factor restt     

restt   ε ε * factor restt ε 

factor number ( expr )     

 

Manual construction of parse tables is systematic but tedious and error-prone, automatic 

generation is generally preferred. Such automatic generation of parse tables are beyond 

the scope of this work (for an in-depth treatment, see [ASU86]).  

If, after construction, the parse table contains duplicate entries, then the grammar cannot 

be parsed by a LL(1) parser. Or, put another way, a grammar that generates a table that 

contains no duplicate entires is a LL(1) grammar. Grammars that are not LL(1) may be 

able to be modified, or it might be necessary to introduce further lookahead, but the 

resultant parse table size is prohibitive: 

“Strong-LL(k) parsers with k > 1 are seldom used in practice, because the parse 

tables are huge, and there are not many languages that are LL(k) for some k > 1, 

but not LL(1).” [GJ90§8.3, pp. 180]  

6.4.2.1 Advantages 

The major advantage of a parse table approach is that of efficiency. Maintaining an 

explicit stack is typically much more efficient (in both space and time) than handling 

many recursive calls on the program stack [ASU86]. 
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6.4.2.2 Disadvantages 

The table-driven approach to LL(1) parser construction suffers from the same grammar 

problems as predictive parsers outlined in 6.4.1.2. The class of acceptable grammars is 

identical [ASU86].  

As demonstrated in Code Example 6.2 and Table 6.2 respectively, the resultant parser is 

understandable, but the parse tables that drive it are not. 

The size of the parse table for parsers requiring lookahead greater than one is generally 

unacceptable as each successive increase of lookahead increases the size of the parse 

table by a factor proportional to the number of non-terminals. 

6.4.3 Suitability to Extensible Languages 
 

LL parsers are unsuitable for use with extensible languages as they require heavy 

modification of a grammar before use and disallow the modification of the grammar 

midway through the parse. 

6.4.3.1 Usability 

LL parsers are easily foiled by left-recursive grammar (as shown in Figure 6.8(a)) and 

such forms are often used to provide a convenient way to express many languages. The 

burden of translation of a grammar away from left-recursion is too much for a 

programmer and may not even be possible. 

6.4.3.2 Mid-parse Grammar Modification 

An LL parser may be deep within a recursive call when the grammar is modified and as 

such may be unable to incorporate the new grammar rules. In fact, top-down recognition 

is invalid if the entire grammar is unknown. There is no way to ascertain that a rule will 

be matched without the rules that generate it being known. 
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6.5 Bottom-up Parsing 

LR(k) parsers are typically called bottom-up parsers as they effectively produce a 

derivation from right-to-left, i.e. from the base of the resultant parse tree to the top. 

LR(k) parsers accept a larger class of grammars than top-down parsers, in particular, 

both left- and right-recursive grammars are permitted. 

In this section we introduce the general concept of shift-reduce parsing (section 6.5.1), 

and then two implementations: operator-precedence parsing (section 6.5.2) and the most 

commonly used implementation referred to as LR parsing (section 6.5.3).  

Three LR parsers are examined: LR (also known as canonical LR), SLR (simple LR), 

and LALR (look-ahead LR). The primary differences between these parsers is the size 

of the parse-table and the class of grammars they accept. 

6.5.1 Shift-reduce Parsing 

Shift-reduce parsing attempts to produce a right-most derivation traced out in reverse 

[ASU86]. Figure 6.11 shows the reductions taken by a shift-reduce parser for the simple 

expression grammar from Figure 6.4 and the input 5*8+2.   

number * number + number  
⇒ factor * number + number  
⇒ term * number + number  
⇒ term * factor + number  
⇒ term + number  
⇒ expr + number  

⇒ expr + factor  
⇒ expr + term  
⇒ expr  

Figure 6.11: Shift-reduce Parser Reductions 

This is, in fact, identical to the right-most derivation shown in Figure 6.7(b) traced out 

in reverse. 

Shift-reduce parsers are typically implemented by use of a stack and a parse-table in a 

similar fashion to the table-driven approach to top-down parsers shown in 6.4.2. 

Although a shift-reduce stack contains a mixture of terminals and non-terminals, unlike 

the stack in the table-driven top-down parser approach which contains only non-

terminals. A shift-reduce parser has the generalised form shown in Figure 6.12. 
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Figure 6.12: Shift-reduce Parser Model 

For each step in the parse, there are four possible actions that can be taken [ASU86]: 

• shift: the next input symbol is shifted onto the top of the stack; 

• reduce: a right-hand side of a grammar rule has been matched on the top of the 

stack and a series of symbols from the start is replaced with the corresponding 

left-hand side; 

• accept: the parser successfully completes; and 

• error: an error has occurred. 

The first two actions are most commonly applied and it is from these that shift-reduce 

parsers get their name. A shift is performed when the current token is expected and 

moves the focus onto the next input symbol. A reduce is performed when a rule is 

complete and ready to be replaced by a single corresponding non-terminal symbol. 

A shift-reduce parser requires some form of control mechanism for it to be able to 

determine when to shift and when to reduce. Ad hoc implementations are possible, but 

typical grammars are too complicated for this to be possible and more automated 

techniques are used. These automated techniques involve construction of a table of 

information that is used to provide control information [ASU86]. 

6.5.2 Operator-precedence Parsing 
 

Operator-precedence parsing is a form of shift-reduce parsing that requires that the 

grammar does not contain two adjacent non-terminals and no empty symbols. However, 

it can handle ambiguity in the grammar by careful representation within the operator-

precedence table. 
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Operator precedence can be implemented either in a table-driven fashion or via 

precedence functions [ASU86]. The focus of this subsection is on the table-driven 

approach as it bears closer relation to the parsers in the surrounding subsections (for the 

alternative approach see [GJ90]). The general structure of a table-driven operator-

precedence parser in shown in Figure 6.13. 

The stack in an operator-precedence parser contains both operators and non-terminals. 

The operators are used to calculate precedences and the non-terminals are somewhat 

inconsequential [GJ90].  

 

Figure 6.13: Operator-precedence Parser Model 

A special terminal symbol is added to the top of the stack and the end of the input and at 

each stage in parsing the parser has three possibilities [ASU86]: 

• if the top of the stack has precedence lower or equal to the current input token, 

then the token is pushed on the stack and the current token is advanced; 

• if the top of the stack has precedence greater than the current input token, 

symbols are popped off the stack until the terminal on the top of the stack has 

precedence less than the most recently popped terminal; or 

• if the precedence relation between the top of the stack and the current input 

token is undefined an error has occurred. 

Code Example 6.3 illustrates an operator-precedence parser for the simple expression 

grammar of Figure 6.3.  
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boolboolboolbooleaneaneanean parse(Queue input, Symbol final, Table table, Rules rules) { 
  Stack stack; 
 
  input.add("$");       // add a special terminal symbol to the end of input 
  stack.push("$");      // push special terminal symbol onto stack 
 
        whilewhilewhilewhile (/* more left on the stack than the final symbol */) { 
    Symbol top = stack.topTerminal(); 
    Token current = input.front(); 
 
    ifififif (table.lookup(top, current).isLessThanOrEqualTo()) {      // shift 
      stack.push(current); 
      input.dropFront(); 
    } elseelseelseelse if if if if (table.lookup(top, current).isGreaterThan()) {     // reduce 
      Queue queue; 
      do do do do { 
        queue.add(stack.pop()); 
      whilewhilewhilewhile (table.lookup(stack.top(), top).isGreaterThanOrEqualTo()); 
      stack.push(rules.reduce(queue)); 
    } else else else else { 
      return falsereturn falsereturn falsereturn false; 
    } 
  } 
 
  returnreturnreturnreturn truetruetruetrue; 
} 
 
boolboolboolbooleaneaneanean expr(Queue input) { 
  Table table;          // table is constructed as shown in Table 6.3 
  Rules rules;          // E=E+E, E=E*E, E=(E), E=number 
 
  returnreturnreturnreturn parse(input, Symbol.EXPR, table, rules); 
} 

Code Example 6.3: Simple Expression Operator-precedence Parser 

The size of a precedence table is proportional to O(terminals * terminals). Table 6.3 

contains the operator-precedence table for the simple expression grammar of Figure 6.3, 

it contains 36 entries. Each entry in the table represents the relative precedences 

between each operator. The differing set of precedence relations for addition and 

multiplication demonstrate the resolution of inherent ambiguity in the original grammar. 

6.5.2.1 Advantages 

Operator-precedence parsing is easy to implement by hand either using precedence 

functions or with a precedence table. 

The original ambiguous expression grammar can be used directly along with other 

information specifying the precedences of each operator. No grammar mangling is 

required. 

6.5.2.2 Disadvantages 

Only a restricted set of languages can be handled by operator-precedence parsers as they 

disallow all grammars with adjacent non-terminals. 
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Table 6.3: Simple Expression Operator-precedence Table 

Terminal Terminal 

 number ( ) + * $ 

number   >· >· >· >· 

( <· <· =̇ <· <·  

)   >· >· >· >· 

+ <· <· >· >· <· >· 

* <· <· >· >· >· >· 

$ <· <·  <· <·  

6.5.3 LR Parsing 

LR parsing10 is a general concept of a shift-reduce parser driven by a state machine. LR 

parsers use their current state and the current input token to drive the parse. The general 

structure of a LR parser is shown in Figure 6.14. 

 

Figure 6.14: LR Parser Model 

In addition to the four possible actions stored in each entry in the parse-table (renamed 

as the action table), LR parsers contain extra information called goto. When a rule is 

reduced, the algorithm uses this goto field to jump to a parse state that represents the 

reduced non-terminal symbol.  

                                                

10 Sometimes referred to as canonical LR to more adequately distinguish it from the family of LR parsers. 
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For each step in the parse, the same four action types as general shift-reduce parsers 

apply, but with changes to both shift and reduce [ASU86]: 

• shift: the parser shifts the current input symbol and the next state onto the stack; 

• reduce: the parser pops the number of symbols and states required by the right-

hand side of the reducing grammar rule and looks up the goto for the state now 

on the top of the stack; 

• accept: the parser completes successfully; and 

• error: the parser has discovered an error and calls an error recovery routine. 

The driver program is identical for all LR parsers, it is only the parse table construction 

method that changes from one LR parser to another [ASU86]. Code Example 6.4 

demonstrates a LR parser implementation for the simple expression grammar of Figure 

6.4. The methods in the following subsection (SLR and LALR) differ to LR parsing 

only by the contents of the parse table. 

Construction of LR parse tables involves the construction of a state machine (or finite 

automaton). Typically, a non-deterministic finite automaton (NDFA) is constructed and 

then translated into a deterministic finite automatic (DFA) [ASU86]. For the simple 

expression grammar of Figure 6.4 the NDFA contains 77 states, and the corresponding 

DFA contains 23 states. Both are too complicated to reproduce here.  

The size of an action table is proportional to O(states * terminals) and the size of the 

goto table is proportional to O(states * non-terminals). The size of the entire parse table 

is hence proportional to O(states * (terminals + non-terminals)). For the simple 

expression grammar of Figure 6.4, the parse-table contains 207 entries and is shown in 

Table 6.4.  

The states are shown as the rows, and all the terminals (including the end-of-input 

symbol $) and non-terminals appear along the columns. The terminals symbols specify 

actions to be taken at each step in the parse, and non-terminal symbols specify the gotos 

to be taken after a reduction has occurred. 
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boolboolboolbooleaneaneanean parse(Queue input, Table table, Rules rules) { 
  Stack stack; 
 
  input.add("$");       // add a special terminal symbol to the end of input 
  stack.push(0);        // push state 0 onto the stack 
 
        whilewhilewhilewhile (truetruetruetrue) { 
    State top = stack.top(); 
    Token current = input.front(); 
    Entry entry = table.lookup(top, current); 
 
    switchswitchswitchswitch (entry.action) { 
    case case case case SHIFT: 
      stack.push(current); 
      stack.push(entry.state); 
      input.dropFront(); 
      breakbreakbreakbreak; 
    case case case case REDUCE: 
      Rule rule = rules[entry.rule]; 
      // pop twice the number of symbols in rule.rhs off the stack 
      for (int i = 0; i < 2 * rule.rhs.length; ++i) stack.pop(); 
      top = stack.top(); 
      stack.push(rule.lhs); 
      stack.push(table.lookupGoto(top, rule.lhs)); 
      breakbreakbreakbreak; 
    case case case case ACCEPT: 
      return return return return true; 
    default    default    default    default: 
      return return return return false; 
    } 
  } 
} 
 
boolboolboolbooleaneaneanean expr(Queue input) { 
  Table table;          // table is constructed as shown in Table 6.4 
  Rules rules;          // E=E+T, E=T, T=T*F, T=F, F=(E), F=number 
 
  returnreturnreturnreturn parse(input, table, rules); 
} 

Code Example 6.4: Simple Expression LR Parser 

Table 6.4 is much larger than the parse table for the operator-precedence parser or the 

predictive parser. As in previous parse tables, blanks signify a parse error has occurred. 

States such as 1 and 4, and 17 and 18 are actually identical, even though their contents 

within the finite automaton are not. Perhaps states such as 5 and 7 can actually be 

combined and picked up as errors later. It should be clear that many improvements can 

be made to this parse table. LR parsers produce a state machine that is truly massive in 

size. 

“LR(1) parsers [are] impractical in that the space required for their deterministic 

automata [is] prohibitive. A modest grammar might already require hundreds of 

thousands or even millions of states.” [GJ90§9.6, pp. 211] 

For instance, the C programming language has over 10,000 LR states [Ast+05]. This 

highlights the need for some techniques to reduce the size of the parse tables.  
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Table 6.4: Simple Expression LR Parse Table 

State Action Goto 

 num ( ) + * $ E T F 

0 s7 s2     10 11 6 

1 s9 s3     18 15 8 

2 s9 s3     19 15 8 

3 s7 s5      12 6 

4 s9 s3     18 15 8 

5    r4 r4 r4    

6    r6 r6 r6    

7   r4 r4 r4     

8   r6 r6 r6     

9    s4  a    

10    r2 s13 r2    

11    r1 s13 r1    

12 s7 s5       14 

13    r3 r3 r3    

14    r2 s16     

15 s9 s3       17 

16    r3 r3     

17   s23 s20      

18   s23 s20      

19 s9 s3      21 8 

20   r1 r1 s16     

21    r5 r5 r5    

22   r5 r5 r5     

 

6.5.3.1 LALR Parsing 

LALR (Lookahead LR) parsing is a LR variant that attempts to collapse similar 

automaton states thus reducing the size of the parse table. As a result of this collapsing, 

the algorithm is slightly less powerful than an LR parser for the same grammar [GJ90]. 
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“The idea is now to collapse the automaton but to keep the look-ahead 

information (and collapse it too, but not discard it). The surprising fact is that 

this preserves almost all the original look-ahead power and still saves an 

enormous amount of memory.” [GJ90§9.6, pp. 211] 

Some grammars that are LR are not LALR, but this is rarely the case and has few 

examples in the real world [GJ90]. Sometimes the improvement from LR to LALR is 

huge: LALR drops the number of states required for a C language parser from over 

10,000 to around 350 [Ast+05]. 

Table 6.5 shows the improvement in parse table size from the LR parse table in Table 

6.4. This parse-table has 108 entries (down from 207). Whilst this is a great 

improvement in size, it is still significantly larger than the tables required for 

precedence parsing or table-driven LL parsing. 

Table 6.5: Simple Expression LALR Parse Table 

State Action Goto 

 num ( ) + * $ E T F 

0 s5 s4     1 2 3 

1    s6  a    

2   r2 r2 s7 r2    

3   r4 r4 r4 r4    

4 s5 s4     8 2 3 

5   r6 r6 r6 r6    

6 s5 s4      9 3 

7 s5 s4       10 

8   s11 s6      

9   r1 r1 s7 r1    

10   r3 r3 r3 r3    

11   r5 r5 r5 r5    
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Of the LR class of parsers, LALR(1) has the best combination of power and practicality: 

“LALR(1) parsers are powerful, almost as powerful as LR(1) parsers, they have 

fairly modest memory requirements, … and they are time-efficient.” [GJ90§9.6 

pp. 211] 

In fact, LALR(1) parsing is the technique of choice for the majority of parsers [GJ90]. 

6.5.3.2 SLR Parsing 

SLR (Simple LR) parsing is similar to LALR in that they both try to combine 

automaton states. The combinations used by SLR discard information related to the 

current state of the parser and combine states based only on the following symbol 

information. As a direct result of this process SLR parsing is weaker in power with no 

reduction in complexity to the LALR method: 

“Since SLR(1) parsers have the same size as LALR(1) parsers and are 

considerably less powerful, LALR(1) parsers are generally preferred.” 

[GJ90§9.6.4, pp. 217] 

6.5.3.3 Advantages 

LR parsers have many advantages [ASU86]: 

• they can be constructed for almost all programming language constructs that are 

representable by context-free grammars; 

• they can be implemented as efficiently as other shift-reduce parsing methods and 

are the most general of this kind of parser; 

• the class of grammars recognisable by LR parsers is a proper superset of those 

that can be recognised by predictive parsers; and 

• syntax errors will be detected as soon as possible on a left-to-right scan of the 

input. 

In fact, this error detection property means that parser will stop at the first incorrect 

token without performing any further shifts or reduces. This is desirable as it allows the 

maximum amount of state information to be retained for error recovery [GJ90].  

Of all known parsing techniques, LALR parsers are considered to be the best trade-off 

between power and efficiency. 
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6.5.3.4 Disadvantages 

The principal drawback of LR parsers is that manual parse-table construction is tedious 

and error-prone. It is simply too much work to construct a parse-table for a typical 

programming language without using a LR parser generator [ASU86]. 

While such automated tools simplify parse-table generation considerably, they are not 

perfect. Grammars that are not LR lead to shift/shift, shift/reduce, or reduce/reduce 

conflicts. These are the result of combining conflicting actions within the same entry in 

the parse table. Users must understand why each conflict may arise and know how to 

modify their grammars accordingly [GJ90, pp. 215]. 

Additionally, as LR grammars are too large, parser generators typically use the LALR 

technique (eg. Berkeley Yacc [Cor00]). This creates an extra source of conflicts that is 

not so easily handled by users. 

“The situation is worse for those (relatively rare) grammars that are LR(1) but 

not LALR(1). The user never really understands what is wrong with the 

grammar: the computer should be able to make the right parsing decisions, but it 

complains that it cannot. Of course there is nothing wrong with the grammar; the 

LALR(1) method is just marginally too weak to handle it.” [GJ90§9.6.3, pp. 

216] 

6.5.4 Suitability to Extensible Languages 

Of the shift-reduce parsers, operator-precedence parsers only accept operator grammars, 

LR parsers are impractical in size, SLR is the same size but weaker than LALR, 

therefore LALR would be the likely choice of shift-reduce parser. As a result while 

considering the suitability of shift-reduce parsers to extensible languages we will 

consider LALR parser primarily. 

6.5.4.1 Usability 

LR methods are unsuitable for extensible languages. The simple examples of Figure 

6.8(b) show that is a simple matter to produce grammars that cannot be handled by such 

parsers. Using a LALR parser only serves to provide more subtle unacceptable grammar 

errors.  
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6.5.4.2 Mid-parse Grammar Modification 

LR parsers are unsuitable for mid-parse grammar modification as the entire state 

machine would need to be regenerated upon grammar modification and it is unclear if a 

corresponding state could be found for the current state. 

An ad hoc shift-reduce parser may be able to handle grammar modification well, but 

such parsers are difficult to construct. 
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6.6 General Parsing 

Unlike the parsers of the previous sections, general parsing allows our (context-free) 

grammar to be in any form. These parsers should at least be able to meet our first 

requirement for extensible language parsing — i.e. ease of user for the programmer. 

We examine two general parsing mechanisms CYK and Earley parsing and briefly 

describe the class of chart parsers. 

6.6.1 CYK Parsing 

The CYK (named after its independent co-creators Cocke [CS70], Younger [You67], 

and Kasami [Kas65]) algorithm provides parsing of ambiguous grammars, but the 

standard version requires grammars to be in Chomsky Normal Form (CNF). Context-

free grammars can be converted to CNF without too much difficultly [GJ90], so CYK 

parsing still serves as a good starting point for a general parser. The standard algorithm 

can be extended to handle forms that are not CNF, but at the cost of a more difficult to 

implement algorithm. 

CYK parsing considers all possible subsequences of the input string starting with those 

of length one, then two, etc. Once a rule is matched on a subsequence, the left-hand side 

is considered a possible valid replacement for the underlying subsequence. 

Typically standard CYK is implemented using multidimensional Boolean arrays 

[GJ90]; each entry representing the successfulness of applying a rule to a subsequence 

(represented by a start index and a sequence length). An algorithm for standard CYK 

parsers using a multidimensional array is shown in Code Example 6.5. 

intintintint N = /* number of input tokens */ 
intintintint R = /* number of rules in CNF grammar */ 
 
boolboolboolbool array[N][N][R]; 
 
foreachforeachforeachforeach token T at index I in the input 
  foreachforeachforeachforeach rule R -> T 
    array[I][1][R] = truetruetruetrue 
 
foreachforeachforeachforeach I = 2..N 
  foreachforeachforeachforeach J = 1..N-I+1 
    foreachforeachforeachforeach K = 1..I-1 
      foreachforeachforeachforeach rule R -> S T 
        ifififif P[J][K][S] andandandand P[J+K][I-K][T] 
          P[J][I][R] = truetruetruetrue   

Code Example 6.5: CYK Algorithm 
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CYK parsers operate in a non-directional bottom-up fashion. They are non-directional 

as they match rules of a given length at all places in the input. 

Figure 6.16 shows the execution of a CYK parser for the grammar of Figure 6.15 with 

input 5*8+2. The Chomsky Normal Form of our simple expression grammar highlights 

the increase complexity that comes with such a transformation. 

E ::= E E2 | E E3 | ( E4 | num 
E2 ::= + E 
E3 ::= * E 
E4 ::= E ) 

Figure 6.15: Expression Grammar in Chomsky Normal Form 

 

Figure 6.16: CYK Expression Parsing Recognition Table 

6.6.2 Earley’s Algorithm 
 

Earley’s algorithm [Ear70] is described as a breadth-first top-down parser with bottom-

up recognition.  

The algorithm maintains a list of states which each contain a list of partially complete 

rules. These partially complete rules are written with a dot representing the currently 

examinable position in a rules right-hand side. For example, in X ::= ab•c the 

terminals a and b have been examined and c is the next terminal to be examined. 

At each stage in the parse, the following three actions occur in turn: prediction, 

scanning, and completion. At each iteration of the algorithm any of these actions may 

add a partially completed rule to either the current state or the next state. Each rule has 

associated with it a source state. 

2 + 8 * 5 

E: 2 E: 8 E: 5 

E3: *8 E2: +2 

E: 5*8 

E: 8+2 

E: (5*8)+2 

E: 5*(8+2) 

E3: *(8+2) 
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Prediction adds to the next state each of the rules for which a non-terminal appears 

immediately to the right of the most recently parsed symbol in that rule.  

Scanning adds to the next state all partially complete rules that expect the current input 

symbol as their next symbol. 

