

Genesis: An Extensible Java

by

Ian Lewis BComp Hons

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

University of Tasmania

February 2005

 • iii •

This thesis contains no material which has been accepted for a degree or diploma by the

University or any other institution, except by way of background information and duly

acknowledged in the thesis, and to the best of the candidate’s knowledge and belief no

material previously published or written by another person except where due

acknowledgement is made in the text of the thesis.

 Ian Lewis

 • v •

 This thesis may be made available for loan and limited copying in accordance with the

Copyright Act 1968.

 Ian Lewis

 • vii •

Abstract

Extensible programming languages allow users to create fundamentally new syntax and

translate this syntax into language primitives. The concept of compile-time meta-

programming has been around for decades, but systems that provide such abilities

generally disallow the creation of new syntactic forms, or have heavy restrictions on

how, or where, this may be done.

Genesis is an extension to Java that supports compile-time meta-programming by

allowing users to create their own arbitrary syntax. This is achieved through macros that

operate on a mix of both concrete and abstract syntax, and produce abstract syntax.

Genesis attempts to provide a minimal design whilst maintaining, and extending, the

expressive power of other similar macro systems.

The core Genesis language definition lacks many of the desirable features found in

other systems, such as quasi-quote, hygiene, and static expression-type dispatch, but is

expressive enough to define these as syntax extensions. User-defined macros produce

only well-formed syntactic structures via the use of a predefined set of classes that

define a Java abstract syntax.

At the heart of Genesis is a flexible parser that is capable of parsing any context-free

grammars — even ambiguous ones. The parser is capable of arbitrary speculation and

will consider all possible parses. The parser constructs a graph of possible paths, and is

capable of dynamically pruning this graph, or combining nodes, based on precedence or

associativity rules. This general parser allows macro programmers to forget about

parsing, and concentrate on defining new syntax.

One key goal of this system was to address the programmer’s learning curve by

providing as simple a system as possible. This was achieved by the use of the flexible

parser, the introduction of only one new construct to standard Java, and extensions to

make programming macros more user friendly.

The expressiveness of Genesis is wide ranging; it is capable of providing small scale

limited use macros, large scale semantic modifications, through to complete language

replacements.

 • viii •

To demonstrate this expressiveness, we implement many of the simple test cases found

in other systems, such as a type-safe printf, assertions, and iteration statements.

These test cases require an ability to perform static type-checking and to manipulate

compile-time values and abstract syntax trees. As additional examples of Genesis’

expressive power we also provide implementations of embedded subsets of SQL and

Haskell. As a final proof of power, the Haskell subset can operate as a stand-alone

extension independent of any recognisable Java code.

 • ix •

Acknowledgements

Thanks to Vishv for being my most long-suffering supervisor and for steadfastly

maintaining to this day that he has no idea what I am doing whatsoever.

Also, to Arthur and Julian for helping get me over the line, battered and bruised though

I may be.

Thanks to the School of Computing for providing support when it was really necessary

and without which I would never even come close to finishing.

To Julian for showing me no matter how annoyingly pedantic I may have thought

myself there is always someone worse, and who will scare me.

To Nicole simply for torturing countless cats (as is my understanding) rather than

slaying me alive simply because, as my office neighbour, she was Ned to my Homer.

To Adam for giving us all someone to mutter incessantly under our breaths about at his

appearance of progress and for all the tennis ball humour — just hilarious. Oh yeah, and

for proof-reading.

Thanks to Mark for all of those closed door discussions, the whiteboard Jeffisms,

misogynistic research proposals, and for becoming a living urban legend.

To Byeong for showing me that it really is worth taking the time to greet people, and for

being brave enough to come drinking with me — once.

To Craig, for scheduling his holiday for the worst possible time… and for making up

for it by scheduling another celebratory one once this ordeal is finally over.

Thanks to Banjo’s, Hungry Jacks, Eastlands, Centrepoint, Northgate, KFC, and their ilk

for donating places where, strangely, I initially found myself most productive.

Particularly thanks to those who donated their power to make this all possible.

To my darling girlfriend Kim for tolerating all those assurances of “two more weeks”,

and just being tolerant in general.

And finalee, tanks to those harmleff alcamahol molecools that didn’t hampa me won bit.

 • x •

TABLE OF CONTENTS

 • xi •

Table of Contents

ABSTRACT .. VII
ACKNOWLEDGEMENTS .. IX
TABLE OF CONTENTS... XI
LIST OF CODE EXAMPLES ..XVIII
LIST OF FIGURES ... XXI
LIST OF TABLES..XXII

1 INTRODUCTION ..1

1.1 OVERVIEW ..2
1.1.1 Assessment of Success ..3
1.1.2 Conventions...4

1.2 SOURCES OF CODE EXAMPLES ..6
1.2.1 Java..6

1.2.1.1 Java1.4...6
1.2.1.2 Java1.5...7

1.2.2 MultiJava...7
1.2.3 Maya..7
1.2.4 Java Syntax Extender ..8
1.2.5 OpenJava ...8
1.2.6 Haskell...8
1.2.7 Template Haskell...9
1.2.8 Lisp..9

1.2.8.1 Common Lisp ...9
1.2.8.2 Scheme ...9

1.2.9 C++..10
1.2.10 MS2..10
1.2.11 SQL ...10
1.2.12 Pro*C...10
1.2.13 Icon..11
1.2.14 Ada ..11

1.3 THESIS STRUCTURE ..12

2 EXTENSIBILITY ..15

2.1 OVERVIEW ..16
2.2 DEFINING EXTENSIBLE ...17

2.2.1 Other Similar Terminology ...17
2.2.2 Previous Extensibility Definitions...17
2.2.3 Definition of Extensible ..18

2.3 LANGUAGE EXTENSION MECHANISMS..20
2.3.1 Library Systems...20

2.3.1.1 Threading...21
2.3.1.2 SQL ..22
2.3.1.3 Summary ..24

2.3.2 Open Compilers...24
2.3.2.1 Glasgow Haskell Compiler ..25
2.3.2.2 Summary ..25

2.3.3 Text Macros...25
2.3.3.1 Assertions...27
2.3.3.2 Iteration ...28
2.3.3.3 Generators ...28
2.3.3.4 Message Maps ...33
2.3.3.5 DEBUG_NEW ...34
2.3.3.6 Summary ..35

2.3.4 Two-tier Languages...35
2.3.4.1 C++ Template Meta-programming ...36

2.3.5 Integrated Language Features..39

TABLE OF CONTENTS

 • xii •

2.4 IS EXTENSIBILITY NECESSARY? ... 40
2.4.1 What is Necessary? ... 42
2.4.2 Language Modifications ... 43

2.4.2.1 Language Standards Revision / Development ... 44
2.4.2.2 Research Languages.. 44
2.4.2.3 Embedded Languages.. 45
2.4.2.4 Java1.5 .. 46

2.4.3 How Much Power is Too Much Power? ... 47
2.4.4 Multi-paradigm languages .. 48
2.4.5 Previous Interest ... 49

3 ASSESSMENT OF EXTENSIBILITY .. 51

3.1 OVERVIEW ... 52
3.2 DESIRABLE LANGUAGE PROPERTIES .. 53

3.2.1 Hygiene and Referential Transparency... 54
3.3 CRITERIA FOR RATING EXTENSIBLE LANGUAGES .. 56

3.3.1 Power .. 56
3.3.2 Usability.. 57
3.3.3 Error Handling .. 58
3.3.4 Previous Research... 58

3.4 BENCHMARK TEST CASES .. 60
3.4.1 Simple constructs .. 61

3.4.1.1 Assertions .. 61
3.4.1.2 Iteration... 63
3.4.1.3 Typesafe Formatted Output ... 65

3.4.2 Complex Constructs.. 67
3.4.2.1 SQL Subset .. 67
3.4.2.2 Generators... 68
3.4.2.3 Haskell Subset ... 69

4 REVIEW OF EXTENSIBLE LANGUAGES ... 75

4.1 OVERVIEW ... 76
4.2 LISP / SCHEME .. 78

4.2.1 Power .. 79
4.2.1.1 S-expressions ... 79
4.2.1.2 Macros: defmacro ... 80
4.2.1.3 Macros: define-syntax ... 81
4.2.1.4 Syntax Creation ... 82

4.2.2 Usability.. 82
4.2.2.1 Name Capture: gensym ... 83
4.2.2.2 Name Capture: define-syntax Revisited .. 83

4.2.3 Error Handling .. 84
4.2.4 Applicability to Benchmarks .. 85
4.2.5 Extensibility Criteria Assessment ... 86

4.3 TEMPLATE HASKELL .. 88
4.3.1 Power .. 88

4.3.1.1 Reification ... 89
4.3.2 Usability.. 89

4.3.2.1 Splicing.. 90
4.3.2.2 Quasi-quotation... 91

4.3.3 Error Handling .. 91
4.3.4 Worked Examples... 92

4.3.4.1 Type-safe Formatted Output.. 92
4.3.4.2 Selection From an N-tuple... 93

4.3.5 Applicability to Benchmarks .. 94
4.3.6 Extensibility Criteria Assessment ... 95

4.4 META SYNTACTIC MACRO SYSTEM ... 97
4.4.1 Power .. 97
4.4.2 Usability.. 97
4.4.3 Error Handling .. 98

TABLE OF CONTENTS

 • xiii •

4.4.4 Worked Examples ...98
4.4.4.1 Dynamic Binding ...98
4.4.4.2 Extended Enumerations ...100

4.4.5 Applicability to Benchmarks...102
4.4.6 Extensibility Criteria Assessment..103

4.5 JAKARTA TOOL SUITE...105
4.6 JAVA SYNTAX EXTENDER ...106

4.6.1 Power...106
4.6.2 Usability ..107
4.6.3 Error Handling...108
4.6.4 A Worked Example: foreach ...108

4.6.4.1 Underlying Implementation ...108
4.6.4.2 The syntax Macro...109

4.6.5 Applicability to Benchmarks...110
4.6.6 Extensibility Criteria Assessment..111

4.7 OPENJAVA ..113
4.7.1 Power...113
4.7.2 Usability ..114
4.7.3 Error Handling...114
4.7.4 Applicability to Benchmarks...115
4.7.5 Extensibility Criteria Assessment..115

4.8 MAYA ...117
4.8.1 Power...117

4.8.1.1 Grammar Productions and Semantic Actions..117
4.8.1.2 Laziness..117
4.8.1.3 Overloading Mayans..118

4.8.2 Usability ..118
4.8.3 Error Handling...119
4.8.4 Worked Examples ...119

4.8.4.1 Assertions...119
4.8.4.2 Iteration ...120

4.8.5 Applicability to Benchmarks...123
4.8.6 Extensibility Criteria Assessment..124

5 GENESIS LANGUAGE DEFINITION ...127

5.1 OVERVIEW ..128
5.2 DESIGN RATIONALE..129

5.2.1 Arbitrary Syntax Creation ...129
5.2.2 Compile-time Interrogation ...129
5.2.3 Base Language ..130
5.2.4 Outward Language Simplicity...130

5.2.4.1 Programmer Support ...131
5.2.4.2 Parser Restrictions ..131

5.2.5 Inward Language Simplicity ...131
5.2.6 Error Reporting ...132

5.3 MACRO DEFINITIONS ..133
5.3.1 Parameters ...133
5.3.2 Precedence...134

5.3.2.1 Precedence by Grammar Modification..135
5.3.3 Associativity..136

5.3.3.1 Associativity by Grammar Modification ..136
5.3.4 Zero Argument Macros ...136
5.3.5 Modifiers ...137
5.3.6 Exceptions ...137
5.3.7 Macro Body...138
5.3.8 Evaluation Order ...138
5.3.9 Placement and Scope...138
5.3.10 Grammar..139

5.4 TOKENISING..140
5.4.1 Tokenising Approach Overview..140

TABLE OF CONTENTS

 • xiv •

5.4.2 Special Cases .. 141
5.4.3 Symbol Handling .. 141

5.4.3.1 Traditional Approach .. 142
5.4.3.2 Explicit Spaces .. 142
5.4.3.3 Single-character Symbols.. 142
5.4.3.4 Symbol Combinations.. 143

5.4.4 Tokeniser Algorithm... 144
5.5 MACRO EXPANSION ... 146

5.5.1 Import Mechanism.. 146
5.5.2 Expansion Strategy ... 146

5.5.2.1 Evaluation Order... 146
5.5.2.2 Construction Versus Manipulation.. 147
5.5.2.3 Outermost Versus Innermost Evaluation... 148
5.5.2.4 Non-destructive Restriction ... 149
5.5.2.5 Standard Usage ... 149

5.5.3 Macro Matching.. 150
5.5.4 Precedence .. 150

5.5.4.1 Same Sub-rules .. 151
5.5.4.2 Different Sub-rules .. 151

5.5.5 Associativity ... 152
5.5.6 Exceptions... 153
5.5.7 Restrictions ... 153

5.6 STANDARD ENVIRONMENT... 155
5.6.1 Abstract Syntax Classes .. 155
5.6.2 Exceptions... 157
5.6.3 Compile-time Typing.. 157
5.6.4 Macro Reflection .. 158

6 REVIEW OF PARSERS... 159

6.1 OVERVIEW ... 160
6.1.1 Extensible Language Parsing .. 160

6.1.1.1 Usability .. 161
6.1.1.2 Mid-parse Grammar Modification .. 161

6.2 GRAMMARS .. 163
6.2.1 Grammar Structure ... 163
6.2.2 Chomsky Hierarchy .. 163
6.2.3 Context-free Grammars .. 164

6.2.3.1 Backus-Naur Form.. 165
6.2.3.2 Extended BNF ... 165

6.2.4 Grammar Properties .. 166
6.2.4.1 Ambiguous Grammars... 166
6.2.4.2 Left- and Right-recursive Grammars .. 167

6.3 PARSERS... 168
6.3.1 Derivation ... 168
6.3.2 Naming ... 169

6.3.2.1 Derivation Categorisation... 169
6.3.2.2 Lookahead Categorisation .. 169

6.3.3 Tokenising .. 170
6.3.4 Parsing Methods ... 171

6.4 TOP-DOWN PARSING... 172
6.4.1 Predictive Parsing ... 172

6.4.1.1 Advantages .. 173
6.4.1.2 Disadvantages ... 173

6.4.2 Parse Table Approach ... 174
6.4.2.1 Advantages .. 176
6.4.2.2 Disadvantages ... 177

6.4.3 Suitability to Extensible Languages.. 177
6.4.3.1 Usability .. 177
6.4.3.2 Mid-parse Grammar Modification .. 177

6.5 BOTTOM-UP PARSING ... 178

TABLE OF CONTENTS

 • xv •

6.5.1 Shift-reduce Parsing ..178
6.5.2 Operator-precedence Parsing...179

6.5.2.1 Advantages...181
6.5.2.2 Disadvantages..181

6.5.3 LR Parsing...182
6.5.3.1 LALR Parsing ..185
6.5.3.2 SLR Parsing ...187
6.5.3.3 Advantages...187
6.5.3.4 Disadvantages..188

6.5.4 Suitability to Extensible Languages ..188
6.5.4.1 Usability...188
6.5.4.2 Mid-parse Grammar Modification ..189

6.6 GENERAL PARSING ...190
6.6.1 CYK Parsing ...190
6.6.2 Earley’s Algorithm..191
6.6.3 Chart Parsers ...192
6.6.4 Suitability to Extensible Languages ..193

6.6.4.1 Usability...193
6.6.4.2 Mid-parse Grammar Modification ..193

6.7 ANALYSIS ...194
6.7.1 Power...194
6.7.2 Efficiency ..195
6.7.3 Suitability to Extensible Languages ..195

6.7.3.1 Usability...195
6.7.3.2 Mid-parse Grammar Modification ..196

7 GRAPH EXPANSION PARSING ..197

7.1 OVERVIEW ..198
7.1.1 Similarities to Chart Parsing Methods...198

7.2 DEVELOPMENT ...199
7.2.1 Multipass Method..199
7.2.2 Single Pass Method ...201
7.2.3 Optimised Method...204

8 IMPLEMENTATION ...207

8.1 OVERVIEW ..208
8.2 MACRO DEFINITION TRANSLATION ..209

8.2.1 Basic Translation...209
8.2.2 Name Mangling...210

8.2.2.1 Terminals and Non-terminals ..210
8.2.2.2 Symbols ..212
8.2.2.3 Precedence...213
8.2.2.4 Associativity ...213
8.2.2.5 Delayed Macros...213
8.2.2.6 Mangling Grammar and Algorithm ...213

8.3 IMPORT MECHANISM ..215
8.4 TOKENISER ...216

8.4.1 String and Character Literals...216
8.4.2 Multi-character Symbols ...217

8.5 PARSER ...218
8.5.1 Sub-type Non-terminal Matching..218
8.5.2 Partial Match Tree ...218
8.5.3 Abstract Syntax Tree ...219
8.5.4 Error Handling...219

8.5.4.1 Syntax Errors ...219
8.5.4.2 Exception Errors..220

8.6 STANDARD USAGE..221
8.6.1 Command-line Arguments ..221

8.6.1.1 Classpath ...221
8.6.1.2 Default Imports ..221

TABLE OF CONTENTS

 • xvi •

8.6.1.3 Production of Java Source Code... 222
8.7 STANDARD LIBRARY EXTENSIONS ... 223

8.7.1 Quasi-quotation... 223
8.7.1.1 Hygiene ... 224
8.7.1.2 Unquoting.. 225

8.7.2 Macro Definition Shorthands.. 226
8.7.2.1 Automatic Construction Macros.. 226
8.7.2.2 Automatic Lists .. 226
8.7.2.3 Optional Macro Parameters.. 227
8.7.2.4 Statically Type-checked Parameters ... 229

9 ANALYSIS AND COMPARISON.. 231

9.1 OVERVIEW ... 232
9.2 IMPLEMENTATION OF TEST CASES ... 233

9.2.1 Assertions ... 233
9.2.1.1 Basic Implementation .. 233
9.2.1.2 Quasi-quote Implementation ... 234
9.2.1.3 Implementation Issues ... 234

9.2.2 Iteration... 234
9.2.2.1 Basic Implementation .. 234
9.2.2.2 Quasi-quote Implementation ... 235
9.2.2.3 Hygienic Implementation .. 236
9.2.2.4 Static-type Matching Implementation.. 236

9.2.3 Type-safe Formatted Output ... 236
9.2.3.1 Example Expansion ... 239

9.2.4 SQL Subset ... 239
9.2.5 Generators... 241

9.2.5.1 Translation of Formal Parameters.. 243
9.2.5.2 Translation of Local Variable Declarations ... 243
9.2.5.3 Generation of Resumable Code... 244
9.2.5.4 Example Expansions.. 244
9.2.5.5 Explicit Use of GeneratorBase .. 246
9.2.5.6 Implementation Issues ... 247

9.2.6 Haskell Subset... 248
9.2.6.1 Construction .. 248
9.2.6.2 Type Abstract Syntax Classes.. 249
9.2.6.3 Evaluation ... 251
9.2.6.4 Type Checking ... 253
9.2.6.5 Embedded Usage... 253
9.2.6.6 Standalone Usage.. 254
9.2.6.7 Extended Forms... 255

9.2.7 Implementation Review .. 257
9.3 QUALITATIVE ASSESSMENT ... 261

9.3.1 Power .. 261
9.3.1.1 Benchmark Test Cases... 262
9.3.1.2 Quasi-quotation Implementation... 262
9.3.1.3 Other Standard Library Macros.. 262

9.3.2 Usability.. 263
9.3.3 Error Handling .. 264
9.3.4 Extensibility Criteria Assessment ... 264

9.4 MAYA COMPARISON .. 269
9.4.1 Benchmark Test Cases Comparison ... 269

9.4.1.1 Lines of Code Comparison .. 271
9.4.2 MultiJava .. 272
9.4.3 Extensibility Criteria Comparison Summary .. 273

9.5 GRAPH EXPANSION PARSING.. 277
9.5.1 Acceptable Grammars... 277
9.5.2 Efficiency.. 277

9.5.2.1 Theoretical Performance... 277
9.5.2.2 Empirical Results .. 278

TABLE OF CONTENTS

 • xvii •

10 CONCLUSION AND FUTURE WORK ..283

10.1 CONCLUSION ..284
10.2 FUTURE WORK ...286

10.2.1 Flexible Lexical Analysis ..286
10.2.2 Delayed Macros...287
10.2.3 Zero Argument Macros ...287
10.2.4 Migration to Java1.5..288
10.2.5 Parser Efficiency ...288
10.2.6 Context-sensitive Graph Expansion Parsing ...289
10.2.7 Integration of Genesis Parsing and Java Compiling..289
10.2.8 Improved Error Tracking...289
10.2.9 Usability Surveys ..290
10.2.10 Library Support ..290
10.2.11 Improved Embedded Haskell ...290
10.2.12 Ultimate Aim..291

REFERENCES...293

A GENESIS ABSTRACT SYNTAX..305

A.1 ABSTRACT SYNTAX CLASSES ...306

B GENESIS AND MAYA SIMPLE TEST CASES ...313

B.1 ASSERTIONS ...314

B.2 ITERATION ..315
B.3 TYPE-SAFE FORMATTED OUTPUT ...316

TABLE OF CONTENTS

 • xviii •

List of Code Examples

Code Example 2.1: Java Threading ..21
Code Example 2.2: Ada Threading (modified from [Bar91§14.4, pp. 291])..22
Code Example 2.3: Java Embedded SQL ...23
Code Example 2.4: Pro*C Embedded SQL..24
Code Example 2.5: C++ Macro Misuse..26
Code Example 2.6: C++ Macro Parsing Difficulties ..26
Code Example 2.7: Powerful C++ Macro Construct ..27
Code Example 2.8: C++ Assertion Macro..27
Code Example 2.9: C++ Iteration Macro..28
Code Example 2.10: Icon Fibonacci Generator ..29
Code Example 2.11: Icon Fibonacci Sequence...29
Code Example 2.12: Improved Icon Fibonacci Sequence ..29
Code Example 2.13: C++ Generator Helper Classes ..30
Code Example 2.14: Basic C++ Generator Macros..31
Code Example 2.15: C++ Fibonacci Generator ..31
Code Example 2.16: C++ Fibonacci Generator After Macro Expansion ...32
Code Example 2.17: Extended C++ Generator Macros..33
Code Example 2.18: Improved C++ Fibonacci Generator ...33
Code Example 2.19: C++ Message Map Macro Usage ..34
Code Example 2.20: C++ Debugging Macro ...34
Code Example 2.21: C++ Debugging Macro Usage...35
Code Example 2.22: C++ Debugging Macro After Expansion ..35
Code Example 2.23: C++ Template Meta-programming ...36

Code Example 3.1: Assertions..61
Code Example 3.2: Java1.5 Assertions...62
Code Example 3.3: Maya Assertions..63
Code Example 3.4: Iteration ...63
Code Example 3.5: C++ STL Iteration ...64
Code Example 3.6: Java1.5 Iteration ..64
Code Example 3.7: Maya Iteration ...65
Code Example 3.8: Typesafe Formatted Output...65
Code Example 3.9: Java1.5 Typesafe Formatted Output..67
Code Example 3.10: Embedded SQL Subset..68
Code Example 3.11: Java Generators ...69
Code Example 3.12: Embedded Haskell Subset ...70
Code Example 3.13: map Function ..70
Code Example 3.14: map Function with Type Signature ...71
Code Example 3.15: map Function Without Pattern Matching..72
Code Example 3.16 map Function Using Lambda Functions ..72
Code Example 3.17: List Comprehension Decomposition ...73

Code Example 4.1: Simple Lisp Program Fragment ..79
Code Example 4.2: Lisp Quotation Expression for Code Example 4.1 ..79
Code Example 4.3: Lisp Simulated Infix Expressions..80
Code Example 4.4: defmacro ...80
Code Example 4.5: define-syntax..81
Code Example 4.6: define-syntax General Form ..81
Code Example 4.7: Quasi-quote and Unquote..82
Code Example 4.8: swap Function..82
Code Example 4.9: Improved swap Function ...83
Code Example 4.10: Hygienic swap Function ..83
Code Example 4.11: swap Function using syntax-case ...84
Code Example 4.12: swap Function with Error Handling...85
Code Example 4.13: Template Haskell printf Expansion ...90
Code Example 4.14: Template Haskell Assertions...91

TABLE OF CONTENTS

 • xix •

Code Example 4.15: Illegal Template Haskell Quasi-quotation .. 91
Code Example 4.16: Template Haskell printf Definition ... 92
Code Example 4.17: Template Haskell printf Usage.. 93
Code Example 4.18: Template Haskell N-tuple Selection ... 94
Code Example 4.19: Template N-tuple Selection Expansion .. 94
Code Example 4.20: MS2 Enumerations .. 97
Code Example 4.21: MS2 Dynamic Binding.. 99
Code Example 4.22: Printable Enumerations... 101
Code Example 4.23: JSE Iteration Definition .. 109
Code Example 4.24: JSE Improved Iteration Definition.. 109
Code Example 4.25: Open Java Visitor Methods Usage.. 113
Code Example 4.26: Open Java Visitor Methods Definition ... 114
Code Example 4.27: Maya Assertions ... 120
Code Example 4.28: Maya Iteration Usage and Expansion ... 121
Code Example 4.29: Partial Maya Iteration Definition.. 122

Code Example 5.1: Grammar to Macro Translation .. 133
Code Example 5.2: Raw and Quoted Terminals .. 134
Code Example 5.3: Precedence Syntax .. 134
Code Example 5.4: Associativity Syntax ... 136
Code Example 5.5: printf Macro Prototypes .. 147
Code Example 5.6: Nested Macro Use .. 148
Code Example 5.7: Ambiguous Java Declarations .. 150
Code Example 5.8: Macro Reflection Methods ... 158

Code Example 6.1: Simple Expression Predictive Parser .. 173
Code Example 6.2: Table-driven Simple Expression Parser.. 175
Code Example 6.3: Simple Expression Operator-precedence Parser ... 181
Code Example 6.4: Simple Expression LR Parser ... 184
Code Example 6.5: CYK Algorithm .. 190
Code Example 6.6: Earley’s Algorithm ... 192

Code Example 7.1: Multipass Graph Expansion Algorithm .. 199
Code Example 7.2: Single Pass Graph Expansion Algorithm.. 201
Code Example 7.3: Final Graph Expansion Algorithm.. 204

Code Example 8.1: Basic Macro Translation... 209
Code Example 8.2: Basic Name Mangling .. 210
Code Example 8.3: Java Reserved Word Mangling... 211
Code Example 8.4: Mangled Name Conflict Resolution ... 212
Code Example 8.5: Symbol Mangling ... 212
Code Example 8.6: Code Fragment Without Multi-character Symbols... 216
Code Example 8.7: Code Fragment Containing Multi-character Symbol s ... 217
Code Example 8.8: Genesis Quasi-quotation... 223
Code Example 8.9: Partial Basic Quasi-quotation Definition ... 224
Code Example 8.10: Unquoting Implementation ... 225
Code Example 8.11: Optional Macro Parameter Class .. 228
Code Example 8.12: Extended Macro Parameter List ... 228
Code Example 8.13: Implementation Outline of Macro Definitions With Optional Arguments 229
Code Example 8.14: Factorial Literal Specialisation ... 229

Code Example 9.1: Basic Assertion Implementation... 233
Code Example 9.2: Quasi-quote Assertion Implementation .. 234
Code Example 9.3: Basic Iteration Implementation... 235
Code Example 9.4: Quasi-quote Iteration Implementation .. 235
Code Example 9.5: Hygienic Iteration Implementation... 236
Code Example 9.6: Static-Type Matching Iteration Implementation... 236
Code Example 9.7: Partial Type-safe Formatted Output Implementation ... 238
Code Example 9.8: Type-safe Formatted Output Expansion ... 239
Code Example 9.9: Partial SQL Subset Implementation ... 240
Code Example 9.10: Generator Helper Class... 241
Code Example 9.11: Suspend Statement Implementation.. 241

TABLE OF CONTENTS

 • xx •

Code Example 9.12: Generator Method Implementation ...242
Code Example 9.13: Translation of Formal Parameters ...243
Code Example 9.14: Translation of Local Variable Declarations ..243
Code Example 9.15: Repeating Generator Expansion..244
Code Example 9.16: Fibonacci Generator Expansion ..246
Code Example 9.17: Sub-sequence Generator Expansion and Use ..247
Code Example 9.18: FunObject Interface...248
Code Example 9.19: Haskell Subset Cons Abstract Syntax Class..249
Code Example 9.20: Type Abstract Syntax Classes for the Haskell Subset ...250
Code Example 9.21: Evaluation of Function Application ..252
Code Example 9.22: Haskell Subset if Expression...253
Code Example 9.23: Embedded Haskell Wrapper Definition ..254
Code Example 9.24: Standalone Haskell Module ..254
Code Example 9.25: Standalone Haskell main Method..255
Code Example 9.26: Function Declarations Definition ..256
Code Example 9.27: Operator Currying Definition..256
Code Example 9.28: Simple Single Source List Comprehensions ...256
Code Example 9.29: Multiple Condition Single Source List Comprehensions ..257

Code Example 10.1: Extended Tokeniser Possibility ...286
Code Example 10.2: Macro Expansion Requiring Delayed Macros ..287

Code Example A.1: Compilation Unit Classes ...304
Code Example A.2: Type Classes...305
Code Example A.3: Statement Classes...305

Code Example A.4: Variable Declaration Classes..306
Code Example A.5: Method and Type Declaration Classes ...307
Code Example A.6: Expression Classes ...308
Code Example A.7: Identifier Classes ..309

Code Example A.8: Literal Classes ..309

Code Example B.1: Genesis Assertion Definition..314
Code Example B.2: Maya Assertion Definition ...314
Code Example B.3: Genesis Iterator Definition ...315

Code Example B.4: Maya Iterator Definition...315
Code Example B.5: Genesis Type-safe Formatted Output Definition..316
Code Example B.6: Maya Type-safe Formatted Output Definition ...316

TABLE OF CONTENTS

 • xxi •

List of Figures

Figure 3.1: SQL Subset Grammar.. 68
Figure 3.2: Haskell Subset Grammar ... 73
Figure 3.3: Haskell Embedding Grammar ... 74

Figure 4.1: Lisp S-expression for Code Example 4.1... 79
Figure 4.2: JSE Call and Statement Macro Grammars... 106

Figure 5.1: Expression Grammar ... 135
Figure 5.2: Method Definition Grammar ... 137
Figure 5.3: Genesis Grammar .. 139
Figure 5.4: Simple Tokenising ... 141
Figure 5.5: Multi-character Symbol Grouping Tokenising .. 141
Figure 5.6: Single-character Symbol Output Tokenising... 142
Figure 5.7: Multi-character Symbol Combinations Tokenising ... 143
Figure 5.8: Tokeniser Transition Diagram ... 145
Figure 5.9: Same Sub-rule Precedence... 151
Figure 5.10: Different Sub-rule Precedence... 152
Figure 5.11: Associativity .. 152
Figure 5.12: Partial Abstract Syntax Type Hierarchy .. 156
Figure 5.13: Exception Type Hierarchy ... 157

Figure 6.1: Generalised Grammar Rule ... 163
Figure 6.2: BNF Context-free Grammar .. 165
Figure 6.3: Ambiguous Simple Expression Grammar.. 166
Figure 6.4: Unambiguous Simple Expression Grammar.. 166
Figure 6.5: Non Left-recursive Simple Expression Grammar.. 167
Figure 6.6: High-level Compiler Model... 168
Figure 6.7: Derivations... 169
Figure 6.8: Non-ambiguous Unparsable Grammars... 170
Figure 6.9: Deterministic Finite Automaton .. 171
Figure 6.10: Table-driven Predictive Parser Model ... 174
Figure 6.11: Shift-reduce Parser Reductions.. 178
Figure 6.12: Shift-reduce Parser Model ... 179
Figure 6.13: Operator-precedence Parser Model.. 180
Figure 6.14: LR Parser Model.. 182
Figure 6.15: Expression Grammar in Chomsky Normal Form .. 191
Figure 6.16: CYK Expression Parsing Recognition Table... 191
Figure 6.17: Chart Parser Representation... 193

Figure 7.1: Multipass Graph Expansion... 200
Figure 7.2: Single Pass Graph Expansion .. 202
Figure 7.3: Simple Expression Partial Match Tree .. 205
Figure 7.4: Dangling-else Partial Match Tree .. 205

Figure 8.1: Genesis Compiler Structure ... 208
Figure 8.2: Precedence Mangling Examples .. 213
Figure 8.3: Mangled Name Grammar .. 214
Figure 8.4: Name Mangling Algorithm.. 214
Figure 8.5: Graph Produced From Tokenising Code Example 8.6 .. 216
Figure 8.6: Graph Produced From Tokenising Code Example 8.7 .. 217
Figure 8.7: Method Declaration Fragment ... 227

Figure 9.1: Differing Time Complexities of Earley’s Algorithm... 278

Figure A.1: High-level Abstract Syntax Class Hierarchy .. 306
Figure A.2: Declaration Abstract Syntax Class Hierarchy... 306
Figure A.3: Expression Abstract Syntax Class Hierarchy.. 308

TABLE OF CONTENTS

 • xxii •

List of Tables

Table 3.1: Criteria for rating an Extensible Language’s Power..56
Table 3.2: Criteria for rating an Extensible Language’s Usability ...57
Table 3.3: Criteria for rating an Extensible Language’s Error Handling..58

Table 3.4: Benchmark Test Cases Summary ..60

Table 4.1: Lisp Applicability to Benchmark Test Suite..85
Table 4.2: Lisp Extensibility Criteria Assessment..86
Table 4.3: Template Haskell Applicability to Benchmark Test Suite...95
Table 4.4: Template Haskell Extensibility Criteria Assessment...95
Table 4.5: MS2 Applicability to Benchmark Test Suite..102
Table 4.6: MS2 Extensibility Criteria Assessment..103
Table 4.7: JSE Applicability to Benchmark Test Suite...110
Table 4.8: JSE Extensibility Criteria Assessment...111
Table 4.9: OpenJava Applicability to Benchmark Test Suite ...115
Table 4.10: OpenJava Extensibility Criteria Assessment ...115
Table 4.11: Maya Applicability to Benchmark Test Suite..123
Table 4.12: Maya Extensibility Criteria Assessment..124

Table 6.1: Chomsky Hierarchy...163
Table 6.2: Simple Expression LL Parse Table..176
Table 6.3: Simple Expression Operator-precedence Table...182
Table 6.4: Simple Expression LR Parse Table ...185
Table 6.5: Simple Expression LALR Parse Table ..186

Table 7.1: Single Pass Graph Expansion Evaluation ..203
Table 7.2: Final Algorithm Graph Expansion Evaluation ..205

Table 9.1: Rules for Function Type Equality..250
Table 9.2: Genesis Applicability to Benchmark Test Suite ..257
Table 9.3: Genesis Extensibility Criteria Assessment ..264
Table 9.4: Genesis and Maya Benchmark Test Suite Comparison ...269
Table 9.5: Genesis and Maya Lines of Code Comparison..271
Table 9.6: Genesis and Maya Extensibility Criteria Comparison...273
Table 9.7: Earley Versus GEP Time Complexity ...279
Table 9.8: Earley Versus GEP Comparison..281

 1

1 Introduction

Introduction

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

reviewing

extensibility

reviewing

parsing

designing

the language

language

implementation

evaluation

conclusion

implementing

a parser

CHAPTER 1: INTRODUCTION OVERVIEW

 • 2 •

1.1 Overview

Extensible programming languages allow users to create fundamentally new syntax and

translate this syntax into language primitives. The concept of compile-time meta-

programming has been around for decades. It originally appeared in the Lisp [Ste90,

Dyb03] community and similar approaches have been attempted in other languages. For

example, extensions have been attempted for Haskell [PJ99] and C [KR78] (Template

Haskell [SPJ02] and MS2 [WC93] respectively). There is also a limited meta-

programming facility in C++ [Str91]. Typically, systems that provide such abilities

generally disallow the creation of new syntactic forms, or have heavy restrictions on

how, or where, this may be done. Such restrictions severely limit the forms that can be

expressed in such languages.

There have been many attempts of providing meta-programming facilities for Java (eg.

[BP01, TCKI00, Bak01]) which are reviewed (along with those of Lisp, C, and Haskell)

in Chapter 4.

Genesis is an extension to Java that supports compile-time meta-programming and

provides further support by allowing users to create their own arbitrary syntax. This is

achieved through macros that operate on a mix of both concrete and abstract syntax, and

produce abstract syntax. Genesis provides a minimal design whilst maintaining, and

extending, the expressive power of other similar macro systems.

The core Genesis language definition lacks many of the desirable features found in

other systems, such as quasi-quote, hygiene, and static expression-type dispatch. Unlike

other systems however, Genesis is expressive enough to define these as syntax

extensions (see section 8.6).

Like most such systems, Genesis’ user-defined macros produce only well-formed

syntactic structures via the use of a predefined set of classes (see subsection 5.6.1) that

define a Java abstract syntax. Programmers are free to extend and add to this set of

classes to create their own abstract syntax and to define macros that specify translations

in pure Java syntax.

At the heart of Genesis is a flexible parser (see Chapter 7) that is capable of parsing any

context-free grammars — even ambiguous ones. The parser is capable of arbitrary

speculation and will consider all possible parses. The parser constructs a graph of

CHAPTER 1: INTRODUCTION OVERVIEW

 • 3 •

possible paths, and is capable of dynamically pruning this graph, or combining nodes,

based on precedence or associativity rules. This general parser allows macro

programmers to forget about parsing, and concentrate on defining new syntax. This is

viewed as essential to providing a usable system that allows arbitrary syntax creation.

Indeed, one key goal of this system was to address the programmer’s learning curve by

providing as simple a system as possible (see section 5.2 for further rationale behind the

design). This was achieved by the use of the flexible parser, the introduction of only one

new construct to standard Java, and extensions to make programming macros more user

friendly.

The expressiveness of Genesis is wide ranging: it is capable of providing small scale

limited use macros, large scale semantic modifications, through to complete language

replacements. Great care was taken not to limit the scope of applicability of Genesis’

macros.

To demonstrate this expressiveness, we implement many of the simple test cases found

in other systems, such as a type-safe printf, assertions, and iteration statements (see

subsection 3.4.1 for descriptions of these test cases and section 9.2 for their

implementations). These test cases require an ability to perform static type-checking and

to manipulate compile-time values and abstract syntax trees. Whilst these test cases

require sophisticated facilities for implementation, they are still limited in scope.

As further examples of the expressive power of Genesis we also provide

implementations of embedded subsets of SQL and Haskell (see subsection 3.4.2 for

their description and section 9.2 for their implementations). To provide a direct

comparison with Maya (the most comparable of the Java extensions) the possibility of

MultiJava implementation is discussed in subsection 9.4.2. In addition to these, a

generator function (similar to that of Icon [GG90]) implementation is also provided (see

subsections 3.4.2.2 and 9.2.5). These extensions require much more sophisticated syntax

creation and manipulation facilities than simple statement macros.

As a final proof of power, the Haskell subset can operate as a stand-alone extension

independent of any recognisable Java code (see section 9.2.6.6).

1.1.1 Assessment of Success

The successfulness of this work will be assessed by three factors:

CHAPTER 1: INTRODUCTION OVERVIEW

 • 4 •

• Qualitative evaluation against a developed list of criteria for a “good” extensible

language (see section 3.3). Other extensible languages will also be rated by these

criteria also (see chapter 4).

• Implementation of the benchmark test cases from section 3.4. These test cases

are carefully chosen to illustrate the ability to add simple confined constructs, to

add outwardly simple but inwardly sophisticated constructs, and to make

wholesale changes to the syntax and semantics of the language.

• Direct comparison with implementations of examples from Maya, which, as we

shall see in section 4.8, is the most comparable of those languages from previous

research. Code length can be used as a real metric of comparison (brevity is one

of the criteria identified in section 3.3). Maya and Genesis are also compared

across the full range of these criteria.

1.1.2 Conventions

Throughout this work a number of conventions are used for the layout of code

examples, grammars, and internet addresses.

Code appearing within text is emphasised by the use of a fixed width font. Code

Examples are also in a fixed width font, and use the following conventions:

• Keywords (or equivalent) appear in boldface, eg. while.

• Indentation distance is two spaces.

• Gaps in code where effectively any form is appropriate is specified by ellipses,

i.e. “…”.

Context-free grammars appear in a fixed width font and use the following conventions:

• Terminals appear in boldface, eg. while, ++, etc.

• Productions have a non-terminal left-hand side, followed by ::=, and an

Extended BNF right-hand side.

• Square brackets surround optional elements.

• A plus symbol indicates one-or-more of the preceding symbol, eg.

identifier+.

• An asterisk indicates zero-or-more of the preceding symbol, eg.

identifier*.

CHAPTER 1: INTRODUCTION OVERVIEW

 • 5 •

• Parentheses group symbols and work in conjunction with other EBNF forms, eg.

for a list of comma separated identifiers: identifier (, identifier)+

In-text references are in abbreviated author/date form, eg. [Doe99].

Internet addresses appear as underlined URLs, eg. http://somewhere.com/somefile.html.

CHAPTER 1: INTRODUCTION SOURCES OF CODE EXAMPLES

 • 6 •

1.2 Sources of Code Examples

In this work, example code is drawn from a large variety of programming languages,

either for introduction of the concepts involved, or for direct comparison purposes. Most

of these languages are mainstream, while others, due to their research nature, are not.

In order to facilitate the accessibility of these later code examples, all of these languages

are briefly introduced. These introductions include (where available) references to their

formal definitions (or closest approximation), downloadable versions of these

definitions for quick reference, and language homepages.

1.2.1 Java

Java is the implementation language for this work, but “Java” has continued to be

redefined, and as a result two distinct flavours of Java are discussed. The version

numbers of Java are confusing at best, so it is necessary to define precisely which are

meant. In particular we are not concerned with versions of the Java Virtual Machine

(JVM), the Java SDK, or any other auxiliary package/facility. In this context the

important revisions are those that are made to the language definition and as a result to

the compiler.

1.2.1.1 Java1.4

Java1.4 (a.k.a. Java 2 Standard Edition 1.4) had only one minor addition to the

language: the introduction of a new statement for handling assertions.

This work describes an extension of Java1.4, and the implementation is in Java1.4.

Language specification: [GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad

Bracha: The Java Language Specification, 2nd Edition, The Java Series, Addison-

Wesley, Boston, Massachusetts, 2000. Available from:

ftp://ftp.javasoft.com/docs/specs/langspec-2.0.pdf

Homepage: http://java.sun.com/

CHAPTER 1: INTRODUCTION SOURCES OF CODE EXAMPLES

 • 7 •

1.2.1.2 Java1.5

Java1.5
1
 is the first revision to provide support for generics (also referred to as:

templates, parametric polymorphism, etc.) and has a host of other new features, eg. an

enhanced for loop, automatic boxing/unboxing, typesafe enumerations, variable length

argument lists, static imports, and embedded class metadata.

Language specification: [GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad

Bracha: The Java Language Specification, 3rd Edition, The Java Series, Addison-

Wesley, draft, 2005. Available from:

http://java.sun.com/docs/books/jls/java_language-3_0-mr-spec.zip

See also [Bra99] and [Bra02] for further information.

Homepage: http://java.sun.com/

1.2.2 MultiJava

MultiJava is a Java extension that adds open classes and symmetric multiple dispatch

(multimethods). Open classes allow the addition of methods to existing classes without

modifying the original class, and multimethods provide run-time polymorphic dispatch

on all of the arguments of a method, not just the first.

Language specification: [Cli01] Curtis Clifton: MultiJava: Design, implementation,

and evaluation of a Java-compatible language supporting modular open classes and

symmetric multiple dispatch, Master’s Thesis, Iowa State University, December 2001.

Available from:

http://www.cs.iastate.edu/~cclifton/papers/MastersThesis.pdf

Homepage: http://multijava.sourceforge.net/

1.2.3 Maya

Maya is a Java extension that allows for new syntax creation. It permits both abstract

and concrete syntax extension and has a novel approach of lazily interleaving type-

checking and parsing.

1 Java1.5 is the revised Java language definition included as part of the (increasingly confusingly named)

Java 5 platform.

CHAPTER 1: INTRODUCTION SOURCES OF CODE EXAMPLES

 • 8 •

Language specification: [Bak01] Jason Baker: Macros that Play: Migrating from Java

to Maya, Master’s Thesis, University of Utah, December 2001. Available from:

http://www.cs.utah.edu/~jbaker/maya/thesis.pdf

Homepage: http://www.cs.utah.edu/~jbaker/maya/

1.2.4 Java Syntax Extender

JSE is a Java extension that provides meta-programming support.

Language specification: [BP01] Jonathan Bachrach and Keith Playford: The Java

Syntactic Extender (JSE). In, Proceedings of the 16th ACM SIGPLAN Conference on

Object Oriented Programming Systems, Languages, and Applications, pp. 31–42,

Tampa Bay, Florida, 2001. Available from:

http://people.csail.mit.edu/people/jrb/jse/jse.pdf

Homepage: http://people.csail.mit.edu/people/jrb/jse/index.htm

1.2.5 OpenJava

OpenJava is a Java extension that provides for class-based meta-programming support.

Language specification: [Tat99] Michiaki Tatsubori: An Extension Mechanism for the

Java Language, Master’s Thesis, University of Tsukuba, February 1999. Available

from:

http://www.csg.is.titech.ac.jp/~mich/openjava/papers/mich_thesis99.pdf

Homepage: http://www.csg.is.titech.ac.jp/openjava/

1.2.6 Haskell

Haskell is a general purpose purely functional language. Part of the motivation for the

development of Pizza [OW97] came from a desire to provide some facilities found in

languages like Haskell.

Language specification: [PJ99] Simon Peyton Jones (editor): Haskell 98 language and

libraries: the Revised Report, Cambridge University Press, January 1999; revised

Decemeber 2002. Available from:

http://www.haskell.org/definition/haskell98-report.pdf

Homepage: http://www.haskell.org/

CHAPTER 1: INTRODUCTION SOURCES OF CODE EXAMPLES

 • 9 •

1.2.7 Template Haskell

Template Haskell is a meta-programming extension of the Haskell language.

Language specification: [SPJ02] Tim Sheard and Simon Peyton Jones: Template

Meta-programming for Haskell. In, Proceedings of the ACM SIGPLAN workshop on

Haskell 2002, Pittsburgh, Pennsylvania, May 2002. Available from:

http://research.microsoft.com/~simonpj/papers/meta-haskell/meta-haskell.ps

Homepage: http://www.haskell.org/th/

1.2.8 Lisp

Lisp (an acronym for list processing) [Mcc60] is one of the first computer programming

languages. It first appeared in 1959, which is within a few years of the time of early

Fortran [For77]. It was originally an interpreted functional language. It is one of the

earliest programming languages still widely used.

1.2.8.1 Common Lisp

The Lisp ANSI standardisation process was started in the early 1980s, and lead to

Common Lisp in the early 1990s.

Language specification: [Ste90] G.L. Steele Jr., Common Lisp: The Language, 2nd

edition, Bedford, Massachusetts, Digital Press, 1990. Available from:

http://www.supelec.fr/docs/cltl/cltl2.html

1.2.8.2 Scheme

Scheme is a statically scoped dialect of Lisp that was the first language to provide

hygienic macros.

Language specification: [Dyb03] R. Kent Dybvig: The Scheme Programming

Language, 3rd edition, MIT Press, 2003. Available from:

http://www.scheme.com/tspl/

Homepage: http://www.swiss.ai.mit.edu/projects/scheme/

CHAPTER 1: INTRODUCTION SOURCES OF CODE EXAMPLES

 • 10 •

1.2.9 C++

C++ is a multi-paradigm language that was built upon the C language [KR78]. Its major

additions to C include improved data abstraction, object-orientation, generic

programming, and exception handling.

Please note that while mentioned in the text, the code examples do not specifically use

the C language.

Language specification: [Str91] Bjarne Stroustrup: The C++ Programming Language,

2nd edition, Addison-Wesley, Reading, Massachusetts, 1991, reprinted with corrections

January 1994, ISBN 0-201-53992-6.

1.2.10 MS2

MS2 is a meta-programming extension of the C language.

Language specification: [WC93] Daniel Weise and Roger Crew: Programmable

Syntax Macros. In, Proceedings of the SIGPLAN ’93 Conference on Programming

Language Design and Implementation (PLDI ’93), pp. 156–165, Albuquerque, New

Mexico, June 1993.

1.2.11 SQL

SQL (Structured Query Language) is a database query language that has almost

universal adoption.

Language reference: [ANS92] American National Standards Institute: Database

Language SQL, ANSI standard X3.135-1992, 1992.

Homepage: http://sql.org

1.2.12 Pro*C

Pro*C is an Oracle precompiler that adds embedded SQL support to C/C++. All

embedded SQL statements are translated to normal C/C++ functions and the resultant

program is compiled by a regular compiler.

Language specification: [ML+97] Jack Melnick, Paul Lane, et al.: Programmer’s

Guide to the Pro*C/C++ Precompiler Release 8.0, Part No. A54661-01, Oracle

CHAPTER 1: INTRODUCTION SOURCES OF CODE EXAMPLES

 • 11 •

Corporation, June 1997. Available from:

http://www-rohan.sdsu.edu/doc/oracle/server803/A54661_01/toc.htm

1.2.13 Icon

Icon is a high-level language that treats all functions as limited co-routines with a

concept of success or failure (called Generators). Unlike traditional call-return

semantics, Icon Generators may return multiple (perhaps infinite) independent values.

Language reference: [GG90] Ralph E. Griswold and Madge T. Griswold: The Icon

Programming Language, 2nd edition, Prentice Hall, Englewood Cliffs, New Jersey,

1990. ISBN 0-13-447889-4.

Homepage: http://www.cs.arizona.edu/icon/

1.2.14 Ada

Ada was a result of a ten year design process by the United States Department of

Defense in an effort to reduce expenditure by providing a single common programming

base. Ada was first ratified as a standard in 1983 by ANSI, and later by ISO in 1987. It

was subject to revision in 1995.

Language specification: [Uni83] Reference Manual for the Ada Programming

Language, ANSI/MIL-STD-1815A-1983, United States Department of Defence,

February 1983.

Homepage: http://www.adahome.com/

CHAPTER 1: INTRODUCTION THESIS STRUCTURE

 • 12 •

1.3 Thesis Structure

The basic structure of this thesis is as follows:

• a review of previous work is conducted;

• a new language is proposed;

• along the path to implementation, a review of parser techniques is conducted;

• as a result of this review, a new general parser is proposed;

• using this parser, the language is implemented; and

• finally, the success of this new language is examined.

At the beginning of each chapter, a document map is provided with the current chapter

highlighted to remind the reader of their current position in this work. A reader well-

versed in parsing may choose to defer reading of the pre-implementation parser review

and new parser design (chapters 6 and 7) and continue straight to the implementation of

the Genesis language (chapter 8).

A chapter-by-chapter breakdown of the structure is as follows:

• In Chapter 2, a definition of the term extensible is given, uses of this term in the

field of programming languages are examined, and a comprehensive review

behind the reasons in providing an extensible system are provided.

• In Chapter 3, we provide criteria, and a suite of benchmark test cases in order to

rate the success of this work and other extensible languages.

• In Chapter 4, an in-depth review of the most applicable languages from Chapter

2 is conducted — few of these languages are truly extensible, as per the

definition in Chapter 2.

• In Chapter 5, the definition of the Genesis language developed in this work is

provided. This definition consists of the language grammar and semantics.

• In Chapter 6, a review of parser techniques is conducted, along with an

examination of their applicability to the language defined in Chapter 4.

• In Chapter 7, a new parsing technique, Graph Expansion Parsing, is introduced

and defined. This chapter explains the motivation for this technique, its

development, and the optimisations performed on the algorithm.

• In Chapter 8, the full implementation of a Genesis compiler is described, this

compiler has the parser from Chapter 6 at its core.

CHAPTER 1: INTRODUCTION THESIS STRUCTURE

 • 13 •

• In Chapter 9, a comparison of the efficiency of the parser to other techniques is

given, the implementation of the test examples outlined in Chapter 3 is provided,

Genesis is rated against the criteria specified in Chapter 3, and comparisons to

other similar work are provided.

• In Chapter 10, the conclusions of this work are drawn, and possibilities for

future research are outlined.

 15

2 Extensibility

Extensibility

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

reviewing

extensibility

reviewing

parsing

implementing

a parser

designing

the language

implementing

the language

evaluation

conclusion

CHAPTER 2: EXTENSIBILITY OVERVIEW

 • 16 •

2.1 Overview

Before it is possible to review previous related work, it is necessary to have an exact

understanding of what extensibility means in the field of programming languages. In the

beginning of this chapter (section 2.2), we define precisely what extensibility means in

the context of this work and look at the variety of areas in which the term extensibility

is used (section 2.3). Uses of the term extensible differ markedly from source to source.

To review those languages which are considered to satisfy our definition of

extensibility, we first discuss why extensibility is a desirable property for a

programming language. This is done in section 2.4.

CHAPTER 2: EXTENSIBILITY DEFINING EXTENSIBLE

 • 17 •

2.2 Defining Extensible

The term “extensible” is widely used in a variety of contexts. It is necessary to precisely

define its meaning in this work and to look at some examples of its (mis)use in the field

of programming languages.

2.2.1 Other Similar Terminology

Throughout this work the term extensible is used; however other works may refer to an

equivalent concept as meta-programming, or merely speak of compile-time evaluation.

As we shall see, both encompass the idea of extensibility partially in that they allow a

user to write programs that themselves write programs, but extensibility concerns itself

with more than just this meta-programming.

In essence, meta-programming differs from extensibility only in that programmers are

given the ability to give their meta-programs any syntax they choose.

2.2.2 Previous Extensibility Definitions

In his work arguing for the necessity of extensible languages, Gregory Wilson split the

definition of extensible:

“A syntactically extensible language allows programmers to define new forms

by specifying what the new syntax looks like, and how it maps back to the

language’s primitives.”

“A semantically extensible language allows programmers to define entirely new

kinds of operations, or to change the behavior of built-in ones.” [Wil04]

These two definitions seem appropriate within the context of this work, but the

following statement introduces doubt as to the exact meaning of these definitions:

“C macros and C++ operator overloading are probably the most familiar

examples of each kind of extensibility, although both are severely restricted.”

[Wil04]

It is unclear how C/C++ macros can be said to extend the syntax as they are so severely

restricted in their use as to appear as library calls, or as identifiers (if being used with no

arguments). Also, it would seem that they allow for semantic extensibility because it is

CHAPTER 2: EXTENSIBILITY DEFINING EXTENSIBLE

 • 18 •

possibly to modify the default behaviour of many language constructs (see section 2.3.3

for a more in-depth discussion, and particularly section 2.3.3.5, for an example).

Also, C++ operator overloading satisfies only the second part of the definition of

semantic extensibility, as it is possible to overload the built-in operators, but not

possible to create new ones. However, operator overloading can satisfy the first part of

the definition: Haskell [PJ99] provides such facilities.

In the description of the language Maya, extensibility is explained loosely by:

“Syntax extension can be used to embed a domain-specific language within an

existing language” [BH02§1, pp. 1]

This explanation alone implies that extensibility is only useful for projects that

fundamentally change the original language. While useful, language embeddings are

only one of desirable capabilities of extensible languages. In addition, extensibility can

be employed to add minor features perhaps very specifically targeted. Indeed, many of

the examples that follow in the Maya work are of far smaller macros.

In the description of the language Template Haskell, meta-programming, a key aspect of

extensibility, is defined as follows:

“The purpose of [meta-programming] is to allow programmers to compute some

parts of their program rather than write them, and to do so seamlessly and

conveniently.” [SPJ02§1, pp. 1]

This definition says that programs can be written that write programs, and also that

these programs should be simple to construct and should be written in the same

language as ordinary programs. Much of this definition concerns itself with matters of

language quality that should not be confused with any definition of the term extensible

— it should be clear that a language need not be convenient before it can be considered

extensible.

2.2.3 Definition of Extensible

The definition of extensible used for the purposes of this work, and strictly within the

domain of programming language design can be stated simply as:

The term extensible can be applied to a programming language that provides

constructs that allow for the creation of new syntax and semantics.

CHAPTER 2: EXTENSIBILITY DEFINING EXTENSIBLE

 • 19 •

It follows from this definition that:

An extensible programming language is one that allows for the creation of new

syntax and semantics.

Meta-programming facilities are considered a requirement of this definition. Although it

may be possible to define a programming language that was extensible but does not

allow for meta-programming we will not concern ourselves with such possibilities.

This seemingly simple definition has some heavyweight casualties — as we shall see in

section 4.2 even Scheme does not allow the programmer to create new syntax.

Other definitions of extensible tend to allude to particular abilities of any given

extensible language, but these can be viewed as merely a measure of the language’s

quality. Such properties include, but are not limited to:

• the embedding of another domain-specific language within itself;

• the creation of small syntax additions of limited scope;

• overriding the behaviour of built-in syntax; and

• creation of optimisations.

A comprehensive set of criteria for rating extensible languages appears in section 3.3.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 20 •

2.3 Language Extension Mechanisms

This section introduces systems that either claim extensibility via various means, or

attempt to provide an extension mechanism that would not fall under our definition of

extensible from section 2.2.3. These range from simple libraries, through to open

compilers, and even languages that are extensible but not via first-class language

constructs.

The systems examined here demonstrate what is possible with traditional systems, and

illustrates the various work-around approaches taken due to their lack of extensibility.

These systems are reviewed here in increasing order of relevance, with the final

subsection (2.3.5) merely introducing languages that are examined further in chapter 4.

2.3.1 Library Systems

We regard extensions provided through the use of the normal library mechanism, to not

fit the definition of extensible. While libraries are important, and features may be added

to the language via them, it is only in a very rigid and constricting form that must still fit

the syntax of the original language exactly. As a result many things that may be

desirable are still impossible. Other constructs, whilst possible, are not easy to

implement, or must be implemented in an undesirable form — an often seen example is

that SQL support is generally provided by forcing all queries to be written as strings

(see subsection 2.3.1.1).

It is possible to provide new facilities through traditional libraries, but never new syntax

or semantics. Library mechanisms can only use the primitives of the base language, be

they classes, procedures, functions, or some other form of definition. All such primitives

have a rigid syntax which is unalterable.

The major advantage of providing extra functionality through libraries is that the

facilities are (ideally) available to all programmers — Java’s threading support shows

how seamlessly this can be achieved2 (see section 2.3.1.1).

2 Although Java does rely on the use of synchronized in order to implement many features.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 21 •

The examples provided here are typical of the kind of facilities provided through library

systems, and in particular we look at how this support can rarely match the power and

flexibility of direct language support.

2.3.1.1 Threading

A typical example of where facilities are provided through libraries is with many

threading mechanisms.

C/Unix systems provide a host of different libraries to enable threading (eg. POSIX

threads [Mue93, DM05] and UI threads [Nor96]). C++ systems on most platforms have

similar approaches (e.g. Boost Threads [Gur04§9]).

Java’s threading mechanism (see Code Example 2.1), whilst not overly different to

those of other languages (especially those of C++), is provided through a class that is

part of Java’s Development Kit (JDK) [GJSB00§17.12], and is, as a result of being

standard, available to all Java programmers. This universality results in the belief that

threading is part of Java, even though it is only a feature of its standard libraries.

classclassclassclass AtTheSameTime extendsextendsextendsextends Thread {
 publicpublicpublicpublic voidvoidvoidvoid run() {
 // implementation goes here
 }
}

Code Example 2.1: Java Threading

Facilities such as inter-thread communication are left very much up to the programmer,

Java does provide a synchronized keyword so that the programmer is not required to

program mutual exclusion locks, but no other direct support is given.

Improved Approach

In stark contrast to Java are languages such as Ada [Uni83] which provide direct

support for threads through syntactic constructs, they provide functionality generally not

provided in library systems - either due to complexity of implementation or sheer

impossibility. Synchronisation of tasks is provided through a mechanism known as a

rendezvous. Multiple rendezvous attempts are handled through an extended version of

Ada’s select statement [Bar 91§14]. Ada allows programmers more power than the

equivalent library based constructs.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 22 •

tasktasktasktask PROTECTED_VARIABLE isisisis
 entryentryentryentry READ(x: outoutoutout ITEM);
 entryentryentryentry WRTIE(x: inininin ITEM);
endendendend;

tasktasktasktask bodybodybodybody PROTECTED_VARIABLE isisisis
 V: ITEM
beginbeginbeginbegin
 acceptacceptacceptaccept WRITE(X: inininin ITEM) dodododo V:= X; endendendend;
 looplooplooploop
 selectselectselectselect
 acceptacceptacceptaccept READ(X: outoutoutout ITEM) dodododo X:= V; endendendend;
 orororor
 acceptacceptacceptaccept WRITE(X: inininin ITEM) dodododo V:= X; endendendend;
 endendendend selectselectselectselect;
 endendendend looplooplooploop;
endendendend PROTECTED VARIABLE;

... // somewhere else

PROTECTED_VARIABLE.WRITE(someValue);
PROTECTED_VARIABLE.READ(someVariable);

... // somewhere else again

PROTECTED_VARIABLE.READ(someVariable2);
PROTECTED_VARIABLE.READ(someVariable3);

Code Example 2.2: Ada Threading (modified from [Bar91§14.4, pp. 291])

Java’s use of the synchronized keyword on variables can be expressed in Ada as

shown in Code Example 2.2. This example defines a task that has two entry points:

READ and WRITE. This task will automatically execute when the program starts. The

body of the task stores insists that the first allowed access to the variable is a write (read

attempts will just be queued until at least one write has completed), it then allows either

read or write access in any order, but ensures that only one access to the variable can

take place at any given time. This is a simple version that implements only a single

protected variable of a fixed type, and Ada is expressive enough to remedy both of these

flaws, but not quite expressive enough to provide access to the variable without function

calls.

