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Abstract 

How well a proposed regression model fits the observed outcome data is a critical question. The 

answer may influence model selection, and the conclusions drawn. Summary goodness-of-fit 

(GOF) statistics are used to assess model fit. Pearson’s chi-squared GOF statistic  2X  is used 

to evaluate the fit of logistic regression models, but 2X  isn’t appropriate when the model 

contains continuous covariates. Other GOF statistics are applicable, including the Hosmer-

Lemeshow  HL , Pigeon-Heyse  2J , and Tsiatis  T  statistics. All have similarities to 2X  

and group data artificially. 

Simulation studies assessing new GOF statistics for logistic models with continuous covariates 

often include HL  for comparison. We know of no study that compares HL , 2J , and T . We did 

so here, applying the same grouping method (deciles-of-risk) to all. Our results indicated that 

HL  and T  followed their reported distributions, but 2J  did not. Its distribution was closer to

 2 2~ 2J G  , where G=groups, rather than the reported  2 1G  . Assuming 

 2 2~ 2J G  , T  maintained the Type I error rate twice as often as HL  and 2J . The rates of 

HL  and 2J  were often lower than expected when dichotomous, quadratic, or interaction terms 

were included. The statistics had similar power to detect departures from a true  

underlying model. 

The logistic model is the canonical generalized linear model (GLM) for binomial outcomes. 

Although many GOF statistics have been developed for logistic models, there are fewer for non-

canonical GLM with binomial outcomes. The properties of the logistic model make the 

development of GOF statistics relatively straightforward, but it can be more difficult for non-

canonical GLMs. 

We considered whether HL , 2J , and T  could be applied to non-canonical GLM with Bernoulli 

outcomes and continuous covariates. Our investigation found that HL  and 2J  can be applied 

directly, but T  cannot. We introduced an augmented version of the Tsiatis model and 
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generalised T , ( TG ). We showed that under non-canonical links,  2~T GG . In a second 

simulation study, HL , 2J , and TG  were used to evaluate the fit of probit, log-log, 

complementary log-log and log binomial models. The deciles-of-risk method was applied. Type 

I error rates were consistently maintained by TG , while those of HL  and 2J  were often lower 

than expected if the model included dichotomous, quadratic, or interaction terms. Because the 

distributions of HL  and 2J  varied, it was unclear how their degrees-of-freedom could be 

adjusted. The statistics had similar power to detect an incorrect model in most situations. An 

exception occurred when a log model was incorrectly fit to data generated from a logistic 

model; here TG  had more power than HL  or 2J . 
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Chapter 1 Introduction 

“The oldest, shortest words – ‘yes’ and ‘no’ – are those which require the most thought.”  

– Pythagoras 

Yes or no, success or failure, life or death - these are all examples of binary responses. Critical 

research questions can have answers that take this form. Once a scientist identifies such a 

research question, designs a study, toils for hours collecting data, and then builds a regression 

model appropriate for binary outcomes – after all of that, but before they can answer their 

research question, they must first answer another binary question: ‘Does my model fit the data 

that I observed?’ Their answer to this question will affect the conclusions they draw from all of 

their hard work. It is critical. Checking the fit of binary regression models is central to this 

thesis, and we began by giving a brief overview of the topic. Note that a more rigorous 

explanation of the material in this overview will be given in Chapters two and three. We 

conclude this introductory chapter with a list of the research questions that will be addressed in 

the thesis, and give a synopsis of the thesis presentation.  

 

1.1 Background 

So how can the researcher decide whether or not to keep their model? One way is to calculate a 

goodness-of-fit statistic that summarizes how well the outcomes predicted by their model fit the 

outcomes they observed. This was the basic idea behind Karl Pearson’s well-known goodness-

of-fit test (Pearson 1900). Pearson is considered to be the “nucleus of the movement of 

systematic statistical thinking”(Mukhopadhyay 2000). He was one of the first to introduce the 

concept of goodness-of-fit. Originally he considered a multinomial variate with a fully specified 

distribution function, whose range can be divided into some finite number of mutually exclusive 

classes. Then, since the distribution function is specified, the probability of any observation 

falling into a particular class can be calculated (Kendall, Stuart, Ord and Arnold 1999). One way 

to think of this is as multinomial trials where each observation is placed into one of a finite 
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number of cells in a contingency table. Under the null hypothesis, the theoretical multinomial 

probability of a being placed into a cell is equal to the probability derived from the observed 

data and the parameters specified under the null hypothesis. The alternative is that they are 

significantly different. Fisher extended Pearson’s work by considering the case when the 

parameters are not fully specified (Kendall, et al. 1999). Later, Pearson’s test was applied to 

regression models that can be fitted to obtain estimates of the parameters. This includes the 

logistic regression model, which is used in many fields to relate a categorical outcome variable 

to a set of predictor variables. It is a member of the class of models called generalized linear 

models (GLM), and can be used when the outcome data is assumed to come from a binomial 

distribution (McCullagh and Nelder 1989). If the outcome is binary, then it comes from the 

Bernoulli distribution, which is a special case of the binomial distribution. In regression models, 

the characteristics that correspond to the cells in the contingency table are the “covariate 

patterns”. These are the unique combinations of the possible categories created by the covariates 

in the model. For instance, if there were two covariates, say gender and smoking status, the 

covariate patterns would be: male smoker, female smoker, male non-smoker, female  

non-smoker. 

Pearson’s test is usually called Pearson’s chi-squared test, and the test statistic often represented 

by 2X . The name describes the distribution of the statistic. Pearson proved that, given a single 

variate with some fixed number of exclusive classes, the asymptotic distribution of the statistic 

is chi-squared, with degrees of freedom equal to the number of classes, minus one. In the case 

when there is more than one variate, then the degrees of freedom are calculated by determining 

the number of classes for each variate, subtracting one from each, and then taking the product. 

Pearson only considered the case when all parameters are specified. R.A. Fisher extended 2X  to 

situations where parameters are unspecified. He proved that, in the case of a single variate, the 

distribution then is asymptotically chi-squared with degrees of freedom equal to the number of 

possible response types, minus the number of estimated parameters, minus one. 

 (Kendall, et al. 1999)  
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In order for the distributional properties of 2X  to hold, there must be enough data in each cell 

of the contingency table, or likewise with every particular covariate pattern. If there are too few 

observations of this type recorded, then there is not enough information to estimate the binomial 

probability for that particular pattern. In this case, the theory behind the asymptotic distribution 

of 2X  is not valid. For example, this happens when continuous data are included in a logistic 

regression model. In such cases, the number of covariate patterns may be as large as the number 

of observations. Using 2X in this situation is not appropriate (Kendall, et al. 1999, Hosmer and 

Lemeshow 2000). 

A solution to this problem is to create artificial groups and apply a statistic similar to 2X . That 

is, to form groups via a method that is based on more than just the natural groups formed by the 

covariate patterns. Hosmer and Lemeshow (1980) were among the first to offer this type of 

solution. Their statistic, denoted here as HL , uses a method that is based on ordering and 

placing into groups the predicted probabilities produced from the model. These are the 

estimated probabilities that the outcome will occur, given the observed covariate data. The 

number of groups will be denoted here as G . As a practical matter, they recommended creating 

ten groups and called the method “deciles-of-risk”. In practice though, other numbers of groups 

can be used. Because these groups are created using the estimated parameters that reference all 

of the data, which are random, the group boundaries are also random (Moore and Spruill 1975, 

Kendall, et al. 1999). That is, the “cut-points” of the groups vary. This affects the distribution of 

their statistic. Building on the work of others (Moore 1971, Moore, et al. 1975, Durst 1979), 

Hosmer and Lemeshow determined that the approximate distribution of HL  is  2 2G  . 

Although the Hosmer-Lemeshow test is popular, and widely cited in the literature, there have 

been some difficulties reported. The value of HL  calculated using a particular set of data can 

vary depending on the group boundaries chosen. Also, if tied values of the estimated 

probabilities are not placed in the same group, different results can be obtained simply by 

changing the order of the tied observations (Hosmer, Hosmer, Le Cessie and Lemeshow 1997, 

Pigeon and Heyse 1999a, Bertolini, Damico, Nardi, Tinazzi and Apolone 2000). In addition, if 

either all of the estimated probabilities in the first or last groups are very tiny or very large, then 
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the distributional assumptions may not be valid (Pigeon, et al. 1999a). Further, there are 

typically multiple covariates in a model, and so observations are located in a multidimensional 

coordinate system. The range of possible locations that any observation can take is within a 

multidimensional volume. Because predicted probabilities are calculated as a single number, the 

covariate vector corresponding to each observation in the covariate space is mapped onto a 

single dimension, sometimes referred to as the “y-space”. This can cause problems (Kuss 2002). 

Points that were far from each other in the volume of the multidimensional covariate space may 

now be considered close in the single dimensional y-space. By reducing the multidimensional 

information to a single dimension, the information about how the observations are related in 

space will likely change, and some information about their original locations in the covariate 

space will be lost. 

A different solution proposed by Tsiatis (1980) involves a statistic, T , that is a quadratic form 

with a known asymptotic distribution (Halteman 1980, Tsiatis 1980). Rao (2002) defines a 

quadratic form in n  variables, 1 2, ,..., nx x x , as the homogeneous quadratic function of  

the variables  

 
1 1

n n

ij i j

i j

a x x
 

 x Ax          (1.1) 

where  1 2, ,..., nx x x x is an 1n   column vector and A  is an n n  symmetric matrix. 

