
SURVEY ARTICLE

Factorizable inverse monoids

In memory of Douglas Munn

D. G. FitzGerald

July 15, 2009

Abstract

Factorizable inverse monoids constitute the algebraic theory of those partial
symmetries which are restrictions of automorphisms; the formal definition is that
each element is the product of an idempotent and an invertible. This class of
monoids has theoretical significance, and includes concrete instances which are
important in various contexts. This survey is organised around the idea of group
acts on semilattices and contains a large range of examples. Topics also include
methods for construction of factorizable inverse monoids, and aspects of their
inner structure, morphisms, and presentations.

1 Introduction

One persuasive view of the theory of inverse monoids is that it constitutes the alge-
braic theory of partial symmetries. Correspondingly, we may distinguish the theory of
factorizable1 inverse monoids as the algebraic theory of those partial symmetries which
are restrictions of total symmetries, that is, of automorphisms. Another view of inverse
monoids is as a common generalisation of groups and semilattices, and so structurally
as made up somehow of groups and semilattices. Factorizable inverse monoids form a
relatively simple class of such a construction, the formal algebraic definition being that
each element is expressible as the product of a unit and an idempotent. These two
viewpoints come together in McAlister’s P -theory—which expresses each inverse semi-
group S as an idempotent-separating quotient of an E-unitary one—because E-unitary
covers of S correspond to strict embeddings of S in factorizable inverse monoids (this is
discussed in a little more detail below).

The role of total symmetries in understanding structures is important and well-
studied; the case for partial symmetries (that is, isomorphisms between subordinate
structures) has been enthusiastically advocated in [21]. The situations in which fac-
torizable inverse monoids arise correspond to relatively highly symmetric structures,

1I follow the spelling used by Chen and Hsieh, but the electronic searcher may need to be aware
that factorisable is often preferred.
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in which every local or partial symmetry can be extended to a full symmetry. (This
is in general a stronger condition than that of homogeneity in model theory and its
applications, in which any isomorphism of finite substructures can be extended to an
automorphism.)

The present article is prompted by the belief that a systematic organisation of the
known material on factorizable inverse monoids can both expose some interesting and
useful connections with other areas of algebra, and also generate and describe many
important occurrences and examples. From the remarks above, the reader can see
that the potential scope is very wide; so the author has chosen to focus on relevant
formal algebraic properties of factorizable inverse monoids and to the listing of their
manifestations.

2 History and scope

Generalising the (internal) direct product construction, Guido Zappa [43] in 1940 con-
sidered groups G possessing subgroups A and B such that G = AB; in the case that
A ∩B = {1} , these are now known as Zappa-Szép products and the factors are unique.
Informative reviews by Hirsch of articles of Rédei and Szép—including [40] and [35]—
provide an overview of the area. Naturally, similar constructions were sought for semi-
groups, and in particular for their most ‘group-like’ classes. Thus what seems that
the first usage of the term factorizable in the theory of semigroups was by Tolo [42], to
mean S = AB = {ab | a ∈ A, b ∈ B} , where A,B are subsemigroups of the semigroup S
which are of special kinds, e.g., groups, completely semisimple, etc.2 One may speculate
that the reason Tolo’s paper did not attract much attention is that his definition was
broader than the one we use today—too general, one may say—even though his paper
does consider the case of a chain of groups, which is a special case (group by chain) of
the contemporary sense (group by semilattice). Another promising way to impose extra
structure is, as in the group case, to have unique factorisation [14], [13] and hence a
Zappa-Szép product.

A particular class of factorizable inverse monoids—coset monoids, which we discuss in
a later section—had been studied by Schein [37] and, as ordered groupoids, by Joubert
[16], both in 1966. However Chen and Hsieh in 1974 [1] were the first authors to
draw explicit attention to the class of inverse semigroups3 considered here, study their
properties, and set out their importance: they proved, for example, that the archetypal
inverse semigroup IX is factorizable if and only if X is finite, and that every inverse
semigroup S embeds in a factorizable one, which may be chosen finite if S is finite.

The paper of Chen and Hsieh caught the attention of researchers, with a peak in cita-
tions around 1980 as the importance of factorizable inverse monoids emerged. Citations
of [1] then slowed for more than a decade, though classes of inverse semigroups impor-
tant for other reasons have turned out to be factorizable, notably the Renner monoids

2Tolo completed a PhD in semigroup theory, advised by D. W. Miller, before changing fields and
enjoying a distinguished academic career in the field of public policy (especially the interaction of
education, politics and society).

3Actually, as we shall see, this class consists of inverse monoids, and so we refer to them as such.
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([34] Prop. 11.1; [36], section 8.1), Birget-Rhodes expansions of groups [18], and latterly
the reflection monoids of Everitt and Fountain [10]. Appropriate generalisations of the
concept were developed: significantly, Lawson [20] identified the appropriate generali-
sation from monoids to semigroups as almost factorizable semigroups, which had been
used in McAlister [28]; for an account, see section 7.1 of [21]. Tirasupa [41] examined the
Clifford by semilattice case and Mills [32] the group by aperiodic case. Consideration of
these generalisations is beyond the scope of this article.

Still the theory of factorizable inverse monoids was not exhausted, as shown in further
citations dating from around 2000. Thus a brief survey of the topic is perhaps timely.
The theory can be approached in various ways: by inductive groupoids, monosetting
categories, or inverse monoids, all of which have technical advantages in certain situa-
tions, but are ultimately equivalent. In the categorical setting, partial symmetry has
been given a functorial standing in [19]; the authors set out the general context, giving
references to earlier works, and one of the functors they define exhibits factorizable in-
verse monoids as endomorphism monoids in a range category. The approach given here
is grounded in the theory of inverse semigroups. It uses a definition formally different
from, though equivalent with, that of Chen and Hsieh, and proceeds to organise the the-
ory of factorizable inverse monoids around the pervasive mathematical concept of group
actions. Proofs are generally omitted, but are either straightforward, or referenced;
unexplained concepts and notation follow [2], [15] and [21].

3 Notation, definitions and basic results

A fixed system of notation proves difficult to sustain when we discuss different contexts
in which the concepts appear. That chosen here is intended to be flexible, while main-
taining a consistency in spirit. Functions will be written in various forms sensitive to
custom and the context. We exploit the protean nature of semilattices as both commu-
tative idempotent semigroups and as ordered sets with particular properties; frequently
we need to distinguish upper semilattices, in which the order is given in terms of the
operation by

a ≤ b if and only if ab = b,

from lower semilattices, in which the order is given by

a ≤ b if and only if ab = a.

The ≤ symbol is overloaded: depending on context it may signify the natural partial
order in a semilattice or in an inverse semigroup, the given order in a semilattice Y, or
the containment relationship between subgroups of a group. If X is a poset, and Y ⊆ X,
we shall denote the order ideal

{x ∈ X | x ≤ y for some y ∈ Y }

by Y ↓. For any monoid S, we write U(S) , or simply U, for its group of units (two-sided
invertibles), and E(S) , or simply E, for its set of idempotents. When S is inverse, the
natural order in E(S) will always be treated as that of a lower semilattice.
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In the spirit of Tolo, and varying slightly from Chen & Hsieh [1], we suppose through-
out this section that the semigroup S, not necessarily inverse, may be expressed as
S = GY, where G and Y are subsemigroups of S, G is a group, and Y is a semilattice
(so that Y ⊆ E (S)). The starting assumptions of [1] were different: the authors took
S to be inverse throughout, and assumed S = GY, but had Y as merely a set of idem-
potents. In that definition, Y of course may be taken to be the set of all idempotents,
and when S is inverse, as the semilattice of all idempotents of S. In a later section,
we also consider a weaker hypothesis, investigating inverse monoids generated by units
and idempotents. What is common between the present approach and [1] is that the
members of Y commute (even if Y is not necessarily closed in [1]).

For any g ∈ G, we write g−1 for its inverse in G, and g0 = gg−1 = g−1g for the
identity element of G. Even if it is not especially mentioned, we assume g, h ∈ G and
y, z ∈ Y throughout. In essence, the following basic results are from [1], but arranged
to clarify the role of the condition that S be inverse.

Proposition 3.1 Let S = GY, where G and Y are subsemigroups of S, G is a group,
and Y is a semilattice. Then
(i) S is a monoid with identity g0 ∈ Y ∩G, and G = U(S) ;
(ii) if y = gz (for y, z ∈ Y and g ∈ G) then y = z;
(iii) S is regular;
(iv) S = GY = E(S)G;
(v) for each s ∈ S, there is u ∈ U(S) such that s ≤ u.