For each completed rule in the current set, completion adds to the current state all rules 

from the corresponding source state, that have most recently examined (i.e. in which the 

dot appears immediately to the right of) the entire right-hand side of the completed rule.  

repeatrepeatrepeatrepeat until input is exhausted 
  a = /* current input symbol */ 
  k = /* current state index */ 
 
  repeatrepeatrepeatrepeat until no more states can be added 
    foreachforeachforeachforeach state (X ::= A•YB, j) inininin state[k]         // prediction 
      foreachforeachforeachforeach rule (Y ::= C) 
        state[k].add( state (X ::= •C, k) ) 
 
    foreachforeachforeachforeach state (X ::= A•aB, j) inininin state[k]         // scanning 
      state[k+1].add( state (X ::= Aa•B, j) ) 
 
    foreachforeachforeachforeach state (X ::= A•, j) inininin state[k]           // completion 
      foreachforeachforeachforeach state (Y ::= A•B, i) inininin state[j] 
        state[k].add( state (Y ::= A•XB, i) ) 

Code Example 6.6: Earley’s Algorithm 

Code Example 6.6 shows an algorithm for Earley parsing. In this algorithm, the 

symbols X and Y represent any non-terminal; and A, B, and C represent any sequence 

of symbols. 

6.6.3 Chart Parsers 

There is another form of general parser known as the chart parser. In actuality, both 

chart parsing and CYK parsing have a number of variants and some of these are 

identical [GJ90]. The difference between the two approaches is largely implementation 

based and conceptually they are very similar. The approach taken by both is to 

repeatedly scan the input looking at larger and larger substrings. 

The diagram in Figure 6.17 is a chart based representation of the recognition table from 

Figure 6.16. The two diagrams contain identical information. 

Chart parser variants are often used in the field of natural language processing and are 

too numerous to list here. As they are so similar, in future sections generally only CYK 

parsing will be discussed. 
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Figure 6.17: Chart Parser Representation 

6.6.4 Suitability to Extensible Languages 
 

Unlike previously reviewed parsers, general parsers at least partially satisfy our 

requirements for extensible language parsing. 

6.6.4.1 Usability 

CYK and Earley parsing do not suffer from the limitations of traditional top-down and 

bottom-up approaches to parsing. Such general parsers seem well suited to providing a 

simple to use system for end-users. A general parser should be capable of parsing any 

grammar the user creates.  

A system built with such a parser must have facilities for resolving ambiguity and 

reporting when ambiguities are not resolved.  

6.6.4.2 Mid-parse Grammar Modification 

CYK parsing considers all substrings of length one up to the length of the input. This 

process is unsuitable if we do not know all of the rules in advance.  

Earley parsing speculatively keeps track of partially accepted rules in a top-down 

fashion (even though the rules are accepted in a bottom-up order). If we introduce new 

rules via an import statement, then these speculations are incomplete.  

5 * + 2  

E: 2 E: 5 E: 8 

E3: *8 

E: (5*8)+2 

8 

E: 5*(8+2) 

E2: +2 

E2: *(8+2) 

E: 8+2 E: 5*8 
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6.7 Analysis 

In this section we first review the relative merits of the parsers reviewed in this chapter 

both in terms of power and efficiency. Secondly, we examine these parsers suitability to 

use in extensible languages.  

6.7.1 Power 

The reviewed parsers can be ordered in terms of power as follows (from weakest to 

strongest): 

• operator-precedence; 

• recursive descent and table-driven LL; 

• SLR; 

• LALR; 

• canonical LR; 

• CYK; and 

• Earley’s algorithm. 

With the exception of operator-precedence and CYK, the grammars that each of these 

parsers can recognise is a proper subset of those of the following parser.  

Operator precedence parsing and CYK parsing are the hardest to classify.  

On one hand, operator precedence can handle ambiguous grammars as the general 

methods but it is also restricted to grammar without consecutive non-terminals. The 

latter is considered to be more restrictive and led to its placing. 

As described, CYK parsing requires the grammar to be in Chomksy Normal Form, but 

translation into CNF is not particularly hard and is far less restrictive than the necessity 

of removal of left-recursive forms for the LL parsers, for example. Also, with effort 

CYK parsing can be extended to handle arbitrary grammars. 

Earley’s algorithm is the only reviewed method that allows parsing of an arbitrary 

grammar without any modification. 
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6.7.2 Efficiency 
 

Of the often used parsers (which all have a lookahead of 1) running times are 

proportional to O(length of input). However, further to this, the reviewed parsers can be 

ordered in terms of time efficiency as follows (from slowest to fastest, with 

complexities given in terms of n input tokens): 

• Earley’s algorithm and CYK: O(n
3
); 

• recursive descent: O(n); and 

• table-driven LL, and LR: O(n). 

In terms of space efficiency (from largest to smallest, with complexities given in terms 

of n input tokens, t terminal grammar symbols, u non-terminal grammar symbols, and 

s states): 

• CYK: O(un2); 

• Earley’s algorithm: O(n
2
); 

• canonical LR: O(s(t + u)); 

• LALR and SLR: O(s(t + u)) where the number of states is less than or equal to 

that of LR; 

• recursive descent; and 

• table-driven LL: O(tu). 

6.7.3 Suitability to Extensible Languages 
 

As we have seen in previous sections, none of the traditional parsers have exactly met 

out requirements for extensible language parsing, namely the requirements of 

programmer usability (i.e. no unusual grammar restrictions) and mid-parse grammar 

modification (to allow for arbitrary grammar changes).  

6.7.3.1 Usability 

Keeping things simple for the user suggests that all LL and LR methods are unsuitable. 

The simple examples of Figure 6.8 show that is all too easy to produce grammars that 

cannot be handled by such parsers. 

CYK and Earley parsing do not suffer from these limitations and these general parsers 

seem well suited to providing a simple-to-use system for end-users. 
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6.7.3.2 Mid-parse Grammar Modification 

As previously stated, CYK parsers first consider substrings of length one, then of length 

two, and so forth, up to the entire length of the input. This process is clearly 

inappropriate for grammars for which we do not know all of the rules in advance.  

Similarly, Earley parsing uses a form of speculation by allowing partially accepted 

rules. If we introduce new rules via an import statement, then these speculations are 

incomplete.  

Both LL parsers and LR parsers suffer from similar problems to Earley’s method. With 

LL parsing the parser may be deep within a recursive call when the grammar is 

modified and as such may be unable to incorporate the new grammar rules. In fact, top-

down recognition is invalid if the entire grammar is unknown. There is no way to 

ascertain that a rule will be matched without the rules that generate it being known. The 

LR parser’s entire state machine would need to be regenerated upon grammar 

modification and it is unclear if a corresponding state could be found for the current 

state. 

An ad hoc shift-reduce parser may be able to handle grammar modification well, but 

such parsers are difficult to construct. 

Indeed, none of the traditional methods seem to fit the domain of extensible languages 

perfectly and another solution must be found — even if it comes at the cost of 

efficiency. 
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7.1 Overview 

As discussed in section 6.7.3, in order to successfully provide a parser for extensible 

languages we require two things: 

• end-user simplicity; and 

• the ability to handle mid-parse grammar modification. 

The usability of the system led to the necessity of general parsing mechanisms as 

handling a subclass of context-free grammars is confusing for the macro programmer. 

To this end it was also desirable not to have to mangle the grammar before use. 

Handling mid-parse grammar changes requires us to provide a bottom-up parser that 

examines the input in a left-to-right fashion. 

No existing method fitted these requirements so a new parser was constructed which we 

call Graph Expansion Parsing. 

This chapter first shows the development of the parser in section 7.2. We then look at an 

efficiency improvement in section 7.2.3 which provides the final algorithm. 

The efficiency of Graph Expansion Parsing is examined in section 9.5. 

7.1.1 Similarities to Chart Parsing Methods 

Graph expansion parsing is clearly a type of chart parser. However it was initially 

developed in isolation without reference to any general parsing method. 

The single pass algorithm (see subsection 7.2.2) could be viewed as a modified form of 

a CYK parser that has been extended to handle grammars other than those in Chomsky 

Normal Form. 

The final algorithm (see subsection 7.2.3) uses techniques to limit the construction of 

paths and to simultaneously compare multiple rules against the current path that are 

similar in intent to Earley’s improvements over top-down breadth-first parsing 

techniques. 
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7.2 Development 

Two initial algorithms were produced for graph expansion parsing. The first attempt 

was to test the feasibility of providing generality and as a result was very inefficient, but 

importantly, it met the goal of mid-parse grammar modification. The second algorithm 

was designed to have a stronger concept of completion. 

Lastly, an optimised version of the second algorithm from this section is introduced. 

7.2.1 Multipass Method 
 

The original technique for building a graph of all possible parses and subparses 

involved making a series of passes through the entire input string. 

The algorithm begins with a graph of the input — in all examples in this section just a 

trivially linear graph, but the algorithm does not restrict the complexity of the input. 

Each vertex in the graph contains a forward edge that contain a single token of input —

for example, the input for the simple string 5*8+2 is shown in Figure 7.1(a). 

The algorithm iterates through each of the vertices in order. All forward paths (that are 

no longer than the longest right-hand side of any grammar rule) from each vertex have 

their edge values matched against all grammar rules of equal length. If a match is found, 

a new edge is added from the beginning to the end of the path with its value being the 

left-hand side of the grammar production. 

One complete iteration through the vertices does not produce all of the possible rule 

reductions, so this process is repeated until no further additions are made to the graph. 

An algorithm for this multipass method is shown in Code Example 7.1. 

repeatrepeatrepeatrepeat until no changes made 
  foreachforeachforeachforeach vertex V in original set 
    foreachforeachforeachforeach forward path (V, U) of length less than or equal to longest rule 
      foreachforeachforeachforeach rule R in rule set of equal length to the path (V, U) 
        ifififif R's right-hand side matches path values 
          add a new edge from (V, U) with R's left-hand side as value 
 
ifififif there exists an edge from start vertex to end vertex the entire input has 
  been recognised 

Code Example 7.1: Multipass Graph Expansion Algorithm 
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An example execution of this technique for the grammar of Figure 6.3 with the initial 

input 8*5+2 is shown in Figure 7.1 (with expr abbreviated to E). Even for such a 

simple test case, the algorithm requires four entire passes of the input be completed. 

There is one major problem with this technique. The multiple passes are inefficient, and 

each pass must consider an increasing number of path possibilities as the complexity of 

the graph increases. The final pass only serves to provide termination yet it takes the 

most time. 

This algorithm succeeds in parsing arbitrary grammars and at mid-pass grammar 

modification. Though the multiple passes are inefficient, they do allow a newly 

modified grammar to be applied to the entire input.  

 

(a) Initial Input 

 

(b) After Pass One 

 

(c) After Pass Two 

 

(d) After Pass Three and Four 

Figure 7.1: Multipass Graph Expansion 

8 * + 2  5 

8 * + 2  
E 

E E 

E*E 

5 

E+E 

E+E 

8 * + 2  
E 

E E 

E*E 

E*E 

5 

E+E 

E+E 

8 * + 2  

E 

E E 

5 
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The multipass method is a non-directional bottom-up parser. If restricted to paths of a 

fixed (but increasing) length for each pass, it acts as a generalised CYK parser. 

7.2.2 Single Pass Method 
 

The major problem with the multipass method is that for each vertex iteration in a pass, 

rules are being matched against paths that contain vertices that have not been examined 

in the current pass. This means matching has not been performed between the ruleset 

and the majority of the subpaths of the path currently being examined (i.e. all subpaths 

not containing the left-most vertex). 

The idea behind the single pass method is to scan the vertices from left-to-right, but to 

consider the paths from the current vertex from right-to-left (i.e. backward paths not 

forward paths). This approach ensures that all subpaths have been fully compared 

against the rule set. It also ensures that once the last vertex is examined that all possible 

parses have been generated. 

The single pass graph expansion algorithm is shown in Code Example 7.2. 

foreachforeachforeachforeach vertex V in original set 
  foreachforeachforeachforeach backward path (U, V) of length less than or equal to longest rule 
    foreachforeachforeachforeach rule R in rule set of equal length to path (U, V) 
      ifififif R's right-hand side matches path values 
        add a new edge from (U, V) with R's left-hand side as value 
 
ifififif there exists an edge from start vertex to end vertex the entire input has 
  been recognised 

Code Example 7.2: Single Pass Graph Expansion Algorithm 

Figure 7.2 shows an example execution of the single pass technique for the grammar of 

Figure 6.3 with the initial input of 8*5+2. The current node is highlighted at each step. 

The resultant graph is identical to that produced by the multipass technique shown in 

Figure 7.1 but it is produced in a more efficient fashion. 
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(a) Initial Input 

 

(b) After Iteration One 

 

(c) After Iteration Three 

 

(d) After Iteration Five 

Figure 7.2: Single Pass Graph Expansion 

The paths that are examined by the algorithm during the production of Figure 7.2 and 

when new edges are added to the graph are demonstrated in Table 7.1. The only non-

terminal in the grammar of Figure 6.3 is for that of expr, so each time a new 

expression is found it is given a subscript so that the process is easier to follow. Each 

generated path is no longer than the longest rule in the grammar and must be compared 

to all grammar rules for a match. 

The single pass method is left-to-right scanning bottom-up parser. On non-ambiguous 

grammars it will produce a single right-derivation traced out in reverse in a similar 

fashion to a LR parser. 
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Table 7.1: Single Pass Graph Expansion Evaluation 

Iteration / Vertex Examined Path Action 

0 ()  

1 (8) 
(E1) 

→ E1 on edge (0, 1) 

2 (*) 
(8, *) 
(E1, *) 

 

3 (5) 
(*, 5) 
(8, *, 5) 
(E1,*, 5) 
(E2) 
(*, E2) 
(8, *, E2) 
(E1, *, E2) 
(E3) 

→ E2 on edge (2, 3) 
 
 
 
 
 
 
→ E3 on edge (0, 3) 

4 (+) 
(5, +) 
(*, 5, +) 
(E2, +) 
(*, E2, +) 
(E3, +) 

 

5 (2) 
(+, 2) 
(5, +, 2) 
(E2, +, 2) 
(E3, +, 2) 
(E4) 
(+, E4) 
(E2, +, E4) 
(E3, +, E4) 
(E5) 
(*, E5) 
(8, *, E5) 
(E1, *, E5) 
(E6) 
(E7) 

→ E4 on edge (4, 5) 
 
 
 
 
 
 
→ E5 on edge (2, 5) 
→ E6 on edge (0, 5) 
 
 
 
→ E7 on edge (0, 5) 
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7.2.3 Optimised Method 

Many of the paths examined in Table 7.1 are clearly not going to match any of the rules 

of the simple expression grammar. For example, no rule ends with a + symbol yet in 

iteration 4 we examined six paths that end with a + symbol. 

The optimised algorithm does not continue to expand paths unnecessarily. It keeps track 

of how many possible rules contain the current path as the right-most part of their right-

hand side, and when this falls to zero the current path is abandoned. Its execution 

produces the same order of graph additions as the single pass method of the previous 

subsection. 

Code Example 7.3 contains an algorithm for this optimised method. Paths are generated 

incrementally by the recursive algorithm check. 

parse  
        foreachforeachforeachforeach vertex V in original set 
    check (V, V) 
        ifififif there exists an edge from start vertex to end vertex the entire input has 
    been recognised 
 
check (path (U, V)) 
  foreach  foreach  foreach  foreach backward edge (T, U) 
    ifififif path (T, V) matches a grammar rule R's right-hand side 
      add a new edge from (T, V) with R's left-hand side as value 
    ifififif further possibilities end with this subsequence 
      check (T, V) 

Code Example 7.3: Final Graph Expansion Algorithm 

The difficult part of this algorithm is determining whether the current path matches the 

right subsection of the right-hand side of a rule (or set of rules). To aid in this process a 

tree of partial matches is used. Figure 7.3 contains this tree of partial matches for the 

simple expression grammar of Figure 6.3. The arcs show the matched tokens, and the 

nodes contain the addition rules that represent the reduction of rules. 
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Figure 7.3: Simple Expression Partial Match Tree 

Although this tree contains add actions only at the nodes of the tree this is not typical of 

more complicated grammars. These add actions may appear at any node in the tree. For 

example, with a right-to-left parse of the classic “dangling-else” grammar both the if-

then statement and the if-then-else statement are contained in a single path in 

the tree (see Figure 7.4). A more contrived left-to-right example would be for a 

grammar containing bracketed expressions and single parameter procedure calls. 

 

Figure 7.4: Dangling-else Partial Match Tree 

Table 7.2 shows the paths examined by the final Graph Expansion Parser for the simple 

expression grammar with input 8*5+2. These are a strict subset of those in Table 7.1.  

Table 7.2: Final Algorithm Graph Expansion Evaluation 

Iteration / Vertex Examined Path Action 

0 ()  

1 (8) 
(E1) 

→ E1 on edge (0, 1) 

2 (*)  

3 (5) 
(E2) 
(*, E2) 
(8, *, E2) 
(E1, *, E2) 
(E3) 

→ E2 on edge (2, 3) 
 
 
 
→ E3 on edge (0, 3) 

then Expression Bracketed else if Expression 

add IfThenElse add IfThen 

* E 

E 

( E 

E 

) 

num 

+ 

add E = E+E 

add E = E*E 

add E = (E) 

add E = num 
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4 (+)  

5 (2) 
(E4) 
(+, E4) 
(E2, +, E4) 
(E3, +, E4) 
(E5) 
(*, E5) 
(8, *, E5) 
(E1, *, E5) 
(E6) 
(E7) 

→ E4 on edge (4, 5) 
 
 
→ E5 on edge (2, 5) 
→ E6 on edge (0, 5) 
 
 
 
→ E7 on edge (0, 5) 
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8.1 Overview 

As illustrated in Figure 8.1, the Genesis compiler: 

• takes a single Genesis source file as input; 

• tokenises this file; 

• parses this file (using the graph expansion parser from the previous chapter), 

performing macro translations where appropriate; 

• produces Java source files;  

• compiles these with the standard Java compiler (javac); and 

• finally produces Java executables (.class files). 

In addition, the parser initially imports standard macros and may import further macros 

as specified by the Genesis source file. 

 

Figure 8.1: Genesis Compiler Structure 

The major components of the Genesis compiler implementation are the tokeniser and 

parser. 

There are two facets to Genesis source file translation: translation of macro calls to 

standard Java forms and the translation of macro definitions. The latter requires a 

representation to be chosen that allows for future importing in other source files via the 

macro import mechanism. 

This chapter begins by describing the chosen representation for macro definition 

translation (section 8.2) and the import mechanism (section 8.3).  

Following this, the tokeniser (see section 8.4) and the parser (see section 8.5) 

implementations are described.  

Section 8.6 describes the actual usage of the compiler. 

Finally, the implementation of standard library extensions is detailed in section 8.7. 

.gen file tokeniser parser .class files javac .java file 

macro 

import 



CHAPTER 8: IMPLEMENTATION   MACRO DEFINITION TRANSLATION 

 •  209  •

8.2 Macro Definition Translation 

The translation of macro definitions requires the preservation of macros in a form that is 

convenient to our modified import statement. It was chosen from the onset to embed 

macros within classes directly and to use reflection for retrieval of macros at compile-

time. By using standard Java features, we allow macros to be easily packaged with their 

associated classes, with no need for extra files, new file formats or any other such 

complexity. 

8.2.1 Basic Translation 
 

Take as way of illustration the following code snippet in Code Example 8.1(a). Here we 

have a class which has two macro definitions in amongst other standard code (this code 

could use macros, but there are no further macro definitions). 

classclassclassclass Example { 
   // some code 
   ... 
   Expression macromacromacromacro (...) precedenceprecedenceprecedenceprecedence 0.6 { ... }         
   ...  
   // some other code 
   ... 
   LiteralList macromacromacromacro (...) throwsthrowsthrowsthrows SyntaxError { ... }    
   ... 
   // yet more code 
} 

(a) Before Translation 

classclassclassclass Example { 
   // some code 
   ... 
   // some other code 
   ... 
   // yet more code 
 
   staticstaticstaticstatic classclassclassclass Macros { 
      staticstaticstaticstatic Expression mangledName1(...) { ... } 
      staticstaticstaticstatic LiteralList mangledName2(...) throwsthrowsthrowsthrows SyntaxError { ... } 
   } 
} 

(b) After Translation 

Code Example 8.1: Basic Macro Translation 

Upon translation, all macro declarations found within a class are collected as a group 

inside a static inner class Macros – as a result of this decision it is necessary to ensure 

that no program is allowed to directly define an inner class of this name. So for this 

example code the translation would be as shown in Code Example 8.1(b). 
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All macros become static methods of the static class Macros. Their return types, any 

throws declarations, and their body are maintained without change. As we will see in 

the following sections the formal parameter list and name of each method depends on 

the formal parameters of the macro; its precedence and associativity; and, in some 

cases, modifications made to avoid name clashes. 

8.2.2 Name Mangling 

In C++, in order to ensure there are no name clashes due to overloading, each C++ 

name is mangled into an unique identifier that is dependent on the properties of the 

original function. In this work, a similar process is applied to each macro. 

Within the inner class Macros each macro is placed in a method that contains all of the 

macro’s properties in both its name and its arguments. This relatively simply name 

mangling process relies on placing special significance on both the “$” and “_” symbols 

in order to be able to reconstruct the full macro upon its subsequent import. 

8.2.2.1 Terminals and Non-terminals 

Each argument in a macro definition is mangled into the final name of the macro. Each 

terminal becomes part of the macro name as it appears, and in place of each non-

terminal a dollar symbol is placed. For the arguments, all terminals are dropped, and all 

non-terminals appear with their original ordering. Mangling is demonstrated in Code 

Example 8.2. 

macromacromacromacro For (forall, FormalParameter p, in, Expression e, Statement b) ... 

(a) Before Mangling 

staticstaticstaticstatic For forall$in$$(FormalParameter p, Expression e, Statement b) ... 

(b) After Mangling 

Code Example 8.2: Basic Name Mangling 

The final mangled name of a macro clearly shows the number and position of both 

terminals and non terminals, and the parameters show the types of each the terminals. It 

is simply a matter of pulling this information out upon importing a macro at a later time. 

There are a few situations that may arise that cannot be translated directly using the 

above scheme alone, none cause large problems however, and can all be dealt with a 

single solution: the introduction of leading underscore(s). These leading underscores are 
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discarded when the name is demangled. The next few subsections detail these situations 

and provide examples of their translation. 

Java Reserved Words 

A macro can be defined that contains a single terminal that happens to be a Java 

reserved word. This is done extensively in defining the Java primitives, but as always, a 

programmer may wish to override these also.  