Pearson’s statistic is a special case of the Tsiatis quadratic form.  

Tsiatis approaches grouping differently than Hosmer and Lemeshow. His solution was to 

partition the covariate space, thus retaining the original information about which observations 

are “close” to one another. But there are also problems with this artificial grouping method. 

There is no free lunch. One obvious problem is that there are many ways to partition the 

covariate space, and choosing which to use is subjective. Different choices can give different 

results (Su and Wei 1991). Here is another problem: consider a model containing many 

covariates, say five. If the partition is performed so that each of these covariates is broken into 

two groups, then there is a loss of a large amount of information about each covariate. However, 
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if the partitioning is any finer, the number of groups would increase rapidly. There are already a 

relatively large number of groups, 52 32 , created by the coarse partitioning. In order for these 

groups to be populated sufficiently, for example with five observations each, at least 160 

observations must exist. But that assumes that the distribution of observations among groups is 

even. Since the data are sampled after partitioning and an even distribution cannot necessarily 

be assumed, large amounts of data sufficient to populate these groups must be collected. This is 

not ideal. An interesting side note about the Tsiatis test is that it was discovered simultaneously 

by Halteman (1980), but Tsiatis published first. In his PhD thesis, Halteman gave a more 

detailed analysis of the problem. He proved that T  has a distribution that is  2 1G  , and that 

its distribution is unaffected when the group boundaries are created with a method that 

references the data. He performed simulations to verify that the distribution of T  was still 

approximately  2 1G   for finite data samples when the deciles-of-risk grouping method was 

used. He found that even though the grouping method referenced the data, the distribution was 

essentially the same. His work, however, was not published. 

Another statistic, one that combines properties of both HL  and T , is one that was proposed by 

Pigeon and Heyse (1999b), and which they refer to as 2J . This statistic is similar to HL , but 

multiplied by a “correction factor”. This results in a common numerator but differing 

denominators between the two statistics. By multiplying by this factor, Pigeon and Heyse 

account for variations between the predicted probabilities within the groups. They state that 

many grouping methods can be used with their statistic, presumably without changing its 

approximate  2 1G   distribution. They do not discuss how using grouping methods that 

reference the data, such as the deciles-of-risk, might affect the distribution of 2J , though they 

apparently apply this method to 2J  in an example where they compare HL  and 2J . 

When a new statistic is proposed, it is important to perform simulation studies to assess its 

calibration and performance. Specifically, it is important to investigate whether the statistic 

maintains the expected Type I error rate when a correctly specified model is applied to data, and 

whether it has sufficient power to detect an incorrectly specified model. When it comes to 
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goodness-of-fit tests for logistic regression with continuous covariates, HL  can be considered 

to be a kind of industry standard (Kuss 2002). When a new goodness-of-fit statistic for logistic 

regression with continuous covariates is proposed in the literature, HL  is often included in 

simulation studies to provide a comparison to the new statistic. However, to our knowledge, no 

simulations studies have been published in the literature that compare HL , 2J , and T . This 

leads to the first set of research questions addressed in this thesis.  

 

1.2 Research Questions 

The first set of research questions that are addressed in this thesis are: 

If the deciles-of-risk grouping method is applied to 2J and to T , are their reported 

distributions unaffected?  

If the same grouping method (deciles-of-risk) is applied to HL , 2J , and T , are there any 

differences in their performances? Specifically, do they all maintain the expected Type I 

error rate, and do they have similar power to detect incorrectly specified models? 

A second set of research questions addressed in this thesis regards the application of HL , 2J , 

and T  to GLMs with binary outcomes other than the logistic regression model. The logistic 

model is the canonical GLM when the outcomes are assumed to come from a Bernoulli 

distribution (McCullagh, et al. 1989). There are other models that can also be fit to Bernoulli 

data, including the probit, the log-log, the complementary log-log, and the log binomial models. 

These are all non-canonical GLMs (McCullagh, et al. 1989, Hardin and Hilbe 2007). These will 

be described in more detail in Chapter 2. If any of these models are chosen to relate the outcome 

and the covariates, the question still remains, “Does this model fit the data well?” Few 

goodness-of-fit test statistics have been studied for these non-canonical GLMs. Some work has 

been done, including a study by Blizzard and Hosmer (2006). They applied HL  to the binary 

log binomial model. They wondered whether the distributional assumptions that apply when 

assessing the logistic model still apply in the log binomial case. Although they found evidence 
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that it could be applied, they concluded that more research was needed. This leads to the other 

research questions addressed in this thesis. They are 

Can HL , 2J , and T  be used as goodness-of-fit test statistics for non-canonical GLMs 

with Bernoulli outcomes? If so, what are their distributions under these models? 

If HL , 2J , and T  are used as goodness-of-fit statistics for non-canonical GLMs with 

Bernoulli outcomes and continuous covariates, are there differences in their 

performances? 

1.3 Organization of Thesis 

This thesis is organized as follows: In Chapter two, necessary notation is introduced and 

background concepts are discussed. Chapter three contains a review of the literature on 

goodness-of-fit statistics for Bernoulli GLMs. Chapter four includes an analytical treatment and 

a simulation study comparing the HL , 2J , and T  goodness-of-fit statistics in the logistic model 

setting when the deciles-of-risk grouping method is applied. An example comparing the 

statistics in the logistic model setting is also presented. A new goodness-of-fit statistic for all 

GLM with Bernoulli outcomes, based on T , is introduced in Chapter five, along with 

corresponding forms of HL  and T . In addition, a simulation study comparing the distributional 

characteristics and performance of the new statistic under the probit, log-log, complementary 

log-log, and log binomial models is performed. Chapter five concludes with a real-world 

example that illustrates the use of the three statistics under the four non-canonical link functions 

studied. Finally, Chapter six contains an overall discussion of the research, including its 

importance and limitations, as well as suggestions for future research. 
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Chapter 2 Notation and Basic Concepts 

2.1 Notation 

First, we will set some notation to be used in the following chapters. Let  1,..., nY Y Y  

represent a column vector of n  outcome random variables, and  1,..., ny y y  represent the 

column vector of observed outcomes, which are realizations of Y . Assume further that the 

mean values of the components of Y ,  1,..., n  μ , can be modelled with a function that 

depends on the values of K  covariates and a constant. Consider n  independent observations of 

the pairs  ,i iyx , 1,...,i n , where, for the thi observation, iy  is the observed outcome of the 

random variable iY , and 0 1( , ,..., )i i i iKx x x x  is a column vector of the observed covariate 

values, plus 0 1ix   to allow for the estimation of a regression constant. Let an  1n K   

matrix X  represent a design matrix, where each row contains the covariate data, i
x , for each of 

the n  observations. Finally, let  0 1, ,..., K   β  represent a column vector of regression 

coefficients. Other notation will be introduced within the text. 

 

2.2 Generalized Linear Models 

During the 20
th
 century, several regression models were developed for the analysis of a variety 

of data types, each requiring a different maximum likelihood algorithm for the estimation of 

model coefficients and standard errors (Hardin, et al. 2007). Examples include the Gaussian or 

normal model, the Poisson model, the probit model, and the logit model. The methods required 

to estimate the parameters of some of these models are mathematically intensive. However, the 

methods required to estimate the parameters of the Gaussian linear model, the Ordinary Least 

Squares (OLS) method which has less restrictive assumptions than the maximum likelihood 

methods, are relatively straightforward. Nelder and Wedderburn (1972) introduced the GLM 

that unifies several of these well-known models into a single class. Through the GLM theory, 
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the relatively simple OLS methods for the estimation of model coefficients are extended to all 

members of this class. The basic strategy of the GLM is to choose a link function that relates μ  

to a set of linear predictors,  1,..., n  η Xβ  (McCullagh, et al. 1989). The following are 

assumed under GLM theory: 

1) the components of Y  are independently distributed, have means  1,..., n μ , and 

each has a distribution in the exponential family; 

2) there is a systematic component,  1,..., n   η Xβ , which is a column vector of 

linear predictors, with the thi  element expressed as i i  x β ; and 

3) there is a monotonic, differentiable link function,  g , that relates μ  and η , such that, 

for the thi observation,  i i g  

(McCullagh, et al. 1989). 

 

2.3 Exponential Family 

The outcomes modelled by GLMs are assumed to have distributions in the exponential family. 

Some examples of exponential family distributions are the Gaussian, binomial, and Poisson. For 

a distribution to be an exponential family member, it must be possible to express the probability 

function of the outcome random variable, Y , in the form  

  
 

 
 ; , exp ,Y

y b
f y c y

a

 
  



  
  

  
     (2.1) 

where  is the canonical parameter,  b  is the cumulant function,   is the dispersion 

parameter, and  ,c y   is a normalizing term (McCullagh, et al. 1989, Hardin, et al. 2007). Note 

that by definition the terms i iy   and  ib   are both functions of  , but not functions of  , 

while  ,c y  and  a   are functions of  , but not of  . The normalizing term,  ,c y  , is 

only used to scale  | ,f y    so that it integrates to 1. The function  a   is used to produce 

standard errors for some of the exponential family distributions. When the chosen link function 
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of the GLM is the same function as the canonical parameter  , then   , and the link 

function is referred to as the canonical link.  