Observe that (ii) implies that the idempotent factor in s = gy is unique: if gy = hz
then y = g−1hz and then y = z. We noted above that Y ⊆ E(S) ; something special
happens when Y = E(S) .

Theorem 3.2 Let S = GY. The following are equivalent:
(i) E(S) ⊆ Y ;
(ii) E(S) is a semilattice;
(iii) S is inverse;
(iv) g−1yg ∈ Y for all y ∈ Y, g ∈ G.

Definition. Any of the equivalent conditions of Theorem 3.2 thus define S as a
factorizable inverse monoid. More generally, if S is any inverse monoid, with group of
units U and semilattice of idempotents E, then F (S) = UE = U↓ defines the unique
largest factorizable inverse submonoid of S; we call F (S) the factorizable part of S.

Remarks 3.3 (i) The monoid S of self-maps (written on the left of their arguments)
of a two-element set {x, y} provides a simple example of a semigroup meeting the con-
ditions of Proposition 3.1 but not those of Theorem 3.2. Let G = {1, u} be its group of
units, where u transposes x and y, and let e be the idempotent (constant) map taking
value x. Then with Y = {1, e} we have S = GY, but S is not inverse.

(ii) There exist factorizable inverse subsemigroups of some inverse monoids S which
neither contain nor are contained by the factorizable part of S. The apparent paradox
lies in the wording: a factorizable inverse submonoid of S must by definition contain the
identity of S. So, for example, take a non-trivial group H, and adjoin an extra identity
and a zero 0; call the result S. Then F (S) = E(S) , while H ∪ {0} is a (maximal)
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factorizable inverse monoid which is merely a subsemigroup of S. More generally, if H
is any subgroup of an inverse semigroup S, then H↓ is factorizable, and is contained in
F (S) if and only if H ⊆ U↓.

We conclude this section by noting that the class of factorizable inverse monoids
is closed under the taking of direct products and homomorphic images (quotient semi-
groups). It is not closed under the taking of inverse submonoids; indeed, as we shall see
in section 8.1, every inverse semigroup [respectively, inverse monoid] appears as an in-
verse subsemigroup [inverse submonoid] of some factorizable inverse monoid. The class
is closed under the taking of inverse subsemigroups containing all the units, the so-called
cofull submonoids.

4 General construction, morphisms, and a category

equivalence

From now on, unless otherwise stated, we consider only factorizable inverse monoids S,
and write S = UE or S = GY, etc., without further explanation, and denote the identity
element of S by 1. Again, if not mentioned, it is to be understood that u, v, · · · ∈ U
and e, f, · · · ∈ E. By Proposition 3.1(iv), S = UE = EU and in fact ue = (ueu−1)u.
The conjugates of e, ueu−1 and u−1eu, occur so frequently that it is convenient to write

eu = u−1eu and ue = ueu−1 = e(u
−1).

For e ∈ E, the map γu : e 7→ eu satisfies

(eu)v = euv and (ef)u = eufu,

and therefore defines a group action of U on the semilattice E, which we refer to as
the natural or conjugation action. We may also say that U is an E-act or that E is
a U-semilattice; or choose to think of γ : U −→ Aut(E) , defined by γ : u 7→ γu, as a
representation of U in Aut(E) , called the natural representation. In particular, e1 = e
and 1u = 1.

For chosen e, we call the subgroup C(e) = {u ∈ U | eu = e} the centralizer 4 of e.
By definition of S = UE, there is a surjective map of sets, φ : U × E −→ S, whereby
(u, e)φ = ue ∈ S. Now we have

ue (vf) = uv
(
v−1ev

)
f = uv (evf) , i.e.,

(u, e)φ · (v, f)φ = (uv, evf)φ,

and so φ becomes a homomorphism of semigroups when the set U ×E is endowed with
the product operation

(u, e) (v, f) = (uv, evf) .

This is precisely the definition of U ⋉ E, the semidirect product of U and E asso-
ciated with the E-action of U. It is easily seen to be an inverse semigroup (with

4It is also naturally thought of as the stabilizer of the conjugation action, but we have occasion to
consider several actions, and with the chosen notation we avoid conflict—for the most part: in one
context C (e) even appears as a normalizer!
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(u, e)−1 = (u−1,u e)) and to have group of units {(u, 1) | u ∈ U} ∼= U and semilat-
tice of idempotents {(1, e) | e ∈ E} ∼= E. Since (u, e) = (u, 1) (1, e) in U ⋉E, it follows
that U ⋉ E is a factorizable inverse monoid. The factorisation is unique, and so it is
also a Zappa-Szép product.

By its definition, φ is always idempotent-separating, that is, (1, e)φ = (1, f)φ implies
e = f ; so φ will be determined by its kernel or equivalently, by its kernel normal system.
Thus we need to examine the elements (u, e) such that (u, e)φ = (1, e)φ, that is, ue = e.
Let us define, for each e ∈ E, the set Ke = {u ∈ U | ue = e} . Then the kernel normal
system for φ consists of the sets Ke × {e} , and the congruence ∼ on U ⋉E induced by
φ is given by

(4.1) (u, e) ∼ (v, f) ⇐⇒ e = f and u−1v ∈ Ke.

Writing [u, e] for the ∼-class containing (u, e) , the multiplication in S is

(4.2) [u, e] [v, f ] = [uv, evf ] .

We summarise the properties of the sets Ke :

Lemma 4.1 The sets Ke have the properties:
(i) K1 = {1} ;
(ii) ue = e if and only if u−1e = e if and only if eu = e, etc.;
(iii) ue = vf if and only if e = f and uv−1 ∈ Ke;
(iv) Ke is a subgroup of U ;
(v) e ≤ f implies Kf ≤ Ke;
(vi) Ku

e := u−1Keu = Keu for all u ∈ U ;
(vii) Ke E C(e) .

Remarks. These properties have been noted in the literature more than once. Part
(v) is equivalent to Ke ∨Kf ≤ Kef .

Let us rephrase the statements of Lemma 4.1 in terms of representations: (iv) and
(v) say that the map K : e 7→ Ke is an order-reversing or antitone map of E to Sub(U) ,
the lattice of subgroups of U, which by (i) sends the top element of E to the bottom
element of Sub(U) ; we call it the natural representation of E. Actually it is often
more natural to use the reverse of the usual order in Sub(U) , i.e. think of it as an
upper or join semilattice, and describe K as an order representation of E in Sub(U)
which preserves the identity. In general, K need not preserve the semilattice operation,
so it is not a representation of semilattices; because it satisfies the weaker condition
Kef ≥ Ke∨Kf , when taken with respect to this reverse order, K is a lax homomorphism
or prehomomorphism (of semilattices or of inverse semigroups).

In summary, we have representations γ and K of U in Aut(E) and of E in Sub(U) ,
which are linked in the sense that there hold for all e ∈ E, u ∈ U

K1 = {1} ,(4.3(a))

Ke E C(e) , i.e., eKe = {e} ,(4.3(b))

Ku
e = Keu .(4.3(c))
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We also refer to the subgroups Ke as pre-kernels and the map K as the pre-kernel map.
If K is a true homomorphism of monoid semilattices, i.e., Kef = Ke∨Kf for all e, f ∈ E,
we shall call K exact ; and by extension, we call a factorizable inverse monoid S = EU
exact if its pre-kernel map K is exact. We return to a closer examination of the case in
which K is exact later in the article.

The following recipe for factorizable inverse monoids provides a fertile source of
examples and a context for describing their structure and relationships.

Theorem 4.2 Any factorizable inverse monoid S = UE determines natural linked
representations of U in Aut(E) and of E in Sub(U) . Conversely any pair of linked
representations of a group G and semilattice Y determine a factorizable inverse monoid
S such that G ∼= U(S) and Y ∼= E(S) , whose natural linked representations are (up to
relabelling) the given ones.

Now we consider the homomorphisms between factorizable inverse monoids, remind-
ing the reader of a distinction between semigroup homomorphisms, which preserve mul-
tiplication, and monoid homomorphisms, which preserve also the identity element (ear-
lier, there was a related distinction between subsemigroups and submonoids). Consider
factorizable inverse monoids S = GY and T = UE. Let the linked representations γ
and K defining S and T be distinguished, if necessary, by superscripts, thus: γS and
KS for S, etc.