For example, the Java primitives true and false are simply defined as shown in 

Code Example 8.3(a), and standard translation would produce the mangling in Code 

Example 8.3(b). It may not be immediately apparent what the issue is here, but true 

and false are Java reserved words, and as such cannot ever be used as identifiers. The 

solution is simply to introduce a leading underscore into the mangling as shown in Code 

Example 8.3(c). 

macromacromacromacro LiteralBoolean true() { returnreturnreturnreturn newnewnewnew LiteralBoolean(truetruetruetrue); } 
macromacromacromacro LiteralBoolean false() { returnreturnreturnreturn newnewnewnew LiteralBoolean(falsefalsefalsefalse); } 

(a) Before Mangling 

staticstaticstaticstatic LiteralBoolean truetruetruetrue() { returnreturnreturnreturn newnewnewnew LiteralBoolean(truetruetruetrue); } 
staticstaticstaticstatic LiteralBoolean falsefalsefalsefalse() { returnreturnreturnreturn newnewnewnew LiteralBoolean(falsefalsefalsefalse); } 

(b) After Basic Mangling 

staticstaticstaticstatic LiteralBoolean _true() { returnreturnreturnreturn newnewnewnew LiteralBoolean(truetruetruetrue); } 
staticstaticstaticstatic LiteralBoolean _false() { returnreturnreturnreturn newnewnewnew LiteralBoolean(falsefalsefalsefalse); } 

(c) Final Mangling 

Code Example 8.3: Java Reserved Word Mangling 

Reserved words appearing in the midst of a more complicated macro cause no issues 

and do not require the leading underscore mangle. 

Non-Java Terminals 

Java identifiers are not allowed to begin with a digit (although they are allowed to 

contain digits at any other point), whereas there is no such restrictions placed on macro 

terminals. When a straight conversion occurs of a macro that has a terminals that begins 

with a digit as its first argument it is necessary to append a leading underscore so that 

the resulting mangle does not begin with a digit.  
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Name Conflicts 

The same macro may appear in different imports with the same name and types without 

causing conflict to the compiler. A macro with the same arguments with differing return 

types may even appear in the same import.  

Of the three macros in Code Example 8.4, only one will successfully match on a given 

token, but all three will make an attempt to match. In order to remove the conflict that 

these definitions produce (Java doesn’t allow overloading on return type alone), one or 

more leading underscores may be appended to the mangled name.  

macromacromacromacro LiteralString (Token t) throwsthrowsthrowsthrows ConditionsNotMet ... 
macromacromacromacro LiteralChar (Token t) throwsthrowsthrowsthrows ConditionsNotMet ... 
macromacromacromacro LiteralInteger (Token t) throwsthrowsthrowsthrows ConditionsNotMet ... 

(a) Before Mangling 

staticstaticstaticstatic LiteralString $(Token t) throwsthrowsthrowsthrows ConditionsNotMet ... 
staticstaticstaticstatic LiteralChar _$(Token t) throwsthrowsthrowsthrows ConditionsNotMet ... 
staticstaticstaticstatic LiteralInteger __$(Token t) throwsthrowsthrowsthrows ConditionsNotMet ...  

(b) After Mangling 

Code Example 8.4: Mangled Name Conflict Resolution 

The choice of which macro(s) to append the underscores to is arbitrary, as this 

information will be discarded upon import. 

8.2.2.2 Symbols 

Symbols may appear at any argument position within a macro. Symbol terminals cannot 

be translated as is, as most symbol characters are not acceptable Java identifier 

characters. Each symbol character is translated to an underscore plus three digits that 

represent the decimal ASCII
11

 value of the symbol. Code Example 8.5 demonstrates the 

mangling of symbols for a simple macro. 

macromacromacromacro Statement (printf, (, LiteralString s, ",", Arguments list, )) ... 

(a) Before Mangling 

staticstaticstaticstatic Expression printf_040$_044$_041(LiteralString s, Arguments list) ... 

(b) After Mangling 

Code Example 8.5: Symbol Mangling 

                                                

11 Unicode source files are not currently supported by the Genesis research compiler. 
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Multicharacter Symbols 

It is possible to define a macro that uses a multi-character symbol, or a macro that 

requires two consecutive single symbols. These two cases must be differentiated. A 

multi-character symbol will be mangled as an underscore followed by multiple three 

digit groups, eg. "()" will be mangled to _040041, whereas "(" ")" will be 

mangled to _040_041.  

8.2.2.3 Precedence 

A macro’s precedence is specified by a real number between 0 and 1 inclusive and 

defaults to 0.5. This precedence is mangled by appending a prefix to a previously 

mangled name; an underscore followed by three zeros, followed by the significant part 

of the precedence. Figure 8.2 contains some examples of the mangling of precedences. 

0.5 → _0005 
0.503 → _000503 
0.01 → _00001 
0.0 → _000 

Figure 8.2: Precedence Mangling Examples 

The special case of having a precedence of 1.0 requires its own special mangle and will 

be simply mangled to _001. 

8.2.2.4 Associativity 

Macros that specify that they are right-associative (rather than the default left-

associative) have a prefix of _002 added. 

8.2.2.5 Delayed Macros 

Macros that specify that their execution is to be delayed until  the surrounding context 

has been parsed have a prefix of _003 added. 

8.2.2.6 Mangling Grammar and Algorithm 

The grammar for producing a mangled name (and for demangling) is provided in Figure 

8.3. 

The mangling process will always produce mangled names that follow this strict 

ordering of precedence–associativity–delayed, but the demangling process can be more 

robust and is free to detect these in any order, just in case. 
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mangle ::=        [leading] [precedence] [associativity] [delayed]  
                  (terminal | nonterminal)+ 
 
leading ::=       ____+ 
precedence ::=    _000_000_000_000 digit* | _001_001_001_001 
associativity ::= _002_002_002_002    
delayed ::=       _003_003_003_003    
terminal ::=      alphanum+ | ____ digit digit digit 
nonterminal ::=   $$$$ 

Figure 8.3: Mangled Name Grammar 

The algorithm for mangling a macro definition into a Java method call is shown in 

Figure 8.4 (in pseudo-code). 

name = "" 
arguments = empty 
 
ifififif macro specifies precedence 
   name += "_00" + stripDecimalPoint(precedence) 
 
ifififif macro specifies right-associativity 
   name += "_002" 
 
ifififif macro specifies delayed execution 
   name += "_003" 
 
foreachforeachforeachforeach macroParameter // (in order) 
   ifififif terminal 
      ifififif symbol 
         name += "_" + asciiValuesOf(macroparameter) 
      elseelseelseelse    
         name += macroParameter 
   elseelseelseelse    
      name += "$" 
      arguments += macroParameter 
 
whilewhilewhilewhile name begins with digit or is reserved word or conflicts  
   name = "_" + name 

Figure 8.4: Name Mangling Algorithm 
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8.3 Import Mechanism 

Upon encountering a class import statement, the implementation interrogates the class 

via reflection to see if it contains a static inner class called Macros. If such a class is 

detected, all methods of that class are examined.  

The mangled name of each method is examined, and a structure is built-up that 

contains: 

• a precedence (defaulting to 0.5); 

• an associativity (defaulting to left); 

• a list of terminals and non-terminals; 

• a return type; and  

• a reference to the static method (to be used later as the action of this macro). 

A full description of the data structures used for storing imported macros is discussed in 

subsection 8.5.2. 

Any method that is encountered within the Macros inner class that does not represent a 

well-formed macro will cause a warning to be generated. Such errors occur upon 

encountering: 

• a non-static method; 

• zero argument macro definitions; 

• a method that does not contain a matching number of parameter placeholders 

and formal parameters; or 

• parameters that do not inherit from or implement AbstractSyntax. 

No further information is extracted from the class. For the purposes of this 

implementation, reflection is used to glean all member information and when 

performing type checks — none of this information is cached at any time. However, a 

record of each import must still be maintained to enabled expansion of shortened names 

when using this reflection technique. For example following import 

somewhere.Utils, any use of Utils.someMethod must expand to 

somewhere.Utils.someMethod. 
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8.4 Tokeniser 

The tokeniser is implemented directly from the transition diagram from section 5.4.4, 

but unlike most language tokenisers it does not produce a lazy stream of tokens but a 

fully constructed graph ready for the Graph Expansion Parser. In simple cases this graph 

appears as a list. For example, consider the code fragment from Code Example 8.6.  

ifififif (frogs > toads) x = -x; 

Code Example 8.6: Code Fragment Without Multi-character Symbols 

For this simple if statement the tokeniser would produce the graph shown in Figure 

8.5. 

 

Figure 8.5: Graph Produced From Tokenising Code Example 8.6 

The tokeniser constructs these graphs with a single type on each arc: Token. No 

distinction is made between tokens that are fully alphanumeric or symbolic. Indeed, 

even string and character literals are passed to the parser as this generic token type. 

A general policy of the tokeniser design is to not make decisions about the type of any 

character sequences — this is the job of macros that deal directly with tokens, in this 

way the tokeniser provides the parser with the most flexible input. The tokeniser acts 

more as a device to separate tokens rather than to classify them. 

8.4.1 String and Character Literals 

Both string and character literals are detected at the tokenising stage, and added to the 

graph with their enclosing quotes intact. It is left to macro definitions to provide correct 

categorisation of these tokens.  

Such macros merely take a single token as input, ensure that the token is in the correct 

form (raising a quiet exception if this is not the case) and convert it into a more 

meaningful form — such as a literal or an identifier. Many such macros are likely to 

attempt (and fail) on each token of the input until the token is correctly categorised. 

if ( frogs > toads ) x = - x ; 
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8.4.2 Multi-character Symbols 
 

As discussed in section 5.4.3 multi-character symbols require special treatment. The 

production of symbol combinations described in section 5.4.3.4 fits snuggly with Graph 

Expansion Parsing. Each combination is represented as an extra arc on the graph. For 

example, consider the code fragment in Code Example 8.7. 

x+=(y4)-400.3; 

Code Example 8.7: Code Fragment Containing Multi-character Symbol s 

For this simple expression statement, the graph shown in Figure 8.6 is produced. 

 

Figure 8.6: Graph Produced From Tokenising Code Example 8.7 

The number of arcs required for a symbol sequence grows quadratically with the 

number of paths growing exponentially, but, as previously discussed, the length of 

multi-character symbols is typical just a few characters. 

 

 

 

 

 

 

 

 

x + = ( y4 ) - 400 . 3 ; 

=( 

)- 
+= 

+=( 
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8.5 Parser 

The parser is an implementation of Graph Expansion Parsing, but with a few interesting 

additions and optimisations. 

8.5.1 Sub-type Non-terminal Matching 

The standard operation of GEP is that the type of each non-terminal symbol from the 

right-hand side of a rule must be matched exactly with an arc on the graph. The Genesis 

parser allows matching to take place if the type of each object on the arc is a sub-type of 

the corresponding non-terminal symbol from a macro. 

This allows for the set of Java abstract syntax classes to be defined as a traditional 

object-oriented class hierarchy (see Appendix A). Additionally, such a technique also 

allows for implicit optimisations as macros do not have to be created to coerce abstract 

syntax classes into types higher up the abstract syntax hierarchy. 

For example, for the intuitive ambiguous simple expression grammar of Figure 6.3, it is 

possible to create a class (or interface) for an expression and four subclasses that 

correspond to addition, multiplication, bracketing, and a simple number. There is no 

need to create a class for representing the number and another class for an expression 

that is simply a number, these two classes can be combined. On a larger scale this 

technique has the potential to provide a much simplified grammar. 

8.5.2 Partial Match Tree 

The partial match tree as described in subsection 7.2.3 and Figure 7.3 is implemented, 

with efficiency as the prime concern, with a hash-table at each node. When following a 

path through the graph, each lookup in the table is a near constant operation.  

The partial matches tree is built incrementally as each new macro is imported. The 

hashtables initially start at a very small size, but will automatically grow as required, so 

the space overhead for such a scheme is not as expensive as it may appear at first 

glance. 

The sub-type matching scheme outlined in the previous subsection requires that each 

sub-type possibility is represented in the tree for maximum efficiency. The alternative 
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approach is to merely check for each sub-type as the path is followed. It is possible to 

construct a hybrid approach where sub-types are only expanded after their first use. 

8.5.3 Abstract Syntax Tree 
 

In addition to storing the abstract syntax objects creation by macro expansion as the 

parse progresses, the parser stores references to the grammar rule and all of the source 

edges that were successfully matched. This provides the necessary information for 

disambiguation, if necessary, at a later stage in the parse. 

When a macro is delayed, an uninitialised placeholder object of its return type is placed 

in the graph so that the parse can continue as expected in an inside-out fashion. Once 

the delayed macro has been expanded in an outside-in fashion, the placeholder object is 

updated to reflect the object returned. 

For macros that are delayed and may fail if further conditions are not satisfied, the 

parser also stores a list of further macros that may take its place. 

8.5.4 Error Handling 
 

The Genesis parser provides limited automatic syntax error handling, but does provide 

the user powerful facilities for explicit detection of errors within macro expansions. 

8.5.4.1 Syntax Errors 

Determining the exact location of syntax errors is difficult with Graph Expansion 

Parsing. Detecting a syntax error is simple, if an arc does not appear in the graph that 

spans the entire input then a syntax error has occurred. Where this syntax error occurred 

is not a simple matter to determine from examining the graph.  

The Genesis parser simply finds the areas of the graph where the least matching of 

macros has taken place and signals the user that these might be where the error has 

occurred. At the simplest level of error, an unrecognised symbol, this scheme will work 

very well. It is less clear that this approach will be as useful for more subtle syntax 

errors however. In particular, a syntax error for a particular construct might still be 

partially correct for another and the simple error detection scheme is unlikely to identify 

this partially matched area as a possible source of error.   
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8.5.4.2 Exception Errors 

The parser allows macros to throw any exception that extends ParserException. If 

a quiet exception is thrown, the parser will continue as if nothing happened. When 

errors or warnings are thrown, the parser stores this information until it is sure that the 

macro that caused the exception will contribute to the final parse. 
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8.6 Standard Usage 

The Genesis compiler is invoked at the command line by genc <filename>. Source 

files must end with a .gen file extension.  

In addition to standard operation there are a number of command-line arguments that 

can be specified. 

8.6.1 Command-line Arguments 
 

The Genesis compiler supports command line arguments for: modifying the classpath, 

modifying the default import classes, and producing Java output. 

8.6.1.1 Classpath 

Like javac, genc uses the environmental variable CLASSPATH and provides a 

classpath switch to allow for easy overriding of this location. 

8.6.1.2 Default Imports 

By default the compiler imports all of the standard Java abstract syntax classes, as well 

as the Genesis import statement and macro declaration classes. These default classes 

can be added to by the use of the import switch, or completely overridden by the 

importonly switch.  

The former allows easy extension of the Java language without the necessity for an 

import in every source file. In effect, the Genesis compiler can act as a compiler for an 

extension transparently to the end-user. 

The latter allows for languages to be created that are entirely free from Java syntax, but 

nonetheless produce valid Java code. This is possible because macro definitions are 

only necessary for matching source code, the compiled macros are still capable of 

producing Java abstract syntax. Using this switch with the Haskell subset extension (as 

defined in section 3.4.2.3) can allow source files to contain nothing but Haskell subset 

definitions. See section 9.2.6.6 for more explanation. 
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8.6.1.3 Production of Java Source Code 

The compiler can output intermediary Java code rather than compiling it. Output code 

will be placed in a file with the same name as the Genesis source, but with a .java 

extension rather than .gen.  

Production of the full translated Genesis source code as its Java equivalent allows for a 

low-level detection of bugs in both user-defined macros and the fledgling Genesis 

compiler. 
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8.7 Standard Library Extensions 

Genesis provides extensions as standard to aid with macro construction.  

In subsection 8.7.1 facilities are provided for quasi-quotation, unquoting, and hygiene as 

these are considered essential for producing concise and human-readable code. In 

addition to these shorthands, macros are provided to simplify the declaration of macros 

in subsection 8.7.2. 

8.7.1 Quasi-quotation 
 

The initial implementation of quasi-quotation is actually relatively straightforward. 

However, it does rely on each object on the parse tree "knowing" which macro was 

invoked in order to produce it. The syntax for quasi-quotation in Genesis is shown in 

Code Example 8.8(a). 

{{    throwthrowthrowthrow newnewnewnew TestAssert.AssertionError("Assertion Failed"); }} 

(a) Throw Statement with Quasi-quotation 

newnewnewnew Throw(newnewnewnew Creation( 
  nenenenewwww Type(newnewnewnew Name("TestAssert").add("AssertException")),  
  newnewnewnew Arguments(newnewnewnew LiteralString("Assertion Failed")) 
)) 

(b) Handwritten Code to Produce Throw Statement 

Statement.Macros._0006throw$_059(Expression.Macros.new$_040$_041( 
  Type.Macros.$(Name.Macros.$(newnewnewnew Identifier("AssertionError"))),  
  Expression.Macros.$(newnewnewnew LiteralString("Assertion Failed")) 
)) 

(c) Quasi-quotation Code to Produce Throw Statement 

Code Example 8.8: Genesis Quasi-quotation 

Code Example 8.8(b) contains typical handwritten code for producing the same effect as 

the quasi-quotation in Code Example 8.8(a). Whilst is would be feasible to provide 

creation of such code as the translation of the quasi-quotation form, it would rely on 

constructors being made available in such a form that would be simple to use by the 

translator. Such handwritten code has various shortcuts for easing the burden on the 

programmer that would be more difficult to utilise in an automatic translation. 

As described in subsection 8.5.3, among the information stored during the parsing 

process is the macro used for creation of each object in the parse tree. The production of 

quasi-quotation translation code of Code Example 8.8(c) utilises this information. 
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Quasi-quotation translation creates new objects directly for objects that are produced 

directly from tokens in the parse to avoid having to handle ConditionsNotMet 

exceptions for these simple cases. 

Indeed, if macros that may throw exceptions are used within a quasi-quotation they 

must be handled by the method containing the quasi-quotation, either by enclosing the 

quasi-quotation in an appropriate try-catch statement or by adding them to the 

throws clause. 

The basic concept of the implementation of quasi-quotation is shown in Code Example 

8.9. The basic concept is to undertake a treewalk and reproduce the call to the macro 

that produced each encountered node. 

Expression produceQuasi(AbstractSyntax a) { 
  ArcValue v = Utils.getAbstractSyntaxInfo(a); 
  ExpressionList args = new ExpressionList(); 
 
  forallforallforallforall (ArcValue w) inininin v.sources args.add(produceQuasi(w.data)); 
 
  returnreturnreturnreturn new MethodCall(v.rule.action, args); 
} 
    
macromacromacromacro Expression ("{{", AbstractSyntax a, "}}") { 
  returnreturnreturnreturn produceQuasi(a); 
} 

Code Example 8.9:  Partial Basic Quasi-quotation Definition 

Abstract syntax classes representing identifiers and literals (i.e. anything taking a token 

as its argument and promoting it to some more useful type) require slightly more work. 

As these macros are not delayed but may throw ConditionsNotMet exceptions it is 

simpler for the end user if they are given special treatment and translated into an 

instantiation instead. Such a facility is not provided for user-defined macros that have 

the same usage pattern and such exceptions must be handled by the end-user. 

Despite this limitation, quasi-quotation is general enough to handle all user-defined 

types automatically. This one simple framework will successfully produce code that will 

reproduce the required syntax tree. 

8.7.1.1 Hygiene 

Hygiene requires another modification of the simple definition of Code Example 8.9. 

Each occurrence of a variable declaration encountered during the treewalk must be 

translated into code that generates a fresh variable name — much as a programmer 

would do by hand to avoid name conflicts. As an addition complication, any 
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occurrences of the variable name in the following subtree must be replaced with 

references to the freshly created variable name. This process is implemented via another 

treewalk and is relatively straightforward.  

8.7.1.2 Unquoting 

The implementation of unquoting creates more complications than that of quasi-

quotation. The result of performing an unquote must provide the parser with the correct 

typing information so that the parse can proceed as expected. Unfortunately there is no 

way around this situation but to provide an unquote macro for each abstract syntax class 

that it is desirable to unquote. While the quasi-quotation definition works for any user-

defined type, unquoting support must be explicitly provided. 

Code Example 8.10 demonstrates the basic requirements for implementing unquoting 

for a given abstract syntax class. In this example, unquoting is provided for two 

statement classes: For and While. For each class for which unquoting is required, a 

class that allows parsing to proceed as required yet stores the unquoted expression must 

be created. 

interfaceinterfaceinterfaceinterface Unquoted { } 
    
classclassclassclass ForUnquoted extendsextendsextendsextends For implementsimplementsimplementsimplements Unquoted {  
  Expression storedForLater; 
  ...  
} 
 
classclassclassclass WhileUnquoted extendsextendsextendsextends While implementsimplementsimplementsimplements Unquoted { 
  Expression storedForLater; 
  ...  
} 
 
delayed delayed delayed delayed macromacromacromacro ForUnquoted (`, Expression e) { ... } 
delayed delayed delayed delayed macromacromacromacro WhileUnquoted (`, Expression e) { ... } 

Code Example 8.10: Unquoting Implementation 

Changes to the quasi-quotation definition are again required to handle the addition of 

unquoting — although the modification is trivial. On encountering an unquote the 

stored expression must be added unchanged to the built list of creations. 

At the point at which an unquote is reached the possible interpretations are numerous 

and cause a large number of edges to be added to the parse graph — the majority of 

these edges lead to successful parses however. In some cases the number of possibilities 

can be quite large, for example an unquoting of a statement will lead to all possible 

statement unquotings being carried through the entire parse. For this reason, unquoting 
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must be delayed to ensure that the actual static type of the unquoted expression can be 

used to correctly resolve the ambiguity.  

8.7.2 Macro Definition Shorthands 

Many macro definition shorthands are provided:  

• automatic generation of abstract syntax tree construction macro; 

• automatic list class and associated macro generation; 

• optional macro parameters; and 

• statically type-checked parameters. 

These macro definitions ease the burden of producing repetitive code from the macro 

programmer. Of these four shorthands, only optional macro parameters has a fully 

fleshed out implementation, the other three use much of the same techniques and little 

would be gained by demonstrating their implementations also. 

8.7.2.1 Automatic Construction Macros 

As so many macros are simply used for the construction of abstract syntax classes, 

automating this to a degree seems like an obvious improvement. The macroSyntax 

macro simply creates a macro with an identical header to how it was originally called 

and a body containing a call to a constructor for its return type passing through all of its 

non-terminal arguments. For a straight-forward example of the use of this macro, see 

Code Example 8.11. 

To simplify things further, it is possible to provide multiple definitions for a single 

return type as demonstrated in Code Example 8.12. 

8.7.2.2 Automatic Lists 

Much use is made of lists of abstract syntax classes (these lists themselves are also 

abstract syntax). To simplify this process a macroList macro is provided that 

specifies the name of the list class to be created, the type of abstract syntax class to 

collect, and an optional separator. This macro expands into a class with appropriate 

constructors and two associated macros that allow for construction of the list. 

For a simple example, see Figure 8.7(b). 
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8.7.2.3 Optional Macro Parameters 

Optional macro parameters remove the burden of producing multiple similar macro 

definitions from the macro programmer. 

A simplified version of the method declaration fragment from Figure 5.2 is restated in 

Figure 8.7. The EBNF definition of a simplified method declaration grammar 

demonstrates both optional components and list definitions. Demonstrated in Figure 

8.7(b) is the usage of optional macro parameter shorthand (i.e. Modifiers m?) and 

the list shorthand (i.e. macroList Modifiers(Modifier)). 

method ::= [modifiers] return_type name (((( )))) block 
modifiers ::= modifier modifiers | modifier 

 (a) EBNF Definition with Optional Components and a List Definition 

macromacromacromacro MethodDeclaration (Modifiers m?, Type t, Identifier i, (, ), Block b) { 
} 
macroListmacroListmacroListmacroList Modifiers(Modifier); 

 (b) Macro Definitions Using Shorthands 

Figure 8.7: Method Declaration Fragment 

The implementation defines: 

• an extended macro formal parameter class; 

• new definitions in order to collect extended parameters (along with normal 

macro formal parameters) into a parameter list; and 

• a set of macros defining new macro definitions with extended parameter lists.  