The exponential family of distributions have been historically popular partly because of their 

many useful algebraic properties. One result of these properties is that the first derivative of the 

log-likelihood function of each exponential family distributions results in an “observed minus 

expected” form. Goodness-of-fit test statistics for regression models typically are based on the 

comparison of the observed outcomes and the expected outcomes produced by the model, and 

so GOF statistics can be developed that are based on the derivatives of the log-likelihood 

functions of the exponential family distributions. We describe the general form of the likelihood 

function for GLM here, as well as some identities that will be used later when discussing  

GOF statistics.  

The joint density function of an exponential family distribution for a set of outcomes y , given 

the canonical parameter and dispersion parameter, is expressed as 

  
 

 
 

1

| , exp ,
n

i i i

i

i

y b
f c y

a

 
  



  
  

  
y      (2.2) 

since the observations are considered to be independent. The likelihood function is equal to the 

probability density function, and has the same form as (2.2), but differs in that it conditions on 

the observed data rather than on the parameters. That is, it indicates how likely it would be to 

observe the sampled outcomes as a function of possible values of the canonical parameter,  , 

and  . For n  independent and identically distributed (i.i.d.) observations, the likelihood 

function is expressed as 

  
1

, |
n

i

i

L f y 


         (2.3) 

The log of the likelihood function, l , is often easier to work with mathematically. Assuming 

that the observations are i.i.d., the joint log likelihood for members of the exponential family is 

expressed as 
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 

 
 

1

,
n

i i i

i

i

y b
l c y

a

 




  
  

  
        (2.4) 

Next we present some of the identities that will be used later in the thesis. Their derivations can 

be found in Kendall, et al. (1999) (section 17.14) and in Hardin, et al. (2007).   

The mean or expected value of the first partial derivative of the log likelihood is 

 0
l

E


 
 

 
         (2.5) 

and 
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0

l l
E

 

   
        

        (2.6) 

Assuming that the likelihood function is twice differentiable, differentiating both sides of (2.5) 

and using (2.6), gives 

 

2 2

2
var

l l l
E

  

       
     

       

 

     
2

2

l
E



 
   

 
        (2.7) 

and 

 

2 2

2

l l
E E

 

      
     

      

       (2.8) 

The left hand side of (2.8) is sometimes called the Fisher Information ((Kendall, et al. 1999) 

Section 17.15).  

Using (2.4), it can be shown (McCullagh, et al. 1989) that  

 
 

 i

i i

b
E y







 


        (2.9) 

Further, using (2.6) , and (2.9), it can be shown (McCullagh, et al. 1989) that  
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   

 

2 varib y

a



  




 
        (2.10) 

McCullagh, et al. (1989) note that because the term  2

ib      depends only on the 

canonical parameter, and thus the mean, it is sometimes called the variance function and they 

express (2.10) as  var  . 

The chain rule can be applied to l    to obtain the resulting score vector, 

 0 1, ,..., Kl l l         . Hardin, et al. (2007) show in detail that, for the thk  regression 

coefficient, the score is  

 
   1 var

n
i i i

ik

ik i i

l y
x

a

 

   

    
       
       (2.11) 

They also show that if the link function chosen is the canonical link function, where   , 

then (2.11) simplifies to 

 
 1

n
i i

ik

ik

l y
x

a



 

  
     
         (2.12) 

Setting (2.11) to zero for each of the scores, results in 1K   estimating equations. The roots of 

the 1K   estimating equations can be used to estimate the values that maximize the log 

likelihood function, and thus determine the maxima of the likelihood (Kendall, et al. 1999). The 

maximum likelihood estimate of k are expressed here as ˆ
k .  

There are two main methods used to estimate the regression coefficients of GLM. We give a 

brief overview here, but a more detailed discussion can be found in Hardin, et al. (2007). The 

first is an iterative numeric search method called Newton-Raphson. When estimating the 

regression coefficients, this method uses the Observed Information Matrix (OIM). The OIM is 

the negative of the observed Hessian matrix. For the exponential family, the OIM has elements 

expressed generally as 
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

 (2.13) 

The covariance matrix of the model parameters is the inverse of the OIM. (Searle 2006, Hardin, 

et al. 2007). 

A second iterative numeric method for estimating the regression coefficients, due to Fisher, is 

called “the method of scoring” or the iteratively reweighted least squares (IRLS) method 

(Kendall, et al. 1999, Hardin, et al. 2007). In this case, instead of the OIM, the IRLS method 

uses the expected information matrix (EIM), or Fisher information in (2.8). The EIM has 

elements expressed generally as 
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n

ik k i k ki
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E

a

  
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       
      
         

     (2.14) 

When the link of the GLM is the canonical link function, that is when   , the matrices 

(2.13) and (2.14) are equal, but this is not the case under non-canonical GLM. 

Some test statistics, such as Rao’s efficient score test (Rao 2002), are based on the identities 

(2.5) and (2.7). Goodness-of-fit statistics for canonical GLM can be developed from score tests 

when the selected link function for the GLM is canonical, since then the estimating equations 

reduce to the form (2.12). (McCullagh, et al. 1989, Kendall, et al. 1999). This is not the case 

when the link function of the GLM is non-canonical.  

 

2.4 GLM for Binary Data  

Some of the most commonly used GLMs are those whose random components have binomial 

distributions (Hardin, et al. 2007). We are primarily concerned with GLMs for binary outcome 

data, and so first present here the properties of the binomial likelihood function that were 

discussed in sections 2.2 and 2.3, and then specify the same for the Bernoulli case.  
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The probability mass function of the binomial distribution can be expressed as 

    | , 1
n yy

n
f y n p p p

p

 
  
 

       (2.15) 

where p  is the probability of a successful outcome of an experiment and n  is the number of 

times the experiment was performed. Because the binomial distribution is an exponential family 

member, its distribution can be rewritten in the form of (2.1) as 

    | , exp ln ln 1 ln
1

np
f y n p y n p

pp

    
       

    
    (2.16) 

In the case of the binomial distribution, the canonical parameter is  

 ln
1

p

p


 
  

 
         (2.17) 

the cumulant function is    ln 1b n p    , the dispersion parameter is 1  , and the 

normalizing term is  , 0c y   (McCullagh, et al. 1989). A special case of the binomial 

distribution, when 1n  , is the Bernoulli distribution.  

The link function chosen, which relates a binomial random variable Y  to a linear predictor  , 

may be any suitable function that is monotonic and differentiable (McCullagh, et al. 1989). 

However, if the canonical parameter of the exponential family is chosen as the link function it 

leads to several desirable statistical properties, including relatively straightforward methods for 

parameter estimation and methods for evaluating model fit. When Y  comes from a Bernoulli 

distribution the canonical link function is the binary logit function,  

   ln
1

p

p


 
  

 
g         (2.18) 

(McCullagh, et al. 1989). In this case, as with all canonical link functions,   g .  

The mean and variance of y  for GLM with Bernoulli outcomes can be obtained regardless of 

link function used, (Hardin, et al. 2007) by taking the first and second derivatives of the 

cumulant function, 
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
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and 

  
2

1
b

p p
 


 

 
        (2.20) 

Thus, as noted by Hardin, et al. (2007), unlike the linear model, when the random outcomes are 

binomially distributed, the variance is related to the mean and thus is not constant, but varies 

with the mean.  

The Bernoulli probability density function expressed in canonical exponential form is  

    | , exp ln ln 1
1

p
f y y p

p
 

  
    

  
     (2.21) 

and the joint log likelihood in canonical form, is   

    
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1

n
i
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p
l p y y p
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By (2.11), (2.19), and (2.20), the thk  element of the score vector is 
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For Bernoulli outcomes, the general terms of the OIM, (2.13), are 
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  (2.24) 

and the terms of the EIM, (2.14), are  
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2.5 Canonical GLM for Bernoulli Outcomes (Binary Logistic 

Regression) 

Generalized linear models with Bernoulli outcomes and a canonical logit link function are 

referred to as logit or logistic models. These are arguably the most commonly used models for 

relating a binary outcome to a set of predictor variables (Hardin, et al. 2007). This model is 

central to the discussion in Chapter 4 and Chapter 5, and we present the expressions necessary 

for our discussion here.  

Denoting the  |E Y x  for the logistic model as   x , the canonical logit link function is then 

   
 

 
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
 


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x
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x
g        (2.26) 

The inverse of the logit link function produces the mean, and is expressed as 
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The canonical parameter, when the canonical logit link is chosen, is 
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and its derivative with respect to   is 

 1
 

 

 
 

 
         (2.29) 

In the univariate case, when  x  is graphed as a function of x , a sigmoidal curve is produced 

that is symmetric about 0.5 . An example is shown in Figure 2.1. In the binary case, this 

property allows for the code designation of one of the outcomes as a success and the other as a 

failure to be reversed (with only a change of sign).  
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Figure 2.1 Graph of the probabilities produced by the inverse of the logit link function 

as a function of x, where x~U(-6,6) and η=0.5x. 

 

2.6 Non-Canonical Link Functions for Binary Outcomes  

Generalized linear models with non-canonical link functions can also be used to relate outcomes 

with Bernoulli distributions to a set of explanatory variables. We introduce several of these 

models here, and the expressions necessary for the development of a goodness-of-fit test 

statistic for non-canonical binary GLM presented in Chapter 5. In the previous section, the 

 |E Y x  under the canonical logistic model was expressed as   x . When the link function is 

non-canonical, we will instead designate  |E Y x  generally as   xG . When referring to the 

specific non-canonical probit, log-log, complementary log-log, and log models, we will replace 

the subscript and denote the probabilities as  Pr x ,  LL x ,  Cll x , and  LB x  respectively.  

