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Abstract 
Cardicola forsteri Cribb, Daintith and Munday, 2000 (Digenea: Sanguinicolidae), is 

a digenean parasite of southern bluefin tuna, Thunnus maccoyii (Castelnau) that can 

cause disease in an aquaculture environment. The aim of this research was to gain 

information about factors affecting the epidemiology of blood fluke, C. forsteri, 

infection in farmed southern bluefin tuna in South Australia. Comparative analysis of 

blood fluke of other bluefin tunas was undertaken to determine the host range of C. 

forsteri. We found, through comparisons of ITS2 and partial 28S rDNA, C. forsteri 

from multiple hosts and localities: southern bluefin tuna (T maccoyii) from South 

Australia and northern bluefin tuna (T. thynnus) from two localities in the 

Mediterranean (Spain and Croatia). Host migration seems likely to be responsible for 

the widespread occurrence of C. forsteri, although it is also possible that C. forsteri 

was translocated recently by the spread of infected intermediate hosts in international 

shipping, either as biofouling attached to hulls, or in ballast waters. 

C. forsteri, was examined in cultured southern bluefin tuna, T. maccoyii, over a six 

month growout season in Port Lincoln, South Australia. C. forsteri infections 

declined after an initial peak two months after transfer from the wild and no effect 

was observed on tuna condition index despite high intensities being recorded. It is 

concluded that T maccoyii may be able to control blood fluke infection. 

Stochastic models were developed to describe the infection pattern of Cardicola 

forsteri in farmed southern bluefin tuna, T maccoyii. Observed field data on the 

lengths of flukes over a growout season were used as the basis for the models. An 

estimated time of infection was produced from the models and it was shown that 

infections mostly occurred after introduction to sea-cages from the wild indicating 

the presence of the intermediate host in the farming environment. 
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Factors influencing blood fluke intensity, abundance and prevalence were 

investigated by examining southern bluefin tuna collected from commercial harvests 

over a three-year period. Blood fluke prevalence was observed to be approximately 

60% in tuna over a growout season. Annual means of intensity were fixed around six 

fluke per infected host and annual means of abundance between three and five fluke 

per host. A universal factor in explaining variation in C. forsteri intensity, abundance 

and prevalence was company. Year did not influence intensity or abundance 

although a decrease in prevalence in 2005 was evident. Tuna harvested in winter had 

a significantly greater abundance and prevalence of blood fluke than harvest in 

autumn. Interestingly, the period of time that tuna are in captivity does not 

significantly influence intensity of infection even though it does affect blood fluke 

abundance and prevalence. Intensity or abundance did not affect the condition of 

tuna. 

An adaptive immune response was investigated by developing an ELISA to detect 

and quantify an antibody response against the blood fluke in southern bluefin tuna 

serum. Antibody titres and seroprevalence increased during the growout period. 

Parasitological and serological values from were compared from a cohort introduced 

to the tuna farming zone in 2005 to a cohort introduced in 2006 to determine if prior 

infection in the 2005 cohort elicited any protection against infection in 2006. 

Although significant differences were not observed in intensities between cohorts it 

was shown that the cohort that had a history of infection had significantly lower 

abundances and prevalences of blood fluke infection than the naïve cohort 

demonstrating the development of acquired resistance against C. forsteri. 

The accuracies of a gross gill pathology test and a histopathological test for detecting 

C. forsteri were evaluated. The sensitivity of gross gill pathology was the only high 

estimate of diagnostic accuracy. Although the other estimates of diagnostic accuracy 
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were low, the high sensitivity of gross gill pathology suggests that this may be a 

useful tool for future epidemiology studies. 

A Bayesian approach to the estimation of prevalence was carried out using two 

populations of tuna and two different diagnostic tests, an ELISA and parasitological 

examination. The prevalence of infection was shown to be higher than previously 

thought. ELISA was shown to have poor estimates of accuracy whereas a high 

sensitivity for parasitological examination was demonstrated. Parasitological 

examination is probably the best current method for detecting blood fluke infections. 
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Chapter 1. General Introduction 

The southern bluefin tuna, Thunnus maccoyii, is a long-lived and highly migratory 

fish that is widely distributed across the southern temperate oceans from the western 

Atlantic across the Indian to the western Pacific Ocean (Caton 1991; Farley and 

Davis 1998; Clear et al. 2000). Mitochondrial DNA analysis supports the existence 

of one population (Grewe et al. 1997) with adults migrating to a single spawning area 

in the north-east Indian Ocean south of Indonesia between September and April 

(Caton 1991; Grewe et al. 1997; Farley and Davis 1998). T maccoyii are slow to 

mature reaching maturity at around eight years, but live for as long as forty years and 

grow to about 200 kilograms in weight and 200 cm in length (Davis et al. 2001). 

Juveniles tend to move south from the spawning ground to waters off the south west 

of Australia. Some juveniles then move westward to southern Africa, but most move 

east across the southern coastline of Australia inhabiting the coastal and continental 

shelf waters. These tuna continue to live off southern and south eastern Australia 

until six to nine years of age. At maturity, most T. maccoyii disperse into the deeper 

waters of the south Atlantic, Indian and south west Pacific Oceans (Love and 

Langenkamp 2003). Adult T. maccoyii are assumed to forage throughout the 

temperate waters of the Southern Hemisphere oceans during the austral winter, 

migrating to the spawning grounds of the north-western Indian Ocean from spring to 

autumn (Shingu 1978; Caton 1991) before returning to the foraging grounds in the 

following autumn/winter. Individuals do not remain on the spawning grounds over 

the whole season; instead there is a turnover of fish with the numbers of mature fish 

peaking in October and February (Farley and Davis 1998). 

Commercial fishing for southern bluefm tuna by Australia and Japan began in the 

early 1950s. Overfishing has resulted in the species being listed as endangered 
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(Safina 1995) and a quota system was introduced in 1989-1990. Mature stock 

population numbers reached a critically low level, below 6-11% of the 1960 size, in 

the early 90s (Ward 1995). Australia's catch of southern bluefin tuna was restricted 

to 5265 tonnes annually. The high commercial value, reduced quotas and the 

endangered status led to the development of a commercial aquaculture industry for 

this species as the best way of utilising a limited resource (Lee 1998). At present 

capture and on-growing in sea-cages is being used successfully in Port Lincoln, 

South Australia (Watts et al. 2001). Juvenile fish (2-3 years old) are caught from 

December to March off the South Australian coast, corresponding with the annual 

migration of southern bluefm tuna through the Great Australian Bight fishery, using 

netting techniques. Tuna are transferred to special purpose built towing cages in 

which they are towed slowly back to growout farms near Port Lincoln at an average 

speed of 1 knot. During the next three to eight months the tuna are held in 40-50 

metre diameter polar circle type farm pontoons. Tuna are fattened on a diet of frozen 

and fresh baitfish, such as pilchards and herring, to improve both their condition and 

biomass, and are then progressively harvested meeting demands of the Japanese 

market. About 45 000 tonnes of baitfish, sourced both locally and overseas, are used 

annually. Food conversion ratios average 10-15:1 and an average size southern 

bluefm tuna increases in weight by 10-20 kilograms during the farming process 

(Love and Langenkamp 2003). Around 98 percent of the Australian southern bluefin 

tuna quota is now farmed in the waters off Port Lincoln (PIRSA 2000). In 2002/03, 

direct output generated in South Australia by tuna farms totaled almost A$267 

million. 

A range of parasites are known to infect wild southern-  bluefin tuna (see review by 

Munday et al. 2003). However the parasites of farmed southern bluefin tuna and their 
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effects on the host have been little studied. An investigation into the risk factors 

facing the health of farmed southern bluefin tuna was undertaken by Nowak (2004) 

and a digenean sanguinicolid blood fluke, Cardicola forsteri, was identified as one of 

the more significant risks to southern bluefin tuna health, although low in terms of 

absolute risk. C. forsteri was described from farmed T. maccoyii in 1997 as a result 

of an investigation of nodular gill lesions (Colquitt 2001; Cribb et al. 2000). Mass 

mortalities of cultured fish in North America, Europe and Asia have been associated 

with sanguinicolid infections (Bullard and Overstreet 2002). Consequently Nowak 

(2004) suggested that further research was required on the biology and epidemiology 

of the blood fluke. 

C. forsteri is a sanguinicolid trematode with a complex life cycle (Figure 1) that 

infects T. maccoyii as well as wild northern bluefin tuna, T thynnus (Bullard et al. 

2004). The intermediate host is unknown but is most likely a polychaete or bivalve 

(Smith 1997). Sanguinicolids feed on host blood and live in the vasculature of the 

circulatory system of both marine and freshwater fish (Smith 1972; Smith 1997). 

Most species of sanguiniolid establish in the heart, bulbus arteriosus, ventral aorta, or 

branchial vessels, although distributions within the cephalic or dorsal vessels are not 

uncommon (Kirk and Lewis 1994). Once established, the adult fluke lay eggs which 

travel to the gills where they lodge. Adult fluke may also migrate to and from the 

gills to lay eggs. Adult Paracardicoloides yamagutii have only been observed in the 

gills of eels (Anguilla australis and Anguilla dieffenbachia) after migrating there to 

lay eggs (Hine 1978). Eggs hatch and break out of the gill structure into free-

swimming miracidia. These miracidia seek out an appropriate intermediate host into 

which they penetrate to undergo asexual reproduction as rediae and/or sporocysts to 

produce infective cercariae. Cercariae are shed from the intermediate host and 
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Miracidium Cercaria 

Juvenile fluke 
Egg 

actively search for the definitive host, a fish. The cercariae penetrate the skin of this 

host and develop into juvenile fluke stages that move towards the circulatory system 

in which a migration to a fmal site occurs. Here, the juvenile fluke mature into adults 

(Smith 1997). For C. forsteri the final site of maturation is the heart (Cribb et al. 

2000). 

Adult fluke 

Figure 1. Hypothesised life cycle of C. forsteri in T. maccoyii. Intermediate host is unknown and may 

include polychaetes or bivalves. Dashed lines indicate free-living stages of C. forsteri. Illustrations of 

juvenile and adult fluke are based on a figure from Cribb et al. (2000). 

Clinical signs of infection include increased mucus on the gills and respiratory 

distress, lethargy and slightly increased mortality (Rough 2000; Munday et al. 2003). 

The pathology caused by the fluke was investigated by Colquitt et al. (2001). In most 

cases, the changes observed were not considered to be sufficient to lead to 

mortalities; however they were considered to be significant (Colquitt et al. 2001). 
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Eggs were observed in the heart ventricle lodged in capillaries and in between 

individual trabeculae. Eggs were encapsulated by connective and fibrous tissue 

arranged in focal granulomas. It was estimated that in heavily infected fish 1.7 

million eggs would have been in the entire ventricle (Colquitt 1999). In these heavily 

infected tuna there was a significant build up of fibrous tissue in the spongiosa. It 

was suggested by Colquitt et al. (2001) that the luminal space of the ventricle 

appeared to decrease due to the build up of fibrous tissue and the associated 

thickening of the myocardial fibres. Eggs accumulated in the afferent filamental 

arteries leading to blockages and obstructing blood flow leading to the formation of 

thrombi and oedema. This pathology led to parts of the gill respiratory surface being 

occluded by lesion formation (Colquitt et al. 2000). It is possible that the pathology 

observed is a result of the immune response of the host. A specific antibody response 

against the blood fluke in farmed southern bluefin tuna was shown using Western 

blot analysis (Watts et al. 2001). It is not known whether this response has a 

protective role or how it is affected by infection dynamics. 

Little is known about the epidemiology of C. forsteri infection in southern bluefin 

tuna. Colquitt et al. (2002) observed that the prevalence and severity of infections 

appeared to increase after transfer of tuna from the wild suggesting that the life cycle 

was able to be completed in the farming zone (Munday et al. 2003). However there 

have been no surveys employing epidemiological methods to determine whether the 

life cycle is being maintained in the vicinity of the farming zone or whether 

infections are increasing over the growout period. 
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Research objectives 
The objectives of this research were to: 

• Investigate the host range of C. forsteri in bluefin tunas 

• Determine whether the life cycle of C. forsteri is able to be maintained in the 

Spencer Gulf southern bluefm tuna farming zone 

• Examine the effect of the farming cycle on the prevalence and intensity of C. 

forsteri infection 

• Investigate the use of serological techniques for determining C. forsteri 

infection 

• Investigate the antibody response of the southern bluefin tuna against C. 

forsteri infection during the farming cycle 

• Compare the current diagnostic methods for determining C. forsteri infection 

and determine the estimates of accuracy for the diagnostic methods 
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Abstract 

Global distribution of platyhelminth parasites and their host-specificities are not well 

known. Our hypothesis was that platyhelminth parasites of large pelagic fishes are 

common around the world. We analysed molecular variation in three different taxa 

of platyhelminth parasites infecting four species of tunas: yellowfm tuna (Thunnus 

albacares, Scombridae) from Western Australia, southern bluefin tuna (T. maccoyii, 

Scombridae) from South Australia, Pacific bluefin tuna (T. orientalis, Scombridae) 

from Pacific Mexico, and northern bluefin tuna (T. thynnus, Scombridae) from two 

localities in the Mediterranean (Spain and Croatia). Comparisons of ITS2 and partial 

28S rDNA demonstrated two congeneric species of blood flukes (Digenea: 

Sanguinicolidae) from multiple hosts and localities: Cardicola forsteri from southern 

bluefin and northern bluefin tunas, and C. sp. from Pacific bluefin and northern 

bluefin tunas; and a gill fluke, Hexostoma thynni (Polyopisthocotylea: 

Hexostomatidae), from yellowfin, southern bluefin and northern bluefin tunas. 

Partial 28S rDNA indicates that a second type of fluke on the gills, Capsala sp. 

(Monopisthocotylea: Capsalidae), occurs on both southern bluefin and Pacific 

bluefin tunas. This appears to be the first report of conspecific platyhelminth 

parasites of teleosts with a wide-ranging geographical distribution that has been 

confirmed through molecular approaches. Given the brevity of the free-living larval 

stage of both taxa of flukes on the gills (Hexostoma thynni and Capsala sp.), we 

conclude that the only feasible hypothesis for the cosmopolitan distribution of these 

flatworms is migrations of host tunas. Host migration also seems likely to be 

responsible for the widespread occurrence of the two species of blood flukes 

(Cardicola spp.), although it is also possible that these were translocated recently by 

the spread of infected intermediate hosts. 
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1. Introduction 

The geographical distribution of parasites in marine environments is poorly known 

(Rohde 2005). Accordingly, the natural occurrences of parasitic platyhelminths are 

also poorly documented, even though some species are commonly associated with 

health risks to teleosts in fisheries and aquaculture. Platyhelminthes is a large and 

diverse phylum; worldwide, it is estimated that there may be as many as 25,000- 

50,000 species of endoparasitic flukes (Digenea) (Cribb et al. 2002) and 25,000 

species of ectoparasitic flukes (Monogenea) (Whittington 1998). In addition, our 

understanding of the geographic ranges of platyhelminths is presently confounded by 

the presence of cryptic species which have been revealed recently through molecular 

analyses (Jousson et al. 2000). Furthermore, most of the recent molecular studies 

investigating the geographic ranges of helminths of fishes have concentrated on hosts 

that have relatively small geographic ranges. For example, Lo et al. (2001) focussed 

on hosts that are associated with coral reefs and which also do not exhibit migratory 

behaviour, and found no or negligible molecular variation. Other studies that were 

based on morphological characters rather that molecular analysis have concentrated 

on wide-ranging, epipelagic scombrid fishes and found helminths with wide-ranging 

distributions. For example, the polyopisthocotylean Gotocotyla acanthura 

(Gotocotylidae) is reported to occur in all three major oceans where their Spanish 

mackerel (Scomberomorus spp., Scombridae) hosts occur: the Pacific, the Atlantic, 

and the Indian Oceans (Hayward and Rohde 1999a). Similarly, another 

polyopisthocotylean, Neothoracocotyle acanthocybii (Thoracocotylidae) occurs on 

Wahoo (Acanthocybium solandri, Scombridae) in both the Pacific and Atlantic 

Oceans (Hayward and Rohde 1999b). However, because parasite identifications in 

such studies were based only on morphological characters, some doubt remains that 

these parasites may belong to cryptic species complexes that are genetically distinct 
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at each locality. To date, no molecular studies of platyhelminths of wide-ranging 

teleosts have examined whether such parasites do in fact belong to single, 

cosmopolitan species. 

One group of teleosts that have a wide distribution are the tunas (Scombridae: 

Scombrinae), particularly Thunnus spp. Relatively little is known of the parasite 

fauna of wild tunas. Current knowledge was reviewed by Munday etal. (2003). 

Parasites of farmed tunas have also been surveyed in three localities: northern bluefin 

tuna (T. thynnus) in Croatia (Mladineo and Tudor 2004; Nowak et al. 2006), northern 

bluefin tuna in Spain (Nowak et al. 2006), and southern bluefin tuna (T. maccoyii) in 

Australia (Munday et al. 2003; Deveney et al. 2005; Nowak et al. 2006). Two 

platyhelminths were identified as possible risks to the health of farmed southern 

bluefin tuna: a digenean blood fluke Cardicola forsteri (Sanguinicolidae) and a 

polyopisthocotylean (Nowak 2004; Deveney et al. 2005). The latter species has now 

been identified as Hexostoma thynni (see Hayward et al. 2007). Based on 

morphological studies, these parasites have also been reported to be widely 

distributed: C. forsteri is known from the Southern Ocean off Australia (from T 

maccoyii) and the western Atlantic Ocean (from T thynnus) (Cribb et al. 2000a; 

Bullard et al. 2004), and H. thynni is known from the Southern Ocean (from T 

maccoyii) and in the Mediterranean Sea (from T. thynnus) (Nowak et al. 2006). Here 

we use a molecular approach to investigate whether these and other parasites we 

collected are indeed cosmopolitan in and on various species of tunas (Thunnus spp.). 

Ribosomal DNA has been used as a taxonomic tool since the earliest works on 

molecular phylogenetic investigations began. The two regions used in this study, 28S 

and ITS2 rDNA, have been utilized in many studies of genetic differences of 

parasitic platyhelminths (e.g. Anderson and Barker 1998; Chisholm etal. 2001; 
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Matejusova et al. 2004; Nolan and Cribb 2006; Platt and Tkach 2003) and are 

considered sound markers for species differentiation. One exception was reported by 

Nolan and Cribb (2005) where two 'good' sister species of digeneans had identical 

ITS2 sequences. 

2. Materials and Methods 

2.1. Parasite material 

Sources of material are listed in Table 1, and their locations mapped in Fig. 1. 

Specimens of Cardicola spp. were collected from the heart ventricle of tuna, and 

specimens of Hexostoma thynni and capsalids were collected from the gills of tuna. 

Specimens from Thunnus maccoyii were collected from fresh gills and heart 

ventricles obtained at harvest; specimens from T. orientalis were collected from 

mortalities, which were either examined fresh or had been frozen for less than one 

week; and samples from T albacares and Spanish T. thynnus were collected from 

defrosted gills and ventricles that that had been stored at -20 °C after being collected 

at harvest or capture. All specimens were washed extensively in physiological saline 

solution and some were stored at -80°C and others fixed in 100% ethanol. 

Specimens from Croatian T. thynnus were collected fresh and fixed in 99.7-100% 

ethanol. 
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Table 1. Collection data for platyhelminth specimens sampled from tuna (Thunnus spp.) in this study. 

Species Host Habitat Origin No. of hosts 
examined 

No. of specimens Regions 
sequenced 	sequenced 

A. Trematoda, Digenea 

Cardicola forsteri Thunnus maccoyi Wild Cabbage Patch, South Australia 11 1 ITS2, 28S 

Farm Port Lincoln, South Australia 13 13 ITS2, 28S 

7'. thynnus Farm Puerto de Mazarron, Spain 42 1 ITS2, 28S 
Cardicola sp. 7'. thynnus Farm Puerto de Mazarron, Spain 42 1 ITS2 

T. orientalis Farm Islas Coronados, Pacific Mexico 75 1 ITS2 

B. Monogenea, Polyopisthocotylea 
Hexostoma thynni 	T maccoyii Farm Port Lincoln, South Australia 13 15 ITS2, 28S 

T thynnus Farm Bay of Maslinova, Croatia 210 2 ITS2, 28S 

T albacares Wild Geraldton, Western Australia 7 4 ITS2, 28S 

C. Monogenea, Monopisthocotylea 
Capsala sp. 	 T maccoyii Farm Port Lincoln, South Australia >500 1 28S 

T. orientalis Farm Islas Coronados, Pacific Mexico 76 1 28S 
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VJ albacares (YFT) 

Fig. 1 Distribution of four species of host Thunnus spp. around the world and the occurrence 

particular parasites in samples of these tunas. Tuna distributions are based either on 

computer-generated `AquaMaps' in Fishbase (Southern bluefin tuna: 

http://fishbase.sinica.edu.tw/tools/aquamaps/premap2.php?SpecID=Fis-22835&cache=1  (last 

accessed 12 May 2007); Northern bluefm tuna: 

http://fishbase.sinica.edu.tw/tools/aquamaps/preMap.php?cache=l&SpecID=Fis-49220  (last 

accessed 12 May 2007) ; yellowfin tuna: 

http://fishbase.sinica.edu.tw/tools/aquamaps/premap2.php?SpecID=Fis-22833&cache=1  (last 

accessed 12 May 2007)) or are represented by a composite figure (for Pacific bluefin tuna) 

derived from maps contained in http://www.fao.org/DOCREP/003/W3628E/w3628e0y.htm  

(last accessed 12 May 2007and 

http://www.fao.org/DOCREP/005/T1817E/T1817E13.htm#ch10  (last accessed 12 May 

2007). 

2.2. Molecular analysis 

Genomic DNA was extracted using QIAGEN DNeasy ®  tissue kit (QIAGEN GmbH, 

Hilden, Germany). For Cardicola forsteri, the second internal transcribed spacer 

(ITS2) rDNA was PCR amplified using primers and thermocycling conditions used 
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by Nolan and Cribb (2004a) and partial 28S D1-D2 was PCR amplified using 

primers and thermocycling conditions used by Bott and Cribb (2005). For 

Hexostoma thynni ITS2 rDNA was PCR amplified using two primers designed in 

conserved regions in the ITS2 rDNA, forward (5'-CGA TGA AGA GTG CAG CAA 

AC-3') and reverse (5'-TAA TGC TTA AAT TCA GCG GGT-3') performed using 

1.6 p.1 of MgC12  (25 mM), 2 pl of PCR reaction buffer (QIAGEN, GmbH, Hilden, 

Germany) (10x), 0.8 p,1 of dNTPs (5 mM), 0.75 IA of primer and reverse primer (10 

pmol), 0.25 IA Hot Star Taq polymerase (QIAGEN) (5 units/u), 1-2 IA of DNA 

template (5-100 ng), made up to 20 ttl with RNAase free H20 and run with the 

following thermocycling conditions: 95 °C for 15 min to activate Taq polymerase, 

preheating at 94 °C for 3 min, 30 cycles of denaturation (94 °C, 60 sec), annealing 

(50 °C, 3 min) and extension (72 °C, 3 min), and further elongation step of 10 min at 

72 °C. For H. thynni and Capsala sp., partial 28S Cl-D2 rDNA was PCR amplified 

using primers and thermocycling conditions used by Chisholm et al. (2001). All PCR 

products were amplified using an MJ Research PTC-200 Thermal Cycler (MJ 

Research, supplied by Bresatec, Watertown, U.S.A). 

PCR products were purified using Macherey-Nagel NucleoSpin ®  kit 

(Macherey-Nagel GmbH, Duren, Germany) and cycle-sequenced from both strands 

using ABI BigDyeTm  Version 3.1 (Applied Biosystems, Foster City, USA) 

chemistry, alcohol precipitated and automated sequences obtained. The contiguous 

sequences were aligned using Sequencheirm  (GeneCodes Corp., Ann Arbor, U. S. A. 

ver. 4.2). Sequences were aligned using ClustaIX (Thompson et aL, 1997) and 

further reftned by eye. 
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• For the Hexostoma thynni analysis, Polystoma gallieni (Polystomatidae) 

Genbank accession no. AF382064)  was designated as the functional outgroup and 

for the Cardicola forsteri analysis, Pearsonellum corventum (Sanguinicolidae) 

Genbank accession no. AY465873)  was designated as the functional outgroup. 

Table 2 shows provenance of DNA sequences used in the H. thynni and Cardicola 

analyses. Bayesian Inference analysis was conducted with MrBayes ver. 3.0 b4 

(Huelsenbeck and Ronquist, 2001) using the following parameters: nst = 6, rates = 

gamma, autoclose = yes. Posterior probabilities were approximated over 2,000,000 

generations (ngen = 2,000,000) via 4 simultaneous Markov Chain Monte Carlo 

(MCMC) chains (nchains = 4) with every 100 th  tree saved (samplefreq = 100). 

Default values were used for MCMC parameters. Consensus trees with mean branch 

lengths were constructed using the `sume command. A 50% majority rule consensus 

tree was constructed from the tree output files produced in the Bayesian Inference 

analysis using TreeView (http://taxonomy.zoology.gla.ac.u1c/rod/treeview.html,  last 

accessed12 May 2007). Sequences were added to Genbank 

(http://www.ncbi.nlm.nih.gov/Genbank/,  last accessed12 May 2007), and the 

accession numbers of sequences obtained in this study, and previously published 

sequences are in Table 1. 
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Table 2. Platyhelminths used in Bayesian inference analyses in this study. 

Family Species Host Origin Study/Source Genbank 

A. Trematoda 

Sanguinicolidae Braya jexi Scarus frenatus Scaridae Heron Island, Australia Nolan and Cribb (2006) D0059624 

B. psittacus S. ghobban Scaridae Heron Island, Australia Nolan and Cribb (2006) D0059625 

B. yantschi Chlorurus microrhinos Heron Island, Australia Nolan and Cribb (2006) D0059628 

Scaridae 

Braya sp. 1 C. microrhinos Scaridae Heron Island, Australia Nolan and Cribb (2006) D0059626 

Braya sp. 2 Scarus ghobban Scaridae Ningaloo Reef, Australia Nolan and Cribb (2006) D0059627 

Cardicola forsteri Thunnus maccoyii Port Lincoln, Australia This study EF661575 

Scombridae 

T maccoyii Scombridae Port Lincoln, Australia Nolan and Cribb (2006) D0059637 

T. thynnus Scombridae Puerto de Mazarron, Spain This study EF653395 

C. bartolii Siganus lineatus Siganidae Heron Island, Australia Nolan and Cribb (2006) D0059631 

C. coeptus S. punctatus Siganidae Heron Island, Australia Nolan and Cribb (2006) D0059629 
C. coeptus S. vulpinus Siganidae Heron Island, Australia Nolan and Cribb (2006) D0059630 

C. covacinae S. punctatus Siganidae Heron Island, Australia Nolan and Cribb (2006) D0059634 

C. lafii S. fuscescans Siganidae Lizard Island, Australia Nolan and Cribb (2006) D0059639 

C. milleri Lutjanus boharLutjanidae Lizard Island, Australia Nolan and Cribb (2006) D0059640  



Table 2. Platyhelminths used in Bayesian inference analyses in this study (Cont.). 

Family Species Host Origin 	 Study/Source 	Genbank 

A. Trematoda 

Sanguinicolidae C. parilus S. fuscescens Siganidae Ningaloo Reef, Australia 	Nolan and Cribb (2006) 	D0059638 
C. tantabiddii S. fuscescens Siganidae Ningaloo Reef, Australia 	Nolan and Cribb (2006) 	D0059642 
C. watsonensis S. corallinus Siganidae Lizard Island, Australia 	Nolan and Cribb (2006) 	D0059643 
Cardicola sp. 1 7'. orientalis Scombridae Islas Coronados, Mexico 	This study 	 EF653396 

7'. thynnus Scombridae Puerto de Mazarron, Spain This study 	 EF653397 
Cardicola sp. 2 Siganus fuscescans Siganidae Heron Island, Australia 	Nolan and Cribb (2006) 	D0059636 
Cardicola sp. 3 S. margaritifera Siganidae Nth Stradbroke Is, Australia Nolan and Cribb (2006 	D0059635 
Cardicola sp. 3 Scomberomorus commerson Lizard Island, Australia 	Nolan and Cribb (2006) 	D0059641 

Scombridae 

Cardicola sp. 4 S. munroi Scombridae Lizard Island, Australia 	Nolan and Cribb (2006) 	D0059632 
Pearsonellum corventum Plectropomus leopardus Heron Island, Australia 	Nolan and Cribb (2004b) AY465873 

Serranidae 

B. Monogenea, Polyopisthocotylea 

Polystomatoinea 

Polystomatidae Polystoma gallieni 	Hyla meridionalis (frog) 
	

France 	 unpublished 
	

AF382064 

Hylidae 



Table 2. Platyhelminths used in Bayesian inference analyses in this study (Cont.). 

Family 	Species Host Origin Study/Source Genbank 

Oligonchoinea 

Mazocraeinea 

Mazocraeidae 	Kuhnia scombri Scomber scombrus United Kingdom Olson & Littlewood (2002) 	AF382044 

Scombridae 

Hexostomatinea 

Hexostomatidae Hexostoma thynni Thunnus albacares Geraldton, Australia This study EF653382 

Scombridae 

T. maccoyii Scombridae Port Lincoln, Australia This study EF653381 

T. thynnus Scombridae Bay of Maslinova, Croatia This study EF653383 
Gastrocotylinea 

Allodiscocotylidae Metacamopia oligoplites Oligoplites sp. Carangidae Brazil Olson & Littlewood (2002) 	AF382038 

Microcotylinea 

Heteraxinidae 	Zewcapta seriolae Serbia lalandi Carangidae Adelaide, Australia This study EF653384 
Microcotylidae 	Microcotylid sp. 1 Sebastes sp. Sebastidae United Kingdom This study EF653385 

Microcotylid sp. 2 Argyrosomus japonicus Port Lincoln, Australia This study EF653386 

Sciaenidae 



3. Results 

3.1. Cardicola spp. 

Sequences of Cardicola forsteri from Thunnus maccoyii off Australia (from farmed 

hosts off Port Lincoln, and wild hosts from Cabbage Patch (Longitude 138° 23' 843", 

Latitude 34° 46' 832")), and farmed T. thynnus in the Spanish Mediterranean, were 

found to be 100% identical for ITS2 rDNA, and 100% identical 28S Dl-D2 rDNA 

for Pt Lincoln aquaculture specimens and Cabbage Patch specimens, with the 28S 

Dl-D2 rDNA of Spanish specimens differing by 1 nucleotide in an alignment of 714 

nucleotides. Similarly, sequences of Cardicola sp. from Thunnus orientalis off 

Mexico and farmed T. thynnus in the Spanish Mediterranean were found to be 100% 

identical for ITS2 rDNA; no sequences of 28S were obtained. There were 20 

nucleotide differences in the alignment between IT52 rDNA sequences of C. forsteri 

and Cardicola sp. C. forsteri 28S rDNA sequences have also been submitted to 

Genbank under the following accession numbers EF653387 (southern bluefin tuna, 

Port Lincoln), EF653388 (northern bluefm tuna, Spain), EF653389 (southern bluefin 

tuna, Cabbage Patch), although they have not been presented in a phylogenetic 

analysis as there are fewer sanguinicolid 28S rDNA sequences available to us 

through public databases, than sanguinicolid ITS2 rDNA. 