Optional Macro Parameter Class 

We first define ExtendedMacroParameter to serve as a wrapper for 

MacroParameter and then define OptionalMacroParameter as a child of this 

class. This extra layer in the hierarchy is intended to allow easy implementation of other 

shorthands such as multiple occurrences of an argument. This implementations of the 

base class an the optional macro parameter class are provided in Code Example 8.11. 
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classclassclassclass    ExtendedMacroParameter implementsimplementsimplementsimplements AbstractSyntax { 
  MacroParameter macroParameter; 
 
  ExtendedMacroParameter(MacroParameter p) { 
    macroParameter = p; 
  } 
} 
 
classclassclassclass OptionalMacroParameter extendsextendsextendsextends ExtendedMacroParameter { 
  OptionalMacroParameter(MacroParameter p) { supersupersupersuper(p); } 
 
        macromacromacromacroSyntaxSyntaxSyntaxSyntax    OptionalMacroParameter (MacroParameter p, ?); 
} 

Code Example 8.11: Optional Macro Parameter Class 

Extended Macro Parameter List 

Unfortunately, the extended parameter list cannot be automatically constructed using 

the definition from subsection 8.7.2.2. The class ExtendedMacroParameters is 

responsible for combining lists of normal and extended macro parameters so it requires 

more constructors than the automatic list generation shorthand provides.  

Code Example 8.12 contains a partial implementation of the list with the constructors 

omitted for simplicity. The macros definitions provided ensure that any occurrences of 

extended macro parameters within a macro declaration (regardless of where in the list 

they appear) results in creation of an  ExtendedMacroParameters object. 

classclassclassclass ExtendedMacroParameters extendsextendsextendsextends List { 
  // many constructors corresponding to the definitions below 
 
  macroSyntaxmacroSyntaxmacroSyntaxmacroSyntax ExtendedMacroParameters  
    (ExtendedMacroParameter) 
    (ExtendedMacroParameters, ",", ExtendedMacroParameter) 
    (MacroParameters, ",", ExtendedMacroParameter) 
    (ExtendedMacroParameters, ",", MacroParameter); 
} 
    

Code Example 8.12: Extended Macro Parameter List 

Extended Macro Definitions 

Code Example 8.13 describes the basic structure of the macro for handling optional 

arguments. The macro enumerates the optional components producing multiple similar 

macros as described in subsection 5.3.4. Each occurrence of an optional parameter 

doubles the required number of expanded definitions. 
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macromacromacromacro ClassMemberDeclarations  
(macro, Type t, (, ExtendedMacroParameters ps, ), Block b) { 
  // a list of declaration replace this single macro definition 
  ClassMemberDeclarations ds; 
 
  // create a static method that contains the body of the macro definition 
  MethodDeclaration md; 
 
  // generate all permutations of options and add this to the list also 
  // each of these definitions has a call to md as its body 
 
  returnreturnreturnreturn ds; 
} 

Code Example 8.13: Implementation Outline of Macro Definitions With Optional Arguments 

8.7.2.4 Statically Type-checked Parameters 

As demonstrated in subsection 4.8.4.2, specialisation macros are useful to provide 

specialised code for different static-types. In Genesis it is possible to define multiple 

macros with the same arguments but to reject expansion (by throwing an exception) if 

the compile-time static type is inappropriate (see subsection 5.5.6).  

Such macros must be delayed until type information is available, include a suitable 

exception in their throws clause, and provide an explicit type check. The static type-

checked parameter macro allows for the production of such to be automated. 

This extension provides a further extension to macro formal parameters. An abstract 

syntax type may specify a static type restriction with the following syntax: 

AbstractSyntaxType:StaticType Identifier. Code Example 8.14 

demonstrates the use of this syntax for a factorial function specialisation for literal 

integers. 

macromacromacromacro LiteralInteger (Expression:LiteralInteger e, !) { 
  // calculate a compile-time factorial 
} 

(a) Definition Using Statically Type-checked Parameters 

delayed delayed delayed delayed macromacromacromacro LiteralInteger (Expression e, !) throwsthrowsthrowsthrows ConditionsNotMet { 
  ifififif (!e.type().equals(LiteralInteger.classclassclassclass)) throwthrowthrowthrow new ConditionsNotMet();  
 
  // calculate a compile-time factorial 
} 

(b) Expansion of Statically Type-checked Parameters 

Code Example 8.14: Factorial Literal Specialisation 

Multiple static-type checks within a single definition are expanded and checked in the 

order they appear within the macro definition. 
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Statically type checked parameters are demonstrated more extensively in the 

implementation of iteration (i.e. forall) in subsection 9.2.2. 
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9.1 Overview 

The successfulness of the Genesis language definition (as defined in chapter 5) and its 

implementation (from the previous chapter) is assessed by a variety of methods: 

implementation of benchmark test cases, qualitative assessment, and a comparative 

assessment with Maya. 

Firstly, in section 9.2, the power and flexibility of Genesis is shown with a proof-by-

implementation of the benchmark test cases from section 3.4. Pertinent details of the 

implementations are provided, with much code omitted for the later complex examples. 

A review of these implementations is provided in section 9.2.7. 

Section 9.3 contains a qualitative assessment of Genesis with a general discussion of 

issues relating to its power, usability, and error handling. Also, Genesis is rated against 

the criteria developed in section 3.3. 

A detailed comparison of Genesis and Maya is provided in section 9.4 on issues such as: 

implementation of the benchmark test cases (and also MultiJava), length of code, and 

the criteria for extensible languages.  

In section 9.5, the Graph Expansion Parsing method is compared against other general 

parsing methods by discussion of the class of grammars they accept and both time and 

space efficiency. Such analysis is sufficient at this stage of development, as algorithmic 

complexity improvement was the only form of optimisation applied to Graph Expansion 

Parsing or the Genesis system as a whole. Currently a direct speed comparison to other 

Java parsers would be strongly biased in favour of production compilers. 
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9.2 Implementation of Test Cases 

In this section we provide implementations of the test cases from section 3.4. While 

explanations are provided for all of the approaches taken for translation, exacting code 

is omitted where it would add little to the explanation but a great deal to the length of 

this section. 

Demonstrations of the differences between Genesis’ coding styles are provided for 

assertions and iteration. In particular, the improvement in code readability and 

conciseness is highlighted. Later examples use only the improved techniques. 

Subsection 9.2.7 provides a review of the successfulness of the following 

implementations, with more general issues of Genesis’ code quality discussed further in 

section 9.3. 

9.2.1 Assertions 
 

The addition of assertions is the simplest of all of the test cases. Java1.4 already 

provided for an assert statement that throws an AssertionError (a descendant 

of java.lang.Error). The following implementation reuses AssertionError 

for simplicity, although it would be a trivial matter to provide our own error class.  

9.2.1.1 Basic Implementation 

In Code Example 9.2, we provide the implementation without use of quasi-quotation. 

The translation of an assertion merely checks the condition, and upon failure outputs the 

offending expression to the standard error stream, and throws an AssertionError.  

publicpublicpublicpublic classclassclassclass Assertions {   
  macromacromacromacro Statement (assert, Expression e) { 
    Block b = newnewnewnew Block(); 
    
    b.add(newnewnewnew ExpressionStatement( 
      newnewnewnew MethodCall(newnewnewnew Simple(newnewnewnew Name("System").add("err").add("println")), 
        newnewnewnew LiteralString("Assertion failed: " + e.toString()) 
    ))); 
 
    b.add(newnewnewnew Throw( 
      newnewnewnew Creation(newnewnewnew Type("AssertionError"), 
        new List(newnewnewnew LiteralString("Assertion Failed")))) 
    )); 
 
    returnreturnreturnreturn newnewnewnew Block().add(newnewnewnew IfThenElse(e, null, b)); 
  } 
} 

Code Example 9.1: Basic Assertion Implementation 
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9.2.1.2 Quasi-quote Implementation 

It should be clear from the definition in Code Example 9.2 that the use of quasi-

quotation improves the readability of the implementation. The contents of the quasi-

quotation closely matches the code that will be produced after expansion which is a 

great improvement over Code Example 9.2. 

macromacromacromacro Statement (assert, Expression e) { 
  returnreturnreturnreturn {{ 
    ifififif (!`e) { 
      System.err.println("Assertion Failed: " +  
        `(newnewnewnew StringLiteral(e.toString()))); 
      throwthrowthrowthrow newnewnewnew AssertionError("Assertion Failed"); 
    }  
  }}; 
} 

Code Example 9.2: Quasi-quote Assertion Implementation 

9.2.1.3 Implementation Issues 

This version of assertions does not explicitly check the type of the expression given to 

the assert statement, it would be possible to do this, but for simplicity it was chosen 

to let the later stages of compilation pick up this error, as it will cause a type error for 

the generated if statement. See section 8.5.4 for a discussion of error handling. 

9.2.2 Iteration 

To illustrate the improvement in code, both in simplicity and conciseness, we provide 

multiple definitions of iteration constructs. Successive re-implementations demonstrate 

quasi-quotation, hygiene, and static-type matching. 

9.2.2.1 Basic Implementation 

Code Example 9.3 is the most low-level implementation of the foreach macro. This 

implementation has two forall macro definitions; this is to allow for optional 

brackets around the formal parameter argument. These brackets are merely syntactic 

sugar and play no part in the expansion. Unfortunately the optional brackets cannot take 

advantage of the optional parameter macro (see subsection 8.7.2.3) as they must either 

both be present or absent. 
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importimportimportimport java.util.Iterator; 
 
publicpublicpublicpublic classclassclassclass TestForall {   
  staticstaticstaticstatic For forall(FormalParameter p, Expression e, Statement b)  
  throwsthrowsthrowsthrows TypeMismatch { 
    ifififif (!e.type().isSubType(Iterator.class)) throwthrowthrowthrow newnewnewnew TypeMismatch(); 
 
    Identifier unique = Utils.unique(); 
 
    returnreturnreturnreturn new For(newnewnewnew LocalVariableDeclaration(Iterator.class, unique,  
      newnewnewnew MethodCall(newnewnewnew FieldAccess(newnewnewnew Bracketed(e), "iterator"))),  
      newnewnewnew MethodCall(newnewnewnew FieldAccess(unique, "hasNext")), 
      nullnullnullnull,  
 
      newnewnewnew Block( 
        newnewnewnew LocalVariableDeclarationStatement(p.type(), p.getIdentifier(),  
          newnewnewnew Cast(p.type(), newnewnewnew MethodCall(newnewnewnew FieldAccess(unique,"next")))), 
        b 
      ));  
  } 
 
  delayeddelayeddelayeddelayed mmmmacroacroacroacro For (forall, FormalParameter p, in, Expression e, Statement b) 
  throwsthrowsthrowsthrows TypeMismatch { 
    returnreturnreturnreturn forall(p, e, b); 
  } 
 
  delayed delayed delayed delayed     
  macromacromacromacro For (forall, (, FormalParameter p, ), in, Expression e, Statement b)    
  throwsthrowsthrowsthrows TypeMismatch { 
    returnreturnreturnreturn forall(p, e, b); 
  } 
} 

Code Example 9.3: Basic Iteration Implementation 

9.2.2.2 Quasi-quote Implementation 

In Code Example 9.4 we rewrite the forall method using quasi-quotation and 

unquote. The use of quasi-quotation provides a readable version of the for loop 

expansion for iteration. This still requires the explicit creation of a unique identifier for 

use within the quasi-quotation. 

staticstaticstaticstatic For forall(FormalParameter p, Expression e, Statement b)  
throwsthrowsthrowsthrows TypeMismatch { 
  ifififif (!e.type().isSubType(Iterator.class)) throwthrowthrowthrow newnewnewnew TypeMismatch(); 
 
  Identifier unique = Utils.unique(); 
 
  returnreturnreturnreturn {{  
    forforforfor(Iterator `unique = (`e).iterator(); `unique.hasNext(); ) { 
      `(p.type()) `(p.getIdentifier()) = (`(p.type())) `unique.next(); 
      `b 
    } 
  }}; 
} 

Code Example 9.4: Quasi-quote Iteration Implementation 
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9.2.2.3 Hygienic Implementation 

Code Example 9.5 makes use of hygiene. Each variable declaration within a quasi-

quotation is replaced with a unique variable name. Effectively, producing the version 

from the previous subsection.  

staticstaticstaticstatic For forall(FormalParameter p, Expression e, Statement b) 
throwsthrowsthrowsthrows TypeMismatch { 
  ifififif (!e.type().isSubType(Iterator.class)) throwthrowthrowthrow newnewnewnew TypeMismatch(); 
 
  returnreturnreturnreturn {{  
    forforforfor(Iterator i = (`e).iterator(); i.hasNext(); ) { 
      `(p.type()) `(p.getIdentifier()) = (`(p.type())) i.next(); 
      `b 
    } 
  }}; 
} 

Code Example 9.5: Hygienic Iteration Implementation 

9.2.2.4 Static-type Matching Implementation 

The final implementation in Code Example 9.6 of the forall method demonstrates 

the static-type matching shorthand defined in section 8.7.2.4. 

staticstaticstaticstatic For forall(FormalParameter p, Expression:Iterator e, Statement b) { 
  returnreturnreturnreturn {{  
    forforforfor(Iterator i = (`e).iterator(); i.hasNext(); ) { 
      `(p.type()) `(p.getIdentifier()) = (`(p.type())) i.next(); 
      `b 
    } 
  }}; 
} 

Code Example 9.6: Static-Type Matching Iteration Implementation 

Note that this use of the static-type matching shorthand is on a static function, not a 

macro, but it works equally well on both. Indeed, had we chosen to only provide one 

syntax for this extension, we could have used this static-type matching and it would 

have added the delayed modifier to the macro.  

This implementation removes the necessity to explicitly declare that this macro may 

throw an exception and removes the explicit check. This final version provides a very 

concise, readable definition of the forall macro. 

9.2.3 Type-safe Formatted Output 

The implementation of the printf macro is the most complicated of the simple test 

cases, as it requires us to generate an arbitrary amount of new code. Its implementation 

is not as straightforward as the previous cases, and doesn’t so closely match the code it 
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produces. It illustrates the benefits of having the full language at our disposal for the 

implementation of macros. 

The code in Code Example 9.7 demonstrates the implementation of the printf macro 

with some parts abbreviated and some auxiliary functions omitted. The omitted function 

match breaks the string literal into its component parts, using % followed by a 

character as a separator. The definition of the omitted exception classes 

TooManyActualParameters and TooManyPlaceHolders are unremarkable. 

The basic idea here is to break the string up into components, and to simultaneously 

iterate through these components and the list of supplied arguments. An expression that 

concatenates a list of strings is the result of this iteration. Upon detection of a 

placeholder from the literal string argument, the corresponding argument is verified to 

be of a suitable type, and is added to the expression. Any unrecognised placeholders 

from the literal string argument are treated as strings, and all these and all actual string 

components are added as is to the expression. 

If there are either too many placeholders, or too many arguments, a corresponding 

exception is thrown to alert the user. 

This code makes liberal use of quasi-quotation, but the code is only slightly more 

concise because of this. The code generation here is quite complex, and as a result the 

expansion code doesn’t resemble the resultant expansion. 
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delayeddelayeddelayeddelayed    
macromacromacromacro ExpressionStatement (printf, (, LiteralString s, ",", Arguments list, )) 
throwsthrowsthrowsthrows TypeMismatch, TooManyActualParameters, TooManyPlaceHolders {  
  Expression exp = newnewnewnew LiteralString("") ; 
 
  Vector parts = match(s.s, "%.") ; 
 
  Iterator i = list.iterator(); 
  Iterator j = parts.iterator(); 
 
  whilewhilewhilewhile (j.hasNext() && i.hasNext()) { 
    Expression e = (Expression) i.next();  
    Type t = e.type(); 
 
    // if t cannot be typed, throw syntax error – not done here for simplicity 
 
    booleanbooleanbooleanboolean keepLooking = true; 
    whilewhilewhilewhile (keepLooking) { 
      String placeHolder = (String) j.next(); 
 
      keepLooking = false; 
     
      ifififif (placeHolder.equals("%s")) { 
        ifififif (t.equals(String.classclassclassclass)) { 
          exp = {{ `exp + e }};  
        } elseelseelseelse { 
          throw new TypeMismatch( "TYPE MISMATCH: string expected");     
        } 
      } elseelseelseelse ifififif (placeHolder.equals("%d")) { 
        ifififif (t.equals(intintintint.classclassclassclass)) { 
          exp = {{ `exp + (e) }}; 
        } elseelseelseelse ifififif (Integer.class)) { 
          exp = {{ `exp + e }}; 
        } elseelseelseelse { 
          throwthrowthrowthrow newnewnewnew TypeMismatch("TYPE MISMATCH: integer expected");     
        } 
      } elseelseelseelse ifififif (placeHolder.equals("%f")) { 
        // similar to %d 
      } elseelseelseelse ifififif (placeHolder.equals("%c")) { 
        // similar to %d 
      } elseelseelseelse { 
        exp = {{ `exp + `(newnewnewnew LiteralString(placeHolder)) }}; 
        keepLooking = truetruetruetrue; 
      } 
    } 
  } 
 
  ifififif (i.hasNext()) { 
    throwthrowthrowthrow newnewnewnew TooManyActualParameters("TOO MANY ACTUAL PARAMETERS: " + 
      matches(s.s, "%.") + " expected, " + list.size() + " found."); 
  } 
 
  whilewhilewhilewhile (j.hasNext()) { 
    String placeHolder = (String) j.next(); 
 
    ifififif (placeHolder.equals("%s") || placeHolder.equals("%d") || 
        placeHolder.equals("%f") || placeHolder.equals("%c")) {  
      throwthrowthrowthrow new TooManyPlaceHolders("TOO MANY PLACEHOLDERS: " + list.size() + 
        " expected, " + matches(s.s, "%.") + " found."); 
    } elseelseelseelse { 
      exp = {{ `exp + `(newnewnewnew LiteralString(placeHolder)) }}; 
    }       
  } 
 
  returnreturnreturnreturn {{ System.out.println(`exp); }}; 
} 

Code Example 9.7: Partial Type-safe Formatted Output Implementation 
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9.2.3.1 Example Expansion 

Code Example 9.8 demonstrates an example printf usage and its expansion. 

printf("hello %s, %d.", "world", 42); 

(a) printf Macro Use 

System.out.println("" + "hello " + "world" + ", " + (42) + "."); 

(b) After Macro Expansion 

Code Example 9.8: Type-safe Formatted Output Expansion 

9.2.4 SQL Subset 
 

The implementation of the SQL subset requires that we first match SQL syntax and then 

communicate with a database via the standard Java libraries. At first glance this appears 

to be more complicated than hand-written SQL strings. It is worth reiterating that the 

improvement here is that the run-time SQL is now guaranteed to be correct. In this 

research implementation the SQL is still re-checked for correctness at compile-time as 

implementing database classes from scratch was not the intent of the example. 

Code Example 9.9 contains the main SQL abstract syntax class. All other classes used 

in the SQL implementation are omitted as these are essentially just construction classes 

and their implementation is straightforward (although they do define a method 

toExpression which is detailed in a moment). The macros that perform this 

construction are shown on lines 32–45. Many of these can utilise the macroSyntax 

shortcut, whereas the others require their terminal arguments for construction to take 

place (perhaps some extension in future work could better address these kinds of 

constructions). 

The macro for SQL selection appears form lines 16–29 and performs a simple 

translation from the abstract syntax into run-time code by use of a common method 

called toExpression and a run-time call to a static method that performs the 

database query. The toExpression method operates as would be expected and 

produces an expression to reproduce the SQL query. Generally this consists of a 

sequence of literal strings, but Java expressions within the SQL must be preserved. 
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1 classclassclassclass SQL { 
2         static static static static Connection connection = null; 
3         static void static void static void static void init(Connection c) { connection = c; } 
4  
5         staticstaticstaticstatic Object select(String embedded) throwsthrowsthrowsthrows SQLException { 
6     Statement stmt = connection.createStatement(); 
7     ResultSet results = stmt.executeQuery(embedded); 
8  
9     ifififif (results.getMetaData.getColumnCount() != 1) return return return return results; 
10   
11     Array a = results.getArray(1); 
12  
13     return return return return /* either a single value or the resultant array – fiddly */; 
14   } 
15  
16         macromacromacromacro Expression (SELECT, SQLNames names, FROM, SQLTables tables,  
17                     (WHERE, SQLCondition condition)?) { 
18  
19     StringLiteral embedded = new StringLiteral("SELECT " + names +  
20                                                " FROM " + tables); 
21     Expression cond; 
22     ifififif (condition == null) { 
23       cond = {{ "" }}; 
24     } else { 
25       cond = {{ " WHERE " + `(cond.toExpression()) }}; 
26     } 
27  
28     return return return return {{ select(`embedded + `cond) }}; 
29   } 
30  
31         macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLName (Name n); 
32         macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLNames (SQLName n) (SQLNames ns, ",", SQLName n); 
33         macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLTable (Identifier i); 
34         macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLTables (SQLTable t) (SQLTables ts, ",", SQLTable t); 
35  
36         macromacromacromacro SQLInfix (SQLCondition left, AND, SQLCondition right) { ... } 
37         macromacromacromacro SQLInfix (SQLCondition left, OR, SQLCondition right) { ... } 
38         macroSyntaxmacroSyntaxmacroSyntaxmacroSyntax SQLBracketed ("(", SQLCondition cond, ")"); 
39  
40         macromacromacromacro SQLInfix (SQLExpression left, <, SQLExpression right) { ... } 
41         macromacromacromacro SQLInfix (SQLExpression left, >, SQLExpression right) { ... } 
42         macromacromacromacro SQLInfix (SQLExpression left, =, SQLExpression right) { ... } 
43  
44         macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLInfix (:, Expression e); 
45 } 

Code Example 9.9: Partial SQL Subset Implementation 

The user is required to initialise this SQL class with a valid connection by using the 

static init method on line 3 and this connection is used within the implementation of 

the select method (lines 5–14). This method performs the SQL query and is 

generally unremarkable. The final result array is examined and either a single value or a 

vector of values is returned to the caller — this code is omitted for increased clarity of 

the important points. 

The only point to stress in this straightforward implementation occurs on line 28. The 

use of select within the quasi-quotation is an unbound reference and when translation 

takes place it is correctly bound to the static method with the SQL class. It is effectively 
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replaced with a call to any.earlier.path.SQL.select. Such an approach 

ensures that referential transparency is maintained. 