Ada provides for much more powerful uses of these constructs, such as task types, and

timed and conditional rendezvous. Most of these features are impossible to provide in

such a convenient form in other languages that support threading via library

mechanisms.

2.3.1.2 SQL

SQL [ANS92] is the language of choice for communicating with databases. For this

reason, most mainstream languages have SQL libraries available (eg. Java’s JDBC/SQL

[EH01] and Visual Basic’s ODBC [Mic05b]). SQL support in such languages is

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 23 •

typically provided through allowing programmers to specify SQL queries in strings

which are then passed to a SQL library for evaluation.

There are two notable aspects of this: the language is providing no real direct support

for SQL (support for any language can be provided through parsing embedded strings),

and syntax-checking must be performed at run-time. A SQL interpreter is provided

within the library to check the validity of any given SQL query, and to execute once

validated. Whilst this approach is highly desirable in some circumstances that require

true run-time SQL creation, in those that don’t, it forces the programmer into an

effective double-compilation situation.

// give all dynamic qualities a value, but normally this kind of SQL would
// appear inside a function wrapper

String tableSource = "Movies";
String searchField = "Title";
String searchString = "Star";
String sortField = "Year";

Connection connection = null;
// perform some database connection code and hopefully succeed

try {
 Statement stmt = connection.createStatement();
 ResultSet resultSet = stmt.executeQuery(
 "SELECT * FROM " + tableSource +
 " WHERE " + searchField + " LIKE /"*" + searchString + "*/"" +
 " ORDER BY " + sortField);

 // now pull apart the ResultSet object and do something useful
} catch (SQLException e) {
 // do something useful with error information
}

Code Example 2.3: Java Embedded SQL

The example in Code Example 2.3 shows typical embedded SQL in Java. The obvious

inelegance of this approach compared to the three line SQL query it represents is

immediately apparent from this example. Notice that the table to search, the field to

search for, what the field is supposed to be “like”, and how the presentation order are all

dynamic qualities. However, what is particularly important to note here, is that this is

not truly dynamic SQL, as the structure of the SQL query never changes.

Improved Approach

Ideally, SQL queries would be syntax checked at compile time, and would actually be

expressed directly in the base language – and indeed that is the approach taken in many

languages. For such languages, such facilities are part of their sales pitch. In fact,

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 24 •

embedded SQL is common enough for the ISO SQL standard to specify how it should

be done [ANS89].

Code Example 2.4 demonstrates embedded ISO SQL in Pro*C. In this example, the

colon is necessary to distinguish a from a database identifier. Pro*C allows fixed

structure queries to be mixed with variables from the surrounding code but does not

allow tables or fields to be specified dynamically within such queries. A more complete

embedded SQL implementation would suffer from no such restrictions.

intintintint a;
intintintint taxFileNumber = 876543210;

EXECEXECEXECEXEC SQLSQLSQLSQL SELECTSELECTSELECTSELECT Salary IIIINTONTONTONTO :a
 FROMFROMFROMFROM Employee
 WHEREWHEREWHEREWHERE TFN=:taxFileNumber;

printf("The salary is %d\n", a);

Code Example 2.4: Pro*C Embedded SQL

2.3.1.3 Summary

As we have seen, language extensions via library definition will almost certainly lead to

imperfect extensions due to the necessity of compromises forced by the library

mechanism. Direct language modification always provides more power; the major

argument against adding direct language support is that of complexity.

2.3.2 Open Compilers

Any language that claims to be extensible by merely opening the source of the compiler

is another example of misuse of the term extensible as it has been defined in this work.

Any compiler for which the source is available can be extended, and hence so too the

language it compiles. This, however, does not provide extensibility in any truly useful

way – any new features force a new compiler to be provided to all that wish to use

them. If two modifications are made independently there is no way for these to be

reconciled.

When implementing new features in this way, great care must be taken in order to retain

the robustness of the compiler. Future revisions only serve to make this task more

arduous.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 25 •

The major advantage of this approach is that with full compiler source, any modification

is possible: the language can be altered in any way, from minor changes to entirely new

typing systems.

Although not developed with the aid of an open source compiler, the language Pizza

made such wholesale changes to Java’s type system, and in part to the development of

the Java 1.5 specification.

2.3.2.1 Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC) [GHC02] is an open-source compiler for which

many extensions have been made for research purposes. Examples of such extensions

include Concurrent Haskell [MPJT04], Parallel Haskell [TPL01] and Template Haskell.

Template Haskell was considered interesting enough that its implementation has been

added into GHC as an extension. Indeed, Template Haskell satisfies many of our

properties of an extensible language, and is described further in section 4.3.

2.3.2.2 Summary

Open compilers facilitate the modification of a language as it is easier for people to

realise extension ideas they may have. In section 2.4.2 we shall further examples of how

in the most successful cases, such modification has led to adoption within the evolving

original language.

2.3.3 Text Macros

This subsection gives us our first look at meta-programming facilities, albeit in a far-

from-perfect form. In order to demonstrate their usefulness, a large number of examples

are provided, the bulk of which are revisited in later sections, and actually serve as part

of the benchmark test suite (see section 3.4).

Text macros (or token macros), were the earliest form of macro system [WC93], their

development followed close behind that of assembly language.

“[Text] Macro systems support a limited form of syntax extension. In most

systems, a macro call consists of the macro name followed by zero or more

arguments.” [Bak01§1, pp. 1]

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 26 •

Macro systems, such as those found in C++ [Str00§7.8] provide direct manipulation of

the source text/tokens. This manipulation is via rigid macro syntax (which may be

somewhat different from the language’s normal syntax), and is unable to provide any

error checking.

The classic example of macro misuse is demonstrated in Code Example 2.5. Unlike a

function call, 10+10 is not evaluated before the macro is applied, so the result of

sqr(10+10) is actually 10+10*10+10 which, due to precedence, evaluates to 120.

In this case the macro can be rewritten with liberal use of parentheses to ensure correct

evaluation for simple arguments. However, nothing can be done to ensure intuitiveness

if the argument to sqr contains side-effects.

#definedefinedefinedefine sqr(x) x*x
...
sqr(10+10)

Code Example 2.5: C++ Macro Misuse

In more pathological cases, macros can appear to the programmer as normal library

extensions, but can break if certain arguments are supplied. The rather contrived

example in Code Example 2.6 will fail due to the fact that the template call

sum<3,5>() is not resolved when the macro is expanded, and as a result the stream of

tokens appears to contain two arguments rather than one. This problem can be resolved

by bracketing the expression on the calling side. For a user, this situation is intolerable

and may be many calls deep within macro code.

templatetemplatetemplatetemplate<intintintint a, intintintint b> sum() { return a + b; }
#define#define#define#define negate(x) -x

intintintint i = negate(sum<3,5>());

Code Example 2.6: C++ Macro Parsing Difficulties

Due to their unchecked nature however, macros can provide powerful constructs. In

Code Example 2.7, typically the function f would be implemented with exceptions, and

that is the preferred approach, but this macro does have its advantages: there is no run-

time penalty for its graceful exit, and it is able to take any type that defines an output

operator as its argument. This kind of code is often used for complicated operations

such as compiler state unwinding on detection of syntax errors.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 27 •

#definedefinedefinedefine FAIL(x) { cerr << "error: " << x << endl; \
 RELEASE_SYSTEM_RESOURCE(someLocalVariable); \
 returnreturnreturnreturn false; }

boolboolboolbool f() {
 someLocalVariable = OBTAIN_SYSTEM_RESOURCE();
 ...
 ifififif (somethingBadHappend) FAIL("oh no!");
 ...
 ifififif (somethingElse) {
 intintintint errorCode = ...;

 FAIL(errorCode);
 }
 ...

 returnreturnreturnreturn true;
}

Code Example 2.7: Powerful C++ Macro Construct

Text macros can provide much more complex and useful macros than these however,

and we provide many examples of macro use in this section. What the following

examples show is the power that these macros provide, even if it is in an imperfect

form. Many of these examples are simplified versions of what could be possible using

more advanced techniques such as templates, and template meta-programming (see

section 2.3.4.1), for examples of such improvements see the Boost Libraries [AG04].

2.3.3.1 Assertions

It is often useful to test a condition and flag an error if the check fails. C++ macros can

handle this with ease.

Almost all elements of the macro in Code Example 2.8 are heavily platform dependent,

but the intent should be clear. If the condition passed to the assert does not evaluate

to true, the macro will display the error and cause the program to break. Passed to the

error display function is the current file, the line number that failed the assertion, and

the text of the expression that caused it.

#definedefinedefinedefine ASSERT(x) { ifififif (!(x)) { \
 DISPLAY_ERROR(THIS_FILE, __LINE__, #x); \
 DEBUG_BREAK(); } }

Code Example 2.8: C++ Assertion Macro

C++ has other conditional compilation facilities that allow this macro to effectively

vanish from release code. Languages without such facilities often need to provide

explicit support for assertions, and it has been a recent addition to Java for this reason.

See section 3.4.1.1 for a fuller treatment on the rationale behind assertions.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 28 •

2.3.3.2 Iteration

An often performed programming task is that of iterating through a list of values. If we

wish to iterate through a C++ collection, using the standard iterator classes, the macro in

Code Example 2.9 can be used.

The variable _i is named in such a fashion as to reduce the chances of that name

appearing within either of the macro’s arguments or within its body; in general, this

problem is called name capture [SPJ02]. Macros that eliminate this problem are called

hygienic [SPJ02], see section 3.2.1 for more information.

#define define define define FOREACH(element, container) { \
 container::iterator _i = container.begin(); \
 whilewhilewhilewhile (_i != container.end()) { \
 container::value_type element = *_i;
#definedefinedefinedefine ENDFOREACH }}

...

vector<intintintint> v;

FOREACH(x, v)
 cout << x << endl;
ENDFOREACH

Code Example 2.9: C++ Iteration Macro

It would seem that nesting this macro would create problems due to the repeated use of

the variable _i but, surprisingly, it does not. Since we require a uniquely named

variable, element, as a parameter, the variable _i is used for a limited scope, and no

name clashes will occur.

2.3.3.3 Generators

Generators are procedures that can produce multiple return values, not as a list, but one

at a time, as new values are needed. The programming language Icon uses generators to

great effect.

“The greatest difference between Icon and other programming languages is this:

in Icon, expressions are generators. Expressions generate sequences of values.”

[Chr96§3.1, pp. 35]

The Icon language is considered interesting enough for there to be a full Java

implementation: Jcon [PT99].

The Icon code for defining a procedure that will generate all elements of the Fibonacci

sequence is shown in Code Example 2.10. In this example, suspend is similar to

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 29 •

return in other languages, but the state of the procedure fib is retained, and the

procedure can be restarted from the point of suspension.

In Code Example 2.10, every is analogous to the FOREACH macro from the previous

section; by design, this usage would not terminate; it will continue printing the

Fibonacci sequence indefinitely.

procprocprocprocedureedureedureedure fib()
 local x, y
 x = 0
 y = 1
 repeatrepeatrepeatrepeat {
 suspendsuspendsuspendsuspend y
 x = x + y
 suspendsuspendsuspendsuspend x
 y = x + y
 }
endendendend

...

everyeveryeveryevery x := fib() dodododo write(x)

Code Example 2.10: Icon Fibonacci Generator

Icon provides other facilities for limiting the number of times we retrieve a value from a

generator. For example if we wished to output all Fibonacci numbers below 100, we

could simple use the expression in Code Example 2.11.

everyeveryeveryevery x := fib() & x < 100 dodododo write(x)

Code Example 2.11: Icon Fibonacci Sequence

In Icon every procedure has a concept of success or failure, and it is actually possible to

write expressions such as that found in Code Example 2.12. In this example, when <

fails to produce any more values (i.e. the last Fibonacci number is greater than or equal

to 100), the whole expression terminates.

everyeveryeveryevery write(fib() < 100)

Code Example 2.12: Improved Icon Fibonacci Sequence

In the following subsections, we demonstrate a text-macro system that can reproduce

the use of Icon’s suspend construct. Although a little lengthy, this macro example is,

perhaps, the best example provided here that demonstrates C++ macros ability to almost

introduce new syntactic forms, but as previously stated ‘new’ syntax is still constrained

to either macro calls, or identifiers.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 30 •

Helper Class Definitions

Code Example 2.13 introduces a pair of classes: Iterator and Generator. The

Iterator class is more similar to a Java iterator than a C++ iterator. The

Generator class has slightly stronger conditions for use than a traditional iterator in

that it requires that hasNext and next are called alternatively for the duration of the

iteration. In fact hasNext is responsible for determining whether or not there exists

another value in the sequence by performing a calculation and buffering its result.

templatetemplatetemplatetemplate<classclassclassclass T>
classclassclassclass Iterator { publicpublicpublicpublic:
 virtualvirtualvirtualvirtual boolboolboolbool hasNext() = 0;
 virtualvirtualvirtualvirtual T next() = 0;
};

templatetemplatetemplatetemplate<classclassclassclass T>
cccclasslasslasslass Generator : publicpublicpublicpublic Iterator<T> {
privateprivateprivateprivate:
 T nextVal;
 intintintint reentry;

protectedprotectedprotectedprotected:
 Generator() : reentry(0) { }

 boolboolboolbool suspend(constconstconstconst T& x, int r) {
 nextVal = x;
 reentry = r;
 returnreturnreturnreturn truetruetruetrue;
 }

 intintintint position() { returnreturnreturnreturn reentry; }

publicpublicpublicpublic:
 typedeftypedeftypedeftypedef T valueType;

 virtualvirtualvirtualvirtual boolboolboolbool hasNext() = 0;
 virtualvirtualvirtualvirtual T next() { returnreturnreturnreturn nextVal; }
};

Code Example 2.13: C++ Generator Helper Classes

The internal workings of this class are hidden from end-users, but all overriding classes

need access to the suspend method in order to take advantage of the cached next

element.

Basic Macro Definitions

This macro example relies on an odd, generally unknown, and (thankfully) almost

unused property of the C++ switch statement: case labels are just a special example

of arbitrary labels, and as such can appear anywhere within code. As a result of this it is

possible to use a switch to jump into the middle of a heavily nested structure.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 31 •

Writing generator style code by overriding the Generator class directly would be

tedious at best, and would unduly expose the use of switch in such an unusual way —

a set of macro definitions shields users from this.

The macros in Code Example 2.14 define primitives that can be used to write macros in

a similar fashion to the Icon example in Code Example 2.10.

#definedefinedefinedefine GENERATOR switchswitchswitchswitch (position()) { casecasecasecase 0:
#definedefinedefinedefine SUSPEND(value) \
 returnreturnreturnreturn suspend(value, __LINE__); \
 casecasecasecase __LINE__: ;
#definedefinedefinedefine ENDGENERATOR } returnreturnreturnreturn falsefalsefalsefalse;

Code Example 2.14: Basic C++ Generator Macros

In Code Example 2.14, the GENERATOR and ENDGENERATOR macros provide a

hidden switch statement that allows for re-entry into the generator code at predefined

points. The SUSPEND macro controls the definition of these points, and is also

responsible for returning the current value from the generator. Notice the use of the

special pre-processor value __LINE__, this will always be equal to the current line

number of the source file. Without this special value each use of SUSPEND would be

forced to explicitly specify a unique identifier to enable the correct resumption of the

generator.

On the calling side, in order to provide a limited form of the Icon every statement we

simply use a macro very similar to FOREACH from section 2.3.3.2, but modified to

work on the newly introduced Iterator.

Fibonacci Example

classclassclassclass fibIterator : publicpublicpublicpublic Generator<intintintint> {
 intintintint x;
 intintintint y;

publicpublicpublicpublic:
 fibIterator() { }

 boolboolboolbool hasNext() {
 GENERATOR
 x = 0;
 y = 1;
 whilewhilewhilewhile (truetruetruetrue) {
 SUSPEND(y);
 x = x + y;
 SUSPEND(x);
 y = x + y;
 }
 ENDGENERATOR
 }
};

Code Example 2.15: C++ Fibonacci Generator

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 32 •

Code Example 2.15 demonstrates how to implement the Fibonacci example using these

primitives. In this simple implementation it is still necessary to write a great deal of

surrounding setup code. A more complicated set of macro definitions (see the following

subsection entitled “Extended Macro Definitions and Example”) would remove this

complexity also. What is most important here is that, despite the different syntax, what

appears within the GENERATOR / ENDGENERATOR macros is equivalent code to the

Icon definition from Code Example 2.10.

Code Example 2.16 demonstrates how the previous code of Code Example 2.16 would

appear if all of the macros were expanded to their full form. A couple of things are

worth noting here. Firstly, without the ‘versatile’ switch statement this macro would

not be possible, and secondly, while it would be possible to write code directly in this

fashion and get the benefits of using generators, the code produced is not particularly

elegant or maintainable.

classclassclassclass fibIterator : publicpublicpublicpublic Generator<intintintint> {
 intintintint x;
 intintintint y;

publicpublicpublicpublic:
 fibIterator() { }

 boolboolboolbool hasNext() {
 switchswitchswitchswitch (position()) {
 casecasecasecase 0:
 x = 0;
 y = 1;
 whilewhilewhilewhile (truetruetruetrue) {
 returnreturnreturnreturn suspendsuspendsuspendsuspend(y, 13);
 casecasecasecase 13:
 x = x + y;
 returnreturnreturnreturn suspendsuspendsuspendsuspend(x, 15);
 casecasecasecase 15:
 y = x + y;
 }
 }

 returnreturnreturnreturn falsefalsefalsefalse;
 }
};

Code Example 2.16: C++ Fibonacci Generator After Macro Expansion

Extended Macro Definitions and Example

In Code Example 2.17 the definitions for generator macros are expanded upon, to create

less burden on the generator programmer. They hide the definition of both the class

extending Generator and the call to hasNext. In Code Example 2.18 these new

definitions are used to write in a form even closer to that of the original Icon definition.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 33 •

Even these improved macros still have limitations: we are working only with generators

that have no arguments and further work is required to produce macros that support

arguments. In order to reduce programmer burden, it is likely that any such system

would require a different macro definition to be defined for each number of arguments.

#definedefinedefinedefine GENERATOR_DECLARATION(type, name) \
 Generator<type>* name() { returnreturnreturnreturn newnewnewnew name(); }
 classclassclassclass name : publicpublicpublicpublic Generator<type> { \
 publicpublicpublicpublic: \
 name() { } \
 privateprivateprivateprivate:

#definedefinedefinedefine GENERATOR \
 publicpublicpublicpublic: \
 boolboolboolbool hasNext() { \
 switchswitchswitchswitch (position()) { casecasecasecase 0:

#definedefinedefinedefine ENDGENERATOR } returnreturnreturnreturn falsefalsefalsefalse; } };

Code Example 2.17: Extended C++ Generator Macros

GENERATOR_DECLARATION(intintintint, fibIterator)
 intintintint x;
 intintintint y;

GENERATOR
 x = 0;
 y = 1;
 whilewhilewhilewhile (truetruetruetrue) {
 SUSPEND(y);
 x = x + y;
 SUSPEND(x);
 y = x + y;
 }
ENDGENERATOR

Code Example 2.18: Improved C++ Fibonacci Generator

2.3.3.4 Message Maps

Operating systems generally allow processes to communicate by passing messages. In

such an operating system, a large portion of programming involves handling these

messages. For example, every time an input event (such as a keystroke or mouse input)

occurs, a message is sent to the appropriate process, which then must handle this event.

This code is typically referred to as a message map, i.e. it maps messages to appropriate

handling routines. Writing message handling code is a repetitive process.

The Microsoft Visual C++ programming platform for Windows applications makes

extensive use of macros to eliminate repetitive tasks [Mic05a].

Code Example 2.19 declares a message handling routine that handles a window paint

message with a call to the standard window class member (OnPaint), calls a specified

member function on detection of a click on a button (identified by IDC_START), and

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 34 •

calls a specified member function (SaveAnimationFrame) on detection of any

thread finishing messages.

BEGIN_MESSAGE_MAP(CMandelDlg, CDialog)
 //{{AFX_MSG_MAP(CMandelDlg)
 ON_WM_PAINT()
 ON_BN_CLICKED(IDC_START, OnStartDrawing)
 ON_MESSAGE(WM_THREAD_FINISHED, SaveAnimationFrame)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

Code Example 2.19: C++ Message Map Macro Usage

This construct is defined in order to remove the repetition inherent in Windows message

handling routines. These multiple calls to macros actually define a function that simply

returns a datastructure which captures all of the event handlers that the user defines for

use in a generalised pre-defined function. All of this is hidden from the user, however,

and a message map could be implemented in a variety of other ways.

A message map has rather odd syntax (compared to standard C++ constructs), but is

very easy to use. Macros in this case remove repetitive constructs simply and

effectively.

2.3.3.5 DEBUG_NEW

In order to be able to better track down memory leaks, it is useful during debugging to

retain information on all memory allocations and where they take place within code. It

would be possible to manually replace normal memory allocation calls with a function

that recorded this information, but the C++ macro system provides an elegant solution.

In Code Example 2.20, despite the rather esoteric C++ syntax, the macro simply

replaces any instance of the new keyword with a macro DEBUG_NEW and this in turn

expands to a call to an overloaded new operator that takes two extra arguments: the

current filename and the current line number. The #ifndef/#endif pair checks that

the compiler is producing a debug executable, and ensures that this macro will only

operate in debug mode. When not in debug mode, run-time performance is not

hampered by the extra overhead the overloaded new operator would require.

#ifdefifdefifdefifdef _DEBUG
 #definedefinedefinedefine newnewnewnew DEBUG_NEW
 #definedefinedefinedefine DEBUG_NEW newnewnewnew(THIS_FILE, __LINE__)
 voidvoidvoidvoid* operatoroperatoroperatoroperator newnewnewnew(size_t size, charcharcharchar* filename, intintintint line);
#endifendifendifendif

Code Example 2.20: C++ Debugging Macro

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 35 •

For example, consider Code Example 2.21, when performing a debug build. After

macro expansion this code will expand to that of Code Example 2.22.

intintintint* a = newnewnewnew intintintint;
SomeClass* x = newnewnewnew SomeClass;
SomeClass* y = newnewnewnew SomeClass(42, "junk");

Code Example 2.21: C++ Debugging Macro Usage

intintintint* a = newnewnewnew("thisfile.cpp", 1) int;
SomeClass* x = newnewnewnew("thisfile.cpp", 2) SomeClass;
SomeClass* y = newnewnewnew("thisfile.cpp", 3) SomeClass(42, "junk");

Code Example 2.22: C++ Debugging Macro After Expansion

This macro will only operate when the compiler is run in debug mode. Debugging

facilities are improved by this macro, and run-time performance is not hampered as the

macro is not used when a release build is performed.

2.3.3.6 Summary

Text macros are a powerful tool in the right hands, but their use is constrained by the

rigid syntax they can provide. As we shall repeatedly see, much use has been made of

such imperfect systems, and this is strong evidence that any improvement to meta-

programming facilities is of great interest.

It should be stressed that the examples presented here are simplistic compared to some

of the techniques used by experienced C++ macro programmers. In particular, real-

world assert macros are defined in such a fashion as to be usable in places where

statements would cause a syntax error.

2.3.4 Two-tier Languages

A few languages have attempted to provide more sophisticated meta-programming

facilities than text macros by providing a secondary language that enables the user to

write extensions that are executed at compile-time.

Such systems may be able to provide extensibility as defined, but do so at the cost of

requiring the user to learn this secondary language. This has many disadvantages:

• often this secondary language is either harder to program in, or less expressive,

than the main language;

• programmers must clearly understand two languages instead of one, and must be

able to reconcile the differences between them; and

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 36 •

• in the majority of cases there is no apparent correspondence between the

extension code itself, and the code produced by executing the extension.

“Asymmetry between the static and dynamic language is bad… It might be

desirable to have near-perfect symmetry between the static and dynamic

languages, even to the extent of allowing side-effects at compile-time.” [Vel99]

Examples of such two-tier systems are Pliant [TS+] and C++. In the following

subsection we briefly examine the approach taken by C++.

2.3.4.1 C++ Template Meta-programming

One of the most startling accidents [Rob01] in programming language design is C++

template meta-programming. Programmers realised that they could utilise the type

system of C++ templates to perform calculations — a use never intended by the

language designers.

 “C++ has an elaborate meta-programming facility known as templates. The

basic idea is that static, or compile-time, computation takes place entirely in the

type system of C++.” [SPJ02§10.1, pp. 12]

This was first discovered by Unruh [Unr94] in 1994, when he produced a program that

would produce compilation errors that contained a prime number calculation.

As a simple example of this template meta-programming functionality, consider the set

of template definitions to calculate integer powers at compile-time in Code Example

2.23. Here, the second template definition is a partial specialisation, and it provides the

base case for a recursive calculation of a power (functional programmers may notice

that this is a common functional programming idiom with horrendous syntax). The C++

template type system is being tricked into performing calculations for us.

templatetemplatetemplatetemplate<intintintint X, intintintint Y> structstructstructstruct pow {
 staticstaticstaticstatic constconstconstconst intintintint result = X * pow<X, Y-1>::result;
};

templatetemplatetemplatetemplate<intintintint X> structstructstructstruct pow<X, 0> {
 staticstaticstaticstatic constconstconstconst intintintint result = 1;
};

constconstconstconst intintintint z = pow<5, 3>::result;

Code Example 2.23: C++ Template Meta-programming

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 37 •

This type system is considered to be a functional language in its own right — so C++

effectively has one imperative language for the majority of work, and an embedded

functional language (with an awful syntax) that can be used for meta-programming.

“The type system is rich enough that one can construct and manipulate arbitrary

data structures (lists, trees, etc) in the type system, and use the computations to

control what object-level code is generated.” [SPJ02§10.1, pp. 12]

This kind of code often bears little resemblance to the code it is going to produce, and

the mechanism at work here is generally little-understood by the end user. Nonetheless

there has been a recent flurry of activity in the C++ meta-programming community,

with many projects relying on this facility. The most extensive set of libraries

commonly using meta-programming is Boost [AG04]. The facilities it provides include:

mathematical calculation, string processing, function-objects, and memory management

facilities. One of the most extraordinary examples of template meta-programming is to

produce a Lisp subset which is interpreted by the type system [CE98].

“The fact that C++ templates are so widely used [for meta-programming] is very

strong evidence of the need for such a thing: the barriers to their use are

considerable.” [SPJ02§10.1, pp. 12]

If meta-programming in C++ is so baroque, and yet so often utilised, then it should be

clear that its power is considerable. Any system that provides the power of meta-

programming but with improved usability should be considered a great improvement

[Wil04].

Mathematical Calculation

Matrix operations (as well as other linear algebra calculations) are a classic example of

C++ template meta-programming. Specialised code that can be as efficient as hand

generated code can be produced for matrix operations, and this process is transparent to

the user. This enables users to forget about efficiency, and to program with matrices in

the usual way, e.g. A=B+C*D.

This has traditionally been the domain of Fortran, and specifically its BLAS library

[Bla01]. A concerted effort was made by many developers to try and match Fortran’s

efficiency for these kinds of operations [AG04, RJHC+96].

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 38 •

In explanation of the rationale for the creation of Boost [AG04], the following quote

appears:

“It would be nice if every kind of numeric software could be written in C++

without loss of efficiency, but unless something can be found that achieves this

without compromising the C++ type system it may be preferable to rely on

Fortran, assembler or architecture-specific extensions.” [Str94§6.5.2]

Libraries such as Blitz++ [Vel99, Vel01] and POOMA [RJHC+96] relied heavily on the

use of template meta-programming, and claim to match the performance of Fortran. In

these libraries, efficiency issues are the concern of the meta-programmer who is free to

apply specialisations depending on the size and shape of the matrices. Small statically

sized matrices can have their operations fully unrolled and can utilise lazy evaluation,

while the largest matrices can utilise other highly optimised techniques.

Of major concern to the optimisation of C++ code is the elimination of temporary

values and virtual function calls. To solve the problems of ‘temporaries’, the Boost

library defers calculation until enough information is known to produce a suitable

optimisation:

“[using] lazy evaluation as known from modern functional programming

languages. The principle of this approach is to evaluate a complex expression

element wise and to assign it directly to the target.” [WK00]

To remove virtual function calls, the Boost library found a solution:

“… called expression templates. Expression templates contain lazy evaluation

and replace dynamic polymorphism with static, i.e. compile time

polymorphism.” [WK00]

These systems show that C++ meta-programming is expressive enough to provide the

library designer with many powerful optimisation strategies and, as a result, abstraction

has been maintained without significant performance penalties. An extensible language

could provide these facilities and, when properly designed, would make their

implementation more natural.

CHAPTER 2: EXTENSIBILITY LANGUAGE EXTENSION MECHANISMS

 • 39 •

2.3.5 Integrated Language Features

As discussed in the previous section, it is generally considered undesirable to provide

meta-programming facilities in a form that greatly differs from the usual programming

idiom [Vel99, SPJ02]. Instead, meta-programming should be provided in the language

itself. Template Haskell is one language that uses this approach:

“… the static computation language is the same as the dynamic language, so no

new programming idiom is required.” [SPJ02§10.1, pp. 12]

Meta-programming in such a language has available to it the full power of the base

language, and as such can produce the most powerful constructs. Examples of languages

that provide integrated meta-programming facilities are Lisp/Scheme, Template

Haskell, Java Syntax Extender, OpenJava, and Maya. We discuss these languages, the

differences in expressive power, and their claims to extensibility in Chapter 4.

Before we can adequately cover these languages, we will first look at the need for

extensibility, and mechanisms for comparing extensible languages.

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 40 •

2.4 Is Extensibility Necessary?

In [Bar91], the evolution of programming languages is described as having undergone

three major advances in abstraction:

• expression abstraction (introduced, with constraints, in languages such as

Fortran [For77]);

• control abstraction (introduced in Algol60 [Nau60]); and

• data abstraction, which (due to the age of the book) is “still occurring”

(introduced with language such as Simula [BDMN73], Smalltalk [GD83] and

ML [Mil84]).

Expression abstraction allowed the programmer to ignore such issues as machine

registers. Control abstraction freed the programmer from such house-keeping issues as

labelling and gotos. Data abstraction allows the details of the actual physical

representation of data to be separated from the operations defined upon the data; from

the introduction of records, through to classes, and then parameterised classes.

Each stage saw a reduction in the number of tedious and error-prone tasks that would

normally be the responsibility of the programmer. Existing programming languages still

require many repetitive and error-prone tasks to be performed. The programmer often

has no choice as the language itself is not expressive enough for their needs. In many

situations, programmers resort to using different languages for each often-performed

task. Repetitive tasks lead to the creation of new languages to alleviate this repetition —

just as there were once an abundance of ‘new’ text processing languages (eg. SNOBOL

[FGP64], Perl [WCS96], etc.), recent trends have spawned a host of scripting languages

(eg. Python [RD04], Ruby [Mat98], etc.), and Web/HTML languages (e.g. PHP

[Ach+05], etc.).

It could be argued then, that the next stage in abstraction is that of syntax abstraction, so

that these repetitive tasks could be handled where they appear.

“The next big improvement in programmer productivity is going to come from

making programming languages more extensible.” [Her04]

There are reasons for continued development of programming languages other than

repetition. Looking at any reasonably extensive list of programming languages would

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 41 •

tell us that there are at least a few thousand world-wide, and it is likely that many never

make it into the public domain. The reason for the creation and characteristics of a new

language are varied. For example, a new language might:

• offer new previously unthought of constructs, or even entire evaluation

strategies;

• be built upon old languages, or merely based upon them;

• attempt to provide the best features of other languages (eg. multi-paradigm

languages such as C++);

• be tailored to a particular machine architecture (eg. as C originally was), or as

part of the infrastructure of another program (eg. QuakeC [Mon96] and

UnrealScript [Swe98]); and/or

• be created to test purely to see if an idea will work, or with a single specific

goal, i.e. ‘research languages’ (eg. the language BrainF*** [Wik95] was

designed to be Turing complete but with minimal compiler executable size).

But even all these reasons are just a tiny proportion of all reasons behind language

design. We will look at a few more of these motivations in some of the following

subsections. Many of these reasons can be supported by providing an extensible

language, if such a language were available much language development could actually

become libraries of such a language.

“In order to make that happen, we need to make compilers, debuggers, and other

tools extensible frameworks.” [Her04]

One strong argument in favour of extensible languages is the abundance of situations in

which they can be useful, and in the number of these where they could easily replace

traditional methodologies:

“From now on, a main goal in designing a language should be to plan for

growth.” [Ste99, pp. 6–7]

The creators of Template Haskell consider that their system could be used for:

• conditional compilation (i.e. replacing a pre-processor);

• program reification, i.e. program introspection (eg. automatic generation of

serialisation code);

• algorithmic program creation;

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 42 •

• abstractions impossible in the base language; and

• optimisations (such as algebraic laws and function in-lining).

In particular, allowing users to define optimisations takes the emphasis off the compiler

(and the compiler writer), and provides power to those that best understand the

possibility for optimisation for a given programming domain. Many optimisations are

just not cost-effective to include in a compiler:

“…many interesting optimizations have too narrow an audience to justify their

cost… An alternative is to allow programmers to define their own compile-time

optimizations.” [Rob01, pp. 1]

Extensible languages could also alleviate many of the reasons for language revision,

reduce the frequency/complexity of standardisation, and allow for a faster pace of

language development for end users.

Language revision often occurs to correct design deficiencies or in order to provide new

functionality in such a form that is impossible to provide through any other means.

Generally such new functionality is provided with syntax unmatchable by

library/module mechanisms.

Such language revision can lead to revision of associated standards, which can be a

slow process. Language revisions are often embraced by programmers before

standardisation is complete, but each compiler may provide a different set of non-

standard extensions. A system that allows language extension without compiler

modification could allow the adoption of new extensions by the programming

community without any compiler, language, or standard revision.

As we shall see, many of the arguments against extensibility are the same as those

arguments that were (and in some cases continue to be) levelled against other, now

common-place, language features. Also, extensibility can be viewed as the next step in a

natural trend of language development.

2.4.1 What is Necessary?

The most likely question to be asked is whether or not we need extensibility.

We could also ask ourselves whether or not we need generics / parametric

polymorphism and, strictly speaking, the answer is no, they are not necessary — you

can write essentially equivalent code without language support for generics, but in a far

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 43 •

less desirable form. Indeed, for a programmer that uses a language that features generics

as a matter of course, it is quite painful to switch to one that does not.

Being slightly facetious for a moment, we could also ask if we need classes, procedures,

conditional loops, etc. We could all still be programming in assembly, without a pre-

processor, or better still, machine-code was good enough for all our purposes.

“We write programs in high-level languages because they make our programs

shorter and more concise, easier to maintain, and easier to think about.”

[SPJ02§3, pp. 2]

If the standard facilities of current high-level languages have these benefits, then a well

constructed extensible language should only serve to increase them.

“Many low level details (such as data layout and memory allocation) are

abstracted over by the compiler, and the programmer no longer concerns himself

with these details.” [SPJ02§3, pp. 2–3]

This is but part of a continuing trend for increased abstraction from the conception of

computer programming.

2.4.2 Language Modifications

It should be clear from the previous section that programming languages have continued

to evolve over time, newer languages provide facilities that were not available in their

predecessors. Also when designing a language it is impractical to attempt to cater for

every use from the outset, it is simply impossible to anticipate every desire of every

future user. However, language designers do attempt to provide enough functionality

that everything should still be at least possible, even if not simple. A better solution is to

make the language extensible:

“There is a limit to the number of features any compiler writer can put into any

one compiler. The solution is to construct the compiler in a manner in which

ordinary users can teach it new tricks.” [SPJ02§3, pp. 3]

Language revision has always been part of the process of language design and is a

phenomenon more noticeable in mainstream languages, eg. Fortran [For77], C/C++,

Ada, Java, HTML [RLHJ99], Perl [WCS96], etc. For those languages that go

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 44 •

mainstream, what tends to happen is as time goes by and more unsupported common

programming styles emerge, the language is revised and re-released.

A prime example is Java: the Java programming language was designed with simplicity

in mind, but as it became clear that programmers were tiring of explicit casts in their

code (both writing them, and maintaining them), a concerted effort was made to provide

generics. From the original call for revision [Bra99] in May 1999, it took over five years

for the corresponding final release of Java1.5.

Previous Java revisions added the concept of assertions, and bundled with generics in

Java1.5 were the addition of automatic boxing/unboxing, type-safe enumerations,

variable length argument lists, a revised import mechanism, and class metadata [Bra02].

If Java had been created extensible from the outset, then these features could have been

provided as libraries.

2.4.2.1 Language Standards Revision / Development

Language revisions take time, but they are nothing compared to the slow process of

standardisation and re-standardisation.

Standards exist to try and constrain language development to a degree, so that (in

theory) compiler divergence does not occur. If left unchecked, so many people will

want to modify any given language, that a concerted effort must be made to provide a

common ground for the base user.

If the language itself allows for these modifications to occur, without the need for a new

compiler, then the need for a periodic creation of a revised language standard should all

but disappear.

“An extensible language is one which puts this power in everyone’s hands,

instead of reserving it for a standards committee.” [Wil04]

2.4.2.2 Research Languages

Research languages are typically small single purpose languages created for

experimentation or teaching purposes. Due to their nature they tend to have custom built

compilers and little or no tool support. Implementing these languages in an extensible

language gives the benefits of pre-existing tools, and hopefully would simplify the

process of creating them to begin with.

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 45 •

2.4.2.3 Embedded Languages

As previously covered in section 2.3.1.2, SQL is an example of a language that is

frequently embedded in other languages; in this section we describe this as preferable to

adding SQL support via strings and the normal library mechanism.

The problem with providing an embedded language is that support is only provided at

the language definition level. If we wish to embed HTML, XML, or something else

unforeseen then the language must be revised, and again this could require the

intervention of a standards committee.

An extensible language could provide embeddings of many other popular languages,

and would have the ability to provide new embeddings as the needs of users change.

Design Patterns

Design patterns have been the focus of much research in recent times (eg. [Haa02],

[BFYV96]), much of the hype about them is very similar to that of object-orientation

from a few years previously. However,

“Design patterns can be viewed as workarounds for specialized features missing

from general-purpose languages. For instance, the visitor pattern implements

multiple-dispatch in a single-dispatch language.” [Bak01§1, pp. 1]

Indeed, it should be obvious to anyone who has used design patterns extensively that

they end up writing very similar looking code, over and over. In order to remove this

repetition, some languages have started supporting some common design patterns

explicitly. A recent example is C# [HW01]: it provides explicit support for both the

state/observer pattern and delegation [Bak01].

It is clear that this approach has benefits for the programmer. However, this kind of

technique is reliant upon the programmer language designer recognising a common

need, and then addressing it.

“… unless we are willing to wait for a new language each time a design pattern

is identified, such an approach is unsatisfactory. Instead, a language should

admit programmer-defined syntax extensions.” [Bak01§1, pp. 1]

Allowing extensibility to take care of design patterns has added benefits: if a

programmer does not use a particular design pattern, they are not burdened with having

to understand it, and are unlikely to use it in an inappropriate manner. Often, the same

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 46 •

cannot be said for concepts that are directly supported by a language. Indeed, this is one

of the great criticisms levelled against C++ in particular (see section 2.4.4 for a

discussion of these kinds of issues).

2.4.2.4 Java1.5

Java1.5 was a result of work done on Pizza and Generic Java (GJ) that lead to a call for

revision [Bra99]. One of the touted design benefits of GJ was that it used erasure to

convert programs with parametric polymorphism, to traditional Java programs, and as

such no change was required to the Java Virtual Machine (JVM)3.

“GJ is backward and forward compatible… with [the] JVM. GJ compiles into

JVM code. No change to the JVM is required. The code is verifiable and can be

executed on any JDK compliant browser.” [BOSW98a, pp. 2]

Erasure

Implementations that use erasure systematically translate all language extensions into

the base language itself. Using erasure Java1.5 programs are (implicitly) converted into

Java1.4 programs which are then compiled as normal:

“GJ is translated by erasure: no information about type parameters is maintained

at run-time. This means GJ code is pretty much identical to Java code for the

same purpose, and equally efficient.” [BOSW98a, pp. 2]

The Java1.4 language was not extended in a way that gave the power of extensibility to

a programmer, but Java1.5 was implemented using a technique fundamental to all

extensible programming languages.

This property of erasure is what extensible languages do. Even simpler systems like

C++ macros are erased from the code during compilation. In fact, generally C++ can be

translated to equivalent C code, and this is how the language was originally, and often

still is, implemented. The language of choice for implementing new programming

languages is typically C, which is often referred to as portable assembly language. If C

provided an extensible framework, then these languages could actually be implemented

by erasure in C itself.

3 Although a minor addition to class file attributes occurred in order to provide more support to bridge

methods, this is likely to be for efficiency or merely documentation purposes.

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 47 •

2.4.3 How Much Power is Too Much Power?

One criticism of extensibility is that it is too powerful, programmers would misuse it,

and that too many extensions would start to make the language unusable.

This is essentially the same argument levelled against operator overloading. An often

cited example [Wik01] of misuse is in the overloading of the C++ arithmetic shift

operators (<<, >>) as output primitives — in fact these operators would be recognised

by most programmers for their use in output, not in arithmetic. This clearly shows that

the one symbol has been given vastly different meanings, even in the standard libraries.

This situation could be much worse if programmers can redefine any syntactic structure.

Operator overloading however, is used to produce concise powerful libraries in C++

[AG04, Gur04], Haskell uses operator overloading extensively with great results (eg. for

recursive-descent parsing [HM98]), and even the Java language uses overloading on the

+ operator for strings [GJSB00].

Many reasons can be given as to why string creation is treated specially in Java, but

primarily the reason is that programmers often wish to build up strings from multiple

sources of different types and concatenate them together — it is an optimisation of a

commonly occurring type of code. In reality this is not an uncommon situation, the

language designers just have more power at their disposal than the programmer.

Almost any language feature can be misused; many programming style-guides suggest

never using operator overloading, break statements, return statements anywhere but the

end of a function, etc. Most of those making such suggestions don’t argue for the

removal of these facilities altogether, for the simple reason that at times breaking these

rules produces the most understandable, or efficient code.

Simply not providing a feature is no solution to the problem of misuse, programmers

would shy away from languages or libraries misusing extensibility just as they would

from those misusing any feature. Extensibility can provide power in a form that no other

language constructs can, and that alone makes it an interesting and important addition to

a language.

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 48 •

2.4.4 Multi-paradigm languages

C++ and Ada are two well known multi-paradigm languages. Complaints have been

made against both as being too complex [Pla93, Joy96]. Indeed, it is often said that no

one person can fully understand all of C++ [Mil00]. Proponents of these systems argue

that you only need to know the parts of the language that you need, the other features

are there for you to discover if your needs change.

C++ can be used as, at minimum:

• a procedural language in the fashion of C;

• an object-oriented language;

• a meta-programming language;

• a data abstraction language;

• a generic programming language; and

• even a limited form of functional programming language.

It was consciously designed to support multiple paradigms.

“The idea that there is one right way to solve essentially every problem for

essentially every user is fundamentally wrong.” [Kal01]

Furthermore, C++ attempted to provide support for its new paradigms while paying

close attention to efficiency.

“… a general-purpose programming language must support multiple paradigms

and … each paradigm must be supported well and with close-to-optimal runtime

and space efficiencies.” [Kal01]

It is also well understood that C++ code can be translated into C code, this is part of the

reason that efficiency is so well supported. Again, this is the property of erasure. If one

were to create an extensible version of C, it should be possible to create all of the

features of C++ within the language.

Arguments continue as to whether or not multi-paradigm languages or small-is-beautiful

languages are the most effective way to get a job done [Joy96]. A small-is-beautiful

extensible language, however, should be able to nicely side-step this argument

completely. Attention can be paid to creating an elegant base language with powerful

extensible constructs, and all multi-paradigm support can be provided by the extensions.

Such a language would provide the best features of both languages.

CHAPTER 2: EXTENSIBILITY IS EXTENSIBILITY NECESSARY?

 • 49 •

2.4.5 Previous Interest

There has been a fair degree of recent interest in the concept of extensibility. Clearly,

other researchers are of the opinion that it is at least an interesting language concept.

“Language extensibility has been around for years, but is still largely an

academic curiosity. Three things stand in the way of its adoption: programmers’

ignorance, the absence of support in mainstream languages, and the cognitive

gap between what programmers write, and what they have to debug.” [Wil04]

Some aspects of this argument mirror those that were arguing for mainstream adoption

of parametric polymorphism in less recent times.

Part of the reason for programmers being ignorant of extensibility is not just its lack of

common availability, for those programmers that do bump up against extensible

languages, there can be great barriers to use. It can be argued that extensibility has to be

simplified before the common user will choose to use it.

It is worth reiterating that even without the full power of syntax creation, C++ templates

do provide meta-programming, and as a result their has been a lot of excitement about

the kind of things that it is possible to use them to do:

“The fact that C++ templates are so widely used [for meta-programming] is very

strong evidence of the need for such a thing: the barriers to their use are

considerable.” [SPJ02§10.1, pp. 12]

If meta-programming is becoming so popular, being able to provide syntax creation

should only add to its appeal.

 51

3 Assessment of Extensibility

Assessment of Extensibility

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

reviewing

extensibility

reviewing

parsing

implementing

a parser

designing

the language

implementing

the language

evaluation

conclusion

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY OVERVIEW

 • 52 •

3.1 Overview

In order to review multiple languages in an objective way, we must first develop a

suitable mechanism to achieve this goal.

In this chapter we first review some desirable properties of extensible languages. These

properties are summarised and formalised into a set of criteria for rating such extensible

languages (section 3.3).

In addition to this qualitative assessment, we introduce a suite of benchmark test cases

that cover the full range of these desirable properties of extensible languages (section

3.4).

In chapter 4, we rate other languages against both this set of criteria and their suitability

to this benchmark suite.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY DESIRABLE LANGUAGE PROPERTIES

 • 53 •

3.2 Desirable Language Properties

As previously quoted in the description of Template Haskell, the purpose of

extensibility was summarised as follows:

“The purpose of the [extensible programming language] is to allow

programmers to compute some parts of their program rather than write them, and

to do so seamlessly and conveniently.” [SPJ02§1, pp. 1]

There is a double emphasis here, both on the ability to perform compile-time meta-

programming, and also to do so easily. An extensible language should be convenient

enough to use so as to allow easy creation of small syntax additions of limited scope,

but expressive enough to cater for the embedding of another domain-specific language

within itself. It should support overloading of syntax in some form in order to allow

both the overriding of the behaviour of built-in syntax and the creation of optimisations.

“Grammar extension macros allow a programmer to make incremental changes

to a grammar in order to extend the syntax of the base language.” [BP01§8.4,

pp. 12]

A well designed extensible language should also be end-user friendly, great care should

be taken to provide constructs that ease the burden on the programmer. An extensible

language should not create barriers to use, to this end it should balance simplicity and

power — ideally the language would not sacrifice any power whilst maintaining an

intuitive programming style.

 “Making it easy for users to manipulate their own programs, and easy to

interlace their manipulations with the compiler’s manipulations, creates a

powerful new tool.” [SPJ02§3, pp. 3]

In particular, macro programmers should not be unduly exposed to the underlying

implementation of the language. Many previous systems have limitations to macro

definitions imposed by their parser that require end users to have a large degree of

background knowledge, and as a result:

“… it is difficult for programmers to understand and solve static grammar

ambiguities …” [BP01§8.4, pp. 12]

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY DESIRABLE LANGUAGE PROPERTIES

 • 54 •

Weise and Crew [WC93] insist that macros arguments be abstract syntax trees not

tokens, and specify three properties of extensible systems:

• syntactic abstraction: the ability to define new syntactic forms;

• non-interference: macro arguments should not suffer from the basic problems of

C/C++ text macros (see section 2.3.3); and

• syntactic safety: all macros expansions should result in syntactically valid

structures.

Most modern macro systems provide syntactic safety through use of a set of abstract

syntax structures. Non-interference has been improved with the introduction of hygienic

macro systems (see the following subsection). Most macro systems compromise on

syntactic abstraction – despite this being perhaps the most desirable property of

extensible languages.

An extensible system should allow macros to be bundled with libraries/classes in much

the same way as procedures/methods are. The import mechanism should allow easy use

of such macros with convenient syntax and should shield the programmer from conflicts

where possible.

3.2.1 Hygiene and Referential Transparency

Both hygiene and referential transparency are concerned with the preservation of

meaning of variables after macro expansion. The difference between them can be hard

to grasp, and has often led in other systems to both terms being combined into the single

term hygiene.

“The basic idea is that each named value reference in a macro expansion means

the same thing as it meant at the place in the original source code from which it

was copied into the macro expansion. This is true whether that place was in the

macro definition or in the macro call.” [Sha96a§10]

Hygiene ensures that no variable introduced by a macro expansion will collide with

variables from the surrounding context. Generally, hygienic macro systems ensure that

any variables declared within a macro expansion are given unique names.

“… the property that variable references copied from a macro call mean the

same thing in the expansion is called hygiene.” [Sha96a§10]

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY DESIRABLE LANGUAGE PROPERTIES

 • 55 •

Referential transparency ensures that variable references within a macro definition that

refer to the surrounding context still refer to the same variables if they are present in the

resulting expansion.

“… the property that variable references copied from a macro definition mean

the same thing in the expansion is called referential transparency.” [Sha96a]

In essence, hygiene and referential transparency concern themselves with removing

inadvertent variable capture; a frequent problem in early macro systems.

“A hygienic macro system guarantees that variables declared in a macro body

cannot capture references in a macro argument, while a referentially transparent

macro system guarantees that variables local to a macro’s call site cannot

capture references in the macro’s body.” [Bak01§2, pp. 6]

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY CRITERIA FOR RATING EXTENSIBLE LANGUAGES

 • 56 •

3.3 Criteria for Rating Extensible Languages

The following criteria summarise the desirable properties identified in the preceding

sections. There are three main criteria on which extensible languages can be rated:

power, usability, and error handling. These criteria can be further developed into sub-

criteria and this is undertaken in the next section.

3.3.1 Power

These criteria concern themselves with the kinds of extensions that can be supported by

a given system. Both the power of the meta-programming constructs and the ability to

provide syntax extensions are assessed. In fact, a language that fails to adequately

address criterion 1.1 does not even meet our definition of extensible.

A language that meets all of these criteria is providing the programmer with power close

to that of a compiler writer — all of the extension types described in section 2.4 are

possible.

Table 3.1: Criteria for rating an Extensible Language’s Power

Criterion Assessment

1.1 Syntax Creation The possibility of defining any new arbitrary syntactic

form the user wishes.

1.2 Syntax Interrogation The ability to look at the values of literals, the

subcomponents of expressions, etc.

1.3 Syntax Overloading The capacity to override the behaviour of built-in

syntax, or previously defined extensions in certain

circumstances.

1.4 Static Type Interrogation Interrogation of compile-time static types. This allows

static type checking by macros for robustness, and

allows the creation of specialisations for specific types

(specialisations generally require syntax overloading

also).

1.5 Expressiveness In order of increased power, an extensible language’s

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY CRITERIA FOR RATING EXTENSIBLE LANGUAGES

 • 57 •

expressiveness can allow:

• the creation of small syntax additions of limited

use;

• the embedding of another domain-specific

language within itself; and

• the original system could be completely

discarded, and a whole new language could be

built instead.

3.3.2 Usability

These criteria assess the convenience, safety, and complexity of extensions that can be

defined within a language. Extensions, where possible, should be simple to

conceptualise, simple to express, and not likely to produce unexpected errors.

Of particular importance in assessing simplicity is the breadth of knowledge that is

required of the programmer. It is desirable that programmers don’t need to know parser

theory and should be shielded from conflicts that may arise from automatic parser

generation.

Table 3.2: Criteria for rating an Extensible Language’s Usability

Criterion Assessment

2.1 Simplicity The facilities for extensibility should be as simple as

possible, in particular, the user should not have to

understand parser theory.

2.2 Brevity Where possible, macros should appear as similar to the

code they expand to. Of particular use here are quasi-

quote and unquote (see section 4.2.2)..

2.3 Robustness Robustness. The programmer should be shielded from

writing macros which can unexpectedly conflict with

the surrounding context. Of particular use here are

referential transparency and hygiene.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY CRITERIA FOR RATING EXTENSIBLE LANGUAGES

 • 58 •

3.3.3 Error Handling

These criteria concern themselves with the correctness of macro expansions, and the

system’s ability to report errors to the programmer. The language system should allow

the macro programmer the ability to explicitly detect errors but should be capable of

reporting any other errors in a useful fashion.

Table 3.3: Criteria for rating an Extensible Language’s Error Handling

Criterion Assessment

3.1 Syntactic Correctness The system should guarantee that all macros produce

syntactically correct forms.

3.2 Error Detection The system should allow macro programmers to detect

errors and report this back to the compiler.

3.3 Error Reporting When errors occur during expansion, the user should

be given an idea of what the error was in relation to

their own code. Of particular importance here are

errors that are caught by the compiler, and not the

macro itself. Users should not, where possible, have to

debug generated code.

3.3.4 Previous Research

Previous research (eg. the languages reviewed in chapter 4) has tended to focus most on

criterion 1.2, 2.2, and 2.3, i.e. the ability to look at compile-time program structure, and

create robust macros as easily as possible.

A few systems have addressed criterion 1.3, and 1.4 to some success, these systems are

concerned with adding power to more traditional systems.

Criterion 2.1 (simplicity) tends to be either not much of an issue for many systems as

they do not provide arbitrary syntax, or is larger ignored by those systems that provide

limited parsers.

With regard to criterion 1.5 (expressiveness), few systems can embed domain-specific

languages, and fewer still can effectively discard the base language.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY CRITERIA FOR RATING EXTENSIBLE LANGUAGES

 • 59 •

Some work has concentrated on error handling, but so far this has mostly been limited

to criterion 3.1 (syntactic correctness), with some systems addressing criteria 3.2 (error

detection).

Surprisingly, the area of least research is criterion 1.1 (syntax creation), most systems

that support compile-time meta-programming do so effectively, but often make no

attempt to provide arbitrary syntax creation. As we shall see in chapter 4, there are only

a few languages that address this issue.

3.3.5 The Library System

As discussed in section 3.2, a macro system requires a well designed import mechanism.

Whilst none of the criteria in this section directly assess the quality of this mechanism, a

poorly designed import mechanism would not meet some of the identified criteria. For

example, a library system that overly restricts sharing of macros between modules

would be assessed less favourably in terms of expressiveness, and one that provides too

few restrictions (such as the C++ macro system) would fail to meet the robustness

criteria.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 60 •

3.4 Benchmark Test Cases

In this section a suite of test cases is suggested as benchmarks for the evaluation of the

capabilities of any extensible languages. The cases range from simple statement macros

to whole-scale embedded languages and semantic changes. The ability to implement

these constructs can be viewed as a ‘proof-by-implementation’ for an extensible

language.

For the simple constructs, explanation of how these facilities are provided in C++, Java,

and Maya are provided. These three languages have been chosen for their syntactic and

semantic similarity, both with each other, and with the target language of this research,

but their techniques for supplying these constructs are fundamentally different: C++ can

generally support these constructs via text macros, revision of the Java language is

typically required, and Maya provides an extensible approach.

For the complex constructs examples of previous implementation attempts are provided,

where possible. Unfortunately, these constructs are not, or cannot be, implemented in

most languages, so this comparison cannot be as comprehensive as would be preferred.

The benchmark cases are summarised in Table 3.1 with further subsections providing

full details.

Table 3.4: Benchmark Test Cases Summary

Benchmark Summary Description

1 assert Run-time condition checks.

2 foreach Improved iteration on containers.

3 printf Type-safe formatted output.

4 SQL Embedding of the SQL SELECT statement.

5 Generators Integration of generator functions.

6 Haskell Embedding of functional programming declarations

and mixing of lazy and imperative evaluation.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 61 •

3.4.1 Simple constructs

These simple constructs are chosen to demonstrate some necessary features of any

extensible language.

Each of these simple constructs are new statements. Much power can be added to a

language that would only allow the creation of new statements (for a further set of such

constructs, and their use, see [Gra93]); as we will see in section 3.4.2 there are many

more possibilities for language extension.

3.4.1.1 Assertions

Assert statements are common in many languages in some form. An assertion checks

some condition and will cause the program to stop if this condition is not true.

The code fragment in Code Example 3.1 would stop the program if someVariable

was not a reference to a defined object.

assert (someVariable != null);

Code Example 3.1: Assertions

In the debugger-less situation, it is desirable that a failed assertion will produce some

sort of meaningful error message — ideally including the source file and line number

that caused the exception.

Assertions can be used as an informal design-by-contract facility [Sun02], allowing the

programmer to check pre-conditions, post-conditions, and class invariants. The reasons

for using assertions mirror those arguments for supplying program proofs, but in a more

pragmatic fashion.

Necessary Language Features

This construct merely requires us to be able to produce code that will cause an

exception to be raised at run-time. This is heavily dependent on the traditional language

providing such facilities — but this is the case for all macros, it is not possible to

provide facilities that are inherently impossible to provide in the base language.

C/C++ ASSERT

C/C++ provides this facility via pre-processor text macros [Str00§24.3.7.2], generally in

a form that evaporates when not debugging so that release code suffers no assertion

overhead. Review section 2.3.3.1 for further explanation.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 62 •

Java assert

Direct language support was provided for assertions in Java1.4 onwards [Sun02].

Interestingly, this is a situation where Java is almost expressive enough to handle

assertions via the normal library mechanism. It would appear that the choice to add

direct language support is for both uniformity and efficiency. Programmers typically

provided their own ad-hoc implementation of assertions, either via a library or with

direct embedding in code. Often the direct embedding approach was favoured because it

allowed for greater efficiency as no library based solution could be implemented

without run-time cost when assertions are “switched off”. As a result,

“[library-based implementations of] assertions have never become a part of the

culture among engineers using the Java programming language. Adding

assertion support to the platform stands a good chance of rectifying this

situation.” [Sun02]

It could easily be argued that a vital reason that library solutions would not be uniformly

accepted is if their efficiency performance was questionable.

“The library approach was considered. It was, however, deemed essential that

the runtime cost of assertions be negligible if they are disabled. In order to

achieve this with a library, the programmer is forced to hard-code each assertion

as an if statement.” [Sun02]

The Java language needed to be changed to implement assertions in an efficient manner,

this is in stark contrast to the ease of providing assertions via the C/C++ pre-processor.

Another, albeit minor, problem with this implementation is the introduction of assert

as a new keyword, which can break old code.

As shown in Code Example 3.2, the Java1.5 implementation of assertions provides a

convenient syntax that a library designer has no possibility of imitating.

assertassertassertassert x > y;
assertassertassertassert (x >= 0) && (x <= 100) : x // pass x back as helper info

Code Example 3.2: Java1.5 Assertions

Maya assert

As shown in Code Example 3.3, Maya’s assert statement mimics a function call in

syntax.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 63 •

assert(x > y);

Code Example 3.3: Maya Assertions

Maya provides an extra level of checking to either the C++ or Java assertion

mechanisms by ensuring that no assertion expression may contain side-effects [Bak01]

— although it is unclear at what level of detail these checks are made. It is unlikely that

side-effects can be discovered within functions that make up the expression. (It is more

probable that it is only a shallow side-effects check, masquerading as a deep check, and

this would likely cause more problems than it would detect.)

3.4.1.2 Iteration

A foreach statement provides similar functionality to many uses of a traditional for

statement, namely iterating over a list of values, but does so without making visible the

means of iteration. This is considered to be a worthwhile abstraction in its own right,

but mostly it simply frees the user from writing repetitive iteration code everywhere.

Typical Java iteration code and the foreach form suggested here for the example of

printing out a list of strings, is shown in Code Example 3.4.

forforforfor (Iterator i = list.iterator(); i.hasNext();) {
 String s = (String) i.next();
 System.out.println(s);
}

(a) Typical Java Iteration

foreachforeachforeachforeach (String s) inininin list { System.out.println(s); }

(b) foreach Iteration

Code Example 3.4: Iteration

The first argument specifies the types of objects expected to be found within the

container (the second argument), as well a name binding for each of these that can be

used freely within the following statement (the third argument), which may or may not

be a block.

This form is much more compact, more readable, and less error-prone than the hand-

written code. As an abstraction, it may be that different containers may produce

different expansions for efficiency reasons. For example, an expansion for the Java class

Vector could expose its internal array implementation.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 64 •

Necessary Language Features

The primary feature illustrated here is that of true syntax creation, this foreach does

not attempt to mimic a function call, or the traditional for statement, it provides an

almost directly readable statement form. What would be traditionally reserved words,

foreach and in, do not just appear at the beginning of the statement, but as the first

and third arguments.

Other features required to provide this construct are that a use of foreach requires a

variable declaration that is decoupled from the block which requires its use. A well

designed version of this construct also requires that we be able to check the type of the

container argument to ensure that it is indeed Iterable, this requires us to inspect the

properties of previously defined variables.

C++ for_each

The C++ Standard Template Library (STL) [SL94] contains the function for_each

[Str00, pp. 523] to provide similar support for its rather different concept of iterators —

this is demonstrated in Code Example 3.5.

for_each(list.begin(), list.end(), some_function);

Code Example 3.5: C++ STL Iteration

The major flaw in the C++ approach is that it does not operate on an arbitrary statement.