Fig. 2 depicts the results of the Bayesian inference analysis for Cardicola 

spp. ITS2 rDNA. All C. forsteri sequences, from T. maccoyii and T thynnus form a 

clade with 100% support, and Cardicola sp. from T orientalis and T. thynnus form a 

clade with 100% support. The two Cardicola spp. from Thunnus spp. form a clade 

(100%) to the exclusion of all other in-group taxa. All Cardicola spp. in the analysis 

form a clade with 78% support to the exclusion of the other taxa, and Cardicola spp. 

from siganids and lutjanids form a clade with 76% support, with the siganid species 
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3.2. Hexostoma thynni 

Sequences of ITS2 rDNA from all 21 worms from all three hosts were identical to 

each other, as were those of 28S C1-D2 rDNA. Here we present the Bayesian 

Inference analysis for H. thynni 28S C1-D2 rDNA (Fig. 3), with previously 

published polyopisthocotylean 28S rDNA shown in Table 2. H. thynni ITS2 rDNA 

sequences have also been submitted to Genbank under the following accession 

numbers EF653390 (southern bluefin tuna, Port Lincoln), EF653391 (southern 

bluefin tuna, Cabbage Patch), EF653392 (yellowfin tuna, Geraldton), EF653393 

(northern bluefin tuna, Spain), although they have not been presented in a 

phylogenetic analysis as there are few polyopisthocotylean ITS2 rDNA sequences 

available through public databases. All H. thynni sequences, from T. albacares, T 

maccoyii and T. thynnus forms a clade with 100% support to the exclusion of all 

other taxa in the analysis, H. thynni forms a clade (87%) with Zeuxapta seriolae 

(Family Heteraxinidae) and two microcotylid spp. Zeuxapta seriolae and the two 

microcotylid spp. form a clade with 100% support. The two microcotylid spp. form 

a clade with 100% support. Metacamopia oligoplites (Family Allodiscocotylidae) 

and Kuhnia scombri (Family Mazocraeidae) form a clade with 51% support. 
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Fig. 3. Bayesian Inference analysis using 28S CI-D2 rDNA for H. thynni. Polystoma gallieni 

designated as the functional outgroup. Bar = 0.1 substitutions/site. Abbreviations: NBT-

Northern bluefin tuna, Thunnus thynnus, SBT- Southern bluefin tuna, 7'. maccoyii, YFT-

Yellowfin tuna, T. albacares. Hexostoma thynni, which bears four pairs of clamps, is more 

closely related to two representatives of a mazocraeidean suborder of Polyopisthocotylea 

bearing multiple pairs of clamps (Microcotylinea, as represented by 2 microcotylids 

(Microcotyle spp.) and a heteraxinid, Zeuxapta seriolae) than it is to two representatives of 

other mazocraeidean suborders that also bear four pairs of clamps (Mazocraeinea as 

represented by a mazocraeid, Kuhnia scombri; and Gastrocotylinea as represented by an 

allodiscocotylid, Metacamopia oligoplites). 
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3.3. Capsala sp. 

The 28S D1-D2 rDNA sequences of Capsala sp. from farmed T maccoyii off 

Australia and farmed T. orientalis off Pacific Mexico were found to be identical in an 

alignment of 799 nucleotides. Capsala sp. 28S rDNA sequences have been submitted 

to Genbank under the following accession numbers EF653379 (southern bluefin 

tuna, Port Lincoln), EF653380 (Pacific bluefin tuna, Mexico). 

4. Discussion 

4.1. Choice of DNA regions for taxonomy 

Olson and Tkach (2005) reviewed the literature and reported many cases 

where multiple ribosomal DNA regions, including ITS2 and 28S, have been used 

successfully to determine the level of conspecificity among various platyhelminths. 

Nolan and Cribb (2005) reviewed the utility of ITS sequences for trematode species 

identification and conclude that intraspecific variation is usually low and frequently 

appears to be absent. These authors also noted that ITS2 has successfully 

discriminated differences among digeneans from many families. The current study is 

consistent with these conclusions and shows that ITS2 is a valid marker for 

distinguishing two species of Cardicola (C. forsteri and C. sp.) infecting northern 

bluefin tuna in Spain. We also found both of these ITS2 sequences of Cardicola in 

other regions of the world, without any variation, indicating that we had collected 

conspecific material of both species from other distant localities (C. forsteri in 

Australia and C. sp. in Pacific Mexico). In addition, for Hexostoma thynni and 

Cardicola forsteri, we have data for not one but two gene regions (ITS2 and 28S) in 

which no evidence of variation was found across widely separated geographic 

distances (except for 1 base pair difference in 28S in Cardicola forsteri between 
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Spain and Australia). Finally, for Capsala sp., no evidence of nucleotide variation 

was observed in partial 28S rDNA sequences between specimens collected from 

Pacific Mexico and Australian waters over a large region (799 characters). However, 

only small numbers of specimens of Hexostoma thynni and Cardicola forsteri were 

able to be collected thus increasing the chances of obtaining identical sequences by 

chance. We suggest that this is the first time that molecular analyses have 

demonstrated that marine platyhelminth species are identical on congeneric host 

fishes that have near global distribution. 

4.2. Distribution of marine digeneans 

The results of previous molecular studies on the distribution of parasitic 

marine platyhelminths (digeneans) of coral reef fishes have shown that some cryptic 

species exist in different localities, but that other species are more widely distributed 

within particular oceans. For example, 14 Cardicola spp. were collected from Indo-

Pacific fishes by Nolan and Cribb (2006). Based on morphological and ITS2 rDNA 

evidence most host species were found to harbour different species of Cardicola in 

different locations, and only one putative species (from a siganid fish, Siganus 

margaritiferus, Siganidae) was the same from different localities (Lizard Island, off 

North-eastern Australia and North Stradbroke Island, off central-eastern Australia). 

In contrast, lack of molecular variation over a relatively wide geographical range 

(over 6000 km) has been demonstrated previously within three digenean species 

infecting three coral reef fishes off French Polynesia and the Great Barrier Reef 

(Schistorchis zancli, Apocreadiidae in Zanclus cornutus, Zanclidae, Preptetos 

laguncula, Lepocreadiidae in Naso lituratus, Acanthuridae and Neohypocreadium 

dorsoporum, Lepocreadiidae in Chaetodon vagabundus, Chaetodontidae) (Lo et al. 

2001). These locations were within a single ocean, the Pacific Ocean, whereas the 
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present study covered Pacific Ocean, Mediterranean Sea, Southern Ocean and Indian 

Ocean. Similarly, Chambers and Cribb (2006) showed that ITS2 rDNA sequences of 

a digenean (Quadrifoliovarium pritchardae, Lecithasteridae) in Naso unicornis, 

(Acanthuridae) were identical from Exmouth (Indian Ocean), Heron and Lizard 

Island (Western Pacific), and Moorea (far Eastern Indo-Pacific). Cribb et al. (2000b) 

suggested that larval coral reef fish probably contribute little to the dispersal of 

parasites of the adult fish, making parasite dispersal to different areas more difficult 

than dispersal of the fish themselves. In contrast to coral reef fishes, however, the 

seven species of tunas of the genus Thunnus have wide geographical ranges as adults 

and extensive regions of sympatry with each other, and very high mobility and 

distribution. 

4.3. Reasons for global distribution of tuna parasites 

It is possible that the two species of blood flukes (Cardicola forsteri and C. 

sp.) were translocated widely only recently, perhaps in infected intermediate hosts 

(which are currently unknown) transported in biofouling (attached to the hulls of 

ships). The outer hulls of ships provide vectors for introductions of various species as 

well as their parasites (Ruiz et al. 2000, Lafferty et al. 2004). Consequently, centres 

of shipping activity such as ports are considered hot spots for marine invasions and 

introductions (Cohen and Carlton 1998). The Port Lincoln farming zone can be 

considered particularly susceptible to bioinvasions as it receives large volumes of 

shipping traffic (127 vessels during 2006; Flinders Ports South Australia, see 

www.flindersports.com.au , last accessed 12 May 2007). In addition, several of these 

vessels are refrigeration ships, in port to load frozen tuna for export, that have 

previously serviced tuna farms from the Mediterranean and Mexico so the possibility 

of trans location of infected intermediate hosts exists. 
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However, high host mobility seems to be the only plausible hypothesis 

explaining widespread distribution of the two species of gill flukes (Hexostoma 

thynni and Capsala sp.),. The life cycle of both polyopisthocotyleans and 

monopisthocotyleans involves no intermediate host. Furthermore, the majority have 

free-swimming larvae that are short-lived, usually surviving less than two or three 

days (Hayward 2005; Whittington 2005). The larvae of H. thynni and Capsala sp. are 

therefore unlikely to survive long-distance transport in either ballast waters or in 

oceanic currents. 

In addition to the four platyhelminths sequenced in the present study 

(Cardicola spp., H. thynni and Capsala sp.), three copepods (Pseudocycnus 

appendiculatus, Pseudocycnidae, Euryphorus brachypterus, Euryphoridae and 

Brachiella thynni, Lernaeopodidae) are also known, on the basis of their 

morphology, to be cosmopolitan on Thunnus spp. (see Cressey and Cressey 1980; 

Nowak et al. 2006). The distributions of T. maccoyii and T thynni do not currently 

overlap; T. maccoyii occurs in the southern oceans, from the south-east Atlantic 

across the southern Indian Ocean to east Tasmania and New Zealand (Grewe et al. 

1997, Farley et al. 2007); in contrast, T thynni occurs primarily in the northern 

Atlantic Ocean and adjacent seas (Fromentin and Powers 2005) (Figure 1). A 

population of T. thynni occurs in the coastal waters off South Africa (Collette and 

Nauen 1983), although since the 1990s catches in the southern Atlantic Ocean have 

been extremely rare (Fromentin and Powers 2005). Hence, platyhelminth and 

copepod parasites of T. thynni and T. maccoyii are likely to have been exchanged up 

until modern times in this region of host sympatry. Interoceanic migration occurred 

in the past for many species of tuna (Ely et al. 2005). For example, it has been 
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suggested that the common ancestors of Atlantic and Pacific bluefin tuna were 

sympatric until they were separated by the rise of the Isthmus of Panama (Coates et 

al. 1992). Following this event, during the Tertiary there could be still mixing of 

species along the West African coast due to stronger currents (Alvarado Bremer et 

al. 2005). Agulhas current activity resulted in leakage of Indian Ocean fauna during 

Pleistocene inter-glacials (Peeters et al. 2004). This suggests that one possibility 

would be that the parasites were first distributed globally a long time ago when the 

ranges of different tuna species overlapped. 

In the case of H. thynni, our molecular evidence confirms that this species 

also infects at least one other species of Thunnus — in this case T albacares, a 

species sympatric with both T. thynnus and T. maccoyii over much of their present 

ranges (Collette and Nauen 1983). Studies of control nucleotide sequence in T 

albacares did not provide any evidence of genetic differentiation between Atlantic 

and Pacific sub-populations (Ely et al. 2005). In addition, although the distributions 

of T. orientalis and T. maccoyii are considered largely allopatric, there are occasional 

anecdotal reports of individuals of T. orientalis in T. maccoyii farms in Australia. 

Such mixing of stocks of Thunnus spp. provides the opportunity for dispersal of their 

parasite fauna over a wide area. 

Cardicola forsteri has been reported previously, on the basis of 

morphological comparisons, from southern Australia (Cribb et al. 2000a; Aiken et al. 

2006 (Chapter 3)) and the Atlantic Coast of U.S.A (Bullard et al. 2004). We now 

record the species from the Mediterranean through our molecular analyses. We 

predict that more species of tuna with distributions that overlap with Thunnus 

maccoyii and T. thynni will prove to be infected with C. forsteri; including T. obesus 
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and T albacares. Similarly, C. sp. has been found from the Spanish Mediterranean 

and from off the Pacific coast of Mexico, so it is plausible that other Thunnus spp. 

are infected by this species as well. 

Unlike the five ectoparasites now known to have cosmopolitan distribution 

wholly or primarily on Thunnus spp. (Hexostoma thynni, Capsala sp., Pseudo cycnus 

appendiculatus, Euryphorus brachypterus, Brachiella thynni)--each of which also 

has a direct life cycle— the endoparasitic Cardicola spp. require an intermediate host 

to complete their life cycles. The intermediate host (or hosts) of Cardicola spp. 

remain unknown, and their apparent cosmopolitan distributions pose some 

interesting questions about their possible identity or identities. Likely candidates are 

bivalves or polychaetes (Cribb et al. 2001; Bott et al. 2005), and the intermediate 

host (or hosts) may have similar or overlapping distribution with Thunnus spp. 

Bayesian inference analysis suggests that Cardicola sp. is the sister taxon to 

C. forsteri and the analysis suggests that the Cardicola clade strongly with the host 

group, in this case higher scombrids, Thunninae (C. forsteri and Cardicola sp. 1), 

Scomberomorinae (C. sp. 4 and 5) and all others from siganid fishes and one lutjanid 

fish (Fig. 2). These relationships are similar to the distance analysis performed by 

Nolan and Cribb (2006) except for the separation of the two scombrid clades in the 

present analysis. Only one other Cardicola has been described from Thunnus, C. ahi 

Yamaguti, 1970 from T albacares and T. obesus, and obtaining C. ahi specimens for 

molecular analysis, as well as specimens of Cardicola sp. for morphological 

analysis, will be of great interest. Bayesian inference analysis of the 

polyopisthocotylean gene sequence data (Fig. 3) confirms the validity of the transfer 

of Hexostomatidae into a new superfamily, Hexostomatinea, from Mazocraeinea by 
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Boeger and Kritsky (1993), which had been based upon their cladistic analyses of a 

large series of morphological characters. 

In Thunnus maccoyii farmed off Port Lincoln, South Australia, the prevalence 

and intensities of Cardicola forsteri increase rapidly and peak two months after fish 

are transferred into cages from the wild, with 100% prevalence and an overall 

average of 27 flukes per infected tuna (Aiken et al. 2006 (Chapter 3)). Both 

prevalence and intensity decline over the rest of the grow-out season and this 

suggests that it is highly likely that the intermediate host for C. forsteri is in close 

proximity to the aquaculture leases (Aiken et al. 2006 (Chapter 3)). It is possible that 

C. forsteri is still present in the intermediate host population when T. maccoyii are 

not in the farming area. Marine parasites are adapted to survival in a dilute 

environment where encounter rates between intermediate host and definitive host are 

limited (Marcogliese 2002). Aiken et al. (2006 (Chapter 3)) also proposed that the 

immune response of Thunnus spp. may control the infection. As adult T maccoyii 

are oceanic, and juvenile T. maccoyii spend only approximately 20% of the year (in 

summer) over shelf and shelf break waters (J. Gunn, CSIRO Hobart, personal 

communication) in those habitats where the intermediate hosts are likely to occur. 

Rapid asexual reproduction within intermediate hosts may be essential for the 

parasite. 

4.4. Discrepancies between sequences 

Hexostoma thynni from Thunnus thynni has been analysed previously using a 

partial sequence of 28S (C1-D1) rDNA from a specimen from Sete on the 

Mediterranean coast of France (Mollaret et al. 2000). In the present study, the partial 

28S rDNA region of specimens that we also identify as H. thynni, from Australia and 
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Croatia, did differ slightly in partial 28S rDNA sequences of the species from France 

in that four nucleotide insertions are apparent over the alignment of 255 base-pairs 

with H. thynni from T. maccoyii, T albacares, and Croatian T. thynni. We think that 

it is necessary for additional specimens of H. thynni to be sequenced from France 

before it can be reliably confirmed that the sequence does differ by this amount from 

specimens we collected from elsewhere. Similarly, Mollaret et al. (2000) published a 

partial sequence of 28S (C1-D1) rDNA from a specimen of Capsala onchidiocotyle 

from France, and in the present study Capsala sp. from Australia and Mexico differs 

from the published sequence of that species by 5 substitutions over a region of 322 

base pairs (Mollaret et al. 2000). We suspect that the present Capsala sp. may in fact 

be conspecific with C. onchidiocotyle; more detailed taxonomic studies of capsalids 

from Thunnus spp. are now in progress. 

4.5. Geographic distribution of parasites 

We acknowledge that morphological studies would strengthen our 

conclusions based on molecular analysis, but due to the relative rarity of particular 

parasites in certain locations and hosts (Table 1), this has not yet been possible. 

While the parasites of this study are widespread, they were not observed at all sites 

which were sampled (Figure 1.) and may reflect a restricted distribution due to some 

influence on the host population... However, to determine whether they are truly 

absent from any region, large samples would need to be examined for each location. 

Such data have been collected only for the Port Lincoln site in Australia. The 

restricted distribution of the parasites to a few locations rather than all may be a 

result of shrinking host ranges. The abundance of many species of fishes has been 

adversely affected by fishing (Jackson et al. 2001, Myers and Worm 2003). In turn, a 
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fishery can fish out parasites if a stock is fished to a density below the host density 

threshold for transmission (Dobson and May 1987). For example, fishing apparently 

led to the extinction of a swim bladder nematode (Cystidicola stigmatura, 

Thelaziidae) from lake trout (Salvelinus namaycush, Salmonidae) in the Great Lakes 

(Black 1983) and significantly reduced the prevalence of a tapeworm (Triaenophorus 

crassus, Triaenophoridae) in common whitefish (Coregonus lavaretus, Salmonidae) 

(Amundsen and Kristoffersen 1990). The significant decline in the normalized 

reports of disease in marine fish (Ward and Lafferty 2004) was based almost entirely 

on data from commercially fished species, and this suggests the hypothesis that 

exploitation has reduced diseases in fishes by making transmission more difficult 

(Lafferty et al. 2004). On the other hand, the apparent restricted distribution of the 

parasites in this study may be due other factors, such as the natural distribution of the 

hosts themselves. 

4.6. Implications for tuna aquaculture and fisheries 

This is the first molecular evidence confirming that species of marine 

parasites are naturally cosmopolitan. We compared parasites of four species of 

pelagic fishes that are commercially important in fisheries and aquaculture in 

different regions around the world: tunas belonging to genus Thunnus spp. from the 

Pacific Ocean (Mexico), Mediterranean Sea (Croatia and Spain), Southern Ocean 

(South Australia) and Indian Ocean (Western Australia). The study involved 

extensive collaborative effort to survey parasites in each region of the world where 

bluefin tunas are fished and farmed. We believe that this research has two broader 

implications. First, it indicates that parasites (and therefore other aetiological agents 

associated with infectious disease as well, such as bacteria and viruses) of tunas 

farmed in one region of the world may have the potential to spread via wild stocks to 
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distant farming regions. Second, greater confidence can now be placed in the results 

of previous morphological studies of other particular parasites of pelagic fishes, 

which had indicated widespread distribution. 
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Abstract 

The epidemiology of a blood fluke, Cardicola forsteri, was examined in cultured 

southern bluefin tuna, Thunnus maccoyii, over a six-month growout season in Port 

Lincoln, South Australia. Ten tuna were sampled from the transfer from tow cages to 

sea cages in March, and then ten tuna from each cage once a month until August. A 

total of 220 tuna were sampled. Intensities and prevalences were found to increase 

rapidly and peak two months after transfer with 100% prevalence and an overall 

average of 27 flukes per infected tuna, with one tuna having a recorded 99 worms in 

its heart. After this peak both prevalence and intensity declined to an average of 3.1 

flukes per infected tuna and a prevalence of 35%. Condition Indices, calculated from 

weights and lengths and used as a measure of production, were shown to have no 

significant relationship with intensity or prevalence. C. forsteri infections declined 

after an initial peak and no effect was observed on tuna condition index despite high 

intensities being recorded. It is concluded that T. maccoyii is able to control blood 

fluke infection, despite decreasing water temperatures. 
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1. Introduction 

The southern bluefin tuna, Thunnus maccoyii, is a commercially important fish that 

is distributed widely in the southern hemisphere between 30 0  and 50° south. Since 

1991, this species has been the focus of an aquaculture industry based in Port 

Lincoln, South Australia. Tuna are caught in the Great Australian Bight and are 

towed to Port Lincoln where they are fattened in sea cages for a period of between 2- 

6 months before being exported as frozen or fresh product to Japan for the sashimi 

market. The industry is economically significant producing 7810 tonnes worth $151 

million in 2004 (T.B.O.A., pers. corn.) 

In comparison to other farmed species, tuna health has been little studied (see review 

by Munday et al. 2003). An investigation into the risk factors facing the health of 

southern bluefin tuna was undertaken by Nowak (2004) and a digenean sanguinicolid 

blood fluke, Cardicola forsteri, was identified as one of the more significant risks, 

though low in absolute terms, to southern bluefin tuna health. C. forsteri was 

discovered in farmed southern bluefin tuna in 1997 as a result of an investigation of 

nodular gill lesions (Colquitt, 1999; Cribb etal. 2000). The pathology of the fluke 

was investigated by Colquitt, Munday and Daintith (2001). In most cases, the 

pathology observed was not considered to be sufficient to lead to mortalities, 

however it was considered to be significant (Colquitt et al. 2001). Mass mortalities of 

cultured fish in North America, Europe and Asia were associated with blood fluke 

infections (Bullard, 2002). Consequently Nowak (2004) suggested that further 

research was required on the biology and epidemiology of the blood fluke. The aim 

of this study was to investigate the epidemiology of the blood fluke and to determine 

if there was a loss of production in farmed southern bluefin tuna over one grow-out 

season in 2004. 
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2. Materials and Methods 

A single cohort of tuna was examined over a six-month period. Ten tuna were 

sampled during the transfer from a tow cage to four experimental sea cages (set apart 

from normal commcercially operated sea cages) on the 17 th  March 2004. Tuna were 

then sampled from the experimental sea cages at approximately monthly intervals 

until August. Forty tuna were sampled on 18 th  April (10 tuna from each of the 4 

experimental sea cages) , thirty tuna were sampled on 19 th  May (10 tuna from 3 of 

the 4 experimental sea cages), forty tuna were sampled on 16 th  June (10 tuna from 

each of the 4 experimental sea cages), fifty tuna were sampled on 18 th  July ( 10 tuna 

from each of the 4 experimental sea cages plus ten tuna from a commercially 

operated sea cage)1 and forty tuna were sampled on 19 th  August (10 tuna from each 

of the 4 experimental sea cages). To determine whether different feed regimes had an 

impact on worm burdens, five cages were used throughout the trial; Cages A and B 

were normal commercial cages that were fed pilchards, Cage C was fed pilchards 

with a high vitamin coating, Cage D was fed a standard pellet and Cage E was fed a 

high vitamin pellet. A total of 220 tuna were examined. Sampling took place during 

normal commercial harvesting operations. Systematic random sampling was used by 

selecting southern bluefin tuna at five minute intervals during harvest operations. 

Gills and hearts were obtained during the harvest, stored on ice, and taken to the 

laboratory. Hearts were dissected open 2-4 hours after removal from the carcass and 

flushed with physiological saline to dislodge any adult flukes. Flushes were then 

poured into petri dishes and were then examined for the presence of adults using a 

dissection microscope. Prevalences, the number of host infections as a proportion of 

the population at risk, and intensities, the number of individual worms in each host 

(Bush et al. 1997), were recorded. Gills were examined for grossly visible lesions. 

Weights and lengths for each tuna sampled were also obtained, and a Condition 
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Index was calculated using the South Australian tuna industry formula, whole weight 

/ length3  (Hayward et al. 2008). Temperature was obtained using a probe. Two-way 

ANOVA's were used to determine if there was any statistical differences between 

months and regression/correlation tests were used to determine if there was any 

relationship between Condition Index and fluke intensities for each month and also 

for the overall 6-month period. SPSS 12.0.1 was used for all statistical analyses. An 

alpha level of 0.05 was set for all statistical analyses. 

3. Results 

A range of adult fluke intensities (0-99) were observed within the ventricle of tuna. 

No statistical correlation between fluke intensity and Condition Index was observed 

for any month (Figure 1, Table 1.). Most individuals with high intensities of blood 

fluke infection had similar Condition Indices to those with low intensities. 

Table 1. Results of correlation analysis examining the relationship between the intensity of blood 

fluke infection and condition index in each month for southern bluefm tuna fanned in Port Lincoln. 

Month F-value d.f. R2  P- value 
March 0.403 9 0.048 0.543 
April 0.365 39 0.026 0.347 
May 0.117 29 0.092 0.117 
June 0.101 39 0.069 0.102 
July 0.690 49 0.003 0.69 
August 0.114 39 0.064 0.114 
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Figure 1. Intensity of flukes (Cardicola forsteri) recorded in Thunnus maccoyii cultured over a six-

month period off Port Lincoln, for each Condition Index recorded. 

Intensities of flukes were observed to be very low initially with just a single worm in 

one of ten fish at the time of transfer. Within two months, the intensities increased 

rapidly, peaking in May with an average of 27 flukes per tuna (Figure 2). It was 

during this month that a single tuna was observed to be infected with 99 adults in the 

ventricle, in a cage where the average was 38 flukes in each tuna (Figure 3). 

Figure 2. Average intensity of Cardicola forsteri in Thunnus maccoyi cultured over a six-month 

period off Port Lincoln, each month including temperature (°C) recorded for that month. 
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Figure 3. Average intensities of Cardicola forsteri in Thunnus maccoyi cultured over a six-month 

period off Port Lincoln, for each cage per monthly harvest including temperature (°C) recorded for 

that month. 

Intensities then tapered off over the next three months, declining to an average of 

3.14 adults per infected tuna (Figure 2). A similar pattern was observed in the 

monthly prevalences, with a rapid increase to peak in May (reaching 100% 

prevalence in all cages) (Figure 4), followed by a decline to 35% (Figure 5). This 

decline, however, was more gradual than the decline observed for the fluke burdens. 

Figure 4. Prevalence of Cardicola forsteri in Thunnus maccoyi cultured over a six-month period off 

Port Lincoln, for each cage per month including temperature (°C) recorded for that month. 
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Figure 5. Monthly prevalence of Cardicola forsteri in Thunnus maccoyi cultured over a six-month 

period off Port Lincoln including temperature (°C) recorded for that month. 

The water temperature of the area in which the tuna were being cultured was shown 

to decline gradually over the period of sampling (Figure 6.). The temperature was 

highest in March at 20.75°C and the lowest temperatures that were recorded in July 

and August at 14.00°C. 

Figure 6. Temperature (°C) of water in which cultured Thunnus maccoyi were located off Port 

Lincoln. 
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No statistical correlation was observed between Condition Index and fluke intensity 

in any month (Table 1.). No significant difference in intensity was observed 

between groups of tuna fed different diets (ANOVA, F=1.66, df=3, P<0.178). Mean 

intensity was significantly affected by months (ANOVA, F=26.89, df =4, P<0.001). 

May and June had different mean intensities to all other months and to each other 

(Fisher LSD test, P<0.05). There was no significant difference between cages 

(F=1.31, df=4, P=0.266). Month was shown to significantly exert an influence on 

cage with regards to mean fluke intensity (F=1.898, df=11, P=0.042) (Table 1.). 

Table 2. Summary of statistics illustrating the effect of month of intensity of C. forsteri infection in 

farmed 7'. maccoyii in Port Lincoln. 

Month Mean Median Range 
Interquartile 

range 
March 1.0 1 0 0 
April 6.6 4 41 4.5 
May 26.3 23.5 97 16.5 
June 14.3 10 91 10 
July 4.7 3 18 5 
August 3.1 2 10 1.75 

Levene's test of equality of error variances was shown to be significant (F=7.44, 

P<0.001), therefore the results of the analysis should be treated with caution 

(Underwood, 1981). 

4. Discussion 

The intensity and prevalence of blood fluke infection of southern bluefin tuna 

declined after an initial peak. Similar declines in intensity and/or prevalence 

following a peak has been observed in other cultured fish species infected by 

sanguinicolids. Ogawa and Fukudome (1994) investigated a Seriola dumerili mass 

mortality in Japan, May 1993, caused by blood fluke Paradeontacylix spp. and 

observed an increase and peak in mortalities and suggested that the blood fluke 

infection has an annual cycle; cercarial invasion starts in September, eggs 
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accumulate in the gills and heart from November, and mortality, occurring in the 

winter months from December to March, decreases with increasing water 

temperature. Ogawa et al. (1993) suggested that cercariae started to emerge with 

decreasing water temperature. Some blood flukes exhibit seasonal development 

driven by an interacting set of abiotic factors (Bullard and Overstreet, 2002). 

However the way in which each of those factors affects the miracidium, 

schistosomule, and adult for any species, is not well understood. Water temperature 

and salinity are two factors that would most likely influence the behaviour and 

physiology of blood fluke miracidia and cercariae as well as the host (Bullard and 

Overstreet, 2002). 

In our study as water temperature decreased the intensity and prevalence of C. 

forsteri infection decreased after an initial peak. One might expect that with 

decreasing temperature infection would rise due to the immunosuppressive effects of 

temperature (Bly et al. 1997). Immune responses to sanguinicolids have been 

documented in fish and have also been shown to be influenced by temperature 

(Richards et al. 1996). The immune system of Thunnus maccoyi is not affected by 

ambient temperature, due to their endothermic and homeothermic abilities enabling 

their bodies to have elevated body temperatures above that of ambient (Watts et al. 

2002). Antibody response to C. forsteri by southern bluefin tuna has been 

demonstrated (Watts et al. 2001). This may be why the infection tapered off after the 

initial peak and also the reason why the Condition Index of the tuna is not associated 

statistically with fluke intensity. The antibody response may also explain the 

overdispersed distribution of intensity. Parasite distributions in host populations are 

almost always overdispersed, in that many hosts are infected with a few parasites and 

only a few hosts are infected with a large number of parasites (Cox 1993). Variation 
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in host response may lead to differing infection levels in the host population leading 

to an overdispersed distribution. Rubio-Godoy et al. (2003) suggested that host 

response was a factor that led to an overdispersed distribution of Discocotyle 

sagittata in Oncorhynchus mykiss, therefore it is possible that the tuna antibody 

response against blood fluke is leading to a similar distribution of the parsite 

population. 