Theorem 4.3 A monoid morphism Φ : S −→ T restricts to a group morphism φ =
Φ|G : G −→ U and to a monoid morphism of semilattices ψ = Φ|Y : Y −→ E. Then the
natural representations in S and T are related by

(yψ)gφ = (yg)ψ, i.e., ψ ◦ γTgφ = γSg ◦ ψ, and(4.4(a))

KS
y φ ≤ KT

yψ.(4.4(b))

Suppose, conversely, we have a group morphism φ : G −→ U and a monoid morphism
of semilattices ψ : Y −→ E, satisfying (4.4) for given pairs of linked representations
y 7→ yg and KGY , and e 7→ eu and KUE respectively. Then the assignment

Φ : gy 7→ (gφ) (yψ)

is well-defined and a (monoid) homomorphism GY −→ UE of factorizable inverse
monoids.

We may rephrase Theorems 4.2 and 4.3 together as a statement of a categorical
equivalence. First we introduce a category Q which has

objects: all quadruples (G, Y ; γ,K) , where G is a group, Y a semilattice,
and γ and K are a pair of linked representations as defined in equations
(4.3), and

morphisms
(
G, Y ; γS, KS

)
−→

(
U,E; γT , KT

)
: pairs (φ, ψ) , where φ :

G −→ U and ψ : Y −→ E are morphisms of groups and monoid semi-
lattices respectively, and satisfy conditions (4.4) for all g ∈ G and y ∈ Y .
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Corollary 4.4 The category of factorizable inverse monoids and monoid morphisms is
equivalent to the category Q.

It is of use for identifying relationships between factorizable inverse monoids to char-
acterise injective, surjective and bijective homomorphisms, in terms of Q. Parts (ii) and
(iii) of the next result are Proposition 1 of [10].

Theorem 4.5 A Q-morphism (φ, ψ) :
(
G, Y ; γS, KS

)
−→

(
U,E; γT , KT

)
is

(i) injective if and only if φ and ψ are injective and
(
KT
yψ

)
φ−1 ≤ KS

y for all y ∈ Y ;
(ii) surjective if and only if φ and ψ are surjective;
(iii) bijective if and only if φ and ψ are bijective and KS

y φ = KT
yψ for all y ∈ Y .

Proof. (i) ‘If’: suppose gφ · yψ = hφ · zψ. Then yψ = zψ, whence y = z, and
(g−1h)φ ∈ Kyφ, whence gy = hy by injectivity of φ. ‘Only if’: (φ, ψ) injective clearly
implies φ, ψ are injective. Take u such that uφ ∈ Kyψ; then uφ · yψ = 1φ · yψ, whence
injectivity implies uy = y, i.e u ∈ Ky.

(ii) ‘If’: for all u ∈ U and e ∈ E there are g ∈ G and y ∈ Y such that ue = gφ · yψ;
the ‘only if’ is clear.

(iii) Follows from (i) and (ii). �

We remark that
(
KT
yψ

)
φ−1 ≤ KS

y is equivalent toGφ∩KT
yψ ≤ KS

y φ.We now specialize
to the case when Φ is an inclusion, i.e., when S is a factorizable inverse submonoid of
T. Then φ and ψ are restrictions of the inclusion map on S, and the conditions (4.4)
translate to requirements that γSg := γTg |Y ∈ Aut(Y ) and KS

y := KT
y ∩ G. Since γT |G

remains a (group) representation, of G in Aut(E) , it is thus necessary and sufficient
for Φ to be an inclusion that yg ∈ Y for all y ∈ Y, g ∈ G; that is, that Y is invariant
under the action of G induced from the action of U. (Ky ∩ G automatically gives a
representation of Y in Sub(G) .) The linkage conditions then hold by restriction.

Next, if Φ : S −→ T is merely a semigroup morphism, put f = 1Φ ∈ E. Φ induces
a morphism of semilattices ψ = Φ|Y : Y −→ E and a morphism of groups φ = Φ|G :
G −→ H = Hf (the maximal subgroup containing f). The image of ψ is contained in
Z := f ↓, an order-ideal of E, and HZ is a factorizable inverse monoid which is merely a
subsemigroup (not submonoid) of T = UE. However by simply restricting the range of
Φ to HZ, a trivial modification, we have a monoid homomorphism of S = GY to HZ
and we may use the criteria above.

Theorem 4.3 may also be thought of in the language of groupoids, using well-known
correspondences between inverse semigroups and inductive groupoids, and also between
groupoids and group acts. Namely, from a G-semilattice E with defining maps γg :
e 7→ eg, we can construct an inductive groupoid Γ having object set E, morphisms
triples (e, g, eg) , composition (e, g, eg)

(
eg, h, egh

)
=

(
e, gh, egh

)
and restriction maps

(e, g, eg) |f = (f, g, f g) for f ≤ e. This groupoid is the imprint ([33], XIV.3) or associated
groupoid ([21], section 4.1) of the semidirect product G ⋉ E. Given a pre-kernel map
K linked with γ by equations (4.4), there is a congruence ∼ on Γ (which separates
objects) defined by (e, g, eg) ∼ (e, h, eg) if eg = eh and gh−1 ∈ Ke. Then Γ/ ∼ is an
inductive groupoid which is the imprint of the factorizable inverse monoid S = GE. All
the above generalities could then be worked out in the groupoid or D-category context,
as in Example 2.2.3 of [22] (cf. section 8.5 below). We eschew this possibility in the
interests of simplicity.
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5 Structural features

In this section we use the properties of the linked natural representations to examine
structural features of factorizable inverse monoids. This yields formulæ for the cardi-
nalities of S and its D-classes, and enables us to describe the maximal subgroups of S
and to characterise special classes of factorizable inverse monoids.

5.1 Natural order and Green’s relations

First we characterize the natural partial order and Green’s relations by the components
of the recipe.

Proposition 5.1 In a factorizable inverse monoid,
(i) ueL vf if and only if e = f ;
(ii) ueR vf if and only if ue = vf ;
(iii) ueH vf if and only if e = f and u−1v ∈ C(e) ;
(iv) ueD vf if and only if e ∈ fG, i.e., e and f are in the same orbit of the U-act;
(v) ueJ vf if and only if there exist i, j ∈ E such that e ≤ i ∈ fU and f ≤ j ∈ eU ;
(vi) ue ≤ vf if and only if e ≤ f and u−1v ∈ Ke.

If H is any subgroup of an inverse semigroup, then H↓ is factorizable in its own
right5. So the factorizable part of S may also be defined in terms of the natural partial
order by F (S) = {s ∈ S | s ≤ u for some u ∈ U} = U↓; and S is a factorizable inverse
monoid if and only if every element of S is bounded above by a unit. This dovetails
with an interpretation of the natural partial order as a restriction relation, and s = eu
as a partial symmetry which is the restriction of the automorphism u to the ‘domain’ e
(= ss−1) or to a ‘range’ eu (= s−1s) .

Remark 5.2 We may paraphrase the condition of part (v) as “the orbits of e
and f are cofinal”. An example where eU and fU are cofinal but not equal, that is,
where J 6= D, arises in the action of G = (Z,+) on Y = (Z∪{∞} ,min) defined by
∞g = ∞ and yg = y + ng for y 6= ∞, g ∈ G and n ≥ 2. The orbits of the action are
{∞} and the congruence classes modulo n, so the non-units of G⋉Y fall into n distinct
D-classes in the one J -class. In fact if J 6= D in S = UE, then U has an element of
infinite order which acts non-trivially, and E contains a doubly infinite chain.

Remark 5.3 Let us recall that an inverse algebra is defined as an inverse monoid
in which the natural order is a semilattice order [23]; equivalently, in which beneath
each element s there is a maximum idempotent, denoted f [s] and called the fixed-point
idempotent of s. Now from Proposition 5.1 (vi), i ≤ eu if and only if i ≤ e and u ∈ Ki,
i.e. i ≤ u. So a factorizable inverse monoid S is an inverse algebra if and only if for
each unit u there is a fixed-point idempotent f [u] , that is, a maximum element of
{i ∈ E | u ∈ Ki} ; in which case, f [eu] = ef [u] .