9.2.5 Generators 
 

The implementation of generators follows a similar approach to that of the C++ macro 

implementation covered in section 2.3.3.3, with the major complication being the 

replacement of the C++ switch statement with a cleaner version in Java. To aid in the 

implementation, we first introduce a helper class (see Code Example 9.10) that every 

generator will extend. Each generator implementation need only implement the abstract 

method hasNext, and everything else will work as a result. 

abstractabstractabstractabstract classclassclassclass GeneratorBase implementsimplementsimplementsimplements Iterator { 
  privateprivateprivateprivate Object nextVal; 
  protectedprotectedprotectedprotected intintintint reentry = 0; 
 
  protectedprotectedprotectedprotected booleanbooleanbooleanboolean suspend(Object n, int r) {  
    nextVal = n;  
    reentry = r;  
    return truetruetruetrue;  
  } 
 
  protectedprotectedprotectedprotected intintintint position() { returnreturnreturnreturn reentry; } 
 
  abstractabstractabstractabstract publicpublicpublicpublic booleanbooleanbooleanboolean hasNext(); 
  publicpublicpublicpublic Object next() { returnreturnreturnreturn nextVal; } 
  publicpublicpublicpublic voidvoidvoidvoid remove() { throwthrowthrowthrow newnewnewnew UnsupportedOperationException(); } 
} 

Code Example 9.10: Generator Helper Class 

The GeneratorBase class extends Iterator, and as we will see, with some clever 

implementation this allows us to get the use of the forall macro for free. Code 

Example 9.11 shows the implementation of the suspend statement. 

classclassclassclass Suspend implementsimplementsimplementsimplements Statement { 
  Expression expr; 
 
  Suspend(Expression e) { expr = e; } 
} 
 
macromacromacromacro Statement (suspend, Expression e) { 
  returnreturnreturnreturn newnewnewnew Suspend(e); 
} 

Code Example 9.11: Suspend Statement Implementation 

If only everything was this easy! This translation merely adds a place holder for later 

erasure. The macro definition in Code Example 9.12 provides the implementation 

details for actual expansion of a generator method, some details have been omitted, but 

are covered in the following subsections. 
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macromacromacromacro MethodDeclaration (generator, MethodDeclaration method) { 
  Identifier name = method.getName(); 
  FormalParameters params = method.getParameters(); 
  ClassBodyDeclarations declarations = new ClassBodyDeclarations(); 
  Block initialisation = new Block(); 
  SwitchBlocks cases = new SwitchBlocks(); 
 
  // ---- missing code, covered in following subsections ---- 
  // transform formal parameters into field declarations & initialisation code 
  // transform local variables into field declarations 
  // generate resumable code, ie. translate block into switch statement cases 
 
  returnreturnreturnreturn {{ 
    // method declaration 
    (`method.getModifiers()) Generator `(name) (`params) { 
      // inner class declaration 
      classclassclassclass `(name) extendsextendsextendsextends GeneratorBase { 
        // all formal parameters and local variable declarations 
        (`declarations); 
 
        // constructor declaration 
        `(name) ( `(params) ) (`initialisation); 
 
        // translated method body goes in here 
        publicpublicpublicpublic booleanbooleanbooleanboolean hasNext() { 
          switchswitchswitchswitch (position()) { 
            (`cases); 
          } 
 
          returnreturnreturnreturn hasNext(); 
        }         
      } 
 
      // instantiate a copy of inner class 
      returnreturnreturnreturn newnewnewnew `(name) (`params); 
  }}; 
} 

Code Example 9.12: Generator Method Implementation 

Each generator translates into a method of the same name, whose body merely 

instantiates a copy of an inner class12 that extends GeneratorBase. This inner class 

contains the real implementation, but wrapping in a method allows for there to be no 

requirement for any implementation on the calling side; use of generators does not even 

need to be detected. 

The inner class requires that each generator formal parameter be translated into a field 

declaration as local variables cannot retain their values upon generator resumption. In 

addition to this, each of these variables must be initialised via a standard constructor 

that mimics the original generator definition. Any local variable declarations within the 

generator body must also be translated to field declarations. These two translations are 

relatively straightforward, and are covered in the following two subsections. 

                                                

12 An anonymous class was considered, but rejected, due to complicated initialisation code.  
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The final translation requirement is to transform the generator body into a number of 

cases (corresponding to a base case, and one case for each occurrence of suspend) for 

use within the hasNext method. This implementation is difficult, and is covered in 

subsection 9.2.5.3. 

Genesis’ ability to mix abstract and concrete syntax within quasi-quotations is 

equivalent to that of MS2 (see subsection 4.4.4.2). This is an extremely concise and 

natural programming technique that abstracts away many of the tedious details of 

concrete syntax. 

9.2.5.1 Translation of Formal Parameters 

As shown in Code Example 9.13, the translation of the formal parameters is trivial. One 

field declaration, and one initialisation must be created for each formal parameter. The 

only thing to note here is the explicit creation of a FieldDeclaration class was 

used simply because it was more readable that the quasi-quote alternative. 

forallforallforallforall (FormalParameter p) inininin params { 
  declarations.add(newnewnewnew FieldDeclaration(p.type, p.name)); 
  initialisation.add( {{ thisthisthisthis.`(p.name) = `(p.name); }} 
} 

Code Example 9.13: Translation of Formal Parameters 

9.2.5.2 Translation of Local Variable Declarations 

The translation of the local variable declarations requires us to examine the entire tree 

representing the method body, and to transform each detected local variable declaration 

into a corresponding field declaration. For local variable declarations that contain 

initialisers, an assignment must be generated in order to produce the same semantics.  

/* perform a recursive-style tree-walk through the block, making changes 
   each time a local variable declaration is discovered */ 
 
LocalVariableDeclaration d = /* current local variable declaration */; 
 
declarations.add(newnewnewnew FieldDeclaration(d.type, d.name)); 
 
i.set( (d.intialiser == null) ? {{ null; }} :  
  {{ `(d.name) = `(d.initialiser); }} ); 

Code Example 9.14: Translation of Local Variable Declarations 

The outline of the code to perform these actions is shown in Code Example 9.14. The 

inspection of the statement tree is accomplished by use of tree-walk through the block. 

Such code is relatively straightforward to write, but cumbersome, therefore it is omitted 

as it adds little to the understanding of the process. 
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9.2.5.3 Generation of Resumable Code 

The C++ macro implementation of generators relied upon an unusual usage of the C++ 

switch statement (see subsection 2.3.3.3). Java’s switch statement does not allow 

equivalent usage, so a different method must be employed. 

The method followed is described in [LM02] and essentially produces a continuation for 

each location that execution may (re)commence in the body of the generator. Each 

continuation must employ statement reducibility analysis [GJSB00§14.19] to ensure 

successful Java compilation. 

9.2.5.4 Example Expansions 

Code Example 9.15 demonstrates the definition and expansion of the simplest example 

of a non-terminating generator, it merely repeats its argument forever. 

generatorgeneratorgeneratorgenerator staticstaticstaticstatic String repeat(String s) { 
  whilewhilewhilewhile (truetruetruetrue) suspendsuspendsuspendsuspend s; 
} 

(a) Before Translation 

staticstaticstaticstatic Generator repeat(String s) { 
  classclassclassclass repeat extends GeneratorBase { 
    String s; 
 
    publicpublicpublicpublic repeat(String s) { thisthisthisthis.s = s; } 
 
    publicpublicpublicpublic booleanbooleanbooleanboolean hasNext() { 
      switchswitchswitchswitch (position()) { 
      casecasecasecase 0: 
        whilewhilewhilewhile (truetruetruetrue) returnreturnreturnreturn suspend(s, 1); 
      casecasecasecase 1: 
        // nothing... 
        whilewhilewhilewhile (truetruetruetrue) returnreturnreturnreturn suspend(s, 1); 
      } 
 
      returnreturnreturnreturn falsefalsefalsefalse; 
    } 
  } 
 
  returnreturnreturnreturn newnewnewnew repeat(s); 
} 

(b) After Translation 

Code Example 9.15: Repeating Generator Expansion 

We can observe the duplication of all parameters to the generator as field declarations, 

and the single constructor mimics the surrounding method call. This generator has no 

local variables, so there are no extra field declarations. The reuse of names (eg. 

repeat for both the method and the inner class) makes these translations a little harder 

to comprehend, but is valid Java, and removes the necessity of new name generation. 
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The generation of the resumable cases is trivial, the base case is the whole body, and so 

is the single resumption. It should be clear that the hasNext method could be greatly 

simplified: the two resumptions are identical, making the switch statement redundant; 

the while loops are redundant; and the final return statement is unreachable. These 

kind of optimisations are beyond the scope of this extension at this time. 

Code Example 9.16 contains the definition and translation of a Fibonacci generator and 

demonstrates slightly more difficult to translate resumptions and local variable use. 

This example uses Integer rather than int as the current implementation only 

supports class types (see subsection 9.2.5.6). Again, the translation (shown in Code 

Example 9.16) results in code much more verbose than the original generator. In this 

translation, the local variables x and y have been recreated as field declarations, and 

their initialisations are translated into assignments.  

We have three resumptions, a base case, and one each for the two suspend statements. 

• The base case contains code up to the first suspend statement, and all 

following code is pruned as it is unreachable.  

• The second case begins from the statement immediately following the first 

suspend, and stops upon the encountering of the second. Notice here that the 

while statement does not appear at all as the condition can never be checked 

on this resumption. 

• The third, and final, case begins from the statement immediately following the 

second suspend, and then must contain the entire while statement again 

(albeit in a pruned form). 
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generator staticstaticstaticstatic Integer fib() { 
  intintintint x = 0, y = 1; 
 
  whilewhilewhilewhile (truetruetruetrue) { 
    suspendsuspendsuspendsuspend nnnnewewewew Integer(y); 
    x = x + y; 
    suspendsuspendsuspendsuspend newnewnewnew Integer(x); 
    y = x + y; 
  } 
} 

(a) Before Translation 

staticstaticstaticstatic Generator fib() {  
  classclassclassclass fib extendsextendsextendsextends Generator { 
    intintintint x; 
    intintintint y; 
 
    publicpublicpublicpublic fib() { } 
 
    publicpublicpublicpublic booleanbooleanbooleanboolean hasNext() { 
      switchswitchswitchswitch (position()) { 
      casecasecasecase 0: 
        x = 0; 
        y = 1; 
        whilewhilewhilewhile (truetruetruetrue) { 
          returnreturnreturnreturn suspend(newnewnewnew Integer(y), 1); 
        } 
      casecasecasecase 1: 
        x = x + y; 
        returnreturnreturnreturn suspend(newnewnewnew Integer(x), 2); 
      casecasecasecase 2: 
        y = x + y; 
         
        whilewhilewhilewhile (truetruetruetrue) { 
          returnreturnreturnreturn suspend(newnewnewnew Integer(y), 1); 
        } 
      } 
 
      returnreturnreturnreturn falsefalsefalsefalse; 
    } 
  } 
 
  returnreturnreturnreturn newnewnewnew fib();  
} 

(b) After Translation 

Code Example 9.16: Fibonacci Generator Expansion 

9.2.5.5 Explicit Use of GeneratorBase 

The GeneratorBase class is exposed, so users are free to use it in other code, or 

even as part of the definition of other generators. Code Example 9.17 demonstrates the 

definition, translation, and usage of a take function that generates the specified 

number of elements from another generator. This allows forms such as that in Code 

Example 9.17(c) that outputs the first twenty Fibonacci numbers from the infinite 

sequence Fibonacci generator from Code Example 9.16. 



CHAPTER 9: ANALYSIS AND COMPARISON   IMPLEMENTATION OF TEST CASES 

 •  247  •

The definition of take uses GeneratorBase explicitly as a parameter, and uses 

standard iteration code to select only the first n elements. The translation follows the 

same approach as other generators.   

generatorgeneratorgeneratorgenerator    staticstaticstaticstatic Object take(intintintint n, GeneratorBase g) { 
  wwwwhilehilehilehile ((n-- > 0) && (g.hasNext()) suspendsuspendsuspendsuspend(g.next()); 
} 

(a) Before Translation 

staticstaticstaticstatic Generator take(intintintint n, GeneratorBase g) { 
  classclassclassclass take extendsextendsextendsextends Generator { 
    intintintint n; 
    GeneratorBase g; 
 
    publicpublicpublicpublic take(intintintint n, GeneratorBase g) {  
      this.n = n; 
      this.g = g; 
    } 
 
    publicpublicpublicpublic booleanbooleanbooleanboolean hasNext() { 
      switchswitchswitchswitch (position()); 
      casecasecasecase 0: 
        whilewhilewhilewhile ((n-- > 0) && (g.hasNext)) returnreturnreturnreturn suspend(g.next(), 1); 
      casecasecasecase 1: 
        // nothing... 
        whilewhilewhilewhile ((n-- > 0) && (g.hasNext)) returnreturnreturnreturn suspend(g.next(), 1); 
      } 
 
      returnreturnreturnreturn falsefalsefalsefalse; 
    } 
  } 
 
  returnreturnreturnreturn newnewnewnew take(n, g); 
} 

(b) After Translation 

forallforallforallforall (Integer i) inininin take(20, fib()) { System.out.print(“ “ + i); } 

(c) Example Usage 

Code Example 9.17: Sub-sequence Generator Expansion and Use 

A fully worked generators implementation would provide this functionality as a method 

of GeneratorBase so that expressions such as fib().take(20) can be written. 

9.2.5.6 Implementation Issues 

The implementation for generators only supports Object, and so manual boxing is 

required for primitive types. 

Translation of local array variables with array intialiser lists are currently not handled 

correctly; they require a slightly more complicated translation. 
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9.2.6 Haskell Subset 

Each of the abstract syntax classes used to implement Haskell subset grammar (see 

Figure 3.2) implements the FunObject interface (as shown in Code Example 9.18), 

which defines three methods: createSelf, funType, and eval.  

interfaceinterfaceinterfaceinterface FunObject extends extends extends extends AbstractSyntax { 
  Creation createSelf(); 
  FunType funType() throwsthrowsthrowsthrows TypeMismatch; 
  FunObject eval(BindingList bindings); 
} 

Code Example 9.18: FunObject Interface 

The child classes of FunObject serve a variety of purposes, they are used: 

• to drive the parse at compile-time and provide syntax checking; 

• for compile-time type-checking; 

• at run-time to represent the structure of the functional program; and 

• for run-time lazy evaluation. 

Each of the child classes of FunObject are implemented with construction macros. 

The compile-time implementation of these classes for parsing is unremarkable (and 

hence not shown), but their other uses are interesting. 

Calling the createSelf method on a functional object will produce a creation 

expression that will reproduce the current datastructure fully. This is used at compile-

time to create run-time code that will store the functional objects (see section 9.2.6.1). 

Calling the eval method performs the lazy evaluation at run-time (see section 9.2.6.3).  

9.2.6.1 Construction 

Creation of code that will, at run-time, produce the required Haskell subset objects is 

handled by the createSelf method. This method produces a creation expression that 

reproduces the current object. An example of the straightforward implementation of 

such a method is provided for the FunCons class in Code Example 9.19. 

The run-time objects created by the code that createSelf produces are used in the 

interpreted evaluation of Haskell code (see subsection 9.2.6.3). 
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classclassclassclass FunCons implementimplementimplementimplementssss FunObject { 
  FunExpr head; 
  FunExpr tail; 
 
  Creation createSelf() { 
    returnreturnreturnreturn {{ newnewnewnew FunCons(`(head.createSelf()), `(tail.createSelf())) }}; 
  } 
 
  FunObject eval(BindingList bindings) { 
    returnreturnreturnreturn this; 
  } 
 
  FunType funType() throws throws throws throws TypeMismatch { 
    ifififif (!newnewnewnew FunTypeList(head.funType()).equals(tail.funType()))  
      throwthrowthrowthrow new new new new TypeMismatch(); 
 
    returnreturnreturnreturn newnewnewnew FunTypeList(head.funType()); 
  } 
}  

Code Example 9.19: Haskell Subset Cons Abstract Syntax Class 

9.2.6.2 Type Abstract Syntax Classes 

The abstract syntax classes used for the Haskell subset type system serve two purposes: 

• parsing of type signatures; and 

• compile-time type-checking. 

Four classes are defined, corresponding to the four basic types described in section 

3.4.2.3. Each of these classes inherit from the FunType base class and must implement 

the equals method. This equals method is used in type-checking operations as 

demonstrated in 9.2.6.4. 

The equals function is calculated according to the following rules: 

• if both arguments are of type FunArbitrary, the result is true if their ident 

fields are equal; 

• if one argument is of type FunArbitrary, the result is true; 

• if the arguments are not of the same type (and neither is of type 

FunArbitrary) the result is false; 

• if both arguments are of type FunTypeFun, the result is true if both their left 

fields have the same type and their right fields have the same type; 

• if both arguments are of type FunTypeList, the result is true if their 

element fields have the same type; and 

• if both arguments are of type FunTypeInt, the result is true. 
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abstractabstractabstractabstract classclassclassclass FunType implementsimplementsimplementsimplements AbstractSyntax { 
  abstract abstract abstract abstract booleanbooleanbooleanboolean equals(FunType t); 
 
  macromacromacromacroSyntaxSyntaxSyntaxSyntax FunTypeInt (int); 
  macromacromacromacroSyntaxSyntaxSyntaxSyntax FunTypeList ("[", FunType t, "]"); 
  macromacromacromacroSyntaxSyntaxSyntaxSyntax FunTypeFun ("(", FunType t, ->, FunType u, ")"); 
 
  macromacromacromacro FunTypeArbitrary (Token t) throwsthrowsthrowsthrows ConditionsNotMet { 
    ifififif (t.value.length() != 1 || !Character.isUpperCase(t.value.charAt(0))) 
       throwthrowthrowthrow newnewnewnew ConditionsNotMet(); 
 
    returnreturnreturnreturn newnewnewnew FunTypeArbitrary(t.value.charAt(0)); 
  } 
} 
 
classclassclassclass FunTypeInt extendsextendsextendsextends FunType {  
}  
 
classclassclassclass FunTypeList extendsextendsextendsextends FunType { 
  FunType element; 
} 
 
classclassclassclass FunTypeFun extendsextendsextendsextends FunType { 
  FunType left; 
  FunType right; 
} 
 
classclassclassclass FunTypeArbitrary extendsextendsextendsextends FunType { 
  charcharcharchar ident; 
} 

Code Example 9.20: Type Abstract Syntax Classes for the Haskell Subset 

The rules for equality of functional types are summarised in Table 9.1. 

Table 9.1: Rules for Function Type Equality 

Type Type 

 Integer List Function Arbitrary 

Integer true false false true 

List false equal elements false true 

Function false false equal left and 

right 

true 

Arbitrary true true true equal 

identifiers 
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9.2.6.3 Evaluation 

The run-time evaluation of functional constructs is performed by an interpreter. This 

choice is for simplicity in this proof-of-concept implementation and does not imply that 

more efficient techniques are not applicable. 

Evaluation is provided through the eval method defined for all functional objects. In 

addition to the evaluation function provided for FunObjects, a similar function is 

provided for functional operators and the BindingList class. 

For the majority of the child classes of FunObject, evaluation implementation is 

straightforward: 

• the evaluation function for let expressions merely introduces a new binding — 

which may override other bindings previously in scope; 

• the evaluation function for infix operators evaluates both left and right 

arguments —  no lazy evaluation is provided for the standard arithmetic 

operators; 

• the evaluation function for identifiers merely finds the binding that is currently 

in scope for the identifier; and 

• the evaluation functions for lambda functions, literals, nil lists, and lists created 

with cons simply return the current object — these are, for the most part, treated 

as atomic elements. 

There is one exception however to this treatment of atomic elements: lists created with 

cons can be broken apart by use of the special functions head and tail. These 

functions are treated as a special case of the application of functions. The 

implementation of application is shown in Code Example 9.21. 
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classclassclassclass FunApply extendsextendsextendsextends FunExpr { 
  FunExpr left; 
  FunExpr right; 
 
  FunCons evalRight() { 
    trytrytrytry { 
      returnreturnreturnreturn (FunCons) (right.eval(bindings).head); 
    } catchcatchcatchcatch (Exception e) { 
      // ERROR! 
    } 
  } 
 
  FunObject eval(BindingList bindings) { 
    FunExpr function = left.eval(bindings); 
 
    ifififif (function instanceofinstanceofinstanceofinstanceof FunLambda) { 
      FunLambda lambda = (FunLambda) function; 
      FunIdentifier i = Utils.unique(); 
 
      returnreturnreturnreturn lambda.expr.replace(lamda.ident, i). 
         eval(bindings.cons(new new new new Binding(i, right))); 
    } elseelseelseelse ifififif (function instanceofinstanceofinstanceofinstanceof FunHead) { 
      returnreturnreturnreturn evalRight().head.eval(bindings); 
    } elseelseelseelse ifififif (function instanceofinstanceofinstanceofinstanceof FunTail) { 
      returnreturnreturnreturn evalRight().tail.eval(bindings); 
    } elseelseelseelse { 
      // ERROR! 
    } 
  } 
 
  FunType funType() throws throws throws throws TypeMismatch { 
    FunType leftType = left.funType(); 
 
    if (!(leftType instanceofinstanceofinstanceofinstanceof FunTypeFun)) throwthrowthrowthrow newnewnewnew TypeMismatch(); 
    if (!((FunTypeFun) leftType).right.equals(right.funType()))  
      throwthrowthrowthrow newnewnewnew TypeMismatch(); 
 
    returnreturnreturnreturn ((FunTypeFun) leftType).right; 
  } 
}  

Code Example 9.21: Evaluation of Function Application 

Normal function application will take place when the left side of a function call 

evaluates to a lambda function. Even if the function is specified by name, the name’s 

binding evaluates to a lambda function. The application itself merely introduces a new 

binding form with a unique name. If the left side evaluates to head (or tail), the 

argument is evaluated as far as a cons, and the head (or tail) of the list is evaluated and 

returned. 

Lazy evaluation is guided only by the if construct which is the only conditional 

component of the Haskell subset. Once the evaluation proceeds to a point where an if 

expression is the next thing to be evaluated, the Boolean condition (and any associated 

work) must be evaluated. This is handled in the expected way as shown in Code 

Example 9.22. 



CHAPTER 9: ANALYSIS AND COMPARISON   IMPLEMENTATION OF TEST CASES 

 •  253  •

classclassclassclass FunIf extendsextendsextendsextends FunExpr { 
  BExpr condition; 
  FunExpr trueExpression; 
  FunExpr falseExpression; 
 
  FunObject eval(BindingList bindings) { 
    ifififif (condition.eval(bindings).isTrue()) { 
      returnreturnreturnreturn trueExpression.eval(bindings); 
    } elseelseelseelse { 
      returnreturnreturnreturn falseExpression.eval(bindings); 
    } 
  } 
 
  FunType funType() throws throws throws throws TypeMismatch { 
    if (!trueExpression.funType().equals(falseExpression.funType())  
      throwthrowthrowthrow newnewnewnew TypeMismatch(); 
 
    returnreturnreturnreturn trueExpression.funType(); 
  } 
} 

Code Example 9.22: Haskell Subset if Expression 

9.2.6.4 Type Checking 

Type checking occurs once the entire embedded Haskell block is parsed. At this stage 

all Haskell declarations are known so type checking can proceed. This is still performed 

by non-delayed macros as the surrounding type information is not required.  

Each functional declaration is checked against its type signature in turn. Both the type 

signature and expression abstract syntax classes contain the funType method so it is a 

simple matter to check that the two types match — although the polymorphic type * 

complicates this checking a little. 

9.2.6.5 Embedded Usage 

In addition to the Haskell classes of the previous subsections, it is still necessary to add 

macros defining the two wrappers of Figure 3.3. Code Example 9.23 outlines the 

implementation of both the Haskell definition wrapper and the embedded Haskell 

function call wrapper. 