Based on the pattern for prevalence and intensity of infection, it is unlikely, that wild 

tuna re-introduce the fluke at the start of each season. Therefore, the tuna are being 

exposed to infective stages when they are introduced to the sea cages. Colquitt et al. 

(2001) also suggested that the tuna were being infected post capture as their study 

failed to detect infections in wild fish. This would also indicate a short time for the 

penetrating cercariae to develop into mature adults. Kirk and Lewis (1993) found that 

Sanguinicola inermis larvae mature into adults approximately 30 days post exposure 

whilst Sommerville and Iqbal (1991) reported sexual maturity at 60 —90 days. This 

difference may be due to temperatures. The hosts used by Sommerville and Iqbal 

(1991) were kept at lower temperatures (15°C-18°C) than those reported by Kirk and 

Lewis (1993) (20°C). As tuna are able to maintain higher temperatures than ambient, 

which was between 18.67°C and 20.75°C in the first two months of this study, one 

would expect a relatively quick maturation. 

The rapid initial increase in fluke burdens may indicate that the asexual stages of C. 

forsteri aestivate in the intermediate host over the summer when the tuna are not 

present in the area. This aestivation may be a response to the absence of tuna over the 

summer period. A similar situation has been observed in other digeneans where the 

definitive host is not present throughout the whole year and an over-wintering period 
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is apparent. Vayrynen et al. (2000) observed the larval digenean fauna of lymnaeid 

snail populations from two lakes in northern Finland and found that the annual 

parasite species composition within the two lakes was relatively stable despite a long 

dormant winter in which the avian definitive host were not present, thus causing a 

break in the transmission cycle of the parasites each year. Parasite infections are 

gradually lost when the birds migrate to their wintering area. Vayrynen et al. (2000) 

found clear evidence the larval digeneans were over wintering in their snail hosts 

thereby maintaining infections within the mollusc population which then act as a 

source for re-infection of the birds returning to breed in the spring. Vayrynen et al. 

(2000) concluded that the complete re-establishment of parasite life-cycles each 

spring via the adult birds must therefore be a rapid process as with our observations 

for C. forsteri. 

The intermediate host of C. forsteri is currently unknown, but other marine 

sanguinicolids are known to be hosted by polychaetes or bivalves (Smith, 1997). 

This intermediate host must be in close proximity to the tuna for so many tuna to 

become infected in a short period, and their location is likely to be in the sediment 

below the cages or attached to the sea cages. Presently there is only one life cycle 

known for a marine sanguinicolid. Aporocotyle simplex uses a polychaete 

intermediate host, Artacama proboscidea, a sedentary tube-dwelling terebellid 

polychaete common on the muddy sea floor of Oresund, Denmark (Koie, 1982). 

Munday et al. (2003) suggested that the C. forsteri may also have a deleterious effect 

on its intermediate host as Port Lincoln tuna farmers have reported more severe 

infections at new cage sites. This is supported by K2& (1982) who observed 

atrophication of the gonads and free sexual products in infested A. probosidea during 
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growth and multiplication of the rediae, possibly a result of competition by the rediae 

for available nutrients. Consequently all A. pro boscidea harbouring rediae became 

sterile due to the castration by the parasites. Infested polychaetes also showed a 

decreased life span compared to uninfested polychaetes (Koie, 1982). 

The apparent lack of an effect of the blood fluke on southern bluefin tuna is in 

contrast to other investigations of blood fluke infected fish. In the mass mortality of 

1993 in S. dumerili in Japan the cumulative mortality rate in one month ranged from 

50% to more than 80%. Typical signs of suffocation such as an opened mouth and 

opercula, were apparent on dead fish. Examination of the gills of dead fish revealed 

that eggs of P. grandispinus and/or P. kampachi had accumulated in the afferent 

arteries (Ogawa and Fukudome, 1994). The mortalities reported occurred during 

winter at temperatures that were not optimal for Seriola and in consequence may 

have been a result of immunosuppression. If a host immune response is operating in 

southern bluefin tuna, there may be no or little energy consumed by such a process, 

as we have been unable to demonstrate an effect on growth as measured by 

Condition Indices. However, one negative effect is apparent, as white lesions 

commonly occur on the gills, and this is presumed to be caused by the lodgement and 

hatching of the eggs of C. forsteri (Colquitt, 1999). Nevertheless, this pathology may 

not be significant at the levels of infection seen over the reported harvest season, as 

the lesions do not occlude all of the gills. Herbert and Shaharom (1995) found no 

pathology in cultured Lates cakarifer when infected by Parasanguinicola 

vastispina. However P. vastispina was not abundant in the sea bass, with an average 

intensity of 2.5 adults in the branchial arteries, dorsal aorta, mesenteric venules and 

renal arteries. Another sanguinicolid found in sea bass is Cruoricola lates and 

although pathology due to this parasite was reported, Herbert et al. (1995) found 
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levels that were insufficient to cause mortality (3 — 13). Herbert etal. (1995) 

suggests that it was the low intensity of infection that was the direct cause of the lack 

of mortality and minor pathological changes. The results from this study disagree 

with this suggestion as relatively high intensities were observed with no significant 

pathology and also condition indices that were higher than the average for the cage 

from which the tuna had come from. Despite there being no significant pathology in 

the tuna this does not mean that the infection could not combine with other factors to 

cause severe illness or death (Colquitt et al. 2001). It is generally believed that a 

disease assists in secondary infections. First infection might compromise host 

biodefence mechanisms. Kumon et al. (2002), for example, found that blood fluke 

infested yellowtail Seriola quinqueradiata, when challenged with the bacterial fish 

pathogen Lactococcus garvieae had a significantly higher final cumulative mortality 

than fish uninfested with blood fluke. 

Currently no significant gross pathological changes or mortalities have been 

attributed to C. forsteri. However the infection may combine with other agents to 

cause such effects, and further investigations into the epidemiology of this parasite 

are warranted. Furthermore, examination of the immune response to C. forsteri could 

provide insight into why there is no apparent pathological effect and may prove to be 

informative in providing information about other cultured fish species that are 

adversely affected by blood fluke infections. 
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Abstract 

Two stochastic models were developed to describe the infection pattern of Cardicola 

forsteri in farmed southern bluefin tuna, Thunnus maccoyii. Observed field data on 

the lengths of flukes over a growout season were used as the basis for the models and 

biological data from C. forsteri and other blood flukes infecting fish were used as 

parameters. Monte Carlo sampling techniques were used in the simulations. The first 

model simulated the lengths of fluke according to the month when they were 

sampled. The output of this model was then compared to the observed field data. A 

second model was developed to determine stochastically the age of the observed 

fluke using their lengths. The output of the first model was shown to be similar to the 

observed lengths of the flukes. An estimated time of infection was produced from the 

second model and it was shown that there were two major infection events early in 

the growout season that contributed to the majority of infections by Cardicola 

forsteri. These peaks of infection were shown to occur at 14 days (S.D.=10.2) and 55 

days (S.D.=10.1) post-transfer. Stochastic modeling has not been used before to 

describe the infection period of a helminth in cultured fish, and was shown to be 

useful here. 
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1. Introduction 
Cardicola forsteri Cribb, Daintith and Munday, 2000 (Digenea: Sanguinicolidae), 

the object of this study, is a parasite of farmed southern bluefin tuna, Thunnus 

maccoyii. The industry is based on the capture of wild tuna from the Great Australian 

Bight. Southern bluefin tuna are towed from the Bight to the offshore tuna farming 

zone near Port Lincoln and transferred into sea cages during summer and early 

autumn. Harvesting occurs 2 — 6 months after transfer once the southern bluefin tuna 

have been fattened on a diet of baitfish. A risk assessment examining the effect of 

husbandry on the health of southern bluefin tuna was conducted (Nowak, 2004) and 

identified C. forsteri as a moderate risk to Port Lincoln southern bluefin tuna 

industry, not for mortality but possibly compromising growth. The impact of C. 

forsteri on southern bluefin tuna has been investigated as well as its epidemiology 

(Colquitt et al., 2004; Aiken et al., 2006 (Chapter 3)). Aiken et al. (2006 (Chapter 3)) 

observed an epizootic in southern bluefin tuna without any evident adverse 

production effects such as a decrease in condition indices. However it was suggested 

that more investigation was warranted in light of this epizootic and that sublethal 

production effects were uncertain at the time. 

Cardicola forsteri is a blood fluke with a complex life cycle that infects southern 

bluefm tuna as well as wild and farmed northern bluefin tuna, T. thynnus (Bullard et 

al., 2004; Nowak et al., 2006). It is a sanguinicolid trematode and its intermediate 

host is unknown but is most likely a polychaete or bivalve (Smith, 1997). 

Sanguinicolids are parasites of marine and freshwater fish (Smith, 1997). Most 

species establish in the heart, bulbus arteriosus, ventral aorta, or branchial vessels, 

although distributions within the cephalic or dorsal vessels are not uncommon (Kirk 

and Lewis 1994). Once established, the adult fluke lay eggs which travel to the gills 

where they lodge. Adult fluke may also migrate to and from the gills to lay eggs. 
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Adult Paracardicoloides yamagutii have only been observed in the gills of eels 

(Anguilla australis and Anguilla dieffenbachia) after migrating there to lay eggs 

(Hine 1978). Free swimming miracidia hatch from the eggs and break out of the gill 

structure into the external environment. These miracidia will seek out an appropriate 

intermediate host into which they will penetrate to undergo asexual reproduction as 

rediae and/or sporocysts to produce infective cercariae. Organisms observed to be 

infected with marine sanguinicolid cercariae have included bivalves and polychaetes 

(Smith, 1972; Smith, 1997). Cercariae are shed from the intermediate host and 

actively search for the definitive host, a fish. The cercariae will penetrate the skin of 

the host and juvenile flukes will attempt to reach the circulatory system in which 

they will undergo a migration to a final site where they will mature (Smith, 1997). 

For C. forsteri the final site is the heart (Cribb et al., 2000). Aiken et al. (2006 

(Chapter 3)) observed very low levels of C. forsteri in southern bluefm tuna at 

transfer to sea cages, suggesting that the majority of infection and the occurrence of 

the life cycle occur in the Port Lincoln farming area. New methods that do not 

require destructive techniques are needed to elucidate aspects of the ecology and life 

cycle of this parasite due to the complexities of working with the highly valued 

southern bluefin tuna. 

• One method is to develop a stochastic simulation model using observed field data. 

Although models are commonly used to explore host-parasite systems, they are 

rarely used to examine marine fish-helminth systems and few of these have 

incorporated observed field data as a basis for deriving the model (des Clers, 1990; 

Langlais and Silan, 1995; Bouloux et al., 1998). Using such information a simulation 

can be derived describing the time that the southern bluefin tuna are infected and 

how long flukes remain in the host. Although this biological model is not intended to 
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be predictive it can be used to describe the patterns of infection over a single growout 

season in 2004. The benefits of this model over a descriptive analysis is 

that modelling will provide information about actual infection events by C. forsteri 

cercariae over the growout period whereas a descriptive analysis is only able to 

provide a picture of infection at the time the tuna is sampled. Addiotnally a good 

understanding of the growth of the fluke inside the host will assist in understanding 

the life cycle of the parasite, and therefore, support any measures to contain its effect 

on farmed southern bluefin tuna if ever warranted. 

2. Methods and Materials 
2.1. Life cycle elucidation 

Bivalves and polychaetes were collected from the nets and pontoons of sea cages and 

from the sediment beneath cages for identification of the intermediate host. Samples 

were dissected and analysed under a dissecting microscope (Olympus SZX12) for the 

presence of C. forsteri asexual stages. 

Investigations into the organs of fifty-seven southern bluefin tuna, sampled in 2005, 

were undertaken to determine if the heart is the primary site of location for C. 

forsteri. Random samples of southern bluefin tuna were taken from normal 

commercial operations throughout the 2005 growout season. Systematic random 

sampling was used by selecting southern bluefin tuna at five minute intervals during 

harvest operations. The liver, posterior and head kidney, branchial arteries, gut, and 

spleen were examined for adult flukes through dissection under a dissecting 

microscope (Olympus SZX12). 

The size the of adult flukes when reaching maturity in southern bluefin tuna was 

estimated by mounting a selection of C. forsteri specimens, stored in 10% neutral 
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buffered formalin, over a size range between 295 pm to 3931 pm taken from 

southern bluefin tuna sampled in 2004. Whole-mounts were stained with Mayer's 

haematoxylin, cleared with cedarwood oil and mounted in Canada balsam. 

Measurements were made with the Digitize program. Maturity was determined 

through the presence of eggs in the uterus. These measurements were not used in the 

models. 

2.2. Data collection 

A single cohort of tuna, originating from the Great Australian Bight fishing grounds 

(map reference 33 27S, 132 04E), was examined over a six month period in 2004 

(Aiken et al. 2006 (Chapter 3)). Ten tuna were sampled during the transfer from a 

tow cage to four experimental sea cages (set apart from normal commcercially 

operated sea cages) on the 17 th  March 2004. Tuna were then sampled from the 

experimental sea cages at approximately monthly intervals until August. Forty tuna 

were sampled on 18 th  April (10 tuna from each of the 4 experimental sea cages) , 

thirty tuna were sampled on 19 th  May (10 tuna from 3 of the 4 experimental sea 

cages), forty tuna were sampled on 16 th  June (10 tuna from each of the 4 

experimental sea cages), fifty tuna were sampled on 18 th  July ( 10 tuna from each of 

the 4 experimental sea cages plus ten tuna from a commercially operated sea cage)1 

and forty tuna were sampled on 19 th  August (10 tuna from each of the 4 

experimental sea cages). A total of 220 tuna were sampled. Sampling took place 

during normal commercial harvesting operations. Systematic random sampling was 

used by selecting southern bluefin tuna at five minute intervals during harvest 

operations. Sampling involved the collection of gills and hearts during harvest, which 

were then stored on ice and taken to the laboratory. Hearts were dissected 2-4 hours 

after removal from the carcass and flushed with physiological saline to dislodge any 
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adult flukes. Flushes were poured into Petri dishes and examined for the presence of 

flukes using a dissection microscope (Olympus SZX12) at 6x magnification. 

2.3. Data records 

All flukes were stored in 10% neutral buffered formalin and labelled according to 

what fish, cage and month they had been sampled from. Flukes were then pipetted 

out onto a Petri dish where they were viewed under a light microscope (Olympus 

BH2) at 25x magnification and images taken (Leica DC300f, Wetzlar Germany). 

Images were analysed using image analysis software (Sigma Scan Pro, Version 5.0; 

SPSS Science, Chicago, USA) and lengths recorded in Microsoft Office Excel 

(2003). 

2.4. Observed data analysis 

Distributions of lengths for each month were graphed and normal distributions fitted 

to them so that comparisons could be made to the output of the first model. 

Categories of 100 pm were used to group flukes into different length classes and 

frequencies of lengths for each month were calculated. Normal distributions were 

produced by calculating the means and standard deviations of the observed 

distributions which were then optimised to obtain the best fit of the normal 

distribution to the observed data. Values were then multiplied by a scaling factor. 

The scale parameter was a representation of the relative number of flukes observed at 

each month and was used to obtain the mean number of fluke per fish for the range 

of fluke lengths. 

85 



2.5. Models 

Two stochastic simulation models were used to explore the period of infection of 

southern bluefin tuna by C. forsteri. Both models were written in Microsoft Office 

Excel (2003) and simulations were run using Palisade @Risk (Version 4.5) with 

Monte Carlo sampling. The lengths of individual flukes were used as the basis for 

both models. Copies of the models are attached in Appendix 1.The purpose of the 

models is to describe the infection pattern during the 2004 growout season and is not 

intended to be predictive. There is no level of detail to take into account annual 

variability and the effect of temperature. An optimal situation for data collection 

would have been to repeat the collections from the field many times recording data 

and parameters for the models to explain variation in the observed data. However 

this was not possible due to the nature of the southern bluefin tuna industry. Serial 

testing at different times of culture is unusual as southern bluefm tuna harvests are 

subject to market demand for product and usually occur only from June to August. 

Consequently the 2004 serial sampling represented an unique opportunity to collect 

such data. These biological models are based on field data and are not biased by 

experimental constraints and are aimed at capturing the aspects which drive the 

relationship between C. forsteri and T. maccoyii. 

The models were to examine the patterns of C. forsteri infection in farmed southern 

bluefm tuna and also to determine when southern bluefin tuna were being infected. 

The first model simulated the lengths of flukes using the parameters that would be 

used for both models. The model was validated by comparing the fitted distributions 

of the observed data to distributions of flukes sizes by month as predicted by the 

stochastic model. The second model incorporated the observed data into a stochastic 

model to determine when southern bluefin tuna were being infected with C. forsteri 
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over the 2004 growout season. Once these key parameters were determined, they 

were used in the development of a model which could describe the time of infection. 

In order to describe the variability, resulting from the large number of repetitions of 

flukes lengths measured within each monthly sampling point, a stochastic model was 

used. 

2.5.1. Model parameter values 

The parameters used in the models in this paper have been derived from data 

obtained from known life cycles of other sanguinicolids (Sommerville and Iqbal, 

1991; Kirk and Lewis, 1992; Kirk and Lewis, 1996; Kua et al. 2002) as well as being 

the result of having been fitted to the observed data of the model. Parameters used 

include a mean time of infection in days after tuna are brought into the farming zone, 

a value for the time in days it takes for migration to the heart after cercarial 

penetration, an initial size at cercarial penetration, a growth rate, a minimum and a 

maximum size at death. Variability for the life span parameters was calculated 

through a best fit approach. 

2.5.2. Model development 

Using model parameters the growth and life span of 10,000 individual flukes at each 

day of southern bluefm tuna captivity were stochastically simulated using @Risk 

(Version 4.5) in model 1. Initially, parameters were calculated to describe fluke 

dynamics. Tuna are brought into the southern bluefin tuna farming zone on a 

particular day and may be infected by flukes at any time. Therefore a parameter 

describing the time of infection in relation to the days in captivity for each tuna was 

calculated from a normal distribution (normal: scale, mean, SD). At the moment of 

infection cercariae penetrate the skin at a particular size. Using results from previous 
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studies on sanguinicolids and biological information from C. forsteri, a size of fluke 

at time of entry to host was determined as a fixed value. Having penetrated the host 

at this size the fluke undergoes a migration to the heart. This time from infection to 

reaching the heart is defined by the migration parameter as calculated by a normal 

distribution (normal: scale, mean and SD). On reaching the heart, a fluke will grow at 

a certain rate until death. The growth rate parameter is described by an exponential 

distribution (exponential, A (scale), Lambda (power)). This development in the heart 

will take place within a period that is determined by the life span of the fluke. The 

life span parameter is described by a beta distribution (Pert (minimum, most likely, 

maximum)). Predicted distributions using these parameters were fitted to the 

observed distributions (at days 32, 63, 91, 123, 155) by varying the inputs, thus 

optimizing the parameters. 

The optimized parameters were applied to the observed fluke population to calculate 

likely time of infection in model 2. For each of the observed fluke the relationship of 

length to age was determined. Age was calculated for each fluke given its length, 

with variability taken into account using model parameters. These simulated data 

were then organized by length to find the mean and standard deviation of age for 

each length. Using these distributions for each length class, an age for each observed 

fluke was stochastically calculated based on its observed length. The age of the 

flukes was subtracted from the days in captivity to calculate the date of infection. 

2.6. Wild southern bluefin tuna survey 

Thirty-one wild southern bluefin tuna were caught from two areas in the Great 

Australian Bight, Cabbage Patch (March 2005) and the commercial fishing grounds 

much further west (map reference 33 27S, 132 04E) (January 2005 and January 

2006). Hearts were examined for the presence of adult flukes. 
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3. Results 
No asexual stages of C. forsteri were found in bivalve and polychaete samples (Table 

1). 

Table 1. Specimens of bivalves and polychaetes sampled for the asexual stages of C. forsteri located 

in or around sea cages of southern bluefm tuna farmed off Port Lincoln, South Australia, with the 

months and year in which they were sampled during the growout seasons of 2004 and 2005. 

Polychaeta Bivalvia 
No. No. 

Family/Genus Dissected Month Species Dissected Month 

Terbellidae 10 Feb (2005) Pinna bicolor 11 
May (2005), 
Aug (2005) 

Oweniidae 1 Feb (2005) Pinna sp. 4 Aug (2005) 

Trichobranchidae 1 Feb (2005) 
Mimaachlamys 
asperrima 9 

Aug (2005), 
May (2006) 

Magelona 1 Feb (2005) Pecten fumatus 8 Aug (2005) 
Chlamys 

Peocilochaetus 4 Feb (2005) bifrons 7 Aug (2005) 

Phyllodocidae 1 Feb (2005) Ostrea angasi 16 
Aug (2005), 
Sep (2006) 

Dorvilleidae 7 Feb (2005) 
Electroma 
georgiana 638 

Aug (2005), 
Sep (2006) 

Cirratulidae 2 Feb (2005) Mytilus edulis 355 

Aug (2005), 
May (2006), 
Sep (2006) 

Sylllidae 2 Feb (2005) 
Oenidae 2 Feb (2005) 
Capitellidae 5 Feb (2005) 
Ampharetidae 6 Feb (2005) 
Scalibregmatidae 1 Feb (2005) 
Sabellidae 5 Feb (2005) 
Eunicidae 22 Feb (2005) 
Glyceridae 2 Feb (2005) 
Nereidae 2 Feb (2005) 
Non Polychaetes 
Sipuncula 1 Feb (2005) 
Nemertea  1 Feb (2005) 

C. forsteri adults were observed only in the branchial arteries and the ventricle of the 

tuna. No adults were observed in the ventral aorta, bulbus arteriosus, atrium, liver, 

kidney, stomach or spleen. The majority of flukes were observed in the ventricle and 

only a small number of southern bluefm tuna (16%) were observed to have C. 

forsteri in the branchial arteries (Table 2). 
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Table 2. Intensities and prevalences of C. forsteri infection in 51 southern bluefin tuna farmed off 

Port Lincoln, South Australia, 2005, where both branchial arteries (BA) and ventricles (V) have been 

checked including the days the southern bluefm tuna have been in captivity (Days in Captivity, DIC). 

S.D. = standard deviation. 

DIC n 
Prevalence (%) 

V 
Intensity ± S.D. 

V 
Prevalence (%) 

BA 
Intensity ± S.D. 

BA 
80 5 80 3.5 ± 3.8 20 1 
86 1 100 2 100 4 
94 12 75 3 ±2.2 16 3 ± 2.8 
99 6 16 1 0 0 
102 6 50 4 ± 2.6 16 2 
105 6 33 1.5 ± 0.7 16 2 
108 6 33 1.5 ± 0.7 0 0 
118 6 100 2.2± 1.9 33 1 
135 1 1 5 0 0 
142 2 0 0 0 0 

Total 51 57 2.8 16 2.1 

A total of 40 flukes were measured. Fluke above a length of 1790 pm appeared to be 

gravid. One fluke was observed without eggs at 1772 pm. 

The parameters used in the model are summarized in Table 3. For the initial size 

parameter at which C. forsteri penetrates the host as cercariae, 50 pm was used. The 

mean date of infection parameter, infection (Days in Captivity, DIC), that the 

cercariae penetrate the host was 33 days with a standard deviation of 8 days and was 

the most likely value to produce the distributions in model 1 that best fit the observed 

distributions (the time from this estimated cercarial infection moment will be 

considered days post infection in the text). Six days with a standard deviation of 3 

days was used as the amount of time taken for migration. A most likely maximum 

life span was chosen to be 95 days and a most likely minimum life span to be 33 

days. 
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Table 3. Summary of parameters used in the two stochastic models. 

Infection (DIC) (days) 
Mean 33 
SD 8 
Migration to Heart (days) 
Mean 6 
SD 3 

Growth (pm) Minimum Most Likely Maximum 
Power 0.033 0.04 0.041 
Scale 2000 3200 6000 
Initial size at infection 48 50 51 
Death (days) Minimum Most Likely Maximum 
Minimum age at death 30 33 37 
Maximum age at death 90 95 150 

A relationship was shown to occur between the average size of flukes and the month 

in which they were collected (Figure 1.). Normal curves were fitted to the observed 

distribution of lengths (gm) by month of collection. 

Figure 1. Observed distribution of lengths of C. forsteri (gm) by month of collection during the 2004 

growout period in Port Lincoln South Australia. Smooth curves show fitted normal distributions. 

The parameters of the fitted distributions are shown in Table 4. At 32 days, the mean 

was constrained to 900gm, to remove the effect of the right tail of that distribution, 

representing a small number of flukes that were likely to have infected the fish prior 
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to transfer. The smallest flukes were observed in April, flukes observed in the other 

months were approximately the same length (Table 4.). 

Table 4. Parameters of the fitted distributions of observed C. forsteri lengths by month of collection 

from southern bluefm tuna farmed off Port Lincoln, South Australia, 2004, where DIC= Days in 

Culture, SBT= southern bluefin tuna. 

Sampling time April May June July August 
No. of SBT sampled 40 30 40 50 40 
Days in Captivity (DIC) (days) 32 63 91 123 155 
Mean (pm) 900.0 2394.8 2932.3 2543.9 2600.4 
SD (pm) 396.4 590.0 665.7 512.0 512.7 
Scale (pm) 427.6 2329.3 1314.2 276.6 114.8 

Flukes were shown to start to disappear from the heart approximately 30 days post 

infection and almost all flukes that had infected southern bluefin tuna during the 

growout were gone by day 90 (Figure 2.). A persistence curve was fitted to the 

observed proportion of flukes remaining in the heart. The fitted curve is a linear 

decrease commencing at 35 days and continuing to 95 days. At day 63, an 

intermediate point on the curve, 53.3% flukes remained in the heart. 

Figure 2. Observed proportion of C. forsteri remaining in the heart at different times, and fitted 

persistence curve over the period that southern bluefin tuna were in culture (Days in culture) during 

2004, Port Lincoln, South Australia. No C. forsteri were observed in March. 
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The growth of a blood fluke follows an exponential curve with a lambda of 0.0298, a 

y-shift of 20.79 and a scaling factor of 3344.8 (Figure 3.). Growth parameters were 

derived from the fitted curve on the observed growth of blood flukes. Observed 

growth was calculated from the means of the fitted distributions from the observed 

lengths for each month. The fitted and observed curves show that the flukes grow 

more rapidly in the early stages of infection rather than later. At day 32 flukes were 

observed to have grown to 900 jim, day 63 they had grown to 2394 gm and by day 

91 flukes had grown 2932 pm. 

Figure 3. Observed and fitted C. forsteri growth curves. Observed data points represent mean length 

of flukes at each sampling point during the 2004 growout period in Port Lincoln, South Australia. 

The distribution of fluke sizes as predicted by the stochastic model was compared to 

the fitted distributions of the observed data (Figure 4.). Although the outputs of the 

model are broadly similar in pattern to the observed, there are some differences. The 

number of flukes present in April was larger according to the model than the 

observed. This was adjusted by including a time delay for migration from skin to 

heart. The lengths of flukes in June and July to some degree shifted to the right and 
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were expected to be longer than they were observed to be. The number of flukes 

modeled in August was much lower than that observed in the August distribution. 

Figure 4. Distribution of C. forsteri sizes by month as predicted by the stochastic model, compared to 

the fitted distributions of the observed data from flukes collected during the 2004 growout period in 

Port Lincoln, South Australia. 

Based on the growth curve an estimated time of infection was determined (Figure 5.). 

Two peaks are shown at 14 days (S.D.=10.2) and 55 days (S.D.=10.1). A smaller 

peak of ongoing infection is shown at 110 days (S.D.=20.0). 
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Figure 5. Frequency of infection by C. forsteri in southern bluefin tuna over the 2004 growout 

season, in Port Lincoln, South Australia, based on estimated growth curve with fitted normal curves 

for each peak with days post transfer (DPT) for each peak occurrence. 

Twenty southern bluefin tuna were caught in the commercial fishing grounds and 

eleven southern bluefin tuna were caught at the Cabbage Patch fishing grounds. 

Blood flukes were only observed from the hearts of two fish from Cabbage Patch, 

one fish with one fluke and the second fish with two blood flukes. 

4. Discussion 
Two peaks of C. forsteri infection, at around 14 and 55 days after transfer of 

southern bluefin tuna, were demonstrated, with some lower level of continuing 

infection later with a peak at around 110 days. Although it appears that southern 

bluefin tuna are being infected throughout the growout season there are two major 

infection points. It is most likely that these points represent periodicity in shedding 

of cercariae from the intermediate host. Yacoubi et al. (1999) demonstrated the 

existence of successive periods of high production of Schistosoma haematobium 

cercariae in its intermediate host Planorbarius metidjensis. The same rhythm in daily 
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cercarial production was reported in three different populations of the intermediate 

host with the periodicity being 18-20 days. For the intermediate host of C. forsteri it 

maybe that the periodicity is between 40-42 days which is reflected in the two major 

peaks of infection of southern bluefin tuna. 

Another possible explanation for the two peaks of infection is that they represent 

periodical excysting of schistosomules from cercarial infection in the musculature of 

southern bluefin tuna. The musculature of the southern bluefin tuna was unable to be 

checked as the carcass is highly valued and therefore not available for dissection. 

Encysted sanguinicolid schistosomules have recently been described by Montero et 

al. (2009) in a study of Paradeontacylix ibericus infections in Seriola dumerili with 

schistosomula observed in the muscles more than 100 days after transfer from sea 

cages to landbased tanks. Koie (1982) also demonstrated small juvenile Aporocotyle 

simplex in the muscles of Limanda limanda up to 94 days post infection. If excysting 

of C. forsteri schistosomula is occurring in southern bluefin tuna then it may be that 

the majority of infections in southern bluefin tuna are due to wild tuna with current 

infections being transferred into the farming zone rather than a locally infected 

intermediate host population. However, this is unlikely as other evidence suggests 

that the infection occurs in the Spencer Gulf farming zone as C. forsteri intensities 

and prevalences are very low in the wild (Aiken et al. 2007 (Chapter 2)), and at 

transfer (Aiken et al. 2006 (Chapter 3)), and an antibody response against C. forsteri 

is only initiated after transfer of southern bluefin tuna into the farming zone from the 

wild (Aiken et al. 2008 (Chapter 6)). The two peaks may also be explained by a 

cyclical pattern of movement of flukes into the gills such as that observed in 

infections of Paracardicoloides yamagutii in the gills of Anguilla australis and 

Anguilla dieffenbachii (Hine 1978). However, this is unlikley to have occurred in this 
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study as the models are based on observations of fluke in the heart and a deduction of 

the day the cercariae infected the host based on their length. The bimodal distribution 

represents the number of cercariae infecting a host per day over the growout period. 