5Chen and Hsieh give over part of their paper [1] to a discussion of factorizable inverse monoids
which are subsemigroups of an arbitrary inverse monoid.
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5.2 Subgroups, central idempotents and zeros

The following corollary treating central idempotents and subgroups is now evident from
the preceding section 5.1. We use Z(S) to mean the centre of S, viz., {a ∈ S | as = sa for all s ∈ S} .

Corollary 5.4 (i) ueH f = f 2 ⇐⇒ e = f = ue. Thus, ue is completely regular if and
only if ue = eu, i.e., u ∈ C(e) .
(ii) He = {ue | u ∈ C(e)} ∼= C(e) /Ke.
(iii) e ∈ Z(S) ⇐⇒ C(e) = U ⇐⇒ {e} is a singleton orbit ⇐⇒ He = De in S.

In particular, if E has a zero (bottom element) 0E, then C(0E) = U ; and 0E is also
a zero of S if and only if K0E

= U .

5.3 Clifford, E-unitary, etc.

By Prop. 5.1 (iv), the orbits of the action determine the D-classes of S. The identity 1
is always in a singleton orbit, so we see immediately that S cannot be bisimple unless
it is a group. We proceed to deduce other structural relationships from sections 5.1 and
5.2.

Corollary 5.5 The following are equivalent for a factorizable inverse monoid S = UE:
(i) S is a Clifford semigroup;
(ii) the action is trivial ( γu = id for all u);
(iii) C(e) = U for all e ∈ E;
(iv) the multiplication in U ⋉ E is that of the direct product;
(v) S is the homomorphic image of a direct product U × E.

In the case described, the pre-kernels are all normal in U, and the Cliffordian structure
maps

φe,f : U/Ke −→ U/Kf (e ≥ f)

are induced by the inclusion Ke E Kf (φe,f : Keu 7→ Kfu) and are all surjective. Chen
and Hsieh include a substantial discussion of factorizable Clifford monoids in [1], includ-
ing conditions on the structure maps.

For the next result, we use the definition that S = UE is E-unitary if and only if
e ∈ E and e ≤ s in S imply s ∈ E, and note that by Proposition 5.1(vi), e ≤ v if and
only if v ∈ Ke.

Proposition 5.6 The following are equivalent for S = UE:
(i) S is E-unitary;
(ii) Ke = {1} for all e;
(iii) Ke = Kf for all e, f ;
(iv) S ∼= U ⋉ E.

Combining the preceding results, one sees that the direct product case S ∼= U ×E is
precisely the Clifford E-unitary case. Recall that an inverse semigroup S with 0 is said
to be E∗-unitary if e ∈ E∗ = E \ {0} and e ≤ s in S imply s ∈ E∗. We can see similarly
that the factorizable inverse monoid S = UE is E∗-unitary if and only if Ke = {1} for
all e 6= 0 and K0 = U.

10



5.4 Cardinality

Here, of course, we assume S, or equivalently both U and E, to be finite. We let O be
the set of orbits of the action, in bijective correspondence with S/D, the set of D-classes
of S. Since S is finite, D = J and O also corresponds to the set of principal two-sided
ideals of S. Let Ω = Ωe = eG be the orbit containing e. There are |Ω| idempotents in
the D-class De containing e, hence |Ω| L- and R-classes each in De. By Prop. 5.5 (ii),
|He| = |C(e) /Ke|. It is familiar knowledge in the theory of group actions that elements
of the orbit Ω bijectively correspond with cosets of C(e) in U : eu = ev if and only
if uv−1 ∈ C(e) , so the correspondence y 7→ uC(e) ⇐⇒ y = eu is well-defined and
bijective. So the cardinality of the D-class of e is

|De| =
|C(e) |

|Ke|
|Ω|2 =

|U |2

|Ke||C(e) |
,

and the total number of elements of S is

|S| = |U |2
∑

(|Ke||C(e) |)−1 ,

the sum being taken over a cross-section of idempotents e from the orbits of the action.
Lipscomb and Konieczny [26] treat a fairly wide class of examples of this situation with
special orbit properties.

6 Submonoids and congruences

This section describes some submonoids and key congruences of a factorizable inverse
monoid in terms of the elements of the construction given in section 4.

6.1 Full and cofull factorizable inverse submonoids

We say that an inverse submonoid T of S is full (or wide) if E(T ) = E(S) and cofull (or
top-heavy) if U(T ) = U(S) . The discussion of section 4 now shows that for any subgroup
G of U there is a full factorizable inverse submonoid GE of S; and so such submonoids
are in bijective correspondence with subgroups of U. However for a cofull factorizable
inverse submonoid we are constrained to choose subsemilattices Y of E containing 1
and invariant under the action of U ; the cofull factorizable inverse submonoids are in
bijective correspondence with submonoid subsemilattices of E which are also invariant
under U.

6.2 Minimum group congruence

The minimum group congruence σ may be expressed in terms of the pre-kernels. Let
KE denote

⋃
i∈EKi, and note that KE E U.

Proposition 6.1 (ue, vf) ∈ σ if and only if u−1v ∈ KE, and S/σ ∼= U/KE.

Again we see that the case S = U ⋉ E (i.e., Ki = {1} for all i ∈ E) is equivalent
to KE ⊆

⋂
i∈EKi, and hence to the condition (ue, f) ∈ σ ⇐⇒ ue = e, which is an

11



equivalent definition of S being E-unitary; moreover, all E-unitary factorizable inverse
monoids are F -inverse (i.e., each σ-class has a maximum element). If S is E-unitary, its
maximum group image S/σ is U, but the converse is not true. For example, let G be a
group with non-trivial normal subgroup N such that G/N ∼= G. Let G act trivially on
Y = {0, 1} with K0 = N and K1 = {1} . The resulting (Clifford) S = GY has S/σ ∼= G
but S is not E-unitary (by Prop. 5.6). But if G/N ∼= G implies N = {1} (in particular,
if G is finite) then any factorizable inverse monoid S = GE is E-unitary if and only if
S/σ ∼= G.

6.3 Fundamentality and exactness

The representation γ of U in Aut(E) may be extended to the standard Munn represen-
tation (here we also denote it by γ) of the whole of S in TE, the subsemigroup of IE
consisting of partial isomorphisms between principal ideals of E :

γ : s 7→ γs, γs :
(
ss−1

)↓
−→

(
s−1s

)↓
, i 7→ s−1is

(
i ≤ ss−1

)
.

This is defined for any inverse semigroup S, but for a factorizable inverse monoid S =
UE = EU, it simplifies, when we use the form s = eu and note that i ≤ e implies
iu ≤ eu, to

γeu : e↓ −→ (eu)↓ , i 7→ iu (i ≤ e) .

The image is contained in F (TE) . The corresponding congruence is the maximal idempotent-
separating congruence µ and is characterized on S = EU by

(eu, fv) ∈ µ if and only if e = f and uv−1 ∈ C(i) for all i ≤ e.

So

Proposition 6.2 S is fundamental if and only if
⋂
i≤eC(i) ≤ Ke for all e ∈ E.

Similarly, the (lax) representation K of E in Sub(U) may also be extended to all of
S = UE, as we shall now see. Recall (from the Remark 5.3) that Ke = {u ∈ U | u ≥ e} ;
and so define, for s = eu ∈ S,

Keu = {v ∈ U | v ≥ eu} =
{
v ∈ U | vu−1 ∈ Ke

}

= {v ∈ U | v ∈ Keu} = Keu.

This means that Ks is a member of the coset monoid K(U) of U , about which we say
more later (section 8.5).

In general, u ≥ s and v ≥ t imply uv ≥ st, so KsKt ⊆ Kst. Taking into account
the reverse order in K(U) , this means that K : S = UE −→ K(U) is a lax or pre-
homomorphism. This map seems to have first been explored extensively by McAlister;
the next lemma is a special case of Corollary 1.4 of his article [29]. Recall from section 4
that S is exact when the pre-kernel map E −→ Sub(U) is a semilattice homomorphism.

Proposition 6.3 The map K : S = EU −→ K(U) is a homomorphism if and only if
S is exact.
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7 Generators and relations

In this section we consider a slightly weakened form of Chen and Hsieh’s concept of
factorizable inverse monoids, namely a monoid S generated by units and idempotents.
For a set X, 〈X〉 denotes the monoid generated by X and gp 〈X〉 the group generated
by X. The next lemma gives a test for the case in which S is inverse; it and its proof
are slight extensions of Lemma 2 in [11]. For an alternative criterion, see also [30].