C++ is not expressive enough to allow this, but instead requires a function pointer —

this in-turn removes the need to specify an iteration variable. This requirement deters

programmers from using for_each for simple loops, as the extra effort involved in

writing a helper function outweighs the benefits gained by this abstraction.

A macro definition is possible (as seen in section 2.3.3.1) but would require the user to

explicitly provide the name of the hidden variable to guarantee that no name clashes

occur with external variables.

Java1.5 for

As illustrated in Code Example 3.6, Java1.5 provides a similar construct in an amended

form of the for statement [Bra02].

forforforfor(String s : list) { System.out.println(s); }

Code Example 3.6: Java1.5 Iteration

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 65 •

This form is functionally equivalent to the foreach form specified in Code Example

3.4, it specifies the type of a variable to be used within the body of the statement, and it

specifies the list to iterate over. Java1.5 also provides an overloading that allows the use

of arrays in place of general collections.

Maya foreach

Maya provides a similar construct [Bak01, BH02], but chooses to mimic method call

syntax as shown in Code Example 3.7.

list.foreach(String s) { System.our.println(s); }

Code Example 3.7: Maya Iteration

One of Maya’s foreach forms is functionally equivalent to the form proposed here as

it operates on an iterable object, a formal parameter, and a code block. Further to the

treatment of arrays in the Java1.5 implementation, Maya provides a specialised version

for arrays, vectors, and iterators.

Maya uses overloading to address fundamentally different goals: the array overloading

provides support for a different type, the iterator overloading provides support for

iterators that may not come from a class derived from Collection, and the vector

overloading provides an optimised version for a type that would otherwise by handled

by the most generalised version.

3.4.1.3 Typesafe Formatted Output

Many languages provide a function that yields formatted output. The first argument to

this function is a string (in typical use, a literal string) that specifies what normal text to

output, and, using special placeholders, where to output variable data. These variables

are specified as an arbitrary number of arguments following the string.

printf("It took %f seconds to perform %d runs.", millis, runs);

Code Example 3.8: Typesafe Formatted Output

In Code Example 3.8, upon execution printf will convert the variable millis to a

real number, and the variable runs to an integer at the specified positions within the

format string.

Typical implementations of these formatted output functions allow placeholders for

floating-point numbers, integers, characters, and strings, and provides special formatting

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 66 •

operations on these basic types. For example it is possible to force floating-point output

to a specified number of decimal places.

A well-defined version performs checks to see if the correct number of arguments are

supplied for the number of placeholders given and that the type of each of these

arguments matches the corresponding placeholder. In the best implementations these

checks are performed at compile-time. This is an example used in many other systems

to demonstrate their power, see [SPJ02, Bak01].

Necessary Language Features

This construct requires us to be able to take a compile-time literal string and inspect it,

and to be able to verify that the types specified within match the types of an arbitrary

number of specified actual parameters. Also, we must be able to create new string

literals and fully create a new series of instructions to output the created string.

C/C++ printf

C/C++ provides a standard library feature printf [Pla92§12], that matches the syntax

from the previous section. However, the C/C++ version has many flaws. For example,

no checking is performed on the types or the arguments supplied, or even whether the

correct number is supplied — the latter is particularly poor as too few arguments to

printf can cause program crashes. Indeed, it is not possible within C/C++ itself to

provide printf as defined here with these problems remedied4. C/C++ is simply not

powerful enough to inspect the structure of a literal string at compile-time.

As a result, some compilers provide direct support for the printf function and inspect

the string literal and the number and types of the arguments (e.g. [Sta+04]). This again

illustrates the tendency for compiler-writers to explicitly provide support for language

deficiencies.

Java1.5 printf

In the Java1.5 specification, direct support has been added for arbitrary numbers of

parameters (in the form of “Varargs”, [Bra02]); due to this, a function very similar to

4 It may be possible to define a series of macros that produce a printf-like result, or use run time type

information (RTTI) to check the types of the arguments, but the fundamental structure of the function

would have to be altered.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 67 •

the C++ printf is now provided, with an even more extensive selection of

placeholders.

Unlike the C++ printf, the Java version illustrated in Code Example 3.9 will catch all

errors in argument number and type, but will only do so at run-time. This is clearly

undesirable for every call of printf that uses a literal string. For such calls, it is

possible at compile-time to check every aspect of the call, and give a guarantee of

correctness.

System.out.printf("%f %c %s", 45.3, 'q', new SomeObject());

Code Example 3.9: Java1.5 Typesafe Formatted Output

It is worth noting that Java1.4 does not provide facilities for passing an arbitrary number

of arguments to a function. Arbitrary length argument lists were added to Java1.5

specifically to provide adequate support for functions such as printf.

Maya printf

The Maya implementation of printf [Bak01§5.1.4] provides a subset of the

functionality of the Java1.5 version, but it forces the format string to be literal, and

performs all checks at compile-time.

3.4.2 Complex Constructs

The constructs provided here are more sophisticated extensions than the simple

statements from section 3.4.1, they provide facilities that range from expression

extensions, to embedded languages and new flows of control.

3.4.2.1 SQL Subset

As demonstrated in section 2.3.1.2, SQL is often added to a language via the normal

library system by using embedded SQL strings. A better solution is to provide this

functionality via syntax extensions, such as those described in section 2.4.2.3.

Whereas previously discussed syntax extensions required modification of a base

language, or creation of a new language (e.g. Pro*C), an extensible language can

provide these through its internal syntax extension mechanism.

Rather than provide SQL in the exact same fashion as specified in its standard [ANS89],

it is possible to provide some of the SQL statements as an extension to the normal

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 68 •

expression mechanism, so that it is possible to write examples such as Code Example

3.10.

Vector v = SELECTSELECTSELECTSELECT name
 FROMFROMFROMFROM Employee
 WHEREWHEREWHEREWHERE Salary < 30000;

System.out.println("Salary is: " + SELECTSELECTSELECTSELECT salary FROMFROMFROMFROM Employee
 WHEREWHEREWHEREWHERE TFN = :x);

Code Example 3.10: Embedded SQL Subset

This limited version of the SQL SELECT statement is a very small subset of SQL. It has

been chosen to demonstrate the feasibility of embedding SQL in such a fashion – not to

provide a usable SQL implementation.

SQL Subset Grammar

The SQL subset grammar is shown in Figure 3.1.

subset ::= SELECTSELECTSELECTSELECT names FROMFROMFROMFROM tables [WHEREWHEREWHEREWHERE condition]

names ::= name | names ,,,, name | ****
tables ::= table | tables ,,,, table

name ::= identifier | name identifier
table ::= identifier
condition ::= condition ANDANDANDAND condition | condition OROROROR condition
 | expr | ((((condition))))
expr ::= simple <<<< simple | simple >>>> simple | simple ==== simple
simple ::= name | :::: java_expression

Figure 3.1: SQL Subset Grammar

Within the java_expression part it is possible to place any arbitrary Java

expression (even another SELECT statement) but this expression cannot use terms local

to the current SQL statement, only the surrounding context.

Necessary Language Features

This extension requires only an addition to the expression grammar. It requires the

ability to specify grammars for lists, it also requires the overloading of part of Java

expression grammar to create its own limited expression concept.

Also it requires the use of * and : in different contexts than how they are used in Java.

3.4.2.2 Generators

Generators, as discussed in section 2.3.3.3, are an interesting extension as they require a

different evaluation strategy.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 69 •

Generators can be provided as an extension, in a much more limited form than in Icon,

by tagging each generator with a new modifier generator, with just the addition of

the suspend statement, and the extension of the foreach construct to iterate through

the generated values.

For example, this extension applied to Java, would allow code similar to that of Code

Example 3.11.

generator intintintint fib() {
 intintintint x = 0;
 intintintint y = 1;
 while while while while (truetruetruetrue) {
 suspendsuspendsuspendsuspend y;
 x = x + y;
 suspendsuspendsuspendsuspend x;
 y = x + y;
 }
}

...

forallforallforallforall x inininin fib() { System.out.println(x); }

Code Example 3.11: Java Generators

Necessary Language Features

In languages without a switch statement similar to that of C++, translating a generator’s

body into restartable code is far from trivial, and requires sophisticated code

manipulation techniques. This translation must take place on the entire function,

translation of the suspend statements cannot take place until their context is known.

The forall statement must be specialised to work with whatever the translated

representation of the generator is.

3.4.2.3 Haskell Subset

There are many approaches to providing imperative forms within a pure functional

language. A somewhat unexplored technique is to provide an embedded functional

language within a mainstream imperative language. This approach has merits (eg. C++

is used in different ways to support multiple paradigms) — done well it allows for the

best of two worlds, both languages can be used for their strengths.

Of primary interest would be the ability to switch between imperative evaluation and

lazy evaluation at the user’s behest. Whilst much progress has been made in precisely

this area by the functional programming community, current solutions still provide

significant initial barriers to use [PJ02].

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 70 •

The general idea is to allow for functional declarations within Java code, and to provide

a limited form of calling Haskell functions within Java expressions as demonstrated in

Code Example 3.12.

fun {
 // insert haskell subset declarations here
}

...

Vector v = fun(take 5 fib)

Code Example 3.12: Embedded Haskell Subset

In the following subsections we describe a limited Haskell subset that nonetheless is

quite expressive. This subset is designed around simplicity over functionality. Features

that would potentially add a large implementation cost are avoided wherever possible.

The aim is to demonstrate the feasibility of such an embedding, not to provide a full

implementation of Haskell.

Type System

For simplicity, the subset handles only three types, int, * -> *, and [*] where *

can be any type. Whilst this is significantly restricted from full Haskell, it is more

expressive than it appears at first glance. The many occurrences of * mean that we can

build up quite a complicated set of types. For example, using this type system, with an

otherwise full Haskell implementation we could still define the function map in the

standard way as shown in Code Example 3.13.

map f [] = []
map f (x:xs) = f x : map f xs

Code Example 3.13: map Function

This definition in fact, is no different to a definition found in standard Haskell, despite

the fact that it is technically defined over a much simpler range of types.

This is perhaps cheating a little, as we shall see in the following subsections, since the

basic primitives of this subset do not provide for declarations with functions or for

pattern matching, this is quite simple syntactic sugar than can be added later, it is simply

unnecessary in this reduced definition.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 71 •

Type Inference

Type inference, while a nice feature of Haskell, and by no means unimplementable

within language extensions, is not part of the subset for simplicity. Their remains no

barrier for it to be added at a later date.

All declarations are required to explicitly specify their type. As a result the previous

definition of map must become as shown in Code Example 3.14.

map :: ((A -> B) -> [A]) -> [B]
map f [] = []
map f (x:xs) = f x : map f xs

Code Example 3.14: map Function with Type Signature

The type signature is still checked against the type of all arguments, so strong-typing is

not lost.

Simple Operations

The subset contains parameter-less declarations, lambda functions, if-then-else

expressions, and let expressions.

Arithmetic Operators

Operations provided on our single basic type are merely the four basic arithmetic

operations: +, -, *, and /. With the division operations discarding its remainder.

List Operations

The subset provides only : and [] for list creation, everything else is syntactic sugar

and can be added later. Also provided are the list inspector functions head and tail,

which respectively provide the first element of a list and the remainder.

Pattern Matching

Pattern matching is not in the subset, but again is merely syntactic sugar, albeit an

incredibly concise one. For example, the map example can be rewritten (in an automatic

way similar to that in [PJ99]) as in Code Example 3.15.

Notice that it is clear that this code could be simplified (and the final error case

removed), but this would actually be considered an optimisation step, and not part of the

automatic conversion from a pattern-matching form.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 72 •

map :: ((A -> B) -> [A]) -> [B]
map f xs' =
 ifififif (xs' == []) thenthenthenthen
 []
 else else else else
 ifififif (xs' != []) thenthenthenthen letletletlet x = head xs' inininin letletletlet xs = tail xs' inininin
 f x : map f xs
 elseelseelseelse
 error -- no case satisfies

Code Example 3.15: map Function Without Pattern Matching

Declarations

In this subset, declarations take the form of an identifier being held equivalent to a

value, the value of course can be arbitrarily complex. This does however disallow

parameters, so our somewhat worn map example now becomes as in Code Example

3.16.

map :: ((A -> B) -> [A]) -> [B]
map = \f -> xs' ->
 ifififif (xs' == []) thenthenthenthen
 []
 else else else else
 ifififif (xs' != []) thenthenthenthen letletletlet x = head xs' inininin letletletlet xs = tail xs' inininin
 f x : map f xs
 elseelseelseelse
 error -- no case satisfies

Code Example 3.16 map Function Using Lambda Functions

All functions must be defined before they can be used, this is restriction added only for

simplicity, it does not indicate a failure of power in the macro language.

Standard Functions

No standard functions are part of the subset definition, it is part of the proof-by-

implementation to define functions such as map, take, foldr, etc. in these specified

primitives.

Other “Missing” Features

Perhaps the most seemingly restrictive of the missing features is the lack of a Boolean

type. Use of the conditional if expression functions as normal, but use of Boolean

expressions is restricted to this situation alone. However all typical Boolean usages can

be simulated using integers if required; although this clearly is not a desirable

permanent solution it is appropriate for this proof-of-concept implementation.

The following are relatively straightforward additions via expansion to the provided

standard constructs:

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 73 •

• list constructions;

• tuples; and

• list comprehensions.

A little more extravagant are:

• type classes; and

• monads, and do notation.

See [PJ87] for an explanation of how to express the majority of Haskell in more

primitive Haskell constructs. An example of this is the simple list comprehension in

Code Example 3.17 (similar to [PJ99§3.11]).

squares xs = [x * x | x <- xs]
squares xs = map (\x -> x * x) xs

Code Example 3.17: List Comprehension Decomposition

The general case for list comprehensions is a little more (but not overly) involved.

Haskell Subset Grammar

The Haskell subset grammar is specified in Figure 3.2.

subset = (declaration)+

declaration ::= signature definition
signature ::= identifier :::::::: type
definition ::= identifier ==== fun_expr

type ::= intintintint | [[[[type]]]] | ((((type ---->>>> type)))) | AAAA | ... | ZZZZ

fun_expr ::= expr | list | fun

fun ::= expr expr | fun expr
list ::= [] | expr : fun_expr
expr ::= ifififif bExpr thenthenthenthen fun_expr elseelseelseelse fun_expr
 | \\\\ identifier ---->>>> fun_expr
 | letletletlet identifier = fun_expr inininin fun_expr
 | fun_expr operator fun_expr // no precedences
 | ((((fun_expr))))
 | identifier
 | literal

literal ::= digits+

operator ::= ++++ | ---- | **** | ////

bExpr ::= expr bOp expr
 | bExpr lOp bExpr
bOp ::= >>>> | <<<< | ======== | !=!=!=!=
lOp ::= &&&&&&&& | ||||||||

Figure 3.2: Haskell Subset Grammar

The Java embedding is specified in Figure 3.3.

CHAPTER 3: ASSESSMENT OF EXTENSIBILITY BENCHMARK TEST CASES

 • 74 •

expression ::= ... | funfunfunfun ((((fun_expr))))
class_body_declaration ::= ... | funfunfunfun {{{{ subset }}}}

Figure 3.3: Haskell Embedding Grammar

Lazy Evaluation

Once the a particular group of definitions has been recognised as belonging to this

subset, an implementation is free to produce compiled code, or to use interpretation in

order to simulate lazy evaluation. A key reason to implement a Haskell subset is to

demonstrate mixed imperative and lazy evaluation.

Necessary Language Features

Of all the extensions in these test cases this extension requires the most power to

implement. The subset grammar is complex and overlaps quite heavily with other Java

code, for example, any parser has a fair bit of work to do, in order to differentiate

between a Haskell expression and a Java expression.

The most powerful implementation of this subset would also allow for files that

contained nothing but code written in the subset. This would demonstrate the capacity

of an extensible language to completely rewrite the base language.

 75

4 Review of Extensible Languages

Review of Extensible

Languages

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

extensibility

review

reviewing

parsing

implementing

a parser

designing

the language

implementing

the language

evaluation

conclusion

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES OVERVIEW

 • 76 •

4.1 Overview

Now that a basis for reviewing the successfulness of a given extensible language has

been established, in this section we examine six successful meta-programming

languages: Lisp and its variants, Template Haskell, MS2, JTS, JSE, OpenJava, and

Maya.

• Lisp, and also Scheme, (section 4.2) macros are so successful and so widely

used by that programming community that all research into creating new

extensible languages is essentially trying to reproduce this success. Lisp/Scheme

has the honour of being both the first implementer of syntax macros and also the

most successful.

• Template Haskell (section 4.3) has shown that it is possible to nicely define Lisp

style macros within a pure functional language, it gathers a large variety of

previous work and reproduces it in one coherent system.

• MS
2
, (section 4.4) is an extension of the C programming language and provides

strong facilities for producing concise macros. The major drawback of this

system is its overly symbolic syntax which can be blamed on its C heritage.

• We review multiple Java-based systems: the Jakarta Tool Suite (JTS), the Java

Syntax Extender (JSE), OpenJava, and Maya. These systems vary wildly in their

suitability for comparison. Of these, Maya (section 4.8) provides the most

powerful macro system. It improves upon previous Java extensibility research

by removing restrictions on the placement of macros without sacrificing power.

As the best implementation in the target language of this work, Maya is a natural

choice for qualitative comparison (see section 9.4).

Most of these three systems share certain common aspects:

• they provide quasi-quote, unquote, automatic hygiene, and referential

transparency;

• each provide an abstract syntax written in the target language itself, where the

easy to use quasi-quotation mechanism fails, it is always possible to build

arbitrary programs through this mechanism; and

• they are all implemented in well-established languages.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES OVERVIEW

 • 77 •

Where they differ is more interesting:

• they each provide different limitations on where macros can appear within code;

• each allows a different level of interaction between macros; and

• some provide no surrounding context information, whereas others provide the

entire environment.

Also interesting is that most of these languages do not adequately meet our

requirements for extensibility, namely the creation of arbitrary syntax. Even Lisp

macros must conform to Lisp’s own rigid prefix-notation syntax restraints.

This chapter examines only the most relevant systems, many others are not examined

(see Camlp4 [Rau03], MacroML [GST01], EPP [Ich99], JPP [Sha96b], <bigwig>

[BS02], MPC++ [IHSM+96], ELIDE [BCVM02], and [CMA94]), but all of these have

been previously reviewed in [GH03], [BP01], [BH02], [Bak01], and [BLS98]).

These systems have been chosen both to provide examples of meta-programming in

various base languages, and also to look at previous approaches at providing meta-

programming in Java. All of these systems are examined against the criteria for

extensibility from section 3.3.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 78 •

4.2 Lisp / Scheme

The Lisp (an acronym for list processing) programming language5 [Mcc60, Ste90]

introduced the concept of meta-programming since its inception. Modern Lisp macro

systems (especially Scheme [Dyb03]) provide facilities that bear little resemblance to

their origins, although they do still support the original style of programming. This brief

review looks at the development of the most commonly used Lisp macro facilities and

does not attempt to provide a comprehensive examination of all available Lisp variants

and their facilities. To this end we examine only Common Lisp (hereto referred to

merely as Lisp) and Scheme.

Macros are identified in Scheme as a solution to a variety of problems:

“Syntactic extensions, or macros, are used to simplify and regularize repeated

patterns in a program, to introduce syntactic forms with new evaluation rules,

and to perform transformations that help make programs more efficient.”

[Dyb03§8]

These uses are not new, as Lisp macros have existed for decades [SPJ02]. There would

be few Lisp programmers who are unaware of the power that macros provide, and many

apparent language extensions are implemented via macros. Macros are taken so

seriously in fact, that when undertaking a new project, the standard philosophy of the

Lisp programmer is to first modify the language to suit the needs of the project:

“… modern Scheme systems support elaborate towers of language extensions

based entirely on macros.” [SPJ02§10.2, pp. 12]

Whilst the techniques behind Lisp macros have evolved and been improved with time,

they still rely on the fact that every Lisp program is also a Lisp S-expression [Mcc60].

Other macro systems that provide an elaborate set of datatypes to provide an abstract

syntax for meta-programming are mimicking this ability.

Within the Lisp community there is no general consensus as to which dialect provides

the better macro system. There are far too many dialects to give them all full treatment

5 Despite its origin as a single programming language, in more recent usage, the term Lisp has perhaps

come to describe a family of related languages.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 79 •

in this section. Common Lisp is chosen to demonstrate early development of Lisp (even

though it is a mature language itself) and Scheme is chosen to demonstrate the

development of more powerful features.

Lisp was definitely the pioneering language for meta-programming and each of the

systems in the remainder of this chapter are trying to reproduce the power and flexibility

of Lisp macro constructs.

4.2.1 Power

At the heart of Lisp’s power is the S-expression. Its use eventually lead to the

development of macros: meta-programs that could write other programs.

4.2.1.1 S-expressions

Every Lisp program is also a Lisp S-expression. An S-expression is a simple tree

datatype. For example, consider the Lisp program fragment in Code Example 4.1. First

note that all Lisp functions are written in prefix notation. This program text is converted

into an equivalent S-expression that represents it in a tree form as shown in Figure 4.1.

 (+ 1 2 (somefunc 42 (- x y)) 3)

Code Example 4.1: Simple Lisp Program Fragment

Figure 4.1: Lisp S-expression for Code Example 4.1

defundefundefundefun func () '(+ 1 2 (somefunc 42 (- x y)) 3)

Code Example 4.2: Lisp Quotation Expression for Code Example 4.1

If we wished to write a function to produce this program we could write the function in

Code Example 4.2, where the quote expression ensures that we do not calculate any part

of the expression. This quote is just a shorthand, Lisp allows us to construct an S-

expression manually using its list constructor primitives.

+ 1 2 3

somefunc 42

– x y

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 80 •

Lisp provides run-time meta-programming support via the eval function, which will

evaluate any S-expression at run-time.

Lisp functions can take an arbitrary number of arguments and each argument can be an

arbitrary tree. The function is free to interpret its arguments in any way. Through this

mechanism it is possible to provide new syntax. For example, consider the code

fragment in Code Example 4.3.

(infix_exp 5 * 9 - 12 / 4)

Code Example 4.3: Lisp Simulated Infix Expressions

We could define infix_exp to take an arbitrary number of parameters and then parse

this ourselves to provide infix notation with precedences. This function is far from

perfect and we could foil it by using parentheses as anything within them would be

evaluated as a lisp expression before the function call. More advanced macro definitions

can improve on this situation.

4.2.1.2 Macros: defmacro

Consider the two definitions in Code Example 4.4 that take two arguments and only

return the first.

(defundefundefundefun just-first-function (x y) x)
(defmacrodefmacrodefmacrodefmacro just-first-macro (x y) x)

Code Example 4.4: defmacro

One major difference between these two definitions is what happens upon calling. The

function version will evaluate all of its arguments, whereas the macro version will pass

them through as S-expressions.

A macro defined in this way should return a replacement S-expression that takes the

place of the original macro call.

Both brevity and implementation are improved by the use of defmacro: the

programmer is alleviated from explicitly specifying which arguments should be S-

expressions and explicit use of eval; while the removal of eval allows for the

possibility of compile-time evaluation (although macros could still be implemented as a

run-time facility).

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 81 •

4.2.1.3 Macros: define-syntax

Scheme provides a define-syntax macro that is similar to defmacro. Coupled

with the use of a syntax-rules macro for pattern-matching with pattern translation

and the result is a powerful, yet simple to use, macro system.

Whilst the code in Code Example 4.5 is more verbose than the previous definition of

this macro in Code Example 4.4, this is only due to its simplistic nature. Understanding

of hygiene (covered in the following subsections) is necessary to comprehend why

define-syntax is an improvement upon defmacro.

(definedefinedefinedefine----syntaxsyntaxsyntaxsyntax just-first
 (syntaxsyntaxsyntaxsyntax----rulesrulesrulesrules ()
 ((just-first x y)
 x)))

Code Example 4.5: define-syntax

The macro syntax-rules is the most high-level facility provided, and also the least

powerful. It provides the user with an environment free from the possibility of

unexpected errors but at the cost of expressiveness. There are other facilities for macro

definition, some with only limited applicability, others with increased power.

“The language of patterns and templates recognized by syntax-rules… is

actually a special case of Scheme macros.” [HM04§5.4, pp. 21]

The general form of the define-syntax macro is shown in Code Example 4.6.

(definedefinedefinedefine----syntaxsyntaxsyntaxsyntax some-name
 (lambdalambdalambdalambda (stx)
 ...))

Code Example 4.6: define-syntax General Form

The argument to the lambda function is similar to a Lisp S-expression but with added

information about variables and scope. Full macros are written through the use of

another macro called syntax-case which allows code generation in a more general

form than syntax-rules:

“The syntax-case facility allows the construction of macros with pattern

matching, as with syntax-rules… but with arbitrary expressions in place of

templates for the result expressions.” [HM04§5.4, pp. 21]

This macro allows for pattern matching like syntax-rules, but with arbitrary

expressions instead of pattern templates for the resultant code. As a result, it is possible

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 82 •

to allow macros to control their expansion based on properties of their arguments, in

much the same way as defmacro style code. Again, the major improvement is hidden

from us until we examine usability and error handling.

4.2.1.4 Syntax Creation

As previously discussed, Lisp programs are S-expressions. Lisp macros must be defined

in a prefix form, but can define new syntax within their arguments — syntax that does

not fit the S-expression style would need to be manually parsed.

So, Lisp is not capable of true syntax creation. For example, it is not possible to create a

macro that would remove the need for large amounts of closing parentheses that affect

most Lisp programs. In fact complex macros tend to add to this problem rather than

alleviate it. A system capable of true syntax creation could specify many operations that

would not require parentheses at all.

4.2.2 Usability

Lisp programmers found they were producing cumbersome code when meta-

programming, so the quasi-quote and unquote operators were developed [Ste90].

Quasi-quote provides a similar function to the quote operator introduced in section

4.2.1.1, but allows for the user to escape the quote with the comma operator (generally

called unquoting).

Consider the code fragment in Code Example 4.7. This macro will create an S-

expression that adds its argument to one. The necessity of unquoting may not be

immediately apparent; if the unquoting was not present however, the quasi-quotation

would include the token x, rather than the value bound to the variable x.

 Code Example 4.8 demonstrates that the classic variable swap example suffers from the

same problems in Lisp as it does in C++ macros.

 (defmacrodefmacrodefmacrodefmacro 1+ (x) (`(+ 1 ,x)))

Code Example 4.7: Quasi-quote and Unquote

(defmacrodefmacrodefmacrodefmacro swap (x y)
 `(letletletlet ((temp ,x))
 (setfsetfsetfsetf ,x ,y)
 (setfsetfsetfsetf ,y temp))))

Code Example 4.8: swap Function

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 83 •

At first glance this macro definition seems straightforward, but it will fail if an attempt

is made to use it with a variable named temp.

It was within the Lisp domain that name capture problems first appeared as a major

drawback [Ste90], rather than a minor annoyance, and over the years Lisp systems

produced a variety of solutions. These will now be expanded.

4.2.2.1 Name Capture: gensym

Name capture was initially handled by requiring the programmer to manually create

unique names through the gensym function [Dyb03]. Whilst this is a successful

solution, it requires the programmer to bear the burden, and program readability

inevitably suffers.

Code Example 4.9 corrects the swap macro from the previous subsection.

(defmacrodefmacrodefmacrodefmacro swap (x y)
 (letletletlet ((temp (gensym)))
 `(letletletlet ((,temp ,x))
 (setfsetfsetfsetf ,x ,y)
 (setfsetfsetfsetf ,y ,temp))))

Code Example 4.9: Improved swap Function

This example is only slightly less readable than before using gensym, but the amount

of unquoting has increased and this becomes more of a problem as code complexity

increases.

4.2.2.2 Name Capture: define-syntax Revisited

Name capture problems eventually lead to the development of hygiene:

“Early designs suffered badly from the name-capture problem, but this problem

was solved by the evolution of “hygienic” macros.” [SPJ02]

Code Example 4.10 contains a syntax-rules based implementation of swap that

demonstrates the use of hygienic macros.

(definedefinedefinedefine----syntaxsyntaxsyntaxsyntax swap
 (syntaxsyntaxsyntaxsyntax----rulesrulesrulesrules ()
 ((swap x y)
 (letetetet ((tmp x))
 (set!set!set!set! x y)
 (set!set!set!set! y tmp)))))

Code Example 4.10: Hygienic swap Function

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 84 •

In this example set! is equivalent to setf from earlier examples — Scheme has a

different naming convention from standard Lisp (side-effect operators have an

exclamation mark). This code also does not use quasi-quotation and requires none of the

unquoting that is required in the standard Lisp version.

More importantly, the introduction of the variable tmp is guaranteed not to cause name

conflicts with the surrounding context. Scheme tracks variable declarations within

macros and automatically renames any created variables.

Use of the more powerful syntax-case macro requires us to use syntax quasi-

quotation, but again quoted expressions create S-expression with added contextual

information. A similar syntax is provided for these syntax-quotations and the rules of

hygiene still apply however, as demonstrated in Code Example 4.11.

(definedefinedefinedefine----syntaxsyntaxsyntaxsyntax swap
 (lambdalambdalambdalambda (stx)
 (syntaxsyntaxsyntaxsyntax----casecasecasecase stx ()
 [(_ x y)
 #'(let let let let ([tmp x])
 (set! set! set! set! x y)
 (set! set! set! set! y tmp))])))

Code Example 4.11: swap Function using syntax-case

Again, with even this simple example the code seems overly verbose, but the pattern-

matching of macro arguments is a powerful feature for more complicated macros.

4.2.3 Error Handling

Error handling may be handled differently amongst Lisp dialects, but Scheme at least

has quite extensive facilities. Here we see the major purpose of retaining contextual

information alongside S-expressions:

“[it] is essential in allowing… language tools to trace errors and binding

relationships back to the original source location in the user’s code where a

macro is invoked.” [HM04§5.4, pp. 21]

The extra power of the syntax-case macro allows us to make decisions based on the

compile-time structure of arguments, and provide explicit error control.

In Code Example 4.12, the purpose of the macro raise-syntax-error is clear,

and its arguments contain the macro that caused the error, a helpful message and the

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 85 •

syntax object that contains the contextual information. This lexical information is used

by the error macro to highlight the original source of the error [Dyb03].

definedefinedefinedefine----syntaxsyntaxsyntaxsyntax swap
 (lambdalambdalambdalambda (stx)
 (syntaxsyntaxsyntaxsyntax----casecasecasecase stx ()
 [(_ x y)
 (if if if if (and (identifier? #'x) (identifier? #'y))
 #'(let let let let ([tmp x])
 (set! set! set! set! x y)
 (set! set! set! set! y tmp))
 (raiseraiseraiseraise----syntaxsyntaxsyntaxsyntax----error error error error 'swap "needs identifiers" stx))])))))

Code Example 4.12: swap Function with Error Handling

4.2.4 Applicability to Benchmarks

Many of the examples in the benchmark test suite are hindered by the inability of Lisp

to truly create new syntax, but for the sake of the simple macros we shall ignore

requirements of extraneous bracketing forms in macro usage.

Table 4.1: Lisp Applicability to Benchmark Test Suite

Benchmark Summary Description

1 assert Simple definition.

2 foreach Simple definition. Proposed syntax can be matched

exactly.

3 printf Simple definition. Can even specialise on the static-

type of the string argument, generating code when it is

static and calling a run-time function otherwise.

4 SQL Possible to provide SQL support, but matching SQL

syntax exactly would require manual parsing of an

essentially flat S-expression.

5 Generators Generators can be provided.

6 Haskell While strictly speaking embedded Haskell would be

possible, it would again rely heavily on manual

parsing.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 86 •

4.2.5 Extensibility Criteria Assessment

Table 4.2: Lisp Extensibility Criteria Assessment

Criterion Assessment

1.1 Syntax Creation Arbitrary syntax creation is not provided for. All

macros are defined with standard Lisp prefix notation

— in general they are indistinguishable from normal

Lisp functions.

S-expressions still drive all macro expansion which

causes macros to have strict syntactic limitations. The

simplest example of this limitation is the inability to

define macros that alleviate (or lessen) the Lisp closing

parentheses problem.

1.2 Syntax Interrogation Interrogation is provided through S-expressions. This

is an extremely powerful and flexible system.

1.3 Syntax Overloading Partially supported.

Although syntax-rules does allow for keywords

in the latter part of a definition to drive different

expansions, overloadings cannot be provided to replace

previous or built-in definitions.

1.4 Static Type Interrogation Supported.

1.5 Expressiveness Within the confines of Lisp syntax, Lisp macros can be

used for almost any purpose. However, The

programmer cannot embed another language within

Lisp with correct syntax.

2.1 Simplicity Lisp macros are close to Lisp code, which is simple in

itself.

2.2 Brevity Lisp provides quasi-quotation and unquoting.

2.3 Robustness Depending on implementation, users may be burdened

with explicit removal of name clashes.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES LISP / SCHEME

 • 87 •

3.1 Syntactic Correctness Macros are guaranteed to produce S-expressions,

which, while syntactically correct, may not be

meaningful Lisp code.

3.2 Error Detection Programmers can specify explicit checks and raise

errors based on the results.

3.3 Error Reporting Scheme, at least, provides sophisticated targeting of

error messages with facilities provided to specify the

exact original source of errors.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES TEMPLATE HASKELL

 • 88 •

4.3 Template Haskell

Extending Haskell to support extensibility is in some ways easier than it is in

Lisp/Scheme, due to well-known benefits of pure functional languages:

“Scheme admits side effects, which complicates everything… Haskell is free of

these complications.” [SPJ02§10.2, pp. 13]

Template Haskell [SPJ02] provides the ability to execute Haskell functions at compile-

time, called splicing, by use of the operator $ and the function splice (explained

further in section 4.3.2.1).

Meta-programs are constructed in various ways, either through algebraic datatypes via a

monad, a set of abstractions built on top of this monad, or using quasi-quotation. These

three techniques each provide a simplicity/expressiveness trade-off; most programs will

be written in quasi-quotation, but for those that cannot be expressed in this fashion, the

programmer will need to fall back to the other techniques.

Limited facilities are provided for the inspection of the compiler’s internal structures via

reification (explained further in section 4.3.1.1).

4.3.1 Power

Template Haskell provides a set of Haskell algebraic datatypes that represent an abstract

syntax. Programmers are free to write normal Haskell functions that manipulate these

datatypes directly, either constructing new syntax, or deconstructing existing syntax

using Haskell’s powerful pattern matching techniques.

Calling functions at compile time (splicing) requires explicit annotation (covered more

in section 4.3.2), and can only appear where an expression or a declaration group would

be expected.

“A meta-program can produce a group of declarations, including data type,

class, or instance declarations, as well as an expression.” [SPJ02§2, pp. 2]

In many languages this would be unnecessarily restrictive, but in Haskell this covers the

majority of possible uses of meta-programming.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES TEMPLATE HASKELL

 • 89 •

4.3.1.1 Reification

Haskell provides compile-time information through its reification mechanism:

“Reification involves making the internal representation of [compiler objects]

available as a data structure to compile-time computations.” [SPJ02§4, pp. 4]

This mechanism provides facilities for querying the structure of declarations (both

datatypes and type classes), the type of declarations, the fixity of operators, and the line

number of the statement within the source file.

It is an open question as to which situations reification can be applied. The design of

Template Haskell does not specify if it is possible to query the type of variables within

expressions, definitions within where clauses etc.:

 “It is not yet clear how much reification can or should be allowed. For example,

it might be useful to restrict the use of reifyDecl to type constructors,

classes, or variables (e.g. functions) declared at the top level in the current

module, or perhaps to just type constructors declared in data declarations in

imported modules.” [SPJ02§8.1, pp. 9]

4.3.2 Usability

In addition to the basic algebraic datatypes defined for syntax creation, Template

Haskell provides a quotation monad, that encapsulates meta-programming features such

as unique name generation, error reporting and the program reification discussed in the

previous subsection. A library of functions is provided within this monadic framework

as an easy-to-use interface for the programmer.

Within the monadic library, a quasi-quote mechanism is provided. Inside quasi-quote

expressions, Template Haskell performs static scoping and type-checking. It is only

when using quasi-quotation that hygiene and referential transparency are assured.

The programmer is free to mix these meta-programming styles, choosing whichever is

the most appropriate for each component of a particular computation. See section

4.3.4.2 for an example that mixes both quasi-quotation and monadic library functions.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES TEMPLATE HASKELL

 • 90 •

4.3.2.1 Splicing

In Template Haskell the programmer has a little more work to do when actually using

macros than in most systems; each macro call must be explicitly annotated to let the

compiler know that the programmer wishes to execute said code at compile-time:

“C++ template and Scheme macros have a lighter-weight syntax for calling a

macro than we do; indeed the programmer may not need to be aware that a

macro is involved at all.” [SPJ02§12, pp. 14]

Macro expansion must be prefixed by the splice operator $ or the splice function.

For example, in order to use Template Haskell’s version of printf, code similar to

that of Code Example 4.13(a) must be written. Here the printf function takes only a

literal string as its argument, and produces a function that requires two arguments,

(loosely) the first being a number and the second a string. So the result of macro

expansion would be something akin to Code Example 4.13(b).

$(printf "%d %s") 42 "foo"

(a) Explicit Use of the Splice Operator for printf Usage

(\x -> \y -> show x ++ " " ++ y) 42 "foo"

(b) printf Macro Expansion

Code Example 4.13: Template Haskell printf Expansion

The type checking is actually delayed until the macro is expanded, and utilises the

normal Haskell type-checking mechanism (see section 4.3.3 for more details).

The operator $ can appear anywhere that an expression is expected, and the result of

applying it must always produce an expression. Since almost everything in Haskell is an

expression, this operator is surprisingly versatile.

The function splice allows the programmer to write meta-programs that produce a

group of declarations. This allows meta-programs to create type classes, data

declaration, and functions.

At times, explicitly alerting the programmer that a macro call is involved can be viewed

as advantageous, but in general this requires the programmer to understand more than

they should need to. The Template Haskell design requires this because firstly:

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES TEMPLATE HASKELL

 • 91 •

“… functions that execute at compile-time are written in the same language as

functions that execute at run-time, namely Haskell.” [SPJ02§3, pp. 3]

Secondly, absolutely no distinction is made between compile-time functions and run-

time functions, indeed, the programmer can use template functions at run-time if they

wish.

4.3.2.2 Quasi-quotation

In Template Haskell quasi-quotation appears within [| … |] brackets. Unquoting is

analogous to splice. Code Example 4.14 demonstrates quasi-quotation, splicing, and

reification.

assert :: Expr -- Bool -> a -> a
assert = [| \b r -> ifififif b thenthenthenthen r elseelseelseelse errorerrorerrorerror ("Assert fail at "++$reifyLocn) |]

Code Example 4.14: Template Haskell Assertions

Quasi-quotations cannot appear within other quasi-quotations. For example, the form in

Code Example 4.15 is illegal.

[| f [| 3 |] |]

Code Example 4.15: Illegal Template Haskell Quasi-quotation

However it is possible to use splice within a quasi-quote, and within that splice quasi-

quotation may be used again. Inside quasi-quotations the splice operator functions

similar to unquote. See sections 4.3.4.1 and 4.3.4.2 for examples of interleaving of

quasi-quotation and splicing.

4.3.3 Error Handling

The algebraic datatypes, the syntax creation monad, the monadic library, and the quasi-

quotation mechanism all produce syntactically correct programs. In addition to this, it is

possible for the programmer to explicitly detect some errors, such as inappropriate use

of a meta-program. This support is provided via the monad: a meta-program can fail,

allowing the compiler to catch and report such failures along with their location.

Further to this explicit error checking, Template Haskell interleaves execution of

compile-time functions and type-checking. This ensures early detection of type errors

and provides the user with good feedback on their location.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES TEMPLATE HASKELL

 • 92 •

As previously mentioned, it is unclear as to the level of reification provided for static

type checking, and hence it is unclear to the extent of explicit checking the programmer

can provide.

4.3.4 Worked Examples

The following two worked examples demonstrate:

• a full definition of a macro and its support functions within a module, and usage

of this module; and

• a macro that mixes both quasi-quotation and monadic library functions.

4.3.4.1 Type-safe Formatted Output

Code Example 4.16 is drawn from both [SPJ02§2] and [GHC02§7.6] and provides a

printf function similar to that described in section 3.4.1.3 but with marginally

different syntax. It takes a single argument, that of the literal string and creates a

function that requires arguments as specified by the placeholders in this string. For

example, as shown in Code Example 4.13, the string “%d %s” produces a formatting

function that requires a number then a string as its two arguments.

{- Printf.hs -}
module Printf where

-- Import some Template Haskell syntax
import Language.Haskell.THSyntax

-- Describe a format string
data Format = D | S | L String

-- Parse a (simple) format string.
parse :: String -> [Format]
-- implementation unwieldy and hence not provided

-- Generate Haskell code from parsed representation of a format string.
gen :: [Format] -> Expr -> Expr
gen [] x = x
gen (D : xs) x = [| \n-> $(gen xs [| $x++show n |]) |]
gen (S : xs) x = [| \s-> $(gen xs [| $x++s |]) |]
gen (L s : xs) x = gen xs [| $x ++ $(lift s) |]

-- Generate the Haskell code for the splice from an input format string.
printf :: String -> Expr
printf s = gen (parse s) [| "" |]

Code Example 4.16: Template Haskell printf Definition

Code Example 4.16 demonstrates a Template Haskell implementation of printf. The

function parse takes the format string and breaks it into a list of format specifiers. The

function gen is responsible for the construction of the output function; printf merely

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES TEMPLATE HASKELL

 • 93 •

uses this with a suitable initial value. This latter function builds an expression from a

list of format specifiers.

Here we see for the first time interleaving of quasi-quotation and splicing. Splicing

operates as one would intuitively expect in this situation, and gen behaves as a would a

standard Haskell function [SPJ02].

On the last line of the definition of gen, the function lift turns its string argument

into an expression that would evaluate into the original string — lift is actually

provided via a type class and hence works on a variety of types. This is an example of

the kind of function provided by the monadic library (see section 4.3.4.2 for an example

using more of these functions).

Of particular interest here is the fact that the definitions of meta-programs differ only in

that they use quasi-quote and splicing. In effect, these are shorthands, and this file could

contain purely standard Haskell code. Even the type Expr is a standard monadic

wrapper for the algebraic type Exp.

The cost of this simplicity is that expansions must be explicitly spliced in order to

ensure compile-time execution. Code Example 4.17 shows how to import and use the

printf function.

{- Main.hs -}
modulemodulemodulemodule Main where

-- Import our template "printf"
importimportimportimport Printf (printf)

-- The splice operator $ takes the Haskell source code generated at
-- compile-time by "printf" and splices it into the argument of "putStrLn".
main = putStrLn ($(printf "Hello %d green %s") 42 "people")

Code Example 4.17: Template Haskell printf Usage

The qualified import statement restricts the import to just the printf function. Notice

the explicit use of the splice operator to expand the printf form at compile-time. The

expansion will produce a function that takes two arguments (a number and a string) and

will produce a string.

4.3.4.2 Selection From an N-tuple

Code Example 4.18 demonstrates the use of both quasi-quotation and monadic library

functions.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES TEMPLATE HASKELL

 • 94 •

sel :: Int -> Int -> Expr
sel i n = [| \ x -> $(caseE [| x |] [alt]) |]
 where
 alt = simpleM pat rhs
 pat = ptup (map pvar as)
 rhs = var (as !! (i-1))
 as = ["a"++show j | j <- [1..n]]

Code Example 4.18: Template Haskell N-tuple Selection

This example allows the selection of an indexed member of an n-tuple — something

impossible to do in ordinary Haskell. For example, the expression (sel 2 3)

translates into a lambda function as shown in Code Example 4.19.

(sel 2 3)
→ \x -> case x of (a1, a2, a3) -> a2

Code Example 4.19: Template N-tuple Selection Expansion

The variable as contains a list of strings to be used as variables. The variable rhs

contains the selected variable to extract from the tuple. The variable pat constructs a

pattern which is a tuple containing all of the strings from as. The variable alt

specifies a list of alternatives (always containing a single alternative) for a case

expression. The monadic library functions caseE, simpleM, var, ptup, and pvar

all aid in simplifying this process. These functions create a case expression, a simple

pattern matching expression, a simple variable expression, a tuple pattern, and a simple

variable pattern.

Quasi-quotation in Template Haskell is not powerful enough to directly produce

arbitrary tuples, and as such the programmer must rely on the previous layer. As a

result, monadic library code is much more verbose and requires more effort in

understanding than quasi-quotation code.

4.3.5 Applicability to Benchmarks

Template Haskell does not suit our benchmark suite particularly well as many of the

examples simply aren’t appropriate for a functional language. However, it is still clear

that the many constructs cannot be supported, unless we compromise syntactically from

the benchmark suite test case definitions.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES TEMPLATE HASKELL

 • 95 •

Table 4.3: Template Haskell Applicability to Benchmark Test Suite

Benchmark Summary Description

1 assert Simple definition with quasi-quote. Reification may

provide facilities for command-line debug-build

switching.

2 foreach Not appropriate; standard functions provide iteration

functionality.

3 printf Simple definition with quasi-quote.

4 SQL Possible to provide decent SQL support, but not

possible to match syntax exactly.

5 Generators Not appropriate in a functional language; lazy

evaluation provides better facilities.

6 Haskell Not appropriate.

4.3.6 Extensibility Criteria Assessment

Table 4.4: Template Haskell Extensibility Criteria Assessment

Criterion Assessment

1.1 Syntax Creation Arbitrary syntax creation is not provided for. All

compile-time functions are simply normal Haskell

functions run at compile-time. Splice is only allowed

anywhere an expression or a group of declarations

occurs.

1.2 Syntax Interrogation Interrogation of syntax is provided through an abstract

syntax tree provided as a set of Haskell datatypes.

Haskell provides excellent support for working with

user defined datatypes, and this flows through to this

abstract syntax.

1.3 Syntax Overloading Not supported.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES TEMPLATE HASKELL

 • 96 •

1.4 Static Type Interrogation Provided in a limited form via reification, but its exact

scope is unclear.

1.5 Expressiveness Template Haskell provides no facilities for new syntax

creation. Its usefulness is limited to small scale

additions to the language.

2.1 Simplicity Meta-programs are programmed in Haskell, which

itself tends to lead to simple programs. Each of the

three layers of syntax creation are provided in standard

Haskell idioms.

2.2 Brevity Quasi-quotation and unquote are provided.

The calling of compile-time functions is burdened with

the necessity of explicit use of splice.

2.3 Robustness Automatic hygiene and referential transparency are

provided when using quasi-quotation.

The function gensym is provided for explicit fresh

name creation when working with the syntax creation

monad.

3.1 Syntactic Correctness Constructs created in any of the three syntax creation

layers are guaranteed to be syntactically correct.

3.2 Error Detection Errors in usage can be caught by the programmer, and

reported to the system via Haskell’s standard error

construct. Interleaving of parsing and type-checking

provides strong support for type checking, although it

is unclear whether the programmer can aid this process

through reification.

3.3 Error Reporting Due to the interleaving of parsing and type-checking

Template Haskell detects errors as soon as possible,

and consequentially has a good chance of providing

useful error reporting.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES META SYNTACTIC MACRO SYSTEM

 • 97 •

4.4 Meta Syntactic Macro System

The Meta Syntactic Macro System (MS2) [WC93] extends the C programming language

to provide meta-programming support.

4.4.1 Power

In this system macros are only allowed to appear as declarations, statements, or

expressions. Each macro must begin with a name, but following this, the syntax is quite

general. For example, it is possible to define a macro for enumerations that has the

syntax of Code Example 4.20(a).

new_enum color { red, green, blue };

(a) Enumeration Usage

syntaxsyntaxsyntaxsyntax decl new_enum {| $$id::name { $$+\, id::ids }; |} {
 returnreturnreturnreturn `[enum $name $ids;];
}

(b) Enumeration Definition

Code Example 4.20: MS
2
 Enumerations

An abstract syntax is provided for compile-time program manipulation. The abstract

syntax has a limited set of forms and the user is not able to introduce new ones. No

special facilities are provided for the interrogation of these trees.

4.4.2 Usability

This system provides multiple quasi-quote forms as well as an unquote operator. A

general quasi-quote form is provided where the user must specify the type of the result

as well as three shorthand forms for expressions, statements, and declarations. Each of

these forms begins with a backquote but has a different bracket form.

Within these quasi-quotes the user is capable of specifying constructs without adhering

to exacting concrete syntax. Consider the definition of new_enum in Code Example

4.20(b). Inside the quasi-quotation, the concrete syntax of the enumeration can be

ignored; the programmer can merely specify the required parts, i.e. a name, and a list of

identifiers. Other systems would typically require the user to work with the abstract

syntax objects directly to provide this kind of functionality.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES META SYNTACTIC MACRO SYSTEM

 • 98 •

This system provides other programmer shorthands. In the above example the format

list of identifiers is specified by a pattern that ensures that there is at least one identifier

and that multiple identifiers are comma-separated. These pattern shorthands provide for:

• lists of zero or more, or one or more arguments;

• optional elements, either with or without a leading token; and

• tuples.

It was foreseen that much processing would be performed on these lists of abstract

syntax trees, so support was directly introduced for anonymous functions so that

functions such as map could be better supported. Anonymous functions reduce the

programmer’s burden when using higher-order functions and as a result greatly

facilitate the use this powerful, concise coding practice [WC93]. This in turn leads to

meta-programs that more closely resemble the code they produce (for an example, see

section 4.4.4.2).

These shorthands allow for concise definitions, their drawback being an obfuscating

syntax that creates a significant barrier to understanding this system. The major source

of this increased confusion is new bracketing forms; this system introduces six of these.

4.4.3 Error Handling

The system produces syntactically correct forms via its quasi-quotations but beyond that

provides no support for error detection in expanded code:

“The ease of debugging macros depends upon the quality of the debugger

provided by the C programming environment being used.” [WC93§3, pp. 7]

4.4.4 Worked Examples

The following two examples demonstrate a simple definition of a statement macro, and

a more complex definition which produces a list of declarations. Both of these examples

demonstrate the brevity of definitions produced with this system.

4.4.4.1 Dynamic Binding

Code Example 4.21(a) demonstrates the use of dynamic_bind to allow the

temporary redefinition of the value of a variable. The idea here is that printLength

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES META SYNTACTIC MACRO SYSTEM

 • 99 •

is a global variable and it is temporarily changed to the value 10, and reset after the

function call within the block.

dynamic_bind {intintintint printlength = 10} {
 print_class_structure(gym_class);
}

(a) Dynamic Binding Usage

syntaxsyntaxsyntaxsyntax stmt dynamic_bind {|
 { $$type_spec::type $$id::name = $$exp::init }
 $$stmt::body
|} {
 @id newname = gensym();
 returnreturnreturnreturn (`{
 $type $newname = $name;
 $name = $init;
 $body;
 $name = $newname;
 })
}

(b) Dynamic Binding Definition

Code Example 4.21: MS
2
 Dynamic Binding

The code for providing this macro is in Code Example 4.21(b). A macro is defined by

use of the syntax keyword. The macro mimics a C function declaration in that it

expects a type, then a name, followed by a list of parameters, although these parameters

are contained within a {| ... |} pair rather than parentheses. The parameter list can

contain an arbitrary number of terminal symbols as well as a series of formal arguments.

Each formal argument is specified by the symbol $$, followed by the type, followed by

::, followed by the variable name. There are shortcuts provided for lists of values (see

the next subsection for more information).

In the declaration of the variable newname, we see that when Abstract Syntax Tree

(AST) types are used within normal code they must be prefixed by @. Also, no

provision for hygiene is made, and we must acquire unique names directly through use

of the gensym function.

Following the return statement is statement quasi-quote `{ ... } and within this

unquoting is specified by $.

Despite its obscure syntax, and the necessity of explicit name-capture avoidance, this

definition is still as succinct as an equivalent definition would be in previously

examined languages.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES META SYNTACTIC MACRO SYSTEM

 • 100 •

4.4.4.2 Extended Enumerations

Code Example 4.22 demonstrates an extension to enumerations that provide for

automatic generation of input and output functions.

Code Example 4.22(a) and (b) show an example usage and its automatic expansion.

This expansion is straight-forward, the creation of the enumeration requires no

transformation, the output function requires a case for each enumeration element, and

the input function requires an if statement for each element.

However, the code defining this macro in Code Example 4.22(c) is less than straight-

forward.

On line 1 we define a macro that returns a list of declarations; the usual C-syntax for

arrays is maintained. Within the {| ... |} block, we define two macro parameters:

the first an identifier called name, and the second is a list of comma-separated

identifiers called ids.

On line 3 we see the shorthand provided for creating lists. This list has three elements,

the enumeration declaration (line 5), the print function(lines 8-19), and the read function

(lines 22-34). Each of these declarations is defined within a declaration quasi-quote.

The enumeration is defined without the need for concrete syntax — this is a general

property of the macro system. The programmer is freed from knowing that the list of

identifiers to an enumeration must be comma-separated and enclosed within braces.

Within the print function we have an interesting feature of this system, enclosed by the

(| ...) block is an anonymous function definition. Its syntax provides for a list of

declarations that act as arguments, followed by an expression. Anonymous functions

were specifically added to C’s existing function-pointer concept to allow for the easy

use of functions such as map. In this case, map is used to create a list of cases from the

list of enumeration elements.

The definition of the read function follows a similar format to that of the print function

— again utilising map and an anonymous function to provide a brief definition.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES META SYNTACTIC MACRO SYSTEM

 • 101 •

myenum fruit { apple, banana, kiwi };

(a) Printable Enumeration Usage

enumenumenumenum fruit { apple, banana, kiwi };

voidvoidvoidvoid print_fruit(intintintint arg) {
 switchswitchswitchswitch (arg) {
 casecasecasecase apple: printf("%s", "apple");
 casecasecasecase banana: printf("%s", "banana");
 casecasecasecase kiwi: printf("%s", "kiwi");
 }
}

intintintint read_fruit() {
 ccccharharharhar s[100];
 getline(s, 100);
 ifififif (!strcmp(s, "apple")) returnreturnreturnreturn(apple);
 ifififif (!strcmp(s, "banana")) returnreturnreturnreturn(banana);
 ifififif (!strcmp(s, "kiwi")) returnreturnreturnreturn(kiwi);
 returnreturnreturnreturn -1;
}

(b) Printable Enumeration Expansion

1 syntaxsyntaxsyntaxsyntax decl myenum[] {| $$id::name { $$+id,::ids }; |} {
2 returnreturnreturnreturn (
3 listlistlistlist(
4 // enumeration
5 `[enum $name $ids;],
6
7 // print function
8 `[
9 $(symbolconc("print_", name))(arg) {
10 switch (arg)
11 $(map(// generate a case for each element
12 (| @id id; `{
13 casecasecasecase $id:
14 printf("%s", $(pstring(id)));
15 }),
16 ids
17))
18 }
19],
20
21 // read function
22 `[
23 $(symbolconc("read_", name))() {
24 charcharcharchar s[100];
25 getline(s, 100);
26 $(map(// generate an if statement for each element
27 (| @id id; `{
28 ifififif (!strcmp(s, $(pstring(id)))) returnreturnreturnreturn($id);
29 }),
30 ids
31))
32 returnreturnreturnreturn -1;
33 }
34]
35)
36);
37 }

(c) Printable Enumeration Definition

Code Example 4.22: Printable Enumerations

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES META SYNTACTIC MACRO SYSTEM

 • 102 •

4.4.5 Applicability to Benchmarks

This system does not provide for static type-checking and has limitations on macro

definitions, and as a result its performance on the test suite is mixed.

Table 4.5: MS
2
 Applicability to Benchmark Test Suite

Benchmark Summary Description

1 assert Simple definition provided a suitable standard library

function exists to interrupt program execution.

2 foreach Simple definition provided a set of C functions exist to

mimic iterators. Syntax can be matched exactly, as

terminals may appear anywhere in a macro pattern.

Type checking on the type of the expression could not

be provided by the macro itself.

3 printf This system is not capable of providing the literal

string argument for printf.

4 SQL The syntax of the SELECT statement could almost be

matched exactly, but would fail at the WHERE clause. It

could only provide an arbitrary C expression, and

provide no support for the mixing of SQL names and C

names.

5 Generators Not supported.

6 Haskell Not supported due to the requirement that each macro

begin with a name.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES META SYNTACTIC MACRO SYSTEM

 • 103 •

4.4.6 Extensibility Criteria Assessment

Table 4.6: MS
2
 Extensibility Criteria Assessment

Criterion Assessment

1.1 Syntax Creation All macros must begin with a name, but following this,

the programmer appears to be free to define new

syntax, although some restrictions may apply, e.g. it

appears that parentheses are not allowed within macro

headers. Macros may only use a limited set of abstract

syntax types in their argument lists.

Macros can only appear as declarations, statements, or

expressions.

1.2 Syntax Interrogation Syntax interrogation provided via an abstract syntax

with additions to normal C-syntax to provide for easy

construction.

1.3 Syntax Overloading Unspecified.

1.4 Static Type Interrogation Not provided.

1.5 Expressiveness It is only possible to use this system for small macros

with a limited scope, due to strict rules on macro use

and the requirement that macros begin with names.

2.1 Simplicity This system introduces much for the programmer to

understand with many symbolic additions to a syntax

that already has too many symbols.

Once these have been learnt, the system is relatively

easy to use. However, it is unclear whether parsing

conflicts can arise, and if so, how much burden they

place on the macro programmer.

2.2 Brevity A host of programmer shortcuts are provided; of

particular use are the easing of restrictions in syntax

within quasi-quotations and the use of patterns within

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES META SYNTACTIC MACRO SYSTEM

 • 104 •

macro headers.

2.3 Robustness A gensym function is provided, but no attempt is

made to provide hygiene.

3.1 Syntactic Correctness All constructs are created within quasi-quotations and

are guaranteed to be syntactically correct.

3.2 Error Detection Not supported.

3.3 Error Reporting Not supported.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES JAKARTA TOOL SUITE

 • 105 •

4.5 Jakarta Tool Suite

The Jakarta Tool Suite (JTS) [BLS98] is a set of pre-compiler tools for extending

programming languages. Its meta-programming facilities exist only within a Java

extension called Jak, which is in turn written in another tool called Bali.

Bali is in essence a parser-generator, such tools are common-place and a full description

of this is outside the scope of this work.

Jak provides a quasi-quotation system, but for a limited set of constructs and the

resultant type must be specified. The same applies for its unquoting mechanism. It is

unclear whether quotations can be nested. Powerful tree traversal and editing functions

are provided for code manipulation. An attempt at providing hygiene is made, but does

not produce an automatic system; programmers are left to specify which variables are to

have their names mangled to avoid collisions.

Jak provides code generation facilities, but it is unclear as to how they are to be utilised,

it is left unspecified whether or not compile-time evaluation can take place. It is

assumed that to define new syntax, or make language extensions one must define them

in Bali and embed Jak code to perform any transformations.

Utilising a parser generator for extensions makes this system similar to that of an open

compiler system (see section 2.3.2). As a result any extension should be possible, but

each extension stands alone — we are in essence creating an entirely new language

every time we make a minor change.

The Jakarta tool suite has several features common with the systems discussed in this

chapter, but falls too far outside the domain of meta-programming and extensibility to

be adequately compared to such systems. We make no attempt to test the applicability

of this system to our benchmark suite, and do not rate this system against our

extensibility criteria.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES JAVA SYNTAX EXTENDER

 • 106 •

4.6 Java Syntax Extender

The Java Syntax Extender (JSE) [BP01] is a macro facility. Its implementation is as a

pre-processor taking .jse files and producing .java files.

4.6.1 Power

JSE recognises that some systems allow for the creation of arbitrary syntax, but

sacrifices this for simplicity:

“JSE is less ambitious in that it provides a convenient and powerful mechanism

for extending the syntax in limited ways. In particular, it provides only a limited

number of shapes and requires that macros must always commence with a

name.” [BP01§8.4, pp. 40]

To this end, JSE provides limited shapes in the form of call macros and statement

macros. A call macro mimics a simple Java method call and is available to appear

where a statement or an expression would. A statement macro can only occur where

normal statements would and have a more complicated form: optional modifiers and

then a series of clauses.

call_macro ::= name(...)

statement_macro ::= modifiers [clause]+
clause ::= name ... terminator
terminator ::= ;;;; | }}}}

Figure 4.2: JSE Call and Statement Macro Grammars

The loose grammar of Figure 4.2 specifies the structure of both call and statement

macros. As we shall see, where the ellipses appear in this grammar is where JSE

provides a deal of flexibility — this is discussed in the next subsection. The restriction

on each macro ending with a semicolon or a brace is born of simplicity and a restriction

that fits within Java well:

“Shapes serve to allow easy location of the end of a macro before handing it to

the macro expander; shapes are a way to find “the closing bracket”.” [BP01§3.1,

pp. 35]

For program manipulation, rather than a full abstract syntax, JSE provides a skeleton

syntax tree (SST).

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES JAVA SYNTAX EXTENDER

 • 107 •

“In general, a SST has fewer categories than a typical AST and instead

represents the basic shapes and distinctions necessary for macro processing.”

[BP01§2, pp. 32]

The downside to this approach is that no guarantees can be made as to the syntactic

correctness of the programs produced.

Macros are expanded in an outside-in fashion which limits interoperability between

macros. These expansions can contain macro calls; macro expansion continues until all

macros are removed.

4.6.2 Usability

Each macro is defined as a class that implements an interface SyntaxExpander.

Such definitions are unwieldy and require the programmer to perform many

housekeeping tasks (see section 4.6.4).