Any use of the Haskell function call wrapper is simply translated into a standard Java 

method call to a static evaluation method of a static inner class — the use of this inner 

class side-steps hygiene as it is not declared within the quasi-quotation.  

The inner class is created by the Haskell definition wrapper. The evaluation function 

simply calls the eval method on its provided argument (an arbitrarily complex Haskell 

expression) and with the entire set of Haskell definitions considered to be its initial list 

of bindings. 
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classclassclassclass HaskellWrappers { 
  macromacromacromacro ClassDeclaration (fun, "{", FunDeclarations ds, "}") { 
    // loop through all the declarations and check signatures against types 
 
    returnreturnreturnreturn {{ 
      staticstaticstaticstatic classclassclassclass Haskell { 
        staticstaticstaticstatic FunObject eval(FunObject obj) { 
          returnreturnreturnreturn obj.eval(newnewnewnew BindingList(`(ds.createSelf()))); 
        } 
      } 
    }}; 
  } 
 
  macromacromacromacro MethodCall (fun, "(", FunExpr e, ")") { 
    returnreturnreturnreturn {{ Haskell.eval(`(e.createSelf())) }}; 
  } 
} 

Code Example 9.23: Embedded Haskell Wrapper Definition 

The Haskell definition wrapper is also responsible for type-checking all the Haskell 

declarations. This is straightforward and consists of little more than checking the type of 

the signature to the type of the Haskell expression — a process already defined with the 

use of the funType method from subsection 9.2.6.4. 

In order to use the embedded Haskell subset both Haskell and HaskellWrappers 

must be imported. The subset usage is split into two files so that the subset can be used 

as a embedded fashion and also in a standalone fashion. 

9.2.6.6 Standalone Usage 

The Haskell subset can be used without any Java code appearing in the source file at all 

with the use of the importonly switch (as described in 8.6.1.2). This switch is used 

to import only two classes: Haskell and HaskellStandalone. 

Use of Haskell in standalone mode requires the specification of a module name within 

the source file — this is used to name the resultant Java translation class. An example of 

this syntax is shown in Code Example 9.24. This example uses the extended forms 

defined in the next subsection. 

modulemodulemodulemodule HaskellTest wherewherewherewhere 
 
main :: intintintint -> [intintintint] 
main x = [ a * a | a <- range 1 x ] 
 
range a b = ifififif (a <= b) thenthenthenthen (a : range (a+1) b) elseelseelseelse [] 

Code Example 9.24: Standalone Haskell Module 
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Each standalone Haskell file must also declare the function main. The definition of this 

function is permitted to contain an arbitrary number of integer arguments that can be 

specified from the command line. 

The HaskellStandalone class functions much as the wrapper for macro definitions 

in that it collects all of Haskell subset declarations and checks that each function 

matches its signature. However it produces a class that has an automatically generated 

Java main function that will accept arguments from the console, perform a functional 

calculation, and finally output results to the console. 

publicpublicpublicpublic staticstaticstaticstatic voidvoidvoidvoid main(String[] args) { 
  ifififif (args.length != 1) returnreturnreturnreturn; 
 
  System.out.println( 
    newnewnewnew FunApply(newnewnewnew FunExpr("main"), newnewnewnew FunLiteral(args[0])).eval() 
  ); 
} 

Code Example 9.25: Standalone Haskell main Method 

9.2.6.7 Extended Forms 

The Haskell implementation contains a few extra forms that are not specified in the 

subset. We first define quasi-quotation for the Haskell subset to aid in the following 

definitions.  

Using this extended quasi-quotation facility, illustrative examples of the power of 

Genesis are provided for function declarations, operator currying, and simple list 

comprehensions. The techniques shown here could easily be used to add further 

functionality such as: where clauses, pattern matching, and type classes. 

Quasi-quotation 

As discussed in subsection 8.7.1, the quasi-quotation macros automatically handle new 

additions to the abstract syntax. However, we must manually provide unquoting for 

abstract syntax classes that we wish to use in such a fashion. For the Haskell subset this 

entails creating unquote definitions for declarations through to expressions. 

Function Declarations 

Haskell provides a syntactic sugar for function declarations that doesn’t require the use 

of lambda functions. For example, instead of f=\x->\y->x+y we could write f x 

y=x+y. Using our newly defined quasi-quotation definition, we can provide this 

extension to our Haskell subset by using a mixture of Haskell and Genesis forms.  
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macromacromacromacro funDeclaration (FunIdentifier ident, FunIdentifiers args, =, FunExpr 
expr) { 
  FunExpr lambdas = expr; 
 
  forallforallforallforall (FunArgument arg) inininin args.reverse() {  
    lambdas = {{ \`arg -> `lambdas) }}; 
  } 
 
  returnreturnreturnreturn {{ `ident = `lambdas }}; 
} 

Code Example 9.26: Function Declarations Definition 

Code Example 9.26 contains the definition of function declarations. It simply constructs 

lambda functions from the identifiers in argument list (in reverse). Genesis code for 

creating the list of functional identifiers is omitted. 

Operator Currying 

Haskell allows binary operator application to omit either parameter to provide a partial 

application. For example the expression (1+) returns a function that adds one to its 

argument. With the use of quasi-quotation, Code Example 9.27 shows the simplicity of 

adding this to Haskell subset. 

macromacromacromacro FunLambda (”(”, FunOperator op, FunExpr e, ”)”) {  
   returnreturnreturnreturn {{ \x -> x `op `e }}; 
} 
 
macromacromacromacro FunLambda (”(”, FunExpr e, FunOperator op, ”)”) {  
   returnreturnreturnreturn {{ \x -> `e `op x }}; 
} 

Code Example 9.27: Operator Currying Definition 

Simple Single Source List Comprehensions 

Simple single source list comprehensions can be provided by translation into use of the 

map function. An example of this for a simple fragment is shown in Code Example 

9.28(a). This translation is so simple it can be provided in a single line as shown in 

Code Example 9.28(b). 

squares xs = [x * x | x <- xs] 
squares xs = map (\x -> x * x) xs 

(a) List Comprehension and Simple Translation 

macromacromacromacro FunExpr ([, FunExpr e, |, FunIdentifier i, <-, FunExpr f, ]) { 
   returnreturnreturnreturn {{ map (\`i -> `e) `f }} 
} 

(b) Genesis Macro for Simple Translation 

Code Example 9.28: Simple Single Source List Comprehensions 
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Multiple Condition Single Source List Comprehensions 

It is not much more complicated to provide list comprehensions that while still drawing 

from a single list source have a number of predicate conditions. The translation here 

requires that the standard function filter be applied to the list once for each specified 

condition (although this could also be done with one pass by combining all the 

conditions into one expression).  

Code Example 9.29 demonstrates this translation. It is very similar in construction to the 

function declaration example. 

macromacromacromacro FunExpr ([, FunExpr e, |, FunIdentifier i, <-, FunExpr f, ",", 
FunExprList ps, ]) { // ps was comma seperated 
   FunExpr filteredList = f; 
 
   forallforallforallforall (FunExpr p) inininin ps {  
      filteredList = {{ filter (\`i -> `p) `filteredList }}; 
   } 
 
   returnreturnreturnreturn {{ map (`i -> `e) `filteredList }}; 
} 

Code Example 9.29: Multiple Condition Single Source List Comprehensions 

9.2.7 Implementation Review 
 

The macro definitions for assertions and iterations demonstrated how the use of 

shorthands such as quasi-quotation and static-type matching greatly simplified 

definitions and improved their readability. Comparison of such techniques are not 

addressed here but are delayed to later sections.  

Table 9.2 assesses the successfulness of the final implementation of each of the test 

cases. 

Table 9.2: Genesis Applicability to Benchmark Test Suite 

Benchmark Summary Description 

1 assert Assertions have the simplest definition of all of the 

benchmark test cases as no inspection of arguments is 

required and the translation is uniform for all 

arguments. A simple and easily understandable 

definition is possible with Genesis’ quasi-quotation 

facilities. 

2 foreach The definition of iteration is simple and highlights the 
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conciseness that can be gained from using hygiene and 

static-type matching shorthands.  

However, it also illustrates a restriction of Genesis — 

namely that macros cannot be used within the file in 

which they are declared. For this definition it leads to 

the necessity of defining another method that both 

macro definitions call. 

3 printf The implementation of typesafe formatted output is 

unwieldy, but this is due to standard Java rather than a 

shortcoming in Genesis.  

Quasi-quotation is used extensively to build an 

expression over time. The resulting expression is 

similar to what would be produced manually, but 

without the concatenation of successive string literals. 

However, the Java language definition requires that 

such strings are combined on compilation [GJSB00], 

so there is no penalty in run-time performance. 

4 SQL Genesis is easily capable of providing exact SQL 

syntax and disallows inclusion of syntactically 

incorrect forms. Genesis has no trouble providing a 

limited expression definition for sole use within SQL 

statements, despite the obvious overlap with standard 

Java expressions. 

The SQL subset implementation highlights the 

frequency of occurrence of construction macros and 

the utility of the macroSyntax shorthand. Only once 

a full SELECT statement is recognised does any 

translation occur. 

The actual translation is simply a production of an 

SQL string to pass to a standard run-time SQL system. 

Despite the end call being the same, it should be clear 
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that the advantage that Genesis provides is in early 

error detection. Such errors will be automatically 

handled by Genesis’ syntax error mechanisms. 

5 Generators The generators implementation shows the powerful 

nature of code translation possible with Genesis 

macros. Generator translation is not a simple pattern 

based translation (like the assertion and iteration 

macros), but rather a sophisticated code 

transformation. 

Genesis provides quasi-quotation for the portions of 

this translation that can be generated through a pattern 

based approach, and allows easy splicing of 

constructed forms via unquoting.  

The result is that the general form of the translation is 

easily definable (and hence understandable) and the 

more complicated parts can be dealt with in isolation. 

This greatly simplifies the construction of such code. 

Genesis allows the generator primitives to be exposed 

to the user in such a way that allows for powerful 

combinations of techniques. 

The major problem with the generators implementation 

is that its reliance on Java1.4 disallows simple creation 

of generators of primitive types. Java1.5 would both 

provide auto-boxing/unboxing and allow a cleaner 

generics based definition. 

6 Haskell Genesis handles the Haskell subset syntax with ease, 

despite its lack of similarity to standard Java syntax. 

The Haskell subset implementation demonstrates the 

flexibility of Genesis abstract syntax types. Allowing 

such types to be created by the user as standard Java 

classes allows them to be used in a variety of powerful 
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ways at both compile-time and run-time.  

In implementing the Haskell subset, the abstract syntax 

types are used to drive the parse, perform compile-time 

type-checking, to represent the run-time program, and 

for run-time evaluation. In fact, due to the use of an 

interpreter, very little actual translation is performed at 

compile-time. 

By use of a combination of Genesis macros and quasi-

quotation for Haskell it was a simple matter add 

additional Haskell constructs to the subset. 

The full flexibility of Genesis is demonstrated by the 

standalone usage of the Haskell subset. If desired, 

Genesis can be truly syntax independent. 
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9.3 Qualitative Assessment 

The qualitative assessment of Genesis begins with a general discussion of issues relating 

to its power, usability, and error handling (subsections 9.3.1, 9.3.2, and 9.3.3). Where 

appropriate, comparisons are drawn to the languages reviewed in chapter 4. 

Subsection 9.3.4 contains an evaluation of Genesis in respect to the criteria for rating 

extensible languages from section 3.3. 

In the following section (section 9.4), a detailed comparison of Genesis and Maya is 

provided. 

9.3.1 Power 
 

The arbitrary syntax creation facilities are the most impressive advantage of Genesis 

compared to other systems. Compared to the reviewed languages in chapter 4, Genesis 

provides the most flexible grammar construction facilities. Genesis’ expressive power is 

wide-ranging and allows for a host of sophisticated extensions – the implementations of 

the benchmark test cases and the standard library facilities nicely illustrate this (these 

are discussed in the following subsections). 

Most of the reviewed extensible languages provide similar facilities for syntax 

interrogation via some form of abstract syntax classes and Genesis is no exception. All 

of these facilities are on a similar level of power. Complex hierarchies of abstract syntax 

classes (like those of Genesis) offer benefits over S-expressions or skeletal syntax trees 

at the cost of increased complexity. 

Genesis provides access to static-type information via the use of delayed macros. These 

macros are expanded only after the entire parse has been successfully completed and 

typing issues can hence be resolved. This is not without cost to the simplicity of the 

system (this is further discussed in subsection 9.3.2). Delayed macros can be difficult to 

reason about and complicate final parse resolution but allow for some of the more 

sophisticated meta-programming techniques to be applied, such as specialisation and 

compile-time static-type checking and resultant error production. Even without delayed 

macros, Genesis provides superior power to the reviewed systems.  
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9.3.1.1 Benchmark Test Cases 

As demonstrated in the previous section, Genesis is easily capable of providing an 

implementation for each of benchmark test cases. 

Most notably, the specified syntax of the Haskell subset was easily created with 

Genesis’ powerful syntax creation facilities. However, an exact implementation of 

Haskell would not be possible as it uses a layout-based approach to scoping. Further 

tokeniser flexibility would be required to allow such a technique in Genesis (see 

subsection 10.2.1). 

Beyond those requiring increased lexical flexibility it is unclear if there exists any real-

world language constructs that Genesis is incapable of expressing.  

9.3.1.2 Quasi-quotation Implementation 

Genesis’ ability to provide a set of macros for quasi-quotation is a testament to its 

expressive power. Most other meta-programming systems are incapable of such a 

construction — with the most obvious notable counter-example being Lisp as its S-

expressions lend themselves nicely to this kind of manipulation. Genesis’ more 

complicated set of abstract syntax classes are not as simple to use in this respect, but 

they provide other benefits such as guaranteed syntactic correctness. 

However, the implementation of unquoting highlights the difficultly of working with a 

mixture of delayed and non-delayed macros. The number of possible parses examined 

increases considerably when using unquoting, as the static type of the expression being 

unquoted is not yet known. Here our choice of Graph Expansion Parsing lets us down a 

little as even though local variables declarations (and any previous instance variable 

declarations) have been speculatively parsed, there is no way to connect these to the 

speculative parse of the unquoting. Perhaps there are further parsers refinements that 

can smooth out these rough edges (see subsection 10.2.2). 

9.3.1.3 Other Standard Library Macros 

Genesis’ power allows the basic language definition to remain simple and for user 

shorthands and syntactic sugar to be provided by extensions. The standard library 

provides facilitates the creation of static-type matching macros (particularly useful for 

specialisation), simple construction macro generation, and optional macro parameters. 

These basic extensions demonstrate the beginnings of how the Genesis macro system 
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could build upon itself — much the same way as this takes places within the Lisp 

community. Most other meta-programming languages are too limited to provide such 

extensions. Although we have seen small extensions provided by Maya and JSE for 

automatic generation of macro support code, the possibility of further extensions is 

limited by their lack of power. 

9.3.2 Usability 
 

Genesis macro definitions are incredible simple, they closely mimic Java method calls, 

but do require their arguments to be comma separated — unlike Maya which infers 

which arguments are types and which are terminals. The Maya solution is more 

lightweight, but perhaps not as clear. JSE and MS2 require many more symbols to 

appear in macro declarations for little, if any, extra benefit. 

Genesis requires no understanding of parser in order to be able to write macros. Most 

other reviewed extensible systems either gave the impression that no knowledge was 

required, until the user caused a parser conflict, or had strict rules on the placement and 

structure of macros. 

Like Template Haskell, Genesis does not regard macros and syntax classes as 

particularly special. There is little distinction between run-time and compile-time 

functions and abstract syntax classes are implemented as standard Java classes. Macros 

are provided in such a fashion that the Genesis compiler knows that they are to be 

interleaved with the grammar and executed at compile-time, and unlike Template 

Haskell, they have no requirement for explicit identification when being called. 

The quasi-quotation macro uses the direct representation of Genesis macros in its 

implementation (albeit at compile-time) and run-time functions can access these 

functions in a similar fashion. The Haskell subset makes extensive use of its abstract 

syntax classes to perform a variety of tasks other than parsing at both compile-time and 

in its run-time system.  

Genesis shares with MS2 the ability to insert structures into quasi-quotes that are free of 

their original syntax — this was used extensively in the implementation of generators 

(see subsection 9.2.5) and is a powerful and concise tool. 

Support for hygiene is provided through the quasi-quotation mechanism or by the use of 

explicit name generation. 
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9.3.3 Error Handling 

The Genesis abstract syntax classes are standard Java classes and utilise Java’s type-

checking mechanisms to ensure that all abstract syntax is correct. 

Additionally, syntax errors within Genesis’ quasi-quotation facility are handled no 

differently than syntax error within Genesis code. No special checking is required 

within the quasi-quotation mechanism, if a syntax error occurs within a quasi-quote, it 

will not be successfully matched by the parser. 

Genesis has strong support for explicit detection of compile-time errors. All macros can 

declare a series of possible exceptions to be thrown via a throws clause which is 

essentially equivalent to that for normal Java methods. Such exceptions are handled by 

the parser and can allow the macro to provide extra conditions for its matching or to 

provide compile-time warnings or errors. 

Support for syntax errors detection during parsing is less comprehensive. Syntax errors 

are difficult to pinpoint with Graph Expansion Parsing. Detection of such errors 

(generally trivial for other parsers) is the weakest part of the Genesis implementation. 

For syntactically correct files, an attempt is made to report the source of errors once 

translation to standard Java has occurred. While the source of the error may be 

discovered, the exact point in the expansion in which the error occurred may be difficult 

to determine. 

9.3.4 Extensibility Criteria Assessment 

Table 9.3: Genesis Extensibility Criteria Assessment 

Criterion Assessment 

1.1 Syntax Creation Genesis’ primary contribution is that of arbitrary 

syntax creation. It is unencumbered by its parser and 

allows virtually any syntactic construct to be created 

— from the smallest statement or expression level 

macro to language embeddings. 

1.2 Syntax Interrogation Like the majority of its counterparts, Genesis provides 

simple to use facilities for syntax interrogation via a set 
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of abstract syntax classes.  

1.3 Syntax Overloading Genesis need make no special provision for syntax 

overloading as it has no concept of reserved words — 

support for syntax overloading is a nice side–effect of 

providing a general parsing scheme.  

Any symbol or identifier can be used within a macro 

definition regardless of whether or not it is considered 

to have special meaning within a standard Java 

program. 

In fact, through its concept of priorities, a Genesis 

programmer can even provide syntax replacements, 

rather than just overloadings. It is possible to provide 

an exact replica of a standard syntactic construct, but 

with a higher priority. This allows users to modify the 

semantics of standard Java (or indeed any extension). 

1.4 Static Type Interrogation Genesis provides support for static-type interrogation 

via its abstract syntax classes and by allowing macros 

to throw compile-time handled exceptions. The explicit 

use of the delayed keyword is required for macros 

that wish to query static-types.  

While Genesis’ approach is flexible, it puts the onus on 

the programmer when using static-type matching on 

macro definitions. For this reason the Genesis standard 

environment provides macros that allow such forms to 

be simply and conveniently expressed. Most situation 

use these standard macros and so explicit use of the 

delayed keyword is rare. 

1.5 Expressiveness Genesis is capable of expressing simple macros in a 

simple concise way, large scale language 

modifications, and it is even possible to replace the 

standard syntax entirely.  
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As evidenced by the implementation of the benchmark 

test cases, Genesis is capable of providing: 

• small limited use syntax additions (eg. assert, 

forall, printf, etc.); 

• embeddings of domain-specific languages (eg. 

SQL, Haskell, etc.); and 

• an entirely new syntax without any reference to 

Java syntax at all. 

2.1 Simplicity Genesis macro definitions are as similar as possible to 

standard Java method declarations. The only restriction 

to macro definitions is that they must have at least one 

argument.  

The requirement of the delayed keyword when using 

static-typing facilities adds to the general complexity 

of Genesis macro definitions. Whilst the use of 

standard environment macro definitions alleviates 

some of this complexity, the delayed keyword could 

still potentially be the source of much confusion. 

By Genesis’ use of a general parser, users are able to 

write macros without any understanding of parser 

theory. There are no special cases that can cause 

confusion. Macros can be written with left- or right-

recursion and can contain any symbols required. 

However, by removing restrictions on the parser it is 

possible to create a macro (or worse, a set of macros) 

that can create ambiguous parses. Such poorly written 

macros could be a major source of confusion. 

2.2 Brevity As demonstrated in section 9.2.1.1 and 9.2.2.1, low-

level Genesis code is cumbersome at best. This low-

level code can still be useful in simple cases and can be 

freely mixed with more sophisticated techniques (as 
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shown in section Code Example 9.13).  

Thankfully, Genesis is powerful enough to provide a 

quasi-quotation facility as a standard environment 

extension. Quasi-quotation code can be interleaved 

within normal Java code, and vice versa if unquoting is 

used. 

Genesis code using quasi-quotation provides 

definitions that are similar in complexity to other 

extensible (or meta-programming) systems (see section 

9.4.1.1). 

2.3 Robustness Genesis provides facilities for both explicit name clash 

avoidance and automatic hygiene.  

Fresh name generation is provided in a form analogous 

to the traditional use of gensym in Lisp. 

Automatic hygiene ensures that variables declared 

within quasi-quotations are freshly generated.  

3.1 Syntactic Correctness Genesis provides guarantees of syntactic correctness 

through its abstract syntax classes. Use of these classes 

requires the user to create correct syntax. 

3.2 Error Detection Genesis has strong support for detecting compile-time 

errors. All macros can declare a series of possible 

exceptions to be thrown via a throws clause which is 

essentially equivalent to that for normal Java methods. 

These exceptions are handled by the parser and can 

allow the macro to provide extra conditions for its 

matching or to provide compile-time warnings or 

errors. 

There are good facilities for automatic static-type 

checking and error reporting via the standard 

environment. 
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3.3 Error Reporting Explicit checks allow macros to report warnings or 

errors. 

An attempt is made to report the source of errors once 

translation to Java has occurred, but it is doubtful if the 

error messages will be of much use for more 

complicated macros. 

Syntax errors during parsing with the Graph Expansion 

Parser are difficult to pinpoint and Genesis provides 

little to help the user in this regard. Detection of such 

errors (generally trivial for other parsers) is the 

weakest part of the Genesis implementation. 

 

 



CHAPTER 9: ANALYSIS AND COMPARISON   MAYA COMPARISON 

 •  269  •

9.4 Maya Comparison 

Of the previous attempts at extensible languages covered in chapter 4, Maya (section 

4.8) is the most directly comparable to Genesis. Both extend Java and allow arbitrary 

syntactic forms to be created whereas the other reviewed languages do not. 

In subsection 9.4.1, a comparison is provided between the Genesis implementation of 

the benchmark test cases (from section 9.2) and the direct Maya implementation of the 

simple test cases (assert, foreach, and printf) and Maya’s capacity to implement the 

complex test cases (SQL, Generators, and Haskell). 

Maya provides a MultiJava extension to Java as a proof-by-implementation. In 

subsection 9.4.2, the ability of Genesis to provide an equal implementation is compared 

with Maya’s implementation. 