Proposition 7.1 Let S = 〈H ∪ I〉 be a monoid, where H is a set of units and I a
set of idempotents. Let G = gp 〈H〉 and Y = {g−1ig | g ∈ G, i ∈ I} . Then S is inverse
if, and only if, eg−1fg = g−1fge for all g ∈ G and all e, f ∈ I. In this case S is
factorizable with E(S) = 〈Y 〉 and U(S) = G.

The construction method for a factorizable inverse monoid S (Theorem 4.2) also
allows a relatively mechanical way of setting up a presentation of S by generators and
relations, given presentations for the group of units and the semilattice of idempotents,
including normal forms, and knowledge of the action and of the pre-kernels. The result-
ing presentation is usually rather prolix, but may be simplified in concrete cases. For a
proof, see [8].

Theorem 7.2 Suppose that U and E have monoid presentations 〈XU | RU〉 and 〈XE | RE〉
respectively; write their members as equivalence classes of words, [u] ∈ U and [e] ∈ E
with u ∈ X∗

U , etc. For each [e] ∈ E and [u] ∈ U, let ê ∈ [e] and û ∈ [u] be chosen
and in such a way that x̂ = x for each x ∈ XU ⊔ XE. Suppose further that for each
[e] ∈ E, Ke = 〈Σe〉 for a convenient Σe ⊆ Ke (we do not have to know a presentation).
Let

R⋉ =
{(
xy, y(̂xy)

)
| x ∈ XE, y ∈ XU

}
and

RK = {(êû, ê) | [e] ∈ E, [u] ∈ Σe} .

Then S = EU has presentation

〈XU ⊔XE | RU ⊔RE ⊔R⋉ ⊔RK〉 .

The above results refer to generation as a monoid. Dombi and Ruškuc [4] study the
case in which U ⋉ E is finitely generated or finitely presented as an inverse semigroup,
and give necessary and sufficient conditions on U and E in each case.

8 Examples and special cases

In this section we examine some special ways of obtaining linked representations and
hence factorizable inverse monoids. Group actions are nearly ubiquitous in mathematics,
and in many cases the action may be viewed as action on a semilattice. We take several
such actions, and look for natural ways to set up pre-kernel maps of the semilattice
which are linked with the given action. Generally we leave verification of the linking
conditions, and certain other statements, to the motivated reader.
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8.1 The factorizable part of the symmetric inverse monoid

The symmetric group SX is defined by its action on the setX, which we write as x 7→ x·u
for x ∈ X and u ∈ SX . This action may be naturally extended to an action on the lower
semilattice 2X of all subsets of X, thus: for e ∈ 2X and u ∈ SX , e

u := {x · u | x ∈ e} .
Let us define pre-kernel maps as ‘isotropy’ groups,

Ke := {u ∈ SX | x · u = x for all x ∈ e} .

Then one easily verifies that the linking conditions, equations (4.3), are satisfied and that
there is a map from the resulting factorizable inverse monoid S to the symmetric inverse
monoid IX ; in this map the element ue (= [u, e] in the notation of equation 4.2) maps to
the partial bijection u|D, which is u restricted to domain D = ue = {x · u−1 | x ∈ e} (its
range is e). This map is easily seen to be an injective homomorphism, by using Theorem
4.5 or direct proof. Thus S ∼= F (IX) , the factorizable part of the symmetric inverse
monoid. Define the co-cardinality of e ∈ 2X to be the cardinality of its complement in
X; then F (IX) consists of the partial bijections whose domain and range have equal
co-cardinality. This is all of the symmetric inverse monoid, if X is finite; the connection
with Dedekind finiteness is explored further in [3]. Note that the restriction effect is
achieved by the choice of Ke, which identifies all maps which act on e in the same way.

The orbit Ωe consists of all subsets of X with the same cardinality and co-cardinality
as e. Moreover C(e) ∼= Se × SX\e and Ke

∼= SX\e. If |X| = n is finite, and |e| = r, we
have from section 5.4 the well-known results that

|Ωe| =

(
n

r

)
, |He| = |Se| = r!,

|De| =

(
n

r

)2

r!, and |In| =
n∑

r=0

(
n

r

)2

r!.

If X is infinite, let X ′ be a set disjoint from X and of equal cardinality, and set
Z = X ⊔X ′. IX is thereby included in IZ in the obvious way, preserving the cardinality
of the domain of every element. But the co-cardinality in Z of each domain is now
|X| , hence IX is actually included in F (IZ) . Combining this with the Wagner-Preston
embedding of any inverse semigroup S in I|S|, we see that every inverse semigroup
embeds in a factorizable inverse monoid [1].

This result of Chen and Hsieh may be conditionally extended to monoid embedding6.
Let S be an inverse monoid, and X its carrier set. The Wagner-Preston embedding of
S in IX (written as s 7→ sα) is a monoid embedding. So if S is finite, it embeds as a
submonoid in a factorizable inverse monoid. If S is infinite, denote by ( )′ a bijection
(as used above) of X to X ′; it induces an isomorphism of IX with IX′ , which we also
denote by ( )′. Now the mapping α : S −→ IX⊔X′ defined by

sα =

{
(sα) ⊔ (sα)′ if s is a unit

sα else

6The author is indebted to an anonymous referee for suggesting this possibility.
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is injective. It is a homomorphism if and only if the product of non-units in S is a
non-unit, in which case, S embeds as a submonoid in a factorizable inverse monoid.
But if ab = u−1 ∈ U (S) , with a not a unit, then abu = 1 6= bua ∈ E (S) , and so
S has a submonoid 〈bu, a〉 isomorphic with the bicyclic monoid P1. It is easy to see
that P1 cannot embed as a submonoid of any factorizable inverse monoid, and the same
applies to any S containing P1 as a submonoid. In summary, an inverse monoid may be
embedded as a submonoid in a factorizable inverse monoid if and only if it contains no
copy of P1 as a submonoid.

Any embedding of an inverse semigroup S in a factorizable inverse monoid T ′ may
be modified so as to be a strict embedding θ : S −→ T (that is, for all s ∈ S, there is
u ∈ U(T ) such that u ≥ sθ) by taking

G = {u ∈ U(T ′) | u ≥ sθ for some s ∈ S} = U(T ′) ∩ (Sθ)↑

and T = GE(T ′) . Recall from section 4 that T = GE is the image of G⋉E by φ. Then
the diagram

S
θ
→֒ GE

ip.−sep.

φ
և G⋉ E

may be completed to the commutative square

P
ι
→֒ G⋉ E

↓ ψ ↓ φ

S
θ
→֒ T = GE

where ι is inclusion, P is E-unitary, and ψ is a covering, that is, surjective and idempotent-
separating; moreover, P/σ ∼= G. So we have McAlister’s Covering Theorem [27] that
every inverse semigroup has an E-unitary cover. On the converse side, any covering
ψ : P → S such that P is E-unitary and P/σ ∼= G may be completed to essentially
the same diagram, giving rise to a strict embedding of S into a factorizable inverse
monoid GE [31]. There is a thorough exposition of this equivalence of strict factorizable
embeddings with E-unitary covers in [21], especially sections 2.2 and 8.2.

The method for constructing a factorizable inverse monoid given in this section can
be varied by using actions of related groups. For instance, the braid group is used in
[9]. The alternating group gives the monoid of alternating charts [24]. For infinite X,
the restricted symmetric group (generated by transpositions) yields the inverse monoid
of partial permutations of finite shift, and has an alternating counterpart [25].

8.2 The factorizable part of the dual symmetric inverse monoid

The action of SX on X may also be extended to an action on Eq(X) , the (upper)
semilattice of equivalence relations on X, as follows: for u ∈ SX and e ∈ Eq(X) , define

γ : (u, e) 7→ eu = {(x · u, y · u) | (x, y) ∈ e} .

Sometimes it is more convenient to think of the equivalence e in terms of its correspond-
ing partition of X into disjoint proper subsets Xi (called blocks), say X =

⊔
i∈IXi. Then
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γ maps this partition to the partition X =
⊔
i∈I (Xi · u) , where Xi ·u = {x · u | x ∈ Xi}

(at notational variance from section 8.1 above). Note that Xi and Xi · u have the same
cardinality for each i ∈ I. With this action and the choice

Ke = {u ∈ U | (x, x · u) ∈ e for each x ∈ X} ,

the linking conditions (eqns 4.3) are satisfied. (The proof of this is straightforward; one
need only remember that ef = e∨f, the intersection of all equivalences containing both
e and f .) The resulting factorizable inverse monoid is the factorizable part F (I∗

X) of
the dual symmetric inverse monoid ([12], Prop. 3.1).