Thankfully, a shorthand exists that is written within JSE itself, the syntax macro

alleviates all of these housekeeping tasks and allows the programmer to concentrate on

the macro definition (see section 4.6.4.2).

A macro is defined to take only one argument: a SST fragment. Within the actual body

of the macro a syntaxSwitch construct is used to pattern match this fragment. This

approach was modelled on Lisp and Dylan [Sha96a].

Patterns may contain an arbitrary number of terminals and non-terminals, and are also

used to bind matches to variable names. JSE provides a rather odd shorthand for pattern

names: if the user fails to name a parameter, the system automatically generates a

default. For example, failing to name a type will lead to it being called type.

Patterns use a set of pre-defined constraints that allow for non-terminals: patterns accept

names, types, expressions, statements (either a single semicolon terminated statement,

or a block), bodies (an enforced block), and switch statement bodies.

Users are permitted to define new constraints, but it is unclear as to how free this

process is. Also, there appears to be no direct way to introduce constraints within code,

they must be included on Java’s CLASSPATH to be used.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES JAVA SYNTAX EXTENDER

 • 108 •

JSE provides support for both automatic hygiene and referential transparency. A quasi-

quotation form is provided along with unquote. Support is provided for nesting of

quotations.

4.6.3 Error Handling

The use of skeleton syntax trees prevents JSE from providing a guarantee that

expansions will be syntactically correct. The user is provided with no mechanism for

manually detecting and reporting errors although failure to match any case of the

syntaxSwitch will cause a SyntaxMatchFailure exception to be thrown, it is

supposed that the user could hijack this mechanism.

JSE does however make some attempt to provide users with debugging support.

Facilities are provided to allow smart editors to perform macro expansion on program

strings so that users can witness the result of macro expansion — one expansion at a

time if they wish. When compiler errors occur, JSE provides the original source of the

error. This provides programmers with feedback on the code they wrote themselves. It

is claimed that this simple maintaining of the source location of macro calls gives

“reasonable results” [BP01].

4.6.4 A Worked Example: foreach

In this section we provide two implementations of the foreach macro. The first

demonstrates the use of this system is its most low-level form, and the second is an

abbreviated version using the syntax macro.

4.6.4.1 Underlying Implementation

The following code is an implementation of a foreach macro that exposes the

underlying implementation to the programmer:

A macro is implemented by implementing SyntaxExpander by providing the two

methods getClauseNames and expand. It is left unspecified, but it is assumed that

the syntaxSwitch statement fills in the details of the clauseNames structure.

The expand method takes as its only argument a fragment of a skeleton syntax tree.

Within this method the user is expected to use the syntaxSwitch statement to

correctly match the macro form. A pattern for this statement is enclosed within a #{

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES JAVA SYNTAX EXTENDER

 • 109 •

... } block and may contain an arbitrary number of terminals and non-terminals.

Non-terminals follow a ? symbol and are specified by a name, and a type separated by a

colon. If the name is omitted the system uses a default. It is possible to match an

arbitrary SST by use of the * symbol.

publicpublicpublicpublic classclassclassclass foreachSyntaxExpander implementsimplementsimplementsimplements SyntaxExpander {
 privateprivateprivateprivate staticstaticstaticstatic String[] clauseNames = {};
 publicpublicpublicpublic String[] getClauseNames() { returnreturnreturnreturn clauseNames; }

 publicpublicpublicpublic Expansion expand(Fragment fragments) throwsthrowsthrowsthrows SyntaxMatchFailure {
 syntaxSwitchsyntaxSwitchsyntaxSwitchsyntaxSwitch (fragments) {
 casecasecasecase #{ foreach (?:type ?elt:name in ?:expression) ?:statement }:
 returnreturnreturnreturn #{
 Iterator i = ?expression.iterator();
 whilewhilewhilewhile (i.hasNext()) {
 ?elt = (?type) i.next();
 ?statement
 }
 };
 }
 }
}

Code Example 4.23: JSE Iteration Definition

The #{ ... } block is overloaded to provide the syntax for the quasi-quotation, and

? is used to mean unquote. These forms can be heavily nested if required.

It is unclear where the system obtains the name of this macro, it could either be from the

class name, or more likely it is from the first terminal in the first case of the

syntaxSwitch.

4.6.4.2 The syntax Macro

The syntax macro allows the programmer to dispense with housekeeping tasks and

provides a more concise understandable definition. Code Example 4.24 is the foreach

macro expressed in this improved form.

publicpublicpublicpublic syntaxsyntaxsyntaxsyntax foreach {
 casecasecasecase #{ foreach (?:type ?elt:name in ?:expression) ?:statement }:
 returnreturnreturnreturn #{
 Iterator i = ?expression.iterator();
 whilewhilewhilewhile (i.hasNext()) {
 ?elt = (?type)i.next();
 ?statement
 }
 };
 }
}

Code Example 4.24: JSE Improved Iteration Definition

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES JAVA SYNTAX EXTENDER

 • 110 •

Notice here, that this is just the inner part of the definition from the previous subsection,

but we are no longer exposed to any implementation details. Even the class definition is

now hidden from us.

4.6.5 Applicability to Benchmarks

Unlike many other systems, the use of skeleton syntax trees allows JSE to provide

access to the code within its clauses at a pretty basic level. To this end it would be

possible to define macros that consist of little more than a wrapper of a SST structure

representing whatever the programmer wished — programmers are free to perform

extra parsing on this representation. As a result there are few limitations to what would

be possible within a macro, although this approach should always be viewed as a

workaround.

Table 4.7: JSE Applicability to Benchmark Test Suite

Benchmark Summary Description

1 assert Simple definition.

2 foreach Simple definition, but not possible to manually enforce

the expression is indeed iterable.

3 printf Not possible. It should be feasible to create a user-

defined constraint to allow the use of literal strings, but

JSE has no capacity to check static types.

4 SQL JSE may be capable of providing SQL exactly, but

much work would be required to match SQL

expressions — the SST would have to be manually

parsed.

5 Generators Possible to define generators, but suspend statements

would have to be manually detected.

6 Haskell Not possible without full manual parsing of the subset.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES JAVA SYNTAX EXTENDER

 • 111 •

4.6.6 Extensibility Criteria Assessment

Table 4.8: JSE Extensibility Criteria Assessment

Criterion Assessment

1.1 Syntax Creation Syntax creation is only available in a limited form,

macros must always commence with a name, but may

appear anywhere within a file.

1.2 Syntax Interrogation Syntax interrogation is via skeleton syntax trees

(simpler and more general than abstract syntax trees).

Inner macro calls can be interrogated before they are

expanded.

1.3 Syntax Overloading Not provided.

1.4 Static Type Interrogation Not provided.

1.5 Expressiveness JSE is capable of providing small syntax additions

only. Its limited form of syntax addition would require

compromises to provide language embeddings.

Both the shorthand for defining new syntax and the

pattern-matching construct for ease of use are defined

in the language itself.

2.1 Simplicity JSE’s design focussed heavily on making things user

friendly, and this has been partially achieved. Skeleton

syntax trees remove the programmer’s need to

understand an entire abstract syntax.

However, the syntax for the definition of new macros

is still a little clunky, and this is due to the limited

syntax creation abilities of JSE.

2.2 Brevity The use of quasi-quote, unquote, and combinations of

these provide ease of use. The defined extensions for

syntax creation allow the programmer to be relatively

free of housekeeping tasks.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES JAVA SYNTAX EXTENDER

 • 112 •

2.3 Robustness Although unimplemented at the time of writing, JSE

provides a description of support for automatic hygiene

and referential transparency.

3.1 Syntactic Correctness Due to the use of skeleton syntax trees, no guarantees

are given as to the correctness of expansions.

3.2 Error Detection Meta-programs can throw an exception to indicate a

syntax error, but it is unclear if this system can be

extended to support other errors.

3.3 Error Reporting JSE provides good support for errors with facilities

provided for editor support, and rather than the

position in an expansion, the original source of an error

is provided.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES OPENJAVA

 • 113 •

4.7 OpenJava

OpenJava [Tat99] is a Java extension that provides a compile-time meta-object system.

It allows meta-classes to be associated with class definitions, and these drive the

translation of the defined class. Typical translation is similar to automatic application of

the visitor pattern [BH02§2].

OpenJava has limited applicability and its main emphasis is on semantic extensions

rather than syntactic ones [BP01]. OpenJava’s relatively primitive ability to provide

syntax extension allows an easy implementation without the necessity of handling

complex parsing problems.

4.7.1 Power

OpenJava does not permit arbitrary syntax extension. In fact, its ability to add new

syntax is very limited:

“Syntactic extension is limited to only a few certain places in class definitions

(e.g., class adjectives) and their uses (e.g., after class names in callers).”

[BP01§8.5.4, pp. 41]

Consider the code in Code Example 4.25 to automate the generation of visitor methods.

Following the instantiates keyword is the extension being used, and both the

visits and on suffixes are defined within this extension. OpenJava also admits the

addition of new modifiers. Suffixes allow a following list; it is unclear what elements

this list may consist of, but examples show the use of types and literals at least

[TCKI00].

publicpublicpublicpublic interfaceinterfaceinterfaceinterface GUIVisitor instantiatesinstantiatesinstantiatesinstantiates VisitorPattern visitsvisitsvisitsvisits GUIElement {
 voidvoidvoidvoid visit() onononon Container, Panel, Label;
}

Code Example 4.25: Open Java Visitor Methods Usage

OpenJava has little syntactic freedom, but it was primarily designed for semantic

extensions rather than syntactic ones [BP01].

OpenJava provides interrogation and creation of syntax through a set of abstract syntax

classes and a compile-time reflection facility. OpenJava metaclasses must be explicitly

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES OPENJAVA

 • 114 •

declared by use of instanstiates, and no extensions are possible for primitive

types or arrays.

4.7.2 Usability

OpenJava requires programmers to write a class that handles translation. Code Example

4.26 contains a code fragment for defining the VisitorPattern example from Code

Example 4.25.

publicpublicpublicpublic classclassclassclass VisitorPattern extendsextendsextendsextends OJClass {
 staticstaticstaticstatic voidvoidvoidvoid init() {
 registerDeclarationSuffix("visits", ..);
 registerDeclarationSuffix("accepts", ..);
 registerMethodSuffix("on", ..);
 }

 voidvoidvoidvoid translate() throwsthrowsthrowsthrows MOPException {
 ... // explicit use of syntax construction methods in here
 }
}

Code Example 4.26: Open Java Visitor Methods Definition

This approach is straightforward to understand, but somewhat tedious. No facilities are

provided to ease the programmer’s burden; OpenJava has no quasi-quotations or name

conflict protection.

“… OpenJava seems to ignore the technology, hygiene and referential

transparency, that makes macros work.” [Bak01§6.4.5, pp. 88]

4.7.3 Error Handling

OpenJava does not provide syntactic safety:

“OpenJava lacks some features that make compile-time metaprograms robust:

Its macros can generate illegal pieces of syntax, because they allow

metaprograms to convert arbitrary strings to syntax.” [BH02§2, pp. 3]

Translation methods can throw an exception, but it is not described how this exception

is used by the compiler or whether or not this system can be explicitly used to provide

useful error reporting from macros. Indeed, the handling of translation errors is not

described at all.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES OPENJAVA

 • 115 •

4.7.4 Applicability to Benchmarks

OpenJava’s extension mechanisms are essentially class-based which makes its

applicability to the benchmark test suite limited. As a result of this class-based

approach, any attempts to provide simple statement-level extensions would require

misuse of the underlying system via a tree traversal to discover statement extensions.

Each of these benchmarks would require the enclosing class to explicitly declare the use

of these internally.

Table 4.9: OpenJava Applicability to Benchmark Test Suite

Benchmark Summary Description

1 assert Possible via checking to see if each statement was a

call to a method called assert, and performing

translation if so.

2 foreach Not possible. OpenJava cannot provide the statement

block.

3 printf Possible with syntax changes as it is not possible to

create arbitrary length argument list, but this could be

handled as an OpenJava prefix specifier.

4 SQL Not possible.

5 Generators Possible once using same technique as the assert

benchmark.

6 Haskell Not possible.

4.7.5 Extensibility Criteria Assessment

Table 4.10: OpenJava Extensibility Criteria Assessment

Criterion Assessment

1.1 Syntax Creation OpenJava provides very limited forms of additions to

the syntax in the form of modifiers and suffixes, and

these in turn are limited to specific places.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES OPENJAVA

 • 116 •

1.2 Syntax Interrogation Provided via a compile-time reflection mechanism and

a set of abstract syntax classes.

1.3 Syntax Overloading Not provided.

1.4 Static Type Interrogation Definitely provided for methods of the defined class,

but unclear if it is provided for the surrounding context

or for variables.

1.5 Expressiveness OpenJava extensions are limited to those of class scope

— although it is possible to misuse this mechanism to

provide other smaller extensions.

2.1 Simplicity Due to strict limitations on additions that can be made

by the user there should be no parsing conflicts.

Defining extensions is a relatively straightforward

process, but users are exposed to the underlying

system.

2.2 Brevity No support is provided for making macros concise.

2.3 Robustness No support is provided for robustness.

3.1 Syntactic Correctness OpenJava allows creation of syntax from arbitrary

strings and as such does not provide syntactic safety.

3.2 Error Detection Translation methods may throw an exception but it is

unclear how this is utilised and as to whether the user

can explicitly use this mechanism for manually

detecting errors in a meaningful way.

3.3 Error Reporting Unclear if any support is provided for errors.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES MAYA

 • 117 •

4.8 Maya

The Maya programming language [Bak01] is a Java extension that has demonstrated

that it can be used for sizeable extensions. Its meta-program definitions attempt to

mimic Java declarations closely.

4.8.1 Power

Maya allows both extension and reinterpretation of its syntax. The Maya programmer

has the ability to write both new grammar productions and semantic actions.

Semantic actions are expanded in an outside-in fashion, and programmers must

explicitly specify which arguments to a meta-program are to have their parsing delayed

(see section 4.8.1.2).

Maya provides an abstract syntax for meta-programming, and provides for automatic

extension through its ability to define new grammar productions.

4.8.1.1 Grammar Productions and Semantic Actions

Grammar productions are treated as generic functions, whereas semantic actions (called

“Mayans”) on such productions are multimethods (i.e. methods that are polymorphic on

more than one of their arguments).

Mayans can be dispatched on tokens, syntax trees, or the static type of an expression.

A Mayan can add any production to the grammar, but the resulting language must be

recognisable by Maya’s LALR(1) parser (see section 6.5.3.1 for a description of LALR

parsing). This is a sizeable restriction, and forces the programmer to be aware of what

forms can be supported by LALR(1). As stated in section 3.2 it is desirable that the

programmer need not know how parsers function to be able to use an extensible

language.

4.8.1.2 Laziness

Maya employs laziness in both type checking and parsing. Lazy type checking allows

Mayans to dispatch based on the static types of arguments and conversely to create

variable bindings that can be used by other arguments. Both of these properties are

useful in defining the foreach macro from section 3.4.1.2: the general form of

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES MAYA

 • 118 •

foreach should only work on arguments that implement Iterator (or for the Maya

example also on Enumeration) but the body of the expansion relies on the definition

of a loop variable.

Laziness requires the programmer to explicitly specify how much expansion is required

for macro expansion to occur. Formal arguments of a macro may be annotated as lazy;

these arguments will not be parsed until after the macro expands.

This system facilitates Maya providing static type-checking, but restricts the

interrogation of lazy arguments. This in turn is prohibitive to close interaction between

Mayans which limits Maya’s expressiveness.

“Maya infers the node types and layouts corresponding to interior productions

based on the built-in Mayans. As a result, user-defined syntax may only appear

at the root of the tree.” [Bak01§3.3.1, pp. 26–27]

4.8.1.3 Overloading Mayans

Maya supports macro overloading. This allows the definition of the same macro for

wildly differing types, and, more importantly, specifically optimised code can be

produced for each of these types.

This overloading facility provides a limited capacity for Maya to override built-in Java

syntax.

4.8.2 Usability

The syntax for declaring Mayans mimics Java method call syntax closely. However,

pattern matching forms are also provided which simplify many operations but add an

initial barrier to understanding. These pattern matching forms provide a limited form of

the functionality that could be provided by tightly nesting macros — this functionality is

precluded by Maya’s use of outside-in expansion and lazy parsing.

Also, Maya provides a shorthand for the matching of static types which allows for

concise powerful definitions (see section 4.8.4 for an example).

The programmer is required to understand when to use abstract and concrete syntax.

These definitions require precise understanding of Maya’s implementation as:

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES MAYA

 • 119 •

“To define an abstract Mayan… one must understand Maya’s grammar and

conflict-resolution techniques.” [Bak01§3.2, pp. 24]

In addition to manual construction of syntax via the abstract syntax classes, Maya

provides both quasi-quote and unquote. Its quasi-quote syntax requires the user to

specify the type being produced. Maya provides both hygiene and referential

transparency within its quasi-quote construct.

Maya facilitates concise forms, but requires great programmer understanding, and:

“It remains to be seen whether Maya is simple enough to be usable.”

[Bak01§7.3, pp. 91]

The use of Mayans is lexically scoped, the user must explicitly specify the scope of the

Mayan with the use statement. This use statement can be at the top-level which

provides file-scope.

4.8.3 Error Handling

Maya’s abstract syntax and quasi-quote construct provide a guarantee of syntactic

correctness of expansions.

The system will automatically detect type errors when no specialisation can be selected

to match the types of a macro invocation. In addition to this, the macro programmer can

manually detect further errors and throw an exception to be handled by the parser.

These exceptions can be produced by abstract syntax classes themselves in order to

provide strong support for useful error messages.

4.8.4 Worked Examples

The following two examples demonstrate the implementation of assertions and iteration

constructs.

4.8.4.1 Assertions

Code Example 4.27 demonstrates a Mayan definition in its most low-level form. Each

group of Mayans must appear within a class that implements the interface

MetaProgram, and as a result must implement the method run that modifies the

parser environment. Each of these Mayan definitions must be explicitly run on the

environment, and the resultant environment must be returned. As we will see in the next

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES MAYA

 • 120 •

example, this is considered too repetitive for general use, and a Mayan is provided to

remove this burden from the programmer [Bak01].

packagepackagepackagepackage maya.util;
importimportimportimport maya.grammar.*;

useuseuseuse Syntax;

abstractabstractabstractabstract Statement syntaxsyntaxsyntaxsyntax (assert(Expression););

publicpublicpublicpublic classclassclassclass Assert implementsimplementsimplementsimplements MetaProgram {
 publicpublicpublicpublic Environment run(Environment env) {
 Statement syntaxsyntaxsyntaxsyntax A(assert(Expression e);) {
 returnreturnreturnreturn newnewnewnew Statement {
 ifififif (!$e) throwthrowthrowthrow newnewnewnew Error("Assertion failed");
 };
 }

 returnreturnreturnreturn newnewnewnew A().run(env);
 }
}

Code Example 4.27: Maya Assertions

This macro requires both an abstract Mayan declaration, and a concrete Mayan.

The concrete Mayan declaration utilises Maya’s quasi-quote to perform the translation.

The quasi-quotation has a form similar to a Java object creation except the abstract

syntax class does not have a list of parameters — if it did this syntax would be initially

indistinguishable from an anonymous class declaration. Unquote in Maya is specified

by the $ symbol.

4.8.4.2 Iteration

The implementation of iteration constructs provides a demonstration of Maya’s facilities

for the creation of new abstract syntax, overloading of Mayans, lazy parsing, quasi-

quotation, unquoting, and compile-time static-type checking.

The Maya implementation of a foreach structure mimics a function call and can be

applied to many types as shown in Code Example 4.28(a).

The LinkedList version produces the default expansion which is a simple

iterator loop, and the Vector version produces an optimised expansion which

accesses the Vector as an array as shown in Code Example 4.28(b).

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES MAYA

 • 121 •

LinkedList list;
list.foreach(String st) {
 System.err.println(st + " = " + h.get(st));
}

maya.util.Vector v;
v.elements().foreach(String st) {
 System.err.println(st);
}

(a) Iteration Usage

forforforfor (Iterator enumVar$ = h.keys(); enumVar$.hasNext();) {
 String st = (String) enumVar$.next();
 System.err.println(st + " = " + h.get(st));
}

maya.util.Vector v;
{
 Vector v$ = v;
 intintintint len$ = v$.size();
 Object[] arr$ = v$.getElementData();
 forforforfor (intintintint i$ = 0; i$ < len$; i++) {
 String st = (String) arr$[i$];
 System.err.println(st);
 }
}

(b) Iteration Expansion

Code Example 4.28: Maya Iteration Usage and Expansion

In order to demonstrate some important points, Code Example 4.29 contains a sub-

section of the Mayan definitions required to support iteration.

Firstly, we observe the decoupling of grammar productions from their associated

semantic actions: on line 8 there is a generic function definition that defines a class of

grammar productions that take a method name, a formal argument in parentheses, and a

lazily parsed set of statements surrounded by braces. Following this is a number of

Mayan definitions (on lines 10, 25, and 35).

These Mayan definitions all have the same basic form, that matches the abstract

definition. The formal argument and block require no further explanation, but the

method name part does. Each Mayan specifies that it will expand upon encountering an

expression, followed by a ., and the “method” name foreach. At first glance this

does not seem to satisfy the requirements for a method name, however a Maya method

name is a specialisation of an expression.

It should be noted here that the programmer is required to have a fairly detailed

understanding of Maya’s abstract syntax in order to be able to write macros, this is the

price paid for Maya’s expressiveness.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES MAYA

 • 122 •

1 packagepackagepackagepackage maya.util;
2 importimportimportimport java.util.*;
3 importimportimportimport gnu.bytecode.*;
4 importimportimportimport maya.tree.*;
5 importimportimportimport maya.grammar.*;
6 importimportimportimport maya.tree.ClassType;
7
8 abstractabstractabstractabstract Statement syntaxsyntaxsyntaxsyntax(MethodName(Formal) lazylazylazylazy(BraceTree, BlockStmts));
9
10 Statement syntaxsyntaxsyntaxsyntax
11 iForEach(Expression:Iterator enumExp.foreach(Formal var)
12 lazylazylazylazy(BraceTree, BlockStmts) body) {
13 finalfinalfinalfinal StrictTypeName castType = StrictTypeName.make(var.getType());
14
15 returnreturnreturnreturn newnewnewnew Statement {
16 forforforfor (Iterator enumVar = $(enumExp); enumVar.hasNext();) {
17 $(DeclStmt.make(var))
18 $(as Expression Reference.make(var)) = ($castType) enumVar.next();
19 $body
20 }
21 };
22 }
23
24 // Walk a collection's iterator
25 Statement syntaxsyntaxsyntaxsyntax
26 cForEach(Expression:Collection c.foreach(Formal var)
27 lazylazylazylazy(BraceTree, BlockStmts) body) {
28 returnreturnreturnreturn newnewnewnew Statement { $(c).iterator().foreach($var) $body };
29 }
30
31 // vector specialisation would like very similar to the above
32
33 /* The base case assumes that $e is an array, but the concrete syntax
34 * doens't allow us to write array-of(*) or void */
35 Statement syntaxsyntaxsyntaxsyntax
36 aForEach(Expression e.foreach(Formal var) lazylazylazylazy(BraceTree, BlockStmts) body)
37 {
38 finalfinalfinalfinal Type t = e.getStaticType();
39
40 ifififif (!t.isArray())
41 throwthrowthrowthrow e.error("foreach not defined for " + e.getStaticType());
42
43 ifififif (!var.getType().isAssignableFrom(t.getComponentType()))
44 throwthrowthrowthrow var.error(var.getName() + " doesn't match array type " + t);
45
46 // array specialisation code would go here
47 }
48
49 publicpublicpublicpublic defineMayanContainer(ForEach) {
50 iForEach,
51 cForEach,
52 aForEach
53 }

Code Example 4.29: Partial Maya Iteration Definition

The first Mayan (lines 10–22) is designed to work on expressions that have a compile-

time static type that implements the Iterator interface. For this to be possible the

surrounding context needs to be available to the compiler when the macro is matched.

This aspect of Maya’s syntax is on line 11, in the term Expression:Iterator.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES MAYA

 • 123 •

On line 13, this Mayan pulls type information from the formal parameter in order to be

able to create a cast expression of the correct type.

On lines 15–21, is the first example use of Maya’s quasi-quotation; here it is used to

create a new Statement. Within this quasi-quotation, there are multiple uses of the

unquote operator $, that allow values from the surrounding macro to be used, all of

these are type checked when the macro itself is compiled. Also, the variable enumVar

is guaranteed not to conflict with the surrounding context on expansion due to hygiene.

On lines 25–29, the specialisation for collections is shown; it simply retrieves the

collection’s iterator and uses the Mayan for iterators.

On lines 31–46, a partial definition of the array specialisation is shown. Maya is unable

to check the static type of the array directly and the programmer is forced to include

specific checks that the parameter is indeed an array (lines 40 and 41). On line 43, the

type of the formal argument is checked against the type of the array, this was not

possible to do for the iterator Mayan as Java (before 1.5) did not provide type

information for collections.

The final part of this implementation (lines 49–53), demonstrate the housekeeping that

the programmer is still required to perform in Maya. In fact, this is a Mayan written to

reduce Maya’s housekeeping requirements.

4.8.5 Applicability to Benchmarks

The use of lazy parsing in Maya provides powerful facilities that lend themselves to

producing concise code for many of the benchmark cases. However, this same system

severely limits its expressiveness, and as a result, Maya implements part of the test suite

concisely, but is incapable of implementing the remainder.

Table 4.11: Maya Applicability to Benchmark Test Suite

Benchmark Summary Description

1 assert Simple definition.

2 foreach Simple definition.

3 printf Simple definition.

4 SQL Not possible.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES MAYA

 • 124 •

5 Generators Not obviously possible. With change of suspend

syntax to return Maya may be capable of providing

this extension.

6 Haskell Not possible.

4.8.6 Extensibility Criteria Assessment

Table 4.12: Maya Extensibility Criteria Assessment

Criterion Assessment

1.1 Syntax Creation Arbitrary placement of new syntax allowed, but

outward-in evaluation does not allow for Mayans to

depend on other Mayans.

1.2 Syntax Interrogation Abstract syntax classes provided for syntax

interrogation, although lazily parsed sections can not

be examined. Pattern matching in formal arguments of

Mayans simplifies some code.

1.3 Syntax Overloading It is possible to override the default behaviour of

languages forms.

1.4 Static Type Interrogation Maya provide concise syntax for ensuring a parameter

to a Mayan is of a specified type and provides

functionality in abstract syntax for direct interrogation.

Mayans make extensive use of specialisation.

1.5 Expressiveness Maya is capable of providing small syntax additions

only. A MultiJava implementation is provided, but this

is possible because its syntax differs only slightly from

Java.

2.1 Simplicity Successful creation of Mayans relies on understanding

of both the provided abstract syntax and the conflict

resolution techniques of the parser. If a Mayan

declaration causes a conflict, users need to understand

LALR(1) grammars.

CHAPTER 4: REVIEW OF EXTENSIBLE LANGUAGES MAYA

 • 125 •

2.2 Brevity Maya provides quasi-quotation and unquoting

facilities, and provides a host of programmer shortcuts

for Mayan definitions.

Whilst brevity is provided for Mayan definitions, each

group of Mayans needs to be declared within a class

that extends MetaProgram, and each exported

Mayan must be explicitly added to the environment by

the programmer.

Before use, each Mayan must be first imported and

then its scope must be declared via the use statement.

2.3 Robustness Maya provides automatic hygiene and referential

transparency.

3.1 Syntactic Correctness Mayans will always produce valid abstract syntax

trees.

3.2 Error Detection Syntactic errors in Mayan declarations are detected at

compile-time, and the expansion is type checked.

Mayans can explicitly check for errors and return

useful information to the programmer.

3.3 Error Reporting Explicitly detected errors provide useful error

messages, whereas errors undetected by the macro do

not.

 127

5 Genesis Language Definition

Genesis Language Definition

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

reviewing

extensibility

reviewing

parsing

implementing

a parser

designing

the language

implementing

the language

evaluation

conclusion

CHAPTER 5: GENESIS LANGUAGE DEFINITION OVERVIEW

 • 128 •

5.1 Overview

The Genesis language design is inherently very simple, it consists only of a slight

modification to the Java grammar, and specification of a new compilation strategy. This

compilation strategy involves the definition of a flexible tokeniser coupled with a

modification of the standard Java import mechanism.

Firstly, we explain the Genesis design rationale (section 5.2) following the review from

the previous chapter.

We introduce the basic form of the macro definition (section 5.4) and explain the

subtleties of macro definitions.

A high-level description of the tokeniser design is provided (section 5.5) with an

emphasis on its flexibility.

The process of macro expansion is described (section 5.6) which entails a description of

the modified import mechanism and a detailed explanation of the order of evaluation of

macros.

Finally, the languages standard environment (i.e. facilities that should be available in

any implementation) is described (section 5.6); this includes a description of the abstract

syntax classes, standard exception classes, type-checking facilities, and a macro

reflection mechanism.

CHAPTER 5: GENESIS LANGUAGE DEFINITION DESIGN RATIONALE

 • 129 •

5.2 Design Rationale

The Genesis design follows directly from the examination of previous languages in

Chapter 4. The focus is on the often conflicting goals of power and simplicity.

5.2.1 Arbitrary Syntax Creation

The major failing of the languages reviewed in Chapter 4 was in arbitrary syntax

creation. Each language had substantial restrictions on macro use:

• Lisp allows for arbitrary placement of macros, but not for new syntax creation,

all macros are in prefix form.

• Template Haskell permits macros at the declaration and expression level only,

requires explicit caller-side identification of macros, and macros must conform

to its normal function call syntax.

• MS2 limits macro placement to declaration, statements, and expressions and

requires all macros to begin with a name.

• JSE has no restriction on placement within a source file but requires macros to

commence with a name.

• OpenJava has strong restrictions on both the placement and syntax of any

extensions.

• Maya allows for both arbitrary placement of macros and arbitrary syntax

creation. Unfortunately, Maya has restrictions on the interoperability of macros:

only lazy arguments can contain further macro definitions.

The primary design goal of this work was to provide the greatest flexibility in arbitrary

syntax creation. Wherever possible when this conflicted with other goals, syntax

creation flexibility was the winner.

This aim of flexibility resulted not only in the arbitrary macro definition design (see

section 5.3) but also in the design of the tokeniser (see section 5.4).

5.2.2 Compile-time Interrogation

The majority of reviewed languages provided good support for the interrogation of

syntax, but were greatly varied in their level of support for the overloading of syntax

and compile-time type interrogation. Many of the most interesting extensions (e.g.

CHAPTER 5: GENESIS LANGUAGE DEFINITION DESIGN RATIONALE

 • 130 •

Maya’s implementation of forall — see 4.8.4.2) rely on both of these facilities. In

particular, these kinds of specialisation allow for a host of user-defined optimisations.

Flexibility of macro definition already covers allowing overloading of macros, and it is

considered essential that Genesis provide powerful facilities for interrogation of all

aspects of compile-time information.

5.2.3 Base Language

A secondary design goal was not to create any artificial barriers to adoption. As

previously discussed, programmer adoption of meta-programming has been limited.

One of the factors behind this is the lack of facilities in most mainstream languages.

Even Lisp has never seen much use outside a teaching or artificial intelligence setting.

C++ does provide meta-programming, but in a form too inconvenient for most

programmers to stomach.

It is for these reasons that a mainstream language (Java) was chosen as the vehicle for

this research. Java itself is simpler than many other mainstream languages and this

simplifies things from a language extension perspective — eg. the lack of persistent

local stack variables. This choice makes design harder than say extending a functional

language (eg. surrounding context is more important in Java), but still easier than trying

to support extensibility in more complex languages.

5.2.4 Outward Language Simplicity

A secondary design goal was to provide the flexibility of arbitrary syntax creation in the

most simple form possible — that is from the perspective of both the macro

programmers and the macro users. Again, the major reason behind this was to allow for

easy adoption.

To this end, it is desirable that macro definition syntax be both as simple as possible and

as similar to Java method definition syntax as possible.

Also, programmers should not need to understand the difference between abstract and

concrete syntax to be able to define or use macros. No artificial barriers should be

created to differentiate between the concrete and abstract parts of a macro definition.

CHAPTER 5: GENESIS LANGUAGE DEFINITION DESIGN RATIONALE

 • 131 •

5.2.4.1 Programmer Support

Of the systems reviewed in Chapter 4 almost all provided a quasi-quotation facility and

some form of hygiene. Also, most provided guarantees that all code translation would

result in syntactically correct code (with the exception of JSE). These facilities allow the

programmer to produce concise code and give some measure of confidence in its

correctness. It is viewed as essential that Genesis also provides such facilities.

5.2.4.2 Parser Restrictions

Each of the reviewed languages that attempted to provide some form of arbitrary syntax

creation (i.e. only JSE and Maya) are restricted by their choice of parser:

• JSE provides early structure detection by its use of skeletal syntax trees. These

force the parse into a set of restricted shapes.

• Maya provides for a LALR(1) parser (see section 6.5.3.1) and requires the

programmer to understand why parser conflicts may arise and how to repair

them.

Parsers are not discussed in this chapter as Genesis was designed irrespective of parser

issues. The focus was on providing the most flexible language as possible and to worry

about how to parse it later. See Chapter 6 for a review of parser theory, and Chapter 7

for issues relating to the parsing of Genesis.

5.2.5 Inward Language Simplicity

A secondary design goal is to keep the language definition as minimal as possible. Lisp

has shown the capabilities of a macro system by defining much of its standard language

as macros. The Haskell definition contains a minimal core language and merely states

how the more complicated constructs translate into this core language. Even C++ was

initially described by a translation to C (i.e. C was the ‘simple’ core language). The

benefits of this type of design are three-fold:

• a smaller core language design is easier to reason about, and there is less chance

of unexpected interactions between language features;

• if the rest of the language can be defined within your core language, then it

suggests the core language has a degree of expressive power; and

• smaller languages require less implementation burden.

CHAPTER 5: GENESIS LANGUAGE DEFINITION DESIGN RATIONALE

 • 132 •

Of these, the second point is the most important in regard to extensible languages. If the

majority of the language cannot be expressed via macros, then the macro system is not

powerful enough. If the language designers are running into restrictions of the language,

then so will its users.

5.2.6 Error Reporting

The reviewed languages varied greatly in their support for the reporting of errors.

Support varied from ignoring errors completely (eg. MS
2
) to trying to track errors back

to their source (eg. JSE). Also some languages allow the user to provide their own error

checking and to explicitly flag errors (eg. Maya).

Much error handling is typically left as an implementation issue (notable exceptions to

this are Ada and Java). With an extensible language this is not possible as part of what

is being defined is compile-time operation.

Error detection both by the compiler and explicitly by the user is necessary for many

sophisticated extensions — eg. type-system modifications are not possible without

being able to perform type-checking with the possibility of flagging new errors. It is

necessary that Genesis provides strong support for explicit errors.

While poor error tracking can create adoption barriers for end-users, it is not essential

for the creation of a successful macro system. It is highly desirable however. Genesis

provides only limited error tracking support (see subsection 8.5.4).

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO DEFINITIONS

 • 133 •

5.3 Macro Definitions

Macro definitions attempt to take the place of arbitrary context-free grammar rules. A

macro definition closely resembles a Java method definition and consists of a return

type followed by a list of arguments.

Being able to represent context-free grammar rules in this fashion and the exact syntax

of a macro is best demonstrated by an example. In Code Example 5.1 we present a small

(incomplete) fragment of a set of BNF rules to define a Java statement and the

equivalent concept as Genesis macros. Neither the full set of Java statements nor the

macro implementations are shown.

statement ::= ifififif ((((expr)))) statement elseelseelseelse statement
 | while (while (while (while (expr)))) statement
 | ...

(a) Partial Statement Grammar

macromacromacromacro Statement (if, (, Expression expr,),
 Statement left, else, Statement right) { ... }
macromacromacromacro Statement (while, (, Expression expr,), Statement statement) { ... }

(b) Macro Definitions

Code Example 5.1: Grammar to Macro Translation

Macro definitions are easily distinguishable from Java methods by the keyword macro.

This is mostly for clarity; it would be possible with the current form of Genesis macro

definitions to do away with this entirely. Unlike Java methods, Genesis macro

definitions are not named by an identifier, and their formal parameter lists admit varying

forms and hence require a little further explanation.

5.3.1 Parameters

While still comma separated, formal macro parameters consist of three components:

tokens (as they are defined in section 5.4), normal formal parameters, and literal strings.

The latter are only provided for clarity, as it is possible to define a macro as shown in

Code Example 5.2(a).

macromacromacromacro Expression (Expression left, ,, Expression right) { ... }

(a) Raw Tokens

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO DEFINITIONS

 • 134 •

macromacromacromacro Expression (Expression left, ",", Expression right) { ... }

(b) Quoted Tokens

Code Example 5.2: Raw and Quoted Terminals

The intent here is to define a comma operator such as found in C++ [Str00§6.2.2], i.e.

two expressions can be separated by a comma, both will be evaluated in order, but only

the result of the second will be the result of the comma expression. For clarity, this can

be rewritten as shown in Code Example 5.2(b).

Macro definitions admit both abstract syntax (representing grammar non-terminals) and

concrete syntax (representing grammar terminal symbols) in their parameter lists, and

always emit abstract syntax. This frees the macro programmer of much of the

complexity inherent in fully understanding either grammar. The programmer specifies

which parts are to be matched exactly (the concrete parts) and which parts are to be

manipulated (the abstract parts) in a very intuitive fashion. The exact form of the

abstract syntax is discussed further is section 5.6.1.

5.3.2 Precedence

A macro definition may also specify a precedence. If two macro definitions successfully

match the same series of tokens, a precedence can be used to remove the ambiguity.

Precedences may range from zero to one inclusive, and are specified (at least in

definition) to an arbitrary degree of precision. Macros that do not specify a precedence

are given the default precedence of 0.5.

In the example of the comma operator from the previous section it would be necessary

to be able to discern whether commas specify use of said operator or actual parameter

lists. For example, the preferred option would be to recognise f(x, y) as a call to a

function with two actual parameters x and y, not a call to a function with one actual

parameter x,y.

macrmacrmacrmacroooo Expression (Expression left, ",", Expression right) precedenceprecedenceprecedenceprecedence 0.4 { ...
}

Code Example 5.3: Precedence Syntax

So we would like comma operator to receive a lower precedence, this is done as shown

in Code Example 5.3. Note that the choice of 0.4 is arbitrary, but using real numbers for

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO DEFINITIONS

 • 135 •

the precedence means we have, theoretically, an infinite number of precedences in

between any two precedences, so arbitrary choices are of little impact.

The use of explicit precedences is a marked departure from the use of relative

precedences found in many other systems. Relative precedences are specified by

relating the precedence of functions (often only operators) to one another. This

approach is unsuitable for the Genesis language as a group of imported macros are not

necessarily aware of any other previous macros against which relative precedences

could be defined.

5.3.2.1 Precedence by Grammar Modification

For a given grammar, precedence can be simulated by transforming the original

definitions into multiple other definitions. This is almost always done for expressions.

Consider the simple expression grammar in Figure 5.1(a). This grammar is ambiguous

since for expressions such as 1*2+3 there are multiple interpretations.

expr ::= expr op expr | (expr) | number
op ::= ++++ | ---- | **** | ////

(a) Without Precedences

expr ::= factor aop factor
factor ::= term mop term
term ::= (expr) | number
aop ::= ++++ | ----
mop ::= **** | ////

(b) With Explicit Precedences

Figure 5.1: Expression Grammar

Most grammars would introduce new terms and rewrite Figure 5.1(a) as shown in

Figure 5.1(b) [ASU86]. Although, some grammars would not include aop or mop, and

would instead expand them in the rest of the grammar. This approach is obviously

possible with multiple macro definitions. For a large number of operator precedences

however, this quickly becomes hard to follow. For languages such as Java and, to an

even greater degree, C/C++ the number of precedences makes their expression

grammars very difficult to follow.

One of the desirable properties of an extensible language is that extensions are simple

for the programmer; to that end the precedence scheme for macros is more desirable

than forcing them to understand grammar transformations.

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO DEFINITIONS

 • 136 •

5.3.3 Associativity

If we have two consecutive applications of the comma operator then there are two

possible interpretations, e.g. does x,y,z mean (x,y),z or x,(y,z). For the

comma operator it simply doesn’t matter, both interpretations will evaluate x, then y,

then z, and return the result of z, but for many other operators/functions it does matter,

eg. assignment is right-associative, subtraction is left-associative, etc.

For the vast majority of macro definitions associativity will never be an issue, but

nonetheless it is necessary to allow the programmer to choose between these

interpretations. If we chose to specify right associativity for the comma operator we

would modify our previous definition to that shown in Code Example 5.4.

macromacromacromacro Expression (Expression left, ",", Expression right)
 precedenceprecedenceprecedenceprecedence 0.4 rightassociativerightassociativerightassociativerightassociative { ... }

Code Example 5.4: Associativity Syntax

Right-associativity is represented by a modifier switch with left-associativity being the

default as the vast majority of operator definitions are left-associative. For example, the

only binary operators in Java that are right-associative are the assignment operators

[Sun02].

5.3.3.1 Associativity by Grammar Modification

There are similar transformations to those covered in section 5.3.2.1 to handle

associativity, however for the same reasons (i.e. simplicity for the programmer) it was

deemed that this approach was undesirable.

5.3.4 Zero Argument Macros

It is possible in Extended BNF to define optional components in grammars, for

example, in Java methods have an optional series of modifiers, and a snippet of the

grammar for defining methods is shown in Figure 5.2(a):

method ::= [modifiers] return_type name ((((...)))) ...
modifiers ::= modifier modifiers | modifier
modifier :: = publicpublicpublicpublic | privateprivateprivateprivate | staticstaticstaticstatic | ...

(a) EBNF Definition with Optional Components

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO DEFINITIONS

 • 137 •

method ::= modifiers' return_type name ((((...)))) ...
modifiers' ::= modifiers | ε
modifiers ::= modifier modifiers | modifier
modifier :: = publicpublicpublicpublic | privateprivateprivateprivate | staticstaticstaticstatic | ...

(b) BNF Definition with Empty Symbol

method ::= modifiers return_type name ((((...)))) ...
 | return_type name ((((...)))) ...
modifiers ::= modifier modifiers | modifier
modifier :: = publicpublicpublicpublic | privateprivateprivateprivate | staticstaticstaticstatic | ...

(c) BNF Definition with Fully Expanded Options

Figure 5.2: Method Definition Grammar

Figure 5.2(b) shows the standard approach for representing this in normal BNF: remove

the optional part and introduce an ε, which specifies that the rule can be satisfied by

nothing.

This use of ε would correspond to a macro definition with no arguments. This is not

supported at this time. This does not restrict the power of the resultant system, it merely

forces the programmer into expanding out the possibilities. For example an alternative

BNF definition not using ε is shown in Figure 5.2(c).

This becomes more of a problem the more optional components a particular definition

has, for example a method declaration actually has an optional list of modifiers, an

optional list of formal arguments, an optional throws clause, and in the case of

abstract methods, an optional body. This situation would require sixteen separate

definitions were it to be handled in this form.

Even if this situation was always necessary it is not a significant deficiency, but as we

shall see in section 8.7.2, the system is powerful enough that we can define macros to

alleviate this forced repetition.

5.3.5 Modifiers

No standard Java modifiers are supported for macros. All macros have effectively

public style visibility. There is one new modifier, delayed, that modifies the

normal order of evaluation of a macro (see section 5.3.8).

5.3.6 Exceptions

Macro definitions may have a throws clause just like normal Java functions. The

language defines an abstract class ParserException that inherits from

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO DEFINITIONS

 • 138 •

Exception, and all exceptions in this throws clause must extend this class. For

explanation of exceptions provided in the standard environment, see section 5.6.2.

5.3.7 Macro Body

The body of a macro is standard Java code. Provided as standard is a set of classes that

provide a full Java abstract syntax. The body of a macro uses these standard classes to

create Java programs. This is not a new approach (see [Bak01], [WC93], and [SPJ02])

and when using just this technique the code produced is relatively cumbersome.

“This style of code plagues meta-programming systems.” [WC93]

Many extensible systems try to provide cleaner support for the body of macros with the

addition of both quasi-quotation and unquoting. This is always done by providing direct

language support.

In Genesis, no direct language support has been provided for these forms, instead the

language itself is expressive enough to define these as extensions (see section 8.7.1).

5.3.8 Evaluation Order

Macro expansion occurs either in an inside-out or outside-in fashion. All inside-out

macros are expanded before the outside-in macros. To provide this choice to the user,

macros can use the modifier delayed, which tags the macro for outside-in evaluation.

The reasons behind this approach and a more comprehensive description of macro

evaluation order is given in section 5.5.2.

5.3.9 Placement and Scope

Macros can appear only in the same locations as normal Java methods. They are

associated with the enclosing class in a similar fashion to methods. Other classes gain

access to macro definitions through an extension of the normal import mechanism (see

section 5.5.1). Unlike normal methods, however, all macros are accessible with

qualification: i.e. macros do not need to be accessed via objects or in the case of static

methods via a class name.

Whilst not currently prevented, it remains to be seen whether there is value in defining

macros for inner classes or anonymous classes. It is not clear how these definitions

would be accessed with the current system.

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO DEFINITIONS

 • 139 •

5.3.10 Grammar

In addition to the standard Java (Java 1.4 that is6) syntax, only the new grammar rules

shown in Figure 5.3 are introduced for macro definitions and add the macro declaration

rule to the list of class member declarations.

class_member_declaration ::= macro_declaration | ...

macro_declaration ::= [delayeddelayeddelayeddelayed]
 mmmmacroacroacroacro return_type identifier (((([macro_argument_list]))))
 [precedenceprecedenceprecedenceprecedence float_literal] [rightassociativerightassociativerightassociativerightassociative]
 [throws_clause]
 method_body

macro_argument_list ::= macro_argument (,,,, macro_argument)*
macro_argument ::= formal_argument | token | string_literal

Figure 5.3: Genesis Grammar

In this grammar the throws_clause is a standard Java throws clause. Four new

keywords have been introduced, although, as demonstrated in the following section,

Genesis does not have keywords in the traditional sense. However, in most macros the

only keyword that would appear is the macro keyword.

New grammar rules are not required for macro calling as each new macro that is loaded

(via the import mechanism, see section 5.5.1) will add itself directly to the grammar.

Indeed, it can be considered that the only modification to Java is of a new compiler,

even the syntax for defining new macros is loaded as an extension to the compiler. In

fact, the very substance of Java1.4 is loaded by default, but it would be possible to load

an entirely different group of classes to begin with (see section 8.6.1 for an example of

this).

6 At the time of implementation of Genesis, Java1.4 was chosen over the fledgling Java1.5. Some

improvements to Genesis could be achieved by migration to Java1.5 — see section 10.2.4.

CHAPTER 5: GENESIS LANGUAGE DEFINITION TOKENISING

 • 140 •

5.4 Tokenising

Tokenising is the approach of grouping the raw characters of a source file to allow for

easier parsing. For a description of tokenising see subsection 6.3.3.

When breaking up any original source file it is desirable that we place as few

restrictions as possible on user defined macros that will ultimately work with this

tokenised version. Traditional tokenising methods tend to make early decisions on the

exact nature of tokens, eg. literal strings, real versus integer numbers, keywords, etc.

An extensible programming language does not facilitate early decision making as little

can be guaranteed about the purpose of any given lexical structure.

Real numbers serve as an appropriate example of the inherent difficulties: if the

tokeniser matches digits.digits or even simply .digits as a real number, then

macros that include either of these patterns as part of their definition would be

impossible to define without treating that subsection of their definition as a “real” token.

Worse still, suppose we have two macros consecutively, the first one ending in “.”, the

second beginning with digits. These use of two macros would be rendered

impossible by the early matching of real numbers.

Of particular interest here is the case of keywords. It is undesirable to allow users to

define their own keywords as keywords traditionally can only appear in exacting

locations. For example, we cannot use a keyword as an identifier, if we allowed users to

define their own keywords, then code that used those keywords would break upon

attempting to incorporate these new macros.

The next few sections describe the development of the tokeniser with the emphasis on

making it as flexible as possible.

5.4.1 Tokenising Approach Overview

Each source file is broken into a series of tokens, the only information removed is the

position of white space (this itself can be considered a sizeable restriction of flexibility,

see section 10.2.1 for a possible technique to improve this).

CHAPTER 5: GENESIS LANGUAGE DEFINITION TOKENISING

 • 141 •

The basic idea is to strip all source files of comments, and tokenise the entire file

treating white space and the change from alphanumeric characters to symbolic

characters as separators as shown in Figure 5.4.

ifififif (frogs>toads) ++x; elseelseelseelse y -= 10;

(a) Source Code

if (frogs > toads) ++ x ; else y -= 10 ;

(b) Tokenised Version

Figure 5.4: Simple Tokenising

This simple tokenising approach needs some refining to handle symbols and some other

special cases.

5.4.2 Special Cases

Both string and character literals are treated as exceptions to this basic strategy. These

literals must be detected by the tokeniser and subsequently treated as a single token.

Early handling of character literals is perhaps not strictly necessary (although spaces

could make character literals unreadable), but string literals would suffer badly as a

result of the removal of whitespace.

The only restricted symbols are those that are already permitted in Java identifiers,

namely the dollar-sign and underscore. When encountered, these symbols are essentially

considered to be “alphanumeric” characters.

5.4.3 Symbol Handling

It was clear in Figure 5.4 that when multiple symbols characters occurred in sequence

that they were part of a single symbol (eg. ++ or -=). Consider however the code

fragment and its associated tokenised version in Figure 5.5.

x+=(y4++-zebras)*-400.3;

(a) Source Code

x +=(y4 ++- zebras)*- 400 . 3 ;

(b) Tokenised Version

Figure 5.5: Multi-character Symbol Grouping Tokenising

Multiple concurrent symbolic characters have been combined into symbolic tokens;

treating these symbols as a single token is not what programmers expect.

CHAPTER 5: GENESIS LANGUAGE DEFINITION TOKENISING

 • 142 •

5.4.3.1 Traditional Approach

Most systems disallow the creation of new operators and consequentially sidestep this

problem. Such languages must precisely specify what multiple occurrences of symbolic

characters resolve to. For example, in the C/C++/Java program fragment x+++y, the

tokeniser must consistently return either a post-increment and an addition; or an

addition and a pre-increment.

For those systems that allow user-defined operators they typically limit the length of

operators and treat some symbols as special. These special forms are typically the

bracketing forms (eg. (, [, and {) and separators (eg. , and ;). Further to these

restrictions, such systems usually require explicit spaces between operators, or at least

between user-defined operators.

These approaches are not appropriate to our extensible language design — unlike most

languages, Genesis’ concept of a symbol is extended to include bracketing forms and

separators/terminators. Any restriction at all to the symbols (and combinations of

symbols) allowed in a macro definition could have unforeseen consequences at a later

stage.

5.4.3.2 Explicit Spaces

In respect to construction of the tokeniser, the simplest solution would be to require the

programmer to place explicit spaces between all symbols that are meant to be separate.

Whilst an attractive solution for simplicity reasons, its use is too impractical, especially

to those familiar with languages without such restrictions. For example, programmers

are unlikely to remember to leave a space between consecutive parentheses.

5.4.3.3 Single-character Symbols

Another approach to support arbitrary symbol creation is to recognise only single

character symbols, and to introduce a new grammar rule to provide for multi-character

symbols at the parsing stage.

The code fragment from Figure 5.5(a) would simply tokenise as shown in Figure 5.6

x + = (y4 + + - zebras) * - 400 . 3 ;

Figure 5.6: Single-character Symbol Output Tokenising

CHAPTER 5: GENESIS LANGUAGE DEFINITION TOKENISING

 • 143 •

The new grammar rule would simply take two consecutive symbols and combine them

into one symbol, i.e. symbol ::= symbol symbol.

However, this approach does not distinguish between multi-character symbols and

multiple consecutive single character symbols, eg. “--” and “- -”. This is extremely

undesirable and worse can lead to ambiguity as the user would never be able to specify

that consecutive symbols are not to be treated as one.

This situation may be possible to rectify by allowing whitespace between symbols to

pass through the tokeniser, where carefully chosen grammar rules could both remove

the whitespace and produce all possibilities of symbols. This was ultimately rejected

due to the complexity it would introduce and the parsing method used provides a simple

solution for symbols.

5.4.3.4 Symbol Combinations

The most flexible approach should allow the user to provide for the removal of

ambiguity explicitly by the insertion of whitespace between symbols whilst providing

all possible combinations of multi-character symbols. Normal grammar rules would

then be used to decide the correct interpretation of the multi-character symbols.

Returning many possible interpretations of character sequences is conceivable for other

constructs (such as real numbers) but there is no compelling reason to do so. It is

particularly desirable for symbols due to both the problems it solves with the

recognition of multi-character symbols and the high frequency of consecutive symbols

in typical source files.

The code fragment from Figure 5.5(a) would tokenise as shown in Figure 5.7.

Figure 5.7: Multi-character Symbol Combinations Tokenising

The choice of grammar rules would be responsible for choosing the “correct” symbol

combinations, namely: += (, ++ -, and) * -.

The result of this is similar to that of the technique using single-character symbols and

explicit grammar rules, but without the possibility of introducing ambiguity.

+ = (

+= (

+ =(

+=(

+ + -

++ -

+ +-

++-

) * -

)* -

) *-

)*-

x y4 zebras 400 . 3 ;

CHAPTER 5: GENESIS LANGUAGE DEFINITION TOKENISING

 • 144 •

Obviously the number of possible combinations of characters within a multi-character

symbol grows exponentially with its length, but it seems that occurrences of long

symbol sequences within source files is rare and almost all are large sequences of

parentheses as a result of heavily nested expressions.

This approach is significantly different to traditional tokenising mechanisms that always

uniquely categorise each sequence. This choice of highly flexible lexical analysis alone

may have ultimately led to the necessity of a generalised parser, but as we shall see

(section 6.6) a generalised parser has other benefits as well.

5.4.4 Tokeniser Algorithm

The transition diagram in Figure 5.8 summarises the function of the tokeniser.

The character groups are defined as follows:

• Alphanum: all alphabetic and numeric characters as well as the underscore and

dollar sign symbols.

• Symbol: all symbolic characters except for the underscore and dollar sign.

• Whitespace: tab, space, newline, endline, etc.

Upon reaching end state 4, 6, 10, 13, 15, 17, or 19, the tokeniser performs the

appropriate action and falls back to the start state (state 0).

States 1, 9, and 11 require further explanation. Each of these are essentially failure

states for whichever rule is currently being followed, and the next state depends on

which characters have been previously detected. In each case (except state 1) the

preceding characters may be a mix of both alphanumeric characters and symbols, but

always starting with a symbol. In each of these cases the tokeniser falls back to symbol

handling (state 7) from the beginning of the sequence.

CHAPTER 5: GENESIS LANGUAGE DEFINITION TOKENISING

 • 145 •

Figure 5.8: Tokeniser Transition Diagram

0 1 3 2 4

6 5

15 14

7 9 8 10

11 13 12

17 16

19 18

start / * * /

other

other
other

\n
/

other

other

other

other

other

whitespace

alphanum

symbol

other “

\

\

other

‘
‘

“

symbol

alphanum

whitespace

\n

other

*

*

*

character

literal

string

literal

symbol

token

other

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO EXPANSION

 • 146 •

5.5 Macro Expansion

In order to allow the programmer access to previously defined macros, Genesis provides

both an extension to the standard Java import mechanism and the specification of a

precise evaluation order for the grammar.

5.5.1 Import Mechanism

Before usage, macros must first be imported via the standard import mechanism. Any

macros associated with an imported class have file scope.

Each directly imported class (i.e. those import declarations not ending with “.*”) will

be examined to see if it has associated macro definitions. If so, each one of these macros

will be added to the current grammar. This is the only method for bringing macros into

scope.

Each macro definition is associated with a precedence and an associativity. It is possible

to add two separate macros to the grammar that differ only by their precedence.

Imported macros have public visibility for the entire file being compiled.

5.5.2 Expansion Strategy

The basic idea is that macros have their bodies executed when their usage is detected,

and the macros themselves explicitly build the parse tree. There are some extensions to

this basic idea that allow for some of the more powerful macros to be created.

No guarantee is given to exactly which macros will be executed in the entire parsing

process, only to that of the order of execution of macros that comprise the final parse

tree. In this way we leave the exact parsing technique open to a variety of speculative

techniques. The perfect parser (if there is such a thing for this language) would only

execute those macros that make up the final parse tree in the expected order and no

others, but it remains to be seen if this is possible. Indeed, the implementation provided

in Chapter 8 performs many unused macro expansions.

5.5.2.1 Evaluation Order

As described in section 5.3.8, macros are divided into two groups: non-delayed and

delayed. the expansion of the former group occurs first in a leftmost-innermost (inside-

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO EXPANSION

 • 147 •

out) fashion and the latter group’s expansion follows in a leftmost-outermost (outside-

in) fashion.

Outside-in macros effectively have their execution delayed until the surrounding context

has been fully determined, and as a result they have access to compile-time static types

and the entire structure of the code contained within the current file.

The usage of these macros within code is still detected in an inside-out fashion, and

their type information still guides the parse, it is merely their expansion that is delayed.

So if presented with series of nested constructs, the evaluation would expand macros

from the inside out, and then any delayed macros from the outside in. The exact reasons

behind this strategy are discussed in the following subsections.

5.5.2.2 Construction Versus Manipulation

In development it was noticed that macros tended to serve two basic purposes, either

they performed manipulations on syntax trees, or they simply constructed these trees.

This is generally the case with parsers for complex languages, particularly those that

produce C, or some other high-level language, as an intermediatory; a large proportion

of grammar rules collect information to allow construction of more complex forms

further down the parse.

Take for example, the printf function as described in section 3.4.1.3. It relies on the

preceding context being available in order to be able to type-check its arguments, and it

also relies on these arguments being provided (or more accurately: the expression trees

that represent its arguments).

For the sake of argument assume that we have to explicitly generate facilities to specify

the arbitrary length list of arguments (in reality we can simply reuse the standard classes

for actual parameters), then the macro definitions (minus implementation) required are

as shown in Code Example 5.5.

macromacromacromacro Statement (printf, (, LiteralString s, ",", Arguments args,)) { ... }

macromacromacromacro Arguments (Expression arg) { ... }
macromacromacromacro Arguments (Arguments args, ",", Expression arg) { ... }

Code Example 5.5: printf Macro Prototypes

The class Arguments and the two macros that produce objects of it are used to build

up a list of expressions — i.e. constructing a parse tree. The printf macro takes a

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO EXPANSION

 • 148 •

number of arguments and performs a complex code-generation procedure — i.e.

manipulating a parse tree.

As we saw in Chapter 4, most macro systems provide for manipulation, but either only

allow the use of pre-built parse tree elements, or provide an entirely different

mechanism for introducing construction.

5.5.2.3 Outermost Versus Innermost Evaluation

Both construction and manipulation have different requirements for the preferred

evaluation order.

Take the printf example again: if all macros are evaluated outermost first, then the

macros to construct this expression list will not have been executed, we will know that

there is a compilation path that results in an Arguments class being created, but we

will have not done it yet. This clearly is not what we intended.

If we evaluated all macros innermost first, then a simple printf usage would function

as we expect. However, consider a use of the forall function (as defined in section

3.4.1.3) in Code Example 5.6(a).

forallforallforallforall (String s) inininin list { printf("%s", s); }

(a) forall and printf

String[] array = ...;
forallforallforallforall s inininin array { printf("%s", s); }

(b) Specialised forall and printf

Code Example 5.6: Nested Macro Use

With innermost evaluation we do not know the type of s when we expand printf.

This may not be immediately apparent, because there is obviously a declaration for a

variable s — but the forall has not yet been expanded (indeed, it may not even have

been detected), and hence this declaration has not be translated to Java code, and as a

result is not examinable by the type system
7
.

Indeed, if we had defined a very specialised version of forall for arrays that did not

require the user to specify the type of the variable (as arrays maintain their typing

7 It may be possible to create a system in which macros can be interrogated about the type of their

arguments even when they have not been expanded, but this idea is beyond the scope of this work.

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO EXPANSION

 • 149 •

information), then the problem is more obvious as is shown in Code Example 5.6(b).

The variable s has no declaration available at this time, it is instead created as part of

the macro.

5.5.2.4 Non-destructive Restriction

As previously discussed, the expansion strategy concerns itself only with the production

of a final parse tree. Macros that contribute to this parse tree are guaranteed to be

expanded in the order specified.

Apart from the macros that comprise the final parse tree, an implementation of the

Genesis language is free to speculatively apply any macro to a matching segment of the

input even if the resultant application is finally discarded.

To provide for this, macros should not destructively update their arguments as they may

be used in future expansions.

This is not as restrictive as it may seem, as it is typical of meta-programming systems to

produce code that doesn’t actually modify its arguments. Usage of quasi-quotation is

true to this idea; it builds new programs from old components, it doesn’t modify any

arguments it is given.

5.5.2.5 Standard Usage

All of the standard macros that create the Java abstract syntax use non-delayed

innermost evaluation. Generally, this is what the macro programmer intuitively expects;

if programming a macro that operates on expressions, the structure of the expression is

expected to be available. Allowing most macros to use innermost expansions allows the

creation of sophisticated constructs (see sections 8.6, 9.2, and in particular 9.2.6).