A comparative rating of Genesis and Maya on the extensibility criteria is provided in 

section 9.4.3. 

9.4.1 Benchmark Test Cases Comparison 
 

Table 9.4 provides a qualitative comparison of Maya’s implementation of the simple 

benchmark test cases versus those provided for Genesis and also a discussion of Maya’s 

capacity for implementing the complex test cases compared to Genesis’ 

implementations. 

Table 9.4: Genesis and Maya Benchmark Test Suite Comparison 

Benchmark Summary Description 

1 assert Assertions are handled equally well by both Genesis 

and Maya with the only difference being those of 

syntax and the amount of support code that the macro 

programmer is required to provide. Maya requires both 

an abstract and concrete Mayan to be provided. 

2 foreach Like assertions, the major distinction between the two 

implementations of iteration is at the level of minor 

syntax and overhead. 
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3 printf Type-safe formatted output is difficult to compare as it 

was originally coded in both systems because it is 

heavily dependent on a large degree of standard Java 

code. This code is dependent on both the style of 

implementation and the scope of the implementation. 

With such code stripped out, all that is left to compare 

are the two systems relative ability to match the chosen 

syntax — both handle it with ease. Again, the major 

differences are in the exact syntactic representation. 

4 SQL Maya is not capable of supporting the SQL syntax due 

to its outside-in evaluation strategy. The similarity of 

SQL expressions to standard Java expressions would 

likely cause Maya’s LALR parser some problems. 

5 Generators Maya should be capable of providing a generator 

implementation provided that the use of suspend is 

replaced with return. This solution is not as optimal 

as what can be provided in Genesis, which can match 

the required syntax exactly.  

Despite these syntactic differences, implementations in 

Maya and Genesis would be very similar as both have 

similar facilities for syntax interrogation and 

construction. 

6 Haskell Maya is not capable of supporting the Haskell syntax 

due to its outside-in evaluation strategy. Even if it 

were, it is unlikely that Maya’s LALR parser could 

handle the conflict between functional expressions and 

standard Java expressions. 

 

Both Maya and Genesis provide a similar level of functionality for providing simple 

macros. The major difference is that Maya requires both abstract and concrete syntax 

declarations for even the most simple macros. This requires a high level of knowledge 
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about the differences between concrete and abstract syntax and interactions between 

them. The benefit from this approach is that Maya can use this information to provide 

quite sophisticated pattern-matching on macro arguments. 

Genesis unifies the concepts of abstract and concrete syntax to a degree by allowing the 

mixing of both within macro argument lists. For simple macros this comes at no cost to 

the user. Such macros simply match on a sequence of syntactic forms and do not require 

the creation of any new abstract syntax. 

Abstract Mayans simplify the creation of abstract syntax to a degree, but simultaneously 

restrict the power of such additions. In Genesis, the onus is on the programmer to 

provide abstract syntax definitions as standard Java classes, but these can be used in 

very flexible and powerful ways. A prime example of this power is the multiple uses of 

the abstract syntax classes in the Haskell subset implementation (see subsection 9.2.6). 

For many simple definitions providing standard Java classes for construction macros is 

cumbersome, but some of this is alleviated by use of the macroSyntax macro. 

Maya’s outside-in evaluation strategy precludes the large-scale modification of the 

underlying grammar and therefore cannot provide syntax in such an exacting form as to 

permit language embeddings. Genesis has no such restrictions on macro creation and 

therefore is capable of implementing the complex constructs. 

9.4.1.1 Lines of Code Comparison 

Both Genesis and Maya are compared on the simple test cases in terms of actual lines of 

code. The comparison is shown in Table 9.5; blank lines and lines containing only 

punctuation characters (e.g. opening and closing braces) are subtracted from the total 

lines of code. 

Table 9.5: Genesis and Maya Lines of Code Comparison 

Benchmark Maya Lines of Code Genesis Lines of Code 

 lines blank punct code lines blank punct code 

1 assert 20 4 5 11 11 0 4 7 

2 foreach 21 4 4 13 13 1 4 8 

3 printf 24 3 7 14 9 1 2 6 
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In order to provide a fair basis for comparison, the implementations of these 

benchmarks are modified from the Genesis implementations of section 9.2 and the 

implementations provided with the Maya distribution. The assertion test case was 

implemented without Maya’s superficial check for side-effects. The iteration test case 

was implemented only for Iterator and without syntax options. The type-safe 

formatted output test case was implemented in a skeletal fashion with the majority of 

the resultant parse tree calculated by external methods. This was considered the best 

approach for the printf implementation because it is so heavily dependent on a large 

amount of standard Java code. See Appendix B for the code used in this comparison. 

Genesis code requires less overhead for a typical implementation. Maya requires both 

abstract and concrete Mayan definitions, whereas for these simple examples Genesis 

does not. Additionally, Maya either exposes its implementation at cost to the user or at 

least requires declaration of a collection of exported Mayans. 

Maya’s lexical scoping and lack of default Mayan imports also adds to the total number 

of lines of code. 

In general, the code for each of these implementations is no more or less understandable 

in one language or another, the primary difference is simply in the amount of overhead 

required to declare macros, use macros, and import the standard environment. Maya 

tends to require more verbose code for shorter definitions but generally provides more 

succinct code for generating large quantities of abstract syntax. 

9.4.2 MultiJava 

Maya provides a MultiJava [Cli01] implementation as a partial proof-by-

implementation show of its power. MultiJava is a Java extension that provides open 

classes and multiple dispatch via augmenting methods and multimethods. Augmenting 

methods allow the programmer to add new methods to a class without the necessity for 

recompilation. Multimethods provide polymorphic dispatch based on the types of all 

arguments, not just the first. 

The original MultiJava implementation was direct to Java bytecode, but translations to 

Java code (i.e. by erasure) were provided in [Cli01]. This translation has the following 

features: 
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• Each overloaded group of multimethods must have a single dispatcher method 

created that chooses at run-time which is the most appropriate method to call. 

The methods themselves are renamed to avoid conflicts. All calls to 

multimethods can remain unchanged as they resolve to calls to the dispatcher. 

• Each augmenting method is translated to a static method with an extra parameter 

this_, and must have its body translated in order to make any implicit use of 

this explicit, and then all use of this must be replaced by calls to this_.  

• Each overloaded group of augmenting methods is wrapped in a single anchor 

class which contains a instance of a inner dispatcher class.  

• The calling of augmenting methods requires a change at the call site to access 

this dispatcher within an anchor class. 

In order to implement MultiJava by erasure, we must be able to parse several 

occurrences of multimethods and then recombine these to produce dispatch methods. A 

similar ability is required for translation of augmenting methods, but also that code is 

translated to add implicit use of this, and to modify all implicit or explicit this calls to 

refer to this_ instead. Any calls to augmenting methods must also be detected and 

translated — no easy task as they appear like normal method calls. 

Both Maya and Genesis have the ability to override the syntax for method calls and to 

check each occurrence to see if it is either an augmenting method or multimethod.  

Genesis is also capable of deferring the creation of dispatcher and anchor classes until 

all methods of a class have been examined. Macros can be provided that simply 

construct an abstract syntax object for each multimethod encountered and these objects 

can be coalesced by overriding the surrounding class declaration. 

9.4.3 Extensibility Criteria Comparison 

Summary 
 

Table 9.6: Genesis and Maya Extensibility Criteria Comparison 

Criterion Assessment 

1.1 Syntax Creation Genesis allows arbitrary syntax creation with the only 

restriction being that macros must have at least one 

argument. Maya provides for arbitrary creation of new 
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syntax but with the sizeable restriction that Mayans 

may not rely on other Mayans. 

1.2 Syntax Interrogation Genesis and Maya provide comparable abstract syntax 

classes and their facilities for interrogation of these 

classes utilise standard Java constructs. 

Maya offers pattern matching in formal argument lists 

as a shorthand for these standard Java facilities. 

1.3 Syntax Overloading Both Genesis and Maya allow the overloading of the 

default behaviour of standard Java forms.  

1.4 Static Type Interrogation Both Genesis and Maya allow for the explicit 

interrogation of static types in a relatively equivalent 

fashion. Genesis requires the programmer to annotate 

their macro definitions with the delayed modifier. 

Maya provides a built-in facility for pattern matching 

on static-types whereas Genesis provides this as a 

standard environment facility. Both facilities offer an 

equivalent level of power and ease-of-use. 

1.5 Expressiveness Maya is only capable of providing small modifications 

to Java syntax due to its outside-in evaluation strategy.  

Genesis uses a combination of inside-out macro 

evaluation (for construction of abstract syntax trees or 

translation not requiring the surrounding context) and 

outside-in evaluation. As a result of this approach, 

Genesis is able to provide concise code for simple 

macros and large scale modifications to the original 

syntax. 

By use of command-line specified imports, Genesis is 

also able to entirely replace its grammar and act as a 

framework for other languages. Of course, such 

language must still translate into standard Java code for 
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final compilation. 

2.1 Simplicity Concrete Mayan definitions have a potentially more 

lightweight syntax than Genesis macro definitions, but 

the requirement to declare arguments as lazy can  

produce definitions that are in fact more verbose than 

the equivalent Genesis definitions. 

Genesis requires the user to have less understanding of 

parser theory than Maya. There are none of the obtuse 

grammar conflicts of LALR parsing with Graph 

Expansion Parsing. 

It is difficult to say if the explicit use of the delayed 

keyword for static type checking macros combined 

with the inside-out then outside-in approach to macro 

evaluation is more difficult to understand than Maya’s 

lazy parser scheme. Both require the programmer to 

carefully think about the interactions between macros 

during expansion. Although simple non-delayed 

macros in Genesis are easier to understand than the 

equivalent abstract and concrete Mayan definitions. 

2.2 Brevity Both Genesis and Maya provide equivalent quasi-

quotation/unquoting facilities and also allow direct, yet 

more cumbersome, use of the abstract syntax classes. 

Maya provides more concise shortcuts for creating new 

abstract syntax classes but with none of the flexibility 

of such forms in Genesis. 

Genesis has a more lightweight definition of macros 

than Maya, with each declaration in Maya needing to 

be exported (and this is a Mayan shortcut for an even 

more cumbersome low-level approach). 

Maya requires Mayans to be both imported and 

brought into local scope, whereas Genesis has no local 
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scope facility at all, but instead brings all macros into 

scope automatically.  

2.3 Robustness Both Genesis and Maya provide for explicit name-

clash avoidance and automatic hygiene. 

3.1 Syntactic Correctness Genesis and Maya both guarantee that valid abstract 

syntax trees are produced by their macros. 

3.2 Error Detection Both Genesis and Maya will detect syntax errors 

within macro calls at compile-time and the resulting 

expansions are type checked as standard Java. 

Genesis and Maya both provide facilities for explicitly 

detecting further errors and signalling the parser and 

hence the user. Genesis also provides facilities for 

quiet macro failure where the user need not be 

informed and also allows macros to report warnings. 

3.3 Error Reporting Genesis and Maya both allow explicitly detected errors 

to provide detailed error messages with the source of 

the error clearly identified. 

Maya’s use of a restrictive LALR parser allows it to 

easily detect syntax errors, whereas Genesis’ use of 

Graph Expansion Parsing provides power, but at the 

cost of difficult error tracking. 

Errors caught further down the compilation process are 

a little harder to track. It is likely that Maya fairs little 

better than Genesis in this area. 
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9.5 Graph Expansion Parsing 

Graph Expansion Parsing was designed specifically for the implementation of Genesis, 

and in this section we examine its performance against the general parsers of Earley’s 

algorithm and the CYK parser.  

Issues relating to the general performance of these and more commonly used parsers 

have been discussed previously in section 6.7. 

9.5.1 Acceptable Grammars 
 

Graph Expansion Parsing can operate on any context-free grammars without empty 

symbols13. This class of grammars is far larger than those than can be accepted by CYK, 

but smaller than Earley’s algorithm which allows empty symbols. 

The lack of empty symbols does not overly restrict the languages that can be accepted; 

it is an easy process to remove empty symbols and while the result is more verbose but 

no less understandable. 

9.5.2 Efficiency 
 

In this section, the efficiency of Graph Expansion Parsing is compared theoretically 

against the general parsers of both Earley and CYK. Also, empirical results are 

compared to Earley’s algorithm with the same set of tests as his original paper [Ear70]. 

In most tests, Graph Expansion Parsing performs on par with the Earley parser. 

9.5.2.1 Theoretical Performance 

Given n input tokens, both Earley and CYK parsers require at worst O(n3) time. 

However, O(n
3
) is a requirement for CYK but merely an upper bound for Earley. On 

bounded state grammars [Ear70] (this includes most LR(k) grammars) Earley’s 

algorithm operates in linear time. Earley describes three grammars which generate 

similar languages (shown in Figure 9.1) that take O(n), O(n
2
), and O(n

3
) time 

respectively.  

                                                

13 The Genesis GEP implementation can actually handle context-sensitive grammars as well, as each 

accepting macro may choose to fail if further specified conditions are not met. 
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K ::= J | K J 
J ::= F | I 
F ::= x 
I ::= x 

(a) Earley O(n) Grammar 

A ::= x | x A x 

(b) Earley O(n
2
) Grammar 

A ::= x | A A 

(c) Earley O(n
3
) Grammar 

Figure 9.1: Differing Time Complexities of Earley’s Algorithm 

Graph Expansion Parsing has worst case time complexity of O(n3), but like Earley’s 

algorithm, it can perform with better complexities on certain grammars. GEP operates 

on the grammars of Figure 9.1 in O(n
2
), O(n

3
), and O(n

3
) time respectively.  

Given n input tokens, both Earley and CYK parsers require O(n2) space. However, 

O(n
2
) is an upper bound for Earley but a requirement for CYK. These complexities are 

for recognising a given string, not for producing all possible parse trees. For example, 

the grammar of Figure 9.1(c) produces an exponential number of possible parses for a 

given input string, so any algorithm that provides all such parses can do no better than 

O(2n) space complexity. 

Similarly, the space requirements of Graph Expansion Parsing are dependent upon how 

ambiguity is handled. If ambiguities are fully resolved as the parse progresses then the 

space requirements are bounded by O(n2), if not, the bound is O(2n). 

9.5.2.2 Empirical Results 

Earley compares his algorithm with a variety of backtracking techniques [Ear70]. It is 

clearly shown that his algorithm is superior to other general parsers. Graph Expansion 

Parsing was compared with Earley parsing on all of these grammars. 

All of the following time complexities are calculated based on primitive operations. For 

Earley’s method, the primitive operation used is the act of adding a state to the state set, 

and for GEP it is attempted matching of a path. GEP paths are built incrementally so 

each check is effectively a constant operation. 

In Table 9.7 the time complexities of Earley parsing and GEP are compared. Shown for 

GEP is both a forward and backwards scan of the input and also the number of edges 



CHAPTER 9: ANALYSIS AND COMPARISON   GRAPH EXPANSION PARSING 

 •  279  •

added to the graph. The first three grammars compared demonstrate left-, right-, and 

centre-recursive forms respectively. The fourth grammar effectively contains all three 

recursive forms. 

Both Earley’s method and GEP parse all these grammars in linear time, although GEP 

generally has a smaller constant factor than Earley’s method. No significant difference 

is seen with GEP between scanning the input left-to-right or right-to-left. 

Table 9.7: Earley Versus GEP Time Complexity 

Grammar Sentence Earley GEP LR GEP RR GEP adds 

S ::= Ab 
A ::= a | Ab 

ab
n
 4n+7 6n+1 6n+1 2n+1 

S ::= aB 
B ::= aB | b 

anb 6n+4 6n+1 6n+1 2n+1 

S ::= ab | aSb a
n
b

n
 6n+4 7n-3 7n-3 n 

S ::= AB 
A ::= a | Ab 
B ::= bc | bB | Bd 

abncd 18n+8 14n+7 14n+6 8n-3 
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Table 9.8 compares Earley parsing and GEP on more complicated grammars with 

mutually recursive components. The third grammar is the most representative of a real 

programming language grammar. The choice of strings is taken from [Ear70] so that a 

direct comparison could be made. 

Graph Expansion Parsing performs the most favourably on the third grammar which is a 

representation of a propositional calculus. As this is the most “real world” of the 

grammars, GEP seems well suited to non-theoretic use. 

With two of these three grammars sizeable differences are visible between performing a 

left-to-right scan of the input to performing a right-to-left scan. In general the left-to-

right scan performs considerably better. The largest difference is in the first grammar 

and is due to the predominance of left-recursive elements. 
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Table 9.8: Earley Versus GEP Comparison 

Grammar Sentence Earley GEP 

LR 

GEP 

RR 

GEP 

adds 

X ::= a | Xb | Ya 
Y ::= e | YdY 

ededea 
ededeab

4
 

ededeab10 
ededeab200 
(ed)6eabb 
(ed)7eabb 
(ed)8eabb 

33 
45 
63 

633 
79 

194 
251 

37 
77 

137 
2037 
123 
292 
371 

35 
98 

188 
3038 
152 
363 
460 

11 
27 
51 

811 
43 

119 
159 

S ::= AB 
A ::= a | SC 
B ::= b | DB 
C ::= c 
D ::= d 

adbcddb 
ad3bcbcd3bcd4b 
adbcd2bcd5bcd3b 
ad18b 
a(bc)3d3(bcd)2dbcd4b 
a(bcd)2dbcd3bcb 

44 
108 
114 
123 
141 
95 

35 
97 
82 

115 
127 
83 

35 
97 
82 

115 
127 
83 

13 
35 
30 
39 
47 
31 

F ::= C | S | P | U 

C ::= U⊃U 
U ::= (F) | ~U | L 
L ::= L' | p | q | r 
S ::= UVS | UVU 

P ::= UΛP | UΛU 

p 

(pΛq) 

(p'Λq)VrVpVq' 

p⊃ ((q⊃~(r'V(pΛq))) ⊃ (q'Vr) 

~(~p'Λ(qVr) Λp')) 

((pΛq)V(qΛr)V(rΛp')) ⊃ 

      ~((p'Vq')Λ(r'Vp)) 

28 
68 

148 
277 
141 
399 

 

2 
23 
66 
90 
59 

143 
 

2 
25 
95 

151 
129 
236 

 

1 
4 

18 
21 
21 
34 
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10.1 Conclusion 

The original design goals of Genesis are summarised as following (from section 5.2): 

• provide arbitrary syntax creation; 

• allow for compile-time interrogation of syntax trees; 

• outward language simplicity (a simple to use system); 

• programmer support (via quasi-quotation, hygiene, and guarantees of syntactic 

correct translations); 

• a lack of complicated parser restrictions; 

• inward language simplicity (a small definition with extensions written with it to 

provide further facilities); and 

• provide decent error reporting. 

Genesis is very effective in meeting these original design goals. 

Its power of expression surpasses that of other extensible languages and it does this with 

a very simple macro syntax and a relatively clean design. It has proven itself to be 

capable of providing programmer support in the form of quasi-quotation, unquoting, 

optional macro parameters, automatic list class generation, and automatic static-type 

checking extensions. The number of such shorthands will no doubt increase with time. 

Graph Expansion Parsing supports Genesis’ simple macro definitions and places a low 

burden on the macro programmer. It provides for a intuitive approach to creating syntax 

and defining transformations in a way that other such systems are not quite capable of 

matching. However, it does require the programmer to sometimes think about issues of 

ambiguities that are more complicated than those that occur in traditional languages. 

Genesis’ implementations of the benchmark test suite provide strong evidence of the 

success of its design. In particular, the ability to program in a Haskell subset free of any 

legacy Java code is a facility that would normally be possible only with compiler-

compilers. The Haskell subset is the most clear demonstration of the power and 

flexibility of macro definitions in Genesis. Not only is the Haskell syntax matched 

exactly (ignoring true Haskell layout rules), the implementation itself is relatively 

straightforward due to Genesis allowing multiple uses of its user definable abstract 

syntax classes. 
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More work needs to be done on the provision of quality error messages. Graph 

Expansion Parsing does not lend itself easily to pinpointing the exact cause of errors and 

more research is required into this area (see section 10.2.8). The current implementation 

of Genesis requires direct output of Java source files for compilation with an external 

compiler. This greatly complicates the possibility of tracking errors to their source. This 

will hopefully be address by future research (see subsection 10.2.7). 
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10.2 Future Work 

There are many possibilities for future work with the Genesis programming language: 

modifications to the language design, improvement of the current implementation, 

further research into the created parsing scheme, and the implementation of more 

sophisticated extensions within the current language.  

It is hoped that such continued research will ultimately lead to extensible concepts being 

incorporated into the larger programming community. 

10.2.1 Flexible Lexical Analysis 

The current tokeniser makes only a few decisions as to the meaning of sequences of 

symbols and characters: Literal strings and characters are detected early, and $ and _ 

characters are treated as alphanumeric characters rather than symbols. 

In addition, floating-point forms are accepted that contain spaces in between numbers 

and other characters. This is undesirable but is unavoidable with the current tokeniser 

strategy. The choice could have been made to detect floating-point literals within the 

tokeniser, but this may have affected the use of “.” within other expressions. 

For the tokeniser to be as flexible as possible it should be able to allow users to define 

all of these literal forms explicitly. 

It should be possible to reuse macro forms but to apply them to character strings at the 

tokeniser stage. Perhaps this would be accomplished by defining a class TokenChar 

and allowing users to write macros for combining them — such macros could be 

automatically recognised by the compiler as special tokeniser macros. Code Example 

10.1 demonstrates the possible usage of such of system to explicitly handle string 

literals — something currently not possible with Genesis. 

macromacromacromacro StringLiteralToken (", StringLiteralCharList, ") { ... } 
 
macroListmacroListmacroListmacroList StringLiteralCharList(StringLiteralChar); 
 
macromacromacromacro StringLiteralChar (TokenChar t) { ... } 
macromacromacromacro StringLiteralChar (\, TokenChar c) throws ConditionsNotMet { 
  // make sure this is a valid escape 
} 

Code Example 10.1: Extended Tokeniser Possibility 
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10.2.2 Delayed Macros 
 

The delayed macros facility is instrumental in allowing both construction macros and 

static-type checked macros to operate in tandem. The usage of delayed macros is the 

source of much of Genesis’ power, but could perhaps also be a source of programmer 

confusion — maybe we can do better. 

Consider the program fragment in Code Example 10.2. This fragment uses a 

specialisation of forall for arrays that allows the user to drop the type of iteration 

variable as it can be inferred from the type of the array. This is a prime example of the 

use of delayed macros, both for expansion of forall and for printf: the inside-out 

parse allows construction of the parse-tree and the outside-in parse performs the 

translations. 

intintintint[]    array = { 1, 11, 27, 42 }; 
    
forallforallforallforall num inininin array { 
  printf("%d\n", num); 
} 

Code Example 10.2: Macro Expansion Requiring Delayed Macros 

There are a number of possibilities for improvement on the current scheme. Either use 

of delayed could be inferred by some mechanism, or a parser improvement could be 

made to provide more previous scope information by the time a macro expansion was 

reached (although this may mean restricting macros static-typing abilities to 

declarations preceding the macro call).  

Inference of delayed macros could simply occur at macro expansion time if an 

attempted type-check fails to find the type, or by some method that checks for calls to 

the type system when a macro is compiled. 