2.6.1 Probit 

The probit model is a GLM with the non-canonical link function 

      1

Pr PrPr
    x xg        (2.30) 
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where   is the cumulative normal distribution, expressed as  

    
 

21 1
exp

22
v dv v dv

 

 
 

 
    

 
       (2.31) 

Here, 3.1415...  , and     is the probability density function of the standard normal 

distribution (Hardin, et al. 2007). 

The inverse of the link function giving  |E Y x  is 

      1

PrPr
      xg        (2.32) 

The canonical parameter under the probit model is 

          Pr Prln 1 ln 1        x x     (2.33) 

and its derivative with respect to   is 

 
    ln 1 

 

     
 

       (2.34) 

Like the logistic model, the probit model is symmetrical around a mean probability of 0.5, and 

has a similar sigmoidal shape. An example when the inverse of the probit link for a univariate 

model,  |E Y x , is plotted against x  is shown in Figure 2.2. 

2.6.2 Log-log and Complementary Log-log 

If the binary data to be analysed are unbalanced, that is, the number of 0s and 1s are unequal, 

then either the log-log model or the complementary log-log model may be a better fit. If there 

are many more 0s than 1s, then the log-log model may be the more appropriate model, whereas 

if there are many more 1s than 0s, then the complementary log-log model may give a better fit 

to the data. The  |E Y x  for these models is denoted here as  LL x  and  Cll x  respectively. 

The link functions for the log-log and complementary log-log models are 

      ln ln LLLL
     xg       (2.35) 

and 
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      ln ln 1 CllCll
     xg       (2.36) 

respectively. The corresponding inverses of these link functions are 

       1 exp exp LLLL
         xg      (2.37) 

and 

       1 1 exp exp CllCll
         xg      (2.38) 

The canonical parameters under the log-log and complementary log-log models are 

 
 

 
ln

1

LL

LL






 
    

x

x
        (2.39) 

and  

 
 

 
ln

1

Cll

Cll






 
    

x

x
        (2.40) 

respectively. Their derivatives with respect to   are 

 
    ln 1LL LL 

 

    
 

x x
 

       
  
 

ln

1

LL

LL




 



x

x
        (2.41) 

and 

 
    ln 1Cll Cll 

 

    
 

x x
 

       
  

 

ln 1 Cll

Cll






 

x

x
        (2.42) 

respectively. 

These models produce asymmetric sigmoidal curves. The log-log curve has an elongated lower 

tail, and the complementary log-log has an elongated upper tail. Examples of both the graph of 
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the inverse of the log-log and the complementary log-log links for a univariate model,  |E Y x , 

as a function of x  are shown in Figure 2.2. 

Because of the inherent asymmetry of these models, the coding of the model is not symmetric. 

That is, the assignment of “success” and “failure” cannot be simply reversed (with just a sign 

change). However the log-log and the complementary log-log make a complementary pair. That 

is, the log-log model applied to outcomes y  will give the same result as the complementary 

log-log model applied to 1 y . Similarly, if the log-log is applied to 1 y , then the same result 

is obtained when the complementary log-log is applied to y .  

2.6.3 Log Binomial 

Another non-canonical GLM for binary data is the log model, also known as the log binomial 

model. The  |E Y x  for the log binomial model will be denoted here as  LB x . The link 

function for the log binomial model is the natural log function, and is expressed as, 

      lnLB LBLB
   x xg        (2.43) 

The inverse of the link function is 

      1 exp LBLB
     xg        (2.44) 

The canonical parameter under the log binomial model is  

     ln 1LB LB     x x        (2.45) 

and its derivative with respect to   is 

 
    ln 1LB LB 

 

    
 

x x
 

       
 

1

1 LB


 x
        (2.46) 

The lower tail of the inverse log link function when plotted against x  is similar to that of the 

logit, but the upper tail can be very different since the resulting values of  |E Y x  may be 
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greater than 1. An example of the graph of the inverse of the log link for a univariate model as a 

function of x  is shown in Figure 2.2.  

 

Figure 2.2 A graph of the probabilities produced by the inverse of five link functions as 

a function of x. (x~U(-6,6) and η=0.5x) 

 

2.7 Basic Concepts of Score Tests 

Some goodness-of-fit tests are formed as score tests. The score test statistic was introduced by 

Rao (1948), and is based on the identities (2.5) and (2.6) (Smyth 2003). Suppose that the 

likelihood function of a GLM, (2.4), depends on two vectors of parameters, and express this as 

 , |l β γ y . The null hypothesis being tested is that γ 0 , against the alternative hypothesis that 

γ  is unrestricted. Here, the β  are considered nuisance parameters, while the γ  are considered 

the parameters of interest. The column vector of scores can be partitioned as 

  ,


 β γS S S          (2.46) 

with 
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l




βS
β

         (2.46) 

and 

 
l




γS
γ

         (2.46) 

The covariance matrix of the score vector (2.46) is the expected information matrix, I , with 

general elements as in (2.14). It can be partitioned to conform with (2.46) and (2.46), and 

expressed as 

 
 

  
 

ββ βγ

γβ γγ

I I
I

I I
         (2.47) 

(Graybill 1976, McCullagh, et al. 1989). If the values of the nuisance parameters, β , are known, 

then the score test statistic, evaluated under the null hypothesis, is  

  
1




γ γγ γ

γ 0

S I S         (2.47) 

(Smyth 2003). In this case, the score test statistic has a chi-squared distribution with degrees of 

freedom equal to the rank of γγI (Rao 2002).  

If the nuisance parameters are not known, then the maximum likelihood estimates under the null 

hypothesis, β̂ , are substituted. Using the multivariate theory on inverses (Graybill 1976, 

McCullagh, et al. 1989), the covariance matrix, conditional on 0
ˆβ = β , is 

 1

ˆ|

 γγ γβ ββ βγγ β
I I I I I         (2.48) 

(McCullagh, et al. 1989, Smyth 2003). 

The score test statistic in this case is calculated as 

  
1

ˆ|
ˆ,  



 


γ γγ β

γ 0 β β

S I S         (2.48) 
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where all of the terms of the statistic are evaluated under the null hypothesis γ 0 , and under 

ˆβ β . Here, the score test statistic has a distribution that is asymptotically chi-squared with 

degrees of freedom equal to the rank of ˆ|γ β
I (Rao 2002) . If βγI 0 , then β  and γ  are 

orthogonal, and thus βS  and γS are independent, and the statistics (2.47) and (2.48) are equal 

(Smyth 2003). 
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Chapter 3 Literature Review 

3.1 Goodness-of-Fit Statistics for Binary Logistic Regression 

Models 

After selecting the explanatory variables to include in a binary logistic regression model and 

determining an appropriate mathematical function that best describes an “average” value of the 

outcome variable for the given covariate values, a critical next step in model development is to 

examine whether the predicted probabilities calculated from the chosen model and covariates 

are significantly different from the observed outcome values. That is, does the model fit the 

observed outcome data well? Goodness-of-fit statistics are used to test the hypothesis that the 

distribution function of the observed outcome variable is the same as the distribution function of 

the hypothesized model (Kendall, et al. 1999). Two types of goodness-of-fit tests, specific and 

global, are used to test this null hypothesis (Kuss 2002). The specific test is used to test the null 

against the alternative that that another specific model would fit the data better. The global test 

does not evaluate a specific alternative, but rather tests against the alternative that the model 

does not fit, without specifying in what way the fit may be poor. The focus of this thesis is on 

global GOF tests. Two well-known global test statistics used to assess the fit of binary logistic 

regression models are the deviance and the Pearson’s chi-square.  

3.1.1 Deviance 

The deviance is a likelihood ratio test that compares the fits of two models to the observed data; 

the first is the null model which is under consideration, and the second is a saturated model in 

which the null model is nested. The saturated model includes a parameter for each of the J  

covariate patterns. The hypothesis being tested is that all parameters of the saturated model that 

are not in the working model are equal to zero. In this section we will refer generally to the 

estimated probabilities of the binary model as ̂ , for ease of notation. The deviance residual 

can be expressed as  
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    
 
 

1 2

ˆ, 2 ln ln
ˆ ˆ1

j jj

j j j j j

j j j j

n yy
d y y n y

n n


 

       
                   

   (3.1) 

where ˆ
j  is the predicted probability for thj covariate pattern, jn  is the number of observations 

with the thj  covariate pattern, and jy  is the number of observations from the jn  subjects with 

the response 1y  . The sign of (3.1) is the same as that of ˆ
j j jy n  . In cases where 0jy  , 

(3.1) is defined as    ˆ ˆ, 2 ln 1j j j jd y n    . When j jy n , then it is defined as 

   ˆ ˆ, 2 lnj j j jd y n  . When testing the fit of a binary logistic regression model with K

fitted covariates and J  covariate patterns, the deviance statistic is expressed as 

  
2

1

ˆ,
J

j j j
j

D d y 


         (3.2) 

When ˆ
j jn   is not small, the deviance has an asymptotic distribution that is  2 1J K    

(Kendall, et al. 1999, Hosmer, et al. 2000, Agresti 2007).  