If |X| = n, finite, and e is a partition of type 1r12r2 . . . nrn (meaning that there are
ri ≥ 0 blocks of size i) then

C(e) ∼=
∏

i (Si)
ri × Sri ,

since e is fixed by permutations of elements within the same block and also by permu-
tations of whole blocks of the same size; and Ke

∼=
∏

i (Si)
ri , since e absorbs just those

permutations of the first kind. So

|Ωe| = n!
∏

i {(i!)
ri ri!}

−1
,

|He| =
∏

iri!, and

|De| = n!n!
∏

i

{
(i!)2ri ri!

}−1
, etc.

Again, there are alternating, braid [6], and ‘finite shift’ versions of the construction
in this subsection.

8.3 Partial automorphisms of a vector space

The defining action of the general linear group GL(V ) on a finite-dimensional vector
space V (here written x 7→ x · u for x ∈ V and u ∈ GL(V )) extends naturally to an
action on the intersection semilattice Sub(V ) of subspaces of V, defined by

W u = {x ∈ V | x = y · u for some y ∈ W} ,

where W ∈ Sub(V ) and u ∈ GL(V ) . If we also define

KW = {u ∈ GL(V ) | x · u = x for all x ∈ W} ,

then the linking conditions are satisfied. The resulting factorizable inverse monoid has
multiplication

[u,W ] [v, Z] = [uv,W v ∩ Z]

in the notation of eqn. (4.2) and may be readily identified as the inverse monoid PA(V )
of partial automorphisms of V mentioned as example 3.7 in [19]. (When V is infinite-
dimensional, this construction results in only the factorizable part of PA(V ).)

We may seek to dualise this construction in the same kind of way that section 8.2
dualises section 8.1. Namely, we seek “natural” partitions of V and arrange GL(V ) to
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act on them. So consider, for W a subspace of V, the equivalence εW = ε(W ) defined
by

(x, y) ∈ εW ⇐⇒ x− y ∈W ;

εW partitions V into translates W + x of the subspace W. Let us write A(V ) =
{εW | W ∈ Sub(V )} and note that for subspaces W1,W2,

εW1∩W2
= εW1

∩ εW2
and εW1+W2

= εW1
∨ εW2

,

so that Sub(V ) and A(V ) are isomorphic lattices, and A(V ) is closed under intersection
and join. Now define an action by setting, for ε ∈ A(V ) and u ∈ GL(V ) ,

εu = {(x · u, y · u) | (x, y) ∈ ε} .

Clearly, x− y ∈ W ⇐⇒ x · u− y · u ∈ W u so that εuW = εWu and A(V ) is also closed
under this action. Next, for ε ∈ A(V ) , put

Kε = {u ∈ GL(V ) | (x, x · u) ∈ ε for all x ∈ V } ,

and note that ε1 ⊆ ε2 implies Kε1 ≤ Kε2 . For this to satisfy condition (v) of Lemma 4.1,
the order-reversal property, we must employ the dual order in A(V ) , i.e. that inherited
from the dual symmetric inverse monoid via the upper semilattice of equivalences on V
and the corresponding join operation. With this choice, A(V ) is dual-isomorphic with
Sub(V ) , and it is simple technique to verify that these are representations that satisfy
equations (4.3), the linking conditions.

The resulting factorizable inverse monoid S (say) has multiplication

[u, ε] [v, η] = [uv, εv ∨ η]

(cf. eqn. (4.2)) and so is a submonoid of F
(
I∗
|V |

)
. Moreover, for finite-dimensional V,

it can be identified as the dual partial automorphism monoid of V ; since the category
of linear spaces and maps is self-dual, S is isomorphic with PA(V ) . The general set-up
is described passim in sections 1 and 5 of [12], but it may be of interest to exhibit
an explicit isomorphism. For this, first equip V with an inner product 〈 | 〉 . Then
note that (W + Z)⊥ = W⊥ ∩ Z⊥, so the map ψ : W 7→ ε

(
W⊥

)
is an isomorphism

of Sub(V ) to A(V ) . Also x ∈
(
W⊥

)u
if and only if x = y · u where 〈y | w〉 = 0 for

all w ∈ W ; equivalently, 〈x · u−1 | w〉 = 0 =
〈
x | w · (u−1)

∗〉
where ( )∗ is the adjoint

map. So writing φ for the involutory automorphism φ : u 7→ (u−1)
∗

of GL(V ) , we have(
W uφ

)⊥
=

(
W⊥

)u
and so

ε
((
W uφ

)⊥)
= ε

((
W⊥

)u)
, i.e., (W u)ψ = (Wψ)uφ .

Also

uφ ∈ KWψ ⇐⇒ x · u∗ − x ∈W⊥ for all x ∈ V

⇐⇒ 〈x · u∗ | w〉 = 〈x | w〉 for all x ∈ V,w ∈ W

⇐⇒ 〈x | w · u− w〉 = 0 for all x ∈ V,w ∈ W

⇐⇒ u ∈ KW .

So (KW )φ = KWψ and, by Theorem 4.5, (φ, ψ) is an isomorphism of the category Q;
hence [u,W ] 7→ [uφ,Wψ] =

[
(u−1)

∗
, ε

(
W⊥

)]
is an isomorphism of PA(V ) with S.
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8.4 Partial right translations of a group

Associated with any group G is its action on the underlying set |G| = X, say, defined
by right multiplication, thus: γ (x, g) = xg for x ∈ |G| , g ∈ G. This action extends to
the lower semilattice E = 2|G| by

eg = {xg | x ∈ e}

and it is also natural to define (for e ∈ E)

Ke = {g ∈ G | xg = x for all x ∈ e} .

This gives a (factorizable inverse) submonoid of I|G| which we may call the inverse
monoid of partial right translations of G. Ke is trivial for all e 6= ∅, so these are E∗-
unitary examples. Alternatively, one may consider 2|G| as an upper (union) semilattice,
and take all Ke as trivial. An interesting subsemigroup is then obtained by taking
Ef to be the subsemilattice of finite subsets of G; it is closed under union and the
action of G and so yields a submonoid G ⋉ Ef . Let H denote the maximal subgroup
{(u, {1G}) | u ∈ G} of G⋉ Ef . Then H↓ is the Birget-Rhodes expansion of G [39]; see
also [18].

8.5 The coset monoid of a group

Any groupG acts by conjugation on E = Sub(G) , the upper semilattice of its subgroups.
The obvious choice for the pre-kernel map in this case is the identity map, Ke = e. (This
is analogous with earlier examples, because

Ke = {u ∈ G | x · u ∈ e for all x ∈ e} = e,

as follows from x · u ∈ e ⇐⇒ u ∈ x−1e = e.) Now e ≤ f ⇐⇒ Ke ⊆ Kf and so for
the antitone property to hold (condition (v) of Lemma 4.1), we must use the dual order
again on Sub(G) , so that the semilattice operation is join; we write ef for e ∨ f. Then

C(e) = {u ∈ G | eu = ue} ,

the normalizer of e in G, so immediately, Ke = e E C(e). Also trivially, Keu = eu = Ku
e .

So all the conditions (4.3) hold, and the resulting factorizable inverse monoid is K(G) ,
the coset monoid of G, introduced after Proposition 6.2. We remind the reader that
each element is of the form eu = Keu, thus a coset in G, and the product in K(G) is
given by

Keu ◦Kfv =
(
Ke ∨ uKfu

−1
)
uv.

K(G) is exact by definition: Ke◦Kf = Ke∨Kf = e∨f = ef, andK is injective. From
section 5.4, |K(G)| = |G|2

∑ (
|H| |NG(H)|−1

)
, the sum being taken over representative

subgroups H of the conjugacy classes in G.
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8.6 Galois inverse monoid of a field extension

A classic instance of a group act: let F be a field, k a subfield of F (called the ground
field), and [k, F ] the lower semilattice of intermediate fields F ′ such that k ⊆ F ′ ⊆ F.
The Galois group G := Aut(F : k) of automorphisms of F which fix k pointwise acts
on [k, F ] in the obvious way. For k ⊆ f ⊆ F, define the Galois connexion Kf =
{α ∈ G | xα = x for all x ∈ f} . If e, f ∈ [k, F ] with e ≤ f, we have Kf ⊆ Ke, so
K : e 7→ Ke is an order (anti-)representation of [k, F ] in Sub(G). Again the linking
conditions of 4.3 are satisfied. When the extension is separable and normal, K is an
(anti-)isomorphism. The resulting factorizable inverse monoid S may be called the
Galois inverse monoid of the extension, and is the submonoid of I|F | consisting of those
α ∈ I|F | such that domα, ranα are subfields of F and α fixes k pointwise and extends to
an automorphism of F. (The extension property follows from the rest when F is finite-
dimensional over k.) S is also isomorphic with the coset monoid of the Galois group of
the extension, cf. section 9.2 below.