Early innermost evaluation is the default, as it is the most common usage. A macro can

be tagged as delayed in order to allow it access to the surrounding context. In the

printf example, the two macros that produce the argument list would not need to be

delayed, only the printf macro would be, as it requires type-checking of its

arguments. If all that was required was an unchecked C-style version, the delayed

modifier could be removed.

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO EXPANSION

 • 150 •

Standard library extensions to Genesis simplify both the creation of early macros and

delayed macros. In particular, we introduce an extension to match compile-time types in

section 8.7.2.4, that means that most explicit uses of the delayed keyword disappear.

5.5.3 Macro Matching

Macros are matched based on the run-time types of parse tree fragments. Unlike Java

which has strict rules for eliminating ambiguity, Genesis allows a single macro to match

without raising an error even if two macros would be similarly appropriate. For

example, consider the analogous Java code fragment in Code Example 5.7.

intintintint f(Object x, String y) ...
intintintint f(String x, Object y) ...

...

String s, t;
f(s, t);

Code Example 5.7: Ambiguous Java Declarations

This example causes a compile-error due to the ambiguity. The complier is unable to

decide which method is the most appropriate. Genesis resolves such conflicts, when

they occur in macro matching, in favour of the most recently imported/defined macro,

even if the macros were declared in the same file. This would appear to be appropriate

as it allows macros to override each other. It may prove to be necessary to provide a

warning to guard against unexpected macro overridings.

Genesis allows macros with the same arguments to co-exist within the same grammar.

A variety of techniques are used to resolve ambiguities that arise from such multiple

similar definitions (see subsections 5.3.2, 5.5.4, and 5.5.6).

5.5.4 Precedence

Macro precedence is used to resolve conflicts of ambiguity where appropriate.

Precedence is only applicable for macros that have exactly the same return type.

When resolving conflicts, the macro with the highest precedence contributes to the final

parse tree. If a macro throws a non-serious exception (see section 5.5.6 for a description

of the types of exceptions that can be thrown) then a lower precedence macro (or set of

macros) can take its place.

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO EXPANSION

 • 151 •

Precedence conflicts are handled differently depending on whether the matched

sequence implies an ordering conflict or a specialisation: i.e. if the rules preceding the

conflict are the same or different.

5.5.4.1 Same Sub-rules

The following simple arithmetic example demonstrates the case of all sub-rules leading

up to the precedence conflict being identical. Here we demonstrate two possible parses

of the expression 3+4*6:

Figure 5.9: Same Sub-rule Precedence

This example is the classic case of basic arithmetic precedence. The left diagram is what

is usually expected, the multiplication should take precedence. In this example the

conflict is detected on the left when we are matching the addition part, and on the right

when we are matching the multiplication (i.e. whichever rule is at the root of the tree).

So at the point of detection, it is necessary to decide precedence in favour of the lower

precedence rule, as the higher precedence rule should be matched earliest.

In summary, for matching sub-rules, we break precedence conflicts in favour of the

lowest precedence rule.

5.5.4.2 Different Sub-rules

The following matrix specialisation example demonstrates the case of different sub-

rules leading up to a precedence conflict. In Figure 5.10 we examine two possible parses

of the expression a+b*c.

LiteralInteger

Infix

+

LiteralInteger

Infix

* LiteralInteger LiteralInteger

4 6

3

3 4

6

LiteralInteger

Infix

*

LiteralInteger

Infix

+

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO EXPANSION

 • 152 •

Figure 5.10: Different Sub-rule Precedence

This is a standard example of how macros can allow users to create their own

optimisations. The basic idea is that we catch repeated matrix operations and perform

them in a more efficient fashion. In this case the MatrixAddMul matches on a matrix

addition followed by a multiplication and would be given a higher precedence than the

standard infix operators. The sub-rules that make up the tree structure are clearly

different in each case, and the precedence should be resolved with the macro that is at

the root of each parse tree with the higher precedence.

5.5.5 Associativity

The following simple arithmetic example demonstrates an associativity conflict for the

simple expression 3+4+6:

Figure 5.11: Associativity

The Genesis parser will resolve such conflicts in favour of the left associative version

(i.e. the left-hand diagram), unless the macro has explicitly specified it is right

associative.

LiteralInteger

Infix

+

LiteralInteger

Infix

+ LiteralInteger LiteralInteger

4 6

3

3 4

6

LiteralInteger

Infix

+

LiteralInteger

Infix

+

Simple

Infix

+

Simple

Infix

* Simple

b c

a

Simple

MatrixAddMul

*

b

Simple

c

Simple

a

+

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO EXPANSION

 • 153 •

Associativity in the Genesis definition applies only to binary definitions as these are

common in most programming languages. Whilst it is possible to extend the concept of

associativity to more complicated definitions, this necessity is rare. An example of such

a form is the ?: conditional operator. For the time being, such occurrences must be

handled explicitly by the user.

5.5.6 Exceptions

As described in section 5.3.6, macros can throw exceptions to signal various kinds of

errors.

The effect on the parse tree of a macro throwing an exception depends on the type of

exception being thrown. Exceptions of the type Warning or Error will only be

visible to the end-user if the macro would have been part of the final parse tree. A

QuietParserException signals that this macro failed in such a fundamental

fashion that it should never be considered to be a part of a parse-tree.

Typically, delayed macros are more likely to raise warnings or errors, and non-delayed

macros will make extensive use of quiet exceptions. A typical use of quiet exceptions is

in classifying tokens in the earliest stages of parsing.

As we will see in section 5.6.2, one of the most basic kind of error that can be raised is

ConditionsNotMet. If this error is thrown, the parser will not inform the user and

will merely attempt to find another macro that will match the subsequence currently

being examined.

Delayed macros cause a few more complications as it can not be determined in the early

stages of the parse whether or not they will cause exceptions. Any other possibilities

that successfully match the same input as a delayed macro must be maintained in case

the delayed macro fails.

5.5.7 Restrictions

It is unclear how to parse mutually recursive macros. Neither can be fully parsed

without previously parsing the definition of the other. For this reason alone, a macro

cannot be used within the same file it is declared; standard methods are unaffected by

this restriction.

CHAPTER 5: GENESIS LANGUAGE DEFINITION MACRO EXPANSION

 • 154 •

For general simplicity macros can only be used outside the file in which they are

declared. While this is perhaps overly restrictive it creates less problems (and less

severe problems) than it removes.

CHAPTER 5: GENESIS LANGUAGE DEFINITION STANDARD ENVIRONMENT

 • 155 •

5.6 Standard Environment

Just as the Java language definition must include descriptions of string classes (eg.

String, StringBuffer, etc.) and exception classes (eg. Throwable,

Exception, etc.) as they are used within the language itself for such things as literal

strings, string concatenation, and run-time errors, the Genesis language definition must

include descriptions of a number of similarly required facilities:

• the abstract syntax that macros both use as arguments and must produce as a

result of application;

• the standard exceptions classes that can be thrown by macros;

• the standard facilities for compile-time type checking; and

• a macro reflection mechanism.

5.6.1 Abstract Syntax Classes

Whilst the abstract syntax classes are too numerous to examine in full detail (see

Appendix A), the form of the standard abstract syntax still requires a little explanation.

It is possible to provide an abstract syntax that admits incorrect program — it is

normally the job of the parser of the concrete syntax to ensure that this does occur. A

great deal of care has been taken to design the abstract syntax in such a fashion that

syntactically incorrect programs cannot be generated, while still providing as much

simplicity as possible.

All Genesis abstract syntax classes must implement the AbstractSyntax interface.

This is an empty interface that merely gives all classes a common starting point rather

than relying on Object. It adds a certain level of trust to objects that are created by

macros, and at least protects us from simple class of errors such as returning a Java

String object where a LiteralString was intended.

The bulk of the hierarchy portion of the Genesis abstract syntax are interfaces, with

classes only appearing as the abstract syntax becomes quite specific. The following

diagram represents all classes and interfaces that create the hierarchy. The diagram has

classes represented in bold type and all other types are interfaces.

CHAPTER 5: GENESIS LANGUAGE DEFINITION STANDARD ENVIRONMENT

 • 156 •

Figure 5.12: Partial Abstract Syntax Type Hierarchy

Like AbstractSyntax, the majority of interfaces here are empty, and are merely to

create this usable hierarchy.

These interfaces are used for abstract syntax classes to specify their membership into

some set; for example, instance variable declarations, blocks, and inner classes can all

be considered to be a ClassMemberDeclaration. This replaces the traditional

necessity of using some sort of union style datastructure to provide this functionality.

Each of these classes and interfaces (with the exception of BlockStatement) is

inherited from by other classes to provide specific functionality; these child classes are

not shown here to facilitate the understanding of the underlying structure. For example,

MethodDeclaration has children to represent macros, constructors, and abstract

methods.

The hierarchy becomes a little more intertwined than this diagram suggest. For example,

the abstract method class extends MethodDeclaration and implements

InterfaceMemberDeclaration.

A full list of Genesis abstract syntax classes and an associated type hierarchy is

available in Appendix A. We examine the use of the Typeable interface in section

5.6.3.

AbstractSyntax

ClassMemberDeclaration BlockStatement

VariableDeclaration Expression MethodDeclaration TypeDeclaration Statement

Literal StatementExpression LeftHandSide

Typeable InterfaceMemberDeclaration

CHAPTER 5: GENESIS LANGUAGE DEFINITION STANDARD ENVIRONMENT

 • 157 •

5.6.2 Exceptions

Macros have the ability to throw exceptions to signal compile-time failure. All

exceptions thrown by a macro must inherit from a provide ParserException class.

Figure 5.13: Exception Type Hierarchy

In addition to this base abstract class, defined by default are three children of this class

Warning, Error, and QuietParserException. Macros that wish to fail without

signalling the programmer would throw an exception that has

QuietParserException as its base — this is particularly useful in the early stages

of parsing when classifying tokens as symbols, identifiers, or the various categories of

literals.

Two more standard exception classes are provided: TypeMismatch allows type-

checking errors to be raised explicitly by the macro programmer and

ConditionsNotMet allows a macro to define extra conditions on its applicability to

a given set of inputs. The use of the latter allows a context-free grammar to be

augmented with further conditions and can even be used to control parsing of context-

sensitive grammars.

5.6.3 Compile-time Typing

Compile-time typing is provided via the Typeable interface shown in Figure 5.12.

This interface defines a single method type which takes no arguments and returns a

Type object if successful, or null if the type is undeterminable. Java reflection is

heavily utilised for the discovery of types of members variables and methods.

ParserException

QuietParserException Warning Error

ConditionsNotMet TypeMismatch

CHAPTER 5: GENESIS LANGUAGE DEFINITION STANDARD ENVIRONMENT

 • 158 •

Calculating the type of an object may involve recursive calls in order to type some of its

members. For example, to correctly type a method invocation we must first type all of

the expressions that make up its actual parameters, and these in turn may require further

typing.

The Type class is a wrapper for the Java reflection class Class with some added

functionality. Some examples of these extensions are:

• an extended forName method that correctly handles primitive types and checks

all imported classes for matching names;

• construction of types from member names and associated information; and

• construction of corresponding array types from a given object.

5.6.4 Macro Reflection

On occasion it can be desirable to manually execute the body of a given macro —

particularly when working without the quasi-quotation extension (see section 8.7.1). To

this end a macro reflection facility is provided. The current implementation allows for

the use of the normal Java reflection system (but at some cost to the user). In particular,

the implementation details of macros would be overly exposed.

The macro reflection method attempts to mimic the interface style and operation of the

getMethod method from Class. Unfortunately, the Java reflection class Class is

final, so macro reflection must be provided as a utility. Additionally, macros have no

name, so all matching is performed on the types of the arguments. Parameter lists are

slightly more complicated due to the possibility of terminals, and a return type must be

specified.

publicpublicpublicpublic staticstaticstaticstatic Method getMacro(Class parent, Class returnType,
 ClassOrTerminal[] parameters)
 throwsthrowsthrowsthrows NoSuchMethodException, SecurityException ...

publicpublicpublicpublic staticstaticstaticstatic Method getMacro(Class returnType, ClassOrTerminal[] parameters)
 throwsthrowsthrowsthrows NoSuchMethodException, SecurityException ...

Code Example 5.8: Macro Reflection Methods

An additional macro reflection utility is provided that searches all imported classes for a

suitable definition.

 159

6 Review of Parsers

Review of Parsers

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

reviewing

extensibility

reviewing

parsing

implementing

a parser

designing

the language

implementing

the language

evaluation

conclusion

CHAPTER 6: REVIEW OF PARSERS OVERVIEW

 • 160 •

6.1 Overview

On the path to the implementation of the Genesis language we first review traditional

parsing methods. Definitions of macros in the Genesis language have few limitations

and the choice of parser is critical to the success of any implementation.

Readers well-versed in parsing theory may choose to defer reading of this parser review

chapter (and, perhaps, the new parser design in chapter 7) and move straight to the

implementation of the Genesis language (chapter 8).

As will become clear, while they are efficient, the methods used for the implementation

of the majority of programming languages are not well suited to extensible

programming languages. Compile-time modification of the underlying grammar is

particularly difficult to incorporate within traditional implementation techniques. Also,

such techniques require restrictions to be placed on the underlying grammar and these

restrictions often impose a heavy burden of understanding of the parser creator — in

this case, the end-user of the language.

This chapter begins with an introduction to grammars (section 6.2) and in particular,

representations of context-free grammars are examined in detail. Grammar

classifications are examined in order to introduce a basis for comparison of traditional

parsing methods.

Following a brief general introduction to parsers in section 6.3, we look at often used

top-down and bottom-up parsing methods (sections 6.4 and 6.5). Emphasis is placed on

the grammar restrictions that are inherent in these techniques. Almost all real-world

compilers use one of the techniques from these sections (or a minor variant).

In section 6.6 we look at general parsing methods that can handle a larger class of

grammars (even ambiguous ones) than the previous techniques.

Finally, in section 6.7, we end with a summary of the relative merits of the parsers and

examine each parser’s suitability to extensible languages.

6.1.1 Extensible Language Parsing

A parser for an extensible language suffers from more constraints than standard

programming languages. The grammar of a language is typically fixed and as a result,

CHAPTER 6: REVIEW OF PARSERS OVERVIEW

 • 161 •

many optimisations can be applied to produce a successful parser. It is expected that an

increase in parser flexibility leads to a corresponding decrease in efficiency.

A modifiable grammar requires consideration of two issues: the level of parser

knowledge that is required of the programmer in order to modify the grammar, and the

ability to modify the grammar during a parse.

6.1.1.1 Usability

The primary basis for judging a parser suitability for parsing an extensible language is

whether the user must understand the parser. As programming languages are

traditionally fixed entities without users modifying their syntax, it is typical to modify

the grammar to suit the parser:

“In practice, grammars are often first designed for naturalness and then adjusted

by hand to conform to the requirements of an existing parsing method.”

[GJ90§3.6.4, pp. 75]

This is unacceptable for use in an extensible language. The macro programmer should

be shielded from such awkward manipulations.

Typically, parser efficiency is premium amongst design issues and effort is spent in

ensuring this above all other concerns. Indeed, efficiency concerns need only be

addressed once as the grammar is unchanging.

“… making [an efficient] parser for an arbitrary given grammar is 10% hard

work; the other 90% can be done by computer.” [GJ90§3.6.4, pp. 75]

We consider the sacrifice of efficiency essential in order to remove the burden of hard

work from the macro programmer. Ideally, we would not need to make this choice, but

as a starting point for an extensible language we should not unduly restrict our parser.

6.1.1.2 Mid-parse Grammar Modification

There is another major issue that needs addressing to suit Genesis’ parsing requirements

(and the same is also true of other similar extensible systems).

It is clear that an extensible parser must be capable of handling an augmented grammar

and then use this grammar to parse a given input. In addition to this, extensible

languages need a mechanism for specifying which modifications are to be made to the

CHAPTER 6: REVIEW OF PARSERS OVERVIEW

 • 162 •

grammar. This is typically done with a mechanism similar to that used to import

functions or classes from libraries.

In Genesis, this mid-parse grammar modification the grammar occurs at the level of

import statements contained in the file. The parsing of symbols beyond the import

statement must be performed with the amended grammar. Maya has a special use

keyword that modifies the grammar within the current scope.

Correct handling of such mid-parse grammar modifications is essential to the correct

function of extensible languages.

As will be shown, the modification of a grammar midway through a parse places proves

to be a harder requirement to meet than reducing the burden on the programmer.

CHAPTER 6: REVIEW OF PARSERS GRAMMARS

 • 163 •

6.2 Grammars

Grammars are common-place in the field of language design and are used so often that

little thought is given to their structure. In this section, we first define the basic structure

of grammars and introduce some varying classifications of grammars before looking at

grammars traditionally used in language description.

6.2.1 Grammar Structure

A grammar (or generative grammar) is a set of rules for string transformation. Each rule

consists of a left-hand side set of symbols and a right-hand side set of symbols. The

general form of a grammar rule is shown in Figure 6.1; a set of these rules forms a

grammar.

symbol1 + ... + symboln -> symboln+1 + ... symbolm

Figure 6.1: Generalised Grammar Rule

To generate a string in the grammar a single start symbol is chosen and rules are applied

(in any order as many times as necessary) to rewrite the string. The language of a

grammar is the set of all strings that can be generated in such a manner.

The reverse of this process can be applied to a given string to test whether or not it is a

member of the grammar’s language.

6.2.2 Chomsky Hierarchy

The Chomsky hierarchy [GJ90] classifies grammars in order of decreasing order of

power (and increasing ease of use), the four types of grammar differ in the type of

rewriting rule that they allow as shown in Table 6.1 (summarised from [GJ90]).

Table 6.1: Chomsky Hierarchy

Benchmark Summary Description

Type 0: Unrestricted Any number of symbols can be transformed into any

other number of symbols — there are no restrictions on

the form the grammar rules can take. Unrestricted

grammars are extremely powerful, but too difficult to

use for most purposes.

CHAPTER 6: REVIEW OF PARSERS GRAMMARS

 • 164 •

Type 1: Context-sensitive

(transformational grammar)

The length of the left-hand side must be less than or

equal to the length of the right-hand side.

Type 2: Context-free

(phrase structure grammar)

All left-hand sides must contain a single non-terminal

symbol. The right-hand side is still free to contain as

many symbols as necessary.

Type 3: Regular

(right linear grammar)

All left-hand sides must contain a single non-terminal

symbol. The right-hand side may only contain either

one non-terminal and one terminal symbol; or a single

terminal symbol. Regular grammars are not powerful

enough to conveniently describe most languages, but

sometimes are used for subsets of languages due to the

ease of construction of fast parsers.

Type 4: Finite-choice No non-terminals are allowed on the right-hand side.

Finite-choice grammars are not in the original

Chomsky hierarchy but are included for completeness

due to their frequent use as an end-case.

6.2.3 Context-free Grammars

The context-free grammars (Type 2 Chomsky) are generally considered to be the best

trade-off between expressiveness and easy parser construction. These are the typical

grammars for language specifications — all grammars seen in the work are context-free

grammars (written in BNF or EBNF as discussed later in this subsection).

Most parsers are written to operate on context-free grammars. Indeed such grammars

are preferred for a variety of reasons (summarised from [ASU86]):

• context-free grammars provide a relatively comprehendible, precise

specification of the syntax of a language;

• certain classes of grammar lend themselves to automatic parser construction;

• a well designed grammar coupled with appropriate tools allows for a reliable

translation into correct object code; and

• languages with precise context-free grammars are easier to extend than those

with hand-written parsers.

CHAPTER 6: REVIEW OF PARSERS GRAMMARS

 • 165 •

Despite this, it is surprising that most programming languages aren’t fully describable

by context-free grammars. The classic example is that of variable declarations: names

generally have to be declared before they can be used, this is not describable with a

context-free grammar, and most language systems require an extra type checking phase

after initial parsing.

6.2.3.1 Backus-Naur Form

Backus-Naur Form8 (BNF) is a convenient, and relatively standard, notation for

context-free grammars. Each BNF grammar contains a series of declarations (often

called productions) that contain a single non-terminal on the left-hand side, and a series

of options on the right-hand side.

For example, consider the grammar fragment in Figure 6.2. This grammar fragment

contains a single declaration that specifies that a non-terminal A can be derived from:

• a single non-terminal B;

• a non-terminal C, followed by a non-terminal D; or

• a non-terminal E, followed by the terminal with, followed by the non-terminal

F.

The definitions for the non-terminals B, C, D, E, and F are not shown.

A ::= B | C D | E with with with with F

Figure 6.2: BNF Context-free Grammar

6.2.3.2 Extended BNF

Extended BNF (EBNF) has a variety of styles, and is itself derived from regular

expressions or extensions made to BNF by Niklaus Wirth in [Wir71]. Various

bracketing styles and operators are introduced to allow such concepts as optional

elements, choices within choices, and list of elements. The following are the most

common styles for such concepts:

• Optional elements: e.g. depending on style [a], or a? means zero or one

occurrences of the symbol a.

• Zero-or-more: e.g. a* means zero or more occurrences of the symbol a.

8 Originally, and occasionally still, called Backus Normal Form.

CHAPTER 6: REVIEW OF PARSERS GRAMMARS

 • 166 •

• One-or-more: e.g. a+ means one or more occurrences of the symbol a.

• Groupings are introduced by parentheses, and can be combined with the above

operators as well as the choice operator from standard BNF:

e.g. (a | b)+ means any sequence made of the symbols a and b, except the

empty sequence.

All EBNF forms can be decomposed back into BNF form, it is merely a convenient

notational shorthand.

6.2.4 Grammar Properties

Apart from classification within the Chomsky hierarchy, grammars have a number of

other properties that are useful to describe, such as whether they are left- or right-

recursive; or ambiguous.

6.2.4.1 Ambiguous Grammars

Consider the grammar in Figure 6.3.

expr ::= expr ++++ expr | expr **** expr | ((((expr)))) | number

Figure 6.3: Ambiguous Simple Expression Grammar

This grammar is ambiguous because, for example, with the input 3+4+6, there are two

possible parses (as previously demonstrated in Figure 5.11). This raises the rather

awkward situation where ambiguous grammars lead to parsers needing to discern the

programmer’s intent. We would prefer our parsers to find just one suitable parse. It

generally doesn’t make sense to allow ambiguity in programming languages — you

want each individual program to have exactly one meaning.

For this reason, most grammars have ambiguity explicitly removed [ASU86]. That is,

precedence rules are explicitly incorporated into the grammar. For example consider the

reworking of the grammar from Figure 6.3 in Figure 6.4.

expr ::= expr ++++ term | term
term ::= term **** factor | factor
factor ::= number | ((((expr))))

Figure 6.4: Unambiguous Simple Expression Grammar

This grammar reworking allows for us to specify exactly which is the correct parse for

each situation, but at some cost to the brevity and simplicity of the grammar. Such a

reworking of an ambiguous grammar generally requires a detailed understanding or

CHAPTER 6: REVIEW OF PARSERS GRAMMARS

 • 167 •

which parse is preferable. The classic example is of a “dangling-else” that is common to

many programming languages [ASU86] and requires the final parse to match the short

if statement first (i.e. the outer if statement has no matching else).

6.2.4.2 Left- and Right-recursive Grammars

Almost all useful grammars have recursive elements — eg. even our simple expression

grammar of Figure 6.4 allows expressions to contain sub-expressions recursively. The

alternative is to expand the grammar for all possibilities; this is clearly infeasible for

grammars whose language is infinite.

A left-recursive production contains its left-hand side non-terminal in the left-most

position of one of its options, i.e. a rule similar to A ::= A x. A left-recursive

grammar contains at least one production that is left-recursive. The definition of right-

recursive grammar follows in a similar fashion.

As we will see in later sections, grammars that are left- or right-recursive can cause

problems for certain parsing techniques. Modifications are generally made to such

grammars to remove either the left- or right- recursion in a similar vein to those for

ambiguous grammars.

The ambiguous grammar of Figure 6.3 is both left- and right-recursive. The

unambiguous grammar of Figure 6.4 still contains two left-recursive productions. Figure

6.5 shows the result of reworking this grammar.

expr ::= term reste
reste ::= ++++ expr | ε
term ::= factor restt
restt ::= * * * * term | ε
factor ::= number | ((((expr))))

Figure 6.5: Non Left-recursive Simple Expression Grammar

Again, this translation removes the left-recursion but at the expense of the grammar.

This grammar is barely recognisable as accepting the same language as the original

ambiguous one.

An attempt at the removal of recursion can be performed in an automatic fashion

[ASU86], but there is no guarantee that such an attempt will succeed [ASU86].

CHAPTER 6: REVIEW OF PARSERS PARSERS

 • 168 •

6.3 Parsers

A parser is designed to recognise inputs that satisfy a particular grammar and reject

those that don’t. Translation to another form is often performed as part of the

recognition process.

Parsers operate on tokens rather than character streams. These tokens are produced by

lexical analysers, or tokenisers. Normal compiler operation interleaves tokenising and

the parsing as shown in Figure 6.69. Tokenisers are discussed further in subsection

6.3.3.

Figure 6.6: High-level Compiler Model

6.3.1 Derivation

For any grammar, there are typically a number of different orders in which the rules of

the grammar can be applied in order to decide membership of a particular input. This

order of application is called a derivation and it gives a precise description of the

construction of a parse tree [ASU86]. In fact, the parse tree can be viewed as a graphical

representation of a derivation that removes information about application order

[ASU86].

Figure 6.7 contains the leftmost and rightmost derivation for the simple expression

grammar of Figure 6.4, and the input 5*8+2. Both achieve the same final parse, but

merely apply the rules in different orders. The choice of leftmost or rightmost derivation

does not affect the language recognisable by a parser, only the order in which they are

applied.

9 Production compilers will often produce an intermediate representation from the parser which is then

subject to optimisation and translation to the target platform.

source file tokeniser parser object file

CHAPTER 6: REVIEW OF PARSERS PARSERS

 • 169 •

expr
⇒ expr + term
⇒ term + term
⇒ term * factor + term
⇒ factor * factor + term

⇒ number * factor + term
⇒ number * number + term
⇒ number * number + factor
⇒ number * number + number

 (a) Leftmost Derivation

expr
⇒ expr + term
⇒ expr + factor
⇒ expr + number
⇒ term + number
⇒ term * factor + number
⇒ term * number + number
⇒ factor * number + number
⇒ number * number + number

 (b) Rightmost Derivation

Figure 6.7: Derivations

6.3.2 Naming

A standard naming scheme has evolved to broadly classify different parsers. These

describe parsers concisely by many parameters, such as order of scan, derivation order,

and token lookahead requirements.

6.3.2.1 Derivation Categorisation

For the most general categorisation, parsers are categorised by the order that they scan a

program while attempting to interpret it, and the derivation that they produce.

Generally, parsers scan from left-to-right, so the two most used general classifications

of parsers are:

• LL: scans from left-to-right, and produces the leftmost derivation.

• LR: scans from left-to-right, and produces the rightmost derivation.

6.3.2.2 Lookahead Categorisation

In addition, parsers are subcategorised by the number of symbols they need to examine

in advance before making any decision (called lookahead). This information is added in

brackets after the original classification, eg. LR(2) specifies a left-to-right, rightmost

derivation parser that requires two token lookahead.

CHAPTER 6: REVIEW OF PARSERS PARSERS

 • 170 •

When only one token of lookahead is required the extra information is generally

omitted, i.e. LL(1) is typically written simply as LL. A general categorisation of all LL

parsers would be written as LL(k).

Non-ambiguous grammars exist that cannot be represented by LL parsers and thus

would require further lookahead. The same applies for LR parsers. Simple grammars

that cannot be recognised by LL or LR respectively are shown in Figure 6.8. In each

case, trying to produce a derivation is impossible without further lookahead.

X ::= aaaa bbbb cccc | aaaa bbbb dddd

(a) Non-ambiguous Non-LL Grammar

X ::= aaaa bbbb cccc | Y cccc dddd
Y ::= aaaa bbbb

(b) Non-ambiguous Non-LR Grammar

Figure 6.8: Non-ambiguous Unparsable Grammars

6.3.3 Tokenising

Tokenisers convert the raw text input stream into a more manageable token stream. The

tokeniser typically performs the following tasks:

• it matches keywords that appear in the input and passes through to the parser as

special tokens;

• passes others words through to the parser as identifiers;

• checks the form of literals (typically characters, strings, and various number

formats) and passes them to the parser as a single token;

• ensures that multicharacter symbols are passed through to the parser as a single

token;

• rejects input that contains unexpected characters; and

• removes whitespace.

Different languages can have their own slightly different parsing strategy though. For

example, Haskell has strict layout rules that are governed by the correct use of

whitespace. The Genesis tokeniser performs far fewer early decisions than typical

tokenisers (see section 5.4).

A tokeniser is typically implemented as a deterministic finite automaton (DFA) which,

in turn, are usually pictured as a graph. DFAs are deterministic as there is only one path

CHAPTER 6: REVIEW OF PARSERS PARSERS

 • 171 •

for any given input, finite as there are a fixed number of states, and automatic as the

transition from state to state is simply determined by the input.

In Figure 6.9 a DFA to tokenise whitespace separated identifiers and numbers is shown.

Each state of the DFA is a node in the graph with transitions between states pictured as

edges with labels containing character sets. For each character of input the transition to

the next state is deterministically defined.

Figure 6.9: Deterministic Finite Automaton

Using DFAs for tokenising is simple and efficient and requires only a single pass of the

input. Tokenisers are generally written to provide tokens only as the parser requests

them, so no buffering is required.

6.3.4 Parsing Methods

There are typically considered to be three types of parsers: top-down parsers, bottom-up

parsers, and general parsers [ASU86]. Top-down and bottom-up parsers are commonly

used in production compilers, but are more restrictive than general parsers.

In the following sections we look at these different parsing methods. The review is far

from exhaustive (for a fairly comprehensive review see [GJ90]), but highlights the most

common parsers from each category.

3 2

start

other

other

a..z, A..Z, 0..9

0

5 4

0..9

a..z, A..Z

0..9

identifier

number

whitespace

CHAPTER 6: REVIEW OF PARSERS TOP-DOWN PARSING

 • 172 •

6.4 Top-down Parsing

LL(k) parsers are typically called top-down parsers as their operation can be viewed as

an attempt to construct the left-most derivation by a pre-order traversal of the resultant

parse tree [ASU86].

LL(k) parsers require a non-ambiguous grammar that is free from left-recursion.

In this section we look at the two major implementations of top-down parsers: the first

is known as predictive parsing (section 6.4.1) and the second is a parse-table approach

which is generally just referred to as LL-parsing (section 6.4.2).

The primary difference, besides the actual implementation, between these two

approaches is efficiency (of both space and time); with a little effort it should be

possible to construct parsers for the same grammars using both methods.

6.4.1 Predictive Parsing

Recursive descent parsing attempts to apply each grammar rule in turn until a conflict

occurs at which point it backtracks until an alternative choice is available. This is

implemented with a set of recursive procedures. In general, recursive descent parsing is

inefficient and will always fail on left-recursive grammars. As a result, this class of

parsers are rarely seen [ASU86].

Predictive parsing is a special case of recursive descent parsing that does not require

backtracking. Such parsers are popular because their recursive nature makes them

highly suited to implementation by hand (the majority of parsing techniques are not).

The recursive procedure calls that occur as parsing proceeds implicitly define the

derivation and, hence, the parse tree [ASU86]. The actions to be performed on the parse

tree are contained within these recursive procedures.

For a suitable grammar, construction of a predictive parser requires each BNF rule to be

translated into a single function. This function calls other such functions for non-

terminals and guarantees any terminals match the current token.

Code Example 6.1 demonstrates a predictive parser implementation for the grammar

from Figure 6.5. It performs no actions as a result of the parse, it merely checks for

correct syntax. The implementation relies on an overloaded function match that

CHAPTER 6: REVIEW OF PARSERS TOP-DOWN PARSING

 • 173 •

ensures that the current token matches its argument and if so, moves on to the next

token and returns success, otherwise it returns failure.

boolboolboolbooleaneaneanean expr() { returnreturnreturnreturn term() && rest_e(); }
boolboolboolbooleaneaneanean rest_e() { returnreturnreturnreturn match("+") ? expr() : truetruetruetrue; }
boolboolboolbooleaneaneanean term() { returnreturnreturnreturn factor() && rest_t(); }
boolboolboolbooleaneaneanean rest_t() { returnreturnreturnreturn match("*") ? term() : truetruetruetrue; }
boolboolboolbooleaneaneanean factor() {
 returnreturnreturnreturn match(NUMBER) || (match("(") && expr() && match(")"));
};

Code Example 6.1: Simple Expression Predictive Parser

This example demonstrates the simplicity of providing ad hoc predictive parser

implementations.

6.4.1.1 Advantages

The major advantage of predictive parsers is the ease that they can be constructed

manually. The resultant parser is also easy to comprehend which can make it easy to

discover errors.

6.4.1.2 Disadvantages

Predictive parsers can only handle a non-ambiguous non left-recursive grammars. There

are further transformations that may need to be applied to grammars such as those as the

example in Figure 6.8(a). Future revisions to the grammar are often difficult to handle,

especially when many grammar modifications were required to produce a LL(1)

grammar originally. Such highly-modified grammars are difficult to understand by

humans and can be unrecognisable from the original [ASU].

However, the major disadvantage of predictive parsers is efficiency. Procedure calls are

expensive and parsing requires many such calls. These procedures also require more

space than other equivalent techniques:

“The most important disadvantage of generating a recursive descent parser is the

size of the parser. A recursive descent parser is usually larger than a table-driven

one (including the table).” [GJ90§8.2.6, pp. 178]

Also, in each procedure we may make many failed attempts to match a given input

token. No systematic approach is used to decide which production branch to chose

given a particular input token.

CHAPTER 6: REVIEW OF PARSERS TOP-DOWN PARSING

 • 174 •

6.4.2 Parse Table Approach

In order to overcome the efficiency problems of predictive parsers, top-down parsers

typically use a non-recursive table-driven approach. Such parsers can be constructed for

an equivalent class of grammars as predictive parsers but without the overhead of

recursive procedure calls. This is achieved by maintaining an explicit stack.

A model of a table-driven parser consists of the input, a stack, a parse table, and the

output as shown in Figure 6.10.

Figure 6.10: Table-driven Predictive Parser Model

The input consists of tokens and the stack contains the current sequence of recognised

grammar symbols. The parser functions by using the current token and the current

grammar symbol to guide its next action. The actions to be performed are stored in the

parse table.

The stack is initialised with the start symbol and at each stage in parsing the parser has

three possibilities [ASU86]:

• if both the input stream and the stack are empty the parse has successfully

completed;

• if the top of the stack is a terminal and is equal to the current input token, then it

is removed from the stack and the current token is advanced. When not equal, an

error has occurred; or

• if the top of the stack is a non-terminal, both the top of the stack and the current

input token are used as lookups into the parse table. The parse table entry

specifies either an error has occurred, or a sequence of grammar symbols

parser

parse
table

output
s
t
a
c

k

tokenised input

CHAPTER 6: REVIEW OF PARSERS TOP-DOWN PARSING

 • 175 •

(corresponding the right-hand side of the grammar production) with which to

replace the top of the stack.

A table-driven parser for the simple expression grammar from Figure 6.5 is shown in

Code Example 6.2.

boolean boolean boolean boolean parse(Queue input, Symbol start, Table table) {
 Stack stack;

 input.add("$"); // add a special terminal symbol to the end of input
 stack.push(start); // push start symbol onto the start initially

 whilewhilewhilewhile (!stack.isEmpty());
 Symbol top = stack.pop();
 Token current = input.front();

 ifififif (top.isTerminal()) {
 ifififif (current.equals(top)) returnreturnreturnreturn falsefalsefalsefalse; // error
 input.dropFront();
 } elseelseelseelse {
 Stack topush = table.lookup(top, current);
 ifififif (topush == null) return falsereturn falsereturn falsereturn false; // error
 stack.push(topush);
 }
 }

 returnreturnreturnreturn input.isEmpty();
}

boolboolboolbooleaneaneanean expr(Queue input) {
 Table table; // table is constructed as shown in Table 6.2

 rrrreturneturneturneturn parse(input, Symbol.EXPR, table);
}

Code Example 6.2: Table-driven Simple Expression Parser

Code Example 6.2 is a restatement of the previous description of a table-driven parser.

The input stream is represented as a queue, the state of the parser is represented as a

stack, and the exact implementation of the parse table is not specified. Parse table

lookup errors are returned as null references.

One minor detail simplifies the implementation a small degree: a special terminal

symbol (shown as $) is added to the input to allow easy handling of empty input cases

within the parse table directly. Having completely parsed the input with non-terminals

remaining on the stack is not necessarily an error, it merely represents the situation

where we have successfully parsed and have recursive calls to unwind.

The parse table for the simple expression grammar of Figure 6.5 is shown in Table 6.2.

A LL(1) parse table is a two dimensional array with terminal symbols along the column

axis, and non-terminals down the row axis. Each state contains either:

• a series of non-terminal and terminal symbols;

CHAPTER 6: REVIEW OF PARSERS TOP-DOWN PARSING

 • 176 •

• the empty symbol, signifying recursive call unwinding; or

• a blank, signifying a parse error.

The size of a parse table is proportional to O(terminals * non-terminals). For the simple

expression grammar of Figure 6.5, the parse-table contains 30 entries.

Table 6.2: Simple Expression LL Parse Table

Nonterminal Input Symbol

 number () + * $

expr term reste term reste

reste ε + term reste ε

term factor restt factor restt

restt ε ε * factor restt ε

factor number (expr)

Manual construction of parse tables is systematic but tedious and error-prone, automatic

generation is generally preferred. Such automatic generation of parse tables are beyond

the scope of this work (for an in-depth treatment, see [ASU86]).

If, after construction, the parse table contains duplicate entries, then the grammar cannot

be parsed by a LL(1) parser. Or, put another way, a grammar that generates a table that

contains no duplicate entires is a LL(1) grammar. Grammars that are not LL(1) may be

able to be modified, or it might be necessary to introduce further lookahead, but the

resultant parse table size is prohibitive:

“Strong-LL(k) parsers with k > 1 are seldom used in practice, because the parse

tables are huge, and there are not many languages that are LL(k) for some k > 1,

but not LL(1).” [GJ90§8.3, pp. 180]

6.4.2.1 Advantages

The major advantage of a parse table approach is that of efficiency. Maintaining an

explicit stack is typically much more efficient (in both space and time) than handling

many recursive calls on the program stack [ASU86].

CHAPTER 6: REVIEW OF PARSERS TOP-DOWN PARSING

 • 177 •

6.4.2.2 Disadvantages

The table-driven approach to LL(1) parser construction suffers from the same grammar

problems as predictive parsers outlined in 6.4.1.2. The class of acceptable grammars is

identical [ASU86].

As demonstrated in Code Example 6.2 and Table 6.2 respectively, the resultant parser is

understandable, but the parse tables that drive it are not.

The size of the parse table for parsers requiring lookahead greater than one is generally

unacceptable as each successive increase of lookahead increases the size of the parse

table by a factor proportional to the number of non-terminals.

6.4.3 Suitability to Extensible Languages

LL parsers are unsuitable for use with extensible languages as they require heavy

modification of a grammar before use and disallow the modification of the grammar

midway through the parse.

6.4.3.1 Usability

LL parsers are easily foiled by left-recursive grammar (as shown in Figure 6.8(a)) and

such forms are often used to provide a convenient way to express many languages. The

burden of translation of a grammar away from left-recursion is too much for a

programmer and may not even be possible.

6.4.3.2 Mid-parse Grammar Modification

An LL parser may be deep within a recursive call when the grammar is modified and as

such may be unable to incorporate the new grammar rules. In fact, top-down recognition

is invalid if the entire grammar is unknown. There is no way to ascertain that a rule will

be matched without the rules that generate it being known.

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 178 •

6.5 Bottom-up Parsing

LR(k) parsers are typically called bottom-up parsers as they effectively produce a

derivation from right-to-left, i.e. from the base of the resultant parse tree to the top.

LR(k) parsers accept a larger class of grammars than top-down parsers, in particular,

both left- and right-recursive grammars are permitted.

In this section we introduce the general concept of shift-reduce parsing (section 6.5.1),

and then two implementations: operator-precedence parsing (section 6.5.2) and the most

commonly used implementation referred to as LR parsing (section 6.5.3).

Three LR parsers are examined: LR (also known as canonical LR), SLR (simple LR),

and LALR (look-ahead LR). The primary differences between these parsers is the size

of the parse-table and the class of grammars they accept.

6.5.1 Shift-reduce Parsing

Shift-reduce parsing attempts to produce a right-most derivation traced out in reverse

[ASU86]. Figure 6.11 shows the reductions taken by a shift-reduce parser for the simple

expression grammar from Figure 6.4 and the input 5*8+2.

number * number + number
⇒ factor * number + number
⇒ term * number + number
⇒ term * factor + number
⇒ term + number
⇒ expr + number

⇒ expr + factor
⇒ expr + term
⇒ expr

Figure 6.11: Shift-reduce Parser Reductions

This is, in fact, identical to the right-most derivation shown in Figure 6.7(b) traced out

in reverse.

Shift-reduce parsers are typically implemented by use of a stack and a parse-table in a

similar fashion to the table-driven approach to top-down parsers shown in 6.4.2.

Although a shift-reduce stack contains a mixture of terminals and non-terminals, unlike

the stack in the table-driven top-down parser approach which contains only non-

terminals. A shift-reduce parser has the generalised form shown in Figure 6.12.

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 179 •

Figure 6.12: Shift-reduce Parser Model

For each step in the parse, there are four possible actions that can be taken [ASU86]:

• shift: the next input symbol is shifted onto the top of the stack;

• reduce: a right-hand side of a grammar rule has been matched on the top of the

stack and a series of symbols from the start is replaced with the corresponding

left-hand side;

• accept: the parser successfully completes; and

• error: an error has occurred.

The first two actions are most commonly applied and it is from these that shift-reduce

parsers get their name. A shift is performed when the current token is expected and

moves the focus onto the next input symbol. A reduce is performed when a rule is

complete and ready to be replaced by a single corresponding non-terminal symbol.

A shift-reduce parser requires some form of control mechanism for it to be able to

determine when to shift and when to reduce. Ad hoc implementations are possible, but

typical grammars are too complicated for this to be possible and more automated

techniques are used. These automated techniques involve construction of a table of

information that is used to provide control information [ASU86].

6.5.2 Operator-precedence Parsing

Operator-precedence parsing is a form of shift-reduce parsing that requires that the

grammar does not contain two adjacent non-terminals and no empty symbols. However,

it can handle ambiguity in the grammar by careful representation within the operator-

precedence table.

shift-reduce

parser
output

s
t
a
c

k

tokenised input

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 180 •

Operator precedence can be implemented either in a table-driven fashion or via

precedence functions [ASU86]. The focus of this subsection is on the table-driven

approach as it bears closer relation to the parsers in the surrounding subsections (for the

alternative approach see [GJ90]). The general structure of a table-driven operator-

precedence parser in shown in Figure 6.13.

The stack in an operator-precedence parser contains both operators and non-terminals.

The operators are used to calculate precedences and the non-terminals are somewhat

inconsequential [GJ90].

Figure 6.13: Operator-precedence Parser Model

A special terminal symbol is added to the top of the stack and the end of the input and at

each stage in parsing the parser has three possibilities [ASU86]:

• if the top of the stack has precedence lower or equal to the current input token,

then the token is pushed on the stack and the current token is advanced;

• if the top of the stack has precedence greater than the current input token,

symbols are popped off the stack until the terminal on the top of the stack has

precedence less than the most recently popped terminal; or

• if the precedence relation between the top of the stack and the current input

token is undefined an error has occurred.

Code Example 6.3 illustrates an operator-precedence parser for the simple expression

grammar of Figure 6.3.

op-prec

parser

precedence

table

output
s
t
a
c

k

tokenised input

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 181 •

boolboolboolbooleaneaneanean parse(Queue input, Symbol final, Table table, Rules rules) {
 Stack stack;

 input.add("$"); // add a special terminal symbol to the end of input
 stack.push("$"); // push special terminal symbol onto stack

 whilewhilewhilewhile (/* more left on the stack than the final symbol */) {
 Symbol top = stack.topTerminal();
 Token current = input.front();

 ifififif (table.lookup(top, current).isLessThanOrEqualTo()) { // shift
 stack.push(current);
 input.dropFront();
 } elseelseelseelse if if if if (table.lookup(top, current).isGreaterThan()) { // reduce
 Queue queue;
 do do do do {
 queue.add(stack.pop());
 whilewhilewhilewhile (table.lookup(stack.top(), top).isGreaterThanOrEqualTo());
 stack.push(rules.reduce(queue));
 } else else else else {
 return falsereturn falsereturn falsereturn false;
 }
 }

 returnreturnreturnreturn truetruetruetrue;
}

boolboolboolbooleaneaneanean expr(Queue input) {
 Table table; // table is constructed as shown in Table 6.3
 Rules rules; // E=E+E, E=E*E, E=(E), E=number

 returnreturnreturnreturn parse(input, Symbol.EXPR, table, rules);
}

Code Example 6.3: Simple Expression Operator-precedence Parser

The size of a precedence table is proportional to O(terminals * terminals). Table 6.3

contains the operator-precedence table for the simple expression grammar of Figure 6.3,

it contains 36 entries. Each entry in the table represents the relative precedences

between each operator. The differing set of precedence relations for addition and

multiplication demonstrate the resolution of inherent ambiguity in the original grammar.

6.5.2.1 Advantages

Operator-precedence parsing is easy to implement by hand either using precedence

functions or with a precedence table.

The original ambiguous expression grammar can be used directly along with other

information specifying the precedences of each operator. No grammar mangling is

required.

6.5.2.2 Disadvantages

Only a restricted set of languages can be handled by operator-precedence parsers as they

disallow all grammars with adjacent non-terminals.

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 182 •

Table 6.3: Simple Expression Operator-precedence Table

Terminal Terminal

 number () + * $

number >· >· >· >·

(<· <· =̇ <· <·

) >· >· >· >·

+ <· <· >· >· <· >·

* <· <· >· >· >· >·

$ <· <· <· <·

6.5.3 LR Parsing

LR parsing10 is a general concept of a shift-reduce parser driven by a state machine. LR

parsers use their current state and the current input token to drive the parse. The general

structure of a LR parser is shown in Figure 6.14.

Figure 6.14: LR Parser Model

In addition to the four possible actions stored in each entry in the parse-table (renamed

as the action table), LR parsers contain extra information called goto. When a rule is

reduced, the algorithm uses this goto field to jump to a parse state that represents the

reduced non-terminal symbol.

10 Sometimes referred to as canonical LR to more adequately distinguish it from the family of LR parsers.

LR parser

action

output
s
t
a
c

k

tokenised input

goto

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 183 •

For each step in the parse, the same four action types as general shift-reduce parsers

apply, but with changes to both shift and reduce [ASU86]:

• shift: the parser shifts the current input symbol and the next state onto the stack;

• reduce: the parser pops the number of symbols and states required by the right-

hand side of the reducing grammar rule and looks up the goto for the state now

on the top of the stack;

• accept: the parser completes successfully; and

• error: the parser has discovered an error and calls an error recovery routine.

The driver program is identical for all LR parsers, it is only the parse table construction

method that changes from one LR parser to another [ASU86]. Code Example 6.4

demonstrates a LR parser implementation for the simple expression grammar of Figure

6.4. The methods in the following subsection (SLR and LALR) differ to LR parsing

only by the contents of the parse table.

Construction of LR parse tables involves the construction of a state machine (or finite

automaton). Typically, a non-deterministic finite automaton (NDFA) is constructed and

then translated into a deterministic finite automatic (DFA) [ASU86]. For the simple

expression grammar of Figure 6.4 the NDFA contains 77 states, and the corresponding

DFA contains 23 states. Both are too complicated to reproduce here.

The size of an action table is proportional to O(states * terminals) and the size of the

goto table is proportional to O(states * non-terminals). The size of the entire parse table

is hence proportional to O(states * (terminals + non-terminals)). For the simple

expression grammar of Figure 6.4, the parse-table contains 207 entries and is shown in

Table 6.4.

The states are shown as the rows, and all the terminals (including the end-of-input

symbol $) and non-terminals appear along the columns. The terminals symbols specify

actions to be taken at each step in the parse, and non-terminal symbols specify the gotos

to be taken after a reduction has occurred.

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 184 •

boolboolboolbooleaneaneanean parse(Queue input, Table table, Rules rules) {
 Stack stack;

 input.add("$"); // add a special terminal symbol to the end of input
 stack.push(0); // push state 0 onto the stack

 whilewhilewhilewhile (truetruetruetrue) {
 State top = stack.top();
 Token current = input.front();
 Entry entry = table.lookup(top, current);

 switchswitchswitchswitch (entry.action) {
 case case case case SHIFT:
 stack.push(current);
 stack.push(entry.state);
 input.dropFront();
 breakbreakbreakbreak;
 case case case case REDUCE:
 Rule rule = rules[entry.rule];
 // pop twice the number of symbols in rule.rhs off the stack
 for (int i = 0; i < 2 * rule.rhs.length; ++i) stack.pop();
 top = stack.top();
 stack.push(rule.lhs);
 stack.push(table.lookupGoto(top, rule.lhs));
 breakbreakbreakbreak;
 case case case case ACCEPT:
 return return return return true;
 default default default default:
 return return return return false;
 }
 }
}

boolboolboolbooleaneaneanean expr(Queue input) {
 Table table; // table is constructed as shown in Table 6.4
 Rules rules; // E=E+T, E=T, T=T*F, T=F, F=(E), F=number

 returnreturnreturnreturn parse(input, table, rules);
}

Code Example 6.4: Simple Expression LR Parser

Table 6.4 is much larger than the parse table for the operator-precedence parser or the

predictive parser. As in previous parse tables, blanks signify a parse error has occurred.

States such as 1 and 4, and 17 and 18 are actually identical, even though their contents

within the finite automaton are not. Perhaps states such as 5 and 7 can actually be

combined and picked up as errors later. It should be clear that many improvements can

be made to this parse table. LR parsers produce a state machine that is truly massive in

size.

“LR(1) parsers [are] impractical in that the space required for their deterministic

automata [is] prohibitive. A modest grammar might already require hundreds of

thousands or even millions of states.” [GJ90§9.6, pp. 211]

For instance, the C programming language has over 10,000 LR states [Ast+05]. This

highlights the need for some techniques to reduce the size of the parse tables.

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 185 •

Table 6.4: Simple Expression LR Parse Table

State Action Goto

 num () + * $ E T F

0 s7 s2 10 11 6

1 s9 s3 18 15 8

2 s9 s3 19 15 8

3 s7 s5 12 6

4 s9 s3 18 15 8

5 r4 r4 r4

6 r6 r6 r6

7 r4 r4 r4

8 r6 r6 r6

9 s4 a

10 r2 s13 r2

11 r1 s13 r1

12 s7 s5 14

13 r3 r3 r3

14 r2 s16

15 s9 s3 17

16 r3 r3

17 s23 s20

18 s23 s20

19 s9 s3 21 8

20 r1 r1 s16

21 r5 r5 r5

22 r5 r5 r5

6.5.3.1 LALR Parsing

LALR (Lookahead LR) parsing is a LR variant that attempts to collapse similar

automaton states thus reducing the size of the parse table. As a result of this collapsing,

the algorithm is slightly less powerful than an LR parser for the same grammar [GJ90].

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 186 •

“The idea is now to collapse the automaton but to keep the look-ahead

information (and collapse it too, but not discard it). The surprising fact is that

this preserves almost all the original look-ahead power and still saves an

enormous amount of memory.” [GJ90§9.6, pp. 211]

Some grammars that are LR are not LALR, but this is rarely the case and has few

examples in the real world [GJ90]. Sometimes the improvement from LR to LALR is

huge: LALR drops the number of states required for a C language parser from over

10,000 to around 350 [Ast+05].

Table 6.5 shows the improvement in parse table size from the LR parse table in Table

6.4. This parse-table has 108 entries (down from 207). Whilst this is a great

improvement in size, it is still significantly larger than the tables required for

precedence parsing or table-driven LL parsing.

Table 6.5: Simple Expression LALR Parse Table

State Action Goto

 num () + * $ E T F

0 s5 s4 1 2 3

1 s6 a

2 r2 r2 s7 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s11 s6

9 r1 r1 s7 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 187 •

Of the LR class of parsers, LALR(1) has the best combination of power and practicality:

“LALR(1) parsers are powerful, almost as powerful as LR(1) parsers, they have

fairly modest memory requirements, … and they are time-efficient.” [GJ90§9.6

pp. 211]

In fact, LALR(1) parsing is the technique of choice for the majority of parsers [GJ90].

6.5.3.2 SLR Parsing

SLR (Simple LR) parsing is similar to LALR in that they both try to combine

automaton states. The combinations used by SLR discard information related to the

current state of the parser and combine states based only on the following symbol

information. As a direct result of this process SLR parsing is weaker in power with no

reduction in complexity to the LALR method:

“Since SLR(1) parsers have the same size as LALR(1) parsers and are

considerably less powerful, LALR(1) parsers are generally preferred.”

[GJ90§9.6.4, pp. 217]

6.5.3.3 Advantages

LR parsers have many advantages [ASU86]:

• they can be constructed for almost all programming language constructs that are

representable by context-free grammars;

• they can be implemented as efficiently as other shift-reduce parsing methods and

are the most general of this kind of parser;

• the class of grammars recognisable by LR parsers is a proper superset of those

that can be recognised by predictive parsers; and

• syntax errors will be detected as soon as possible on a left-to-right scan of the

input.

In fact, this error detection property means that parser will stop at the first incorrect

token without performing any further shifts or reduces. This is desirable as it allows the

maximum amount of state information to be retained for error recovery [GJ90].

Of all known parsing techniques, LALR parsers are considered to be the best trade-off

between power and efficiency.

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 188 •

6.5.3.4 Disadvantages

The principal drawback of LR parsers is that manual parse-table construction is tedious

and error-prone. It is simply too much work to construct a parse-table for a typical

programming language without using a LR parser generator [ASU86].

While such automated tools simplify parse-table generation considerably, they are not

perfect. Grammars that are not LR lead to shift/shift, shift/reduce, or reduce/reduce

conflicts. These are the result of combining conflicting actions within the same entry in

the parse table. Users must understand why each conflict may arise and know how to

modify their grammars accordingly [GJ90, pp. 215].

Additionally, as LR grammars are too large, parser generators typically use the LALR

technique (eg. Berkeley Yacc [Cor00]). This creates an extra source of conflicts that is

not so easily handled by users.

“The situation is worse for those (relatively rare) grammars that are LR(1) but

not LALR(1). The user never really understands what is wrong with the

grammar: the computer should be able to make the right parsing decisions, but it

complains that it cannot. Of course there is nothing wrong with the grammar; the

LALR(1) method is just marginally too weak to handle it.” [GJ90§9.6.3, pp.

216]

6.5.4 Suitability to Extensible Languages

Of the shift-reduce parsers, operator-precedence parsers only accept operator grammars,

LR parsers are impractical in size, SLR is the same size but weaker than LALR,

therefore LALR would be the likely choice of shift-reduce parser. As a result while

considering the suitability of shift-reduce parsers to extensible languages we will

consider LALR parser primarily.

6.5.4.1 Usability

LR methods are unsuitable for extensible languages. The simple examples of Figure

6.8(b) show that is a simple matter to produce grammars that cannot be handled by such

parsers. Using a LALR parser only serves to provide more subtle unacceptable grammar

errors.

CHAPTER 6: REVIEW OF PARSERS BOTTOM-UP PARSING

 • 189 •

6.5.4.2 Mid-parse Grammar Modification

LR parsers are unsuitable for mid-parse grammar modification as the entire state

machine would need to be regenerated upon grammar modification and it is unclear if a

corresponding state could be found for the current state.

An ad hoc shift-reduce parser may be able to handle grammar modification well, but

such parsers are difficult to construct.

CHAPTER 6: REVIEW OF PARSERS GENERAL PARSING

 • 190 •

6.6 General Parsing

Unlike the parsers of the previous sections, general parsing allows our (context-free)

grammar to be in any form. These parsers should at least be able to meet our first

requirement for extensible language parsing — i.e. ease of user for the programmer.

We examine two general parsing mechanisms CYK and Earley parsing and briefly

describe the class of chart parsers.

6.6.1 CYK Parsing

The CYK (named after its independent co-creators Cocke [CS70], Younger [You67],

and Kasami [Kas65]) algorithm provides parsing of ambiguous grammars, but the

standard version requires grammars to be in Chomsky Normal Form (CNF). Context-

free grammars can be converted to CNF without too much difficultly [GJ90], so CYK

parsing still serves as a good starting point for a general parser. The standard algorithm

can be extended to handle forms that are not CNF, but at the cost of a more difficult to

implement algorithm.

CYK parsing considers all possible subsequences of the input string starting with those

of length one, then two, etc. Once a rule is matched on a subsequence, the left-hand side

is considered a possible valid replacement for the underlying subsequence.

Typically standard CYK is implemented using multidimensional Boolean arrays

[GJ90]; each entry representing the successfulness of applying a rule to a subsequence

(represented by a start index and a sequence length). An algorithm for standard CYK

parsers using a multidimensional array is shown in Code Example 6.5.

intintintint N = /* number of input tokens */
intintintint R = /* number of rules in CNF grammar */

boolboolboolbool array[N][N][R];

foreachforeachforeachforeach token T at index I in the input
 foreachforeachforeachforeach rule R -> T
 array[I][1][R] = truetruetruetrue

foreachforeachforeachforeach I = 2..N
 foreachforeachforeachforeach J = 1..N-I+1
 foreachforeachforeachforeach K = 1..I-1
 foreachforeachforeachforeach rule R -> S T
 ifififif P[J][K][S] andandandand P[J+K][I-K][T]
 P[J][I][R] = truetruetruetrue

Code Example 6.5: CYK Algorithm

CHAPTER 6: REVIEW OF PARSERS GENERAL PARSING

 • 191 •

CYK parsers operate in a non-directional bottom-up fashion. They are non-directional

as they match rules of a given length at all places in the input.

Figure 6.16 shows the execution of a CYK parser for the grammar of Figure 6.15 with

input 5*8+2. The Chomsky Normal Form of our simple expression grammar highlights

the increase complexity that comes with such a transformation.

E ::= E E2 | E E3 | (E4 | num
E2 ::= + E
E3 ::= * E
E4 ::= E)

Figure 6.15: Expression Grammar in Chomsky Normal Form

Figure 6.16: CYK Expression Parsing Recognition Table

6.6.2 Earley’s Algorithm

Earley’s algorithm [Ear70] is described as a breadth-first top-down parser with bottom-

up recognition.

The algorithm maintains a list of states which each contain a list of partially complete

rules. These partially complete rules are written with a dot representing the currently

examinable position in a rules right-hand side. For example, in X ::= ab•c the

terminals a and b have been examined and c is the next terminal to be examined.

At each stage in the parse, the following three actions occur in turn: prediction,

scanning, and completion. At each iteration of the algorithm any of these actions may

add a partially completed rule to either the current state or the next state. Each rule has

associated with it a source state.

2 + 8 * 5

E: 2 E: 8 E: 5

E3: *8 E2: +2

E: 5*8

E: 8+2

E: (5*8)+2

E: 5*(8+2)

E3: *(8+2)

CHAPTER 6: REVIEW OF PARSERS GENERAL PARSING

 • 192 •

Prediction adds to the next state each of the rules for which a non-terminal appears

immediately to the right of the most recently parsed symbol in that rule.

Scanning adds to the next state all partially complete rules that expect the current input

symbol as their next symbol.

For each completed rule in the current set, completion adds to the current state all rules

from the corresponding source state, that have most recently examined (i.e. in which the

dot appears immediately to the right of) the entire right-hand side of the completed rule.

repeatrepeatrepeatrepeat until input is exhausted
 a = /* current input symbol */
 k = /* current state index */

 repeatrepeatrepeatrepeat until no more states can be added
 foreachforeachforeachforeach state (X ::= A•YB, j) inininin state[k] // prediction
 foreachforeachforeachforeach rule (Y ::= C)
 state[k].add(state (X ::= •C, k))

 foreachforeachforeachforeach state (X ::= A•aB, j) inininin state[k] // scanning
 state[k+1].add(state (X ::= Aa•B, j))

 foreachforeachforeachforeach state (X ::= A•, j) inininin state[k] // completion
 foreachforeachforeachforeach state (Y ::= A•B, i) inininin state[j]
 state[k].add(state (Y ::= A•XB, i))

Code Example 6.6: Earley’s Algorithm

Code Example 6.6 shows an algorithm for Earley parsing. In this algorithm, the

symbols X and Y represent any non-terminal; and A, B, and C represent any sequence

of symbols.

6.6.3 Chart Parsers

There is another form of general parser known as the chart parser. In actuality, both

chart parsing and CYK parsing have a number of variants and some of these are

identical [GJ90]. The difference between the two approaches is largely implementation

based and conceptually they are very similar. The approach taken by both is to

repeatedly scan the input looking at larger and larger substrings.

The diagram in Figure 6.17 is a chart based representation of the recognition table from

Figure 6.16. The two diagrams contain identical information.

Chart parser variants are often used in the field of natural language processing and are

too numerous to list here. As they are so similar, in future sections generally only CYK

parsing will be discussed.

CHAPTER 6: REVIEW OF PARSERS GENERAL PARSING

 • 193 •

Figure 6.17: Chart Parser Representation

6.6.4 Suitability to Extensible Languages

Unlike previously reviewed parsers, general parsers at least partially satisfy our

requirements for extensible language parsing.

6.6.4.1 Usability

CYK and Earley parsing do not suffer from the limitations of traditional top-down and

bottom-up approaches to parsing. Such general parsers seem well suited to providing a

simple to use system for end-users. A general parser should be capable of parsing any

grammar the user creates.