3.1.2 Pearson’s Chi-Squared 

Pearson’s chi-squared goodness-of-fit statistic, 2X , is a quadratic form with a known 

asymptotic distribution when the outcome is from a multinomial distribution with mutually 

exclusive classes, and there are sufficient numbers of observations of both the observed and 

expected outcomes for each class (Pearson 1900). Using the notation described in section 3.1.1, 

Pearson’s residual can be expressed as 

  
 

ˆ
ˆ,

ˆ ˆ1

j j j

j j

j j j

y n
r y

n




 





       (3.3) 

and the Pearson statistic as 

  
2

2

1

ˆ,
J

j j

j

X r y 


         (3.4) 

That is, 
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

 





         (3.5) 

(Hosmer, et al. 2000). Like the deviance, when ˆ
j jn   is not small, 2X  has an asymptotic 

distribution that is  2 1J K    (Kendall, et al. 1999, Hosmer, et al. 2000, Agresti 2007). 

Originally 2X  was used to test for independence in two-way contingency tables (Pearson 1900, 

Smyth 2003). Later it was extended for use as a goodness-of-fit test for GLM (McCullagh, et al. 

1989, Smyth 2003). Smyth (2003) showed that 2X  is a score test statistic. 

 

3.2 Goodness-of-Fit Statistics for Binary Logistic Regression 

Models with Continuous Covariates 

Both 2X  and D  are appropriate for assessing the fit of binary logistic regression models when 

the covariates are categorical and have a multinomial distribution. However, when the chosen 

model contains continuous explanatory variables, then the number of classes of the multinomial 

distribution can increase at near the same rate as the number of observations, and in this case the 

asymptotic theory behind the distributions of 2X  and D  does not hold (Kendall, et al. 1999, 

Hosmer, et al. 2000). Chernoff and Lehmann (1954) considered the case when the maximum 

likelihood estimates are based on all n  observations rather than on only J  classes. They found 

that under this setting, 2X  has an asymptotic distribution that is between  2 1J K    and 

 2 1J  because there is a partial recovery of the K  degrees of freedom (Chernoff, et al. 

1954, Kendall, et al. 1999).  

A further question arises when considering the distribution of 2X  if either the membership in 

the J  classes or the boundaries which define the class cells are determined by referencing the 

estimated parameters that in turn reference the observations. By doing so, the cells or their 

boundaries are considered random variables. These additional random variables may affect the 

distribution of 2X , but the asymptotic theory on which the original 2X  is based does not 
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account for them (Kendall, et al. 1999). This is of particular concern when the sampled 

covariate data are continuous, since in this case there is no natural formation of cells. This 

difficulty was considered first by Watson (1957), and then later by Moore (1971) and Moore, et 

al. (1975), who presented a unified general theory for chi-squared tests when the cells  

are random. 

3.2.1 Hosmer-Lemeshow Goodness-of-Fit Statistic 

Hosmer, et al. (1980) developed a series of goodness-of-fit test statistics for binary logistic 

regression models when the model evaluated contains continuous covariates. These statistics are 

all similar in form to 2X , and like 2X , they test the null hypothesis that the model selected fits 

the data well against the alternative hypothesis that the model does not fit. However, they vary 

in their assumptions about the distribution of the covariates, their methods of estimating the 

regression coefficients, and in their strategies for forming groups. Under one set of assumptions, 

the conditional distribution of X  given Y is assumed to be multivariate normal, while under 

another set the assumptions are less restrictive. One of two grouping methods for forming group 

boundary cutpoints was applied when calculating these statistics. The group boundary cutpoints 

were either fixed or random. The fixed method defines the cutpoints as /b G , where 

1,2,..., 1b G  , and the predicted probabilities are placed into groups if they fall between these 

cutpoints. Under the random boundary method, often called the “deciles-of-risk” method, the 

predicted probabilities are ordered and roughly /n G  of them are placed into each group. For 

example, if 10G   and 150n  , then about 15 observations would be placed in each group. 

When tied values occur amongst the predicted probabilities, the ties are placed into the same 

group, and so it is possible for the numbers of observations within groups to be uneven.  

Hosmer and Lemeshow studied four versions of a statistic that uses the fixed cutpoint grouping 

method. They refer to these statistics as H . The versions of H  varied in their assumption 

about the distribution of the covariates and in the method of regression coefficient estimation. 

Two other statistics were also studied, and referred to generally as C (with differing subscripts). 

In this case, grouping was performed using the deciles-of-risk grouping method and the less 
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restrictive assumptions about the distributions of the covariates were made, but the method of 

regression coefficient estimation varied. In a later study, Hosmer, Lemeshow and Klar (1988) 

found that, when the regression coefficient estimates were made using maximum likelihood 

estimation, C  adhered to the assumed distribution better than the other statistics in the original 

study. This statistic is the one that is cited most widely in the literature, and is sometimes 

referred to as Ĉ  (Hosmer, et al. 1997, Hosmer, et al. 2000). We refer to it here as HL . 

Although the grouping method used with HL  is the deciles-of-risk method, in fact, other 

percentiles can be used as long as they not near n . However, Hosmer, et al. (2000) do not 

recommend calculating HL  with less than six groups, because this almost always results in the 

test indicating that the model fits the data. 

The HL  statistic is conditional on the maximum likelihood estimates of the parameters, and is 

expressed as 
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        (3.6) 

where gi  denotes the set of all observations i  in the thg group, gn  is the number of 

observations in the thg  group, and g  is the mean of the predicted probabilities in the thg

group, and is calculated as 
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         (3.7) 

The distribution of HL  is affected by two conditions. The first is that the estimates of the 

regression parameters are determined using likelihood functions for ungrouped data. The second 

is that the boundaries for any group are dependent on the estimated parameters, and thus the 

groups are random (Hosmer, et al. 1980). Applying the work of Moore, et al. (1975) and of 

Durst (1979), Hosmer, et al. (1980) showed that the asymptotic distribution of HL is 

    
1

2 2

1

2 ( 1) 1
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k k
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



          (3.8) 



43 

  

where K  is the number of covariates, and i is the thi  non-zero or 1 eigenvalue of the 

covariance matrix of the HL  statistic, 0 1k  , 1,...,k K . Through simulations they showed 

that the contribution of  
1 2

1
1

K

k kk
 



  is approximately  2 1K  , and thus the distribution 

of HL  is approximately  2 2G  .  

The Hosmer-Lemeshow test is often used to assess the fit of logistic regression models with 

continuous covariates, and is widely cited in the literature. This is partly due to its ease of 

calculation, its intuitive appeal, and its availability in most major statistical packages (e.g. SAS, 

STATA, and SPSS). It also may be due to the fact that it has been studied extensively. Many 

simulation studies have been performed to evaluate its performance against other statistics.  

Although HL  is regularly used when logistic models fit are assessed, some issues have been 

reported. Two studies (Hosmer, et al. 1997, Pigeon, et al. 1999a) pointed out that different 

software packages can report different values of HL  even though the packages produced the 

same model. This has been attributed to differences in how the software algorithms define the 

deciles. Bertolini, et al. (2000) note that when the number of covariate patterns is less than n  

and there are ties among the predicted probabilities, if the ties are placed into different groups, 

different values of HL  can occur if the order of the observations is varied. Hosmer, et al. 

(2000), however, point out that the problem of assigning tied values to different groups is 

usually only an issue when there are few covariate patterns forming the predicted probabilities. 

In this case, if ties are grouped together there may be some groups that contain many more 

observations than /n g , or conversely there may be too few in another group.  

Pigeon, et al. (1999a) also point out that if the deciles-of-risk partitioning method is used, and 

the predicted probabilities in a group are either all near 0 or all near 1, the expected frequency of 

an event (i.e. the sum of the predicted probabilities in that group) or of a non-event may be less 

than 1. This would invalidate the chi-square approximation for the distribution of HL . One 

solution is to combine some groups, which will raise the expected frequencies within these 

groups. This strategy is possible because grouping is performed after the data are collected. 
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Another criticism of HL  is its lack of power to detect certain types of poor fit in a model. 

Observations grouped together under the deciles-of-risk method can have very different 

covariate patterns. This happens when observations in multi-dimensional covariate space are 

mapped onto the single dimensional “y-space”. Observations that in some sense were originally 

close in the covariate space may now be far apart in the “y-space”. Because the unique covariate 

patterns are now represented only through their fitted probabilities, and different covariate 

patterns may have the same fitted probability, it may be difficult to identify which types of 

subjects are not represented well by the model.  

To overcome some of the deficiencies of the deciles-of-risk grouping strategy, Hosmer, et al. 

(2000) recommend that HL , which is a summary statistic, be used in conjunction with 

diagnostic statistics and other methods of fit analysis that evaluate individual residuals. These 

might include classification tables, ROC curves, 2R , and regression diagnostics for logistic 

regression based on work in relation to leverage, and diagnostic plots by Pregibon (1981).  

Although these deficiencies have been reported, no other methods have been put forward that do 

not also have difficulties. In consequence, the Hosmer-Lemeshow GOF statistic remains one of 

the standard goodness-of-fit tests when evaluating the fit of a logistic regression model with 

continuous covariates. 