8.7 Restriction monoids

This and several other foregoing examples suggest the following generalisation. Let a
group G act unitarily (on the right) on a set X, writing x 7→ x · g. Let E be a subset
of 2X containing X, and closed under intersection and the action induced by G (i.e., for
e, f ∈ E and u ∈ G, both e∩f and eg are in E, where eg = {x · g | x ∈ e}). Such an E is
called a system of subsets for the action of G; one such system is 2X itself, as in section
8.1. Also let Ke = Krest

e = {g ∈ G | x · g = x for all x ∈ e} . Since x ·g = x if and only if
(x · u)u−1gu = x · u, (Ke)

u = Keu ; KX = {1} by unitarity; and e ≤ f =⇒ Kf ≤ Ke. In
short, we have a factorizable inverse monoid which we may call the restriction monoid
of E with respect to the action of G; it is a submonoid of IX .

This too may be dualised (J. East, pers. comm.). Again we start with G acting
unitarily on X, and E a subset of Eq(X) containing the identity equivalence and closed
under join of equivalences and the induced action of G, εg = {(x · g, y · g) | (x, y) ∈ ε} .
Then we define Kε={u ∈ G | (x, x · u) ∈ ε} , and verify directly or from Theorem 4.5
that the resulting factorizable inverse monoid is a submonoid of I∗

X , which we could call
the dual restriction monoid of E with respect to the action.

As a class of examples of these restriction monoids, consider the cases where X is
endowed with some structure, for example a set Ω of operations; thus A = (X,Ω) is a
universal algebra. Let G = Aut(A) and let E be respectively the lower semilattice of
subalgebras of A or the upper semilattice of congruences of A. The (primal and dual)
restriction monoids are then the factorizable parts of the inverse monoids of partial
automorphisms and of bicongruences on A. The partial automorphism monoid PA(A)
on a universal algebra A is factorizable if and only if each partial automorphism extends
to an automorphism of A. The bicongruence monoid Bicon(A) on a universal algebra
A is factorizable if and only if each element (regarded as a subalgebra of the square A2)
contains (the graph of) an automorphism of A. This latter is certainly the case when A
is weakly diagonal, and in the presence of additional hypotheses Bicon(A) characterises
the variety generated by A [17].
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8.8 Reflection monoids and Renner monoids

A root system Φ in a vector space V is defined as a finite set of vectors spanning V
and closed under reflection in the subspaces w⊥ defined by w ∈ Φ. These subspaces w⊥

have codimension 1 and so are hyperplanes : they constitute the hyperplane arrangement
HΦ associated with Φ. Write σw for the reflection in w⊥. The subgroup 〈σw | w ∈ Φ〉
of GL(V ) is a reflection group, the Weyl group WΦ associated with Φ, and it has an
action on V inherited from GL(V ) . A system of subspaces for this action is a set H of
subspaces of V closed under intersection and the action of W = WΦ; clearly the lower
semilattice 〈HΦ〉 generated by HΦ is one such (but not the only one). The restriction
monoid of H with respect to the action of W is called a reflection monoid [10].

A related situation arises from a connected regular linear algebraic monoid; that is,
loosely, a monoid M which is simultaneously an affine variety in the sense of algebraic
geometry. The standard references for the theory are [34] and [36], with a useful intro-
duction found in [38]. The group U of units of M is a linear algebraic group, which
has a maximal torus T with normaliser N = NU(T ) . The Zariski closures of N and T,
denoted N and T , are submonoids of M. Now W = N/T may be cast as a reflection
group with an associated root system; W is the Weyl group of U. There are three semi-
lattices associated with M, on each of which W acts, and thus there are, with suitable
pre-kernel maps, three corresponding factorizable inverse monoids. One semilattice is
E

(
T

)
, yielding the Renner monoid R of M, originally defined as a certain quotient of N.

Another is the lower semilattice Fσ of faces of the convex polyhedral cone σ generated
(in the dual space) by the characters of T. If M has a zero, the corresponding factoriz-
able inverse monoid WFσ is isomorphic with the Renner monoid. A third semilattice is
the system of subspaces Sσ generated by the characters of T. The factorizable inverse
monoids WFσ and WSσ are isomorphic if and only if the cone σ is simplicial (i.e. the
generators are linearly independent). These (and other) comparisons of reflection and
Renner monoids are made in [10].

8.9 Dynamical systems

By (one) definition, a dynamical system is a group G acting (continuously and unitarily)
on a topological space (X,Ω) ; that is, there is a representation γ : g 7→ γg of G in
Aut(X,Ω) , the group of homeomorphisms X → X. The topology Ω may be regarded
as a lower semilattice, and the action extends to Ω by defining, for A ∈ Ω, Ag =
{x · g | x ∈ A} ∈ Ω (clearly, A ⊆ B if and only if Ag ⊆ Bg). The action also extends
to an action on the complete semilattice of closed sets, (X r A)g = X r Ag. In the
restriction spirit, it is most natural to take

KA = {g ∈ G | x · g = x for all x ∈ A} ,

so that if A ⊆ B then KB ≤ KA. The resulting factorizable inverse monoid is the inverse
monoid of partial automorphisms of X formed by restriction of elements of G.
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8.10 Groups acting on graphs

Let Γ be an undirected simple graph, with vertex set V and edge set E . Regarding V
as a set of singleton sets, and E as 2-element sets, Γ0 = V ∪ E∪{∅} thus forms a lower
semilattice (a subset of 2V). Automorphisms of the semilattice Γ0 effectively coincide
with automorphisms of the graph Γ , so G = Aut(Γ) has a natural action on Γ0. Put
K∅ = G and Kγ = {g ∈ G | v · g = v for all v ∈ γ} for γ ∈ V ∪ E ; this is a restriction-
style definition which satisfies the linking conditions and leads to a factorizable inverse
monoid.

9 Constructing pre-kernels

The examples in section 8 have shown many more or less natural ways in which a given
group action can be matched up with a pre-kernel map. In this section we set out two
further fairly general ways. The first, dubbed the fundamental way, constructs a pre-
kernel map directly from a group acting on a semilattice. The second, named the Galois
closure way, constructs an exact restriction of any pre-kernel map which participates in
a Galois connection. It can thus compare a complete factorizable inverse algebra with
the coset algebra of its unit group.

9.1 The fundamental way

Given any action of U on E, we may construct pre-kernels by defining K = K fund by

K fund
e =

⋂
i≤e

C(i) .

This satisfies the linking conditions (4.3): Ke ≤ C(e) by construction, and e ≤ f implies
e↓ ⊆ f ↓, so that

⋂
i≤eC(i) ≥

⋂
i≤fC(i) ; and moreover

Keu =
⋂

i≤e
C(iu) =

(⋂
i≤e

C(i)
)u

= Ku
e .

By Proposition 6.2, this choice for Ke defines the maximum idempotent-separating con-
gruence µ on the semidirect product U⋉E. So the resulting factorizable inverse monoid
is fundamental.

9.2 The Galois closure way

This subsection is inspired by section 5 of [23], although that deals especially with inverse
algebras arising from the restriction set-up of section 8.7. Let S = GE be a factorizable
inverse monoid, and suppose the associated pre-kernel map K : E −→ Sub(G) is part of
a Galois connection, that is, there exists an antitone map f : Sub(G) −→ E such that,
for all e ∈ E and H ≤ G,

(9.1) e ≤ f(H) ⇐⇒ K(e) ≥ H.
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Before proceeding, we note that if this connection exists then S = GE is actually
an inverse algebra, because for any u ∈ G we may take H = gp 〈u〉 , so that e ≤
f(gp 〈u〉) ⇐⇒ K(e) ≥ gp 〈u〉 ⇐⇒ e ≤ u, and f(gp 〈u〉) serves as the fixed-point
idempotent f [u] (cf. Remark 5.3).