Thus any movement of fluke into the gills occurs after this period and is not taken 

into account by the model and therefore is not a causal factor in the shape of the 

distribution. The two peaks distribution is also unlikely to be the result of increasing 

host resistance on fluke growth rates as the model used constant parameters, e.g. 

growth rate, for all fluke in the model. As there was no difference in growth rates for 

fluke in the models there would be no effect by some influence on growth rate, e.g. 

host resistance, on the shape of the bimodal distribution. 

After the two peaks the number of infections taper off to an extremely low level. One 

possibility for this decline is that the cercariae are not present in the water column 

during this period. The decreasing water temperatures may be inducing an over 

wintering period in the intermediate host when the cercaria are not being shed 

(Vayrynen et al., 2000). Alternatively the intermediate host may be going through 

some mortality throughout the year either due to the parasite or some external 

influence. Koie (1982) showed that castration caused by Aporocotyle simplex was 

occurring in the populations of the intermediate host Artacama proboscidea. Kirk 

and Lewis (1992, 1993) showed that Sanguinicola inermis infected snails dies 12 

weeks after exposure to miracidia. 

Another reason for the decline in infections is that the juvenile migrating stages may 

be being killed before reaching the heart due to some host response. Many S. inermis 

flukes are unable to complete migration to the blood system of carp suggesting that it 

is most likely that most of these flukes are being killed by host defence mechanisms 
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during migration (Kirk and Lewis, 1996). The extracts of the cercarial and adult 

stages of S. inermis induce in vitro proliferation of carp lymphocytes and polarization 

of leucocytes (Richards et al., 1996a). These leucocytes were shown to cause 

tegumental damage to the cercaria and only minimal damage to the adult suggesting 

the presence of an immune evasion system (Richards et al., 1996b). C. forsteri 

juveniles may be being killed in this way leading to a decline in adult numbers in the 

heart as there is no recruitment to replace naturally dying adult flukes. 

C. forsteri adults appeared to die at a linear rate. Gradual decreases in fluke numbers 

have been observed in S. inermis as well. Kirk and Lewis (1996) analysed serial 

sections of carp for parasites. It was shown that approximately one third of the 

cercarial dose penetrated the fish and survival of the flukes gradually decreased 

throughout the course of migration and maturation. Smith (1984) also showed that 

the natural death rate of Fasciola hepatica is constant and gradual. 

The growth of the flukes in the host was represented by an exponential curve which 

described the flukes as growing more rapidly earlier rather than later. The growth of 

S. inermis was shown by Kirk and Lewis (1996) to be more rapid during the earlier 

juvenile stages than later when the flukes are mature. If the size of C. forsteri at 

maturity is taken to be around 1800 gm, as determined by the analysis of the stained 

and mounted flukes, the growth to this length represents the steepest part of the 

growth curve. However, this measurement must be treated with caution when 

comparing to the results of the models as it is possible that some shrinking of fluke 

may have occurred due to the staining and mounting method. Koie (1982) also 

showed that for many A. simplex the most rapid growth was that experienced in the 

early stages of development once the fluke had undergone its migration through the 

lymphatic system and muscles of its dab fish host to reach the branchial arteries. 

98 



The lengths simulated by the first model were shown to be similar to the observed 

data, although there were some differences. In June and July fluke lengths were 

expected to be longer than they were observed to be. This difference could be due to 

the earlier mortality of the longer worms so the worms which persist tend to be the 

shorter ones. As well, in August a low persisting infection may have led to a lower 

number of worms in the output of the model compared to the observed. Despite these 

differences the model was mostly similar to the observed data, and the model and the 

assumptions used were validated by this comparison. Model 2 could not be validated. 

However with the development of a new ELISA for C. forsteri infection in southern 

bluefin tuna the output of model 2 could be validated against serological results 

(Aiken et al. 2008 (Chapter 6). There is evidence that this ELISA is detecting 

penetrating cercariae and immature migrating blood flukes (Aiken et al. 2008 

(Chapter 6). Serial non-destructive sampling using the ELISA could be used to 

determine the intensity and time of infection of immature flukes invading the 

southern bluefin tuna host. Another possible method of validating the model would 

be to collect a second independent dataset from the field. A second dataset including 

the use of any parameters needed, e.g. water temperature, annual variation, would be 

able to explain variation in the observed data. However serial testing at different 

times of culture is difficult as southern bluefm tuna harvests usually occur only from 

June to August and over a short period of time. 

There is a possibility that these two peaks of infection are an artifact from the way 

the data were gathered, as the two peaks are roughly a month apart and may therefore 

represent flukes at the first collection and then the second. The model assumed 

constant growth rate regardless of the time of infection. This assumption may have 
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been incorrect and the two peaks may be being observed because growth rate is not 

constant in which case the peaks should merge into one. Flukes that infect later may 

have been growing more rapidly so that all flukes reached the same size after two 

months. Growth rate may be influenced by external factors outside the host. Water 

temperature is a significant factor in the maturation of adult trematodes in fish hosts 

(Chubb, 1979). In carp infected by S. inermis it has been shown that there are 

differences in the amount of time it takes for the blood flukes to reach maturity due 

to temperature of the water. Time to maturity was shown to take longer the lower the 

water temperature (Sommerville and Iqbal, 1991; Kirk and Lewis, 1996). However 

growth rate is most likely to be constant and independent of the time of infection or 

ambient temperature for C. forsteri in southern bluefin tuna. The homeothermic tuna 

provides an environment where the temperature is maintained above ambient water 

temperature. Additionally if any change in growth rate was to be expected it would 

be that growth rate would be slowed in response to decreasing water temperature and 

not increased. The same would be true if there was some intraspecific competition 

for space in the heart caused by the existing blood flukes slowing the growth rate in 

the newly recruiting flukes. Density dependent survival and reproduction as a result 

of space constraints has been shown in the case of the digenean Transversotrema 

patialense on the fish host Brachydanio rerio (Mills et al., 1979). Competition for 

space is unlikely for C. forsteri as the blood flukes are extremely small compared to 

the large size of the heart of the tuna. 

Parameters for the models were derived using other sanguinicolid life cycles. A. 

simplex is the only marine sanguinicolid life cycle that has been determined (Koie, 

1982). Extensive work on the life cycle of S. inermis infecting freshwater cyprinids 

has also been completed (Sommerville and Iqbal, 1991; Kirk and Lewis, 1993; Kirk 
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and Lewis, 1996). A small cercarial size was chosen as small C. forsteri were 

observed in the heart, one specimen measuring 93.78 pm. In other sanguinicolids the 

cercarial stage is much larger. In A. simplex the body of living, slightly flattened 

cercariae is 140 — 170 pm with an average of 10 cercariae at 160 pm (Koie 1982). In 

S. inermis the average length of cercariae were observed to be 95.7 pm and the 

cercarial length for Sanguinicola armata is 67.2 pm (Kirk and Lewis, 1993; Kua et 

al., 2002). As flukes of small size are found in the heart it can be assumed that the 

migration from the skin to the ventricle is rapid and six days was chosen for the 

value of this parameter. A short migration time (12 days) and minimal growth (67.2 

pm — 206.0 pm) for S. armata has been observed while a longer migration time (94 

days) and more growth (160 pm — 1000 pm) has been observed in A. simplex (Koie, 

1982; Kua et al. 2002). 

The life span of blood flukes is variable between species. Maximum life span for S. 

inermis was reported to be 56 -70 days (Kirk and Lewis, 1996). (Koie, 1982) 

observed A. simplex that were at least 180 days old. Taking into account the decline 

in numbers over a three month period observed in C. forsteri (Aiken et al. 2006 

(Chapter 3)) we chose a most likely maximum life span to be 95 days and a most 

likely minimum life span to be 33 days (Table 2). Maximum life span was chosen on 

account of the decrease in fluke numbers three months after southern bluefin tuna 

transfer observed in (Aiken et al. 2006 (Chapter 3)). Additionally it is unlikely that 

blood flukes will die before they are sexually mature and (Kirk and Lewis, 1996) 

reported that S. inermis produced eggs 28 —42 days post infection. Therefore 35 days 

was chosen as a minimum life span value. 
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Small numbers of flukes were observed in the branchial arteries of southern bluefin 

tuna. However there seemed to be no relationship between the numbers of fluke 

observed in the ventricle and those observed in the branchial arteries (data not 

shown). Similarly S. inermis adults are observed in the afferent branchial arteries, 

ventral aorta, bulbous arteriosus, ventricle and the atrium (Kirk and Lewis, 1996). 

During the later stages of the infection period (42-56 days post infection) degrading 

flukes are found lodged in the afferent branchial vessels proximal to the gills and 

amongst the muscular trabeculae of the atrium (Kirk and Lewis, 1996). It could be 

that in southern bluefin tuna the small number of flukes observed in the branchial 

arteries may have been dislodged from the heart due to morbidity of the flukes. 

Degraded flukes have been observed in the branchial arteries from tuna that had been 

in captivity for 80 days (Aiken Unpublished results). Due to the small numbers 

involved in the infection of the branchial arteries and the likelihood that these flukes 

have been dislodged from the ventricle, use of the heart as the basis for diagnosing C. 

forsteri infection for the model is justified. Cribb et al. (2000) observed C. forsteri 

only in the heart. 

As the data used in the models were taken from only one site in one year (2004), 

assessment of natural variability and therefore an evaluation of how generic the 

models might be is limited. However, these models are not intended to be predictive 

and despite the limitations the results are significant in that they provide evidence for 

C. forsteri infection in southern bluefin tuna as a localized occurrence, in which the 

majority of cases are due to infections that have occurred in the southern bluefin tuna 

farming zone in the Spencer Gulf rather than tuna bringing in infections from the 

wild. This is evident from the two estimated major infection periods after transfer 

and the low prevalence and intensity of infections in wild southern bluefm tuna. 
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Therefore if any action were needed to control infection the farm sites would be the 

focus rather than southern bluefin tuna entering the farming region. 
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Abstract 
A survey of blood fluke, Cardicola forsteri, infection in farmed southern bluefin tuna 

was undertaken from March 2004 to September 2006. Analyses of covariance and 

logistic regression were used to explore the effects of company, year, season, time in 

culture, and condition index on intensity, abundance and prevalence of blood fluke 

infection. Average prevalence of blood fluke infection was observed to be 62.64% 

over the period of the survey. Average intensity was demonstrated to be 6.20 (±0.57) 

fluke per infected host and 3.70 (±0.57) fluke per host. Year did not influence mean 

intensity or abundance although a significant decrease in prevalence in 2005 was 

evident. Tuna harvested in winter have a significantly greater abundance and 

prevalence of blood fluke than the tuna harvested in autumn. No effect of intensity or 

abundance of infection was observed on the condition of tuna. A universal factor in 

explaining variation in C. forsteri intensity, abundance and prevalence was company. 

Differences in infection levels between companies may be related to different 

husbandry measures employed on each farm or due to different average sizes of tuna 

farmed by each of the companies or due to the location of each company. 
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I. Introduction 
The blood fluke, Cardicola forsteri was first detected and described from farmed 

Thunnus maccoyii in Spencer Gulf, South Australia in 1997 (Cribb et al. 2000). 

Since this time C. forsteri has been detected in wild northern bluefm tuna in the 

Atlantic (Bullard et al. 2004) and in farmed northern bluefm tuna in Spain (Aiken et 

al. 2007 (Chapter 2)). C. forsteri appears to be able to complete its life cycle in the 

farming zone of the Spencer Gulf (Aiken et al. Submitted (Chapter 4)). However the 

blood fluke was most likely introduced into this area through the translocation of 

wild infected tuna into the zone or through local shipping activity acting as a vector 

for infected intermediate hosts (Aiken et al. 2007 (Chapter 2)). The intermediate host 

is unknown, but may include polychaetes or bivalves (Smith 1997). 

As a result of the concern caused by its presence in farmed T maccoyii stocks, C. 

forsteri has been the focus of a targeted surveillance system since 2003 (Nowak et al. 

2003; Deveney et al. 2005). A pattern of infection in farmedtuna includes an initial 

increase in intensity and prevalence after the wild tuna are brought in for farming. 

This increase is then followed by a decrease in both intensity and prevalence (Aiken 

et al. 2006 (Chapter 3)). This pattern of infection was observed first in 2004 (Aiken 

et al. 2006 (Chapter 3)) and again in 2005 (Aiken et al. 2008 (Chapter 6)). It is not 

known, however, what factors are responsible for this pattern of infection. Factors 

influencing infection patterns are usually investigated individually in fish parasitic 

diseases without consideration of the interactions between factors that may be 

generating confounding effects (Lefebvre et al. 2002). The aim of this study is to 

simultaneously assess the relative contribution of various spatial and temporal factors 

on blood fluke intensity, abundance and prevalence in farmed southern bluefin tuna 

over a three-year period (2004-2006). 
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2. Materials and Methods 
Southern bluefin tuna were sampled from commercial farms located in Spencer Gulf, 

South Australia. Nine companies participated, of which three were targeted for 

intensive sampling. Sampling was conducted over three consecutive years from 

March 2004 to September 2006. In each year samples were collected in the months 

March, April, May, June, July, August, and September. Sampling took place during 

normal commercial harvesting operations. Systematic random sampling was used by 

selecting southern bluefin tuna at five minute intervals during harvest operations. 

Gills and hearts were obtained during harvest, stored in individual containers on ice, 

and taken to the laboratory. Hearts were dissected open 2-4 hours after removal from 

the carcass and flushed with physiological saline to dislodge any adult flukes. 

Flushes were then poured into Petri dishes and were then examined for the presence 

of adults using a dissection microscope. They were then counted and prevalence (the 

number of infected tuna divided by the number of tuna examined x100), mean 

abundance (the total number of parasites divided by total number of tuna examined), 

and mean intensity (the total number of parasites divided by the number of infected 

tuna), were determined, as described by Bush et al. (1997). Weights and lengths for 

each tuna sampled were also obtained, and a Condition Index was calculated using 

the South Australian tuna industry formula, whole weight / length 3 . A number of 

companies also submitted mortalities over the three years. Hearts were removed from 

the carcass and processed as above for the presence of adult blood flukes. 

The effects of company, year, season, time in culture, and condition index on 

intensity, abundance and prevalence of blood fluke infecting southern bluefin tuna 

from three companies (Company A, B and C) were explored using SPSS 13.0. These 

companies were selected as they were represented in every year of the study. Months 
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in which southern bluefm tuna were sampled were grouped into seasons as data were 

missing for some months. An alpha level of 0.05 was set for all analyses. 

2.1. Blood fluke intensity and abundance analysis 

The effects of the various factors on blood fluke intensity and abundance were 

explored using analysis of covariance. Company (A, B and C), year (2004, 2005, 

2006), and season (autumn, winter) were entered as categorical predictors. Time in 

culture (days) and condition index were entered as continuous predictors. Since time 

in culture might have made a difference in exposure to parasitic infections, the 

influence of the variable, days in culture, was taken into account as a covariate. A 

three-way Analysis of Covariance (ANCOVA) was applied to the intensity data and 

separately to the abundance data for this purpose. ANCOVA requires that the 

relationship between the response variable and each covariate is the same for each 

group within a factor, that is, the slopes of the regression lines fitted for each group 

are parallel (Sokal and Rohlf, 1995). Interactions between the covariate and factors 

were tested to determine whether covariate values were similar across groups. 

2.2. Blood fluke prevalence analysis 

As the response variable is binomial (infected vs. non-infected) for prevalence data, 

logistic regression was used for analysis of the infection status of individual fish. 

Factors (company, year, season, time in culture, and condition index) were first 

analysed individually through univariable logistic regression and then incorporated 

into multivariate models using a forward stepwise approach. All factors identified as 

having a P-value<0.25 through the univariate analysis were retained and used to 

build the multivariable regression model. Factors included in the models were 

examined for multicollinearity through correlation. We used the Hosmer and 
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Lemeshow goodness-of-fit test to assess the model fit (Hosmer and Lemeshow 

1989). 

2.3. Condition index analysis 

To examine the effect of intensity and abundance of infection by blood fluke on body 

condition, we analysed condition index by linear regression. To determine if there 

was any difference in condition indices of tuna between companies, a Three-way 

ANCOVA was also used. Company, year, and season were entered as categorical 

predictors and time in culture (days) was entered as a continuous predictor and taken 

into account as a covariate. Interactions between the covariate and factors were again 

tested to determine whether covariate values were similar across groups. 

3. Results 
3.1. Temporal infection dynamics 

A total of 771 southern bluefin tuna were examined during the three year survey. A 

total of 2561 Cardicola forsteri were counted in the lumen of ventricles from 486 

infected tuna. From March 2004 to September 2006, blood fluke intensity varied 

from 1.34 ± 0.34 to 12.78 ± 3.17 blood fluke per infected host with an overall mean 

intensity 5.30 ± 0.32 (n=486) (Fig. 1). 
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Figure 1. Mean (I SE) intensity of Cardicola forsteri as a function of month during sampling of 

farmed southern bluefm tuna, Thunnus maccoyii, between 2004 and 2006 from the Spencer Gulf, 

South Australia. 

Monthly mean abundance varied from 0.53 ± 0.28 to 6.39 ± 2.19 with an overall 

abundance of 3.33 ± 0.21 (n=771) (Fig 2). Mean monthly prevalence varied between 

29.2% and 90.9% (n=771) (Fig 3). Overall prevalence for the three years was 

62.64% (n=771). For statistical analysis of the influence of company, year, season, 

time in culture, and tuna condition on intensity, abundance and prevalence, 503 tuna 

from three companies, A, B and C were selected. These companies were selected as 

the remaining 268 tuna came from companies where data was missing for some years 

and seasons. 
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Figure 2. Mean (± SE) abundance of Cardicola forsteri as a function of month during sampling of 

farmed southern bluefin tuna, Thunnus maccoyii, between 2004 and 2006 from the Spencer Gulf, 

South Australia. 

Figure 3. Prevalence of Cardicola forsteri as a function of month during sampling of farmed southern 

bluefin tuna, Thunnus maccoyii, between 2004 and 2006 from the Spencer Gulf, South Australia. 

3.2. Factors affecting blood fluke abundance 

Time in culture was shown to have a significant effect on blood fluke abundance 

(ANCOVA, W=11.765, df=1, P=0.003) in tuna and therefore mean abundance had 

to be corrected by days in culture (Fig 4.). 
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Figure 4. Mean abundance of Cardicola forsteri as a function of the days in culture since transfer for 

farmed southern bluefm tuna, Thunnus maccoyii, sampled between 2004 and 2006 from the Spencer 

Gulf, South Australia. 

Significant differences were shown between blood fluke abundances from different 

companies (ANCOVA, F=3.577, dt=2, P=0.029). Company C (4.944 ± 0.592 (SE) 

fluke per host) had a significantly greater abundance of fluke than Company B 

(2.780 ± 0.535 (SE) fluke per host). No significant differences occurred between 

Company A and Company B (P=0.456) and between Company A and Company C 

(P=0.091). Season was shown to have an influence on abundance (ANCOVA, 

F=6.237 , df=1, P=0.013). A greater abundance of fluke was observed in tuna 

harvested in winter (5.046 ± 0.636 (SE) fluke per host) than in autumn (2.357 ± 

0.614 (SE) fluke per host) irrespective of different companies harvesting at different 

times of the year. No significant difference in abundance was observed between 

years (ANCOVA, F=1.338, df=2, P=0.263). A significant first-order interaction 

was observed between company and year (ANCOVA, F=3.533, df=4, P=0.007). A 

significant second order interaction was observed between year, season and company 

(ANCOVA, F=3.175, dt=4, P=0.14) (Fig. 9). 
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Figure 9. Adjusted mean (± SE) Cardicola forsteri abundance in farmed southern bluefin tuna, 

Thunnus maccoyii, for each company yearly and divided seasonally sampled between 2004 and 2006 

from the Spencer Gulf, South Australia. 

The total adjusted mean abundance for all samples taken was 3.702 ± 0.317 (SE) 

fluke per host. Covariate means did not significantly differ between groups for each 

factor. The relationships were tested and found to be linear, and the slopes of the 

regression lines did not differ significantly. 

3.3. Factors affecting blood nuke intensity 

Time in captivity was not shown to have a significant effect on blood fluke intensity 

(ANCOVA, F=1.809, d. f=1, P=0.18) and therefore mean intensity did not have to be 

corrected by 'days in culture' and a 3-way ANOVA was used for analysis. Levene's 

test of equality of error variances was shown to be significant (F=2.371, P<0.001), 

therefore the results of the analysis should be treated with caution (Underwood 

1981). Significant differences were not observed between winter and autumn 

(ANOVA, F=1.512, df=1, P=0.220), or between different years (ANOVA, 

F=0.117, df=2, P=0.889). A significant difference was observed between 

companies (ANOVA, F=3.743, df=2, P=0.025) (Fig. 12). Company C (8.311 ± 
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0.856 (SE) fluke per infected host) had a significantly greater intensity of fluke than 

Company A (4.795 ± 1.047 (SE) fluke per host) (Fig 12). No significant differences 

occurred between Company B and Company A (P=0.475) or between Company B 

and Company C (P=0.069). No first or second order interactions were significant. 

Linear regression analysis demonstrated that there was no relationship between 

intensity and condition index (F=0.10, df=1, P=0.922, R2<0.001). The total mean 

intensity for all samples was 6.319 ± 0.569 (SE) fluke per infected host. 

Figure 12. Mean (± SE) Cardicola forsteri intensity in farmed southern bluefm tuna, Thunnus 

maccoyii, for each company sampled between 2004 and 2006 from the Spencer Gulf, South Australia. 

Means with different letters are significantly different from one another. 

3.4. Factors affecting blood fluke prevalence 

Five variables, company, year, season, time in culture, and tuna condition, were 

examined for their effect on blood fluke prevalence. Logistic regression univariate 

analysis reduced the number of potential candidate variables for consideration in the 

multivariate model from five to four using the cut-off P<0.25 (Table 1). Prevalence 

of blood fluke was shown to have no effect on Condition Index (W=0.10, d.f=1, 

P=0.921). Of the candidate variables, two were found to show multicollinearity with 

each other and could not be included together in the logistic regression model. These 

were 'Season' and 'Days in Culture', which were strongly correlated (R 2=0.613, 
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F=795.121, df=1, P<0.001). In these cases, only the most statistically significant 

factor in the univariate analysis, 'Days in Culture', was included in the multivariate 

analysis. The three remaining candidate variables were analysed through multivariate 

logistic regression. 'Days in Culture' and 'Year' were shown to be statistically 

significant (Table 2). The model shows that for each day of culture the odds of being 

an infected tuna are decreased by 0.09%. The model also showed that the odds of 

being infected in 2005 were decreased when compared to 2004 or 2006. The model 

was shown to fit the data satisfactorily as the Chi-square (Hosmer-Lemeshow) test of 

goodness of fit was not significant (x 2 =10.090, df =8, P=0.259). 

Table 1. Factors examined for their effect on Cardicola forsteri infections, through univariate logistic 

regression analysis of prevalence data of blood fluke from southern bluefin tuna, Thunnus maccoyii, 

sampled between 2004 and 2006 from the Spencer Gulf, South Australia (n=503). OR=Odds ratio, 

CI= Condition index, W= Wald statistic, df= degrees of freedom. 

Variable Crude OR 95% Cl W d.f. P-value 

Season: Autumn* vs. Winter 1.655 1.163-2.354 7.851 1 0.005 

Condition Index (continuous) 0.997 0.938-1.059 0.100 1 0.921 

Days in Culture (continuous) 0.989 0.984-0.994 20.219 1 P<0.001 

Year 19.942 2 P<0.001 

Year: 2004* vs. 2005 0.404 0.260-0.627 16.260 1 P<0.001 

Year: 2004* vs. 2006 0.887 0.568-1.384 0.278 1 0.598 

Year: 2005 vs. 2006* 0.455 0.297-0.698 12.992 1 P<0.001 

Company 9.570 2 0.008 

Company: Company A 1  vs. 

Company B 1.253 0.806-1.947 1.003 1 0.317 

Company: Company A l  vs. 

Company C 0.652 0.419-1.012 3.629 1 0.057 

Company: Company B vs. 

Company C 1  0.52 0.342-0.792 9.306 1 0.002 

I  Reference group used in comparison between variables. 
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Table 2. Results from multivariate logistic regression of prevalence data of Cardicola forsteri 

infection in southern bluefm tuna, Thunnus maccoyii, sampled between 2004 and 2006 from the 

Spencer Gulf, South Australia (n=503). OR=Odds ratio, CI= Condition index, W= Wald statistic, df= 
degrees of freedom. 

Variable Odds ratio 95% Cl W d.f. P-value 

Year 11.472 2 0.003 

Year: 200412vs. 2005 0.46 0.293-0.722 11.420 1 0.001 

Year: 20042  vs. 2006 0.716 0.448-1.142 1.969 1 0.161 

Year: 20062vs. 2005 0.643 0.401-1.029 3.392 1 0.066 

Company 5.754 2 0.056 

DIC 0.991 0.985-0.996 12.040 1 0.001 

Constant 14.194 1 P<0.001 

3.5. Condition index analysis 

A significant difference in mean condition indices were observed between companies 

(ANCOVA, F=72.183, d f =2, P<0.001). Tuna originating from Company C had a 

significantly greater mean condition index than tuna from Company A or B (Figure 

13). Levene's test of equality of error variances was shown to be significant 

(F=1 .699 , P=0.04), therefore the results of the analysis should be treated with 

caution (Underwood 1981). 

Figure 13. Mean (± SE) condition index of farmed southern bluefin tuna, Thunnus maccoyii, for each 

company sampled between 2004 and 2006 from the Spencer Gulf, South Australia. Means with 

different letters are significantly different from each other. 

2  Reference group used in comparison between variables. DIC = Days in Culture. 
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3.6. Mortalities 

A total of 21 southern bluefin tuna mortalities from 8 companies were submitted for 

C. forsteri examination. Four southern bluefin tuna (19%) were shown to have C. 

forsteri infection with the highest burden being 15 flukes in an individual sampled on 

20-Jun-06 (Table 3.). 

Table 3. Number of C. forsteri observed in the heart of southern bluefm tuna mortalities submitted 

between 2006 and 2006 from the Spencer Gulf, South Australia. n = number of tuna mortalities 

examined on each date. 

Date Company No. of C. forsteri n 
3-Mar-04 Company 1 0 1 
18-Mar-04 Company 2 0 1 
19-Mar-04 Company 3 0 1 
24-Mar-04 Company 4 0 1 
30-Mar-04 Company 5 0 1 
6-Apr-04 Company 6 0 1 

30-Apr-04 Company 7 0 1 
3-May-04 Company 6 6 1 
11-May-04 Company 6 9 1 
26-Jan-05 Company 7 0 2 
26-Jan-05 Company 7 0 1 
8-Feb-05 Company 8 0 1 
3-Mar-05 Company 5 0 1 
4-Mar-05 Company 7 0 1 
18-Mar-05 Company 3 1 1 
23-Mar-05 Company 8 0 1 
16-May-06 Company 1 0 2 
16-May-06 Company 1 0 1 
20-Jun-06 Company 6 15 1 

4. Discussion 

No particular trend in the development of Cardicola forsteri infection could be 

detected across the 3 years of the survey when parasite predictors were examined as 

a function of month. After almost a decade since the first record of C. forsteri in the 

southern bluefin tuna farming zone of the Spencer Gulf (1997: Cribb et al. 2000) 

blood fluke infection has since reached a constant infection rate of approximately 

60% in tuna at harvest. An equilibrium of infection levels in harvested tuna may have 

been attained. This is also reflected in blood fluke intensity and abundance where, 

although peaks in intensity and abundance did occur, infection levels rarely increased 
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above ten flukes per infected tuna at harvest. Annual means of intensity were fixed 

around six flukes per infected host and yearly means of abundance between three and 

five flukes per host. Stabilisation of infection levels have previously been observed 

in fish-parasite systems. The nematode Anguillicola crassus infection in European 

wild eels, Anguilla anguilla, in the Rhone River delta, has reached a constant 

infection rate of 50% and annual intensity means of between 3 and 4 parasites per 

eel, a decade after its introduction (Lefebvre et al. 2002). Density-dependent effects, 

host adaptation, and mortality of heavily infected individuals have been suggested to 

explain the equilibrium (Lefebvre et al. 2002). Immune response in T. maccoyii has 

been suggested as being able to control C. forsteri re-infection and this host response 

may partly be responsible for the maintenance of an infection equilibrium towards 

the end of the growout season (Aiken et al. 2008 (Chapter 6)). 

A universal factor in explaining variation in C. forsteri intensity, abundance and 

prevalence was company. Although company was not a significant factor in the 

multivariate analysis of prevalence (P=0.056) it was a significant factor in the 

univariate analysis and its effect cannot be overlooked. Company C had significantly 

greater counts of blood fluke intensity and abundance than company A and a greater 

prevalence than company B. Differences in site location or husbandry measures used 

in production may account for the variation between companies. Company C may be 

located on or near more infected intermediate hosts than the other two companies. 

Husbandry effects that may influence the occurrence of blood fluke include the 

frequency of sea cage net cleaning, if the intermediate host is located on the net, and 

also the frequency and duration that sea cage sites are fallowed if the intermediate 

host is located in the sediment beneath cages. Control of sanguinicolid infections in 

farmed fish systems depends primarily on separation of the intermediate host and 

124 



definitive host (Bullard and Overstreet 2002). However, this measure is based on 

knowledge of the identity of the intermediate host which is currently not known for 

C. forsteri. Identification of the intermediate host should be a priority for further 

research into mitigating the effects this parasite has on farmed T maccoyii. 

Another possibility for differences between companies may be in the different sizes 

of tuna held by each company. Company C had significantly larger tuna at harvest 

than Company A and Company B. The general trend in fish-parasite systems is for 

larger fish to harbour more parasites and for smaller fish to harbour fewer parasites 

(Poulin 2000). The larger sized tuna held by Company C may account for the greater 

level of infection observed. Differences in tuna sizes between companies may be a 

reflection of the different populations captured in the wild, differences in the amount 

of time taken to tow tuna from the wild to the farming zone, or possibly different 

growth rates as a result of the unique husbandry techniques employed by each of the 

companies. 