3.2.2 Tsiatis Goodness-of-Fit Score Statistic 

About the same time that Hosmer, et al. (1980) published their work, Tsiatis (1980) introduced 

another goodness-of-fit statistic that can be used to evaluate the fit of a binary logistic 

regression model with continuous covariates. It is a score test with nuisance parameters, as 

described in section 2.7. First, the covariate space is partitioned into G  distinct regions without 

reference to the estimated parameters or observed data, and thus the partitions are not random. 

Then an augmented logistic model is introduced that gives the conditional probability of a 

successful outcome, given the observed values of the covariates, as 
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where     1
,...,

G
I I  are a set of indicator functions that are defined as  

1
g

I   when the 

covariates lie in it the thg  region, and 
 

0
g

I   otherwise, and  1,..., G   is the set of additional 

coefficients associated with each of the G  indicator functions. The Tsiatis goodness-of-fit 

statistic tests the null hypothesis that  1,..., G  γ 0 , and thus the null model, 

  
 

 

exp

1 exp






x β
π x

x β
        (3.10) 

is the best fit to the data out of all of the possible instances of the augmented model. Here, the 

γ  are considered the parameters of interest and the β  are considered nuisance parameters.  

The Tsiatis statistic is  

 T  S V S          (3.11) 

where S  is a G -dimensional column vector, with general elements 

                                1,...,g

g

l
S g G




 


      (3.12) 

with l  representing the log likelihood, and 
V  is any generalized inverse of the G G  

covariance matrix as in (2.48); that is,  

  -1
V A - BC B'          (3.13) 

The elements of the matrices on the right-hand side of (3.13), for the thg  group and thk  

covariate, are 
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Halteman (1980) also derived this statistic in his dissertation, but did not publish his results. His 

proof, that the rank of V  is 1G  , is presented in Theorem 5.1. 

All of the terms associated with (3.11) are evaluated under the null hypothesis, that γ 0  and 

ˆβ β , where β̂  are the maximum likelihood estimates of the parameters estimated under the 

null model, (3.10). Thus, the elements of the vectors and matrices necessary for the calculation 

of (3.11) are 
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and  
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(Tsiatis 1980). Because V  is not full rank (Halteman 1980, Tsiatis 1980), it is necessary to use 

a generalized inverse of V . 

Tsiatis forms groups by partitioning the covariate space. Although partitioning in the covariate 

space overcomes some of the shortcomings of grouping methods that only look for 

discrepancies in the direction of the logit, it also suffers from some deficiencies. Tsiatis did not 

indicate how the partitioning of the covariate space should be accomplished. No methods are 

specified for determining what number of partitions to use, nor how they should be chosen. Su, 
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et al. (1991) point out that tests that partition the covariate space, including the Tsiatis test, can 

draw different conclusions when different partitions are applied. They give several specific 

examples, one of which shows the Tsiatis statistic, given two choices of partitioning, resulting 

in p values of 0.04 and 0.38. Lin, Wei and Ying (2002) also point out that “the partition of the 

covariate space is arbitrary and different partitions may result in conflicting conclusions”.  

Another potential difficulty presented by partitioning in the covariate space is that the partition 

can involve as many dimensions as there are covariates. As the number of dimensions increases, 

the number of groups increases exponentially with the number of covariates, and a compromise 

has to be reached between creating enough groups for a particular covariate, so that not too 

much information is lost, and limiting the number of overall groups to a manageable number. 

For example, if there are three continuous covariates in the logistic model, a coarse partitioning 

of each into two groups would create eight groups  3i.e. 2 , but would potentially result in a 

loss of a great deal of information about each covariate. If each covariate was partitioned instead 

into a larger number of levels, more information would be retained, but many more groups 

would be created. This would mean that a very large number of observations could be required 

to sufficiently populate the groups. 

Halteman showed that the asymptotic distribution of T is not affected by random cells, and thus 

other methods of forming groups such as the deciles-of-risk method could also be used. 

Simulation results reported by Halteman (1980) in his dissertation support the conjecture that 

the distribution of T  is approximately  2 1G   when applied to finite samples, including 

cases when the deciles-of-risk grouping method was applied. He recommends that when the 

deciles-of-risk method is applied, T  should be compared to  2 1G   when used to test  

model fit.  

3.2.3 Pigeon-Heyse Goodness-of-Fit Test Statistic 

An alternative that combines characteristics of both HL  and T  is the goodness-of-fit statistic of 

Pigeon, et al. (1999b), denoted by 2J . To account for the heterogeneity of the predicted 
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probabilities within partitioned groups (Dreiseitl and Osl 2012), they multiply HL , (3.6), by a 

“correction term”. The form of 2J  is 
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where the correction factor is 
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The 2J  statistic simplifies to 
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Pigeon, et al. (1999b) establish the approximate asymptotic distribution of 2J  through 

simulations. In the settings they evaluated, gn  subjects were classified into one of G  mutually 

exclusive outcomes, where 
1

G

gg
n n


 . They define ig  as a true but unknown probability that 

subject i  is in the thg outcome state. Estimated probabilities were designated by ˆ
ig , and 

1
ˆgn

ig gi
E


 . The observed outcomes for subject i  is in the thg outcome state were igy , and 

1

gn

ig gi
y O


 . The first statistic they compared to 2J  was  
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which, when all of the ˆ
ig  within the thg  outcome states are equal , is Pearson’s chi-squared 

statistic. As noted earlier, the asymptotic distribution is known in this case. They considered 

situations where the ˆ
ig  within the thg  outcome state were not all equal. The other statistic 

they compare to 2J  is the quadratic form  
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    ˆ ˆ'Q   y π V y π         (3.25) 

where 1 2' , ,..., gO O O   y , 1 2
ˆ ' , ,..., gE E E   π ,   
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ˆ ˆ ˆ '

n

i i ii
Diag


 V π π π  and is singular, 

and 
V  is a generalized inverse of V . This has an asymptotic distribution that is  2 1G   

(Kendall, Stuart and Ord 1994, Pigeon, et al. 1999b). They state that 2J  is an approximation  

of Q .  

To compare the statistical properties of 2J , 2X  and Q , they simulated data sets by studying all 

combinations of the following settings: 1) the number of observations ( 50n  , 100  and 200 ), 

2) the number of distinct outcomes ranging from 2G  to 20 by two’s, and 3) the number of 

distinct estimated probability vectors taking values 0.04n , 0.1n , 0.2n , 0.5n and n . Under 

these settings, the cell boundaries are fixed before the data are collected. They found that under 

these settings, 2J  has an asymptotic distribution that is approximately  2 1G  .  

Pigeon and Heyse state that 2J  is not dependent on the grouping strategies and that grouping 

strategies other than the deciles-of-risk, such as the strategy of partitioning the covariate space 

before data collection suggested by Tsiatis, can be used to form groups. An example of a 

grouping method used with 2J  from the literature is partitioning based on clusters within the 

data space (Dreiseitl, et al. 2012). 

Although Pigeon and Heyse state that the distribution of 2J  does not depend on the grouping 

method used, their simulations do not appear to involve cases where group boundaries are 

random, so it is unclear from their simulation study how grouping strategies that create random 

cell boundaries would affect the distribution of 2J . In their study, Pigeon and Heyse do 

compare 2J  to HL  using the Low Birth Weight data set described in Applied Logistic 

Regression (Hosmer, et al. 2000), as well as to a goodness-of-fit statistic by Bull (1994) - an 

extension of HL  to polychotomous regression models, which also uses the deciles-of-risk 

method to form groups. They note that the values of HL  and 2J  are similar. In this case the 

groups are formed based on predicted probabilities, and the group boundaries are random. 
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3.3 Other GOF Statistics for Logistic Models with Continuous 

Covariates 

We now review some other statistics used to assess the fit of a logistic regression models with 

continuous covariates. Several of these are presented as alternatives to HL . In some cases, 

simulation studies have been conducted that compare the performance of HL  to that of these 

alternative statistics.  

3.3.1 Goodness-of-Fit Statistics with Grouping Methods Based on Clustering 

To avoid the problems presented by the deciles-of-risk grouping method, Xie (2005) and Xie, 

Pendergast and Clarke (2008) applied a partitioning strategy based on clustering in the covariate 

space to both a Pearson chi-square type statistic with the same form as HL , and a score statistic 

with the form of T . The clustering method identifies regions within the covariate space where 

observations are close, as defined using a criterion such as Euclidean or Mahalanobis distance. 

They point out that this method has the advantage that observations within these groups will 

have similar covariate profiles. They state that both of their statistics should have asymptotic 

distributions that are between  2 1G K    and  2 1G  , where K  is the number of 

covariate values. They use the rubric 10G   if 5K  , and 5G K   if 5K  , applied to 

 2 1df G K   for the Pearson chi-square type statistic, and 1df G  , which is the rank 

of the conditional covariance matrix of the scores. They compare the performance of their 

statistics to that of the original HL , which uses the deciles-of-risk grouping method. Both HL  

and their Tsiatis-like score statistic maintained the test size more consistently, while their 

Pearson chi-square type statistic was conservative. Both of their test statistics had more power 

than HL  to detect departures from a true underlying model.  

Dreiseitl, et al. (2012) offered another strategy for overcoming the problem of detecting lack of 

fit in a region in the covariate space. They used the Pigeon-Heyse statistic (Pigeon, et al. 