We use the Galois connection (9.1) to construct a new factorizable inverse monoid.
It follows as usual that f ◦K ◦ f = f and K ◦ f ◦K = K, and that K ◦ f and f ◦K are
closure operators (monotone, increasing and idempotent). Thus e ∈ E is called closed if
e = f ◦K(e) or, equivalently, e = f(H) for some H ∈ Sub (G) ; similarly, H ∈ Sub (G)
is closed if H = K ◦ f(H). If e1 and e2 are closed idempotents, then for any i ∈ E,

i ≤ e1e2 ⇐⇒ i ≤ e1, e2 ⇐⇒ i ≤ f ◦K(e1) , f ◦K(e2)

⇐⇒ K(i) ≥ K(e1) , K(e2) ⇐⇒ K(i) ≥ K(e1) ∨K(e2)

⇐⇒ i ≤ f (K(e1) ∨K(e2)) ,

showing that e1e2 = f(K(e1) ∨K(e2)) . Similarly, if H1, H2 ∈ Sub(G) are closed, then
H1 ∨ H2 = K(f(H1) · f(H2)). Thus the closed idempotents form a subsemilattice of
E, denoted E, isomorphic with the subsemilattice Sub(G) of closed subgroups of G.
Moreover, restriction of K and f to the closed idempotents and subgroups gives a pair
of mutually inverse maps, which we denote KGal and fGal, and which are semilattice
homomorphisms with respect to the operations inherited from E and Sub(G). Clearly,
for g ∈ G, e is closed if and only if eg is closed, and H is closed if and only if Hg is
closed, so by the remarks after Theorem 4.5, we have a factorizable inverse submonoid
SGal = GE of the original S. We shall call it the Galois-closed inverse monoid associated
with S. It is exact, and in fact also embeds in the coset monoid K(G) , via KGal : E →
Sub(G) and the identity on G. In a sense, SGal provides a qualitative measure of the
nearness of S = GE to the corresponding coset monoid K(G) .

The above assumes the existence of a Galois connection. We note some cases where
existence is assured. In the motivating example of Galois field extensions (section 8.6),
separability and normality properties of the field extensions ensure that all intermediate
extensions and subgroups are closed, and finite index ensures that all partial automor-
phisms of intermediate fields fixing the ground field k are restrictions of field automor-
phisms of F . Again, if E is complete and K sends arbitrary joins to intersections, the
Galois connection exists (by the adjoint functor theorem applied to K : Eopp → Sub(G))
and is given by f(H) =

∨
{i ∈ E | Ki ≥ H}.

In the next subsection, we consider concrete examples of the fundamental and Galois
closure ways, which incidentally cast some further light on fundamentality properties
and embeddings in coset monoids.

9.3 Further examples

As noted in section 8.1, the natural action of G = SX on E = 2X leads to C(i) =
{u ∈ G | x ∈ i ⇐⇒ x · u ∈ i} . It follows that K fund = Krest (in the notation of section
8.7), and hence F (IX) ∼=

(
SX ⋉ 2X

)
/µ. Now Krest⋃

ej
=

⋂
Krest
ej

(for any subset {ej} ∈ E)
and thus, power sets being complete, the Galois adjoint f exists and is given, for H ≤ G,
by f(H) = {x ∈ X | x · g = x for all g ∈ H} , the set of points fixed by the subgroup
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H. (Similar remarks hold for lattices of subspaces as occur in some examples in section
8.3.) Observe that Y ⊆ X is closed if and only if Y is not of the form Y = X r {x}
for some x ∈ X. (Proof: f ◦K (X r {x}) = X = f ◦K (X) , but if there exist distinct
x0, x1 ∈ X r Y then there is u ∈ K(Y ) such that x0 · u = x1 and x1 · u = x0. So
y ∈ f ◦K(Y ) implies y ∈ Y.) So SGal consists of those α ∈ F (IX) such that domα and
kerα are not of co-cardinality 1.

Note if X = Y ∪ {x0} (for x0 6∈ Y ) then the map given (for α ∈ F (IY )) by

α 7→

{
α if α 6∈ SY

α ∪ {(x0, x0)} if α ∈ SY

embeds F (IY ) in SGal and hence in K(SX) (McAlister, [29]).
Again consider the action of SX on Eq(X) discussed in section 8.2, and proceed

on the fundamental way. If ε ∈ Eq(X) contains at least three distinct blocks, X1, X2,
and X3 say, and x ∈ X1 while x · u ∈ X2, then u : X1 → X2 bijectively, and so
u 6∈ C(π) where π has blocks X1, X2 ∪ X3 and so is an equivalence below ε. Hence
K fund
ε = Krest

ε = {u ∈ U | (x, x · u) ∈ ε for each x ∈ X} . But if ε has rank 2, with
blocks X1 and X2, then K fund

ε = Krest
ε if and only if |X1| 6= |X2| (if |X1| = |X2|,

K fund
ε = C(ε)). It follows F (I∗

X) is fundamental if and only if |X| is odd finite.
Eq(X) is complete, but Krest preserves joins (is exact) if and only if X is finite [7], [5].

So if X is infinite, there is no Galois adjoint. If X is finite, the Galois adjoint is f(H) =
{(x, x · u) | x ∈ X, u ∈ SX} , corresponding to the partition into orbits. All partitions
are closed, and closed subgroups have the form

∏
SXi

for corresponding partitions ε =⊔
Xi (cf. section 8.2). So then KGal = Krest and we have all of F (I∗

X) as the Galois-
closed monoid, which embeds in K(SX) .

Curiously, K = Krest preserves meets: K(
⋂
εj) =

⋂
K(εj) for any subset {εj} ∈ E,

so has a Galois adjoint. But when we take Eq(X) as a lower semilattice, K fails the
condition of Lemma 4.1(v), so we cannot construct a factorizable inverse monoid in this
way. Instead, we may take the fundamental way with the natural action of section 8.2
applied to the lower semilattice Eq(X) . Let ε ∈ Eq(X) and u ∈ SX . Then

C(ε) = {u ∈ SX | (x, y) ∈ ε ⇐⇒ (x · u, y · u) ∈ ε} .

If x and x ·u are in different non-unit blocks of ε, or if x, x ·u and y are distinct elements
of the same block of ε, then there is π ∈ Eq(X) with π ⊂ ε such that u 6∈ C(π), and so
u 6∈ K fund

ε =
⋂

{C(π) | π ⊆ ε} . Conversely, if u ∈ C(ε) fixes all elements in blocks of
size > 2, then it stabilises any π which refines ε. So

K fund
ε = {u ∈ SX | x · u = u for all x in blocks of size > 2} .

10 Some other classes of factorizable

inverse monoids

We conclude this survey by noting a couple of interesting classes of factorizable inverse
monoids which arise naturally from the recipe given in Theorem 4.2. Recall that, in
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a coset monoid K(U), the pre-kernel map Ke = e is exact and bijective. In fact from
Theorem 4.5, the class of coset monoids are those S = EU such that the pre-kernel map
is a semilattice isomorphism of E with Sub(U) , as characterised in [29]. In this case E is
complete, and the definition f [u] =

∧
{e ∈ E | e ≤ u} =

∧
{e ∈ E | u ∈ Ke} = gp 〈u〉

serves as a fixed-point idempotent for u; thus (by Remark 5.3) K(U) ∼= S is an inverse
algebra.

If we weaken the condition toK being exact and injective, then there is an embedding
eu 7→ Keu of S in K(U) as a cofull submonoid, and conversely this implies K is exact
and injective. For example, we noted in section 9.3 that F (I∗

X) embeds in K(SX) when
X is finite.

We turn to mere exactness or injectivity. From Lemma 6.3, the class of exact fac-
torizable inverse monoids consists precisely of those which may be represented in the
coset monoid of their group of units. Such a representation is not necessarily faithful,
nor cofull. But each exact factorizable inverse monoid with group of units U has a min-
imum homomorphic image which embeds, as a cofull factorizable inverse submonoid, in
K(U); the corresponding maximal congruence θ is also the maximum congruence which
has trivial intersection with Green’s relation L [7].

Finally, the factorizable inverse monoids such that K is injective are named gener-
alised coset monoids in [5] and characterised as those factorizable inverse monoids which
embed in some K(G) . Such a G contains an isomorphic copy of U as a subgroup, but it
may be a proper subgroup.
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