Different years did not influence intensity or abundance although a decrease in 

prevalence in 2005 is evident. It was expected that infections may be increasing in 

time due to the naïve wild hosts being brought into the farming environment where 

infected intermediate hosts are most likely located. A lack of annual variation in 

numbers of adult flukes may be a result of similar infection patterns occurring each 

year. Aiken at al. (2006) (Chapter 3) and Aiken et al. (2008) (Chapter 6) observed a 

similar pattern of infection in different cohorts of research tuna in 2004 and 2005. 

Tuna are brought into the farming zone with no or few adult C. forsteri and after two 

months experience an increase in intensity and prevalence followed by a decrease 

over the next three months to low levels of both infection parameters. As a similar 

infection cycle occurred in both years this may have resulted in lack of variation 
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between years. Some density dependent factor in the intermediate host population 

may be occurring with this population not being able to support more infected hosts. 

Blood fluke are known to castrate and cause significant pathology in the intermediate 

hosts (Koie 1982). A threshold level of cercarial production may have been reached, 

beyond which the intermediate host population begins to decrease due to mortality 

from the increasing numbers of miracidia in the environment resulting from the 

influx of naïve hosts annually. Although intensity and abundance did not vary 

between years, a decrease in prevalence was observed in 2005. Differences between 

cohorts towed to the farming zone annually may account for this. The 2005 cohort 

may have been a healthier group better able to resist infection by blood fluke than the 

cohorts from 2004 and 2006. 

Tuna harvested in winter have a significantly greater abundance and prevalence of 

blood fluke than those harvested in autumn. This may be a reflection of the 

seasonality of cercarial release from the intermediate host. Increased cercarial 

emergence associated with decreasing water temperature has been observed in other 

blood flukes, Paradeontacylix spp., infecting cultured amberjack, Seriola dumerili. 

Cercaria begin to invade amberjack in September, the month corresponding with the 

beginning of water temperature decrease (Ogawa et al. 1993). Decreasing water 

temperatures in the Spencer Gulf tuna farming zone may also be associated with 

increasing cercarial emergence from the intermediate host resulting in greater 

numbers of fluke being observed in winter. 

Interestingly, the period of time that tuna are in captivity does not significantly 

influence intensity of infection even though it does affect blood fluke abundance and 

prevalence. Previous studies on blood fluke infection during the tuna growout season 
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have shown that after an initial increase, intensity and prevalence decline with time, 

possibly a result of a specific immune response against the blood fluke (Aiken et al. 

2006 (Chapter 3); Aiken et al. 2008 (Chapter 6)). The lack of effect of time in 

captivity on intensity may be a result of a longer time that tuna need to be able to 

clear infections. In the previous studies on non-commercial (research) tuna in 2004 

and 2005, where decreases in intensity were observed over approximately three 

months, tuna were being held in considerably lower stocking densities than the tuna 

of this study (Aiken et al. 2006 (Chapter 3); Aiken et al. 2008 (Chapter 6)). Lower 

stress levels as a result of the difference in stocking density may account for a better 

ability to clear infections. Alternatively, at high stocking densities and if infections 

are acquired from proximity to the bottom, it may take most tuna longer to acquire 

flukes as not all tuna can reach the bottom of the cage. This would explain why some 

infections are observed later in the season compared with previous surveys. 

Although there was no significant decrease in blood fluke intensity during growout, 

no effect of intensity or abundance was observed on the condition of tuna. This 

supports previous results where no association has been observed (Aiken et al. 2006 

(Chapter 3)). The infection levels observed in this study may be too low to cause any 

significant decrease in the condition of tuna. Hebert et al. (1995) has suggested that 

low intensity of infection in cultured sea bass, Lates calcarifer, infected with the 

blood fluke Cruoricola lates is responsible for the lack of pathological changes. The 

intensities observed in this study may be too low to cause pathology to result in 

production loss through decreased condition. The low intensities observed in this 

study are also unlikely to have been responsible for the mortalities that were 

submitted by industry as mortalities that were shown to be infected with C. forsteri 

were observed to have similar burdens as tuna sampled at harvest. Additionally, the 
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majority of mortalities did not have C. forsteri infections. However these results 

must be treated with caution as they do not take into account any post mortem 

migration or deterioration of flukes. 

Whilst there was variation between companies in parasite predictors no significant 

increase in blood fluke intensity, abundance or prevalence was observed to be 

associated with the length of time in culture. In addition, the low levels of intensity 

and the lack of effect on the condition of tuna indicate that the numbers of adults of 

this parasite are not associated with a significant risk to the health of tuna. However, 

as a result of the high prevalence observed and the ability of the flukes eggs to cause 

gill pathology, continual monitoring of parasite levels is warranted. 
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Abstract 
In this study, adaptive immune response was investigated in farmed southern bluefin 

tuna, Thunnus maccoyii, infected with a sanguinicolid Cardicola forsteri. A cohort 

(Cohort2005) of southern bluefin tuna was sampled between March 2005 and August 

2006. Samples were taken at the transfer of wild caught tuna to sea cages and then at 

regular intervals. Parasite intensity, abundance and prevalence data were recorded. 

An ELISA was developed to detect and quantify an antibody response against the 

blood fluke in southern bluefin tuna serum. Intensity and prevalence of the blood 

fluke were shown to peak in May 2005 at 10.9 fluke per infected fish (SE= 1.72) and 

97.5% prevalence and then decreased to low prevalence (10%) and intensity (1.0). 

There were no significant changes in prevalence or intensity in 2006. Antibody titres 

and seroprevalence increased from 1.37 U p1 1  and 10% at transfer in March 2005 to 

reach a peak in December 2005 of 25.86 U p1 1  (SE-6.26 U pi') and 66.66%. No 

significant changes were observed in antibody titres for the same cohort of fish 

during 2006. Parasitological and serological values from Cohort2005were compared 

to a 2006 cohort (Cohortmoo in March 2006 and August 2006 to determine if prior 

infection in Cohorf2005 elicited any protection against infection in 2006. Although 

significant differences were not observed in intensities between cohorts it was shown 

that Cohorfalos had significantly lower abundances and prevalences of blood fluke 

infection than Cohort2006. Although there was no significant difference in mean 

antibody titres between cohorts in March 2006, the mean antibody titre of Cohort2006, 

was significantly greater than that of Cohortmosin August 2006. No significant 

differences were observed in seroprevalence. This is one of the few studies to 

demonstrate the development of acquired resistance in fish against a parasite in an 

aquaculture environment under natural infection conditions. 
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1. Introduction 
Southern bluefin tuna, Thunnus maccoyii, is a commercially important aquaculture 

species. The industry is based on the capture of 2-3 year old wild fish which are 

purse-seined in the Great Australian Bight, moved into towing pontoons and towed 

to the farming zone in the Spencer Gulf of South Australia where they are transferred 

into sea cages. On-growing in sea cages occurs for a period between 2-8 months 

before southern bluefin tuna are exported as frozen or fresh product to Japan for the 

premium sashimi market. The southern bluefin tuna farming industry is economically 

significant, producing 9993 tonnes worth A$160 million in 2006 (T.B.O.A., pers. 

coin.). 

Although wild southern bluefm tuna are infected with a range of parasites (see 

review by [1]) heavy infections are rarely observed in southern bluefin tuna 

aquaculture [2]. This could be a consequence of a well developed host immune 

system in southern bluefin tuna [3]. Of the parasites that are of concern, a 

sanguinicolid Cardicola forsteri, is a cause of significant gill pathology [4,5]. 

Sanguinicolids are parasites of marine and freshwater fish [6]. Most species establish 

in the heart, bulbus arteriosus, ventral aorta, or branchial vessels, although 

distributions within the cephalic or dorsal vessels are not uncommon [7]. Once 

established, the adult fluke lay eggs which lodge in the gills. Here the eggs hatch and 

break out of the gill as free living miracidia. These miracidia infect an intermediate 

host into which they penetrate to undergo asexual reproduction as rediae and/or 

sporocysts to produce infective cercariae. The intermediate host of C. forsteri is as 

yet unknown. Bivalves and polychaetes have been reported to be intermediate hosts 

for some species of marine sanguinicolids [6,8]. Cercariae emerge from the 

intermediate host and actively search for the defmitive host, a fish. The cercariae 

penetrate the skin of the host and juvenile fluke attempt to reach the circulatory 
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system in which they undergo a migration to a final site where they mature [6]. For 

C. forsteri the final site is the heart [9]. In southern bluefin tuna this parasite can 

reach 100% prevalence with heavy burdens in the first two months of growout [10]. 

However, toward the end of the growout season (6-8 months) low intensities and 

prevalences are observed. A previous study has shown a specific response against the 

blood fluke in farmed southern bluefin tuna using Western blot analysis [11]. It is not 

known whether this antibody response in the tuna has a protective role or how it is 

affected by infection dynamics. Little is known about specifics of the immune 

responses directed at marine sanguinicolids [12]. 

In this study, an enzyme-linked immunosorbent assay (ELISA) was developed to 

detect and quantify antibodies against the blood fluke. ELISA is believed to be the 

best method to measure specific antibody titers in fish and is a widely used, sensitive 

and reliable monitoring tool for the detection and quantification of specific humoral 

antibody responses to a variety of fish pathogens [13, 14, 15, 16]. The development 

of such serological tests is important for risk assessment in disease management 

strategies [17]. Serology has a number of advantages over direct detection of parasite 

pathogens. Diagnostically, serological assays offer the potential to demonstrate 

exposure to given parasites long after the parasite may be detected [18]. 

The aim of this study was to investigate the antibody response of southern bluefin 

tuna against C. forsteri infection. We approach this issue by addressing the following 

questions: (1) What is the relationship over time between parasite burden and 

antibody titres? (2) Is there an antibody response that could lead to resistance against 

re-infection in an aquaculture environment? 
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2. Methods and Materials 
2.1. Experimental fish and study design 

A cohort of southern bluefin tuna (Cohort2oo5) was sampled (hearts and blood) at 

various stages over a sixteen month period during 2005 and 2006 from one 

company's lease site. Wild T maccoyii were captured by purse-seine in the Great 

Australian Bight (map reference 33 27S, 132 04E) on 19 th  February 2005 and towed 

to the Spencer Gulf farming zone over a period of approximately six weeks in a 

towing pontoon. Tuna were transferred from the tow pontoon to four sea cages for 

farming on 5 th  April 2005. Two hundred and twenty tuna were transferred into each 

sea cage and ten tuna were sampled at this time representing 4.5% of the total 

population for that sea cage. During the growout period, ten tuna were sampled from 

each of the four cages on 30 th  May, 11 th  July, and 22' August. Following a harvest 

in August, all remaining tuna of the four cages were moved to a single cage. Thirty 

tuna were then sampled from this cage on 6 th  December, ten tuna sampled on each on 

the 7th  March, 14 th  March, 31 st  March and then 30 tuna sampled on the 15 th  August. 

A total of 220 research tuna were examined. In addition, tuna from 2006 intake of 

wild fish (Cohort2006) were sampled for comparison with Cohort 2005  to determine if 

prior infection in the remaining southern bluefin tuna from Cohortmos elicited any 

protection against re-infection in 2006. Twenty tuna from a different company were 

examined on the 24th  March (37 days post transfer) and ten tuna on 28 th  March (41 

days post transfer). Twenty tuna from the same company farming the Cohort2005 were 

sampled on 18 th  August (154 days post transfer). A total of 50 Cohort2006 tuna were 

examined. The sampling times and number of fish were determined in collaboration 

with the industry. The number of southern bluefin tuna sampled was limited due to 

the high cost of individual tuna. Samples taken and dates are summarized in Table 1. 
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Table 1. Number of farmed southern bluefin tuna Thunnus maccoyii sampled at different times 

during 2005 (Cohort2005), including from different cages during May, July and August 2005, and 2006 

(Cohort2005and Cohort2006) for blood fluke Cardicola forsteri infection. Samples were not taken for 

serological analysis on 7th  March 2006 and 14th  March 2006. 

Cohort Sampling time Cage n 
n 

(Serology) 

2005 Transfer 5-Apr-05 10 10 
30-May-05 1 10 40 

2 10 40 
3 10 40 
4 10 10 

11-Jul-05 1 10 10 
2 10 10 
3 10 10 
4 10 10 

22-Aug-05 1 10 10 
2 10 10 
3 10 10 
4 10 10 

06-Dec-05 30 30 
07-Mar-06 10 0 
14-Mar-06 10 0 
31-Mar-06 10 10 
15-Aug-06 30 30 

2006 24/28-Mar-06 30 30 
18-Aug-06 20 20 

2.2. Sample collection 

2.2.1. Parasitology 

Blood flukes were collected according to the method of [10]. Due to time constraints 

tuna were not screened for the presence of blood fluke eggs. Hearts were obtained 

during harvest, stored on ice, and taken to the laboratory. Hearts were dissected 2-4 h 

after removal from the carcass and flushed with physiological saline to dislodge any 

adult flukes. Flushes were poured into Petri dishes and examined for the presence of 

flukes using a dissection microscope (Olympus SZX12) at 6x magnification. They 

were then counted and prevalence (i.e. the number of infected tuna divided by the 

number of tuna examined x100), mean abundance (i.e. the total number of parasites 

divided by total number of tuna examined), and mean intensity (i.e. the total number 
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of parasites divided by the number of infected tuna), were determined, as described 

by [19]. All flukes were frozen at -20°C for approximately one week and then 

transferred to a -80°C freezer where they were stored. 

2.2.2. Fish serum samples 

Southern bluefin tuna were bled during harvest by cutting into the pectoral artery and 

collecting blood in 50 ml falcon tubes which were then stored on ice until transfer to 

the laboratory approximately 3-4 h later. Blood was allowed to clot overnight, 

centrifuged at 5000 g for 10 min, after which serum was aliquoted and stored at - 

80°C. 

2.3. C. forsteri antigen preparation 

Adult flukes collected from tuna during 2005 and 2006 and stored at -80°C were 

used as antigen in Western blotting analyses and enzyme-linked immunosorbent 

assay (ELISA) analysis. Flukes were transferred to a 15 ml tube and suspended in 

carbonate buffer (2.93 g NaHCO 3 , 1.59 g Na2CO3 , in 11 of distilled water, pH 9.6). 

The buffer was then subjected to ten pulses of a Branson sonicator for approximately 

10 s a pulse. A tissue homogenizer was then used to further break down the flukes in 

ten pulses of approximately 15 s each. The buffer was then transferred to 1.5 ml 

tubes and centrifuged at 3000 g for 10 minutes at 4°C. Supernatant was aliquoted and 

stored at -80°C. Protein concentration of antigen in the solution was determined by 

BCA Protein Assay Kit. 
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2.4. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

and preliminary enzyme-linked immunosorbent assay (ELISA) 

C. forsteri antigen solution was partially characterized by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) to determine approximate weights 

of antigen proteins. C. forsteri antigen solution was diluted 2:1. in reducing buffer 

(0.35 M Tris, pH 6.8, 30% glycerol, 10% SDS, 9.3% DL-Dithiothreitol, 0.05% 

bromophenol blue), heated to 100°C for 4 minutes and placed on ice. SDS-PAGE 

was carried out according to [20]. TeniAl of reduced fluke antigens were loaded into 

wells of a 5% stacking gel over 10% resolving gels. Biotinylated molecular weight 

standards (Biorad) and Wide Range Protein Standards (Mark 12TM  NovexTM) were 

used for molecular weight calibration. Electrophoresis was carried in a Mighty Small 

SE 250 vertical electrophoresis unit (Hoefer) for 1 h in tris buffer (25 mM tris, 192 

mM glycine, 0.1% SDS, pH 8.3) at a constant current of 40 mA and 200 V. Protein 

bands on gels were visualised after staining with silver nitrate following procedures 

modified from those of [21]. Briefly, gels were fixed with 50% ethanol and 10% 

glacial acetic acid for at least 30 min, followed by 15 min in 5% ethanol and 1% 

glacial acetic acid, rinsed three times in distilled water then washed in 0.2% sodium 

thiosulfate for 1 min. Gels were exposed to 0.2% silver nitrate with 0.15% formalin 

solution, rinsed in distilled water then developed in a solution of 6% sodium 

carbonate, 0.05% formalin and 0.2% sodium thiosulfate. Development was stopped 

with 1.5% sodium EDTA. 

A preliminary ELISA using fluke antigen and a range of tuna serum samples was 

employed to identify seropositive and seronegative tuna sera for later use as controls 

for a quantitative ELISA. This method was used as it was not possible to inject tuna 

with fluke extracts to produce a positive serum standard. As T. maccoyii is a valuable 
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species it is difficult to acquire specimens for experimental studies. Furthermore, 

appropriate tank systems for holding tuna are not available for research purposes. 

Transfer tuna were used as possible negative standards as they were not infected with 

adult fluke as determined by parasitological examination. A flat bottom 96-well 

microplate (IWAKI) was coated overnight at 4°C with C. forsteri antigen solution 

diluted with carbonate buffer (2.93 g NaHCO 3 , 1.59 g Na2CO3 , in 11 of distilled 

water, pH 9.6) to 201.1g ml protein. Plates were blocked with 0.3% casein in tris 

buffered saline (TBS; 20 mM Tris, 500mM NaC1, pH7.2) for 1 h at 37°C. The plates 

were then washed three times with TBS. Multiple tuna serum samples were screened 

for any activity and were applied at 1:100 single dilutions. After 1 h incubation at 

37°C, plates were washed three times in TBS then rabbit anti-tuna heavy chain 

immunoglobulin (RATH) (Watts et al. 2001), diluted 1:100 in 0.3% casein in TBS, 

was added and incubated for one h. Following another wash cycle sheep anti-rabbit 

IgG alkaline phosphatase conjugate (Sigma, Castle Hill, NSW, Australia), diluted to 

1:8000 in 0.3% casein in TBS, was added. All reagents were added as 50 !al volume. 

A final wash in TBS was performed immediately prior to adding 200ial of the 

detection reagent, p-nitrophenyl phosphate (PNPP) (Sigma, Castle Hill, NSW, 

Australia). Colour was allowed to develop for 30 min at room temperature and the 

optical density was measured at 405 nm using a Spectra Rainbow Thermo microplate 

reader (TECAN Trading AG, Switzerland). Controls for the initial ELISA consisted 

of duplicate wells where each reagent (antigen, tuna serum, RATH and conjugated 

sheep anti-rabbit IgG) was in turn omitted. 

2.5. Western blotting 

Western blotting was used to investigate seropositive and seronegative samples, 

determined by the preliminary ELISA, in order to visualize the specific antibody 
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against fluke antigen and to choose a positive and negative control for the 

quantitative ELISA. Gels from SDS-PAGE analysis to be used in protein transfer 

were equilibrated in transfer buffer (48 mM tris, 39 mM glycine, 20% methanol, pH 

9.2) for 5 minutes. After equilibration, antigen proteins were electro-transferred from 

gels onto 0.45 1.un nitrocellulose membrane (Biorad) in transfer buffer using a Hoefer 

Semi-Phore semi-dry transfer unit with a maximum setting of 50 V and 100 mA for 

1.5 h. Following transfer a temporary total protein stain (0.1% Ponceau, 0.5% glacial 

acetic acid v/v; Sigma, Castle Hill, NSW, Australia) was applied to membranes to 

confirm transfer. Various lanes were then cut from membranes as strips to enable 

individual staining or probing with a range of serum samples. Temporary stains were 

removed by rinsing in TBS for 5 min. Molecular weight standards were stained with 

amido black (0.1% amido black 10B, 25% isopropanol, 10% glacial acetic acid) for 1 

min then destained (25% isopropanol, 10% glacial acetic acid) for 30 min. Residual 

binding sites on membrane strips were blocked for 1 h in 0.3% casein in TBS then 

washed with TBS, TBS with 0.05% Tween-20 (TBST), then TBS again (5 min for 

each wash). Membrane strips were probed with seropositive or seronegative serum• 

from tuna at a dilution of 1:100 in 0.3% casein in TBS for 1 h. After repeating the 

washing step, membrane strips were then incubated for 1 h in RATH diluted to 1:100 

in 0.3% casein in TBS followed by another washing step. Bound antibodies were 

detected by incubation for 1 h with sheep anti-rabbit IgG alkaline phosphatase 

conjugated antiserum, used at a dilution of 1:8000 in 0.3% casein in TBS. The 

washing step was repeated (10 min each wash) before membranes were developed in 

BCIP/NBT (Biorad kit) then washed in distilled water to stop the reaction. All 

incubations were carried out at ambient temperature on a shaker. Negative controls 

for the Western blot consisted of probing with: seropositive serum without RATH, 

seronegative serum, seronegative serum without RATH, Salmo salar serum 
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substituted for T. maccoyii serum, Salmo salar serum without RATH, RATH only, 

and conjugated sheep anti-rabbit IgG only. A strong seropositive sample (May 2005 

sampling) and a seronegative sample (sampled in 2005 at the time of transfer to sea 

cages) were chosen as positive and negative controls for the quantitative ELISA. 

2.6. Enzyme-linked immunosorbent assay 

A standard indirect ELISA was used to detect and quantify specific serum antibodies 

in tuna against C. forsteri. Assay conditions were optimized empirically and reagent 

concentrations determined by chequerboard titrations [22]. The same protocol used 

for the preliminary ELISA was utilized except multiple dilutions were used for each 

sample. Tuna serum samples were diluted in 0.3% casein in TBS, and added in 

duplicate wells across rows in a twofold serial dilution beginning at 1:100 through to 

1:3200. Positive and negative standard sera, previously chosen from the preliminary 

ELISA and Western blot analysis, were titrated in duplicate on each plate. 

Antibody activities were determined according to [23] with a method which 

expresses titers as units or antibody activity per volume of serum. The positive 

standard serum was titrated against C. forsteri antigen starting at a dilution of 1:100 

to calculate a serum volume equating to 0.5 unit of antibody activity. In this study 

one unit of antibody activity was defined as the volume of the positive standard 

which gave 50% of the maximum OD, thus the reciprocal of this volume gives units 

of activity per ill of serum. The volume of serum giving 50% of the OD is 

determined from the dilution factor. Thus specific antibody activities of samples 

were expressed as units of antibody activity per volume of serum and were 

determined relative to the immune standard included on all plates and calculated as 

follows: 
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Activity of sample = (activity of standard) x (50%volume of standard/50%volume of 

sample) 

where activity of the standard is the reciprocal of the volume of the immune standard 

which gives 50% maximum OD, as determined from a titration curve and is 

expressed as units of activity per il of serum, 50% volume of the standard is the 

volume of the immune standard giving 50% maximum OD and 50% volume of the 

sample is the sample volume giving 50% maximum OD. The activity of the standard 

is a constant in the equation, determined from its full titration, whereas the other 

terms are derived from individual plates and thus account for variations between 

plates. All samples and standards, both immune and non-immune, were titrated in 

duplicate from dilutions of 1:100 to 1:3200. Samples that displayed a maximum OD 

that was less than 50% of the maximum OD of the immune standard were designated 

as having no anti-C. forsteri activity. Using the ELISA quantification method of [23] 

antibody activities for samples that have a maximum OD which is less than 50% of 

the maximum OD of the standard cannot be calculated - and are therefore designated 

negative. In practice the 50% level is arbitrary and depends on the difference in 

activity between the samples and the positive control. The 50% level was 

chosen in this study as OD differences between samples that were positive and the 

positive control were in general small and those designated negative were in general 

well below the 50% cut off mark. The percentage of tuna which were seropositive 

out of the total number sampled was expressed as seroprevalence. 

2.7. Statistical analysis 

Data from cages were pooled at each sampling time point where p>0.15 due to the 

small sample sizes for each cage (n=10). Fluke intensities, abundances and antibody 
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titres were compared using one-way analysis of variance (ANOVA) and the 

homogeneity of the variances was tested with Levene's test. Fisher's Least 

Significant Difference test was used for post-hoc comparisons. Prevalences of blood 

fluke infection and seroprevalences were compared using Pearson Chi-square tests. 

Pearson correlations between parasite abundance or intensity and antibody titres 

(with a time lag for antibody titre) were calculated. Calculations were carried out 

with SPSS for Windows 13.0; in all analysis, the significance level adopted was 95% 

(a=0.05). 

3. Results 
The preliminary ELISA identified serum samples that were positive and negative for 

anti-C. forsteri antibody activity. Electrophoretic analysis of sonicated and reduced 

blood fluke showed protein bands ranging between 21kD and 200IcD (Figure 1.). 

kD M 	a 

200 

1163 
97.1 

36.5 

21.5 

6 

3.5 

2.5 

Figure 1. Cardicola forsteri protein bands (a) following electrophoresis in 10% reducing gels. M: 

markers. Molecular weight is given in kilodaltons (kD). 

Western blot analysis of positive samples, as determined by the preliminary ELISA, 

showed the specific antibody of southern bluefin tuna serum was reactive to 5 fluke 
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bands (Figure 2.). Rabbit anti-tuna Ig antiserum was cross-reactive with C. forsteri 

proteins but only with one band of approximately 100 Ica The four remaining bands 

were not observed in any of the negative controls. 

4 	5 	 8 

I.  z 

Figure 2. Analysis of Cardicola forsteri protein probed with Thunnus maccoyii sera, identified as 

seropositive and seronegative by enzyme-linked immunosorbent assay, Salmo salar sera and no sera; 

positive control Thunnus maccoyii serum (1), positive control T. maccoyii serum without rabbit anti-

tuna heavy chain immunoglobulin (RATH) (2), negative control T maccoyii serum (3), negative 

control T. maccoyii serum without RATH (4), Salmo salar serum (5), Salmo salar without RATH (6), 

no serum (7), and no serum and no RATH (8) against blood fluke C. forsteri antigen. All serum was 

diluted at 1:100 in 0.3% casein in TBS, Arrows show bands stained with antiserum in membrane (1) 

and a cross reactive band is shown in membranes (3, 5, 7). M: markers. Molecular weight is given in 

kilodaltons (k.13). 

One tuna sampled at transfer demonstrated a positive result in the ELISA analysis 

with an antibody titre of 1.37 U111 -1 , resulting in a seroprevalence of 10%. Transfer 

fish were not infected with adult blood fluke in the heart. Mean antibody titres 

increased after transfer and a peak of 25.86 (S.E.= 6.26) U1.11 -1  was reached in 

December 2005 (Figure 3a.). 
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Figure 3a. Mean antibody titres (U g1 -1 ) against blood fluke Cardicola forsteri, including standard 

errors, for each sampling of Cohortmo southern bluefm tuna, Thunnus maccoyii, April 2005 — August 

2006. No significant differences were observed between means. Seroprevalences (no. of seropositive 

tuna/no, of tuna sampled serologically) of blood fluke Cardicola forsteri infection are included in 

brackets for each sampling harvest. 

Fluke intensity and abundance (Figures 3b) also increased after transfer to reach a 

peak of 10.92 (S.E.= 1.72) fluke per infected fish in May and 10.65 (S.E.= 1.7) 

mean fluke per fish examined in May (Figure 3b). The maximum number of flukes 

observed during the study was 42 from a fish harvested in May 2005. 
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Figure 3b. Mean blood fluke abundance (no. of flukes/no, of tuna examined), including standard 

errors, for each sampling harvest of Cohort2005  southern bluefin tuna (SBT), Thunnus maccoyii, April 

2005 — August 2006. Means with different letters are significantly different from one another. 

No significant differences were shown between mean antibody levels of different 

cages for May, July and August 2005 and therefore data were pooled for these 

months (ANOVAm ay, F=0.56, df =3, P=0.66 , ANOVAjuly, F=1.9, df=3, P =0.15, 

ANOVAAug  F=1.37, di. =3, P=0.27). Blood fluke intensity and abundance also did 

not differ between cages for any month (Intensity: ANOVAmay  F=0.70 df =3, 

P=0.56, ANOVAJ ub, F=0.45, d. f 3 P =0.71, ANOVAAug  F=0.31, df=3, P=0.82, 

Abundance: ANOVAmay  F=0.461, df=3, P=0.71, ANOVAJuiy  F=3.7, df=3 P 

=0.78, ANOVAAug  F=1.36, dt=3, P=0.27) and data from cages were pooled. Mean 

antibody titres decreased after the peak in December 2005 to 6.30 (S.E.= 1.88) U1.11 -1  

in March 2006 and then increased again to 17.17 (S.E.=3.95) U lir' in August 2006 

(Fig= 3a.). However, no significant differences were observed between mean 

antibody titres from different months, most likely due to high individual variability. 

Fluke intensity and abundance decreased after the peak in May 2005 to one fluke per 

infected fish in December 2005 and 0.17 (S.E.=0.07) mean fluke per fish examined 

in December 2005 (Figure 3b) after which intensity and abundance did not increase 
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significantly. Intensity in May 2005 was greater than all other sampling points 

(ANOVA, Fisher LSD test, P<0.05) and abundance in May and July 2005 was 

significantly greater than all other sampling points (ANOVA, Fisher LSD test, 

P<0.05) (Figure 3b.). Seroprevalence increased after transfer to 77.5% in July 2005, 

decreased to 66.67% in December and then increased to 86.67% by August 2006 

(Figure 3a.). Pearson Chi-square analysis showed a significant relationship between 

time in culture and seroprevalence (x 2=21.19, df=1 P=.002). Fluke prevalence 

peaked in May 2005 at 97.5% and then declined to reach a plateau from December 

2005 (12.5%) to August 2006 (10%) (Figure 3c.). 

Date of sampling 

Figure 3c. Prevalence (no. of infected tuna/total tuna sampled) of blood fluke Cardicola forsteri 

infection for each sampling harvest of Cohort 2005  southern bluefm tuna (SBT), Thunnus maccoyii, 

April 2005 — August 2006. 

Serological and parasitological results were compared between cohorts to determine 

if prior infection in Cohort2005 elicited any protection against re-infection in 2006. 

Although there were no significant differences in mean antibody titres between 

cohorts in March 2006 (ANOVA, F=0.83, df=1, P=0.833) , the mean antibody titre 

of Cohort2006, 85.68 (S.E.=29.55) U 111 1 , was significantly greater than that of 
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Cohortmos in August 2006 (ANOVA, F=7.17, d. f=l, P=0.01) (Figure 4a.). Further 

analysis of the antibody titres of Cohort2o06 during the August 2006 revealed that 

titres were significantly greater than Cohort2005 at any other sampling point during 

2005 and 2006 (ANOVA, Fisher LSD Test, P<0.001). Levene's test of equality of 

error variances was shown to be significant (F=33.54, P<0.001), therefore the results 

of the analysis should be treated with caution (Underwood, 1981). 

Figure 4a. Mean antibody titres (U 0-1 ) against blood fluke Cardicola forsteri, including standard 

errors, for Cohort2005 southern bluefm tuna (SBT), Thunnus maccoyii, and Cohort2006 tuna sampled at 

the same time, March 2006 and August 2006. Means with different letters are significantly different 

from one another. 