1999b), 
2J , which is reported to have an asymptotic distribution that is chi-squared with 1G   

degrees-of-freedom, and applied a grouping method based on clustering. Three strategies they 
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tested were based on 1) clustering with self-organizing maps; 2) clustering with a K means 

algorithm; and 3) random assignment of data points to groups. In their simulations, they varied 

the dimensionality of the data, studying 5, 10 and 20 dimensional data. Their simulation study 

was small, with data limited to 20 data sets, with only 10 data sets to evaluate the type I and 

type II error rates of HL  and 
2J  using the three cluster grouping methods. They also calculated 

these statistics for a real world data set. They found that 
2J  offered only slightly better 

performance than HL , although with such small samples this result is not very strong. They 

report that their approach does aid in locating regions of poor calibration in the data space. 

3.3.2 Smoothing Methods for Testing the Fit of Logistic Regression 

Methods based on non-parametric kernel smoothing offer a strategy that avoids the problems 

encountered by grouping strategies, particularly those that detect deviations from the model in 

only the direction of the fitted probabilities, such as the deciles-of-risk method. One goodness-

of-fit statistic for logistic regression based on this method was the statistic introduced by le 

Cessie and van Houwelingen (1991). Their method builds on the approach of Copas (1983), 

who plotted the non-parametric kernel estimation of model probabilities against the linear 

predictor to examine model fit graphically, as well as on work by Azzalini, Bowman and Härdle 

(1989) who generalized Copas’ method to compare the function of the null model to a kernel 

estimate. The le Cessie and van Houwelingen test statistic is based on a kernel estimate of the 

standardized residuals that has an expectation equal to zero. A smoothing function of these 

standardized residuals uses the kernel estimate of Nadaraya (1964) and Watson (1964). They 

describe the function as a weighted average of the residuals in the neighbourhood of a covariate, 

where bandwidth determines the size of the region over which the residuals are averaged, and 

the kernel function determines the weighting. Their approach avoids the problems of bias that 

occurs in methods that directly compare the parametric and non-parametric curves. Although 

their method avoids the problems of the various grouping methods, it does have the 

disadvantage that results can depend on the choice of the bandwidth. Hosmer, et al. (1997) 

compared the le Cessie and van Houwelingen statistic to several other goodness-of-fit statistics 

for logistic regression, including HL . They applied the uniform kernel weight function for the 
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“x space”, as described in the original le Cessie and van Houwelingen paper, as well as a cubic 

weight for the “y space” to the le Cessie and van Houwelingen statistic. Its performance was 

found to be similar to that of HL  at detecting departures from the true model. However, unlike 

HL , in settings where a cubic weight smooth was chosen and the linear predictor of the model 

contained three covariates, its Type I error rate was higher than expected in some settings.  

3.3.3 Goodness-of-Fit Statistics for Logistic Models with Discrete Covariates 

As discussed in section 3.1, 
2X  and D may be used to assess the fit of a model to observed data 

when the number of covariate patterns is fixed. In this case the two statistics are asymptotically 

equivalent. However, under some circumstances the asymptotic distributions of these statistics 

can differ. For example, if the number of covariate patterns grows at a similar rate to the overall 

number of observations, but their ratio remains fixed, then the asymptotic means and variances 

of 
2X  and D  may differ (Read and Cressie 1988). This condition is referred to as “sparseness”. 

Which of these two statistics is optimal depends on the particular situation. 

Cressie and Read (1984) introduced a family of power-divergence statistics that gives a unifying 

approach to testing the fit of models with discrete multivariate data. These statistics take  

the form 
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where J  is the fixed number of possible outcomes and   is a real-valued parameter chosen by 

the user. They define the two cases that can result in division by zero, that is 0   and 1   , 

as the limits where 0   and 1  , respectively. Which value of   gives the optimal test 

statistic depends on the particular circumstances, such as if there is a condition of sparseness or 

whether the null hypothesis is true. They suggest (Read, et al. 1988) that a reasonable choice for 

the value of   is a value that lies in the range  1,2  . This range includes both 
2X , for 

which 1  , and D , for which 0  . When certain details of the circumstances are unknown, 

for example the alternative model, then they suggest a test statistic which lies between 
2X  and 
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D , with 2 3  , as a compromise with excellent properties when the sample size is small (see 

Read and Cressie, 1988, chapter 5). Read, et al. (1988) report the asymptotic distribution of the 

power-divergence tests are central chi-squared with degrees of freedom equal to  1G J K  , 

when all three parameters are fixed.  

In a series of papers, McCullagh(1985, 1986) considered the effect of sparse data on both 
2X  

and D . Specifically he considers the case when the number of cells is increasing to infinity, 

rather than the mean count within the cells increasing to infinity. McCullagh argues that the 

conditional distribution of 
2X  and D , rather than their marginal distributions, are relevant for 

assessing goodness-of-fit of GLMs when the parameters have been estimated with reference to 

the data, rather than fixed in advance. To remove the distributional dependence of the statistics 

on the parameter estimates, he conditions on the sufficient statistic for the parameter estimates. 

He gives an approximate analytical solution for the conditional distributions of both 
2X  and D  

for GLM with canonical link functions. He found that for binary data, D  was uninformative as 

a goodness-of-fit test because it is a function of the sufficient statistic, and when every 

observation has its own covariate pattern, D  is completely independent of the observations. He 

instead recommends the use of 
2X as a goodness-of-fit test for binary data when data are sparse, 

and presents a standardized Pearson statistic for goodness-of-fit that is conditional on the 

sufficient statistic of the unknown parameters. He derives the first three unconditional and 

conditional moments of 
2X , which are necessary for the calculation of his generalized statistic. 

McCullagh shows, using the first order correction term to 
2X  , that 

2X  and the sufficient 

statistic are independent (i.e. they are orthogonal), thus accommodating the estimation of 

parameters referencing the observed data rather than determining them in advance. A second-

order correction is applied using Edgeworth expansion to obtain improved approximations for 

the distributions of 
2X . Alternately, Farrington (1996) suggests a comparison of McCullagh’s 

statistic to a  0,1N . 

Osius and Rojek (1992) applied the work of Cressie, et al. (1984), Read, et al. (1988), 

McCullagh (1985), and McCullagh (1986) to models where the number of possible outcomes is 
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increasing. They derived a statistic similar to McCullagh’s statistic, which when applied to 

binary data is a score test for the fit of the hypothesized model against a particular enlarged 

model alternative. Their derivation is based on the calculation of the first two moments of the 

Cressie-Read power-divergence statistic, and which, under certain conditions, has an asymptotic 

standard normal distribution.  

Pulkstenis and Robinson (2002) suggested two alternative goodness-of-fit statistics that are also 

intended to overcome the problems created when groups contain subjects with a wide range of 

values of the covariate. Their two statistics are similar to 
2X  and D , but can be applied to 

logistic regression models containing both categorical and continuous covariates. They use the 

Hosmer-Lemeshow strategy of grouping data, but also cross-classify categorical variables to 

allow the structure of the individual covariate patterns to remain intact. First observations are 

sorted by unique covariate patterns based only on the categorical covariates. Next, within each 

of the first level groups the observations are sorted by fitted probabilities. Finally, the groups are 

split again into two, with division at on the median categorical response. If the median response 

is an actual value, then it is placed in the lower group. Under the null hypothesis, the statistic is 

reported to have an approximate asymptotic chi-squared distribution of two times the number of 

unique covariate patterns (based only on the categorical covariates), minus the number of 

categorical variables in the model, minus two. Pulkstenis, et al. (2002) found that the power of 

their statistic was greater than that of HL , with regard to its ability to detect the omission of an 

intercept term from the true model. In addition, their grouping method allows for an analysis of 

observed and expected cell counts based on the covariate classification, which can aid in 

identifying poor fit within the covariate space. However, Pulkstenis and Robinson point out that 

their model is applicable only in certain situations - when a model contains both continuous and 

categorical covariates, and there are not too many cross-classifications among the categorical 

covariates in the model. They suggest applying their test in conjunction with HL .  

3.3.4 Score Tests for Assessing the Fit of Logistic Regression Models 

Stukel (1988) proposed a score test to evaluate the goodness-of-fit test of logistic regression 

models. Her test is designed to detect both symmetric and asymmetric deviations from the 
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hypothesized model. She introduces a generalized logistic model containing two additional 

shape parameters. These enable modification of the tails of the model curve. The model is 

expressed as 
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Both are strictly increasing nonlinear functions of   indexed by two shape parameters, 
1  and 

2 . Stukel defines the parameters as follows:  

for  0 0.5   , 
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and when  0 0.5   , 

 

  

  

1

2 2 2

2

1

2 2 2

exp | | 1          0

                                           0

log 1 | |              0

h

   

 

   





  


 
  


     (3.30) 

The two shape parameters are independent, allowing the tails to be symmetric or asymmetric. 

The usual regression coefficients are taken as nuisance parameters, and the hypothesis tested is 

that the shape parameters are equal to zero, and thus the regular logistic model is a good fit.  