If some form of modified backtracking top-down parsing scheme (that could handled 

left-recursion) could be applied to the Genesis programming language the type of array 

would be known by the time forall was reached, and by the time printf was 

reached perhaps some mechanism for querying the half-matched forall macro as to 

the type of its arguments could be constructed. 

10.2.3 Zero Argument Macros 
 

As previously discussed in subsection 5.3.4, the Genesis definition does not support 

macros that have no arguments. Such macros would possibly allow a more natural 
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construction of definition with optional parts, although the optional parameter extension 

in subsection 8.7.2.3 provides quite an elegant method for this.  

The inclusion of zero argument macros was avoided as it complicates the construction 

of the parser. It would, however, be possible to extend the parsing method to include 

such forms.  

The most obvious implementation would be to add arcs that construct zero argument 

macros with the same start and end node to the parse graph. This would either be 

performed for each node without fail or with some more sophisticated approach that 

adds such arcs only when there is a possibility that they will be required by some later 

macro.  

It remains to be seen if the inclusion of zero argument macro forms is important enough 

to justify the extra implementation cost.  

10.2.4 Migration to Java1.5 

Genesis was implemented with Java1.4 which means that it was not able to take 

advantage of generics. As a result, many components of the current implementation are 

not as neat as they could be. For example, the macroList extension would likely 

prove to be completely unnecessary with a Genesis implementation that uses generics, 

or at least would not need to create a new list each time it was used. The implementation 

of the generators test case would also benefit from generics. 

The typing system could perhaps benefit from generics — when static-types are known 

they could be passed around with the current expression as a type parameter. Macros 

could be prevented from matching on these types directly without any explicit checks. 

Java1.5 annotations would most likely allow the process of mangling to be simplified or 

completely removed. More advanced uses of such metadata may help in the writing of 

macros and reduce the number of new classes that are created in order to create a 

particular extension. 

10.2.5 Parser Efficiency 

Section 7.2 already detailed some optimisations to the parser, but nonetheless the 

current Graph Expansion Parser has much room for improved performance. 
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It may prove to be possible to discover sub-graphs that have no possibility of further 

additions and such forms could be ignored for the rest of the parse. The current 

algorithm performs many checks that are required and does so repeatedly. Any graph 

pruning technique would provide quite a boost in efficiency. 

Another minor improved to optimisation could come from collapsing some of the 

information in the partial match tree. A simple example of this kind of operation is if a 

grammar contains a rule that converts a token into an identifier and a rule that converts 

an identifier into a simple expression then upon successful conversion of the token into 

an identifier we can produce an expression simultaneously with further matching. Well 

constructed abstract syntax class hierarchies already perform similar optimisations, but 

it would be desirable to provide this functionality in a more general way. It may even be 

possible to apply this approach in a more general way to improve efficiency. 

10.2.6 Context-sensitive Graph Expansion 

Parsing 
 

It was briefly mentioned that Graph Expansion Parsing can parse context-sensitive 

forms due to the ability of macros to throw exceptions when further conditions are not 

met.  It may prove interesting to explore these abilities in more detail, perhaps even 

writing a GEP parser generator in Genesis itself. 

10.2.7 Integration of Genesis Parsing and Java 

Compiling 
 

The Genesis compiler makes use of a standard Java compiler to actually produce its 

final output. Much could be gained by producing an integrated system. The most 

obvious area for improvement would be with increased ability to track errors. 

10.2.8 Improved Error Tracking 
 

Genesis’ major failing is in both the pin-pointing of syntax errors and errors that occur 

after expansion has taken place. As just mentioned, it would be simpler to track errors if 

the entire compilation was performed by an integrated system.  

Improved syntax error detection for parsers such as GEP is an open question and 

requires much extensive research. Indeed, it may not be possible to greatly improve this 

situation and another parsing approach may ultimately be required. 
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10.2.9 Usability Surveys 

Genesis has had limited usage to this point and it would be both interesting and 

informative to see how others took advantage of its facilities. Feedback from such use 

would only serve to improve the language.  

10.2.10 Library Support 

Genesis could no doubt benefit from an increased number of shortcuts for tasks that are 

identified as often occurring and repetitive. The identification of such required shortcuts 

would no doubt occur with increased usage of Genesis (as discussed in the previous 

section).  

A class (or set of classes) for providing generalised transformations on arbitrary syntax 

trees would be of great use for many complicated extensions. Implementations of 

generators, Haskell, and MultiJava could all benefit from such a library. 

Extensible libraries for SQL, HTML, XML, or regular expressions could provide 

increased performance over currently available systems. 

Many extensions could be created to showcase Genesis’ flexibility and power. 

Implementations of other Java extensions could be undertaken such as (the previously 

mentioned) MultiJava or Pizza. 

10.2.11 Improved Embedded Haskell 

The embedded Haskell subset is of great interest. If after further testing of the current 

subset it is found to be as useful as it appears at first glance, it would be desirable to 

look at providing compilation rather than interpretation of the subset. 

If compilation proves successful, the subset could be increased to handle the full core of 

Haskell and then macros could build upon this in order to produce a full embedded 

Haskell implementation. 

Such an embedding of Haskell would bring the language to a much larger audience and 

the appeal of using a clean functional language for calculation and a traditional 

imperative language for control and user interaction is particularly appealing. 
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Also, in further extensions it would no doubt be interesting to allow the calling of 

appropriate Java functions from within Haskell code as well. Such mixing of imperative 

and functional constructs is not new, but perhaps mixing of two large scale languages is. 

10.2.12 Ultimate Aim 
 

The ultimate aim of this work (and other similar works) is adoption of extensibility 

amongst the wider audience. The Java programming language seems an ideal vehicle 

for such an occurrence as it has been repeatedly updated through its community review 

process. As has been repeatedly stated, if extensibility had been a part of Java from the 

very beginning, the changes that it has undergone would have been possible in a much 

different fashion. Indeed, there is a large number of extensions to Java that have not 

seen wide-spread adoption, perhaps with an extensible Java these languages would have 

the capacity to reach a larger audience. 

Continued work on the Genesis language will hopefully add much that is interesting 

(and perhaps some that is useful) to the domain of extensible programming languages. 
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A.1 Abstract Syntax Classes 

This appendix provides details of the abstract syntax classes used in the implementation 

of the Genesis compiler. Class hierarchy diagrams are supplied for groups of classes and 

interfaces that benefit from extra explanation. 

A.1.1 High-level Abstract Syntax Classes 

Figure A.1 is a reproduction of class hierarchy in Figure 5.12. It is provided as a point 

of reference to aid in the understanding of the expansion of the definition of some of the 

classes within this hierarchy in later subsections. The rest of this subsection lists the 

classes not covered by this hierarchy and the children of the Statement class. 

 

Figure A.1: High-level Abstract Syntax Class Hierarchy 

Code Example A.1 lists the classes used for the basic structure of a Java source file. A 

compilation unit consists of an optional package declaration, import declarations, and 

some type declarations (covered in subsection A.1.2). 

// classes for creating the end result of parsing a file 
 
classclassclassclass CompilationUnit implementsimplementsimplementsimplements AbstractSyntax; 
classclassclassclass PackageDeclaration implementsimplementsimplementsimplements AbstractSyntax; 
classclassclassclass ImportDeclaration implementsimplementsimplementsimplements AbstractSyntax; 
 
// list declarations 
 
classclassclassclass ImportDeclarations extendsextendsextendsextends List implementsimplementsimplementsimplements AbstractSyntax; 

Code Example A.1: Compilation Unit Classes 

AbstractSyntax 

ClassMemberDeclaration BlockStatement 

VariableDeclaration Expression MethodDeclaration TypeDeclaration Statement 

Literal StatementExpression LeftHandSide 

Typeable InterfaceMemberDeclaration 

… 
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The classes of Code Example A.2 are used for typing and within declarations and 

statements that require a type. 

// class for providing static type information 
    
classclassclassclass Type implementsimplementsimplementsimplements AbstractSyntax; 
 
// list declarations 
 
classclassclassclass Types extendsextendsextendsextends List; 

Code Example A.2: Type Classes 

Code Example A.3 contains the classes for statements. Local variable declarations are 

given special treatment as they are only allowed to appear within blocks. 

// classes for providing statements and lists of statements 
 
// interface for statements that are allowed to appear within blocks 
 
interfaceinterfaceinterfaceinterface BlockStatement extendsextendsextendsextends AbstractSyntax; 
 
// variable declarations are the only statement that MUST be part of a block 
 
classclassclassclass LocalVariableDeclarationStatement extendsextendsextendsextends LocalVariableDeclaration  
  implementsimplementsimplementsimplements BlockStatement; 
 
// statements 
 
interfaceinterfaceinterfaceinterface Statement extendsextendsextendsextends BlockStatement; 
 
classclassclassclass EmptyStatement implementsimplementsimplementsimplements Statement; 
classclassclassclass Labeled implementsimplementsimplementsimplements Statement; 
classclassclassclass Break implementsimplementsimplementsimplements Statement; 
classclassclassclass Continue implementsimplementsimplementsimplements Statement; 
classclassclassclass Throw implementsimplementsimplementsimplements Statement; 
classclassclassclass Return implementsimplementsimplementsimplements Statement; 
classclassclassclass Synchronized implementsimplementsimplementsimplements Statement; 
classclassclassclass Assert implementsimplementsimplementsimplements Statement; 
classclassclassclass Catch; 
classclassclassclass Try implementsimplementsimplementsimplements Statement; 
classclassclassclass ExpressionStatement implementsimplementsimplementsimplements Statement; 
classclassclassclass IfThenElse implementimplementimplementimplementssss Statement; 
classclassclassclass While implementsimplementsimplementsimplements Statement; 
classclassclassclass Do implementsimplementsimplementsimplements Statement; 
classclassclassclass Switch implementsimplementsimplementsimplements Statement; 
classclassclassclass SwitchLabel implementsimplementsimplementsimplements AbstractSyntax; 
classclassclassclass SwitchBlock implementsimplementsimplementsimplements AbstractSyntax; 
classclassclassclass For implementsimplementsimplementsimplements Statement; 
 
// a block is allowed to appear in a class as initialisation code 
 
classclassclassclass Block implementsimplementsimplementsimplements Statement, ClassMemberDeclaration; 
 
// list declarations 
 
classclassclassclass Statements extendsextendsextendsextends List; 
classclassclassclass BlockStatements extendsextendsextendsextends List; 
classclassclassclass SwitchLabels extendsextendsextendsextends List; 
classclassclassclass SwitchBlocks extendsextendsextendsextends List; 
classclassclassclass SwitchStatements extendsextendsextendsextends List; 
classclassclassclass Catches extendsextendsextendsextends List; 

Code Example A.3: Statement Classes 
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A.1.2 Declaration Abstract Syntax Classes 

In Figure A.2 the class hierarchy for declarations is shown. Subclasses are pictured with 

doubly-lined arrows.  

 

Figure A.2: Declaration Abstract Syntax Class Hierarchy 

Code Example A.4 contains the classes for variable declarations and initialisers. Field 

declarations can also appear as either class or interface declarations. 

// classes for providing variable declarations 
 
classclassclassclass VariableDeclaration implementsimplementsimplementsimplements Typeable; 
 
classclassclassclass FormalParameter extendsextendsextendsextends VariableDeclaration; 
classclassclassclass LocalVariableDeclaration extendsextendsextendsextends VariableDeclaration;  
classclassclassclass FieldDeclaration extendsextendsextendsextends VariableDeclaration  
  implemimplemimplemimplementsentsentsents ClassMemberDeclaration, InterfaceMemberDeclaration; 
 
interfaceinterfaceinterfaceinterface VariableInitializer extendsextendsextendsextends AbstractSyntax; 
 
classclassclassclass SimpleInitializer implementsimplementsimplementsimplements VariableInitializer;  
classclassclassclass ArrayInitializer implementsimplementsimplementsimplements VariableInitializer; 
 
classclassclassclass VariableDeclarator impleimpleimpleimplementsmentsmentsments AbstractSyntax; 
 
classclassclassclass VariableDeclaratorId extendsextendsextendsextends VariableDeclarator; 
 
// list declarations 
 
classclassclassclass FormalParameters extendsextendsextendsextends List; 
classclassclassclass VariableDeclarators extendsextendsextendsextends List; 
classclassclassclass VariableInitializers extendsextendsextendsextends List; 

Code Example A.4: Variable Declaration Classes 
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Code Example A.5 contains the classes for method and type declarations. Type 

declarations can be either class or interface declarations and method declarations also 

cover constructors, abstract methods, and macros. 

// classes for providing method and type declarations 
 
// interfaces for class and interface member declarations 
 
interfaceinterfaceinterfaceinterface ClassMemberDeclaration extendsextendsextendsextends AbstractSyntax; 
interfaceinterfaceinterfaceinterface InterfaceMemberDeclaration extendsextendsextendsextends AbstractSyntax; 
 
// all method declarations can appear within a class and are typeable 
 
classclassclassclass MethodDeclaration implementsimplementsimplementsimplements ClassMemberDeclaration, Typeable; 
 
classclassclassclass MacroDeclaration extendsextendsextendsextends MethodDeclaration; 
classclassclassclass ConstructorDeclaration extendsextendsextendsextends MethodDeclaration; 
classclassclassclass AbstractMethodDeclaration extendsextendsextendsextends MethodDeclaration  
  imimimimplementsplementsplementsplements InterfaceMemberDeclaration; 
 
// type declarations 
 
classclassclassclass TypeDeclaration implementsimplementsimplementsimplements ClassMemberDeclaration, BlockStatement; 
 
classclassclassclass ClassTypeDeclaration extendsextendsextendsextends TypeDeclaration  
  implementsimplementsimplementsimplements InterfaceInterfaceInterfaceInterfaceMemberDeclaration { 
classclassclassclass InterfaceTypeDeclaration extendsextendsextendsextends TypeDeclaration  
  implementsimplementsimplementsimplements InterfaceInterfaceInterfaceInterfaceMemberDeclaration; 
classclassclassclass EmptyTypeDeclaration extendsextendsextendsextends TypeDeclaration; 
 
// modifiers for methods, classes, etc. 
 
classclassclassclass Modifiers implementsimplementsimplementsimplements AbstractSyntax; 
 
// list declarations 
 
classclassclassclass ClassMemberDeclarations extendsextendsextendsextends List; 
classclassclassclass InterfaceMemberDeclarations extendsextendsextendsextends List; 
classclassclassclass MacroParameters extendsextendsextendsextends List; 
classclassclassclass TypeDeclarations extendsextendsextendsextends List; 
classclassclassclass Throws extendsextendsextendsextends List; 

Code Example A.5: Method and Type Declaration Classes 

A.1.3 Expression Abstract Syntax Classes 
 

Figure A.3 contains the class hierarchy for expressions (and also shows where 

identifiers and variable declarations fit). The subclasses of StatementExpression 

and Literal are abbreviated in the hierarchy but expanded in the following Code 

Examples. 

Code Example A.6 details the classes used for expressions and contains interfaces to 

differentiate between normal expressions and those that can appear as statements and 

those that can appear on the left-hand side of an assignment. 

Code Example A.7 and Code Example A.8 contain classes for identifiers and literals 

respectively. 
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Figure A.3: Expression Abstract Syntax Class Hierarchy 

// classes for expressions 
    
interfaceinterfaceinterfaceinterface Typeable extendsextendsextendsextends AbstractSyntax; 
 
// non-side effect expressions 
 
ininininterfaceterfaceterfaceterface Expression extendsextendsextendsextends Typeable; 
classclassclassclass Bracketed implementsimplementsimplementsimplements Expression; 
classclassclassclass Infix implementsimplementsimplementsimplements Expression; 
classclassclassclass Cast implementsimplementsimplementsimplements Expression; 
classclassclassclass InstanceOf implementsimplementsimplementsimplements Expression; 
classclassclassclass IfThenElseExpression implementsimplementsimplementsimplements Expression; 
 
// side-effect expressions 
 
interfaceinterfaceinterfaceinterface StatementExpression extendsextendsextendsextends Expression; 
classclassclassclass Assignment implementsimplementsimplementsimplements StatementExpression; 
classclassclassclass Prefix implementsimplementsimplementsimplements StatementExpression; 
classclassclassclass Postfix implementsimplementsimplementsimplements StatementExpression; 
classclassclassclass MethodCall implementsimplementsimplementsimplements StatementExpression; 
classclassclassclass Creation implementsimplementsimplementsimplements StatementExpression; 
classclassclassclass ArrayCreation implementsimplementsimplementsimplements StatementExpression; 
 
// expressions that can appear on an assignment's left-hand side 
 
interfaceinterfaceinterfaceinterface LeftHandSide extendsextendsextendsextends Expression; 
classclassclassclass Simple implementsimplementsimplementsimplements LeftHandSide; 
classclassclassclass ArrayAccess implementsimplementsimplementsimplements LeftHandSide; 
classclassclassclass FieldAccess implementsimplementsimplementsimplements LeftHandSide; 
 
// operators 
 
classclassclassclass Operator implementsimplementsimplementsimplements AbstractSyntax; 
 
// list declarations 
 
classclassclassclass StatementExpressions extendsextendsextendsextends List; 
classclassclassclass Expressions extendsextendsextendsextends List; 
classclassclassclass Arguments extendsextendsextendsextends Expressions; 
classclassclassclass ArrayCreationExpressions extendsextendsextendsextends Expressions; 

Code Example A.6: Expression Classes 
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// classes for identifiers, dot seperated names, and symbols 
    
classclassclassclass Identifier implementsimplementsimplementsimplements Typeable; 
classclassclassclass Name implementsimplementsimplementsimplements AbstractSyntax; 
classclassclassclass Symbol implementsimplementsimplementsimplements AbstractSyntax; 

Code Example A.7: Identifier Classes 

// classes for literals 
    
interfaceinterfaceinterfaceinterface Literal extendsextendsextendsextends Expression; 
 
classclassclassclass LiteralString implementsimplementsimplementsimplements Literal; 
classclassclassclass LiteralInteger implementsimplementsimplementsimplements Literal; 
classclassclassclass LiteralChar implementsimplementsimplementsimplements Literal; 
classclassclassclass LiteralBoolean imimimimplementsplementsplementsplements Literal; 
classclassclassclass LiteralFloat implementsimplementsimplementsimplements Literal; 
classclassclassclass LiteralNull implementsimplementsimplementsimplements Literal; 

Code Example A.8: Literal Classes 
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B.1 Assertions 

Code Example B.1 and Code Example B.2 contain the Genesis and Maya definitions of 

assert as used in subsection 9.4.1.1. 

classclassclassclass Assert { 
        macromacromacromacro Statement (assert, Expression e) { 
    returnreturnreturnreturn {{ 
      ifififif (!`e) { 
        System.err.println("Assertion Failed: " +  
          `(newnewnewnew StringLiteral(e.toString()))); 
        throwthrowthrowthrow newnewnewnew AssertionError("Assertion Failed"); 
      }  
    }}; 
  } 
} 

Code Example B.1: Genesis Assertion Definition 

importimportimportimport maya.tree.*; 
importimportimportimport maya.grammar.*; 
 
useuseuseuse Syntax; 
useuseuseuse ForEach; 
 
abstractabstractabstractabstract Statement sysysysyntaxntaxntaxntax (assert(Expression);); 
 
publicpublicpublicpublic classclassclassclass Assert implementsimplementsimplementsimplements MetaProgram { 
  publicpublicpublicpublic Environment run(Environment env) 
  { 
    Statement syntaxsyntaxsyntaxsyntax A(assert(Expression e);) { 
      returnreturnreturnreturn newnewnewnew Statement { 
        ifififif (!$e) throwthrowthrowthrow newnewnewnew Error("Assertion failed"); 
      }; 
    } 
 
    returnreturnreturnreturn newnewnewnew A().run(env); 
  } 
} 

Code Example B.2: Maya Assertion Definition 
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B.2 Iteration 

Code Example B.3 and Code Example B.4 contain the Genesis and Maya definitions of 

forall as used in subsection 9.4.1.1. 

importimportimportimport java.util.Iterator; 
 
publicpublicpublicpublic classclassclassclass TestForall {   
  delayed macrodelayed macrodelayed macrodelayed macro (forall, (, FormalParameter p, ), in,  
                Expression:Iterator e, Statement b) throwsthrowsthrowsthrows TypeMismatch {    
    returnreturnreturnreturn {{  
      forforforfor(Iterator i = (`e).iterator(); i.hasNext(); ) { 
        `(p.type()) `(p.getIdentifier()) = (`(p.type())) i.next(); 
        `b 
      } 
    }}; 
  } 
} 

Code Example B.3: Genesis Iterator Definition 

importimportimportimport java.util.*; 
importimportimportimport maya.tree.*; 
importimportimportimport maya.grammar.*; 
 
abstractabstractabstractabstract Statement syntaxsyntaxsyntaxsyntax(MethodName(Formal) lazylazylazylazy(BraceTree, BlockStmts)); 
 
Statement syntax syntax syntax syntax ForEach(Expression:Iterator enumExp \. foreach(Formal var) 
  lazylazylazylazy(BraceTree, BlockStmts) body) 
{ 
  final   final   final   final StrictTypeName castType = StrictTypeName.make(var.getType()); 
   
  returnreturnreturnreturn newnewnewnew Statement { 
    for     for     for     for (Iterator enumVar = $enumExp; enumVar.hasNext(); ) { 
      $(DeclStmt.make(var)) $(Reference.makeExpr(var.getLocation()))  
        = ($castType) enumVar.next(); 
      $body 
    } 
  }; 
} 
 
publicpublicpublicpublic defineMayanContainer(ForEach) { ForEach } 

Code Example B.4: Maya Iterator Definition 
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B.3 Type-safe Formatted Output 

Code Example B.5 and Code Example B.6 contain the Genesis and Maya definitions of 

printf as used in subsection 9.4.1.1. 

class class class class PrintF { 
        delayeddelayeddelayeddelayed    
        macromacromacromacro ExpressionStatement (printf, (, LiteralString s, ,, Arguments list, )) 
        throwsthrowsthrowsthrows TypeMismatch, TooManyActualParameters, TooManyPlaceHolders {  
    Expression exp = /* call to external function to do generation */; 
 
    returnreturnreturnreturn {{ System.out.println(`exp); }}; 
  } 
} 

Code Example B.5: Genesis Type-safe Formatted Output Definition 

importimportimportimport maya.tree.*; 
importimportimportimport maya.grammar.*; 
 
useuseuseuse maya.util.Syntax; 
useuseuseuse maya.util.RunMayans; 
 
Expression syntaxsyntaxsyntaxsyntax  
PSprintf(Expression:PrintStream p.printf(listlistlistlist(Expression, ',') args)) 
{ 
  finalfinalfinalfinal FormatState state = newnewnewnew FormatState(args); 
  returnreturnreturnreturn newnewnewnew Expression {({ 
    PrintStream writer = $p; 
    $({ 
      StmtList ret = newnewnewnew StmtList{}; 
      forforforfor (Expression e = state.parse(); e != null; e = state.parse()) 
 { 
   ret = new StmtList { $(as Statement ret) writer.print($e); }; 
 } 
      (Statement) ret;  
    }) 
    writer; 
  })}; 
} 
 
publicpublicpublicpublic defineMayanContainer(Printf) { PSprintf } 

Code Example B.6: Maya Type-safe Formatted Output Definition 

 

 