Fluke abundance was significantly greater in Cohort2006 than Cohort2005 in March 

2006 (ANOVA, F=7.06, df =1, P=0.011), and in August 2006 (ANOVA, F=8.09, 

df =1, P=0.007) (Figure 4b.). However, significant differences were not observed 

between fluke intensities of the two cohorts in March 2006 and in August 2006. 

Mean antibody titres of Cohort2006 were significantly greater in August 2006 than in 

March 2006 (ANOVA, F=9.26, d. f=1, P=0.004). Levene's test of equality of error 

variances was shown to be significant (F=33.54, P<0.001), therefore the results of 

the analysis should be treated with caution [24]. Fluke abundance of Cohort2006 was 
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significantly greater in March 2006 than in August 2006 (ANOVA, F=7.32, df=1, 

P=0.009) (Figure 4b.). 

Figure 4b. Cardicola forsteri abundance (no. of flukes/no, of tuna examined), including standard 

errors, for Cohortmo southern bluefin tuna (SBT), Thunnus maccoyii, and Cohort2®6 tuna sampled at 

the same time, March 2006 and August 2006. Means with different letters are significantly different 

from one another. 

No significant differences were shown in seroprevalences between either cohort or 

within each cohort during the sample periods March and August 2006. Pearson Chi-

square analysis showed that fluke prevalence was significantly greater in Cohort2006 

than Cohort2005 in March 2006 (emarch=22.86, df=1, P<0.001) and in August (2006) 

(X2Augu,I=12.05, df=1, P=0.001) (Figure 4c.) 
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Figure 4c. Prevalence (no. of infected tuna/no, of tuna examined) of blood fluke Cardicola forsteri 

for Cohort2005 southern bluefin tuna (SBT), Thunnus maccoyii, and Cohort2006 tuna sampled at the 

same time, March 2006 and August 2006. Frequencies with different letters are significantly different 

from one another. 

A significant correlation was found between fluke abundance in May 2005 and mean 

antibody levels in the respective cages in August 2005 (Figure 5.) (ANOVA, 

F=257.86, df=1, P=0.004). The correlation was described by the following 

equation: 

Ab = 5.7803A - 40.069 (r2  = 0.992) 

Where: Ab is the average antibody response for cages in May 2005, expressed as 

antibody units; A is the abundance for respective cages in August 2005. No 

significant correlation was observed between parasite intensity and antibody titre. 
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Figure 5. Correlation between blood fluke abundance (no. of flukes divided/no, of sampled tuna) for 

cages in May 2005 and mean antibody titres (U 1 ) against blood fluke infection for respective cages 

in August 2005. Ab is the average antibody response for cages in May, expressed as U g1 -1 ; A is the 

abundance for respective cages in August. 

4. Discussion 
Southern bluefin tuna are able to mount a specific humoral response against a 

macroparasite, Cardicola forsteri, in an aquaculture system under natural infection 

conditions, as detected in both the Western blot and ELISA analyses. Although 

immune responses of fish to sanguinicolids have been documented previously, this 

study is the first to demonstrate a specific humoral response against blood fluke 

under natural infection conditions. Previous studies have been undertaken in 

environments with controlled conditions [25] or have utilized in vitro experiments 

[26, 27]. 

Our study has shown that the antibody response of tuna to C. forsteri is initiated, for 

the most part, after the transfer of wild caught tuna into sea cages and suggests that 

infection occurs after this period as demonstrated by the lack of blood flukes 

observed at transfer in 2005. T. maccoyii sampled at transfer in 2004 showed low 
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infection prevalence of 10% and an intensity of one fluke per infected fish [10]. 

Parasitological surveys of wild southern bluefin tuna have shown low intensities and 

prevalences of infection (Aiken et al. Submitted (Chapter 4)) 1  and histological [4] 

and serological [11] examinations of wild southern bluefin tuna have previously 

failed to find evidence of C. forsteri infection. In addition, a computer simulation 

based on the observed lengths of blood fluke has been used to determine the most 

likely time of infections of blood fluke in farmed southern bluefin tuna (Aiken et al. 

Submitted (Chapter 4)) 1 . The simulations showed that the majority of infections 

occur after transfer into sea cages. Results from the same study showed that most 

fluke reach maturity at a size above 1790 inn which takes approximately 46 days. As 

this time is significantly less than the time between transfer and the first sampling 

(55 days) it seems reasonable to conclude that the majority of infections observed 

occurred in the farming zone. 

Mean antibody levels increased gradually in 2005 and remained elevated in 2006 

despite the significant decrease in fluke numbers after the peak in intensity, 

abundance and prevalence of fluke in May 2005. The decrease in fluke prevalence 

and burden may be a result of some external affect on the prevalence of the 

intermediate host thus reducing parasites within the water column. However it is 

more likely that there is no decrease of parasites in the water column due to the 

increase of antibody that was observed during the study period. The gradual increase 

of antibody levels over the year and the fact that antibody levels remained elevated 

despite decreasing parasite loads suggests that some kind of antigenic stimulation is 

keeping antibody titres at an elevated level. In most host-pathogen systems, specific 

humoral factors decline unless the host is re-exposed to antigens [28]. A reaction to 

Aiken. H. M., Hayward, C. J., Cameron, A., Nowak, B. F. 2009. Simulating blood fluke, Cardicola 
forsteri, infection in farmed southern bluefin tuna, Thunnus maccoyii, using stochastic models. 
Aquaculture, 293(3-4):204-210. 
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entrapped parasite eggs may be responsible for ongoing antibody production. 

However it is more likely a continuing presence of immature or adult fluke that is 

responsible for the ongoing antibody response observed [25]. [25] has shown that 

for carp inoculated with live S. inermis cercariae antibody levels will decline to 

control levels at 56 days post inoculation. The constant elevated antibody titres 

demonstrated in this study may be a result of ongoing cercarial penetration. The 

antibody response may be directed at these larval stages resulting in almost nil 

recruitment of adult stages in the heart and causing the decrease in parasite numbers 

observed. The immune system of southern bluefin tuna may be initially stimulated by 

secretory/excretory products that are released into the blood by adult worms. 

Secretory/excretory products appear to stimulate an effective host response against 

challenge infection by blood fluke in rhesus monkeys and hamsters [29]. In addition 

to exposure to antigens released by adult fluke, immunity to the incoming larval 

stages may accumulate with exposure to larval challenge itself. Exposure to larval 

blood fluke seems particularly important in the stimulation of a host response in rats 

[30] and appears to be central to the concomitant immunity found in lymphatic 

filariases [31]. Larval exposure may be responsible for the elevated antibody levels 

in southern bluefin tuna observed later in the growout season when adult fluke are 

not found in the host. 

To determine whether southern bluefin tuna are able to develop resistance against 

reinfection, fluke intensity, abundance, prevalence and antibody titres of the 

Cohort2005 and Cohort2006were compared to each other during the March and August 

2006 sampling points. The mean antibody titre of Cohort2006 tuna in August (2006) 

was shown to be significantly greater than that of Cohort2005 tuna at any sampling 

point during 2005 and 2006 Annual variability between the two cohorts entering the 
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farming zone in 2005 and 2006 may account for this difference. This variability may 

be a result of biological factors that influence the rate and intensity of a specific 

immune response against the blood fluke. In particular, the origin of the tuna and 

their history prior to capture may be responsible for the variation observed. Tow 

conditions and husbandry may also be factors in the observed variability as each 

cohort was subjected to different stocking densities and harvest frequencies. 

Although blood fluke intensities did not differ significantly between the two cohorts, 

Cohort2005 tuna had significantly lower blood fluke infection abundance and 

prevalence than the Cohort2006 tuna in March 2006 and also in August 2006. 

Cohott2005 tuna may have acquired some specific immunity having already been 

infected previously during 2005. It was assumed that cercariae were in the water of 

the Cohortmos sea cages and that no site specific effects were occurring, which is 

reasonable considering that infection prevalence for this cohort reached 100% in 

2004 [10] and almost 100% in 2005. Cohort2006 sampled at the same site as 

Cohort2005 , and farmed by the same company, also had a high prevalence of 55% and 

seroprevalence of 95% after 154 days of farming indicating that tuna were being 

infected by cercariae at the same site that Cobol -tam were being held. Thus, it is 

likely that Cohort2005 tuna were being penetrated by cercariae and possible that the 

already active antibody response was targeting juvenile stages so that no recruitment 

of adults in the heart was observed. Due to the difficulty of obtaining juvenile fluke 

from the large and valuable carcasses, cross reactivity of tuna antibody with these 

life stages could not be checked. However, similar patterns of infection and 

protection have been observed in other sanguinicolids. Recent investigations on S. 

inermis in C. cyprinus have revealed that there is a significant decrease in flukes 

recovered in fish that have previously been infected with blood fluke and then 

exposed to more cercariae compared with fish that have been exposed for the first 
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time [32]. [7] showed that many S. inermis are unable to complete migration to the 

blood system, and that most likely the flukes were killed by host defence 

mechanisms during migration. Individuals of cage-farmed less than 1-year old 

amberjack had a relatively high number of eggs in cardiac muscle and gill, 

suggesting that older fish acquired some level of immunity to infections after 

receiving an initial exposure to flukes a year earlier [33]. Resistance has also been 

demonstrated in fish infected with other digenean groups. Naïve rainbow trout have 

been demonstrated to become infected with significantly more Diplostomum 

spathaceum than rainbow trout that have already been exposed, indicating that the 

latter had developed resistance against the parasite as a result of previous infections 

[34]. 

The results of the Western blot analysis showed that tuna antibody was directed 

against additional bands to those demonstrated by [11] where pooled serum from 

fluke infected southern bluefin tuna bound only those molecular weight bands at 

around 145 and 136 kD. In our study five distinct bands were stained, only one of 

which corresponded to the bands (136 kD) demonstrated by [11]. A possible reason 

for more bands being observed is in the different methodologies used to produce 

antigen. In this study fluke were sonicated and homogenised in carbonate buffer in 

contrast to the previous study of [11] in which fluke were ground in an Eppendorf 

microtube with a glass rod in sample buffer. Different reducing buffers were also 

utilized; in this study DL-Dithiothreitol was added to the buffer whereas [11] used 2- 

mercaptoethanol. In addition, different concentrations of fluke protein in the antigen 

solution may have also produced the different results. 
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One band was found to be reactive with rabbit anti-tuna immunoglobulin and may be 

a result of using polyclonal antibodies which due to their multiple specificity, often 

show cross reactivity [11]. One of the reasons fish serology has not been widely used 

in infectious disease diagnosis is because fish immunoglobulins are predominantly of 

the IgM isotype, which is generally of relatively low specificity [35]. This may have 

been the reason for the sero-positive tuna that was observed in the transfer group 

where sero-positive tuna were not expected. Helminths share epitopes and as a 

relatively crude antigen preparation was used the ELISA may be have been cross-

reacting with another helminth parasite of the tuna [36]. Although the negative 

control sera showed a weak reaction with the cross reactive antigen, the intensity of 

the reaction differed significantly between sera from positive and negative controls. 

Further purification and characterization of the blood fluke antigens might reveal 

more specific results [15]. Further work on the sensitivity and specificity of the 

ELISA is being carried and will be reported in another study. 

Despite decreasing water temperatures (approximately from 20°C to 12°C) antibody 

levels still continued to increase and parasite loads still decreased for Cohottalos 

during 2005, and for Cohort2006in 2006. As tuna are able to conserve metabolic heat 

and maintain their body temperature at around 25°C, regardless of ambient 

temperature [37], the low temperature immunosuppression demonstrated for other 

fish species [26] may not be present in the endothermic tuna [3]. Captive southern 

bluefin tuna have previously demonstrated significantly higher levels of serum 

immunoglobulin, lysozyme and complement in winter than in summer [3]. In 

contrast, temperature has been shown to be immunosuppressive in carp infected with 

S. inermis. Antibody levels against the blood fluke are greater and maintained at 

higher levels for a longer period in carp kept at 25°C compared to fish maintained at 

158 



20°C [25]. Juvenile southern bluefin tuna production, currently under commercial 

trial, may also be more susceptible to blood fluke infection. As juveniles do not 

migrate from the tropical spawning grounds until their countercurrent heat 

exchangers are fully developed, very young fish, with immature heat exchangers, 

cultured in the cooler waters of South Australia may show the same low temperature 

immunosuppression observed in other aquaculture species [3]. 

This study shows that southern bluefin tuna under natural aquaculture conditions 

develops an antibody response against C. forsteri. Although these burdens decrease 

over time and there is no apparent mortality associated with the blood fluke, 

infection at the levels observed could result in sublethal production effects. 

Additionally, the elevated level of immune response observed may not be sustainable 

under long term culture. In mammalian systems nutrients are directed away from 

normal metabolism to support host defence mechanisms and this is also likely to be 

true for fish [3]. 

159 



5. Acknowledgements 
This work formed part of a project of Aquafin CRC, and received funds from the 

Australian Government's CRCs Program, the Fisheries R&D Corporation and other 

CRC Participants. The authors would like to thanks Adam Watkins and DI Fishing 

Co. for collection of mortality data and for general farm operations, David Ellis and 

TBOASA for managing the trial and collation of husbandry specific technical data, 

Dave Allen, Melanie Andrews and other persons who assisted in fieldwork and 

David Warland for valuable discussions. 

160 



6. References 
[1] Munday B, Sawada Y, Cribb T, Hayward C. Diseases of tunas, Thunnus spp. J 

Fish Dis 2003;26:187-206. 

[2] Nowak B, Mladineo I, Aiken H, Bott N, Hayward C. Results of health surveys of 

two species of farmed tuna: southern bluefin tuna (Thunnus maccoyii) in Australia 

and northern bluefin tuna (Thunnus thynnus) in the Mediterranean. Bull Euro Assoc 

Fish Pathol 2006;26(1): 38-43. 

[3] Watts M. Munday BL, Burke CM. Investigation of humoral immune factors from 

selected groups of southern bluefin tuna, Thunnus maccoyii (Castelnau): Implications 

for aquaculture. J Fish Dis 2002;191-200. 

[4] Colquitt SE, Munday BL, Daintith M. Pathological findings in southern bluefm 

tuna, Thunnus maccoyii (Castelnau), infected with Cardicola forsteri (Cribb, 

Daintith & Munday, 2000) (Digenea: Sanguinicolidae), a blood fluke. J Fish Dis 

2001;24:225-229. 

[5] Nowak B. Assessment of health risks to southern bluefin tuna under current 

conditions. Bull Euro Assoc Fish Pathol 2006;24(1):45-51. 

[6] Smith JW. The Blood Flukes (Digenea: Sanguinicolidae and Spirorchidae) of 

Cold-Blooded Vertebrates: Part 1. A Review of the Literature Published since 1971, 

and Bibliography, Helminthol Abst Ser A 1997;66:254-294. 

161 



[7] Kirk RS, Lewis JW. Migration and development of the blood fluke Sanguinicola 

inermis Plehn, 1905 (Trematoda: Sanguinicolidae) in carp, Cyprinus carpi° L. 

Parasitology 1996;113:279-285. 

[8] Smith JW. The blood flukes (Digenea: Sanguinicolidae and Spirorchidae) of 

cold-blooded vertebrates and some comparison with the schistosomes, Helminthol 

Abst Ser A 1972;41:161-204. 

[9] Cribb TH, Daintith M, Munday BL. A new blood fluke, Cardicola forsteri, 

(Digenea: Sanguinicolidae) of southern bluefin tuna (Thunnus maccoyii) in 

aquaculture, T Roy Soc South Aust 2000;124:117-120. 

[10] Aiken HM, Hayward CJ, Nowak BF. An epizootic and its decline of a blood 

fluke, Cardicola forsteri, in farmed southern bluefm tuna, Thunnus maccoyii. 

Aquaculture 2006;254(1-4):40-45. (Chapter 3) 

[11] Watts M, Munday BL, Burke CM. Production, characterisation and diagnostic 

use of antisera to southern bluefin tuna (Thunnus maccoyii Castelnau) 

immunoglobulin. Aquaculture 2001;199: 245-257. 

[12] Bullard SA, Overstreet RM. Potential pathological effects of blood flukes 

(Digenea: Sanguinicolidae) on pen-reared marine fishes. Proc Gulf Caribb Fish Inst 

2002;53:10-25. 

162 



[13] Romestand B, Dragesco A, Breuil G, Coste F, Bouix G. An ELISA technique 

for rapid diagnosis of vibriosis in sea bass Dicentrarchus labrax. Dis Aquat Org 

1993;12:137-143. 

[14] Xu DH, Klesius PH. Protective effect of cutaneous antibody produced by 

channel catfish, ktalurus punctatus (Rafinesque), immune to khthyophthirius 

multifilis (Fouqet) on cohabited non-immune catfish. J Fish Dis 2003;26:287-291. 

[15] Knopf K, Naser K, van der Heijden MHT, Taraschewski H. Evaluation of an 

ELISA and immunoblotting for studying the humoral response in Anguillicola 

crassus infected eel Anguilla anguilla. Dis Aquat Org 2000;43:39-48. 

[16[ Morrison RN, Nowak BF. The Antibody Response of Teleost Fish. Semin 

Avian Exotic Pet Med 2002;11(1):46-54. 

[17] Van Muiswinkel WB, Weigertjes GF, Stet RJM. The influence of environmental 

and genetic factors on the disease resistance of fish. Aquaculture. 1999;172:103-110. 

[18] LaPatra SE. The use of serological techniques for virus surveillance and 

certification of finfish. Annu Rev Fish Dis 1996;6:15-28. 

[19] Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on 

its own terms: Margolis etal. revisted. J Parasitol 1997;83: 575-583. 

[20] Bollag DM, Rozycki MD, Edelstein SJ. Protein Methods. New York: Wiley-

Liss; 1996 

163 



[21] Harlow E, Lane D.. Antibodies: A Laboratory Manual. New York: Cold Spring 

Harbor Laboratory; 1988. 

[22] Crowther JR. ELISA: Theory and Practice, Methods in Molecular Biology. 

Totowa: Humana Press; 1995. 

[23] Arkoosh, M. R., Kaattari, S. L. Quantitation of fish antibody to a specific 

antigen by an enzyme-linked immunosorbent assay (ELISA). In: Stolen JS, Fletcher 

TC, Anderson DP, Roberson BS, Muiswinkel WB, editors, Techniques in Fish 

Immunology, New Jersey: SOS Publications, Fairhaven; 1990, pp. 15-24. 

[24] Underwood AJ. 1981. Techniques of analysis of variance in experimental 

marine biology and ecology. Oceanogr Mar Biol Ann Rev 1981;19: 513-605. 

[25] Roberts ML, Lewis JW, Wiegertjes GF, Hoole D. Interaction between the blood 

fluke, Sanguinicola inermis and humoral components of the immune response of 

carp, Cyprinus carpio. Parasitology 2005;131: 261-271. 

[26] Richards DT, Hoole D, Lewis JW, Ewens E, Arme C. Stimulation of carp 

Cyprinus catpio lymphocytes in vitro by the blood fluke Sanguinicola inermis 

(Trematoda: Sanguinicolidae). Dis Aquat Org 1996;25:87-93. 

[27] Richards DT, Hoole D, Lewis JW, Ewens E, Arme C. In vitro polarization of 

carp leucocytes in response to the blood fluke Sanguinicola inermis Plehn, 1905 

(Trematoda: Sanguinicolidae). Parasitology 1996;112(5) :509-513. 

164 



[28] Olesen NJ, Jorgensen PEV. Quantification of serum immunoglobulin in rainbow 

trout Salmo gairdneri under various environmental conditions. Dis Aquat Org 

1986;1:183-189. 

[29] Smithers SR, Terry RJ. Resistance to experimental infection with Schistosoma 

mansoni in rhesus monkeys induced by the transfer of adult worms. Trans R Soc 

Trop Med Hyg 1967;61:517-533. 

[30] Smithers SR, Terry RJ. The infection of laboratory hosts with cercariae of 

Schistsoma mansoni and the recovery of adult hosts. Parasitology, 1965;55:695-700. 

[31] Maizels RM, Lawrence RA. Immunological tolerance-the key feature in human 

filiariasis. Parasitol Today. 1991;7:271-276. 

[32] Hoole D, Lewis JW, Schuwerack PMM, Chakravarthy C, Shrive AK, 

Greenrough TJ, Cartwright JR. Inflammatory interactions in fish exposed to 

pollutants and parasites: a role for apoptosis and C reactive protein. Parasitology 

2003;126:S71-S85. 

[33] Ogawa K, Hattori K, Hatai K, Kubota S. Histopathology of cultured marine fish, 

Seriola purpurscens (Carangidae) infected with Paradeontacylbc spp. (Trematoda: 

Saguinicolidae) in its vascular system. Fish Pathol 1989;28:75-81. 

[34] Karvonen A, Huson PJ, Seppala 0, Tellervo Valtonen E. Transmission 

dynamics of a trematode parasite: exposure, acquired resistance and parasite 

aggregation. Parasitol Res 2004;92:183-188. 

165 



[35] Denzin N, Staak C. Fish immunoglobulin — a sero-diagnosticians perspective. 

Bull Euro Assoc Fish Pathol 2000;20:60-64. 

[36] Tsuji M. Comparative studies on the antigenic structure of several helminthes 

by immuno-electrophoresis. Japanese Journal of Parasitology 1975;24(4):227-236. 

[37] Stevens ED, Neill WH. Body temperature relations of tunas, especially 

slcipjack. In: Hoar WS, Randall DJ, editors. Fish Physiology Vol. 6. Academic Press. 

1978, pp 315-359. 

166 



Chapter 7. A comparison of gross pathology, histopathology 
and parasitology for the diagnosis of blood fluke, Cardicola 
forsteri, infection in farmed southern bluefin tuna 

Hamish M. Aiken, Craig J. Hayward, Barbara F. Nowak 

In Preparation for Journal of Fish Diseases 

167 



Abstract 
The agreement between a gross pathological test and a histopathological test for 

detecting infection of farmed southern bluefin tuna with Cardicola forsteri was 

evaluated by testing 140 southern bluefin tuna from 5 South Australian tuna farming 

companies. The results were compared with those obtained by dissection of the tuna 

heart to count adult fluke. The sensitivity of gross gill pathology was 0.85 (CI:0.76- 

0.91) and the specificity was 0.34 (CI:0.20-0.51). The sensitivity of gill 

histopathology was 0.52 (CI:0.41-0.62), significantly lower (P<0.001) than the 

sensitivity of gross pathology, and specificity was 0.59 (CI:0.42-0.74). The kappa 

value for agreement beyond chance between gross pathology and histopathology was 

calculated as 0.49, indicating a moderate amount of agreement. Although the other 

estimates of accuracy are low, the high sensitivity of gross gill pathology suggests 

that it may be a useful tool for future epidemiology studies. 
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I. Introduction 
Blood fluke, Cardicola forsteri, infection is a common parasitosis of farmed southern 

bluefin tuna (Nowak et al. 2004; Aiken et al. 2006 (Chapter 3)). Infection results in 

gill pathology that may be a limiting factor in the production of southern bluefin tuna 

(Colquitt et al. 2001). The life cycle of the blood fluke is indirect and involves most 

likely a polychaete or bivalve intermediate host, presently unknown (Aiken et al. 

Submitted (Chapter 4)), in which asexual reproduction occurs (Smith 1997). 

Cercariae break free from this host to penetrate the tuna definitive host where they 

mature in the heart (Smith 1997; Cribb et al. 2000). Eggs from the adult are 

transported with blood and may cause the pathology seen in the gills (Colquitt et al. 

2001). Southern bluefin tuna aquaculture represents an important and valuable finfish 

culture industry in Australia and reliable diagnostic techniques are needed for the 

detection of parasites. To date no evaluation of any diagnostic technique has been 

undertaken for blood fluke nor any other parasite or pathogen infecting southern 

bluefin tuna. 

Infection of the southern bluefin tuna host by adult blood fluke is usually diagnosed 

by heart dissection and flushes followed by an observation and counts of the adult 

fluke in the heart (Colquitt et al. 2001; Aiken et al. 2006 (Chapter 3)). This method is 

time consuming and labour intensive and may be not suitable for large scale 

screening programmes. This method is also unable to detect other life stages such as 

invading immature fluke in the musculature and eggs lodged in the gills. Alternative 

methods of diagnosing infection, including histopathology (Colquitt et al. 2001), 

serology (Aiken et al. 2008 (Chapter 6)) and gross pathology have been explored; 

however, there has been no attempt to evaluate the accuracy of these tests for 

screening farmed southern bluefin tuna. This paper compares gross pathology of the 

gills and gill histopathology as two diagnostic methods in a population of farmed 
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southern bluefin tuna randomly chosen from farms located in Boston Bay, South 

Australia. Serology as a diagnostic method is considered in another study (Aiken et 

al. In Prep (Chapter 8). 

2. Methods and Materials 
2.1. Population 

A total of 140 southern bluefin tuna were selected from six companies between 

March 2005 and August 2006. Tuna were randomly selected for sampling during 

commercial harvest operations. 

2.2. Gross Pathology 

A gross pathological assessment for each southern bluefin tuna sampled was made 

immediately when gills were removed from the carcass the harvest vessel. Each gill 

arch was visually checked for gill lesions. southern bluefin tuna exhibiting 

multifocal, white to yellow, demarcated lesions involving the gill filaments, which 

are indicative of blood fluke infection (Colquitt et al. 2001) and that were not the 

result of pathology caused by grossly visible gill ectoparasite attachment were 

categorized as positive. Southern bluefin tuna without these lesions were classified as 

negative. 

2.3. Histopathology 

Gill samples for histology were collected aboard the harvest vessel after the gross gill 

pathology had been assessed. A 2 cm long piece of gill arch with filaments was 

removed from the gill of each fish. In cases where macroscopic lesions were present 

a sample for histology was taken from the area of the lesion. In cases where the tuna 

were considered negative, 2 cm of gill was removed from an area without any 

macroscopic pathology. Tissue samples were immediately placed in 10% neutral 
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buffered formalin. Standard histological techniques were used to produce 5 gm thick 

sections, which were then stained with haemotoxylin and eosin (H & E). After 

staining, sections were examined under a light microscope (Olympus BH2) and 

images were photographed (Leica DC300f, Wetzlar, Germany). Southern bluefin 

tuna with sections demonstrating blood fluke eggs in the gills were classified as 

positive and those southern bluefin tuna with sections showing no eggs were 

classified as negative. 

2.4. Parasitology 

Hearts were obtained during harvest at the same time that gills were removed, stored 

individually in containers on ice, and taken to the laboratory. Hearts were dissected 

open 2-4 hours after removal from the carcass and flushed with physiological saline 

to dislodge any adult flukes. Flushes were then poured into petri dishes and were 

then examined for the presence of adults using a dissection microscope. Southern 

bluefin tuna were classified as positive if adult blood flukes were observed in the 

heart and negative if no flukes were observed in the heart. 

2.5. Statistical analysis 

Presence of adult blood fluke in the heart was considered the gold standard for this 

study. The accuracy of gross pathology and histopathology was determined by 

comparing the diagnostic test results with those of parasitology. Values for 

sensitivity, specificity, positive predictive value (the proportion of cases with 

positive test results which have the parasite), negative predictive value (the 

proportion of cases with negative test results which do not have the parasite) and 

their 95% confidence intervals were determined. Differences were analysed using the 
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x2  test. The kappa statistic was used to assess agreement between gross gill pathology 

and gill histopathology (Thrusfield 2005). 

3. Results 
Gross pathological gill lesions were demonstrated in 111(79.29%) of the 140 

southern bluefin tuna (Figure 1.) Lesion severity ranged from small localised patches 

to large lesions covering the majority of filaments on all gill arches including some 

petechial haemorraging. Histopathological analysis revealed blood fluke eggs in the 

gills of 68 (48.57%) of the 140 southern bluefin tuna (Figure 2.) whilst adult blood 

fluke were dissected from 99 (70.71%) of the 140 southern bluefin tuna (Figure 3.). 

Figure 1. Gills of a farmed southern bluefm tuna, sampled from the waters of Boston Bay, South 

Australia, showing lesions (white patches) caused by eggs of the blood fluke, Cardicola forsteri. 
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Figure 2. Histological section of a farmed southern bluefm, sampled from the waters of Boston Bay, 

South Australia, tuna gill showing blood fluke, Cardicola forsteri, eggs and associated pathology. 

Arrows indicate location of blood fluke eggs. 

Figure 3. Adult blood fluke, Cardicola forsteri, dissected from hearts of farmed southern bluefm tuna, 

sampled from the waters of Boston Bay, South Australia. 

In 56 (40%) of the 140 southern bluefin tuna, for which there were complete results 

for gross pathology, histopathology, and parasitology, the 3 tests agreed on the blood 

fluke status of an southern bluefin tuna: 46 were disease positive  and  10 disease 

negative by all 3 tests (Table 1.). 
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Table 1. Comparison of gross pathology and histopathology to parasitology. + = positive, - = negative. 

Gross 
Pathology Histopathology Parasitology Total 
+ + + 46 
+ + 13 
+ + 38 
+ 14 
- + + 5 
- + - 4 
- + 10 
- - 10 
111* 68* 99* 140 

*Total positive results for each diagnostic test. 

The sensitivity of gross pathology was 0.85 (CI:0.76-0.91) and the specificity was 

0.34 (CI:0.20-0.51) (Table 2). The sensitivity of histopathology was 0.52 (0.41-0.62) 

and specificity was 0.59 (CI:0.42-0.74) (Table 3.). 

Table 2. Comparison of gross pathology to parasitology with sensitivity , specificity, positive 

predictive value (PPV), and negative predictive value (NPV), and 95% confidence intervals, of gross 

pathology. + = positive, - = negative. 

Gross Pathology 	Parasitology 	Total 
84 
27 
15 
14 

Sensitivity (95% Cl) 0.85 (0.76-0.91) 
Specificity (95% Cl) 0.34 (0.20-0.51) 
PPV (95% Cl) 0.76 (0.67-0.83) 
NPV (95% Cl) 0.48 (0.29-0.67) 

Table 3. Comparison of histopathology to parasitology with sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV), and 95% confidence intervals, of histopathology. + 

= positive, - = negative. 