A system built with such a parser must have facilities for resolving ambiguity and

reporting when ambiguities are not resolved.

6.6.4.2 Mid-parse Grammar Modification

CYK parsing considers all substrings of length one up to the length of the input. This

process is unsuitable if we do not know all of the rules in advance.

Earley parsing speculatively keeps track of partially accepted rules in a top-down

fashion (even though the rules are accepted in a bottom-up order). If we introduce new

rules via an import statement, then these speculations are incomplete.

5 * + 2

E: 2 E: 5 E: 8

E3: *8

E: (5*8)+2

8

E: 5*(8+2)

E2: +2

E2: *(8+2)

E: 8+2 E: 5*8

CHAPTER 6: REVIEW OF PARSERS ANALYSIS

 • 194 •

6.7 Analysis

In this section we first review the relative merits of the parsers reviewed in this chapter

both in terms of power and efficiency. Secondly, we examine these parsers suitability to

use in extensible languages.

6.7.1 Power

The reviewed parsers can be ordered in terms of power as follows (from weakest to

strongest):

• operator-precedence;

• recursive descent and table-driven LL;

• SLR;

• LALR;

• canonical LR;

• CYK; and

• Earley’s algorithm.

With the exception of operator-precedence and CYK, the grammars that each of these

parsers can recognise is a proper subset of those of the following parser.

Operator precedence parsing and CYK parsing are the hardest to classify.

On one hand, operator precedence can handle ambiguous grammars as the general

methods but it is also restricted to grammar without consecutive non-terminals. The

latter is considered to be more restrictive and led to its placing.

As described, CYK parsing requires the grammar to be in Chomksy Normal Form, but

translation into CNF is not particularly hard and is far less restrictive than the necessity

of removal of left-recursive forms for the LL parsers, for example. Also, with effort

CYK parsing can be extended to handle arbitrary grammars.

Earley’s algorithm is the only reviewed method that allows parsing of an arbitrary

grammar without any modification.

CHAPTER 6: REVIEW OF PARSERS ANALYSIS

 • 195 •

6.7.2 Efficiency

Of the often used parsers (which all have a lookahead of 1) running times are

proportional to O(length of input). However, further to this, the reviewed parsers can be

ordered in terms of time efficiency as follows (from slowest to fastest, with

complexities given in terms of n input tokens):

• Earley’s algorithm and CYK: O(n
3
);

• recursive descent: O(n); and

• table-driven LL, and LR: O(n).

In terms of space efficiency (from largest to smallest, with complexities given in terms

of n input tokens, t terminal grammar symbols, u non-terminal grammar symbols, and

s states):

• CYK: O(un2);

• Earley’s algorithm: O(n
2
);

• canonical LR: O(s(t + u));

• LALR and SLR: O(s(t + u)) where the number of states is less than or equal to

that of LR;

• recursive descent; and

• table-driven LL: O(tu).

6.7.3 Suitability to Extensible Languages

As we have seen in previous sections, none of the traditional parsers have exactly met

out requirements for extensible language parsing, namely the requirements of

programmer usability (i.e. no unusual grammar restrictions) and mid-parse grammar

modification (to allow for arbitrary grammar changes).

6.7.3.1 Usability

Keeping things simple for the user suggests that all LL and LR methods are unsuitable.

The simple examples of Figure 6.8 show that is all too easy to produce grammars that

cannot be handled by such parsers.

CYK and Earley parsing do not suffer from these limitations and these general parsers

seem well suited to providing a simple-to-use system for end-users.

CHAPTER 6: REVIEW OF PARSERS ANALYSIS

 • 196 •

6.7.3.2 Mid-parse Grammar Modification

As previously stated, CYK parsers first consider substrings of length one, then of length

two, and so forth, up to the entire length of the input. This process is clearly

inappropriate for grammars for which we do not know all of the rules in advance.

Similarly, Earley parsing uses a form of speculation by allowing partially accepted

rules. If we introduce new rules via an import statement, then these speculations are

incomplete.

Both LL parsers and LR parsers suffer from similar problems to Earley’s method. With

LL parsing the parser may be deep within a recursive call when the grammar is

modified and as such may be unable to incorporate the new grammar rules. In fact, top-

down recognition is invalid if the entire grammar is unknown. There is no way to

ascertain that a rule will be matched without the rules that generate it being known. The

LR parser’s entire state machine would need to be regenerated upon grammar

modification and it is unclear if a corresponding state could be found for the current

state.

An ad hoc shift-reduce parser may be able to handle grammar modification well, but

such parsers are difficult to construct.

Indeed, none of the traditional methods seem to fit the domain of extensible languages

perfectly and another solution must be found — even if it comes at the cost of

efficiency.

 197

7 Graph Expansion Parsing

Graph Expansion Parsing

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

reviewing

extensibility

reviewing

parsing

implementing

a parser

designing

the language

implementing

the language

evaluation

conclusion

CHAPTER 7: GRAPH EXPANSION PARSING OVERVIEW

 • 198 •

7.1 Overview

As discussed in section 6.7.3, in order to successfully provide a parser for extensible

languages we require two things:

• end-user simplicity; and

• the ability to handle mid-parse grammar modification.

The usability of the system led to the necessity of general parsing mechanisms as

handling a subclass of context-free grammars is confusing for the macro programmer.

To this end it was also desirable not to have to mangle the grammar before use.

Handling mid-parse grammar changes requires us to provide a bottom-up parser that

examines the input in a left-to-right fashion.

No existing method fitted these requirements so a new parser was constructed which we

call Graph Expansion Parsing.

This chapter first shows the development of the parser in section 7.2. We then look at an

efficiency improvement in section 7.2.3 which provides the final algorithm.

The efficiency of Graph Expansion Parsing is examined in section 9.5.

7.1.1 Similarities to Chart Parsing Methods

Graph expansion parsing is clearly a type of chart parser. However it was initially

developed in isolation without reference to any general parsing method.

The single pass algorithm (see subsection 7.2.2) could be viewed as a modified form of

a CYK parser that has been extended to handle grammars other than those in Chomsky

Normal Form.

The final algorithm (see subsection 7.2.3) uses techniques to limit the construction of

paths and to simultaneously compare multiple rules against the current path that are

similar in intent to Earley’s improvements over top-down breadth-first parsing

techniques.

CHAPTER 7: GRAPH EXPANSION PARSING DEVELOPMENT

 • 199 •

7.2 Development

Two initial algorithms were produced for graph expansion parsing. The first attempt

was to test the feasibility of providing generality and as a result was very inefficient, but

importantly, it met the goal of mid-parse grammar modification. The second algorithm

was designed to have a stronger concept of completion.

Lastly, an optimised version of the second algorithm from this section is introduced.

7.2.1 Multipass Method

The original technique for building a graph of all possible parses and subparses

involved making a series of passes through the entire input string.

The algorithm begins with a graph of the input — in all examples in this section just a

trivially linear graph, but the algorithm does not restrict the complexity of the input.

Each vertex in the graph contains a forward edge that contain a single token of input —

for example, the input for the simple string 5*8+2 is shown in Figure 7.1(a).

The algorithm iterates through each of the vertices in order. All forward paths (that are

no longer than the longest right-hand side of any grammar rule) from each vertex have

their edge values matched against all grammar rules of equal length. If a match is found,

a new edge is added from the beginning to the end of the path with its value being the

left-hand side of the grammar production.

One complete iteration through the vertices does not produce all of the possible rule

reductions, so this process is repeated until no further additions are made to the graph.

An algorithm for this multipass method is shown in Code Example 7.1.

repeatrepeatrepeatrepeat until no changes made
 foreachforeachforeachforeach vertex V in original set
 foreachforeachforeachforeach forward path (V, U) of length less than or equal to longest rule
 foreachforeachforeachforeach rule R in rule set of equal length to the path (V, U)
 ifififif R's right-hand side matches path values
 add a new edge from (V, U) with R's left-hand side as value

ifififif there exists an edge from start vertex to end vertex the entire input has
 been recognised

Code Example 7.1: Multipass Graph Expansion Algorithm

CHAPTER 7: GRAPH EXPANSION PARSING DEVELOPMENT

 • 200 •

An example execution of this technique for the grammar of Figure 6.3 with the initial

input 8*5+2 is shown in Figure 7.1 (with expr abbreviated to E). Even for such a

simple test case, the algorithm requires four entire passes of the input be completed.

There is one major problem with this technique. The multiple passes are inefficient, and

each pass must consider an increasing number of path possibilities as the complexity of

the graph increases. The final pass only serves to provide termination yet it takes the

most time.

This algorithm succeeds in parsing arbitrary grammars and at mid-pass grammar

modification. Though the multiple passes are inefficient, they do allow a newly

modified grammar to be applied to the entire input.

(a) Initial Input

(b) After Pass One

(c) After Pass Two

(d) After Pass Three and Four

Figure 7.1: Multipass Graph Expansion

8 * + 2 5

8 * + 2
E

E E

E*E

5

E+E

E+E

8 * + 2
E

E E

E*E

E*E

5

E+E

E+E

8 * + 2

E

E E

5

CHAPTER 7: GRAPH EXPANSION PARSING DEVELOPMENT

 • 201 •

The multipass method is a non-directional bottom-up parser. If restricted to paths of a

fixed (but increasing) length for each pass, it acts as a generalised CYK parser.

7.2.2 Single Pass Method

The major problem with the multipass method is that for each vertex iteration in a pass,

rules are being matched against paths that contain vertices that have not been examined

in the current pass. This means matching has not been performed between the ruleset

and the majority of the subpaths of the path currently being examined (i.e. all subpaths

not containing the left-most vertex).

The idea behind the single pass method is to scan the vertices from left-to-right, but to

consider the paths from the current vertex from right-to-left (i.e. backward paths not

forward paths). This approach ensures that all subpaths have been fully compared

against the rule set. It also ensures that once the last vertex is examined that all possible

parses have been generated.

The single pass graph expansion algorithm is shown in Code Example 7.2.

foreachforeachforeachforeach vertex V in original set
 foreachforeachforeachforeach backward path (U, V) of length less than or equal to longest rule
 foreachforeachforeachforeach rule R in rule set of equal length to path (U, V)
 ifififif R's right-hand side matches path values
 add a new edge from (U, V) with R's left-hand side as value

ifififif there exists an edge from start vertex to end vertex the entire input has
 been recognised

Code Example 7.2: Single Pass Graph Expansion Algorithm

Figure 7.2 shows an example execution of the single pass technique for the grammar of

Figure 6.3 with the initial input of 8*5+2. The current node is highlighted at each step.

The resultant graph is identical to that produced by the multipass technique shown in

Figure 7.1 but it is produced in a more efficient fashion.

CHAPTER 7: GRAPH EXPANSION PARSING DEVELOPMENT

 • 202 •

(a) Initial Input

(b) After Iteration One

(c) After Iteration Three

(d) After Iteration Five

Figure 7.2: Single Pass Graph Expansion

The paths that are examined by the algorithm during the production of Figure 7.2 and

when new edges are added to the graph are demonstrated in Table 7.1. The only non-

terminal in the grammar of Figure 6.3 is for that of expr, so each time a new

expression is found it is given a subscript so that the process is easier to follow. Each

generated path is no longer than the longest rule in the grammar and must be compared

to all grammar rules for a match.

The single pass method is left-to-right scanning bottom-up parser. On non-ambiguous

grammars it will produce a single right-derivation traced out in reverse in a similar

fashion to a LR parser.

8 * + 2
E

E E

E*E

E*E

5

E+E

E+E

8 * + 2

E

5

8 * + 2

E E

E*E

5

8 * + 2 5

CHAPTER 7: GRAPH EXPANSION PARSING DEVELOPMENT

 • 203 •

Table 7.1: Single Pass Graph Expansion Evaluation

Iteration / Vertex Examined Path Action

0 ()

1 (8)
(E1)

→ E1 on edge (0, 1)

2 (*)
(8, *)
(E1, *)

3 (5)
(*, 5)
(8, *, 5)
(E1,*, 5)
(E2)
(*, E2)
(8, *, E2)
(E1, *, E2)
(E3)

→ E2 on edge (2, 3)

→ E3 on edge (0, 3)

4 (+)
(5, +)
(*, 5, +)
(E2, +)
(*, E2, +)
(E3, +)

5 (2)
(+, 2)
(5, +, 2)
(E2, +, 2)
(E3, +, 2)
(E4)
(+, E4)
(E2, +, E4)
(E3, +, E4)
(E5)
(*, E5)
(8, *, E5)
(E1, *, E5)
(E6)
(E7)

→ E4 on edge (4, 5)

→ E5 on edge (2, 5)
→ E6 on edge (0, 5)

→ E7 on edge (0, 5)

CHAPTER 7: GRAPH EXPANSION PARSING DEVELOPMENT

 • 204 •

7.2.3 Optimised Method

Many of the paths examined in Table 7.1 are clearly not going to match any of the rules

of the simple expression grammar. For example, no rule ends with a + symbol yet in

iteration 4 we examined six paths that end with a + symbol.

The optimised algorithm does not continue to expand paths unnecessarily. It keeps track

of how many possible rules contain the current path as the right-most part of their right-

hand side, and when this falls to zero the current path is abandoned. Its execution

produces the same order of graph additions as the single pass method of the previous

subsection.

Code Example 7.3 contains an algorithm for this optimised method. Paths are generated

incrementally by the recursive algorithm check.

parse
 foreachforeachforeachforeach vertex V in original set
 check (V, V)
 ifififif there exists an edge from start vertex to end vertex the entire input has
 been recognised

check (path (U, V))
 foreach foreach foreach foreach backward edge (T, U)
 ifififif path (T, V) matches a grammar rule R's right-hand side
 add a new edge from (T, V) with R's left-hand side as value
 ifififif further possibilities end with this subsequence
 check (T, V)

Code Example 7.3: Final Graph Expansion Algorithm

The difficult part of this algorithm is determining whether the current path matches the

right subsection of the right-hand side of a rule (or set of rules). To aid in this process a

tree of partial matches is used. Figure 7.3 contains this tree of partial matches for the

simple expression grammar of Figure 6.3. The arcs show the matched tokens, and the

nodes contain the addition rules that represent the reduction of rules.

CHAPTER 7: GRAPH EXPANSION PARSING DEVELOPMENT

 • 205 •

Figure 7.3: Simple Expression Partial Match Tree

Although this tree contains add actions only at the nodes of the tree this is not typical of

more complicated grammars. These add actions may appear at any node in the tree. For

example, with a right-to-left parse of the classic “dangling-else” grammar both the if-

then statement and the if-then-else statement are contained in a single path in

the tree (see Figure 7.4). A more contrived left-to-right example would be for a

grammar containing bracketed expressions and single parameter procedure calls.

Figure 7.4: Dangling-else Partial Match Tree

Table 7.2 shows the paths examined by the final Graph Expansion Parser for the simple

expression grammar with input 8*5+2. These are a strict subset of those in Table 7.1.

Table 7.2: Final Algorithm Graph Expansion Evaluation

Iteration / Vertex Examined Path Action

0 ()

1 (8)
(E1)

→ E1 on edge (0, 1)

2 (*)

3 (5)
(E2)
(*, E2)
(8, *, E2)
(E1, *, E2)
(E3)

→ E2 on edge (2, 3)

→ E3 on edge (0, 3)

then Expression Bracketed else if Expression

add IfThenElse add IfThen

* E

E

(E

E

)

num

+

add E = E+E

add E = E*E

add E = (E)

add E = num

CHAPTER 7: GRAPH EXPANSION PARSING DEVELOPMENT

 • 206 •

4 (+)

5 (2)
(E4)
(+, E4)
(E2, +, E4)
(E3, +, E4)
(E5)
(*, E5)
(8, *, E5)
(E1, *, E5)
(E6)
(E7)

→ E4 on edge (4, 5)

→ E5 on edge (2, 5)
→ E6 on edge (0, 5)

→ E7 on edge (0, 5)

 207

8 Implementation

Implementation

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

reviewing

extensibility

reviewing

parsing

implementing

a parser

designing

the language

language

implementation

evaluation

conclusion

CHAPTER 8: IMPLEMENTATION OVERVIEW

 • 208 •

8.1 Overview

As illustrated in Figure 8.1, the Genesis compiler:

• takes a single Genesis source file as input;

• tokenises this file;

• parses this file (using the graph expansion parser from the previous chapter),

performing macro translations where appropriate;

• produces Java source files;

• compiles these with the standard Java compiler (javac); and

• finally produces Java executables (.class files).

In addition, the parser initially imports standard macros and may import further macros

as specified by the Genesis source file.

Figure 8.1: Genesis Compiler Structure

The major components of the Genesis compiler implementation are the tokeniser and

parser.

There are two facets to Genesis source file translation: translation of macro calls to

standard Java forms and the translation of macro definitions. The latter requires a

representation to be chosen that allows for future importing in other source files via the

macro import mechanism.

This chapter begins by describing the chosen representation for macro definition

translation (section 8.2) and the import mechanism (section 8.3).

Following this, the tokeniser (see section 8.4) and the parser (see section 8.5)

implementations are described.

Section 8.6 describes the actual usage of the compiler.

Finally, the implementation of standard library extensions is detailed in section 8.7.

.gen file tokeniser parser .class files javac .java file

macro

import

CHAPTER 8: IMPLEMENTATION MACRO DEFINITION TRANSLATION

 • 209 •

8.2 Macro Definition Translation

The translation of macro definitions requires the preservation of macros in a form that is

convenient to our modified import statement. It was chosen from the onset to embed

macros within classes directly and to use reflection for retrieval of macros at compile-

time. By using standard Java features, we allow macros to be easily packaged with their

associated classes, with no need for extra files, new file formats or any other such

complexity.

8.2.1 Basic Translation

Take as way of illustration the following code snippet in Code Example 8.1(a). Here we

have a class which has two macro definitions in amongst other standard code (this code

could use macros, but there are no further macro definitions).

classclassclassclass Example {
 // some code
 ...
 Expression macromacromacromacro (...) precedenceprecedenceprecedenceprecedence 0.6 { ... }
 ...
 // some other code
 ...
 LiteralList macromacromacromacro (...) throwsthrowsthrowsthrows SyntaxError { ... }
 ...
 // yet more code
}

(a) Before Translation

classclassclassclass Example {
 // some code
 ...
 // some other code
 ...
 // yet more code

 staticstaticstaticstatic classclassclassclass Macros {
 staticstaticstaticstatic Expression mangledName1(...) { ... }
 staticstaticstaticstatic LiteralList mangledName2(...) throwsthrowsthrowsthrows SyntaxError { ... }
 }
}

(b) After Translation

Code Example 8.1: Basic Macro Translation

Upon translation, all macro declarations found within a class are collected as a group

inside a static inner class Macros – as a result of this decision it is necessary to ensure

that no program is allowed to directly define an inner class of this name. So for this

example code the translation would be as shown in Code Example 8.1(b).

CHAPTER 8: IMPLEMENTATION MACRO DEFINITION TRANSLATION

 • 210 •

All macros become static methods of the static class Macros. Their return types, any

throws declarations, and their body are maintained without change. As we will see in

the following sections the formal parameter list and name of each method depends on

the formal parameters of the macro; its precedence and associativity; and, in some

cases, modifications made to avoid name clashes.

8.2.2 Name Mangling

In C++, in order to ensure there are no name clashes due to overloading, each C++

name is mangled into an unique identifier that is dependent on the properties of the

original function. In this work, a similar process is applied to each macro.

Within the inner class Macros each macro is placed in a method that contains all of the

macro’s properties in both its name and its arguments. This relatively simply name

mangling process relies on placing special significance on both the “$” and “_” symbols

in order to be able to reconstruct the full macro upon its subsequent import.

8.2.2.1 Terminals and Non-terminals

Each argument in a macro definition is mangled into the final name of the macro. Each

terminal becomes part of the macro name as it appears, and in place of each non-

terminal a dollar symbol is placed. For the arguments, all terminals are dropped, and all

non-terminals appear with their original ordering. Mangling is demonstrated in Code

Example 8.2.

macromacromacromacro For (forall, FormalParameter p, in, Expression e, Statement b) ...

(a) Before Mangling

staticstaticstaticstatic For forall$in$$(FormalParameter p, Expression e, Statement b) ...

(b) After Mangling

Code Example 8.2: Basic Name Mangling

The final mangled name of a macro clearly shows the number and position of both

terminals and non terminals, and the parameters show the types of each the terminals. It

is simply a matter of pulling this information out upon importing a macro at a later time.

There are a few situations that may arise that cannot be translated directly using the

above scheme alone, none cause large problems however, and can all be dealt with a

single solution: the introduction of leading underscore(s). These leading underscores are

CHAPTER 8: IMPLEMENTATION MACRO DEFINITION TRANSLATION

 • 211 •

discarded when the name is demangled. The next few subsections detail these situations

and provide examples of their translation.

Java Reserved Words

A macro can be defined that contains a single terminal that happens to be a Java

reserved word. This is done extensively in defining the Java primitives, but as always, a

programmer may wish to override these also.

For example, the Java primitives true and false are simply defined as shown in

Code Example 8.3(a), and standard translation would produce the mangling in Code

Example 8.3(b). It may not be immediately apparent what the issue is here, but true

and false are Java reserved words, and as such cannot ever be used as identifiers. The

solution is simply to introduce a leading underscore into the mangling as shown in Code

Example 8.3(c).

macromacromacromacro LiteralBoolean true() { returnreturnreturnreturn newnewnewnew LiteralBoolean(truetruetruetrue); }
macromacromacromacro LiteralBoolean false() { returnreturnreturnreturn newnewnewnew LiteralBoolean(falsefalsefalsefalse); }

(a) Before Mangling

staticstaticstaticstatic LiteralBoolean truetruetruetrue() { returnreturnreturnreturn newnewnewnew LiteralBoolean(truetruetruetrue); }
staticstaticstaticstatic LiteralBoolean falsefalsefalsefalse() { returnreturnreturnreturn newnewnewnew LiteralBoolean(falsefalsefalsefalse); }

(b) After Basic Mangling

staticstaticstaticstatic LiteralBoolean _true() { returnreturnreturnreturn newnewnewnew LiteralBoolean(truetruetruetrue); }
staticstaticstaticstatic LiteralBoolean _false() { returnreturnreturnreturn newnewnewnew LiteralBoolean(falsefalsefalsefalse); }

(c) Final Mangling

Code Example 8.3: Java Reserved Word Mangling

Reserved words appearing in the midst of a more complicated macro cause no issues

and do not require the leading underscore mangle.

Non-Java Terminals

Java identifiers are not allowed to begin with a digit (although they are allowed to

contain digits at any other point), whereas there is no such restrictions placed on macro

terminals. When a straight conversion occurs of a macro that has a terminals that begins

with a digit as its first argument it is necessary to append a leading underscore so that

the resulting mangle does not begin with a digit.

CHAPTER 8: IMPLEMENTATION MACRO DEFINITION TRANSLATION

 • 212 •

Name Conflicts

The same macro may appear in different imports with the same name and types without

causing conflict to the compiler. A macro with the same arguments with differing return

types may even appear in the same import.

Of the three macros in Code Example 8.4, only one will successfully match on a given

token, but all three will make an attempt to match. In order to remove the conflict that

these definitions produce (Java doesn’t allow overloading on return type alone), one or

more leading underscores may be appended to the mangled name.

macromacromacromacro LiteralString (Token t) throwsthrowsthrowsthrows ConditionsNotMet ...
macromacromacromacro LiteralChar (Token t) throwsthrowsthrowsthrows ConditionsNotMet ...
macromacromacromacro LiteralInteger (Token t) throwsthrowsthrowsthrows ConditionsNotMet ...

(a) Before Mangling

staticstaticstaticstatic LiteralString $(Token t) throwsthrowsthrowsthrows ConditionsNotMet ...
staticstaticstaticstatic LiteralChar _$(Token t) throwsthrowsthrowsthrows ConditionsNotMet ...
staticstaticstaticstatic LiteralInteger __$(Token t) throwsthrowsthrowsthrows ConditionsNotMet ...

(b) After Mangling

Code Example 8.4: Mangled Name Conflict Resolution

The choice of which macro(s) to append the underscores to is arbitrary, as this

information will be discarded upon import.

8.2.2.2 Symbols

Symbols may appear at any argument position within a macro. Symbol terminals cannot

be translated as is, as most symbol characters are not acceptable Java identifier

characters. Each symbol character is translated to an underscore plus three digits that

represent the decimal ASCII
11

 value of the symbol. Code Example 8.5 demonstrates the

mangling of symbols for a simple macro.

macromacromacromacro Statement (printf, (, LiteralString s, ",", Arguments list,)) ...

(a) Before Mangling

staticstaticstaticstatic Expression printf_040$_044$_041(LiteralString s, Arguments list) ...

(b) After Mangling

Code Example 8.5: Symbol Mangling

11 Unicode source files are not currently supported by the Genesis research compiler.

CHAPTER 8: IMPLEMENTATION MACRO DEFINITION TRANSLATION

 • 213 •

Multicharacter Symbols

It is possible to define a macro that uses a multi-character symbol, or a macro that

requires two consecutive single symbols. These two cases must be differentiated. A

multi-character symbol will be mangled as an underscore followed by multiple three

digit groups, eg. "()" will be mangled to _040041, whereas "(" ")" will be

mangled to _040_041.

8.2.2.3 Precedence

A macro’s precedence is specified by a real number between 0 and 1 inclusive and

defaults to 0.5. This precedence is mangled by appending a prefix to a previously

mangled name; an underscore followed by three zeros, followed by the significant part

of the precedence. Figure 8.2 contains some examples of the mangling of precedences.

0.5 → _0005
0.503 → _000503
0.01 → _00001
0.0 → _000

Figure 8.2: Precedence Mangling Examples

The special case of having a precedence of 1.0 requires its own special mangle and will

be simply mangled to _001.

8.2.2.4 Associativity

Macros that specify that they are right-associative (rather than the default left-

associative) have a prefix of _002 added.

8.2.2.5 Delayed Macros

Macros that specify that their execution is to be delayed until the surrounding context

has been parsed have a prefix of _003 added.

8.2.2.6 Mangling Grammar and Algorithm

The grammar for producing a mangled name (and for demangling) is provided in Figure

8.3.

The mangling process will always produce mangled names that follow this strict

ordering of precedence–associativity–delayed, but the demangling process can be more

robust and is free to detect these in any order, just in case.

CHAPTER 8: IMPLEMENTATION MACRO DEFINITION TRANSLATION

 • 214 •

mangle ::= [leading] [precedence] [associativity] [delayed]
 (terminal | nonterminal)+

leading ::= ____+
precedence ::= _000_000_000_000 digit* | _001_001_001_001
associativity ::= _002_002_002_002
delayed ::= _003_003_003_003
terminal ::= alphanum+ | ____ digit digit digit
nonterminal ::= $$$$

Figure 8.3: Mangled Name Grammar

The algorithm for mangling a macro definition into a Java method call is shown in

Figure 8.4 (in pseudo-code).

name = ""
arguments = empty

ifififif macro specifies precedence
 name += "_00" + stripDecimalPoint(precedence)

ifififif macro specifies right-associativity
 name += "_002"

ifififif macro specifies delayed execution
 name += "_003"

foreachforeachforeachforeach macroParameter // (in order)
 ifififif terminal
 ifififif symbol
 name += "_" + asciiValuesOf(macroparameter)
 elseelseelseelse
 name += macroParameter
 elseelseelseelse
 name += "$"
 arguments += macroParameter

whilewhilewhilewhile name begins with digit or is reserved word or conflicts
 name = "_" + name

Figure 8.4: Name Mangling Algorithm

CHAPTER 8: IMPLEMENTATION IMPORT MECHANISM

 • 215 •

8.3 Import Mechanism

Upon encountering a class import statement, the implementation interrogates the class

via reflection to see if it contains a static inner class called Macros. If such a class is

detected, all methods of that class are examined.

The mangled name of each method is examined, and a structure is built-up that

contains:

• a precedence (defaulting to 0.5);

• an associativity (defaulting to left);

• a list of terminals and non-terminals;

• a return type; and

• a reference to the static method (to be used later as the action of this macro).

A full description of the data structures used for storing imported macros is discussed in

subsection 8.5.2.

Any method that is encountered within the Macros inner class that does not represent a

well-formed macro will cause a warning to be generated. Such errors occur upon

encountering:

• a non-static method;

• zero argument macro definitions;

• a method that does not contain a matching number of parameter placeholders

and formal parameters; or

• parameters that do not inherit from or implement AbstractSyntax.

No further information is extracted from the class. For the purposes of this

implementation, reflection is used to glean all member information and when

performing type checks — none of this information is cached at any time. However, a

record of each import must still be maintained to enabled expansion of shortened names

when using this reflection technique. For example following import

somewhere.Utils, any use of Utils.someMethod must expand to

somewhere.Utils.someMethod.

CHAPTER 8: IMPLEMENTATION TOKENISER

 • 216 •

8.4 Tokeniser

The tokeniser is implemented directly from the transition diagram from section 5.4.4,

but unlike most language tokenisers it does not produce a lazy stream of tokens but a

fully constructed graph ready for the Graph Expansion Parser. In simple cases this graph

appears as a list. For example, consider the code fragment from Code Example 8.6.

ifififif (frogs > toads) x = -x;

Code Example 8.6: Code Fragment Without Multi-character Symbols

For this simple if statement the tokeniser would produce the graph shown in Figure

8.5.

Figure 8.5: Graph Produced From Tokenising Code Example 8.6

The tokeniser constructs these graphs with a single type on each arc: Token. No

distinction is made between tokens that are fully alphanumeric or symbolic. Indeed,

even string and character literals are passed to the parser as this generic token type.

A general policy of the tokeniser design is to not make decisions about the type of any

character sequences — this is the job of macros that deal directly with tokens, in this

way the tokeniser provides the parser with the most flexible input. The tokeniser acts

more as a device to separate tokens rather than to classify them.

8.4.1 String and Character Literals

Both string and character literals are detected at the tokenising stage, and added to the

graph with their enclosing quotes intact. It is left to macro definitions to provide correct

categorisation of these tokens.

Such macros merely take a single token as input, ensure that the token is in the correct

form (raising a quiet exception if this is not the case) and convert it into a more

meaningful form — such as a literal or an identifier. Many such macros are likely to

attempt (and fail) on each token of the input until the token is correctly categorised.

if (frogs > toads) x = - x ;

CHAPTER 8: IMPLEMENTATION TOKENISER

 • 217 •

8.4.2 Multi-character Symbols

As discussed in section 5.4.3 multi-character symbols require special treatment. The

production of symbol combinations described in section 5.4.3.4 fits snuggly with Graph

Expansion Parsing. Each combination is represented as an extra arc on the graph. For

example, consider the code fragment in Code Example 8.7.

x+=(y4)-400.3;

Code Example 8.7: Code Fragment Containing Multi-character Symbol s

For this simple expression statement, the graph shown in Figure 8.6 is produced.

Figure 8.6: Graph Produced From Tokenising Code Example 8.7

The number of arcs required for a symbol sequence grows quadratically with the

number of paths growing exponentially, but, as previously discussed, the length of

multi-character symbols is typical just a few characters.

x + = (y4) - 400 . 3 ;

=(

)-
+=

+=(

CHAPTER 8: IMPLEMENTATION PARSER

 • 218 •

8.5 Parser

The parser is an implementation of Graph Expansion Parsing, but with a few interesting

additions and optimisations.

8.5.1 Sub-type Non-terminal Matching

The standard operation of GEP is that the type of each non-terminal symbol from the

right-hand side of a rule must be matched exactly with an arc on the graph. The Genesis

parser allows matching to take place if the type of each object on the arc is a sub-type of

the corresponding non-terminal symbol from a macro.

This allows for the set of Java abstract syntax classes to be defined as a traditional

object-oriented class hierarchy (see Appendix A). Additionally, such a technique also

allows for implicit optimisations as macros do not have to be created to coerce abstract

syntax classes into types higher up the abstract syntax hierarchy.

For example, for the intuitive ambiguous simple expression grammar of Figure 6.3, it is

possible to create a class (or interface) for an expression and four subclasses that

correspond to addition, multiplication, bracketing, and a simple number. There is no

need to create a class for representing the number and another class for an expression

that is simply a number, these two classes can be combined. On a larger scale this

technique has the potential to provide a much simplified grammar.

8.5.2 Partial Match Tree

The partial match tree as described in subsection 7.2.3 and Figure 7.3 is implemented,

with efficiency as the prime concern, with a hash-table at each node. When following a

path through the graph, each lookup in the table is a near constant operation.

The partial matches tree is built incrementally as each new macro is imported. The

hashtables initially start at a very small size, but will automatically grow as required, so

the space overhead for such a scheme is not as expensive as it may appear at first

glance.

The sub-type matching scheme outlined in the previous subsection requires that each

sub-type possibility is represented in the tree for maximum efficiency. The alternative

CHAPTER 8: IMPLEMENTATION PARSER

 • 219 •

approach is to merely check for each sub-type as the path is followed. It is possible to

construct a hybrid approach where sub-types are only expanded after their first use.

8.5.3 Abstract Syntax Tree

In addition to storing the abstract syntax objects creation by macro expansion as the

parse progresses, the parser stores references to the grammar rule and all of the source

edges that were successfully matched. This provides the necessary information for

disambiguation, if necessary, at a later stage in the parse.

When a macro is delayed, an uninitialised placeholder object of its return type is placed

in the graph so that the parse can continue as expected in an inside-out fashion. Once

the delayed macro has been expanded in an outside-in fashion, the placeholder object is

updated to reflect the object returned.

For macros that are delayed and may fail if further conditions are not satisfied, the

parser also stores a list of further macros that may take its place.

8.5.4 Error Handling

The Genesis parser provides limited automatic syntax error handling, but does provide

the user powerful facilities for explicit detection of errors within macro expansions.

8.5.4.1 Syntax Errors

Determining the exact location of syntax errors is difficult with Graph Expansion

Parsing. Detecting a syntax error is simple, if an arc does not appear in the graph that

spans the entire input then a syntax error has occurred. Where this syntax error occurred

is not a simple matter to determine from examining the graph.

The Genesis parser simply finds the areas of the graph where the least matching of

macros has taken place and signals the user that these might be where the error has

occurred. At the simplest level of error, an unrecognised symbol, this scheme will work

very well. It is less clear that this approach will be as useful for more subtle syntax

errors however. In particular, a syntax error for a particular construct might still be

partially correct for another and the simple error detection scheme is unlikely to identify

this partially matched area as a possible source of error.

CHAPTER 8: IMPLEMENTATION PARSER

 • 220 •

8.5.4.2 Exception Errors

The parser allows macros to throw any exception that extends ParserException. If

a quiet exception is thrown, the parser will continue as if nothing happened. When

errors or warnings are thrown, the parser stores this information until it is sure that the

macro that caused the exception will contribute to the final parse.

CHAPTER 8: IMPLEMENTATION STANDARD USAGE

 • 221 •

8.6 Standard Usage

The Genesis compiler is invoked at the command line by genc <filename>. Source

files must end with a .gen file extension.

In addition to standard operation there are a number of command-line arguments that

can be specified.

8.6.1 Command-line Arguments

The Genesis compiler supports command line arguments for: modifying the classpath,

modifying the default import classes, and producing Java output.

8.6.1.1 Classpath

Like javac, genc uses the environmental variable CLASSPATH and provides a

classpath switch to allow for easy overriding of this location.

8.6.1.2 Default Imports

By default the compiler imports all of the standard Java abstract syntax classes, as well

as the Genesis import statement and macro declaration classes. These default classes

can be added to by the use of the import switch, or completely overridden by the

importonly switch.

The former allows easy extension of the Java language without the necessity for an

import in every source file. In effect, the Genesis compiler can act as a compiler for an

extension transparently to the end-user.

The latter allows for languages to be created that are entirely free from Java syntax, but

nonetheless produce valid Java code. This is possible because macro definitions are

only necessary for matching source code, the compiled macros are still capable of

producing Java abstract syntax. Using this switch with the Haskell subset extension (as

defined in section 3.4.2.3) can allow source files to contain nothing but Haskell subset

definitions. See section 9.2.6.6 for more explanation.

CHAPTER 8: IMPLEMENTATION STANDARD USAGE

 • 222 •

8.6.1.3 Production of Java Source Code

The compiler can output intermediary Java code rather than compiling it. Output code

will be placed in a file with the same name as the Genesis source, but with a .java

extension rather than .gen.

Production of the full translated Genesis source code as its Java equivalent allows for a

low-level detection of bugs in both user-defined macros and the fledgling Genesis

compiler.

CHAPTER 8: IMPLEMENTATION STANDARD LIBRARY EXTENSIONS

 • 223 •

8.7 Standard Library Extensions

Genesis provides extensions as standard to aid with macro construction.

In subsection 8.7.1 facilities are provided for quasi-quotation, unquoting, and hygiene as

these are considered essential for producing concise and human-readable code. In

addition to these shorthands, macros are provided to simplify the declaration of macros

in subsection 8.7.2.

8.7.1 Quasi-quotation

The initial implementation of quasi-quotation is actually relatively straightforward.

However, it does rely on each object on the parse tree "knowing" which macro was

invoked in order to produce it. The syntax for quasi-quotation in Genesis is shown in

Code Example 8.8(a).

{{ throwthrowthrowthrow newnewnewnew TestAssert.AssertionError("Assertion Failed"); }}

(a) Throw Statement with Quasi-quotation

newnewnewnew Throw(newnewnewnew Creation(
 nenenenewwww Type(newnewnewnew Name("TestAssert").add("AssertException")),
 newnewnewnew Arguments(newnewnewnew LiteralString("Assertion Failed"))
))

(b) Handwritten Code to Produce Throw Statement

Statement.Macros._0006throw$_059(Expression.Macros.new$_040$_041(
 Type.Macros.$(Name.Macros.$(newnewnewnew Identifier("AssertionError"))),
 Expression.Macros.$(newnewnewnew LiteralString("Assertion Failed"))
))

(c) Quasi-quotation Code to Produce Throw Statement

Code Example 8.8: Genesis Quasi-quotation

Code Example 8.8(b) contains typical handwritten code for producing the same effect as

the quasi-quotation in Code Example 8.8(a). Whilst is would be feasible to provide

creation of such code as the translation of the quasi-quotation form, it would rely on

constructors being made available in such a form that would be simple to use by the

translator. Such handwritten code has various shortcuts for easing the burden on the

programmer that would be more difficult to utilise in an automatic translation.

As described in subsection 8.5.3, among the information stored during the parsing

process is the macro used for creation of each object in the parse tree. The production of

quasi-quotation translation code of Code Example 8.8(c) utilises this information.

CHAPTER 8: IMPLEMENTATION STANDARD LIBRARY EXTENSIONS

 • 224 •

Quasi-quotation translation creates new objects directly for objects that are produced

directly from tokens in the parse to avoid having to handle ConditionsNotMet

exceptions for these simple cases.

Indeed, if macros that may throw exceptions are used within a quasi-quotation they

must be handled by the method containing the quasi-quotation, either by enclosing the

quasi-quotation in an appropriate try-catch statement or by adding them to the

throws clause.

The basic concept of the implementation of quasi-quotation is shown in Code Example

8.9. The basic concept is to undertake a treewalk and reproduce the call to the macro

that produced each encountered node.

Expression produceQuasi(AbstractSyntax a) {
 ArcValue v = Utils.getAbstractSyntaxInfo(a);
 ExpressionList args = new ExpressionList();

 forallforallforallforall (ArcValue w) inininin v.sources args.add(produceQuasi(w.data));

 returnreturnreturnreturn new MethodCall(v.rule.action, args);
}

macromacromacromacro Expression ("{{", AbstractSyntax a, "}}") {
 returnreturnreturnreturn produceQuasi(a);
}

Code Example 8.9: Partial Basic Quasi-quotation Definition

Abstract syntax classes representing identifiers and literals (i.e. anything taking a token

as its argument and promoting it to some more useful type) require slightly more work.

As these macros are not delayed but may throw ConditionsNotMet exceptions it is

simpler for the end user if they are given special treatment and translated into an

instantiation instead. Such a facility is not provided for user-defined macros that have

the same usage pattern and such exceptions must be handled by the end-user.

Despite this limitation, quasi-quotation is general enough to handle all user-defined

types automatically. This one simple framework will successfully produce code that will

reproduce the required syntax tree.

8.7.1.1 Hygiene

Hygiene requires another modification of the simple definition of Code Example 8.9.

Each occurrence of a variable declaration encountered during the treewalk must be

translated into code that generates a fresh variable name — much as a programmer

would do by hand to avoid name conflicts. As an addition complication, any

CHAPTER 8: IMPLEMENTATION STANDARD LIBRARY EXTENSIONS

 • 225 •

occurrences of the variable name in the following subtree must be replaced with

references to the freshly created variable name. This process is implemented via another

treewalk and is relatively straightforward.

8.7.1.2 Unquoting

The implementation of unquoting creates more complications than that of quasi-

quotation. The result of performing an unquote must provide the parser with the correct

typing information so that the parse can proceed as expected. Unfortunately there is no

way around this situation but to provide an unquote macro for each abstract syntax class

that it is desirable to unquote. While the quasi-quotation definition works for any user-

defined type, unquoting support must be explicitly provided.

Code Example 8.10 demonstrates the basic requirements for implementing unquoting

for a given abstract syntax class. In this example, unquoting is provided for two

statement classes: For and While. For each class for which unquoting is required, a

class that allows parsing to proceed as required yet stores the unquoted expression must

be created.

interfaceinterfaceinterfaceinterface Unquoted { }

classclassclassclass ForUnquoted extendsextendsextendsextends For implementsimplementsimplementsimplements Unquoted {
 Expression storedForLater;
 ...
}

classclassclassclass WhileUnquoted extendsextendsextendsextends While implementsimplementsimplementsimplements Unquoted {
 Expression storedForLater;
 ...
}

delayed delayed delayed delayed macromacromacromacro ForUnquoted (`, Expression e) { ... }
delayed delayed delayed delayed macromacromacromacro WhileUnquoted (`, Expression e) { ... }

Code Example 8.10: Unquoting Implementation

Changes to the quasi-quotation definition are again required to handle the addition of

unquoting — although the modification is trivial. On encountering an unquote the

stored expression must be added unchanged to the built list of creations.

At the point at which an unquote is reached the possible interpretations are numerous

and cause a large number of edges to be added to the parse graph — the majority of

these edges lead to successful parses however. In some cases the number of possibilities

can be quite large, for example an unquoting of a statement will lead to all possible

statement unquotings being carried through the entire parse. For this reason, unquoting

CHAPTER 8: IMPLEMENTATION STANDARD LIBRARY EXTENSIONS

 • 226 •

must be delayed to ensure that the actual static type of the unquoted expression can be

used to correctly resolve the ambiguity.

8.7.2 Macro Definition Shorthands

Many macro definition shorthands are provided:

• automatic generation of abstract syntax tree construction macro;

• automatic list class and associated macro generation;

• optional macro parameters; and

• statically type-checked parameters.

These macro definitions ease the burden of producing repetitive code from the macro

programmer. Of these four shorthands, only optional macro parameters has a fully

fleshed out implementation, the other three use much of the same techniques and little

would be gained by demonstrating their implementations also.

8.7.2.1 Automatic Construction Macros

As so many macros are simply used for the construction of abstract syntax classes,

automating this to a degree seems like an obvious improvement. The macroSyntax

macro simply creates a macro with an identical header to how it was originally called

and a body containing a call to a constructor for its return type passing through all of its

non-terminal arguments. For a straight-forward example of the use of this macro, see

Code Example 8.11.

To simplify things further, it is possible to provide multiple definitions for a single

return type as demonstrated in Code Example 8.12.

8.7.2.2 Automatic Lists

Much use is made of lists of abstract syntax classes (these lists themselves are also

abstract syntax). To simplify this process a macroList macro is provided that

specifies the name of the list class to be created, the type of abstract syntax class to

collect, and an optional separator. This macro expands into a class with appropriate

constructors and two associated macros that allow for construction of the list.

For a simple example, see Figure 8.7(b).

CHAPTER 8: IMPLEMENTATION STANDARD LIBRARY EXTENSIONS

 • 227 •

8.7.2.3 Optional Macro Parameters

Optional macro parameters remove the burden of producing multiple similar macro

definitions from the macro programmer.

A simplified version of the method declaration fragment from Figure 5.2 is restated in

Figure 8.7. The EBNF definition of a simplified method declaration grammar

demonstrates both optional components and list definitions. Demonstrated in Figure

8.7(b) is the usage of optional macro parameter shorthand (i.e. Modifiers m?) and

the list shorthand (i.e. macroList Modifiers(Modifier)).

method ::= [modifiers] return_type name (((()))) block
modifiers ::= modifier modifiers | modifier

 (a) EBNF Definition with Optional Components and a List Definition

macromacromacromacro MethodDeclaration (Modifiers m?, Type t, Identifier i, (,), Block b) {
}
macroListmacroListmacroListmacroList Modifiers(Modifier);

 (b) Macro Definitions Using Shorthands

Figure 8.7: Method Declaration Fragment

The implementation defines:

• an extended macro formal parameter class;

• new definitions in order to collect extended parameters (along with normal

macro formal parameters) into a parameter list; and

• a set of macros defining new macro definitions with extended parameter lists.

Optional Macro Parameter Class

We first define ExtendedMacroParameter to serve as a wrapper for

MacroParameter and then define OptionalMacroParameter as a child of this

class. This extra layer in the hierarchy is intended to allow easy implementation of other

shorthands such as multiple occurrences of an argument. This implementations of the

base class an the optional macro parameter class are provided in Code Example 8.11.

CHAPTER 8: IMPLEMENTATION STANDARD LIBRARY EXTENSIONS

 • 228 •

classclassclassclass ExtendedMacroParameter implementsimplementsimplementsimplements AbstractSyntax {
 MacroParameter macroParameter;

 ExtendedMacroParameter(MacroParameter p) {
 macroParameter = p;
 }
}

classclassclassclass OptionalMacroParameter extendsextendsextendsextends ExtendedMacroParameter {
 OptionalMacroParameter(MacroParameter p) { supersupersupersuper(p); }

 macromacromacromacroSyntaxSyntaxSyntaxSyntax OptionalMacroParameter (MacroParameter p, ?);
}

Code Example 8.11: Optional Macro Parameter Class

Extended Macro Parameter List

Unfortunately, the extended parameter list cannot be automatically constructed using

the definition from subsection 8.7.2.2. The class ExtendedMacroParameters is

responsible for combining lists of normal and extended macro parameters so it requires

more constructors than the automatic list generation shorthand provides.

Code Example 8.12 contains a partial implementation of the list with the constructors

omitted for simplicity. The macros definitions provided ensure that any occurrences of

extended macro parameters within a macro declaration (regardless of where in the list

they appear) results in creation of an ExtendedMacroParameters object.

classclassclassclass ExtendedMacroParameters extendsextendsextendsextends List {
 // many constructors corresponding to the definitions below

 macroSyntaxmacroSyntaxmacroSyntaxmacroSyntax ExtendedMacroParameters
 (ExtendedMacroParameter)
 (ExtendedMacroParameters, ",", ExtendedMacroParameter)
 (MacroParameters, ",", ExtendedMacroParameter)
 (ExtendedMacroParameters, ",", MacroParameter);
}

Code Example 8.12: Extended Macro Parameter List

Extended Macro Definitions

Code Example 8.13 describes the basic structure of the macro for handling optional

arguments. The macro enumerates the optional components producing multiple similar

macros as described in subsection 5.3.4. Each occurrence of an optional parameter

doubles the required number of expanded definitions.

CHAPTER 8: IMPLEMENTATION STANDARD LIBRARY EXTENSIONS

 • 229 •

macromacromacromacro ClassMemberDeclarations
(macro, Type t, (, ExtendedMacroParameters ps,), Block b) {
 // a list of declaration replace this single macro definition
 ClassMemberDeclarations ds;

 // create a static method that contains the body of the macro definition
 MethodDeclaration md;

 // generate all permutations of options and add this to the list also
 // each of these definitions has a call to md as its body

 returnreturnreturnreturn ds;
}

Code Example 8.13: Implementation Outline of Macro Definitions With Optional Arguments

8.7.2.4 Statically Type-checked Parameters

As demonstrated in subsection 4.8.4.2, specialisation macros are useful to provide

specialised code for different static-types. In Genesis it is possible to define multiple

macros with the same arguments but to reject expansion (by throwing an exception) if

the compile-time static type is inappropriate (see subsection 5.5.6).

Such macros must be delayed until type information is available, include a suitable

exception in their throws clause, and provide an explicit type check. The static type-

checked parameter macro allows for the production of such to be automated.

This extension provides a further extension to macro formal parameters. An abstract

syntax type may specify a static type restriction with the following syntax:

AbstractSyntaxType:StaticType Identifier. Code Example 8.14

demonstrates the use of this syntax for a factorial function specialisation for literal

integers.

macromacromacromacro LiteralInteger (Expression:LiteralInteger e, !) {
 // calculate a compile-time factorial
}

(a) Definition Using Statically Type-checked Parameters

delayed delayed delayed delayed macromacromacromacro LiteralInteger (Expression e, !) throwsthrowsthrowsthrows ConditionsNotMet {
 ifififif (!e.type().equals(LiteralInteger.classclassclassclass)) throwthrowthrowthrow new ConditionsNotMet();

 // calculate a compile-time factorial
}

(b) Expansion of Statically Type-checked Parameters

Code Example 8.14: Factorial Literal Specialisation

Multiple static-type checks within a single definition are expanded and checked in the

order they appear within the macro definition.

CHAPTER 8: IMPLEMENTATION STANDARD LIBRARY EXTENSIONS

 • 230 •

Statically type checked parameters are demonstrated more extensively in the

implementation of iteration (i.e. forall) in subsection 9.2.2.

 231

9 Analysis and Comparison

Analysis and Comparison

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

reviewing

extensibility

reviewing

parsing

implementing

a parser

designing

the language

language

implementation

evaluation

conclusion

CHAPTER 9: ANALYSIS AND COMPARISON OVERVIEW

 • 232 •

9.1 Overview

The successfulness of the Genesis language definition (as defined in chapter 5) and its

implementation (from the previous chapter) is assessed by a variety of methods:

implementation of benchmark test cases, qualitative assessment, and a comparative

assessment with Maya.

Firstly, in section 9.2, the power and flexibility of Genesis is shown with a proof-by-

implementation of the benchmark test cases from section 3.4. Pertinent details of the

implementations are provided, with much code omitted for the later complex examples.

A review of these implementations is provided in section 9.2.7.

Section 9.3 contains a qualitative assessment of Genesis with a general discussion of

issues relating to its power, usability, and error handling. Also, Genesis is rated against

the criteria developed in section 3.3.

A detailed comparison of Genesis and Maya is provided in section 9.4 on issues such as:

implementation of the benchmark test cases (and also MultiJava), length of code, and

the criteria for extensible languages.

In section 9.5, the Graph Expansion Parsing method is compared against other general

parsing methods by discussion of the class of grammars they accept and both time and

space efficiency. Such analysis is sufficient at this stage of development, as algorithmic

complexity improvement was the only form of optimisation applied to Graph Expansion

Parsing or the Genesis system as a whole. Currently a direct speed comparison to other

Java parsers would be strongly biased in favour of production compilers.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 233 •

9.2 Implementation of Test Cases

In this section we provide implementations of the test cases from section 3.4. While

explanations are provided for all of the approaches taken for translation, exacting code

is omitted where it would add little to the explanation but a great deal to the length of

this section.

Demonstrations of the differences between Genesis’ coding styles are provided for

assertions and iteration. In particular, the improvement in code readability and

conciseness is highlighted. Later examples use only the improved techniques.

Subsection 9.2.7 provides a review of the successfulness of the following

implementations, with more general issues of Genesis’ code quality discussed further in

section 9.3.

9.2.1 Assertions

The addition of assertions is the simplest of all of the test cases. Java1.4 already

provided for an assert statement that throws an AssertionError (a descendant

of java.lang.Error). The following implementation reuses AssertionError

for simplicity, although it would be a trivial matter to provide our own error class.

9.2.1.1 Basic Implementation

In Code Example 9.2, we provide the implementation without use of quasi-quotation.

The translation of an assertion merely checks the condition, and upon failure outputs the

offending expression to the standard error stream, and throws an AssertionError.

publicpublicpublicpublic classclassclassclass Assertions {
 macromacromacromacro Statement (assert, Expression e) {
 Block b = newnewnewnew Block();

 b.add(newnewnewnew ExpressionStatement(
 newnewnewnew MethodCall(newnewnewnew Simple(newnewnewnew Name("System").add("err").add("println")),
 newnewnewnew LiteralString("Assertion failed: " + e.toString())
)));

 b.add(newnewnewnew Throw(
 newnewnewnew Creation(newnewnewnew Type("AssertionError"),
 new List(newnewnewnew LiteralString("Assertion Failed"))))
));

 returnreturnreturnreturn newnewnewnew Block().add(newnewnewnew IfThenElse(e, null, b));
 }
}

Code Example 9.1: Basic Assertion Implementation

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 234 •

9.2.1.2 Quasi-quote Implementation

It should be clear from the definition in Code Example 9.2 that the use of quasi-

quotation improves the readability of the implementation. The contents of the quasi-

quotation closely matches the code that will be produced after expansion which is a

great improvement over Code Example 9.2.

macromacromacromacro Statement (assert, Expression e) {
 returnreturnreturnreturn {{
 ifififif (!`e) {
 System.err.println("Assertion Failed: " +
 `(newnewnewnew StringLiteral(e.toString())));
 throwthrowthrowthrow newnewnewnew AssertionError("Assertion Failed");
 }
 }};
}

Code Example 9.2: Quasi-quote Assertion Implementation

9.2.1.3 Implementation Issues

This version of assertions does not explicitly check the type of the expression given to

the assert statement, it would be possible to do this, but for simplicity it was chosen

to let the later stages of compilation pick up this error, as it will cause a type error for

the generated if statement. See section 8.5.4 for a discussion of error handling.

9.2.2 Iteration

To illustrate the improvement in code, both in simplicity and conciseness, we provide

multiple definitions of iteration constructs. Successive re-implementations demonstrate

quasi-quotation, hygiene, and static-type matching.

9.2.2.1 Basic Implementation

Code Example 9.3 is the most low-level implementation of the foreach macro. This

implementation has two forall macro definitions; this is to allow for optional

brackets around the formal parameter argument. These brackets are merely syntactic

sugar and play no part in the expansion. Unfortunately the optional brackets cannot take

advantage of the optional parameter macro (see subsection 8.7.2.3) as they must either

both be present or absent.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 235 •

importimportimportimport java.util.Iterator;

publicpublicpublicpublic classclassclassclass TestForall {
 staticstaticstaticstatic For forall(FormalParameter p, Expression e, Statement b)
 throwsthrowsthrowsthrows TypeMismatch {
 ifififif (!e.type().isSubType(Iterator.class)) throwthrowthrowthrow newnewnewnew TypeMismatch();

 Identifier unique = Utils.unique();

 returnreturnreturnreturn new For(newnewnewnew LocalVariableDeclaration(Iterator.class, unique,
 newnewnewnew MethodCall(newnewnewnew FieldAccess(newnewnewnew Bracketed(e), "iterator"))),
 newnewnewnew MethodCall(newnewnewnew FieldAccess(unique, "hasNext")),
 nullnullnullnull,

 newnewnewnew Block(
 newnewnewnew LocalVariableDeclarationStatement(p.type(), p.getIdentifier(),
 newnewnewnew Cast(p.type(), newnewnewnew MethodCall(newnewnewnew FieldAccess(unique,"next")))),
 b
));
 }

 delayeddelayeddelayeddelayed mmmmacroacroacroacro For (forall, FormalParameter p, in, Expression e, Statement b)
 throwsthrowsthrowsthrows TypeMismatch {
 returnreturnreturnreturn forall(p, e, b);
 }

 delayed delayed delayed delayed
 macromacromacromacro For (forall, (, FormalParameter p,), in, Expression e, Statement b)
 throwsthrowsthrowsthrows TypeMismatch {
 returnreturnreturnreturn forall(p, e, b);
 }
}

Code Example 9.3: Basic Iteration Implementation

9.2.2.2 Quasi-quote Implementation

In Code Example 9.4 we rewrite the forall method using quasi-quotation and

unquote. The use of quasi-quotation provides a readable version of the for loop

expansion for iteration. This still requires the explicit creation of a unique identifier for

use within the quasi-quotation.

staticstaticstaticstatic For forall(FormalParameter p, Expression e, Statement b)
throwsthrowsthrowsthrows TypeMismatch {
 ifififif (!e.type().isSubType(Iterator.class)) throwthrowthrowthrow newnewnewnew TypeMismatch();

 Identifier unique = Utils.unique();

 returnreturnreturnreturn {{
 forforforfor(Iterator `unique = (`e).iterator(); `unique.hasNext();) {
 `(p.type()) `(p.getIdentifier()) = (`(p.type())) `unique.next();
 `b
 }
 }};
}

Code Example 9.4: Quasi-quote Iteration Implementation

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 236 •

9.2.2.3 Hygienic Implementation

Code Example 9.5 makes use of hygiene. Each variable declaration within a quasi-

quotation is replaced with a unique variable name. Effectively, producing the version

from the previous subsection.

staticstaticstaticstatic For forall(FormalParameter p, Expression e, Statement b)
throwsthrowsthrowsthrows TypeMismatch {
 ifififif (!e.type().isSubType(Iterator.class)) throwthrowthrowthrow newnewnewnew TypeMismatch();

 returnreturnreturnreturn {{
 forforforfor(Iterator i = (`e).iterator(); i.hasNext();) {
 `(p.type()) `(p.getIdentifier()) = (`(p.type())) i.next();
 `b
 }
 }};
}

Code Example 9.5: Hygienic Iteration Implementation

9.2.2.4 Static-type Matching Implementation

The final implementation in Code Example 9.6 of the forall method demonstrates

the static-type matching shorthand defined in section 8.7.2.4.

staticstaticstaticstatic For forall(FormalParameter p, Expression:Iterator e, Statement b) {
 returnreturnreturnreturn {{
 forforforfor(Iterator i = (`e).iterator(); i.hasNext();) {
 `(p.type()) `(p.getIdentifier()) = (`(p.type())) i.next();
 `b
 }
 }};
}

Code Example 9.6: Static-Type Matching Iteration Implementation

Note that this use of the static-type matching shorthand is on a static function, not a

macro, but it works equally well on both. Indeed, had we chosen to only provide one

syntax for this extension, we could have used this static-type matching and it would

have added the delayed modifier to the macro.

This implementation removes the necessity to explicitly declare that this macro may

throw an exception and removes the explicit check. This final version provides a very

concise, readable definition of the forall macro.

9.2.3 Type-safe Formatted Output

The implementation of the printf macro is the most complicated of the simple test

cases, as it requires us to generate an arbitrary amount of new code. Its implementation

is not as straightforward as the previous cases, and doesn’t so closely match the code it

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 237 •

produces. It illustrates the benefits of having the full language at our disposal for the

implementation of macros.

The code in Code Example 9.7 demonstrates the implementation of the printf macro

with some parts abbreviated and some auxiliary functions omitted. The omitted function

match breaks the string literal into its component parts, using % followed by a

character as a separator. The definition of the omitted exception classes

TooManyActualParameters and TooManyPlaceHolders are unremarkable.

The basic idea here is to break the string up into components, and to simultaneously

iterate through these components and the list of supplied arguments. An expression that

concatenates a list of strings is the result of this iteration. Upon detection of a

placeholder from the literal string argument, the corresponding argument is verified to

be of a suitable type, and is added to the expression. Any unrecognised placeholders

from the literal string argument are treated as strings, and all these and all actual string

components are added as is to the expression.

If there are either too many placeholders, or too many arguments, a corresponding

exception is thrown to alert the user.