Histopathology 	Parasitology 	Total 
51 
17 
48 
24 

Sensitivity (95% Cl) 0.52 (0.41-0.62) 
Specificity (95% Cl) 0.59 (0.42-0.74) 
PPV (95% Cl) 0.75 (0.63-0.85) 
NPV (95% Cl) 0.33 (0.23-0.45) 
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The positive predictive values (PPV) for both tests were moderately high. The PPV 

for gross pathology was 0.76 (CI:0.67-0.83) (Table 2) and for histopathology was 

0.75 (CI:0.63-0.85) (Table 3). The negative predictive values (PPV) for both tests 

were low. The NPV for gross pathology was 0.48 (CI:0.29-0.67) (Table 2) and for 

histopathology was 0.33 (CI:0.23-0.45) (Table 3). The kappa values for agreement 

beyond chance between gross pathology and histopathology was calculated as 0.49 

indicating a moderate amount of agreement. Histopathological analysis of gross 

lesions demonstrated eggs in 59 (53%) cases of the 111 southern bluefin tuna that 

were exhibiting gross lesions. Gross lesions were present in 59 (86%) cases of the 68 

southern bluefin tuna that were positive for blood fluke eggs as demonstrated by 

histopathological analysis. 

4. Discussion 
Histopathological analysis of gross lesions showed that in 53% of cases blood fluke 

eggs were present and that they were the most likely cause of pathology. The 

pathology observed is very similar to a previous study examining the 

histopathological response of farmed southern bluefin tuna to blood fluke eggs in the 

gills (Colquitt et al. 2000). Eggs were shown to accumulate in the afferent filamental 

arteries leading to blockages and obstructing blood flow leading to the formation of 

thrombi and oedema (Colquitt et al. 2000). Adult blood flukes were also recovered 

from hearts of a large number of southern bluefin tuna (71%). Previous studies of 

blood fluke intensity and prevalence have shown high prevalences of blood fluke 

infection in farmed southern bluefin tuna. Aiken et al. (2006 (Chapter 3)) showed 

that prevalence can reach 100% during a growout season. 

Gross pathology was shown to have a moderately high sensitivity which was the 

highest point estimate for both tests. The high sensitivity is expected as the presence 
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of blood fluke in the heart would mean that there are eggs travelling to the gills 

where they will cause pathology. However, the converse would occur in the very 

early period of the growout when southern bluefin tuna are infected. Blood fluke 

completing migration to the final site within the host would require a period of time 

to mature and begin producing eggs (Kirk and Lewis 1993). Paradeontacylix spp. 

mature and start to deposit eggs in host fish approximately two months after cercarial 

invasion (Ogawa et al. 1993). A similar period may exist in this case and blood fluke 

could be observed in the host without the presence of eggs in the gills resulting in a 

lower sensitivity. Surprisingly, the sensitivity of gross pathology was higher than the 

sensitivity of histopathology. The difference may be a result of the inspection of the 

whole gills for gross lesions whereas only one section from one block representing 

only a few filaments was examined histopathologically for each tuna. However, it 

was expected that the estimates of sensitivity would correlate as both tests detect the 

presence of eggs in the gills either directly, in the case of histopathology, or 

indirectly, in the case of gross pathology. A higher sensitivity for histopathology was 

also expected as gross lesions were being targeted for histological examination as 

opposed to routine removal of a predetermined location of the gill (Adams et al. 

2004). The low sensitivity may be a reflection of the histopathology case definition 

limiting what constitutes a positive animal. The case definition used in this study 

means that the presence of eggs was required to be observed in the histology section 

for a southern bluefin tuna to be considered positive for infection. However there 

were southern bluefin tuna that exhibited the histopathological signs of blood fluke 

egg presence but without eggs being present in the section. Histopathological 

indications of blood fluke egg presence included localised hyperplasia of the 

epithelium and connective tissue cells of the gill filaments, which is consistent with 

previous histopathological findings (Colquitt et al. 2001). Eggs may have been 
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present in the gills but not detected in that section, or eggs may have been previously 

there, causing pathology, but when the miracidia had hatched and the eggs degraded, 

the pathology remained despite the lack of egg presence. It has been demonstrated in 

other fish host species parasitized by sanguinicolids that eggs lodged in the gill tissue 

are encapsulated by the granulomatous inflammation response of the fish host and 

consequently degrade (Kirk and Lewis 1993). The pathology would still be observed 

without the presence of the blood fluke eggs. 

The specificities of both tests were low. A possible reason for the high number of 

apparent false positives is that adult blood fluke may have been cleared from the host 

whilst the eggs are still present in the gills causing pathology. It has been shown 

previously that adult blood fluke are cleared from the host over a period of 4 months 

(Aiken et al. 2006 (Chapter 3)). It is possible that eggs may be still causing pathology 

even though there are no adult blood flukes in the tuna. This would result in the high 

number of false positives that were observed. A high number of false positives was 

also seen when histopathology was used as a diagnostic test. This high number may 

be due to similar reasons as that seen when using gross pathology. Eggs may be 

present in the gills after adult fluke was in the heart, which means that there may be a 

discrepancy in time of detection of different life stages. A histopathological study of 

cultured Lates cakarifer infected with the sanguinicolid Cruoricola lates 

demonstrated that whilst eggs may be present in the gills, a lack of infection by 

juvenile or adult worms may be demonstrated depending on the location in the host 

examined (Herbert et al. 1995). Presence of eggs in the gills and the absence of 

juvenile or adult blood fluke was also shown in a histopathological study of Sparus 

aurata infected with sanguinicolid trematodes (Padros et al. 2001). In this study, 34 

of the fish examined revealed the presence of large numbers of sanguinicolid eggs, 
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however of these fish only 4 demonstrated the presence of an adult blood fluke. It 

was concluded that other organs in the host need to be examined especially where 

there is the possibility of influences related to seasonal and individual variability due 

to age. A higher specificity than that observed when gross pathology was used as a 

diagnostic test may be related to the histopathology being a more direct indication of 

blood fluke egg presence. The gross gill lesions may indicate a current egg infection, 

a previous egg infection, or possibly a previous infection by other parasites, for 

example ectoparasites. Ectoparasites are commonly observed on the gills of southern 

bluefin tuna and include two species of copepods and one species of monogenean 

(Hayward et al. 2007). It is possible that these ectoparasites may be dislodged during 

the harvesting process leaving the lesion behind resulting in a misdiagnosis as a 

lesion caused by blood fluke eggs. 

The positive predictive values of both tests were shown to be moderately high, whilst 

negative predictive values were shown to be low. By targeting gross lesions for 

histopathology, the positive predictive value would be maximised. For an animal to 

be considered positive histopathologically two criteria were required to be met, a 

tuna must have gross lesions and also demonstrate blood fluke eggs in the 

histological section, therefore only severely affected animals at a later stage of 

infection were considered positive for comparison to parasitology; thus minimising 

the false positive rate (Rohonczy et al. 1996). Additionally the high positive 

predictive values and the low negative values may be a reflection of the high 

prevalence of infection that was observed. The effect of prevalence on predictive 

values is considerable. As prevalence of infection in a population increases, the 

positive predictive value increases and the negative predictive value decreases 

(Thrusfield 2005). 
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The estimates of sensitivity, specificity, positive predictive value, and negative 

predictive value of gross pathology and histopathology demonstrate that these tests 

are not accurate in determining the adult blood fluke infection status of southern 

bluefin tuna. This is in part due to the tests detecting the presence of blood fluke eggs 

and this being compared with the presence of adult fluke in the heart. 

Epidemiological surveys of experimental fish demonstrate that adult blood fluke 

decline in numbers during the growout season and it is likely that there are situations 

where there are no adult fluke left in the host but eggs are still remaining in the gills 

(Aiken et al. 2006 (Chapter 3); Aiken et al. 2008 (Chapter 6)). It is also possible that 

the adult fluke have moved to a different organ of the host and are not being 

detected. Paradeontacylix kampachi, a blood fluke parasite of Serbia dumerili is 

routinely observed in the girdles, cephalic kidney, sinus venosus, kidney and 

branchial arteries (Montero et al. 2003). Adult fluke may also be migrating to the 

gills to lay eggs thereby creating a situation where eggs are being observed in the 

gills but no fluke are observed in the heart. Adult Paracardicoloides yamagutii have 

only been observed in the gills of eels (Anguilla australis and Anguilla 

dieffenbachia) after migrating there to lay eggs (Hine 1978).However it is unlikely 

that the majority of fluke are being missed due to their location in other organs as 

Aiken et al. (Submitted) (Chapter 4) has examined other organs of tuna and has not 

observed any fluke other than a small percentage found in the branchial arteries of 

the gills. 

Despite the low estimates of accuracy for both tests in determining the presence of 

adult fluke there was moderate agreement between tests. As opposed to sensitivity 

and specificity, kappa measures the agreement in the positive as well as the negative 
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categories. It has been suggested that a kappa of 0.40-0.75 indicates a moderate to 

good level of agreement between tests and over 0.75 indicates excellent agreement 

between tests (Fleiss 1981). The presence of gross lesions typical of blood fluke 

infection at post-mortem inspection showed moderate agreement beyond chance, 

with the histopathological observation of blood fluke eggs. Disagreement between 

the tests was mainly in the situation where a positive gross pathology disagreed with 

a negative histopathology result. A number of reasons could be responsible for this; 

most likely the eggs are in the gills but not in the section which was examined, or the 

lesions may have been the result of a previous blood fluke infection, or the lesions 

may have been caused by a previous ectoparasite infection. A disadvantage in the use 

of kappa is that the magnitude of the kappa statistic is dependent on the true 

prevalence of the trait being measured (Feinstein and Cicchetti 1990). As true 

prevalence approaches 0 or 1 the value of kappa decreases (Thompson and Walter 

1988). Therefore, the moderate value of kappa may also be a reflection of the high 

prevalence of blood fluke infection that was observed in the southern bluefin tuna. 

Thus, the values of kappa and the predictive values reported in this study must be 

treated with caution when applied to surveys of southern bluefin tuna carried out 

early (2 months post transfer) or late in the growout season (6 months post transfer). 

Early during the season infection is very high and late in the season it is very low 

(Aiken et al. 2006 (Chapter 3); Aiken et al. 2008 (Chapter 6)) and this may affect the 

accuracy of any diagnostic test applied. Other methods of assessing diagnostic tests 

are available and can also be utilised when there is no gold standard available (Enoe 

et al. 2000). Bayesian analyses are one such approach and are increasingly being 

used in the assessment of aquatic disease diagnostic tests (Aiken et al. In Prep. 

(Chapter 8)). These approaches are sometimes preferred over using the kappa 

statistic which is influenced by the prevalence resulting in kappa values rarely being 
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compared across studies or populations (Thompson & Walter 1988; Feinstein & 

Cicchetti 1990). 

The estimates of accuracy for the tests evaluated in this study may be applied to 

surveys where these tests have been used and a conversion from apparent prevalence 

to true prevalence is required. Additionally, the relatively high sensitivity of the 

gross pathology means that this diagnostic method may be a useful onboard test that 

can be used to quickly determine the number of infected tuna that are being 

harvested. It is very unlikely that the eggs causing these lesions are from any other 

sanguinicolids as surveys incorporating molecular analysis have failed to identify 

any other species of sanguinicolid infecting T. maccoyii (Aiken et al. 2007 (Chapter 

2)). As a result wet preparations of gill material to identify the presence of eggs as 

the cause of gill lesions could be used as a more specific onboard test that would not 

require any significant extra amount of time to perform. However, parasitology is 

still the preferred method of detecting sanguinicolids, as this method directly detects 

the presence of adult fluke (Cribb et al. 2000; Montero et al. 2003; Bullard et al. 

2004; Hutson and Whittington 2006). 
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Abstract 
Bayesian and classical approaches were used to determine the prevalence of 

Cardicola forsteri infection in farmed southern bluefin tuna and to determine the test 

properties of the two diagnostic procedures used. Samples for analysis were obtained 

from tuna that had been farmed in 2005 and 2006. Samples were examined using 

both parasitological examination (PE) and enzyme-linked immunosorbent assay 

(ELISA) detecting specific antibody response against the parasite. Classical analysis 

indicated a prevalence of 75% (CI: 67%-82.37%) in 2005 and 76% (CI: 61%- 

86.66%) in 2006 using PE and a prevalence of 41.86% (CI: 33%-50.87%) in 2005 

and 61.22% (CI: 46%-74.8%) in 2006 using the ELISA. Based on the results of the 

two tests, Bayesian analysis indicated a true prevalence of 88.77% (BCI: 73.33%- 

99.26%) in 2005 and 84.79% (BC!: 68.12%-98.28%) in 2006. The Bayesian analysis 

also indicated that PE was the more sensitive and specific technique (Se: 84% and 

Sp: 99%) than the ELISA (Se: 35% and Sp: 37%). The results of the Bayesian 

analysis demonstrate that the prevalence of C. forsteri infection has been 

underestimated in previous surveys due to consideration of PE as a perfect diagnostic 

test. This is the first known study to use Bayesian analysis to estimate the prevalence 

of a helminth parasite in fish and to estimate test characteristics of diagnostic 

procedures used for the detection of helminth parasites infecting fish. 
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1. Introduction 
Cardicola forsteri is a blood fluke parasite of southern bluefin tuna Thunnus 

maccoyii and northern bluefm tuna Thunnus thynni (Cribb et al. 2000; Bullard et al. 

2004; Aiken et al 2007 (Chapter 2)). It is the cause of significant gill pathology in 

farmed tuna from Australia (Colquitt et al. 2001). Nodular lesions on the gills result 

from an inflammatory response to C. forsteri eggs trapped in the afferent filamental 

blood vessels (Colquitt et al. 2001). C. forsteri has a complex life cycle and its 

intermediate host is currently unknown but it is most likely a polychaete or bivalve 

(Smith 1997). Infective cercariae are shed from this intermediate host and actively 

search for the final host, in this case a southern bluefin tuna. On penetrating the skin 

of the host the juvenile fluke will undergo a migration to the heart where they will 

mature (Smith 1997; Cribb et al. 2000). Once established, the adult fluke lay eggs, 

which travel to the gills where they lodge. Adult fluke may also migrate to the gills 

to lay eggs. Adult Paracardicoloides yamagutii have only been observed in the gills 

of eels (Anguilla australis and Anguilla dieffenbachia) after migrating there to lay 

eggs (Hine 1978). Free swimming miracidia hatch from the eggs and break out of the 

gill structure into the external environment. These miracidia will seek out an 

appropriate intermediate host into which they will penetrate to undergo asexual 

reproduction as rediae and/or sporocysts to produce infective cercariae (Smith 1972; 

Smith 1997). 

A surveillance program targeting C. forsteri in farmed southern bluefin tuna has been 

continuing since 2003 (Nowak et al. 2003; Deveney et al. 2005; Aiken et al. 2006 

(Chapter 3); Aiken et al. 2008 (Chapter 6)). Prevalence of infection estimated during 

a growout season has varied from 31% in 2003 (Deveney et al. 2005) to 68.2% in 

2004 (Aiken et al. 2006 (Chapter 3)) and 76.33% in 2005 (Aiken et al. 2008 (Chapter 

6)). In these surveys two diagnostic procedures, parasitological examination and 
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enzyme-linked immunosorbent assay (ELISA), have been used to diagnose 

infections and to estimate the prevalence of C. forsteri in tuna, although the primary 

method of detection has been parasitological examination to observe the adult fluke 

in the heart as the ELISA has been developed only recently (Aiken et al. 2008 

(Chapter 6)). Parasitology has historically been the method of diagnosis of parasites 

in wild and cultured fish although ELISA is increasingly being used to detect fish 

parasites as this technique can be used in non-destructive sampling methods 

(Richards et al. 1996; Knopf et al. 2000; Taylor and Jones 2005). Neither the 

sensitivity nor the specificity of these two C. forsteri detection tests is known, yet 

reliable estimates of these parameters are needed to estimate true prevalence in 

farmed tuna populations (Guerden et al. 2004). 

One problem in the validation of the diagnostic tests, particularly for diseases of 

aquatic animals, is the lack of an appropriate gold standard. A recent study of C. 

forsteri in southern bluefin tuna considered the use of parasitological detection as a 

gold standard (Aiken et al. In Prep. (Chapter 7)). However there is no accepted gold 

standard for the diagnosis of C. forsteri in southern bluefin tuna and therefore the 

accuracy assessment of any new diagnostic test developed may be biased if 

parasitology, which may be an imperfect reference test, is used as a gold standard for 

comparison (Guerden et al. 2004). When a gold standard is not available it is 

possible to obtain estimates of test sensitivity and specificity using latent class 

methods in which the unknown (latent) variable is the true infection status (Enoe et 

al. 2000). A variety of methods have been developed to fit these latent class models 

(Enoe et al. 2000). In this study we used a Bayesian technique. This approach 

requires that two or more conditionally independent tests be applied to tuna derived 

from two or more groups with different prevalence of infection (Nerette et al. 2005). 
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The Bayesian approach and other 'no gold standard' approaches are increasingly 

being used in diagnostic test evaluation and prevalence estimation of diseases of 

aquatic animals (Nerette et al. 2005, Thebault et al. 2005, Gustafson et al. 2008). 

In this study, the prevalence of C. forsteri in farmed southern bluefin tuna in the 

Spencer Gulf, South Australia, was estimated by Bayesian analysis based on data 

obtained from 2005 and 2006 using two independent diagnostic techniques. A 

secondary objective was to determine the sensitivity and the specificity of an ELISA, 

at various cut-off levels. To account for the absence of a gold-standard, we used 

Gibbs sampling to compare the ELISA to parasitological examination. 

2. Methods and Materials 
2.1. Population 

Southern bluefin tuna were sampled (hearts and blood) at various stages over a five 

month period (April — August) during 2005 and also in March and August 2006. 

Tuna from each year represented two distinct populations as wild southern bluefin 

tuna are introduced to the farming zone annually and are harvested before the end of 

that year. For both years wild T. maccoyii were captured by purse-seine in the Great 

Australian Bight (map reference 33 27S, 132 04E) in February and towed to the 

Spencer Gulf farming zone over a period of approximately six weeks in a towing 

pontoon. In 2005 tuna were transferred from the tow pontoon to four sea cages for 

farming on 5 th  April 2005 and nine tuna were sampled at this time. During the 

growout period, ten tuna were sampled from each of the four cages on 30 th  May, 1 l th  

July, and 22nd  August. A total of 129 tuna were examined in 2005. Tuna from 2006 

intake of wild fish were sampled on the 24 th  March (37 days post transfer) and ten 

tuna on 27 th  March (41 days post transfer). A total of 49 tuna were examined in 2006. 

The sampling times and number of fish were determined in collaboration with the 
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industry. The number of southern bluefin tuna sampled was limited due to the high 

cost of individual tuna. Samples taken and dates are summarized in Table 1. 

Table 1. Number of farmed southern bluefm tuna Thunnus maccoyii sampled at different times during 

2005 (Cohort2oo5), including from different cages during May, July and August 2005, and 2006 

(Cohort2005 and Cohort2006) for blood fluke Cardicola forsteri infection. Samples were not taken for 

serological analysis on 7th  March 2006 and 14th  March 2006. 

Cohort Sampling time Cage 

2005 Transfer 5-Apr-05 9 
30-May-05 1 10 

2 10 
3 10 
4 10 

11-Jul-05 1 10 
2 10 
3 10 
4 10 

22-Aug-05 1 10 
2 10 
3 10 
4 10 

2006 24128-Mar-06 29 
18-Aug-06 20 

2.2. Diagnostic tests 

2.2.1. Parasitological examination (PE) 

The presence of blood flukes was assessed according to Aiken et al. (2006) (Chapter 

3). Hearts were obtained during harvest, stored on ice, and taken to the laboratory. 

Hearts were dissected 2-4 h after removal from the carcass and flushed with 

physiological saline to dislodge any adult flukes. Flushes were poured into Petri 

dishes and examined for the presence of flukes using a dissection microscope 

(Olympus SZX12) at 6x magnification. Prevalence (i.e. the number of infected tuna 

divided by the number of tuna examined x100) was determined, as described by 

Bush et al. (1997). All flukes were frozen at -20°C for approximately one week and 

then transferred to a -80°C freezer where they were stored. 
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2.2.2. Enzyme-linked immunorsorbent assay (ELISA) 

2.2.2.1. Sample collection 

Southern bluefin tuna were bled during harvest by cutting into the pectoral artery and 

collecting blood in 50 ml falcon tubes which were then stored on ice until transfer to 

the laboratory approximately 3-4 hours later. Blood was allowed to clot overnight, 

centrifuged at 5000 g for 10 min, after which serum was aliquoted and stored at - 

80°C. 

2.2.2.2. C. forsteri antigen preparation 

Adult flukes collected from tuna during 2005 and 2006 and stored at -80°C were 

used as antigen in the ELISA. Flukes were transferred to a 15 ml tube and suspended 

in carbonate buffer (2.93 g NaHCO3, 1.59 g Na2CO3, in 11 of distilled water, pH 9.6). 

The buffer was then subjected to ten pulses of a Branson sonicator for approximately 

10 s a pulse. A tissue homogenizer was then used to further break down the flukes in 

ten pulses of approximately 15 s each. The buffer was then transferred to 1.5 ml 

tubes and centrifuged at 3000 g for 10 minutes at 4°C. Supernatant was aliquoted and 

stored at -80°C. Protein concentration of antigen in the solution was determined by 

BCA Protein Assay Kit to determine concentration for the chequerboard titration. 

2.2.2.3. ELISA 

A recently developed standard indirect ELISA (Aiken et al. 2008 (Chapter 6)) was 

used to detect and quantify specific serum antibodies in tuna against C. forsteri. 

Assay conditions were optimized empirically and reagent concentrations determined 

by chequerboard titrations (Crowther 1995). A flat bottom 96-well microplate 

(IWAKI) was coated overnight at 4°C with C. forsteri antigen solution diluted with 

carbonate buffer (2.93 g NaHCO 3 , 1.59 g Na2CO3, in 11 of distilled water, pH 9.6) to 

20 pg m1' protein. Plates were blocked with 0.3% casein in tris buffered saline (TBS; 

20 mM Iris, 500mM NaC1, pH7.2) for 1 h at 37°C. The plates were then washed 
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three times with TBS. Tuna serum samples were then added to plates. Tuna serum 

samples were diluted in 0.3% casein in TBS, and added in duplicate wells across 

rows in a twofold serial dilution beginning at 1:100 through to 1:3200. Positive and 

negative standard sera, previously chosen from Aiken et al. (2008) (Chapter 6), were 

titrated in duplicate on each plate. After 1 h incubation at 37°C, plates were washed 

three times in TBS then rabbit anti-tuna heavy chain immunoglobulin (RATH) 

(Watts et al. 2001), diluted 1:100 in 0.3% casein in TBS, was added and incubated 

for one h. Following another wash cycle sheep anti-rabbit IgG alkaline phosphatase 

conjugate (Sigma, Castle Hill, NSW, Australia), diluted to 1:8000 in 0.3% casein in 

TBS, was added. All reagents were added as 50 1.d volume. A final wash in TBS was 

performed immediately prior to adding 200 [11 of the detection reagent, p-nitrophenyl 

phosphate (PNPP) (Sigma, Castle Hill, NSW, Australia). Colour was allowed to 

develop for 30 min and the optical density was measured at 405 nm using a Spectra 

Rainbow Thermo microplate reader (TECAN Trading AG, Switzerland). 

Antibody activities were determined according to Arkoosh & Kaattari (1990) with a 

method which expresses titers as units or antibody activity per volume of serum. The 

positive standard serum was titrated against C. forsteri antigen starting at a dilution 

of 1:100 to calculate a serum volume equating to 0.5 unit of antibody activity. In this 

study one unit of antibody activity was defined as the volume of the positive standard 

which gave 50% of the maximum OD, thus the reciprocal of this volume gives units 

of activity per ill of serum. The volume of serum giving 50% of the OD is 

determined from the dilution factor. Thus specific antibody activities of samples 

were expressed as units of antibody activity per volume of serum and were 

determined relative to the immune standard included on all plates and calculated as 

follows: 
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Activity of sample = (activity of standard) x (50%volume of standard/50%volume of 

sample) 

where activity of the standard is the reciprocal of the volume of the immune standard 

which gives 50% maximum OD, as determined from a titration curve and is 

expressed as units of activity per gl of serum, 50% volume of the standard is the 

volume of the immune standard giving 50% maximum OD and 50% volume of the 

sample is the sample volume giving 50% maximum OD. The activity of the standard 

is a constant in the equation, determined from its full titration, whereas the other 

terms are derived from individual plates and thus account for variations between 

plates. All samples and standards, both immune and non-immune, were titrated in 

duplicate from dilutions of 1:100 to 1:3200. 

2.3. Statistical analysis 

Two different approaches were used during the study to determine prevalence of 

infection for each year/population and test characteristics. In a classical approach, 

presence of adult flukes as detected by examination of flushes using dissecting 

microscope, parasitological examination (PE), was considered as the reference 

method 'Cgold standard') where sensitivity and specificity were assumed to be 

perfect. Specific antibody serum titre was determined by ELISA for each individual 

and compared to parasitological examination. The results were plotted in a two-graph 

receiver operating characteristic (TG-ROC) curve as described by Frossling et al. 

(2003). A test's sensitivity and specificity (y-axis) are plotted for each cut-off (x-

axis) in a TG-ROC. This plot demonstrates changes in test accuracy with 

increasing/decreasing cut-off. The cut-off where sensitivity and specificity were 

equal, point of equivalence, was reported. A sample was considered positive if its 

antibody activity was greater than this cut-off value. 
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A second means of data analysis was based on Bayesian estimation by comparing the 

antibody titre of the ELISA to the presence of adult flukes observed during PE using 

a Gibbs sampler, an iterative Markov-chain Monte Carlo (MCMC) technique, as 

described by Frossling et al. (2003). The Gibbs sampler approximates the marginal 

posterior densities of the parameters of interest (sensitivity, specificity and 

prevalence) in the absence of a gold standard. In order to use the Gibbs sampler it is 

necessary to have the results of two tests simultaneously applied to individuals from 

two populations with different prevalences of disease (Frossling et al. 2003). To meet 

this requirement samples were arranged into the two years (2005 and 2006) in which 

different groups of tuna were examined. The 2006 year samples were from the early 

part of the season and therefore would expect to have a different level of infection 

prevalence to 2005 where samples were collected during the entire growout season. 

Independence was assumed between the two tests, PE and the ELISA, and sensitivity 

and specificity were assumed to be constant between both populations. A burn in 

phase of 5,000 iterations was used and inferences were made based on a subsequent 

20,000 iterations. 

In the Gibbs sampling, prior probabilities ("priors") of the parameters of interest are 

incorporated into the simulation. These probabilities are specified as beta 

distributions described by two variables (a and [3) presented in the form Beta (a,13) 

(Gelman et al., 1995). Priors can be non-informative, a uniform distribution of 

between 0 and 1, or informative, a distribution achieved by using past data, or by 

using expert opinion, or a combination of both. In this study, the Gibbs-sampler 

simulations were performed with non-informative priors (uniform distributions set to 

Beta (1,1)) for both population prevalences, both test sensitivities, and the ELISA 
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specificity. Uninformative priors were used for the ELISA due to its recent 

development and no information of test accuracy. Additionally there is a lack of 

information about the sensitivity of PE when diagnosing blood fluke infections in 

fish. An informative prior of PE specificity was estimated to be greater than 98%, 

with a most probable value of 99%, which gave a prior of Beta (560.72, 6.65). This 

high specificity is warranted due to the requirement of viewing the actual parasite 

under the microscope. Using the non-informative and informative priors, point 

estimates (medians of posterior distributions) and 95% Bayesian credible intervals 

(2.5% and 97.5% percentiles of posterior distributions) of sensitivity and specificity 

for both the ELISA and PE were calculated. Point estimates and 95% credible 

intervals of prevalence of infection for both populations were also calculated 

simultaneously. 

Estimates of sensitivity and specificity for the ELISA at antibody titre values ranging 

from 0 to 20 (by increments of 1) were calculated and plotted in a TG-ROC. A cut-

off value was derived from the TG-ROC where sensitivity and specificity were 

equal. Further data points were added near the equivalence point to aid in resolution 

of the optimum cut-off value. 

2.4. Computer software 

Data management and descriptive statistics were performed using SPSS 13.0 and 

Microsoft Excel 2003. Beta distributions were calculated using online software 

(http://www.ausvet.com.au/epitools/content.php?=BetaParams1)  provided by AusVet Animal 

Health Services (Sergeant 2004). The Gibbs sampler wasrun using WinBUGS 

software (Imperial College and Medical Research Council) (Spiegelhalter et al. 

1996) version 1.4. 
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3. Results 
3.1. Classic analysis 

3.1.1 Estimation of prevalence using parasitological examination (PE) 

The prevalence of C. forsteri in the examined samples of 178 southern bluefin tuna 

was 76% (CI: 69%-81.75%). Prevalence of blood fluke infection in the examined 

samples of 129 southern bluefin tuna for 2005 was estimated at 75% (CI: 67%- 

82.37%) through using the gold standard method of PE. Prevalence of blood fluke 

infection in the examined samples of 49 southern bluefin tuna for 2006 was 

estimated at 76% (CI: 61%-86.66%) through using the gold standard method of PE. 

3.1.2. Classical estimation of ELISA test characteristics 

Sensitivity decreased rapidly whilst specificity increased slowly over the range of 

cut-off values (Figure 1.). A cut-off antibody titre value of 6 was determined from 

the TG-ROC analysis. At this equivalence point sensitivity and specificity was equal 

to 45% (Se CI: 27%-41.16%; Sp CI: 30%-61.15%) (Figure 1.) 

Figure 1. TG-ROC plot with sensitivity (Se), specificity (Sp) and cut-off value =6 of a C. forsteri 

ELISA (Aiken etal. 2008) (178 sera from two annual cohorts of tuna, 2005 and 2006). 
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3.1.3. Estimation of prevalence using ELISA 

The cut-off value as determined by equivalence point was used to estimate 

prevalence of infection. The prevalence of infection amongst all southern bluefin 

tuna was 47% (CI: 40%-54.8%). Prevalence of infection in 2005 was 41.86% (CI: 

33%-50.87%) and in 2006 was 61.22% (CI: 46%-74.8%). 

3.2. Bayesian analysis 

3.2.1. Estimation of test characteristics 

The TG-ROC plot of sensitivity and specificity as calculated through Bayesian 

analysis showed that sensitivity decreased rapidly initially and then gradually whilst 

specificity increased gradually (Figure 2.). A cut-off value of 8.59 was chosen as 

being closest to the equivalence point with a sensitivity of 34.9% (BCI: 27.16%- 

42.98%) and specificity of 36.96% (BCI: 2.7%-72.25%). Estimates of PE sensitivity 

and specificity across the range of ELISA cut-off values did not vary considerably, 

0.82-0.86 for sensitivity and 0.9882-0.9883 for specificity. 

Figure 2. TG-ROC plot with sensitivity (Se), specificity (Sp) and cut-off value =8.59 of a C. forsteri 

ELISA (Aiken et al. 2008) as estimated by Gibbs sampling using non-informative priors for 

sensitivity and ELISA specificity and an informative prior for PE specificity of Beta (560.72, 6.65) 

(178 sera from two annual cohorts of tuna, 2005 and 2006). 
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3.2.2. Bayesian estimation of prevalence 

Using the cut-off estimated in section 3.2.1 prevalence of infection in southern 

bluefin tuna in 2005 was shown to be 88.77% (BCI: 73.33%-99.26%) and in 2006 

was shown to be 84.79% (BCI: 68.12%-98.28%). 

3.3. Comparison of test and prevalence estimates 

Results shown in Table 2 compare sensitivity, specificity and prevalence estimates 

between the two methods of test evaluation and prevalence determination. Bayesian 

analysis demonstrated a higher prevalence of infection than classical analysis. 

Additionally, the estimates of test accuracy analysed through Classical means were 

higher than those estimates of test accuracy measured through Bayesian analysis. 

Table 2. Comparison of estimation of sensitivity (Se) and specificity (Sp) of parasitological 

examination (PE) and C. forsteri enzyme-linked immunosorbent assay (ELISA) (Aiken et al. 2008) 

by different statistical approaches and prevalence estimates (Prey.) for each test and each statistical 

approach. MCMC: Markov Chain Monte Carlo. 

Analysis Test Se (%) Sp (%) Prey (%) 
2005 2006 Total 

Classical 

MCMC 

PE 
ELISA 

PE 
ELISA 

100 
45 
85 
35 

100 
45 
99 
37 

75 
42 
89 
89 

76 
61 
85 
85 

76 
47 

4. Discussion 
The results presented give important information regarding the prevalence of C. 

forsteri in farmed southern bluefm tuna and the performance of diagnostic 

procedures for the detection of infection. Bayesian estimation of prevalence in this 

study has demonstrated that the prevalence of infection is higher than previously 

thought (85-89%). Earlier estimates have suggested that the prevalence of C. forsteri 

infections over one growout season is 31-68.2% (Deveney et al. 2005; Aiken et al. 
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2006 (Chapter 3)). However in the study of Deveney et al. (2005) sampling was 

initiated in July and so the prevalences estimate only represents the growout season 

from that point of time. In another study examining spatial and temporal patterns of 

infection, information on prevalence of infection in commercially harvested tuna 

were collected over a three year period 2004-2006 and was shown to be 62.6% 

(Aiken et al. In Prep. (Chapter 5)). Previous studies examining the intensity and 

prevalence of blood fluke infection in southern bluefin tuna have used parasitological 

examination as the only diagnostic method. This method has been shown to be only a 

moderately sensitive technique leading to underestimation of prevalence as 

sensitivity is affected significantly due to the entire carcass requiring examination for 

the presence of these internal parasites which may be located in may locations 

(Montero et al. 2003). The sensitivity of parasitological examination of metazoan 

parasites of fish has not been estimated previously. However, sensitivity values for 

parasitological examination have been estimated for terrestrial and human metazoan 

parasites. Bayesian estimation of the sensitivity of stool examination for 

Strongyloides parasites in humans has been shown to be 31% (Joseph et al. 1995). 

The sensitivity of microscopical examination for Giardia duodenalis cysts in calf 

faeces has been estimated to be 56% (Guerden et al. 2004). The sensitivity of liver 

dissection for Fasciola hepatica flukes has been estimated to be 63.2% through 

Bayesian analysis (Rapsch et al. 2006). 

Both tests using classical techniques of prevalence estimation were shown to 

underestimate the prevalence of blood fluke infection that was demonstrated by the 

Bayesian analysis. Parasitological examination underestimation of prevalence was 

due to the occurrence of false negatives. False positives are not a significant problem 

in parasitological examination as the process usually involves the visual detection of 
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the presence of the parasite. Parasitological methods have a high degree of specificity 

generally as the actual parasite needs to be observed for a positive result to be 

recorded. A decrease in specificity would only occur through the misidentification of 

the parasite (Rapsch et al. 2006). It is very unlikely that another species of blood 

fluke was present in the tuna examined in this study as previous surveys have failed 

to identify any other blood fluke species (Cribb et al. 2000; Nowak et al. 2003; 

Deveney et al. 2005; Nowak et al. 2006) and a molecular analysis of blood fluke in 

farmed southern bluefin tuna was unable to demonstrate any cryptic species (Aiken 

et al. 2007 (Chapter 2)). 

Although the sensitivity of parasitological examination was shown to be moderately 

high, a number of false negative results were demonstrated. False negatives may 

possibly be occurring as a result of the presence of blood fluke in other organs of the 

tuna. Blood flukes of other fish species are known to inhabit other organs of the host. 

Adult blood fluke infecting the sea bream Sparus aurata have been observed in the 

kidney (Pathos et al. 2001). The blood fluke Cruoricola lates has been observed in 

the gills, eyes, pericardial blood vessels, gut, caudal kidney, liver and spleen of 

infected Lates calcarifer (Herbert et al. 1995). Paradeontacylix kampachi, a blood 

fluke infecting Seriola dumerili, has been observed in the girdles, cephalic kidney, 

sinus venosus, kidney and branchial arteries of infected fish (Montero et al. 2003). 

Adult Paracardicoloides yamagutii have been observed in the gills of eels (Anguilla 

australis and Anguilla dieffenbachia) after migrating there to lay eggs (Hine 1978). 

In an earlier survey of blood fluke infection in southern bluefin tuna, samples of 

heart, liver, posterior and head kidney, branchial arteries, gut, and spleen were 

examined for C. forsteri infection (Aiken et al. Submitted (Chapter 4)). Adult flukes 

were observed in the heart and in a small number of branchial arteries. No flukes 
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were observed in other organs of the tuna and it is unlikely that there are significant 

populations of C. forsteri inhabiting other organs of the tuna. This is supported by 

the results of a histopathological study which was unable to demonstrate presence of 

blood fluke eggs in the posterior kidney, liver, spleen or intestine of infected 

southern bluefin tuna (Colquit 1999). 

False negatives when utilising parasitological examination are likely to occur early in 

the growout period when tuna are being invaded by cercaria and immature stages 

which have yet to migrate to the heart. Screening for invading immature stages is 

impossible due to the size of the carcass and its high value making it unavailable for 

dissection. During migration to the heart Parasitological examination of the heart will 

not be able to detect infected tuna. The period of migration is not known for tuna but 

has been suggested to be short due to the size of some of the fluke that have been 

observed in the heart (Aiken et al. Submitted (Chapter 4)). A short migration time 

(12 days) for Sanguinicola armata, a blood fluke infecting grass carp, 

Ctenopharyngodon idella, has been observed while a longer migration time (94 

days) has been observed in Aporocotyle simplex, a blood fluke infecting dab, 

Limanda limanda (Kline 1982; Kua et al. 2002). 

The ELISA significantly underestimated the prevalence of infection. A large number 

of false negatives and false positives resulted in poor estimates of sensitivity and 

specificity thus affecting the estimation of prevalence. False negative results may 

have occurred early in the growout period when it was too early for an immune or 

serological response to be developed to an antigenic stimulation. Most tuna entering 

the farming zone would be naïve hosts having no experience of C. forsteri infection 

previously (Aiken et al. 2008 (Chapter 6)). There is always a delay between infection 
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and detectable specific antibody levels and, therefore, false negative results are 

typical for antibody detection systems (Voller and De Savigny 1981). Another 

explanation for the false negative results is that the burdens observed in this study 

may be too low for a serological response to occur. The burdens observed in the tuna 

are quite variable with many tuna having only minor worm burdens which may have 

an effect on the level of antibody the ELISA is able to detect. The ability of 

serological tests to detect helminth infections is known to be affected by the size of 

the burden of the infection. Venturiello et al. (1998) demonstrated that low burdens 

of porcine trichenellosis resulted in a high number of false negative results in various 

serological assays including an ELISA that had been developed for use as a 

diagnostic test. 

Also a significant number of false positive results resulted from use of the ELISA. 

A common issue in the use of serological diagnostic tests is that tests for antibodies 

cannot discriminate between current and past infections as detectable levels of 

specific antibodies may persist following recovery (Voller and De Savigny 1981). 

This is quite probable in the case of southern bluefin tuna. It has been shown 

previously that antibody levels persist despite blood fluke having been cleared from 

the heart (Aiken et al. 2008 (Chapter 6)). False positives would be most common 

later in the growout season when tuna have cleared infections of the adult fluke but 

there is still a remaining measurable antibody level present. Another possibility is 

that that the ELISA is detecting antibodies to invading cercaria which are not able to 

complete the migration to the heart due to the host immune response (Aiken et al. 

2008 (Chapter 6)). 
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Western Blot analysis of tuna serum against fluke antigen has demonstrated some 

cross-reactivity that may result in false positives. Polyclonal antibodies, used in this 

study, often show cross reactivity due to their multiple specificity (Watts et al. 2001). 

One of the reasons fish serology has not been widely used in infectious disease 

diagnosis is because fish immunoglobulins are predominantly of the IgM isotype, 

which is generally of relatively low specificity (Denzin and Staak 2000). Helminths 

share epitopes and as a relatively crude antigen preparation was used the ELISA may 

be have been cross-reacting with another helminth parasite of the tuna (Tsuji 1975). 

The results presented in this study show that, on its own, the ELISA is not applicable 

for use as a diagnostic test to detect blood fluke infection. This is not surprising, 

taking into account the persisting uncertainty in the serodiagnoses of human 

parasitoses (Knopf et al. 2000). Parasitological examination demonstrated a 

moderately high sensitivity and almost perfect specificity. This method provides a 

reliable and low cost method of determining C. forsteri infections and will most 

likely be the preferred diagnostic test for surveillance programs. However, 

Parasitological examination requires destructive sampling whereas samples for 

serological tests can be taken from live animals. Additionally, immunoserological 

tests are essential in investigating the immune response of tuna against the blood 

fluke and this ELISA test has been used successfully in a longitudinal study 

investigating such a response (Aiken et al. 2008 (Chapter 6). This study has also 

demonstrated the usefulness of the ELISA in determining an accurate estimate of 

prevalence through Bayesian analysis when used in conjunction with another 

diagnostic test. This approach to estimating the true prevalence of infection, and also 

estimates of test accuracy, is the preferred method when a gold standard test is not 

available (Georgiadis et al. 2001). 
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Chapter 9. General Discussion 

This research provided new information about the epidemiology of blood fluke, 

Cardicola forsteri, infection in farmed southern bluefin tuna, Thunnus maccoyii, in 

South Australia. The results suggest that the majority of C. forsteri infections are due 

to infections occurring in the farming zone of the Spencer Gulf rather than tuna 

bringing in infections from the wild. However it is possible that the infections 

observed in the farming zone are a result of tuna having been infected in the wild as 

C. forsteri infections have been observed in wild southern bluefm tuna (Aiken et al. 

2007 (Chapter 2)). Some of these infections may lie dormant as encysted 

shistosomula similar to Paradeontacylbc ibericus infections in Seriola dumerili 

(Montero et al. 2009). C. forsteri schistosomula may excyst post transfer to account 

for the infections observed during the growout season. However, the prevalence and 

intensity of adult C. forsteri infections observed in the wild were very low (Aiken et 

al. 2007 (Chapter 2)) suggesting that juvenile fluke infections are low as well. 

Additionally, much of the evidence in this thesis points towards a local pattern of 

infection as parasites with complex life cycles are most prevalent in locations where 

intermediate hosts are abundant (Pathos et al. 2001). The evidence for a local 

infection pattern includes the demonstration of two major infection periods after 

transfer in the model (Aiken et al. Submitted (Chapter 4)), a low prevalence and 

intensity of infections in T. maccoyii at transfer (Aiken et al. 2006 (Chapter 3)), and 

only a minor antibody response in one tuna (out of 10) at the beginning of the 

growout season (Aiken et al. 2008 (Chapter 6)). This has ramifications for the 

farming zone in that there may be a build up of infection over time by either more 

intermediate hosts acquiring infection or more heavy infections being experienced by 

the intermediate host and as a consequence more cercariae being released into the 

water column increasing both the intensity and prevalence of infections in T. 
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maccoyii. It is highly likely that once an intermediate host is infected with C. forsteri 

it is infected for life (T. Cribb, University of Queensland, personal communication). 

There is no risk to wild T maccoyii populations from the build-up in infections in the 

intermediate host population as tuna no longer naturally inhabit the area where the 

farming occurs. 

Despite this potential for an increase in C. forsteri infections the surveys undertaken 

in this study demonstrated that prevalence and intensity decreased over the growout 

period. It is possible that the specific humoral response, demonstrated by the ELISA 

and Western Blot, is responsible for this decrease by targeting invading and 

migrating cercariae after the first infection period resulting in an almost nil 

recruitment of adult stages in the heart (Aiken et al. 2008 (Chapter 6)). A similar host 

response against invading and migrating sanguinicolid cercariae has been suggested 

to occur in Cyprinus carpio against Sanguinicola inermis as it has been observed that 

many flukes were unable to complete migration to the blood system of C. carpio 

(Kirk and Lewis 1996). Tuna re-exposed to cercariae in the second growout season 

had a lower prevalence and intensity of C. forsteri infection (Aiken et al. 2007 

(Chapter 2)). This pattern of infection has been observed in C. cyprinus re-exposed 

with Sanguinicola inermis cercariae (Hoole et al. 2003) and Seriola quinqueradiata 

re-exposed with Paradeontacylix spp. cercariae (Ogawa et al. 1989). In both studies, 

fish re-exposed to cercariae demonstrated lower intensities of infection than naïve 

hosts exposed for the first time. It would have been preferable to have demonstrated 

under experimental laboratory conditions that there is protection against re-infection 

with C. forsteri. However this type of research is impossible with C. forsteri as the 

intermediate host is unknown and therefore there is no available source of cercariae 
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to use in such an experiment. Additionally, appropriate tank systems for holding 

tuna are not available for research purposes. 

Although there is evidence that specific humoral response is causing the decrease in 

intensity and prevalence other factors may also explain this infection pattern. It is' 

possible that mortalities in the intermediate host population may be responsible for 

the decrease in fluke numbers. It was suggested that C. forsteri may have a 

deleterious effect on its intermediate host (Munday et al. 2003). Pathological effects 

by the sanguinicolid Aporocotyle simplex resulting in castration of the intermediate 

host, Artacama pro bosidea have been reported (Koie 1982). Intermediate hosts 

parasitised by cercariae almost invariably exhibit lower fecundity due to castration 

(see Mouritsen and Poulin 2002 for review). Sterility and a decreased life span may 

be experienced by the intermediate host of C. forsteri resulting in decreasing 

infections in the T maccoyii population. However, this is unlikely as this would most 

likely lead to a decline in infections in tuna year-to-year due to the declining 

intermediate host population which was not observed (Aiken et al. In Prep. (Chapter 

5)). 

Parasite-induced mortality of the most heavily infected individuals in fish 

populations has been used to explain observed parasite prevalence and intensity 

patterns (Knudsen et al. 2002). It is possible that the decrease in intensity and 

prevalence observed in the surveys of this thesis was due to mortality of tuna with 

the highest intensities of C. forsteri. However, this is an unlikely explanation for the 

observed decrease as the surveys occurred on farms where divers recovered all 

mortalities, the number of which was low and could not explain the reduction in 
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prevalence. Additionally, the number of flukes observed in the hearts of mortalities 

was the same as in normal fish at the same time (Aiken et al. In Prep. (Chapter 5)). 

No relationship was observed between the intensity of C. forsteri infection and the 

condition of the tuna despite the presence of gill pathology in many infected tuna. 

This apparent lack of an effect of the C. forsteri on T. maccoyii is in contrast to other 

investigations of blood fluke infected fish. Paradeontacylix spp. have caused mass 

mortality of Seriola dumerili in Japan with dead fish displaying signs of suffocation 

resulting from an accumulation of eggs in the afferent arteries (Ogawa and 

Fukudome 1994). However, in a histopathological study of a blood fluke, Cruoricola 

lates, in Lates calcarifer it was suggested that low intensities of C. lates did not cause 

mortality and were only responsible for minor pathological changes (Herbert 1995). 

The inflammatory response of Sparus aurata against sanguinicolid eggs has been 

observed to be lower than that of Seriola purpurascens against Paradeontacylix spp. 

and it has been suggested that this was a result of the lower intensity of sanguinicolid 

infection in Sparus aurata (Pathos et al. 2001). In general only low intensities of C. 

forsteri were observed in T. maccoyii with annual means of intensity fixed around six 

fluke per infected host (Aiken et al. In Prep. (Chapter 5)). This level of intensity may 

not be enough to produce serious pathological effects or mortality. Additionally, it 

was shown that there was no year-to-year increase of infection intensity suggesting 

that some equilibrium has been reached (Aiken et al. In Prep. (Chapter 5)). However, 

despite the lack of major pathology and low levels of infection this does not mean 

that the infection could not contribute to severe illness or death by acting together 

with other factors (Colquitt et al. 2001). Kumon et al. (2002) found that blood fluke 

infested yellowtail Serbia quinqueradiata, when challenged with Lactococcus 

garvieae, a bacterial pathogen of fish, had a significantly higher fmal cumulative 
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mortality than fish uninfected with blood fluke. Another factor that may combine 

with C. forsteri infection includes husbandry which differs according to the company 

holding the tuna. This study identified company as factor in explaining variation in 

C. forsteri intensity, abundance and prevalence. Husbandry effects that may 

influence the occurrence of C. forsteri include the frequency of sea cage net cleaning, 

if the intermediate host is located on the net, and also the frequency that sea cage 

sites are fallowed if the intermediate host is located in the sediment beneath cages. 

Additionally, stress resulting from poor management can lead to 

immunocompromised fish resulting in higher parasite loads and possibly more 

clinical disease (Murray and Peeler 2005). T. maccoyii fingerlings, currently under 

commercial trial, may also be more susceptible to C. forsteri infection than wild fish 

which are currently farmed. Juvenile T. maccoyii may not be able to migrate from the 

tropical spawning grounds into waters of higher latitudes until they become 

endothermic (Dickson et al. 2000), therefore very young fish, with immature heat 

exchangers, cultured in the cooler waters of South Australia may show the same low 

temperature immunosuppression observed in other aquaculture species (Watts et al. 

2002). 

A range of epidemiological methods was used to understand C. forsteri infection in 

farmed tuna. The methods used in this thesis were constrained by some industry 

specific and general issues related to undertaking surveys in aquaculture. An analysis 

of risk factors for disease and infection using case-control or cohort surveys was not 

possible in this study due to the industry direction as well as due to technical reasons. 

Therefore, observational studies using cross-sectional surveys were used to describe 

patterns of infection. Despite the industry and technical constraints the data 

generated from the observational studies provided valuable information. Temporal- 
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spatial studies have been used previously to provide information on the occurrence 

and modes of transmission of an infectious disease (Georgiadis et al. 2001). In order 

to evaluate transmissions patterns of white sturgeon iridovirus (WSIV) in a sturgeon 

hatchery Georgiadis et al. (2000) described and analyzed data on the temporal—

spatial distribution of disease in individual fish tanks to effectively provide 

information that could be used to manage disease outbreaks (Georgiadis et al. 2000). 

Some issues with methods arose in these studies that have been identified in previous 

epidemiological studies in an aquaculture environment. Sampling of confined fish 

populations to obtain a representative sample is a challenge in any observational 

study. In the longitudinal surveys (Aiken et al. 2007 (Chapter 2); Aiken et al. 2008 

(Chapter 6)) sampling was constrained by industry demands on how the fish were 

selected. Instead of undertaking systematic random sampling to select fish, tuna were 

haphazardly selected by a diver in the pontoon catching the closest fish and 

swimming to the sampling deck. Because fish sometimes have strong social 

hierarchies, they tend to stratify in the water column (Georgiadis et al. 2001). 

Therefore selection of fish from the surface will not yield a representative sample of 

the population. Crowding fish into the net and then taking a sample has been 

suggested as the best way of taking a random sample of fish from a pontoon 

(Cameron 2002). However, this is not possible for farmed T. maccoyii due to the size 

and cost per individual tuna and the potential for significant damage and stress to 

occur during crowding. Alternatively all fish should be removed from the cage and 

sample chosen randomly. However, this is possibly only during a harvest of all fish 

from one cage or grading of all fish from one the cage, either of which are rare in the 

tuna industry. 

221 



Another problem in trying to obtain a random sample was that often commercial 

production was prioritised over sampling protocols. This situation often occurred in 

the sampling of commercial fish (Aiken et al. In Prep. (Chapter 5)) where some 

harvests only targeted larger or smaller fish driven by the requirements of the buyer 

of the tuna. However, the commercial harvests represented a better opportunity to 

attempt a random sample from the harvested tuna as the sampled tuna were selected 

from the processing line at 5 minute intervals rather than have an individual tuna 

selected for sampling as was the case in the longitudinal surveys (Aiken et al. 2007 

(Chapter 2); Aiken et al. 2008 (Chapter 6)). 

Investigation of mortalities as a possible outcome of C. forsteri infection was 

problematic and the question of whether C. forsteri causes mortalities remains 

unanswered. Only a small number of mortalities were available for examination for 

C. forsteri and any associated pathology. Small numbers were examined as only a 

small number of dead tuna were submitted by industry. Additionally farms provided 

very little information about the history of the submitted fish. As such no significant 

inferences based on statistical analyses could be made about mortalities and C. 

forsteri infection. However, those mortalities examined were shown to have the same 

or fewer numbers of adult flukes as harvest fish (Aiken et al. In Prep. (Chapter 5)). 

A limitation of many aquatic epidemiological studies is the use of diagnostic tests 

with unknown sensitivity and specificity. Assuming that a test has perfect sensitivity 

and specificity (accuracy) when this is not true, will bias the inferences of 

epidemiological investigations that use the test results (Georgiadis et al. 2001). 

Additionally in the case of pathogens with more than one life stage in the infected 

host, such as sanguinicolids, the diagnostic test usually is only able to detect one 

stage of that life history (Figure 1). 
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Figure 1. Life stages of C. forsteri in a naïve T. maccoyii and the various diagnostic tests that are able 

to detect the respective life stages. Parasitological test is the dissection technique used in this thesis to 

demonstrate adult C. forsteri from the heart. It is possible for this technique to be used in identifying 

adult fluke from other organs. Antibody response represents the ELISA and Western Blot tests used in 

this thesis. It is assumed that an antibody response can be elicited against adult fluke as adult fluke 

extracts were used to develop the ELISA and Western Blot (Aiken et al. 2008 (Chapter 6)). Dashed 

lines indicate lack of knowledge about ability of antibody responses test to detect migrating fluke and 

egg life stages. 

As a result it is difficult to determine the true infection status of a tuna when using a 

diagnostic test that is only able to detect one life stage of C. forsteri. This study 

demonstrated the low accuracy of several diagnostic tests used to detect C. forsteri 

infection in T. maccoyii. There is some argument that detection of C. forsteri from 

the heart is not representative and that fluke migrate when tuna die and possibly also 

migrate later in the season resulting in low levels of infection being observed. 

However the Bayesian analysis demonstrated that the parasitological examination is 

a relatively sensitive technique with almost perfect specificity. It provides a reliable 

and low cost method of determining C. forsteri infections and will most likely be the 
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preferred diagnostic test for surveillance programs, where hearts can be obtained, as 

this method requires destructive sampling. Another low cost method that was not 

used in this study that could also be undertaken is the analysis of wet preparations of 

gill material. C. forsteri eggs could be detected in this way, however, as with the 

histology there would be a lack of sensitivity and in contrast to histopathology it 

would be difficult to assess pathological changes as a result of egg presence. 

However, this method would be faster and cheaper than histopathology and could 

detect a stage of infection when adults are no longer present in the heart (Figure 1). 

Gill wet preparations have been demonstrated to be more sensitive than 

parasitological detection of adult sanguinicolids in Sparus aurata due to the ability of 

wet preparations being able to detect infection when adults are not present in the fish 

host or when the adult infected organs are not targeted for dissection (Pathos et al. 

2001). The ELISA should also be considered as a diagnostic tool in further research 

despite the lack of accuracy of the test's parameters (Aiken et al. In Prep. (Chapter 

8)). Immunoserological tests are the only tools capable of investigating the immune 

response of tuna against C. forsteri and this ELISA test was used successfully in the 

longitudinal study investigating such a response (Aiken et al. 2008 (Chapter 6)). The 

serological test is also the only test that can be used in non-destructive sampling. 

Identification of the intermediate host should be a high priority for any further 

research on C. forsteri in T. maccoyii. Management actions are based on separating 

the intermediate host from that definitive host (Bullard and Overstreet 2002) and thus 

information is needed about the intermediate host and this is an identified priority for 

further T. maccoyii health research. Marine sanguinicolid cercariae have been 

detected from a number of intermediate hosts (Table 1.), however, only one complete 

life cycle is known; Aporocotyle simplex uses a polychaete intermediate host, 
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Artacama proboscidea, a sedentary tube-dwelling terebellid polychaete common on 

the muddy sea floor of Oresund, Denmark (Koie 1982). 

Table 1. Sanguinicolid cercariae from polychaete (P) and bivalve (B) intermediate host species. 

Adapted from Smith (1997) and Cribb et al. (2008). 

"Aporocotylidae" 
Cercaria amphicteis 
Aporocotyle simplex 

Cercaria hartmanae 

Cercaria martini 
Cercaria asymmetrica 
Cercaria cristulata 
Cercaria mercenariae 

Tagelus divisus (B) 
Aphicteis gunneri floridus (P) 
Artacama proboscidea (P) 

Pecten irradians (B) 
Donax variabilis (B) 
Chione cancellata (B) 

Locality  
Biscayne Bay, Florida, 
USA 
Florida 
Oresund, Denmark 

Woods Hole, 
Massachusetts, USA 
Woods Hole, 
Massachusetts, USA 
Florida 
Florida 

Reference(s) 

Fraser (1967) 
Oglesby (1961) 
Koie (1982) 
Martin (1952); Koie 
(1982) 
Linton (1915a); Martin 
(1944); Rankin (1946); 
Stunlcard (1983) 
Linton (1915b); Stunkard 
(1983) 
Holliman (1961) 
Holliman (1961) 
Wardle (1979)  

Cercaria 	 Host 

Cercaria loossi 	Eupomatus dianthus (P) 

Lanicides vayssierei (P) 	Ross Island (Antartica) 

Mercenaria campechiensis (B) Galveston, Texas, USA 

It is highly likely that the intermediate host in Boston Bay and the intermediate host 

in Spain are either the same species or very closely related (Aiken et al. 2007 

(Chapter 2)) as the prevailing parasitological paradigm is that each digenean species 

usually infects just a single first intermediate host species (Gibson and Bray 1994; 

Nunez and De Jong-Brink 1997), with both host ecology and host—parasite 

physiological compatibility driving this specificity (Adamson and Caira 1994; Sapp 

and Loker 2000a; Sapp and Loker 2000b). 

Risk factor analysis in a case-control or cohort study would be an additional avenue 

of further research to provide information on C. forsteri. However for this type of 

analysis to be undertaken there would be a need for intensive monitoring of daily 

activities as well as a need for information on daily husbandry practices (Georgiadis 

et al. 2001). This information is considered by the tuna industry to be highly 

sensitive and confidential and therefore is hard to access. Some information needed 
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would include stocking densities, feed used, feed operations, management practices 

etc. In some sectors of the tuna industry there was an unwillingness to participate in 

epidemiological surveys as it was perceived that the industry was not being affected 

by any tuna health issues. This attitude must be addressed before undertaking any 

risk factor analysis as a close working relationship is needed in order for the study to 

produce meaningful results. Farm personnel would be needed during a risk factor 

study to help in procedures involving monitoring of the populations as well as 

recording any daily activities. However, production is always the first priority for 

any industry and determination of a final study design should be done in close 

consultation with the farm managers and personnel. Furthermore, accessibility of 

farming sites is sometimes limited and this is another area where help might be 

needed from farm personnel (Georgiadis et al. 2001). This is especially the case of 

research in the southern bluefin tuna industry where pontoons are located offshore 

and a close working relationship is needed to access the tuna. 

There are also some technical difficulties in undertaking a risk factor analysis of C. 

forsteri in tuna. Primarily the adoption of the most appropriate case definition would 

be problematic. There would need to be a decision on whether infection, disease or 

subclinical infection would be the case definition. Infection is easily diagnosed 

through the observation of the adult fluke, however, tuna obviously have differing 

intensities of infection and the parasitological technique used to diagnose C. forsteri 

infection is unable to detect any migrating stages of C. forsteri. Therefore presence 

or absence of adult fluke may not be a true indication of the pathology experienced 

by the tuna. The same problem would occur for any diagnosis of the infection; 

absence or presence of gill lesions may not represent the degree of pathology 

experienced. As well, diagnosis based on clinical signs often has only moderate 
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sensitivity and specificity compared with laboratory diagnostic tests (Aiken et al. In 

Prep. (Chapter 7)). These lower accuracy estimates may be a result of differential 

misclassication occurring due to the diagnosticians becoming more familiar with 

disease manifestations over time and inadvertently biasing the result (Vagsholm et 

al. 1994; Kleinbaum et al., 1982). This possibility should be anticipated when 

designing aquatic epidemiological studies and strategies such as "blinding" of data 

collectors and laboratory personnel should be used to prevent differential 

misclassification. 

Despite the technical difficulties a risk analysis is worth undertaking if supported by 

the industry. Although only a few such studies have been conducted in an 

aquaculture environment (Thorbum 1987; Thorbum 1993; Corsin 2002) this type of 

analysis can help define risk factors for infectious diseases in fish farms. Other risk 

factors, apart from the presence of a pathogen, may be associated with the disease 

such as stocking density or feed or other management practices but these have not 

been evaluated critically. In the absence of knowledge of such risk factors, it will be 

difficult to design management approaches to prevent or control their occurrence. 

A risk factor analysis and identification of the intermediate host should be high 

priorities for future research. The major findings from this thesis will be useful in 

designing studies to investigate these research priorities. These findings provided the 

tuna industry with information about the infection patterns of C. forsteri and the 

immune response of T. maccoyii against C. forsteri. New diagnostic tool have been 

developed to aid in diagnosing the different life stages of C. forsteri. Additionally the 

tools use to diagnose C. forsteri infection have been assessed for accuracy. These 
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estimates of accuracy are now able to be used to determine the true prevalence of C. 

forsteri in farmed T maccoyii. 
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Appendix 1. Electronic copies of stochastic models used in 
Chapter 4. Simulating blood fluke, Cardicola forsteri, 
infection in farmed southern bluefin tuna, Thunnus 
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