This code makes liberal use of quasi-quotation, but the code is only slightly more

concise because of this. The code generation here is quite complex, and as a result the

expansion code doesn’t resemble the resultant expansion.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 238 •

delayeddelayeddelayeddelayed
macromacromacromacro ExpressionStatement (printf, (, LiteralString s, ",", Arguments list,))
throwsthrowsthrowsthrows TypeMismatch, TooManyActualParameters, TooManyPlaceHolders {
 Expression exp = newnewnewnew LiteralString("") ;

 Vector parts = match(s.s, "%.") ;

 Iterator i = list.iterator();
 Iterator j = parts.iterator();

 whilewhilewhilewhile (j.hasNext() && i.hasNext()) {
 Expression e = (Expression) i.next();
 Type t = e.type();

 // if t cannot be typed, throw syntax error – not done here for simplicity

 booleanbooleanbooleanboolean keepLooking = true;
 whilewhilewhilewhile (keepLooking) {
 String placeHolder = (String) j.next();

 keepLooking = false;

 ifififif (placeHolder.equals("%s")) {
 ifififif (t.equals(String.classclassclassclass)) {
 exp = {{ `exp + e }};
 } elseelseelseelse {
 throw new TypeMismatch("TYPE MISMATCH: string expected");
 }
 } elseelseelseelse ifififif (placeHolder.equals("%d")) {
 ifififif (t.equals(intintintint.classclassclassclass)) {
 exp = {{ `exp + (e) }};
 } elseelseelseelse ifififif (Integer.class)) {
 exp = {{ `exp + e }};
 } elseelseelseelse {
 throwthrowthrowthrow newnewnewnew TypeMismatch("TYPE MISMATCH: integer expected");
 }
 } elseelseelseelse ifififif (placeHolder.equals("%f")) {
 // similar to %d
 } elseelseelseelse ifififif (placeHolder.equals("%c")) {
 // similar to %d
 } elseelseelseelse {
 exp = {{ `exp + `(newnewnewnew LiteralString(placeHolder)) }};
 keepLooking = truetruetruetrue;
 }
 }
 }

 ifififif (i.hasNext()) {
 throwthrowthrowthrow newnewnewnew TooManyActualParameters("TOO MANY ACTUAL PARAMETERS: " +
 matches(s.s, "%.") + " expected, " + list.size() + " found.");
 }

 whilewhilewhilewhile (j.hasNext()) {
 String placeHolder = (String) j.next();

 ifififif (placeHolder.equals("%s") || placeHolder.equals("%d") ||
 placeHolder.equals("%f") || placeHolder.equals("%c")) {
 throwthrowthrowthrow new TooManyPlaceHolders("TOO MANY PLACEHOLDERS: " + list.size() +
 " expected, " + matches(s.s, "%.") + " found.");
 } elseelseelseelse {
 exp = {{ `exp + `(newnewnewnew LiteralString(placeHolder)) }};
 }
 }

 returnreturnreturnreturn {{ System.out.println(`exp); }};
}

Code Example 9.7: Partial Type-safe Formatted Output Implementation

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 239 •

9.2.3.1 Example Expansion

Code Example 9.8 demonstrates an example printf usage and its expansion.

printf("hello %s, %d.", "world", 42);

(a) printf Macro Use

System.out.println("" + "hello " + "world" + ", " + (42) + ".");

(b) After Macro Expansion

Code Example 9.8: Type-safe Formatted Output Expansion

9.2.4 SQL Subset

The implementation of the SQL subset requires that we first match SQL syntax and then

communicate with a database via the standard Java libraries. At first glance this appears

to be more complicated than hand-written SQL strings. It is worth reiterating that the

improvement here is that the run-time SQL is now guaranteed to be correct. In this

research implementation the SQL is still re-checked for correctness at compile-time as

implementing database classes from scratch was not the intent of the example.

Code Example 9.9 contains the main SQL abstract syntax class. All other classes used

in the SQL implementation are omitted as these are essentially just construction classes

and their implementation is straightforward (although they do define a method

toExpression which is detailed in a moment). The macros that perform this

construction are shown on lines 32–45. Many of these can utilise the macroSyntax

shortcut, whereas the others require their terminal arguments for construction to take

place (perhaps some extension in future work could better address these kinds of

constructions).

The macro for SQL selection appears form lines 16–29 and performs a simple

translation from the abstract syntax into run-time code by use of a common method

called toExpression and a run-time call to a static method that performs the

database query. The toExpression method operates as would be expected and

produces an expression to reproduce the SQL query. Generally this consists of a

sequence of literal strings, but Java expressions within the SQL must be preserved.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 240 •

1 classclassclassclass SQL {
2 static static static static Connection connection = null;
3 static void static void static void static void init(Connection c) { connection = c; }
4
5 staticstaticstaticstatic Object select(String embedded) throwsthrowsthrowsthrows SQLException {
6 Statement stmt = connection.createStatement();
7 ResultSet results = stmt.executeQuery(embedded);
8
9 ifififif (results.getMetaData.getColumnCount() != 1) return return return return results;
10
11 Array a = results.getArray(1);
12
13 return return return return /* either a single value or the resultant array – fiddly */;
14 }
15
16 macromacromacromacro Expression (SELECT, SQLNames names, FROM, SQLTables tables,
17 (WHERE, SQLCondition condition)?) {
18
19 StringLiteral embedded = new StringLiteral("SELECT " + names +
20 " FROM " + tables);
21 Expression cond;
22 ifififif (condition == null) {
23 cond = {{ "" }};
24 } else {
25 cond = {{ " WHERE " + `(cond.toExpression()) }};
26 }
27
28 return return return return {{ select(`embedded + `cond) }};
29 }
30
31 macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLName (Name n);
32 macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLNames (SQLName n) (SQLNames ns, ",", SQLName n);
33 macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLTable (Identifier i);
34 macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLTables (SQLTable t) (SQLTables ts, ",", SQLTable t);
35
36 macromacromacromacro SQLInfix (SQLCondition left, AND, SQLCondition right) { ... }
37 macromacromacromacro SQLInfix (SQLCondition left, OR, SQLCondition right) { ... }
38 macroSyntaxmacroSyntaxmacroSyntaxmacroSyntax SQLBracketed ("(", SQLCondition cond, ")");
39
40 macromacromacromacro SQLInfix (SQLExpression left, <, SQLExpression right) { ... }
41 macromacromacromacro SQLInfix (SQLExpression left, >, SQLExpression right) { ... }
42 macromacromacromacro SQLInfix (SQLExpression left, =, SQLExpression right) { ... }
43
44 macromacromacromacroSyntaxSyntaxSyntaxSyntax SQLInfix (:, Expression e);
45 }

Code Example 9.9: Partial SQL Subset Implementation

The user is required to initialise this SQL class with a valid connection by using the

static init method on line 3 and this connection is used within the implementation of

the select method (lines 5–14). This method performs the SQL query and is

generally unremarkable. The final result array is examined and either a single value or a

vector of values is returned to the caller — this code is omitted for increased clarity of

the important points.

The only point to stress in this straightforward implementation occurs on line 28. The

use of select within the quasi-quotation is an unbound reference and when translation

takes place it is correctly bound to the static method with the SQL class. It is effectively

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 241 •

replaced with a call to any.earlier.path.SQL.select. Such an approach

ensures that referential transparency is maintained.

9.2.5 Generators

The implementation of generators follows a similar approach to that of the C++ macro

implementation covered in section 2.3.3.3, with the major complication being the

replacement of the C++ switch statement with a cleaner version in Java. To aid in the

implementation, we first introduce a helper class (see Code Example 9.10) that every

generator will extend. Each generator implementation need only implement the abstract

method hasNext, and everything else will work as a result.

abstractabstractabstractabstract classclassclassclass GeneratorBase implementsimplementsimplementsimplements Iterator {
 privateprivateprivateprivate Object nextVal;
 protectedprotectedprotectedprotected intintintint reentry = 0;

 protectedprotectedprotectedprotected booleanbooleanbooleanboolean suspend(Object n, int r) {
 nextVal = n;
 reentry = r;
 return truetruetruetrue;
 }

 protectedprotectedprotectedprotected intintintint position() { returnreturnreturnreturn reentry; }

 abstractabstractabstractabstract publicpublicpublicpublic booleanbooleanbooleanboolean hasNext();
 publicpublicpublicpublic Object next() { returnreturnreturnreturn nextVal; }
 publicpublicpublicpublic voidvoidvoidvoid remove() { throwthrowthrowthrow newnewnewnew UnsupportedOperationException(); }
}

Code Example 9.10: Generator Helper Class

The GeneratorBase class extends Iterator, and as we will see, with some clever

implementation this allows us to get the use of the forall macro for free. Code

Example 9.11 shows the implementation of the suspend statement.

classclassclassclass Suspend implementsimplementsimplementsimplements Statement {
 Expression expr;

 Suspend(Expression e) { expr = e; }
}

macromacromacromacro Statement (suspend, Expression e) {
 returnreturnreturnreturn newnewnewnew Suspend(e);
}

Code Example 9.11: Suspend Statement Implementation

If only everything was this easy! This translation merely adds a place holder for later

erasure. The macro definition in Code Example 9.12 provides the implementation

details for actual expansion of a generator method, some details have been omitted, but

are covered in the following subsections.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 242 •

macromacromacromacro MethodDeclaration (generator, MethodDeclaration method) {
 Identifier name = method.getName();
 FormalParameters params = method.getParameters();
 ClassBodyDeclarations declarations = new ClassBodyDeclarations();
 Block initialisation = new Block();
 SwitchBlocks cases = new SwitchBlocks();

 // ---- missing code, covered in following subsections ----
 // transform formal parameters into field declarations & initialisation code
 // transform local variables into field declarations
 // generate resumable code, ie. translate block into switch statement cases

 returnreturnreturnreturn {{
 // method declaration
 (`method.getModifiers()) Generator `(name) (`params) {
 // inner class declaration
 classclassclassclass `(name) extendsextendsextendsextends GeneratorBase {
 // all formal parameters and local variable declarations
 (`declarations);

 // constructor declaration
 `(name) (`(params)) (`initialisation);

 // translated method body goes in here
 publicpublicpublicpublic booleanbooleanbooleanboolean hasNext() {
 switchswitchswitchswitch (position()) {
 (`cases);
 }

 returnreturnreturnreturn hasNext();
 }
 }

 // instantiate a copy of inner class
 returnreturnreturnreturn newnewnewnew `(name) (`params);
 }};
}

Code Example 9.12: Generator Method Implementation

Each generator translates into a method of the same name, whose body merely

instantiates a copy of an inner class12 that extends GeneratorBase. This inner class

contains the real implementation, but wrapping in a method allows for there to be no

requirement for any implementation on the calling side; use of generators does not even

need to be detected.

The inner class requires that each generator formal parameter be translated into a field

declaration as local variables cannot retain their values upon generator resumption. In

addition to this, each of these variables must be initialised via a standard constructor

that mimics the original generator definition. Any local variable declarations within the

generator body must also be translated to field declarations. These two translations are

relatively straightforward, and are covered in the following two subsections.

12 An anonymous class was considered, but rejected, due to complicated initialisation code.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 243 •

The final translation requirement is to transform the generator body into a number of

cases (corresponding to a base case, and one case for each occurrence of suspend) for

use within the hasNext method. This implementation is difficult, and is covered in

subsection 9.2.5.3.

Genesis’ ability to mix abstract and concrete syntax within quasi-quotations is

equivalent to that of MS2 (see subsection 4.4.4.2). This is an extremely concise and

natural programming technique that abstracts away many of the tedious details of

concrete syntax.

9.2.5.1 Translation of Formal Parameters

As shown in Code Example 9.13, the translation of the formal parameters is trivial. One

field declaration, and one initialisation must be created for each formal parameter. The

only thing to note here is the explicit creation of a FieldDeclaration class was

used simply because it was more readable that the quasi-quote alternative.

forallforallforallforall (FormalParameter p) inininin params {
 declarations.add(newnewnewnew FieldDeclaration(p.type, p.name));
 initialisation.add({{ thisthisthisthis.`(p.name) = `(p.name); }}
}

Code Example 9.13: Translation of Formal Parameters

9.2.5.2 Translation of Local Variable Declarations

The translation of the local variable declarations requires us to examine the entire tree

representing the method body, and to transform each detected local variable declaration

into a corresponding field declaration. For local variable declarations that contain

initialisers, an assignment must be generated in order to produce the same semantics.

/* perform a recursive-style tree-walk through the block, making changes
 each time a local variable declaration is discovered */

LocalVariableDeclaration d = /* current local variable declaration */;

declarations.add(newnewnewnew FieldDeclaration(d.type, d.name));

i.set((d.intialiser == null) ? {{ null; }} :
 {{ `(d.name) = `(d.initialiser); }});

Code Example 9.14: Translation of Local Variable Declarations

The outline of the code to perform these actions is shown in Code Example 9.14. The

inspection of the statement tree is accomplished by use of tree-walk through the block.

Such code is relatively straightforward to write, but cumbersome, therefore it is omitted

as it adds little to the understanding of the process.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 244 •

9.2.5.3 Generation of Resumable Code

The C++ macro implementation of generators relied upon an unusual usage of the C++

switch statement (see subsection 2.3.3.3). Java’s switch statement does not allow

equivalent usage, so a different method must be employed.

The method followed is described in [LM02] and essentially produces a continuation for

each location that execution may (re)commence in the body of the generator. Each

continuation must employ statement reducibility analysis [GJSB00§14.19] to ensure

successful Java compilation.

9.2.5.4 Example Expansions

Code Example 9.15 demonstrates the definition and expansion of the simplest example

of a non-terminating generator, it merely repeats its argument forever.

generatorgeneratorgeneratorgenerator staticstaticstaticstatic String repeat(String s) {
 whilewhilewhilewhile (truetruetruetrue) suspendsuspendsuspendsuspend s;
}

(a) Before Translation

staticstaticstaticstatic Generator repeat(String s) {
 classclassclassclass repeat extends GeneratorBase {
 String s;

 publicpublicpublicpublic repeat(String s) { thisthisthisthis.s = s; }

 publicpublicpublicpublic booleanbooleanbooleanboolean hasNext() {
 switchswitchswitchswitch (position()) {
 casecasecasecase 0:
 whilewhilewhilewhile (truetruetruetrue) returnreturnreturnreturn suspend(s, 1);
 casecasecasecase 1:
 // nothing...
 whilewhilewhilewhile (truetruetruetrue) returnreturnreturnreturn suspend(s, 1);
 }

 returnreturnreturnreturn falsefalsefalsefalse;
 }
 }

 returnreturnreturnreturn newnewnewnew repeat(s);
}

(b) After Translation

Code Example 9.15: Repeating Generator Expansion

We can observe the duplication of all parameters to the generator as field declarations,

and the single constructor mimics the surrounding method call. This generator has no

local variables, so there are no extra field declarations. The reuse of names (eg.

repeat for both the method and the inner class) makes these translations a little harder

to comprehend, but is valid Java, and removes the necessity of new name generation.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 245 •

The generation of the resumable cases is trivial, the base case is the whole body, and so

is the single resumption. It should be clear that the hasNext method could be greatly

simplified: the two resumptions are identical, making the switch statement redundant;

the while loops are redundant; and the final return statement is unreachable. These

kind of optimisations are beyond the scope of this extension at this time.

Code Example 9.16 contains the definition and translation of a Fibonacci generator and

demonstrates slightly more difficult to translate resumptions and local variable use.

This example uses Integer rather than int as the current implementation only

supports class types (see subsection 9.2.5.6). Again, the translation (shown in Code

Example 9.16) results in code much more verbose than the original generator. In this

translation, the local variables x and y have been recreated as field declarations, and

their initialisations are translated into assignments.

We have three resumptions, a base case, and one each for the two suspend statements.

• The base case contains code up to the first suspend statement, and all

following code is pruned as it is unreachable.

• The second case begins from the statement immediately following the first

suspend, and stops upon the encountering of the second. Notice here that the

while statement does not appear at all as the condition can never be checked

on this resumption.

• The third, and final, case begins from the statement immediately following the

second suspend, and then must contain the entire while statement again

(albeit in a pruned form).

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 246 •

generator staticstaticstaticstatic Integer fib() {
 intintintint x = 0, y = 1;

 whilewhilewhilewhile (truetruetruetrue) {
 suspendsuspendsuspendsuspend nnnnewewewew Integer(y);
 x = x + y;
 suspendsuspendsuspendsuspend newnewnewnew Integer(x);
 y = x + y;
 }
}

(a) Before Translation

staticstaticstaticstatic Generator fib() {
 classclassclassclass fib extendsextendsextendsextends Generator {
 intintintint x;
 intintintint y;

 publicpublicpublicpublic fib() { }

 publicpublicpublicpublic booleanbooleanbooleanboolean hasNext() {
 switchswitchswitchswitch (position()) {
 casecasecasecase 0:
 x = 0;
 y = 1;
 whilewhilewhilewhile (truetruetruetrue) {
 returnreturnreturnreturn suspend(newnewnewnew Integer(y), 1);
 }
 casecasecasecase 1:
 x = x + y;
 returnreturnreturnreturn suspend(newnewnewnew Integer(x), 2);
 casecasecasecase 2:
 y = x + y;

 whilewhilewhilewhile (truetruetruetrue) {
 returnreturnreturnreturn suspend(newnewnewnew Integer(y), 1);
 }
 }

 returnreturnreturnreturn falsefalsefalsefalse;
 }
 }

 returnreturnreturnreturn newnewnewnew fib();
}

(b) After Translation

Code Example 9.16: Fibonacci Generator Expansion

9.2.5.5 Explicit Use of GeneratorBase

The GeneratorBase class is exposed, so users are free to use it in other code, or

even as part of the definition of other generators. Code Example 9.17 demonstrates the

definition, translation, and usage of a take function that generates the specified

number of elements from another generator. This allows forms such as that in Code

Example 9.17(c) that outputs the first twenty Fibonacci numbers from the infinite

sequence Fibonacci generator from Code Example 9.16.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 247 •

The definition of take uses GeneratorBase explicitly as a parameter, and uses

standard iteration code to select only the first n elements. The translation follows the

same approach as other generators.

generatorgeneratorgeneratorgenerator staticstaticstaticstatic Object take(intintintint n, GeneratorBase g) {
 wwwwhilehilehilehile ((n-- > 0) && (g.hasNext()) suspendsuspendsuspendsuspend(g.next());
}

(a) Before Translation

staticstaticstaticstatic Generator take(intintintint n, GeneratorBase g) {
 classclassclassclass take extendsextendsextendsextends Generator {
 intintintint n;
 GeneratorBase g;

 publicpublicpublicpublic take(intintintint n, GeneratorBase g) {
 this.n = n;
 this.g = g;
 }

 publicpublicpublicpublic booleanbooleanbooleanboolean hasNext() {
 switchswitchswitchswitch (position());
 casecasecasecase 0:
 whilewhilewhilewhile ((n-- > 0) && (g.hasNext)) returnreturnreturnreturn suspend(g.next(), 1);
 casecasecasecase 1:
 // nothing...
 whilewhilewhilewhile ((n-- > 0) && (g.hasNext)) returnreturnreturnreturn suspend(g.next(), 1);
 }

 returnreturnreturnreturn falsefalsefalsefalse;
 }
 }

 returnreturnreturnreturn newnewnewnew take(n, g);
}

(b) After Translation

forallforallforallforall (Integer i) inininin take(20, fib()) { System.out.print(“ “ + i); }

(c) Example Usage

Code Example 9.17: Sub-sequence Generator Expansion and Use

A fully worked generators implementation would provide this functionality as a method

of GeneratorBase so that expressions such as fib().take(20) can be written.

9.2.5.6 Implementation Issues

The implementation for generators only supports Object, and so manual boxing is

required for primitive types.

Translation of local array variables with array intialiser lists are currently not handled

correctly; they require a slightly more complicated translation.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 248 •

9.2.6 Haskell Subset

Each of the abstract syntax classes used to implement Haskell subset grammar (see

Figure 3.2) implements the FunObject interface (as shown in Code Example 9.18),

which defines three methods: createSelf, funType, and eval.

interfaceinterfaceinterfaceinterface FunObject extends extends extends extends AbstractSyntax {
 Creation createSelf();
 FunType funType() throwsthrowsthrowsthrows TypeMismatch;
 FunObject eval(BindingList bindings);
}

Code Example 9.18: FunObject Interface

The child classes of FunObject serve a variety of purposes, they are used:

• to drive the parse at compile-time and provide syntax checking;

• for compile-time type-checking;

• at run-time to represent the structure of the functional program; and

• for run-time lazy evaluation.

Each of the child classes of FunObject are implemented with construction macros.

The compile-time implementation of these classes for parsing is unremarkable (and

hence not shown), but their other uses are interesting.

Calling the createSelf method on a functional object will produce a creation

expression that will reproduce the current datastructure fully. This is used at compile-

time to create run-time code that will store the functional objects (see section 9.2.6.1).

Calling the eval method performs the lazy evaluation at run-time (see section 9.2.6.3).

9.2.6.1 Construction

Creation of code that will, at run-time, produce the required Haskell subset objects is

handled by the createSelf method. This method produces a creation expression that

reproduces the current object. An example of the straightforward implementation of

such a method is provided for the FunCons class in Code Example 9.19.

The run-time objects created by the code that createSelf produces are used in the

interpreted evaluation of Haskell code (see subsection 9.2.6.3).

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 249 •

classclassclassclass FunCons implementimplementimplementimplementssss FunObject {
 FunExpr head;
 FunExpr tail;

 Creation createSelf() {
 returnreturnreturnreturn {{ newnewnewnew FunCons(`(head.createSelf()), `(tail.createSelf())) }};
 }

 FunObject eval(BindingList bindings) {
 returnreturnreturnreturn this;
 }

 FunType funType() throws throws throws throws TypeMismatch {
 ifififif (!newnewnewnew FunTypeList(head.funType()).equals(tail.funType()))
 throwthrowthrowthrow new new new new TypeMismatch();

 returnreturnreturnreturn newnewnewnew FunTypeList(head.funType());
 }
}

Code Example 9.19: Haskell Subset Cons Abstract Syntax Class

9.2.6.2 Type Abstract Syntax Classes

The abstract syntax classes used for the Haskell subset type system serve two purposes:

• parsing of type signatures; and

• compile-time type-checking.

Four classes are defined, corresponding to the four basic types described in section

3.4.2.3. Each of these classes inherit from the FunType base class and must implement

the equals method. This equals method is used in type-checking operations as

demonstrated in 9.2.6.4.

The equals function is calculated according to the following rules:

• if both arguments are of type FunArbitrary, the result is true if their ident

fields are equal;

• if one argument is of type FunArbitrary, the result is true;

• if the arguments are not of the same type (and neither is of type

FunArbitrary) the result is false;

• if both arguments are of type FunTypeFun, the result is true if both their left

fields have the same type and their right fields have the same type;

• if both arguments are of type FunTypeList, the result is true if their

element fields have the same type; and

• if both arguments are of type FunTypeInt, the result is true.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 250 •

abstractabstractabstractabstract classclassclassclass FunType implementsimplementsimplementsimplements AbstractSyntax {
 abstract abstract abstract abstract booleanbooleanbooleanboolean equals(FunType t);

 macromacromacromacroSyntaxSyntaxSyntaxSyntax FunTypeInt (int);
 macromacromacromacroSyntaxSyntaxSyntaxSyntax FunTypeList ("[", FunType t, "]");
 macromacromacromacroSyntaxSyntaxSyntaxSyntax FunTypeFun ("(", FunType t, ->, FunType u, ")");

 macromacromacromacro FunTypeArbitrary (Token t) throwsthrowsthrowsthrows ConditionsNotMet {
 ifififif (t.value.length() != 1 || !Character.isUpperCase(t.value.charAt(0)))
 throwthrowthrowthrow newnewnewnew ConditionsNotMet();

 returnreturnreturnreturn newnewnewnew FunTypeArbitrary(t.value.charAt(0));
 }
}

classclassclassclass FunTypeInt extendsextendsextendsextends FunType {
}

classclassclassclass FunTypeList extendsextendsextendsextends FunType {
 FunType element;
}

classclassclassclass FunTypeFun extendsextendsextendsextends FunType {
 FunType left;
 FunType right;
}

classclassclassclass FunTypeArbitrary extendsextendsextendsextends FunType {
 charcharcharchar ident;
}

Code Example 9.20: Type Abstract Syntax Classes for the Haskell Subset

The rules for equality of functional types are summarised in Table 9.1.

Table 9.1: Rules for Function Type Equality

Type Type

 Integer List Function Arbitrary

Integer true false false true

List false equal elements false true

Function false false equal left and

right

true

Arbitrary true true true equal

identifiers

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 251 •

9.2.6.3 Evaluation

The run-time evaluation of functional constructs is performed by an interpreter. This

choice is for simplicity in this proof-of-concept implementation and does not imply that

more efficient techniques are not applicable.

Evaluation is provided through the eval method defined for all functional objects. In

addition to the evaluation function provided for FunObjects, a similar function is

provided for functional operators and the BindingList class.

For the majority of the child classes of FunObject, evaluation implementation is

straightforward:

• the evaluation function for let expressions merely introduces a new binding —

which may override other bindings previously in scope;

• the evaluation function for infix operators evaluates both left and right

arguments — no lazy evaluation is provided for the standard arithmetic

operators;

• the evaluation function for identifiers merely finds the binding that is currently

in scope for the identifier; and

• the evaluation functions for lambda functions, literals, nil lists, and lists created

with cons simply return the current object — these are, for the most part, treated

as atomic elements.

There is one exception however to this treatment of atomic elements: lists created with

cons can be broken apart by use of the special functions head and tail. These

functions are treated as a special case of the application of functions. The

implementation of application is shown in Code Example 9.21.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 252 •

classclassclassclass FunApply extendsextendsextendsextends FunExpr {
 FunExpr left;
 FunExpr right;

 FunCons evalRight() {
 trytrytrytry {
 returnreturnreturnreturn (FunCons) (right.eval(bindings).head);
 } catchcatchcatchcatch (Exception e) {
 // ERROR!
 }
 }

 FunObject eval(BindingList bindings) {
 FunExpr function = left.eval(bindings);

 ifififif (function instanceofinstanceofinstanceofinstanceof FunLambda) {
 FunLambda lambda = (FunLambda) function;
 FunIdentifier i = Utils.unique();

 returnreturnreturnreturn lambda.expr.replace(lamda.ident, i).
 eval(bindings.cons(new new new new Binding(i, right)));
 } elseelseelseelse ifififif (function instanceofinstanceofinstanceofinstanceof FunHead) {
 returnreturnreturnreturn evalRight().head.eval(bindings);
 } elseelseelseelse ifififif (function instanceofinstanceofinstanceofinstanceof FunTail) {
 returnreturnreturnreturn evalRight().tail.eval(bindings);
 } elseelseelseelse {
 // ERROR!
 }
 }

 FunType funType() throws throws throws throws TypeMismatch {
 FunType leftType = left.funType();

 if (!(leftType instanceofinstanceofinstanceofinstanceof FunTypeFun)) throwthrowthrowthrow newnewnewnew TypeMismatch();
 if (!((FunTypeFun) leftType).right.equals(right.funType()))
 throwthrowthrowthrow newnewnewnew TypeMismatch();

 returnreturnreturnreturn ((FunTypeFun) leftType).right;
 }
}

Code Example 9.21: Evaluation of Function Application

Normal function application will take place when the left side of a function call

evaluates to a lambda function. Even if the function is specified by name, the name’s

binding evaluates to a lambda function. The application itself merely introduces a new

binding form with a unique name. If the left side evaluates to head (or tail), the

argument is evaluated as far as a cons, and the head (or tail) of the list is evaluated and

returned.

Lazy evaluation is guided only by the if construct which is the only conditional

component of the Haskell subset. Once the evaluation proceeds to a point where an if

expression is the next thing to be evaluated, the Boolean condition (and any associated

work) must be evaluated. This is handled in the expected way as shown in Code

Example 9.22.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 253 •

classclassclassclass FunIf extendsextendsextendsextends FunExpr {
 BExpr condition;
 FunExpr trueExpression;
 FunExpr falseExpression;

 FunObject eval(BindingList bindings) {
 ifififif (condition.eval(bindings).isTrue()) {
 returnreturnreturnreturn trueExpression.eval(bindings);
 } elseelseelseelse {
 returnreturnreturnreturn falseExpression.eval(bindings);
 }
 }

 FunType funType() throws throws throws throws TypeMismatch {
 if (!trueExpression.funType().equals(falseExpression.funType())
 throwthrowthrowthrow newnewnewnew TypeMismatch();

 returnreturnreturnreturn trueExpression.funType();
 }
}

Code Example 9.22: Haskell Subset if Expression

9.2.6.4 Type Checking

Type checking occurs once the entire embedded Haskell block is parsed. At this stage

all Haskell declarations are known so type checking can proceed. This is still performed

by non-delayed macros as the surrounding type information is not required.

Each functional declaration is checked against its type signature in turn. Both the type

signature and expression abstract syntax classes contain the funType method so it is a

simple matter to check that the two types match — although the polymorphic type *

complicates this checking a little.

9.2.6.5 Embedded Usage

In addition to the Haskell classes of the previous subsections, it is still necessary to add

macros defining the two wrappers of Figure 3.3. Code Example 9.23 outlines the

implementation of both the Haskell definition wrapper and the embedded Haskell

function call wrapper.

Any use of the Haskell function call wrapper is simply translated into a standard Java

method call to a static evaluation method of a static inner class — the use of this inner

class side-steps hygiene as it is not declared within the quasi-quotation.

The inner class is created by the Haskell definition wrapper. The evaluation function

simply calls the eval method on its provided argument (an arbitrarily complex Haskell

expression) and with the entire set of Haskell definitions considered to be its initial list

of bindings.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 254 •

classclassclassclass HaskellWrappers {
 macromacromacromacro ClassDeclaration (fun, "{", FunDeclarations ds, "}") {
 // loop through all the declarations and check signatures against types

 returnreturnreturnreturn {{
 staticstaticstaticstatic classclassclassclass Haskell {
 staticstaticstaticstatic FunObject eval(FunObject obj) {
 returnreturnreturnreturn obj.eval(newnewnewnew BindingList(`(ds.createSelf())));
 }
 }
 }};
 }

 macromacromacromacro MethodCall (fun, "(", FunExpr e, ")") {
 returnreturnreturnreturn {{ Haskell.eval(`(e.createSelf())) }};
 }
}

Code Example 9.23: Embedded Haskell Wrapper Definition

The Haskell definition wrapper is also responsible for type-checking all the Haskell

declarations. This is straightforward and consists of little more than checking the type of

the signature to the type of the Haskell expression — a process already defined with the

use of the funType method from subsection 9.2.6.4.

In order to use the embedded Haskell subset both Haskell and HaskellWrappers

must be imported. The subset usage is split into two files so that the subset can be used

as a embedded fashion and also in a standalone fashion.

9.2.6.6 Standalone Usage

The Haskell subset can be used without any Java code appearing in the source file at all

with the use of the importonly switch (as described in 8.6.1.2). This switch is used

to import only two classes: Haskell and HaskellStandalone.

Use of Haskell in standalone mode requires the specification of a module name within

the source file — this is used to name the resultant Java translation class. An example of

this syntax is shown in Code Example 9.24. This example uses the extended forms

defined in the next subsection.

modulemodulemodulemodule HaskellTest wherewherewherewhere

main :: intintintint -> [intintintint]
main x = [a * a | a <- range 1 x]

range a b = ifififif (a <= b) thenthenthenthen (a : range (a+1) b) elseelseelseelse []

Code Example 9.24: Standalone Haskell Module

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 255 •

Each standalone Haskell file must also declare the function main. The definition of this

function is permitted to contain an arbitrary number of integer arguments that can be

specified from the command line.

The HaskellStandalone class functions much as the wrapper for macro definitions

in that it collects all of Haskell subset declarations and checks that each function

matches its signature. However it produces a class that has an automatically generated

Java main function that will accept arguments from the console, perform a functional

calculation, and finally output results to the console.

publicpublicpublicpublic staticstaticstaticstatic voidvoidvoidvoid main(String[] args) {
 ifififif (args.length != 1) returnreturnreturnreturn;

 System.out.println(
 newnewnewnew FunApply(newnewnewnew FunExpr("main"), newnewnewnew FunLiteral(args[0])).eval()
);
}

Code Example 9.25: Standalone Haskell main Method

9.2.6.7 Extended Forms

The Haskell implementation contains a few extra forms that are not specified in the

subset. We first define quasi-quotation for the Haskell subset to aid in the following

definitions.

Using this extended quasi-quotation facility, illustrative examples of the power of

Genesis are provided for function declarations, operator currying, and simple list

comprehensions. The techniques shown here could easily be used to add further

functionality such as: where clauses, pattern matching, and type classes.

Quasi-quotation

As discussed in subsection 8.7.1, the quasi-quotation macros automatically handle new

additions to the abstract syntax. However, we must manually provide unquoting for

abstract syntax classes that we wish to use in such a fashion. For the Haskell subset this

entails creating unquote definitions for declarations through to expressions.

Function Declarations

Haskell provides a syntactic sugar for function declarations that doesn’t require the use

of lambda functions. For example, instead of f=\x->\y->x+y we could write f x

y=x+y. Using our newly defined quasi-quotation definition, we can provide this

extension to our Haskell subset by using a mixture of Haskell and Genesis forms.

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 256 •

macromacromacromacro funDeclaration (FunIdentifier ident, FunIdentifiers args, =, FunExpr
expr) {
 FunExpr lambdas = expr;

 forallforallforallforall (FunArgument arg) inininin args.reverse() {
 lambdas = {{ \`arg -> `lambdas) }};
 }

 returnreturnreturnreturn {{ `ident = `lambdas }};
}

Code Example 9.26: Function Declarations Definition

Code Example 9.26 contains the definition of function declarations. It simply constructs

lambda functions from the identifiers in argument list (in reverse). Genesis code for

creating the list of functional identifiers is omitted.

Operator Currying

Haskell allows binary operator application to omit either parameter to provide a partial

application. For example the expression (1+) returns a function that adds one to its

argument. With the use of quasi-quotation, Code Example 9.27 shows the simplicity of

adding this to Haskell subset.

macromacromacromacro FunLambda (”(”, FunOperator op, FunExpr e, ”)”) {
 returnreturnreturnreturn {{ \x -> x `op `e }};
}

macromacromacromacro FunLambda (”(”, FunExpr e, FunOperator op, ”)”) {
 returnreturnreturnreturn {{ \x -> `e `op x }};
}

Code Example 9.27: Operator Currying Definition

Simple Single Source List Comprehensions

Simple single source list comprehensions can be provided by translation into use of the

map function. An example of this for a simple fragment is shown in Code Example

9.28(a). This translation is so simple it can be provided in a single line as shown in

Code Example 9.28(b).

squares xs = [x * x | x <- xs]
squares xs = map (\x -> x * x) xs

(a) List Comprehension and Simple Translation

macromacromacromacro FunExpr ([, FunExpr e, |, FunIdentifier i, <-, FunExpr f,]) {
 returnreturnreturnreturn {{ map (\`i -> `e) `f }}
}

(b) Genesis Macro for Simple Translation

Code Example 9.28: Simple Single Source List Comprehensions

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 257 •

Multiple Condition Single Source List Comprehensions

It is not much more complicated to provide list comprehensions that while still drawing

from a single list source have a number of predicate conditions. The translation here

requires that the standard function filter be applied to the list once for each specified

condition (although this could also be done with one pass by combining all the

conditions into one expression).

Code Example 9.29 demonstrates this translation. It is very similar in construction to the

function declaration example.

macromacromacromacro FunExpr ([, FunExpr e, |, FunIdentifier i, <-, FunExpr f, ",",
FunExprList ps,]) { // ps was comma seperated
 FunExpr filteredList = f;

 forallforallforallforall (FunExpr p) inininin ps {
 filteredList = {{ filter (\`i -> `p) `filteredList }};
 }

 returnreturnreturnreturn {{ map (`i -> `e) `filteredList }};
}

Code Example 9.29: Multiple Condition Single Source List Comprehensions

9.2.7 Implementation Review

The macro definitions for assertions and iterations demonstrated how the use of

shorthands such as quasi-quotation and static-type matching greatly simplified

definitions and improved their readability. Comparison of such techniques are not

addressed here but are delayed to later sections.

Table 9.2 assesses the successfulness of the final implementation of each of the test

cases.

Table 9.2: Genesis Applicability to Benchmark Test Suite

Benchmark Summary Description

1 assert Assertions have the simplest definition of all of the

benchmark test cases as no inspection of arguments is

required and the translation is uniform for all

arguments. A simple and easily understandable

definition is possible with Genesis’ quasi-quotation

facilities.

2 foreach The definition of iteration is simple and highlights the

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 258 •

conciseness that can be gained from using hygiene and

static-type matching shorthands.

However, it also illustrates a restriction of Genesis —

namely that macros cannot be used within the file in

which they are declared. For this definition it leads to

the necessity of defining another method that both

macro definitions call.

3 printf The implementation of typesafe formatted output is

unwieldy, but this is due to standard Java rather than a

shortcoming in Genesis.

Quasi-quotation is used extensively to build an

expression over time. The resulting expression is

similar to what would be produced manually, but

without the concatenation of successive string literals.

However, the Java language definition requires that

such strings are combined on compilation [GJSB00],

so there is no penalty in run-time performance.

4 SQL Genesis is easily capable of providing exact SQL

syntax and disallows inclusion of syntactically

incorrect forms. Genesis has no trouble providing a

limited expression definition for sole use within SQL

statements, despite the obvious overlap with standard

Java expressions.

The SQL subset implementation highlights the

frequency of occurrence of construction macros and

the utility of the macroSyntax shorthand. Only once

a full SELECT statement is recognised does any

translation occur.

The actual translation is simply a production of an

SQL string to pass to a standard run-time SQL system.

Despite the end call being the same, it should be clear

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 259 •

that the advantage that Genesis provides is in early

error detection. Such errors will be automatically

handled by Genesis’ syntax error mechanisms.

5 Generators The generators implementation shows the powerful

nature of code translation possible with Genesis

macros. Generator translation is not a simple pattern

based translation (like the assertion and iteration

macros), but rather a sophisticated code

transformation.

Genesis provides quasi-quotation for the portions of

this translation that can be generated through a pattern

based approach, and allows easy splicing of

constructed forms via unquoting.

The result is that the general form of the translation is

easily definable (and hence understandable) and the

more complicated parts can be dealt with in isolation.

This greatly simplifies the construction of such code.

Genesis allows the generator primitives to be exposed

to the user in such a way that allows for powerful

combinations of techniques.

The major problem with the generators implementation

is that its reliance on Java1.4 disallows simple creation

of generators of primitive types. Java1.5 would both

provide auto-boxing/unboxing and allow a cleaner

generics based definition.

6 Haskell Genesis handles the Haskell subset syntax with ease,

despite its lack of similarity to standard Java syntax.

The Haskell subset implementation demonstrates the

flexibility of Genesis abstract syntax types. Allowing

such types to be created by the user as standard Java

classes allows them to be used in a variety of powerful

CHAPTER 9: ANALYSIS AND COMPARISON IMPLEMENTATION OF TEST CASES

 • 260 •

ways at both compile-time and run-time.

In implementing the Haskell subset, the abstract syntax

types are used to drive the parse, perform compile-time

type-checking, to represent the run-time program, and

for run-time evaluation. In fact, due to the use of an

interpreter, very little actual translation is performed at

compile-time.

By use of a combination of Genesis macros and quasi-

quotation for Haskell it was a simple matter add

additional Haskell constructs to the subset.

The full flexibility of Genesis is demonstrated by the

standalone usage of the Haskell subset. If desired,

Genesis can be truly syntax independent.

CHAPTER 9: ANALYSIS AND COMPARISON QUALITATIVE ASSESSMENT

 • 261 •

9.3 Qualitative Assessment

The qualitative assessment of Genesis begins with a general discussion of issues relating

to its power, usability, and error handling (subsections 9.3.1, 9.3.2, and 9.3.3). Where

appropriate, comparisons are drawn to the languages reviewed in chapter 4.

Subsection 9.3.4 contains an evaluation of Genesis in respect to the criteria for rating

extensible languages from section 3.3.

In the following section (section 9.4), a detailed comparison of Genesis and Maya is

provided.

9.3.1 Power

The arbitrary syntax creation facilities are the most impressive advantage of Genesis

compared to other systems. Compared to the reviewed languages in chapter 4, Genesis

provides the most flexible grammar construction facilities. Genesis’ expressive power is

wide-ranging and allows for a host of sophisticated extensions – the implementations of

the benchmark test cases and the standard library facilities nicely illustrate this (these

are discussed in the following subsections).

Most of the reviewed extensible languages provide similar facilities for syntax

interrogation via some form of abstract syntax classes and Genesis is no exception. All

of these facilities are on a similar level of power. Complex hierarchies of abstract syntax

classes (like those of Genesis) offer benefits over S-expressions or skeletal syntax trees

at the cost of increased complexity.

Genesis provides access to static-type information via the use of delayed macros. These

macros are expanded only after the entire parse has been successfully completed and

typing issues can hence be resolved. This is not without cost to the simplicity of the

system (this is further discussed in subsection 9.3.2). Delayed macros can be difficult to

reason about and complicate final parse resolution but allow for some of the more

sophisticated meta-programming techniques to be applied, such as specialisation and

compile-time static-type checking and resultant error production. Even without delayed

macros, Genesis provides superior power to the reviewed systems.

CHAPTER 9: ANALYSIS AND COMPARISON QUALITATIVE ASSESSMENT

 • 262 •

9.3.1.1 Benchmark Test Cases

As demonstrated in the previous section, Genesis is easily capable of providing an

implementation for each of benchmark test cases.

Most notably, the specified syntax of the Haskell subset was easily created with

Genesis’ powerful syntax creation facilities. However, an exact implementation of

Haskell would not be possible as it uses a layout-based approach to scoping. Further

tokeniser flexibility would be required to allow such a technique in Genesis (see

subsection 10.2.1).

Beyond those requiring increased lexical flexibility it is unclear if there exists any real-

world language constructs that Genesis is incapable of expressing.

9.3.1.2 Quasi-quotation Implementation

Genesis’ ability to provide a set of macros for quasi-quotation is a testament to its

expressive power. Most other meta-programming systems are incapable of such a

construction — with the most obvious notable counter-example being Lisp as its S-

expressions lend themselves nicely to this kind of manipulation. Genesis’ more

complicated set of abstract syntax classes are not as simple to use in this respect, but

they provide other benefits such as guaranteed syntactic correctness.

However, the implementation of unquoting highlights the difficultly of working with a

mixture of delayed and non-delayed macros. The number of possible parses examined

increases considerably when using unquoting, as the static type of the expression being

unquoted is not yet known. Here our choice of Graph Expansion Parsing lets us down a

little as even though local variables declarations (and any previous instance variable

declarations) have been speculatively parsed, there is no way to connect these to the

speculative parse of the unquoting. Perhaps there are further parsers refinements that

can smooth out these rough edges (see subsection 10.2.2).

9.3.1.3 Other Standard Library Macros

Genesis’ power allows the basic language definition to remain simple and for user

shorthands and syntactic sugar to be provided by extensions. The standard library

provides facilitates the creation of static-type matching macros (particularly useful for

specialisation), simple construction macro generation, and optional macro parameters.

These basic extensions demonstrate the beginnings of how the Genesis macro system

CHAPTER 9: ANALYSIS AND COMPARISON QUALITATIVE ASSESSMENT

 • 263 •

could build upon itself — much the same way as this takes places within the Lisp

community. Most other meta-programming languages are too limited to provide such

extensions. Although we have seen small extensions provided by Maya and JSE for

automatic generation of macro support code, the possibility of further extensions is

limited by their lack of power.

9.3.2 Usability

Genesis macro definitions are incredible simple, they closely mimic Java method calls,

but do require their arguments to be comma separated — unlike Maya which infers

which arguments are types and which are terminals. The Maya solution is more

lightweight, but perhaps not as clear. JSE and MS2 require many more symbols to

appear in macro declarations for little, if any, extra benefit.

Genesis requires no understanding of parser in order to be able to write macros. Most

other reviewed extensible systems either gave the impression that no knowledge was

required, until the user caused a parser conflict, or had strict rules on the placement and

structure of macros.

Like Template Haskell, Genesis does not regard macros and syntax classes as

particularly special. There is little distinction between run-time and compile-time

functions and abstract syntax classes are implemented as standard Java classes. Macros

are provided in such a fashion that the Genesis compiler knows that they are to be

interleaved with the grammar and executed at compile-time, and unlike Template

Haskell, they have no requirement for explicit identification when being called.

The quasi-quotation macro uses the direct representation of Genesis macros in its

implementation (albeit at compile-time) and run-time functions can access these

functions in a similar fashion. The Haskell subset makes extensive use of its abstract

syntax classes to perform a variety of tasks other than parsing at both compile-time and

in its run-time system.

Genesis shares with MS2 the ability to insert structures into quasi-quotes that are free of

their original syntax — this was used extensively in the implementation of generators

(see subsection 9.2.5) and is a powerful and concise tool.

Support for hygiene is provided through the quasi-quotation mechanism or by the use of

explicit name generation.

CHAPTER 9: ANALYSIS AND COMPARISON QUALITATIVE ASSESSMENT

 • 264 •

9.3.3 Error Handling

The Genesis abstract syntax classes are standard Java classes and utilise Java’s type-

checking mechanisms to ensure that all abstract syntax is correct.

Additionally, syntax errors within Genesis’ quasi-quotation facility are handled no

differently than syntax error within Genesis code. No special checking is required

within the quasi-quotation mechanism, if a syntax error occurs within a quasi-quote, it

will not be successfully matched by the parser.

Genesis has strong support for explicit detection of compile-time errors. All macros can

declare a series of possible exceptions to be thrown via a throws clause which is

essentially equivalent to that for normal Java methods. Such exceptions are handled by

the parser and can allow the macro to provide extra conditions for its matching or to

provide compile-time warnings or errors.

Support for syntax errors detection during parsing is less comprehensive. Syntax errors

are difficult to pinpoint with Graph Expansion Parsing. Detection of such errors

(generally trivial for other parsers) is the weakest part of the Genesis implementation.

For syntactically correct files, an attempt is made to report the source of errors once

translation to standard Java has occurred. While the source of the error may be

discovered, the exact point in the expansion in which the error occurred may be difficult

to determine.

9.3.4 Extensibility Criteria Assessment

Table 9.3: Genesis Extensibility Criteria Assessment

Criterion Assessment

1.1 Syntax Creation Genesis’ primary contribution is that of arbitrary

syntax creation. It is unencumbered by its parser and

allows virtually any syntactic construct to be created

— from the smallest statement or expression level

macro to language embeddings.

1.2 Syntax Interrogation Like the majority of its counterparts, Genesis provides

simple to use facilities for syntax interrogation via a set

CHAPTER 9: ANALYSIS AND COMPARISON QUALITATIVE ASSESSMENT

 • 265 •

of abstract syntax classes.

1.3 Syntax Overloading Genesis need make no special provision for syntax

overloading as it has no concept of reserved words —

support for syntax overloading is a nice side–effect of

providing a general parsing scheme.

Any symbol or identifier can be used within a macro

definition regardless of whether or not it is considered

to have special meaning within a standard Java

program.

In fact, through its concept of priorities, a Genesis

programmer can even provide syntax replacements,

rather than just overloadings. It is possible to provide

an exact replica of a standard syntactic construct, but

with a higher priority. This allows users to modify the

semantics of standard Java (or indeed any extension).

1.4 Static Type Interrogation Genesis provides support for static-type interrogation

via its abstract syntax classes and by allowing macros

to throw compile-time handled exceptions. The explicit

use of the delayed keyword is required for macros

that wish to query static-types.

While Genesis’ approach is flexible, it puts the onus on

the programmer when using static-type matching on

macro definitions. For this reason the Genesis standard

environment provides macros that allow such forms to

be simply and conveniently expressed. Most situation

use these standard macros and so explicit use of the

delayed keyword is rare.

1.5 Expressiveness Genesis is capable of expressing simple macros in a

simple concise way, large scale language

modifications, and it is even possible to replace the

standard syntax entirely.

CHAPTER 9: ANALYSIS AND COMPARISON QUALITATIVE ASSESSMENT

 • 266 •

As evidenced by the implementation of the benchmark

test cases, Genesis is capable of providing:

• small limited use syntax additions (eg. assert,

forall, printf, etc.);

• embeddings of domain-specific languages (eg.

SQL, Haskell, etc.); and

• an entirely new syntax without any reference to

Java syntax at all.

2.1 Simplicity Genesis macro definitions are as similar as possible to

standard Java method declarations. The only restriction

to macro definitions is that they must have at least one

argument.

The requirement of the delayed keyword when using

static-typing facilities adds to the general complexity

of Genesis macro definitions. Whilst the use of

standard environment macro definitions alleviates

some of this complexity, the delayed keyword could

still potentially be the source of much confusion.

By Genesis’ use of a general parser, users are able to

write macros without any understanding of parser

theory. There are no special cases that can cause

confusion. Macros can be written with left- or right-

recursion and can contain any symbols required.

However, by removing restrictions on the parser it is

possible to create a macro (or worse, a set of macros)

that can create ambiguous parses. Such poorly written

macros could be a major source of confusion.

2.2 Brevity As demonstrated in section 9.2.1.1 and 9.2.2.1, low-

level Genesis code is cumbersome at best. This low-

level code can still be useful in simple cases and can be

freely mixed with more sophisticated techniques (as

CHAPTER 9: ANALYSIS AND COMPARISON QUALITATIVE ASSESSMENT

 • 267 •

shown in section Code Example 9.13).

Thankfully, Genesis is powerful enough to provide a

quasi-quotation facility as a standard environment

extension. Quasi-quotation code can be interleaved

within normal Java code, and vice versa if unquoting is

used.

Genesis code using quasi-quotation provides

definitions that are similar in complexity to other

extensible (or meta-programming) systems (see section

9.4.1.1).

2.3 Robustness Genesis provides facilities for both explicit name clash

avoidance and automatic hygiene.

Fresh name generation is provided in a form analogous

to the traditional use of gensym in Lisp.

Automatic hygiene ensures that variables declared

within quasi-quotations are freshly generated.

3.1 Syntactic Correctness Genesis provides guarantees of syntactic correctness

through its abstract syntax classes. Use of these classes

requires the user to create correct syntax.

3.2 Error Detection Genesis has strong support for detecting compile-time

errors. All macros can declare a series of possible

exceptions to be thrown via a throws clause which is

essentially equivalent to that for normal Java methods.

These exceptions are handled by the parser and can

allow the macro to provide extra conditions for its

matching or to provide compile-time warnings or

errors.

There are good facilities for automatic static-type

checking and error reporting via the standard

environment.

CHAPTER 9: ANALYSIS AND COMPARISON QUALITATIVE ASSESSMENT

 • 268 •

3.3 Error Reporting Explicit checks allow macros to report warnings or

errors.

An attempt is made to report the source of errors once

translation to Java has occurred, but it is doubtful if the

error messages will be of much use for more

complicated macros.

Syntax errors during parsing with the Graph Expansion

Parser are difficult to pinpoint and Genesis provides

little to help the user in this regard. Detection of such

errors (generally trivial for other parsers) is the

weakest part of the Genesis implementation.

CHAPTER 9: ANALYSIS AND COMPARISON MAYA COMPARISON

 • 269 •

9.4 Maya Comparison

Of the previous attempts at extensible languages covered in chapter 4, Maya (section

4.8) is the most directly comparable to Genesis. Both extend Java and allow arbitrary

syntactic forms to be created whereas the other reviewed languages do not.

In subsection 9.4.1, a comparison is provided between the Genesis implementation of

the benchmark test cases (from section 9.2) and the direct Maya implementation of the

simple test cases (assert, foreach, and printf) and Maya’s capacity to implement the

complex test cases (SQL, Generators, and Haskell).

Maya provides a MultiJava extension to Java as a proof-by-implementation. In

subsection 9.4.2, the ability of Genesis to provide an equal implementation is compared

with Maya’s implementation.

A comparative rating of Genesis and Maya on the extensibility criteria is provided in

section 9.4.3.

9.4.1 Benchmark Test Cases Comparison

Table 9.4 provides a qualitative comparison of Maya’s implementation of the simple

benchmark test cases versus those provided for Genesis and also a discussion of Maya’s

capacity for implementing the complex test cases compared to Genesis’

implementations.

Table 9.4: Genesis and Maya Benchmark Test Suite Comparison

Benchmark Summary Description

1 assert Assertions are handled equally well by both Genesis

and Maya with the only difference being those of

syntax and the amount of support code that the macro

programmer is required to provide. Maya requires both

an abstract and concrete Mayan to be provided.

2 foreach Like assertions, the major distinction between the two

implementations of iteration is at the level of minor

syntax and overhead.

CHAPTER 9: ANALYSIS AND COMPARISON MAYA COMPARISON

 • 270 •

3 printf Type-safe formatted output is difficult to compare as it

was originally coded in both systems because it is

heavily dependent on a large degree of standard Java

code. This code is dependent on both the style of

implementation and the scope of the implementation.

With such code stripped out, all that is left to compare

are the two systems relative ability to match the chosen

syntax — both handle it with ease. Again, the major

differences are in the exact syntactic representation.

4 SQL Maya is not capable of supporting the SQL syntax due

to its outside-in evaluation strategy. The similarity of

SQL expressions to standard Java expressions would

likely cause Maya’s LALR parser some problems.

5 Generators Maya should be capable of providing a generator

implementation provided that the use of suspend is

replaced with return. This solution is not as optimal

as what can be provided in Genesis, which can match

the required syntax exactly.

Despite these syntactic differences, implementations in

Maya and Genesis would be very similar as both have

similar facilities for syntax interrogation and

construction.

6 Haskell Maya is not capable of supporting the Haskell syntax

due to its outside-in evaluation strategy. Even if it

were, it is unlikely that Maya’s LALR parser could

handle the conflict between functional expressions and

standard Java expressions.

Both Maya and Genesis provide a similar level of functionality for providing simple

macros. The major difference is that Maya requires both abstract and concrete syntax

declarations for even the most simple macros. This requires a high level of knowledge

CHAPTER 9: ANALYSIS AND COMPARISON MAYA COMPARISON

 • 271 •

about the differences between concrete and abstract syntax and interactions between

them. The benefit from this approach is that Maya can use this information to provide

quite sophisticated pattern-matching on macro arguments.

Genesis unifies the concepts of abstract and concrete syntax to a degree by allowing the

mixing of both within macro argument lists. For simple macros this comes at no cost to

the user. Such macros simply match on a sequence of syntactic forms and do not require

the creation of any new abstract syntax.

Abstract Mayans simplify the creation of abstract syntax to a degree, but simultaneously

restrict the power of such additions. In Genesis, the onus is on the programmer to

provide abstract syntax definitions as standard Java classes, but these can be used in

very flexible and powerful ways. A prime example of this power is the multiple uses of

the abstract syntax classes in the Haskell subset implementation (see subsection 9.2.6).

For many simple definitions providing standard Java classes for construction macros is

cumbersome, but some of this is alleviated by use of the macroSyntax macro.

Maya’s outside-in evaluation strategy precludes the large-scale modification of the

underlying grammar and therefore cannot provide syntax in such an exacting form as to

permit language embeddings. Genesis has no such restrictions on macro creation and

therefore is capable of implementing the complex constructs.

9.4.1.1 Lines of Code Comparison

Both Genesis and Maya are compared on the simple test cases in terms of actual lines of

code. The comparison is shown in Table 9.5; blank lines and lines containing only

punctuation characters (e.g. opening and closing braces) are subtracted from the total

lines of code.

Table 9.5: Genesis and Maya Lines of Code Comparison

Benchmark Maya Lines of Code Genesis Lines of Code

 lines blank punct code lines blank punct code

1 assert 20 4 5 11 11 0 4 7

2 foreach 21 4 4 13 13 1 4 8

3 printf 24 3 7 14 9 1 2 6

CHAPTER 9: ANALYSIS AND COMPARISON MAYA COMPARISON

 • 272 •

In order to provide a fair basis for comparison, the implementations of these

benchmarks are modified from the Genesis implementations of section 9.2 and the

implementations provided with the Maya distribution. The assertion test case was

implemented without Maya’s superficial check for side-effects. The iteration test case

was implemented only for Iterator and without syntax options. The type-safe

formatted output test case was implemented in a skeletal fashion with the majority of

the resultant parse tree calculated by external methods. This was considered the best

approach for the printf implementation because it is so heavily dependent on a large

amount of standard Java code. See Appendix B for the code used in this comparison.

Genesis code requires less overhead for a typical implementation. Maya requires both

abstract and concrete Mayan definitions, whereas for these simple examples Genesis

does not. Additionally, Maya either exposes its implementation at cost to the user or at

least requires declaration of a collection of exported Mayans.

Maya’s lexical scoping and lack of default Mayan imports also adds to the total number

of lines of code.

In general, the code for each of these implementations is no more or less understandable

in one language or another, the primary difference is simply in the amount of overhead

required to declare macros, use macros, and import the standard environment. Maya

tends to require more verbose code for shorter definitions but generally provides more

succinct code for generating large quantities of abstract syntax.

9.4.2 MultiJava

Maya provides a MultiJava [Cli01] implementation as a partial proof-by-

implementation show of its power. MultiJava is a Java extension that provides open

classes and multiple dispatch via augmenting methods and multimethods. Augmenting

methods allow the programmer to add new methods to a class without the necessity for

recompilation. Multimethods provide polymorphic dispatch based on the types of all

arguments, not just the first.

The original MultiJava implementation was direct to Java bytecode, but translations to

Java code (i.e. by erasure) were provided in [Cli01]. This translation has the following

features:

CHAPTER 9: ANALYSIS AND COMPARISON MAYA COMPARISON

 • 273 •

• Each overloaded group of multimethods must have a single dispatcher method

created that chooses at run-time which is the most appropriate method to call.

The methods themselves are renamed to avoid conflicts. All calls to

multimethods can remain unchanged as they resolve to calls to the dispatcher.

• Each augmenting method is translated to a static method with an extra parameter

this_, and must have its body translated in order to make any implicit use of

this explicit, and then all use of this must be replaced by calls to this_.

• Each overloaded group of augmenting methods is wrapped in a single anchor

class which contains a instance of a inner dispatcher class.

• The calling of augmenting methods requires a change at the call site to access

this dispatcher within an anchor class.

In order to implement MultiJava by erasure, we must be able to parse several

occurrences of multimethods and then recombine these to produce dispatch methods. A

similar ability is required for translation of augmenting methods, but also that code is

translated to add implicit use of this, and to modify all implicit or explicit this calls to

refer to this_ instead. Any calls to augmenting methods must also be detected and

translated — no easy task as they appear like normal method calls.

Both Maya and Genesis have the ability to override the syntax for method calls and to

check each occurrence to see if it is either an augmenting method or multimethod.

Genesis is also capable of deferring the creation of dispatcher and anchor classes until

all methods of a class have been examined. Macros can be provided that simply

construct an abstract syntax object for each multimethod encountered and these objects

can be coalesced by overriding the surrounding class declaration.

9.4.3 Extensibility Criteria Comparison

Summary

Table 9.6: Genesis and Maya Extensibility Criteria Comparison

Criterion Assessment

1.1 Syntax Creation Genesis allows arbitrary syntax creation with the only

restriction being that macros must have at least one

argument. Maya provides for arbitrary creation of new

CHAPTER 9: ANALYSIS AND COMPARISON MAYA COMPARISON

 • 274 •

syntax but with the sizeable restriction that Mayans

may not rely on other Mayans.

1.2 Syntax Interrogation Genesis and Maya provide comparable abstract syntax

classes and their facilities for interrogation of these

classes utilise standard Java constructs.

Maya offers pattern matching in formal argument lists

as a shorthand for these standard Java facilities.

1.3 Syntax Overloading Both Genesis and Maya allow the overloading of the

default behaviour of standard Java forms.

1.4 Static Type Interrogation Both Genesis and Maya allow for the explicit

interrogation of static types in a relatively equivalent

fashion. Genesis requires the programmer to annotate

their macro definitions with the delayed modifier.

Maya provides a built-in facility for pattern matching

on static-types whereas Genesis provides this as a

standard environment facility. Both facilities offer an

equivalent level of power and ease-of-use.

1.5 Expressiveness Maya is only capable of providing small modifications

to Java syntax due to its outside-in evaluation strategy.

Genesis uses a combination of inside-out macro

evaluation (for construction of abstract syntax trees or

translation not requiring the surrounding context) and

outside-in evaluation. As a result of this approach,

Genesis is able to provide concise code for simple

macros and large scale modifications to the original

syntax.

By use of command-line specified imports, Genesis is

also able to entirely replace its grammar and act as a

framework for other languages. Of course, such

language must still translate into standard Java code for

CHAPTER 9: ANALYSIS AND COMPARISON MAYA COMPARISON

 • 275 •

final compilation.

2.1 Simplicity Concrete Mayan definitions have a potentially more

lightweight syntax than Genesis macro definitions, but

the requirement to declare arguments as lazy can

produce definitions that are in fact more verbose than

the equivalent Genesis definitions.

Genesis requires the user to have less understanding of

parser theory than Maya. There are none of the obtuse

grammar conflicts of LALR parsing with Graph

Expansion Parsing.

It is difficult to say if the explicit use of the delayed

keyword for static type checking macros combined

with the inside-out then outside-in approach to macro

evaluation is more difficult to understand than Maya’s

lazy parser scheme. Both require the programmer to

carefully think about the interactions between macros

during expansion. Although simple non-delayed

macros in Genesis are easier to understand than the

equivalent abstract and concrete Mayan definitions.

2.2 Brevity Both Genesis and Maya provide equivalent quasi-

quotation/unquoting facilities and also allow direct, yet

more cumbersome, use of the abstract syntax classes.

Maya provides more concise shortcuts for creating new

abstract syntax classes but with none of the flexibility

of such forms in Genesis.

Genesis has a more lightweight definition of macros

than Maya, with each declaration in Maya needing to

be exported (and this is a Mayan shortcut for an even

more cumbersome low-level approach).

Maya requires Mayans to be both imported and

brought into local scope, whereas Genesis has no local

CHAPTER 9: ANALYSIS AND COMPARISON MAYA COMPARISON

 • 276 •

scope facility at all, but instead brings all macros into

scope automatically.

2.3 Robustness Both Genesis and Maya provide for explicit name-

clash avoidance and automatic hygiene.

3.1 Syntactic Correctness Genesis and Maya both guarantee that valid abstract

syntax trees are produced by their macros.

3.2 Error Detection Both Genesis and Maya will detect syntax errors

within macro calls at compile-time and the resulting

expansions are type checked as standard Java.

Genesis and Maya both provide facilities for explicitly

detecting further errors and signalling the parser and

hence the user. Genesis also provides facilities for

quiet macro failure where the user need not be

informed and also allows macros to report warnings.

3.3 Error Reporting Genesis and Maya both allow explicitly detected errors

to provide detailed error messages with the source of

the error clearly identified.

Maya’s use of a restrictive LALR parser allows it to

easily detect syntax errors, whereas Genesis’ use of

Graph Expansion Parsing provides power, but at the

cost of difficult error tracking.

Errors caught further down the compilation process are

a little harder to track. It is likely that Maya fairs little

better than Genesis in this area.

CHAPTER 9: ANALYSIS AND COMPARISON GRAPH EXPANSION PARSING

 • 277 •

9.5 Graph Expansion Parsing

Graph Expansion Parsing was designed specifically for the implementation of Genesis,

and in this section we examine its performance against the general parsers of Earley’s

algorithm and the CYK parser.

Issues relating to the general performance of these and more commonly used parsers

have been discussed previously in section 6.7.

9.5.1 Acceptable Grammars

Graph Expansion Parsing can operate on any context-free grammars without empty

symbols13. This class of grammars is far larger than those than can be accepted by CYK,

but smaller than Earley’s algorithm which allows empty symbols.

The lack of empty symbols does not overly restrict the languages that can be accepted;

it is an easy process to remove empty symbols and while the result is more verbose but

no less understandable.

9.5.2 Efficiency

In this section, the efficiency of Graph Expansion Parsing is compared theoretically

against the general parsers of both Earley and CYK. Also, empirical results are

compared to Earley’s algorithm with the same set of tests as his original paper [Ear70].

In most tests, Graph Expansion Parsing performs on par with the Earley parser.

9.5.2.1 Theoretical Performance

Given n input tokens, both Earley and CYK parsers require at worst O(n3) time.

However, O(n
3
) is a requirement for CYK but merely an upper bound for Earley. On

bounded state grammars [Ear70] (this includes most LR(k) grammars) Earley’s

algorithm operates in linear time. Earley describes three grammars which generate

similar languages (shown in Figure 9.1) that take O(n), O(n
2
), and O(n

3
) time

respectively.

13 The Genesis GEP implementation can actually handle context-sensitive grammars as well, as each

accepting macro may choose to fail if further specified conditions are not met.

CHAPTER 9: ANALYSIS AND COMPARISON GRAPH EXPANSION PARSING

 • 278 •

K ::= J | K J
J ::= F | I
F ::= x
I ::= x

(a) Earley O(n) Grammar

A ::= x | x A x

(b) Earley O(n
2
) Grammar

A ::= x | A A

(c) Earley O(n
3
) Grammar

Figure 9.1: Differing Time Complexities of Earley’s Algorithm

Graph Expansion Parsing has worst case time complexity of O(n3), but like Earley’s

algorithm, it can perform with better complexities on certain grammars. GEP operates

on the grammars of Figure 9.1 in O(n
2
), O(n

3
), and O(n

3
) time respectively.

Given n input tokens, both Earley and CYK parsers require O(n2) space. However,

O(n
2
) is an upper bound for Earley but a requirement for CYK. These complexities are

for recognising a given string, not for producing all possible parse trees. For example,

the grammar of Figure 9.1(c) produces an exponential number of possible parses for a

given input string, so any algorithm that provides all such parses can do no better than

O(2n) space complexity.

Similarly, the space requirements of Graph Expansion Parsing are dependent upon how

ambiguity is handled. If ambiguities are fully resolved as the parse progresses then the

space requirements are bounded by O(n2), if not, the bound is O(2n).

9.5.2.2 Empirical Results

Earley compares his algorithm with a variety of backtracking techniques [Ear70]. It is

clearly shown that his algorithm is superior to other general parsers. Graph Expansion

Parsing was compared with Earley parsing on all of these grammars.

All of the following time complexities are calculated based on primitive operations. For

Earley’s method, the primitive operation used is the act of adding a state to the state set,

and for GEP it is attempted matching of a path. GEP paths are built incrementally so

each check is effectively a constant operation.

In Table 9.7 the time complexities of Earley parsing and GEP are compared. Shown for

GEP is both a forward and backwards scan of the input and also the number of edges

CHAPTER 9: ANALYSIS AND COMPARISON GRAPH EXPANSION PARSING

 • 279 •

added to the graph. The first three grammars compared demonstrate left-, right-, and

centre-recursive forms respectively. The fourth grammar effectively contains all three

recursive forms.

Both Earley’s method and GEP parse all these grammars in linear time, although GEP

generally has a smaller constant factor than Earley’s method. No significant difference

is seen with GEP between scanning the input left-to-right or right-to-left.

Table 9.7: Earley Versus GEP Time Complexity

Grammar Sentence Earley GEP LR GEP RR GEP adds

S ::= Ab
A ::= a | Ab

ab
n
 4n+7 6n+1 6n+1 2n+1

S ::= aB
B ::= aB | b

anb 6n+4 6n+1 6n+1 2n+1

S ::= ab | aSb a
n
b

n
 6n+4 7n-3 7n-3 n

S ::= AB
A ::= a | Ab
B ::= bc | bB | Bd

abncd 18n+8 14n+7 14n+6 8n-3

CHAPTER 9: ANALYSIS AND COMPARISON GRAPH EXPANSION PARSING

 • 280 •

Table 9.8 compares Earley parsing and GEP on more complicated grammars with

mutually recursive components. The third grammar is the most representative of a real

programming language grammar. The choice of strings is taken from [Ear70] so that a

direct comparison could be made.

Graph Expansion Parsing performs the most favourably on the third grammar which is a

representation of a propositional calculus. As this is the most “real world” of the

grammars, GEP seems well suited to non-theoretic use.

With two of these three grammars sizeable differences are visible between performing a

left-to-right scan of the input to performing a right-to-left scan. In general the left-to-

right scan performs considerably better. The largest difference is in the first grammar

and is due to the predominance of left-recursive elements.

CHAPTER 9: ANALYSIS AND COMPARISON GRAPH EXPANSION PARSING

 • 281 •

Table 9.8: Earley Versus GEP Comparison

Grammar Sentence Earley GEP

LR

GEP

RR

GEP

adds

X ::= a | Xb | Ya
Y ::= e | YdY

ededea
ededeab

4

ededeab10
ededeab200
(ed)6eabb
(ed)7eabb
(ed)8eabb

33
45
63

633
79

194
251

37
77

137
2037
123
292
371

35
98

188
3038
152
363
460

11
27
51

811
43

119
159

S ::= AB
A ::= a | SC
B ::= b | DB
C ::= c
D ::= d

adbcddb
ad3bcbcd3bcd4b
adbcd2bcd5bcd3b
ad18b
a(bc)3d3(bcd)2dbcd4b
a(bcd)2dbcd3bcb

44
108
114
123
141
95

35
97
82

115
127
83

35
97
82

115
127
83

13
35
30
39
47
31

F ::= C | S | P | U

C ::= U⊃U
U ::= (F) | ~U | L
L ::= L' | p | q | r
S ::= UVS | UVU

P ::= UΛP | UΛU

p

(pΛq)

(p'Λq)VrVpVq'

p⊃ ((q⊃~(r'V(pΛq))) ⊃ (q'Vr)

~(~p'Λ(qVr) Λp'))

((pΛq)V(qΛr)V(rΛp')) ⊃

 ~((p'Vq')Λ(r'Vp))

28
68

148
277
141
399

2
23
66
90
59

143

2
25
95

151
129
236

1
4

18
21
21
34

 283

10 Conclusion and Future Work

Conclusion and Future Work

CHAPTER

1

2

3

4

5 6

8 7

9

10

defining

extensibility

introduction

assessing

extensibility

reviewing

extensibility

reviewing

parsing

implementing

a parser

designing

the language

language

implementation

evaluation

conclusion

CHAPTER 10: CONCLUSION AND FUTURE WORK CONCLUSION

 • 284 •

10.1 Conclusion

The original design goals of Genesis are summarised as following (from section 5.2):

• provide arbitrary syntax creation;

• allow for compile-time interrogation of syntax trees;

• outward language simplicity (a simple to use system);

• programmer support (via quasi-quotation, hygiene, and guarantees of syntactic

correct translations);

• a lack of complicated parser restrictions;

• inward language simplicity (a small definition with extensions written with it to

provide further facilities); and

• provide decent error reporting.

Genesis is very effective in meeting these original design goals.

Its power of expression surpasses that of other extensible languages and it does this with

a very simple macro syntax and a relatively clean design. It has proven itself to be

capable of providing programmer support in the form of quasi-quotation, unquoting,

optional macro parameters, automatic list class generation, and automatic static-type

checking extensions. The number of such shorthands will no doubt increase with time.

Graph Expansion Parsing supports Genesis’ simple macro definitions and places a low

burden on the macro programmer. It provides for a intuitive approach to creating syntax

and defining transformations in a way that other such systems are not quite capable of

matching. However, it does require the programmer to sometimes think about issues of

ambiguities that are more complicated than those that occur in traditional languages.

Genesis’ implementations of the benchmark test suite provide strong evidence of the

success of its design. In particular, the ability to program in a Haskell subset free of any

legacy Java code is a facility that would normally be possible only with compiler-

compilers. The Haskell subset is the most clear demonstration of the power and

flexibility of macro definitions in Genesis. Not only is the Haskell syntax matched

exactly (ignoring true Haskell layout rules), the implementation itself is relatively

straightforward due to Genesis allowing multiple uses of its user definable abstract

syntax classes.

CHAPTER 10: CONCLUSION AND FUTURE WORK CONCLUSION

 • 285 •

More work needs to be done on the provision of quality error messages. Graph

Expansion Parsing does not lend itself easily to pinpointing the exact cause of errors and

more research is required into this area (see section 10.2.8). The current implementation

of Genesis requires direct output of Java source files for compilation with an external

compiler. This greatly complicates the possibility of tracking errors to their source. This

will hopefully be address by future research (see subsection 10.2.7).

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 286 •

10.2 Future Work

There are many possibilities for future work with the Genesis programming language:

modifications to the language design, improvement of the current implementation,

further research into the created parsing scheme, and the implementation of more

sophisticated extensions within the current language.

It is hoped that such continued research will ultimately lead to extensible concepts being

incorporated into the larger programming community.

10.2.1 Flexible Lexical Analysis

The current tokeniser makes only a few decisions as to the meaning of sequences of

symbols and characters: Literal strings and characters are detected early, and $ and _

characters are treated as alphanumeric characters rather than symbols.

In addition, floating-point forms are accepted that contain spaces in between numbers

and other characters. This is undesirable but is unavoidable with the current tokeniser

strategy. The choice could have been made to detect floating-point literals within the

tokeniser, but this may have affected the use of “.” within other expressions.

For the tokeniser to be as flexible as possible it should be able to allow users to define

all of these literal forms explicitly.

It should be possible to reuse macro forms but to apply them to character strings at the

tokeniser stage. Perhaps this would be accomplished by defining a class TokenChar

and allowing users to write macros for combining them — such macros could be

automatically recognised by the compiler as special tokeniser macros. Code Example

10.1 demonstrates the possible usage of such of system to explicitly handle string

literals — something currently not possible with Genesis.

macromacromacromacro StringLiteralToken (", StringLiteralCharList, ") { ... }

macroListmacroListmacroListmacroList StringLiteralCharList(StringLiteralChar);

macromacromacromacro StringLiteralChar (TokenChar t) { ... }
macromacromacromacro StringLiteralChar (\, TokenChar c) throws ConditionsNotMet {
 // make sure this is a valid escape
}

Code Example 10.1: Extended Tokeniser Possibility

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 287 •

10.2.2 Delayed Macros

The delayed macros facility is instrumental in allowing both construction macros and

static-type checked macros to operate in tandem. The usage of delayed macros is the

source of much of Genesis’ power, but could perhaps also be a source of programmer

confusion — maybe we can do better.

Consider the program fragment in Code Example 10.2. This fragment uses a

specialisation of forall for arrays that allows the user to drop the type of iteration

variable as it can be inferred from the type of the array. This is a prime example of the

use of delayed macros, both for expansion of forall and for printf: the inside-out

parse allows construction of the parse-tree and the outside-in parse performs the

translations.

intintintint[] array = { 1, 11, 27, 42 };

forallforallforallforall num inininin array {
 printf("%d\n", num);
}

Code Example 10.2: Macro Expansion Requiring Delayed Macros

There are a number of possibilities for improvement on the current scheme. Either use

of delayed could be inferred by some mechanism, or a parser improvement could be

made to provide more previous scope information by the time a macro expansion was

reached (although this may mean restricting macros static-typing abilities to

declarations preceding the macro call).

Inference of delayed macros could simply occur at macro expansion time if an

attempted type-check fails to find the type, or by some method that checks for calls to

the type system when a macro is compiled.

If some form of modified backtracking top-down parsing scheme (that could handled

left-recursion) could be applied to the Genesis programming language the type of array

would be known by the time forall was reached, and by the time printf was

reached perhaps some mechanism for querying the half-matched forall macro as to

the type of its arguments could be constructed.

10.2.3 Zero Argument Macros

As previously discussed in subsection 5.3.4, the Genesis definition does not support

macros that have no arguments. Such macros would possibly allow a more natural

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 288 •

construction of definition with optional parts, although the optional parameter extension

in subsection 8.7.2.3 provides quite an elegant method for this.

The inclusion of zero argument macros was avoided as it complicates the construction

of the parser. It would, however, be possible to extend the parsing method to include

such forms.

The most obvious implementation would be to add arcs that construct zero argument

macros with the same start and end node to the parse graph. This would either be

performed for each node without fail or with some more sophisticated approach that

adds such arcs only when there is a possibility that they will be required by some later

macro.

It remains to be seen if the inclusion of zero argument macro forms is important enough

to justify the extra implementation cost.

10.2.4 Migration to Java1.5

Genesis was implemented with Java1.4 which means that it was not able to take

advantage of generics. As a result, many components of the current implementation are

not as neat as they could be. For example, the macroList extension would likely

prove to be completely unnecessary with a Genesis implementation that uses generics,

or at least would not need to create a new list each time it was used. The implementation

of the generators test case would also benefit from generics.

The typing system could perhaps benefit from generics — when static-types are known

they could be passed around with the current expression as a type parameter. Macros

could be prevented from matching on these types directly without any explicit checks.

Java1.5 annotations would most likely allow the process of mangling to be simplified or

completely removed. More advanced uses of such metadata may help in the writing of

macros and reduce the number of new classes that are created in order to create a

particular extension.

10.2.5 Parser Efficiency

Section 7.2 already detailed some optimisations to the parser, but nonetheless the

current Graph Expansion Parser has much room for improved performance.

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 289 •

It may prove to be possible to discover sub-graphs that have no possibility of further

additions and such forms could be ignored for the rest of the parse. The current

algorithm performs many checks that are required and does so repeatedly. Any graph

pruning technique would provide quite a boost in efficiency.

Another minor improved to optimisation could come from collapsing some of the

information in the partial match tree. A simple example of this kind of operation is if a

grammar contains a rule that converts a token into an identifier and a rule that converts

an identifier into a simple expression then upon successful conversion of the token into

an identifier we can produce an expression simultaneously with further matching. Well

constructed abstract syntax class hierarchies already perform similar optimisations, but

it would be desirable to provide this functionality in a more general way. It may even be

possible to apply this approach in a more general way to improve efficiency.

10.2.6 Context-sensitive Graph Expansion

Parsing

It was briefly mentioned that Graph Expansion Parsing can parse context-sensitive

forms due to the ability of macros to throw exceptions when further conditions are not

met. It may prove interesting to explore these abilities in more detail, perhaps even

writing a GEP parser generator in Genesis itself.

10.2.7 Integration of Genesis Parsing and Java

Compiling

The Genesis compiler makes use of a standard Java compiler to actually produce its

final output. Much could be gained by producing an integrated system. The most

obvious area for improvement would be with increased ability to track errors.

10.2.8 Improved Error Tracking

Genesis’ major failing is in both the pin-pointing of syntax errors and errors that occur

after expansion has taken place. As just mentioned, it would be simpler to track errors if

the entire compilation was performed by an integrated system.

Improved syntax error detection for parsers such as GEP is an open question and

requires much extensive research. Indeed, it may not be possible to greatly improve this

situation and another parsing approach may ultimately be required.

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 290 •

10.2.9 Usability Surveys

Genesis has had limited usage to this point and it would be both interesting and

informative to see how others took advantage of its facilities. Feedback from such use

would only serve to improve the language.

10.2.10 Library Support

Genesis could no doubt benefit from an increased number of shortcuts for tasks that are

identified as often occurring and repetitive. The identification of such required shortcuts

would no doubt occur with increased usage of Genesis (as discussed in the previous

section).

A class (or set of classes) for providing generalised transformations on arbitrary syntax

trees would be of great use for many complicated extensions. Implementations of

generators, Haskell, and MultiJava could all benefit from such a library.

Extensible libraries for SQL, HTML, XML, or regular expressions could provide

increased performance over currently available systems.

Many extensions could be created to showcase Genesis’ flexibility and power.

Implementations of other Java extensions could be undertaken such as (the previously

mentioned) MultiJava or Pizza.

10.2.11 Improved Embedded Haskell

The embedded Haskell subset is of great interest. If after further testing of the current

subset it is found to be as useful as it appears at first glance, it would be desirable to

look at providing compilation rather than interpretation of the subset.

If compilation proves successful, the subset could be increased to handle the full core of

Haskell and then macros could build upon this in order to produce a full embedded

Haskell implementation.

Such an embedding of Haskell would bring the language to a much larger audience and

the appeal of using a clean functional language for calculation and a traditional

imperative language for control and user interaction is particularly appealing.

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 291 •

Also, in further extensions it would no doubt be interesting to allow the calling of

appropriate Java functions from within Haskell code as well. Such mixing of imperative

and functional constructs is not new, but perhaps mixing of two large scale languages is.

10.2.12 Ultimate Aim

The ultimate aim of this work (and other similar works) is adoption of extensibility

amongst the wider audience. The Java programming language seems an ideal vehicle

for such an occurrence as it has been repeatedly updated through its community review

process. As has been repeatedly stated, if extensibility had been a part of Java from the

very beginning, the changes that it has undergone would have been possible in a much

different fashion. Indeed, there is a large number of extensions to Java that have not

seen wide-spread adoption, perhaps with an extensible Java these languages would have

the capacity to reach a larger audience.

Continued work on the Genesis language will hopefully add much that is interesting

(and perhaps some that is useful) to the domain of extensible programming languages.

A References

References

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 294 •

[Ach+05] Mehdi Achour, Friedhelm Betz, Antony Dovgal, Nuno Lopes, Philip
Olson, Georg Richter, Damien Seguy, Jakub Vrana et al. Gabor Hojtsy
(editor): PHP Manual, March 2005. Available from (viewed March 2005):
http://www.php.net/manual/en/

[AG04] David Abrahams and Aleksey Gurtovoy: C++ Template Meta-
programming, Concepts, Tools, and Techniques from Boost and Beyond,
Addison-Wesley, December 2004. ISBN 0-321-22725-5.

[ANS89] American National Standards Institute: Database Language Embedded
SQL, ANSI standard X3.168-1989, 1989.

[ANS92] American National Standards Institute: Database Language SQL, ANSI
standard X3.135-1992, 1992.

[Ast+05] Manuel Astudillo, Max Battcher, Jorgen Bodde, Matthew Hawkins, Justin
Holmes, Paul Hulskamp, Marcus Klimstra, Milosz A. Krajewski, Adrian
Moore, Vladimir Morozov, Alexandre Rai, Eylem Ugurel, Martin van der
Geer, Robert van Loenhout, and Reggie Wilbanks: GOLD Parsing System,
May 2005. Available from (viewed June 2005):
http://www.devincook.com/

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman: Compilers, Principle,
Techniques, and Tools, Addison-Wesley, Reading, Massachusetts, 1986.
ISBN 0-201-10088-6.

[Bak01] Jason Baker: Macros that Play: Migrating from Java to Maya, Master’s
Thesis, University of Utah, December 2001. Available from (viewed
March 2005):
http://www.cs.utah.edu/~jbaker/maya/thesis.pdf

[Bar91] J. G. P. Barnes: Programming in Ada plus Language Reference Manual,
3

rd
 Edition, Addison-Wesley, 1991. ISBN 0-201-56539-0.

[BCVM02] A. Bryant, A. Catton, K. De Volder, and G. C. Murphy: Explicit
programming. In, Proceedings of the First International Conference on
Aspect-Oriented Software Development, Enschede, The Netherlands, April
2002. Available from (viewed April 2005):
http://www.cs.ubc.ca/~murphy/papers/ep/ep-aosd02.pdf

[BDMN73] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen
Nygaard: Simula Begin, Auerbach Press, Philadelphia, 1973. ISBN 0-884-
05032-7.

[BFYV96] Frank Budinsky, Marilyn Finnie, Patsy Yu, and John Vlissides: Automatic
Code Generation from Design Patterns. In, IBM Systems Journal, Volume
35, Issue 2, pp. 151–171, IBM Corporation, Riverton, New Jersey, 1996.
Available from (viewed April 2005):
http://www.research.ibm.com/designpatterns/pubs/codegen.pdf

CHAPTER 10: CONCLUSION AND FUTURE WORK

 • 295 •

[BH02] Jason Baker and Wilson C. Hsieh: Maya: Multiple-Dispatch Syntax
Extension in Java. In, Proceedings of the ACM SIGPLAN ’02 Conference
on Programming Language Design and Implementation, pp. 270–281,
Berlin, Germany, June 2002. Available from (viewed April 2005):
http://www.cs.utah.edu/~wilson/papers/maya-pldi02.pdf

[Bla01] BLAST Forum: Basic Linear Algebra Subprograms Technical (BLAST)
Forum Standard, August, 2001. Available from (viewed April 2005):
http://www.netlib.org/blas/blast-forum/blas-report.pdf

[BLS98] Don Batory, Bernie Lofaso, and Yannis Smaragdakis: JTS: tools for
implementing domain specific languages. In, Proceedings of the Fifth
International Conference on Software Reuse, pp. 143–153, Victoria,
British Columbia, Canada, 1998. Available from (viewed April 2005):
http://www.cs.tut.fi/~gp/materiaali/BatoryPapers.pdf

[BOSW98a] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler: GJ:
Extending the Java Programming Language with type parameters,
Manuscript, March 1998; revised August 1998. Available from (viewed
March 2005):
http://homepages.inf.ed.ac.uk/wadler/gj/Documents/gj-tutorial.pdf

[BOSW98b] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler: GJ
Specification, Manuscript, May 1998. Available from (viewed March
2005):
http://homepages.inf.ed.ac.uk/wadler/gj/Documents/gj-specification.pdf

[BOSW98c] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler:
Making the future safe for the past: Adding Genericity to the Java

Programming Language, OOPSLA 98, Vancouver, October 1998.
Available from (viewed March 2005):
http://homepages.inf.ed.ac.uk/wadler/gj/Documents/gj-oopsla.pdf

[BP01] Jonathan Bachrach and Keith Playford: The Java Syntactic Extender (JSE).
In, Proceedings of the 16th ACM SIGPLAN Conference on Object
Oriented Programming Systems, Languages, and Applications, pp. 31–42,
Tampa Bay, Florida, 2001. Available from (viewed April 2005):
http://people.csail.mit.edu/people/jrb/jse/jse.pdf

[Bra99] Gilad Bracha: Add generic types to the Java programming language, Java
Specification Request (JSR) 14, Sun Microsystems, 1999. Available from
(viewed March 2005):
http://www.jcp.org/en/jsr/detail?id=14

[Bra02] Gilad Bracha: Extending the Java Programming Language with
Enumerations, Autoboxing, Enhanced for loops and Static Import, Java
Specification Request (JSR) 201, Sun Microsystems, 2002. Available from
(viewed March 2005):
http://www.jcp.org/en/jsr/detail?id=201

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 296 •

[BS02] C. Brabrand and M. Schwartzbach: Growing languages with metamorphic
syntax macros. In, Proceedings of the Workshop on Partial Evaluation and
Semantics-Based Program Manipulation ’02, Portland, Oregon, January
2002. Available from (viewed April 2005):
http://www.brics.dk/bigwig/publications/macro.pdf

[CE98] K. Czarnecki and U. Eisenecker: Meta-control structures for template
meta-programming, 1998. Available from:
http://home.t-online.de/home/Ulrich.Eisenecker/meta.htm

[Chr96] Thomas W. Christopher: Icon Programming Language Handbook, Tools of
Computing, Evanston, Illinois,1996. Available from (viewed April 2005):
http://www.tools-of-computing.com/tc/CS/iconprog.pdf

[CLCM00] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein:
MultiJava: Modular Open Classes and Symmetric Multiple Dispatch for
Java. In, Proceedings of the 15th ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pp. 16–24,
Vancouver, British Columbia, October 2000. Available from (viewed
March 2005):
http://www.cs.iastate.edu/~cclifton/multijava-data/papers/TR00-06.pdf

[Cli01] Curtis Clifton: MultiJava: Design, implementation, and evaluation of a
Java-compatible language supporting modular open classes and

symmetric multiple dispatch, Master’s Thesis, Iowa State University,
December 2001. Available from (viewed March 2005):
http://www.cs.iastate.edu/~cclifton/papers/MastersThesis.pdf

[CMA94] Luca Cardelli, Florian Matthes, and Martín Abadi: Extensible syntax with
lexical scoping, Technical Report 121, Digital Equipment Corporation
Systems Research Center (DEC SRC), February 1994. Available from
(viewed April 2005):
http://www.cse.ucsc.edu/~abadi/Papers/jmgrammar.ps

[Cor00] Robert Corbett: Berkeley Yacc, June 2000. Available from:
ftp://ftp.cs.berkeley.edu/pub/4bsd/byacc.1.9.tar.Z.

[CS70] John Cocke and Jacob T. Schwartz: Programming languages and their
compilers: Preliminary notes, Technical report, Courant Institute of
Mathematical Sciences, New York University, 1970.

[DM05] Ulrich Drepper and Ingo Molnar: The Native POSIX Thread Library for
Linux, Whitepaper, February 2005. Available from (viewed March 2005):
http://people.redhat.com/drepper/nptl-design.pdf

[Dyb03] R. Kent Dybvig: The Scheme Programming Language, 3
rd
 edition, MIT

Press, 2003. ISBN 0-262-54148-3. Available from (viewed March 2003):
http://www.scheme.com/tspl3/

[Ear70] Jay Earley: An Efficient Context-Free Parsing Algorithm, Communications
of the ACM, Volume 13, Number 2, pp. 94–102, February 1970.

CHAPTER 10: CONCLUSION AND FUTURE WORK

 • 297 •

[EH01] Jon Ellis and Linda Ho: JDBC 3.0 Specification, Sun Microsystems,
October 2001. Available from (viewed June 2005):
http://java.sun.com/products/jdbc/download.html

[FGP64] David J. Farber, Ralph E. Griswold, and Ivan P. Polonsky: SNOBOL, A
String Manipulation Language, Journal of the ACM, Volume 11, Number
1, pp. 21–30, January 1964.

[For77] ANSI: Programming Language Fortran, X3.9-1978, American National
Standard. Available from (viewed March 2003):
http://www.fortran.com/fortran/F77_std/rjcnf0001.html

[GD83] Adele Goldberg, and David Robson: Smalltalk-80. The language and its
implementation, Addison-Wesley, Reading, Massachusetts, May 1983.
ISBN 0-201-11371-6.

[GJ90] Dick Grune and Ceriel Jacobs: Parsing Techniques, A Practical Guide,
Ellis Horwood, Chichester, West Sussex, 1990. ISBN 0-13-651431-6.
Available from (viewed April 2005):
ftp://ftp.cs.vu.nl/pub/dick/PTAPG/BookBody.pdf

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha: The Java
Language Specification, 2nd Edition, The Java Series, Addison-Wesley,
Boston, Massachusetts, 2000. ISBN 0-201-31008-2. Available from
(viewed March 2005):
ftp://ftp.javasoft.com/docs/specs/langspec-2.0.pdf

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha: The Java
Language Specification, 3rd Edition, The Java Series, Addison-Wesley,
draft, 2005. Available from (viewed March 2005):
http://java.sun.com/docs/books/jls/java_language-3_0-mr-spec.zip

[GG90] Ralph E. Griswold and Madge T. Griswold: The Icon Programming
Language, 2nd edition, Prentice Hall, Englewood Cliffs, New Jersey, 1990.
ISBN 0-13-447889-4.

[GH03] Adam Granicz, Jason Hickey, Phobos: A Front-End Approach to
Extensible Compilers. In, Proceedings of the 36th Annual Hawaii
International Conference on System Sciences (HICSS’03), Track 9, pp.
324.2, January 2003. Available from (viewed April 2005):
http://mojave.caltech.edu/papers/hicss-36.pdf

[GHC02] The GHC Team: The Glorious Glasgow Haskell Compilation System
User’s Guide, Version 6.4, University of Glasgow, 2002. Available from
(viewed March 2005):
http://www.haskell.org/ghc/docs/latest/users_guide.pdf

[Gra93] Paul Graham: On Lisp: Advanced Techniques for Common Lisp, Prentice
Hall, 1993. ISBN 0130305529. Available from (viewed November 2005):
http://www.paulgraham.com/lib/paulgraham/onlisp.pdf

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 298 •

[GST01] Steven E. Ganz, Amr Sabry, and Walid Taha: Macros as multi-stage
computations: Type-safe, generative, binding macros in MacroML. In,
Proceedings of the ACM SIGPLAN International Conference on

Functional Programming ’01 (ICFP’01), pp. 74–85, Florence, Italy,
September 2001. Available from (viewed April 2005):
http://www.cs.rice.edu/~taha/publications/preprints/icfp01-pre.pdf

[Gur04] Aleksey Gurtovoy et al: The Boost C++ Libraries, Release 1.32.0,
November 2004. Available from (viewed March 2005):
http://www.boost.org/doc/boost.pdf

[Haa02] Arno Haase: Java Idioms: Exception Handling. In, Proceedings of
EuroPLoP 2002, Irsee, Germany, 2002. Available from (viewed April
2005):
http://hillside.net/patterns/EuroPLoP2002/papers/Haase.zip

[Her04] Jack D. Herrington (editor): Greg Wilson Interview on Extensible
Programming Languages, June 2004. Available from (viewed April 2005):
http://www.codegeneration.net/tiki-read_article.php?articleId=56

[HM98] Graham Hutton and Erik Meijer: Functional Pearls: Monadic Parsing in
Haskell. In, Journal of Functional Programming, Volume 8, Number 4,
pp. 437–444, Cambridge University Press, July 1998. Available from
(viewed June 2005):
http://www.cs.nott.ac.uk/~gmh/pearl.pdf

[HM04] David Herman and Philippe Meunier: Improving the Static Analysis of
Embedded Languages via Partial Evaluation, International Conference on
Functional Programming (ICFP2004), Snowbird, Utah, pp. 16–27,
September 2004. Available from (viewed April 2005):
http://www.ccs.neu.edu/scheme/pubs/icfp2004-hm.pdf

[HW01] Anders Hejlsberg and Scott Wiltamuth: Microsoft C# Language
Specifications, Microsoft Press, Redmond, Washington, 2001.

[Ich99] Yuuji Ichisugi: Modular and extensible parser implementation using
Mixins, Draft, March 1999. Available from (viewed April 2005):
http://staff.aist.go.jp/y-ichisugi/epp/edoc/epp-parser.pdf

[IHSM+96] Yutaka Ishikawa, Atsushi Hori, Mitsuhisa Sato, Motohiko Matsuda, Jorg
Nolte, Hiroshi Tezuka, and Hiroki Konaka. Design and implementation of
metalevel architecture in C++ – MPC++ approach. In, Proceedings of
Reflection’96, San Francisco, California, pp. 153–166, 1996.

[Joy96] Ian Joyner: C++?? A Critique of C++ and Programming and Language
Trends in the 1990s, 3

rd
 Edition, 1996. Available from (viewed April

2005):
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/tools/java/misc/
ACritiqueOfC++.pdf

CHAPTER 10: CONCLUSION AND FUTURE WORK

 • 299 •

[Kal01] Danny Kalev: An interview with Bjarne Stroustrup: The future is
multiparadigm programming, February 2001. Available from (viewed
March 2005):
http://www.linuxworld.com/story/32929.htm

[Kas65] T. Kasami: An efficient recognition and syntax-analysis algorithm for
context-free languages, Scientific report AFCRL-65-758, Air Force
Cambridge Research Lab, Bedford, Massachusetts, 1965.

[KR78] Brian W. Kernighan and Dennis M. Ritchie: The C Programming
Language, Prentice-Hall, Englewood Cliffs, New Jersey, 1978. ISBN 0-
13-110370-9.

[LM02] Ian Lewis and Vishv Malhotra: An Efficient Generators Implementation in
Pizza, January 2002.

[Mat98] Yukihiro Matsumoto: Ruby Language Reference Manual version 1.4.6,
1998. Available from (viewed March 2005):
ftp://ftp.ruby-lang.org/pub/ruby/doc/ruby-man-1.4.6.tar.gz

[Mcc60] John MacCarthy: Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I, Communications of the ACM, Volume 3 ,
Number 4, pp. 184–195, April 1960. Available from (viewed April 2005):
http://www-formal.stanford.edu/jmc/recursive.pdf

[Mey92] Bertrand Meyer: Applying “Design by Contract”. In, IEEE Computer,
Volume 25, Number 10, pp. 40–51, October 1992.

[Mic05a] Microsoft: Message Maps, MFC Library Reference, Microsoft Developer
Network (MSDN), Microsoft Online Documentation, 2005. Available
from (viewed April 2005):
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vclib/html/_mfc_message_maps.asp

[Mic05b] Microsoft: Visual Basic Language and Run-Time Reference, Microsoft
Online Documentation, 2005. Available from:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vblr7/html/vboriVBLangRefTopNode.asp

[Mil84] Robin Milner: A Proposal for Standard ML. In, Proceedings of the
Symposium on Lisp and Functional Programming, pp. 184–197, Austin,
Texas, August 1984.

[Mil00] Robin Miller (editor): C++ Answers from Bjarne Stroustrup, Slashdot
Interview, Februray, 2000. Available from (viewed April 2005):
http://developers.slashdot.org/article.pl?sid=00/02/25/1034222

[ML+97] Jack Melnick, Paul Lane, et al.: Programmer’s Guide to the Pro*C/C++
Precompiler Release 8.0, Part No. A54661-01, Oracle Corporation, June
1997. Available from (viewed March 2005):
http://www-rohan.sdsu.edu/doc/oracle/server803/A54661_01/toc.htm

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 300 •

[Mon96] Olivier Montanuy: Unofficial Quake-C Specification, August 1996.
Available from (viewed March 2005):
http://www.gamers.org/dEngine/quake/spec/quake-spec34/index1.htm

[MPJT04] Simon Marlow, Simon Peyton Jones, and Wolfgang Thaller: Extending the
Haskell Foreign Function Interface with Concurrency. In, Proceedings of
the ACM SIGPLAN 2004 Haskell Workshop (Haskell ’04), Snowbird,
Utah, September 2004. Available from (viewed March 2005):
http://research.microsoft.com/Users/simonpj/Papers/conc-ffi/conc-ffi.ps

[Mue93] Frank Mueller: A library implementation of POSIX threads under Unix. In,
Proceedings of the Winter 1993 USENIX Technical Conference and

Exhibition, pp. 29–41, San Diego, California, January 1993.

[Nau60] Peter Naur (editor): Revised report on the algorithmic language Algol 60,
Communications of the ACM, pp. 299–314, May 1960. Available from
(viewed April 2005):
http://www.masswerk.at/algol60/report.htm

[Nor96] Charles J. Northrup: Programming with UNIX Threads, John Wiley &
Sons, March 1996. ISBN 0-471-13751-0.

[OW97] Martin Odersky and Philip Wadler: Pizza into Java: Translating theory into
practice. In, Proceedings of the 24th ACM Symposium on Principles of
Programming Languages (POPL’97), pp. 146–159, Paris, France, January
1997. Available from (viewed April 2005):
http://pizzacompiler.sourceforge.net/doc/pizza-language-spec.pdf

[PJ87] Simon L. Peyton Jones: The Implementation of Functional Programming
Languages, Prentice-Hall, 1987. ISBN 0-13-453333-X.

[PJ99] Simon Peyton Jones (editor): Haskell 98 language and libraries: the
Revised Report, Cambridge University Press, January 1999; revised
December 2002. Available from (viewed March 2005):
http://www.haskell.org/definition/haskell98-report.pdf

[PJ02] Simon Peyton Jones: Tackling the Awkward Squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell, In,
Engineering theories of software construction, IOS Press, Manfred Broy,
Ralf Steinbruggen, pp. 47–96 , July 2002. ISBN 1-58603-1724. Available
from (viewed April 2005):
http://research.microsoft.com/Users/simonpj/papers/marktoberdorf/

[Pla92] P. J. Plauger: The Standard C library, Prentice Hall, Englewood Cliffs,
New Jersey, 1992. ISBN 0-13-131509-9.

[Pla93] P. J. Plaugher: Programming Language Guessing Games: If C++ is the
Answer, what’s the question?, Dr Dobb’s Journal, October 1993.

CHAPTER 10: CONCLUSION AND FUTURE WORK

 • 301 •

[PT99] Todd A. Proebsting and Gregg M. Townsend: A New Implementation of
the Icon Language, Microsoft Research, The University of Arizona,
October 1999. Available from (viewed March 2005):
http://www.cs.arizona.edu/icon/jcon/impl.pdf

[Rau03] Daniel de Rauglaudre: Camlp4 – Reference Manual, version 3.07,
September 2003. Available from (viewed April 2005):
http://caml.inria.fr/pub/docs/manual-camlp4/index.html

[RD04] Guido van Rossum and Fred L. Drake, Jr. (editor): Python Reference
Manual, release 2.4 edition, November 2004. Available from (viewed
March 2005):
http://docs.python.org/ref/ref.html

[RJHC+96] John V. W. Reynders, Paul J. Hinker, Julian C. Cummings, Susan R. Atlas,
Subhankar Banerjee, William F. Humphrey, Steve R. Karmesin, Katarzyna
Keahey, M. Srikant, Marydell Tholburn: POOMA: A Framework for
Scientific Simulation on Parallel Architectures. In, G. V. Wilson and P.
Lu, (editors): Parallel Programming Using C++, pp. 553–594, , MIT
Press Cambridge, 1996.

[RLHJ99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs (editors): HTML 4.01
Specification, W3C Recommendation, December 1999. Available from
(viewed March 2005):
http://www.w3.org/TR/html4/

[Rob01] Arch D. Robinson: Impact of Economics on Compiler Optimization. In,
Proceedings of the ACM 2001 Java Grande Conference, pp. 1–10,
Standford University, California, June 2001. Available from (viewed April
2005):
http://www.eecg.toronto.edu/~tsa/crgpapers/arch.pdf

[Sha96a] A. Shalit: The Dylan Reference Manual, Addison-Wesley, Reading,
Massachusetts, 1996. ISBN 0-201-44211-6. Available from (viewed April
2005):
http://gauss.gwydiondylan.org/books/drm/

[Sha96b] Nik Shaylor: Java preprocessor (JPP), 1996. Available from:
http://www.geocities.com/CapeCanaveral/Hangar/4040/jpp.html

[SL94] Alexander Stepanov and Meng Lee: The Standard Template Library, HP
Labs Technical Report HPL-94-34 (R. 1), August 1994.

[SPJ02] Tim Sheard and Simon Peyton Jones: Template Meta-programming for
Haskell. In, Proceedings of the ACM SIGPLAN workshop on Haskell
2002, Pittsburgh, Pennsylvania, May 2002. Available from (viewed March
2005):
http://research.microsoft.com/~simonpj/papers/meta-haskell/meta-
haskell.ps

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 302 •

[Sta+04] Richard M. Stallman and the GCC Development Community: Using the
GNU Compiler Collection (GCC), GNU Press, Boston, Massachusetts,
May 2004. Available from (viewed March 2005):
http://gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc.ps.gz

[Ste90] G.L. Steele Jr., Common Lisp: The Language, 2nd edition, Digital Press,
Bedford, Massachusetts, 1990. ISBN 1-55558-041-6. Available from
(viewed April 2005):
http://www.supelec.fr/docs/cltl/cltl2.html

[Ste99] Guy L. Steele Jr.: Growing a Language. In Journal of Higher-Order and
Symbolic Computation (Kluwer), Volume 12, Number 3, October 1999.
Available from (viewed March 2005):
http://homepages.inf.ed.ac.uk/wadler/gj/Documents/steele-oopsla98.pdf

[Str91] Bjarne Stroustrup: The C++ Programming Language, 2nd edition,
Addison-Wesley, Reading, Massachusetts, 1991, reprinted with corrections
January 1994. ISBN 0-201-53992-6.

[Str94] Bjarne Stroustrup: The Design and Evolution of C++, Addison-Wesley,
1994. ISBN 0-201-54330-3.

[Str00] Bjarne Stroustrup: The C++ Programming Language, Special Edition,
Addison-Wesley, March 2000. ISBN 0-201-70073-5.

[Sun02] Sun Microsystems: Programming With Assertions, Java 2 Standard
Edition (J2SE) Documentation Version 1.4.2, Sun Microsystems, 2002.
Available from (viewed March 2005):
http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html

[Swe98] Tim Sweeney: Unreal Script Language Reference, July 1998. Available
from (viewed March 2005):
http://unreal.epicgames.com/UnrealScript.htm

[Tat99] Michiaki Tatsubori: An Extension Mechanism for the Java Language,
Master’s Thesis, University of Tsukuba, February 1999. Available from
(viewed April 2005):
http://www.csg.is.titech.ac.jp/~mich/openjava/papers/mich_thesis99.pdf

[TCKI00] Michiaki Tatsubori, Shigeru Chiba, Marc-Olivier Killijian, and Kozo
Itano: OpenJava: A Class-Based Macro System for Java, Lecture Notes in
Computer Science 1826, Reflection and Software Engineering, pp. 117–
133, Springer-Verlag, Heidelberg, Germany, 2000. Available from
(viewed March 2005):
http://www.csg.is.titech.ac.jp/openjava/papers/mich_2000lncs1826.pdf

[TPL01] Phil Trinder, Robert Pointon, Hans-Wolfgang Loidl: Individual Grant
Review, Function Distributed Interactive Systems, GR/M55633/01, Heriot-
Watt University, Edinburgh, January 2001. Available from (viewed March
2005):
http://www.cee.hw.ac.uk/~dsg/gdh/papers/final.ps

CHAPTER 10: CONCLUSION AND FUTURE WORK

 • 303 •

[TS
+
] Hubert Tonneau, Marcus Vinicius Santos, et al.: Pliant Reference Guide.

Available from (viewed March 2005):
http://playground.scs.ryerson.ca:8080/pliantdocs/babel/universal/reference
guide.html

[Uni83] United States Department of Defense: Reference Manual for the Ada
Programming Language, ANSI/MIL-STD-1815A-1983, United States
Department of Defence, February 1983.

[Unr94] E. Unruh: Prime number computation, ANSI X3J16-94-0075/ISO WG21-
462, 1994.

[Vel99] Todd L. Velhuizen: C++ Templates as Partial Evaluation, 1999 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, San Antonio, Texas, January 1999. Available from (viewed
March 2005):
http://osl.iu.edu/~tveldhui/papers/pepm99.ps

[Vel01] Todd Velhuizen: Blitz++ User’s Guide, Version 1.2, February 2001.
Available from (viewed April 2005):
http://www.oonumerics.org/blitz/manual/blitz.ps

[WC93] Daniel Weise and Roger Crew: Programmable Syntax Macros. In,
Proceedings of the SIGPLAN ’93 Conference on Programming Language

Design and Implementation (PLDI ’93), pp. 156–165, Albuquerque, New
Mexico, June 1993.

[WCS96] Larry Wall, Tom Christiansen, and Randal L. Schwartz: Programming
Perl, O’Reilly & Associates, Sebastopol, California, 1996. ISBN 1-56592-
149-6.

[Wil04] Gregory V Wilson: Extensible Programming for the 21st Century,
Manuscript, May 2004. Available from (viewed April 2005):
http://www.third-bit.com/~gvwilson/xmlprog.html

[Wik95] Wikipedia: BrainFuck, Wikipedia, The Free Encyclopedia, draft, April
1995. Available from (viewed April 2005):
http://en.wikipedia.org/wiki/Brainfuck

[Wik01] Wikipedia: Operator Overloading, Wikipedia, The Free Encyclopedia,
draft, December 2001. Available from (viewed June 2005):
http://en.wikipedia.org/wiki/Operator_overloading

[Wir71] Niklaus Wirth: The Programming Language Pascal. Acta Informatica,
Volume 1, pp. 35–63, Jun 1971.

[WK00] Joerg Walter and Mathias Koch: uBLAS Overview, 2000. Available from
(viewed March 2005):
http://www.boost.org/libs/numeric/ublas/doc/overview.htm

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 304 •

[You67] Daniel H. Younger: Recognition and parsing of context-free languages in
time n

3, Information and Control, Volume 10, Number 2, pp. 189–208,
1967.

A Genesis Abstract Syntax

Genesis Abstract Syntax

APPENDIX

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 306 •

A.1 Abstract Syntax Classes

This appendix provides details of the abstract syntax classes used in the implementation

of the Genesis compiler. Class hierarchy diagrams are supplied for groups of classes and

interfaces that benefit from extra explanation.

A.1.1 High-level Abstract Syntax Classes

Figure A.1 is a reproduction of class hierarchy in Figure 5.12. It is provided as a point

of reference to aid in the understanding of the expansion of the definition of some of the

classes within this hierarchy in later subsections. The rest of this subsection lists the

classes not covered by this hierarchy and the children of the Statement class.

Figure A.1: High-level Abstract Syntax Class Hierarchy

Code Example A.1 lists the classes used for the basic structure of a Java source file. A

compilation unit consists of an optional package declaration, import declarations, and

some type declarations (covered in subsection A.1.2).

// classes for creating the end result of parsing a file

classclassclassclass CompilationUnit implementsimplementsimplementsimplements AbstractSyntax;
classclassclassclass PackageDeclaration implementsimplementsimplementsimplements AbstractSyntax;
classclassclassclass ImportDeclaration implementsimplementsimplementsimplements AbstractSyntax;

// list declarations

classclassclassclass ImportDeclarations extendsextendsextendsextends List implementsimplementsimplementsimplements AbstractSyntax;

Code Example A.1: Compilation Unit Classes

AbstractSyntax

ClassMemberDeclaration BlockStatement

VariableDeclaration Expression MethodDeclaration TypeDeclaration Statement

Literal StatementExpression LeftHandSide

Typeable InterfaceMemberDeclaration

…

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 307 •

The classes of Code Example A.2 are used for typing and within declarations and

statements that require a type.

// class for providing static type information

classclassclassclass Type implementsimplementsimplementsimplements AbstractSyntax;

// list declarations

classclassclassclass Types extendsextendsextendsextends List;

Code Example A.2: Type Classes

Code Example A.3 contains the classes for statements. Local variable declarations are

given special treatment as they are only allowed to appear within blocks.

// classes for providing statements and lists of statements

// interface for statements that are allowed to appear within blocks

interfaceinterfaceinterfaceinterface BlockStatement extendsextendsextendsextends AbstractSyntax;

// variable declarations are the only statement that MUST be part of a block

classclassclassclass LocalVariableDeclarationStatement extendsextendsextendsextends LocalVariableDeclaration
 implementsimplementsimplementsimplements BlockStatement;

// statements

interfaceinterfaceinterfaceinterface Statement extendsextendsextendsextends BlockStatement;

classclassclassclass EmptyStatement implementsimplementsimplementsimplements Statement;
classclassclassclass Labeled implementsimplementsimplementsimplements Statement;
classclassclassclass Break implementsimplementsimplementsimplements Statement;
classclassclassclass Continue implementsimplementsimplementsimplements Statement;
classclassclassclass Throw implementsimplementsimplementsimplements Statement;
classclassclassclass Return implementsimplementsimplementsimplements Statement;
classclassclassclass Synchronized implementsimplementsimplementsimplements Statement;
classclassclassclass Assert implementsimplementsimplementsimplements Statement;
classclassclassclass Catch;
classclassclassclass Try implementsimplementsimplementsimplements Statement;
classclassclassclass ExpressionStatement implementsimplementsimplementsimplements Statement;
classclassclassclass IfThenElse implementimplementimplementimplementssss Statement;
classclassclassclass While implementsimplementsimplementsimplements Statement;
classclassclassclass Do implementsimplementsimplementsimplements Statement;
classclassclassclass Switch implementsimplementsimplementsimplements Statement;
classclassclassclass SwitchLabel implementsimplementsimplementsimplements AbstractSyntax;
classclassclassclass SwitchBlock implementsimplementsimplementsimplements AbstractSyntax;
classclassclassclass For implementsimplementsimplementsimplements Statement;

// a block is allowed to appear in a class as initialisation code

classclassclassclass Block implementsimplementsimplementsimplements Statement, ClassMemberDeclaration;

// list declarations

classclassclassclass Statements extendsextendsextendsextends List;
classclassclassclass BlockStatements extendsextendsextendsextends List;
classclassclassclass SwitchLabels extendsextendsextendsextends List;
classclassclassclass SwitchBlocks extendsextendsextendsextends List;
classclassclassclass SwitchStatements extendsextendsextendsextends List;
classclassclassclass Catches extendsextendsextendsextends List;

Code Example A.3: Statement Classes

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 308 •

A.1.2 Declaration Abstract Syntax Classes

In Figure A.2 the class hierarchy for declarations is shown. Subclasses are pictured with

doubly-lined arrows.

Figure A.2: Declaration Abstract Syntax Class Hierarchy

Code Example A.4 contains the classes for variable declarations and initialisers. Field

declarations can also appear as either class or interface declarations.

// classes for providing variable declarations

classclassclassclass VariableDeclaration implementsimplementsimplementsimplements Typeable;

classclassclassclass FormalParameter extendsextendsextendsextends VariableDeclaration;
classclassclassclass LocalVariableDeclaration extendsextendsextendsextends VariableDeclaration;
classclassclassclass FieldDeclaration extendsextendsextendsextends VariableDeclaration
 implemimplemimplemimplementsentsentsents ClassMemberDeclaration, InterfaceMemberDeclaration;

interfaceinterfaceinterfaceinterface VariableInitializer extendsextendsextendsextends AbstractSyntax;

classclassclassclass SimpleInitializer implementsimplementsimplementsimplements VariableInitializer;
classclassclassclass ArrayInitializer implementsimplementsimplementsimplements VariableInitializer;

classclassclassclass VariableDeclarator impleimpleimpleimplementsmentsmentsments AbstractSyntax;

classclassclassclass VariableDeclaratorId extendsextendsextendsextends VariableDeclarator;

// list declarations

classclassclassclass FormalParameters extendsextendsextendsextends List;
classclassclassclass VariableDeclarators extendsextendsextendsextends List;
classclassclassclass VariableInitializers extendsextendsextendsextends List;

Code Example A.4: Variable Declaration Classes

FormalParameter

ClassMemberDeclaration

LocalVariableD

VariableDeclaration

MethodDeclaration TypeDeclaration

ClassTypeD
n
 InterfaceTypeD

n
 EmptyTypeD

n

FieldD
n

InterfaceMemberDeclaration

MacroD
n
 ConstructorD

n
 AbstractMethodD

n

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 309 •

Code Example A.5 contains the classes for method and type declarations. Type

declarations can be either class or interface declarations and method declarations also

cover constructors, abstract methods, and macros.

// classes for providing method and type declarations

// interfaces for class and interface member declarations

interfaceinterfaceinterfaceinterface ClassMemberDeclaration extendsextendsextendsextends AbstractSyntax;
interfaceinterfaceinterfaceinterface InterfaceMemberDeclaration extendsextendsextendsextends AbstractSyntax;

// all method declarations can appear within a class and are typeable

classclassclassclass MethodDeclaration implementsimplementsimplementsimplements ClassMemberDeclaration, Typeable;

classclassclassclass MacroDeclaration extendsextendsextendsextends MethodDeclaration;
classclassclassclass ConstructorDeclaration extendsextendsextendsextends MethodDeclaration;
classclassclassclass AbstractMethodDeclaration extendsextendsextendsextends MethodDeclaration
 imimimimplementsplementsplementsplements InterfaceMemberDeclaration;

// type declarations

classclassclassclass TypeDeclaration implementsimplementsimplementsimplements ClassMemberDeclaration, BlockStatement;

classclassclassclass ClassTypeDeclaration extendsextendsextendsextends TypeDeclaration
 implementsimplementsimplementsimplements InterfaceInterfaceInterfaceInterfaceMemberDeclaration {
classclassclassclass InterfaceTypeDeclaration extendsextendsextendsextends TypeDeclaration
 implementsimplementsimplementsimplements InterfaceInterfaceInterfaceInterfaceMemberDeclaration;
classclassclassclass EmptyTypeDeclaration extendsextendsextendsextends TypeDeclaration;

// modifiers for methods, classes, etc.

classclassclassclass Modifiers implementsimplementsimplementsimplements AbstractSyntax;

// list declarations

classclassclassclass ClassMemberDeclarations extendsextendsextendsextends List;
classclassclassclass InterfaceMemberDeclarations extendsextendsextendsextends List;
classclassclassclass MacroParameters extendsextendsextendsextends List;
classclassclassclass TypeDeclarations extendsextendsextendsextends List;
classclassclassclass Throws extendsextendsextendsextends List;

Code Example A.5: Method and Type Declaration Classes

A.1.3 Expression Abstract Syntax Classes

Figure A.3 contains the class hierarchy for expressions (and also shows where

identifiers and variable declarations fit). The subclasses of StatementExpression

and Literal are abbreviated in the hierarchy but expanded in the following Code

Examples.

Code Example A.6 details the classes used for expressions and contains interfaces to

differentiate between normal expressions and those that can appear as statements and

those that can appear on the left-hand side of an assignment.

Code Example A.7 and Code Example A.8 contain classes for identifiers and literals

respectively.

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 310 •

Figure A.3: Expression Abstract Syntax Class Hierarchy

// classes for expressions

interfaceinterfaceinterfaceinterface Typeable extendsextendsextendsextends AbstractSyntax;

// non-side effect expressions

ininininterfaceterfaceterfaceterface Expression extendsextendsextendsextends Typeable;
classclassclassclass Bracketed implementsimplementsimplementsimplements Expression;
classclassclassclass Infix implementsimplementsimplementsimplements Expression;
classclassclassclass Cast implementsimplementsimplementsimplements Expression;
classclassclassclass InstanceOf implementsimplementsimplementsimplements Expression;
classclassclassclass IfThenElseExpression implementsimplementsimplementsimplements Expression;

// side-effect expressions

interfaceinterfaceinterfaceinterface StatementExpression extendsextendsextendsextends Expression;
classclassclassclass Assignment implementsimplementsimplementsimplements StatementExpression;
classclassclassclass Prefix implementsimplementsimplementsimplements StatementExpression;
classclassclassclass Postfix implementsimplementsimplementsimplements StatementExpression;
classclassclassclass MethodCall implementsimplementsimplementsimplements StatementExpression;
classclassclassclass Creation implementsimplementsimplementsimplements StatementExpression;
classclassclassclass ArrayCreation implementsimplementsimplementsimplements StatementExpression;

// expressions that can appear on an assignment's left-hand side

interfaceinterfaceinterfaceinterface LeftHandSide extendsextendsextendsextends Expression;
classclassclassclass Simple implementsimplementsimplementsimplements LeftHandSide;
classclassclassclass ArrayAccess implementsimplementsimplementsimplements LeftHandSide;
classclassclassclass FieldAccess implementsimplementsimplementsimplements LeftHandSide;

// operators

classclassclassclass Operator implementsimplementsimplementsimplements AbstractSyntax;

// list declarations

classclassclassclass StatementExpressions extendsextendsextendsextends List;
classclassclassclass Expressions extendsextendsextendsextends List;
classclassclassclass Arguments extendsextendsextendsextends Expressions;
classclassclassclass ArrayCreationExpressions extendsextendsextendsextends Expressions;

Code Example A.6: Expression Classes

Expression

Typeable

Identifier

StatementExpression LeftHandSide

Assignment ArrayAccess FieldAccess

VariableDeclaration

Literal

Prefix Postfix … Simple

…

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 311 •

// classes for identifiers, dot seperated names, and symbols

classclassclassclass Identifier implementsimplementsimplementsimplements Typeable;
classclassclassclass Name implementsimplementsimplementsimplements AbstractSyntax;
classclassclassclass Symbol implementsimplementsimplementsimplements AbstractSyntax;

Code Example A.7: Identifier Classes

// classes for literals

interfaceinterfaceinterfaceinterface Literal extendsextendsextendsextends Expression;

classclassclassclass LiteralString implementsimplementsimplementsimplements Literal;
classclassclassclass LiteralInteger implementsimplementsimplementsimplements Literal;
classclassclassclass LiteralChar implementsimplementsimplementsimplements Literal;
classclassclassclass LiteralBoolean imimimimplementsplementsplementsplements Literal;
classclassclassclass LiteralFloat implementsimplementsimplementsimplements Literal;
classclassclassclass LiteralNull implementsimplementsimplementsimplements Literal;

Code Example A.8: Literal Classes

B Genesis and Maya Simple Test Cases

Genesis and Maya Simple

Test Cases

APPENDIX

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 314 •

B.1 Assertions

Code Example B.1 and Code Example B.2 contain the Genesis and Maya definitions of

assert as used in subsection 9.4.1.1.

classclassclassclass Assert {
 macromacromacromacro Statement (assert, Expression e) {
 returnreturnreturnreturn {{
 ifififif (!`e) {
 System.err.println("Assertion Failed: " +
 `(newnewnewnew StringLiteral(e.toString())));
 throwthrowthrowthrow newnewnewnew AssertionError("Assertion Failed");
 }
 }};
 }
}

Code Example B.1: Genesis Assertion Definition

importimportimportimport maya.tree.*;
importimportimportimport maya.grammar.*;

useuseuseuse Syntax;
useuseuseuse ForEach;

abstractabstractabstractabstract Statement sysysysyntaxntaxntaxntax (assert(Expression););

publicpublicpublicpublic classclassclassclass Assert implementsimplementsimplementsimplements MetaProgram {
 publicpublicpublicpublic Environment run(Environment env)
 {
 Statement syntaxsyntaxsyntaxsyntax A(assert(Expression e);) {
 returnreturnreturnreturn newnewnewnew Statement {
 ifififif (!$e) throwthrowthrowthrow newnewnewnew Error("Assertion failed");
 };
 }

 returnreturnreturnreturn newnewnewnew A().run(env);
 }
}

Code Example B.2: Maya Assertion Definition

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 315 •

B.2 Iteration

Code Example B.3 and Code Example B.4 contain the Genesis and Maya definitions of

forall as used in subsection 9.4.1.1.

importimportimportimport java.util.Iterator;

publicpublicpublicpublic classclassclassclass TestForall {
 delayed macrodelayed macrodelayed macrodelayed macro (forall, (, FormalParameter p,), in,
 Expression:Iterator e, Statement b) throwsthrowsthrowsthrows TypeMismatch {
 returnreturnreturnreturn {{
 forforforfor(Iterator i = (`e).iterator(); i.hasNext();) {
 `(p.type()) `(p.getIdentifier()) = (`(p.type())) i.next();
 `b
 }
 }};
 }
}

Code Example B.3: Genesis Iterator Definition

importimportimportimport java.util.*;
importimportimportimport maya.tree.*;
importimportimportimport maya.grammar.*;

abstractabstractabstractabstract Statement syntaxsyntaxsyntaxsyntax(MethodName(Formal) lazylazylazylazy(BraceTree, BlockStmts));

Statement syntax syntax syntax syntax ForEach(Expression:Iterator enumExp \. foreach(Formal var)
 lazylazylazylazy(BraceTree, BlockStmts) body)
{
 final final final final StrictTypeName castType = StrictTypeName.make(var.getType());

 returnreturnreturnreturn newnewnewnew Statement {
 for for for for (Iterator enumVar = $enumExp; enumVar.hasNext();) {
 $(DeclStmt.make(var)) $(Reference.makeExpr(var.getLocation()))
 = ($castType) enumVar.next();
 $body
 }
 };
}

publicpublicpublicpublic defineMayanContainer(ForEach) { ForEach }

Code Example B.4: Maya Iterator Definition

CHAPTER 10: CONCLUSION AND FUTURE WORK FUTURE WORK

 • 316 •

B.3 Type-safe Formatted Output

Code Example B.5 and Code Example B.6 contain the Genesis and Maya definitions of

printf as used in subsection 9.4.1.1.

class class class class PrintF {
 delayeddelayeddelayeddelayed
 macromacromacromacro ExpressionStatement (printf, (, LiteralString s, ,, Arguments list,))
 throwsthrowsthrowsthrows TypeMismatch, TooManyActualParameters, TooManyPlaceHolders {
 Expression exp = /* call to external function to do generation */;

 returnreturnreturnreturn {{ System.out.println(`exp); }};
 }
}

Code Example B.5: Genesis Type-safe Formatted Output Definition

importimportimportimport maya.tree.*;
importimportimportimport maya.grammar.*;

useuseuseuse maya.util.Syntax;
useuseuseuse maya.util.RunMayans;

Expression syntaxsyntaxsyntaxsyntax
PSprintf(Expression:PrintStream p.printf(listlistlistlist(Expression, ',') args))
{
 finalfinalfinalfinal FormatState state = newnewnewnew FormatState(args);
 returnreturnreturnreturn newnewnewnew Expression {({
 PrintStream writer = $p;
 $({
 StmtList ret = newnewnewnew StmtList{};
 forforforfor (Expression e = state.parse(); e != null; e = state.parse())
 {
 ret = new StmtList { $(as Statement ret) writer.print($e); };
 }
 (Statement) ret;
 })
 writer;
 })};
}

publicpublicpublicpublic defineMayanContainer(Printf) { PSprintf }

Code Example B.6: Maya Type-safe Formatted Output Definition