Liu, Nelson and Yang (2012) proposed another test statistic, this time based on the strengths of 

the earlier test statistics by Hosmer, et al. (1980), Tsiatis (1980), Stukel (1988), and Pulkstenis, 

et al. (2002), which seeks to overcome some of their deficiencies. Liu, et al. (2012) point out 

that the Pulkstenis-Robinson grouping tests, which require a categorical component to the 

covariate vector, can make the dimensions of the covariate vector very large. This is particularly 
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the case if interaction terms between the categorical and continuous covariates are included in 

the model, which can result in low power to detect lack of fit. Their new approach, like the 

Tsiatis test, uses an augmented model along with a score test to evaluate the fit of an original 

model. However, they employ a new grouping strategy. They create the augmented model by 

partitioning the data into “pseudo replicates” based on scenarios in which discrete covariates are 

either present or not. If the model contains only continuous covariates, then the partition is 

based on the fitted probabilities grouped into G  quartiles. If the model contains both continuous 

and discrete covariates, a two-level sub-grouping strategy is applied. First, subgroups are 

formed based on the distinct covariate patterns of the discrete covariates only. Then a second 

partitioning is performed within the first subgrouping, with the continuous covariate space split 

into four parts based on the quartiles of the fitted probabilities. The augmented and original 

models are then compared to determine the fit of the model being evaluated. A benefit of their 

method is that the augmented model can inform the user about the nature of the lack of fit, and 

can provide information that may suggest an improvement to the model. This method may have 

limited power if the number of data points is small. 

Barnhart and Williamson (1998) developed a goodness-of-fit score test similar to that of Tsiatis 

for correlated binary models with repeated outcome measures, where the covariate space is 

partitioned by cross-classifying the covariates. However, a large number of groups can result 

when a model contains both continuous and discrete covariates, and, if the number of 

observation is not very large, this can result in some of the grouping being sparsely populated.  

Horton, et al. (1999) extended the work of Hosmer, et al. (1980), Tsiatis (1980), and Barnhart, 

et al. (1998) by developing a score test for generalized estimating equations (GEE) models of 

binary outcomes that are repeatedly measured. To avoid the problems of partitioning the 

covariate space, they apply the deciles-of-risk grouping method of Hosmer and Lemeshow, 

forming groups based on estimates of risk obtained using GEE estimator methods. They report 

that their statistic has an asymptotic distribution that is  2 1G   under the null hypothesis. 

They note that if the assumption of independence amongst the outcomes were to be assumed, 

then their statistic is identical to the Tsiatis but with partitioning based on deciles-of-risk.  
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Archer, Lemeshow and Hosmer (2007) proposed a goodness-of-fit test for logistic regression 

that uses the Tsiatis model to construct an F-adjusted Wald test, rather than the usual score test, 

to test the hypothesis that the coefficients associated with the indicator functions are equal to 

zero. In this case the model fitted includes the indicator functions. Under this test, the groups are 

formed based on the deciles-of-risk method rather than on a partition of the covariate space. 

Because there is linear dependence between the indicator functions and the function 1 

associated with the usual intercept term, 
0 , they encountered difficulty fitting all of the terms 

of the model. The computer software would drop one of the indicators for the groups, and thus 

not all of the deciles would be represented, resulting in loss of power. Because of this problem 

they do not recommended the use of this method. 

Building on their earlier work (le Cessie, et al. 1991) on a goodness-of-fit test for logistic 

regression based on non-parametric kernel smoothing methods, le Cessie and van Houwelingen 

(1995) showed that their original method can be used as a score test in a random effects model, 

and can be extended to GLMs with canonical link functions. Hosmer, et al. (1997) note that a 

special case of the le Cessie and van Houwelingen statistic is one introduced earlier by Copas 

(1989), that only considers the numerator of 
2X , the unweighted residual sum of squares, 

 
2

1
ˆ

n

i i ii
y m


 . Both the studies by Hosmer, et al. (1997) and Kuss (2002) included this 

statistic in their analysis comparing several goodness-of-fit tests for logistic regression models. 

Hosmer, et al. (1997) also gives a method for calculating its asymptotic moments, and shows 

how to use it to test for goodness-of-fit of a logistic regression model.  

 

3.4 Studies Comparing the Performance of GOF Statistics for 

Binary Logistic Regression Models 

Several studies compare the performance of HL  to those of other GOF test statistics for logistic 

regression models with continuous covariates. In Hosmer, et al. (1997), the performance of HL  

is compared to that of several other statistics, including a statistic based on smoothed residuals 

by le Cessie, et al. (1991) and by Royston (1992), the score test by Stukel (1988), the 
2X , and 
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an unweighted residual sum-of-squares proposed by Copas (1989). They found generally that all 

of the statistics they studied, except for the Royston statistic, maintained the correct test size. In 

a few of the settings, however, the rejection percentage was higher than expected, particularly 

for the le Cessie and van Houwelingen statistic with cubic weights in the “y-space”. The 

statistics with the highest power to detect the omission of a quadratic term were the 
2X  and the 

unweighted residual sum-of-squares. All of the statistics had low power to detect the omission 

of an interaction term. They all had somewhat more power to detect an incorrect link function, 

with the Stukel statistic having the most power. 

Kuss (2002) conducted another large study comparing several other goodness-of-fit statistics to

HL . He viewed the study as supplemental to that of the earlier study by Hosmer, et al. (1997). 

Several different settings were considered. The design included varying the degrees of 

sparseness. The other statistics studied included both 
2X  and D , as well as statistics by Osius, 

et al. (1992) ( 2

OX ), McCullagh (1985) ( 2

McX ), and Farrington (1996) ( 2

FX ). Also included were 

the residual sum of squares test ( RSS ) (Copas 1989) , and the information matrix test (IM) 

from the economics literature (White 1982), which is based on comparing two different 

estimators of the information matrix that are equal if the model is a good fit. As expected, Kuss 

found that both 
2X  and D  generally performed poorly when data was sparse. Specifically, they 

did not maintain test size while the other test statistics did. Generally the other test statistics 

performed as well as HL , and in some cases better. For example, the Farrington test generally 

had more power than HL . They noted that in a real world example, when outliers were removed 

and the statistics recalculated, the updated result of HL  inexplicably indicated that the model fit 

had worsened, while other test statistics indicated improved fit. 

Hosmer and Hjort (2002) compared the performance of HL , 
2X , and the unweighted sum-of-

squares tests to three statistics that have a weighted statistical process applied. Two of the new 

test statistics were grouped deciles-of-risk tests. These were weighted versions of HL  and 
2X . 

The weighting method used was similar to that of Su, et al. (1991). Their goodness-of-fit 

techniques include graphical and numeric methods, and are based on the cumulative sums of 

residuals over certain coordinates. Their strategy was to compute partial sums over successively 
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larger partitions of the covariate space that are fixed. Hosmer and Hjort instead use the 

estimated logit to form partitions, and weight the individual residuals of the tests using a weight 

function that is optimal for an alternative model that is specified by the user. This strategy 

requires the user to make an educated guess about what terms might be missing. This allows for 

potentially more insight into specific causes of lack of fit, but also presents the risk that the user 

may not test for a term that has been omitted from the true model. The simulations indicated 

that all of the statistics had correct size. No single test had more power than any of the others 

examined to detect lack of fit in the model due to an omitted covariate or due to an incorrectly 

specified link function. However, one of the new statistics, referred to as test #12 in their paper 

and which is based on partial sums-of residuals from the fitted model weighted with a model 

specific omitted covariate, had more power to detect the omission of an interaction term, which 

is often difficult to detect.  

 

3.5 Goodness-of-Fit Statistics for Non-Canonical GLM  

Although the selection of the canonical link function when building a GLM model, such as the 

logit link, can offer several advantages (Czado and Munk 2000), including a guarantee of 

maximum information and a simple interpretation of regression parameters, the estimates of the 

regression parameters can be biased if the canonical link is in fact incorrectly specified. Czado, 

et al. (2000) give several examples of situations that warrant the use of a non-canonical link as 

well as situations that do not, and present a generalized p-function that can be used to aid in the 

decision. If a non-canonical link is selected, then the problem of assessing the non-canonical 

model’s overall fit to the data still remains.  

3.5.1 Statistics to Assess the Fit of Non-Canonical GLM with Discrete 

Covariates 

Both the D and 
2X statistics outlined in the previous section can also be used to assess the fit of 

non-canonical GLM if the covariates in the model are discrete (Windmeijer 1995). Both are 

examples of statistics that fall under the Read and Cressie power-divergence statistics. These 
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statistics are appropriate when the number of observations with any of the unique covariate 

patterns formed under the model is not small.  

Citing the widespread use of GLMs with non-canonical links and a need for the development of 

goodness-of-fit techniques to evaluate them, Farrington(1995, 1996) follows the ideas of 

McCullagh (1985, 1986) in deriving a goodness-of-fit statistic for non-canonical GLM models 

based on the conditional moments of 
2X . Like McCullagh, he considers the case when there is 

extensive discrete covariate data, but n   rather than the mean count within the cells going 

to infinity. Based on estimating equations developed by McCullagh (1986), his approach is to 

embed a canonical GLM into a family of GLMs with arbitrary link function and the addition of 

first order components. He defines an independent random variable, 
iY , 1,2,...,i n , with mean 

i  and variance function 
iV . In this case, 1  , and the link function,  g , is such that 

  1     x βg         (3.31) 

Here   will be denoted as   β . The estimating equations for obtaining the maximum 

likelihood estimates of the regression parameters are, for 1,...,k K  covariates, 
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       (3.32) 

The wider family of models has variance V , and a supplementary unbiased estimating 

equation for estimating  is added,  
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β      (3.33) 

where 
ia  is a function of 

i . The statistic of the wider family is  
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Farrington notes that the choice of 0ia   gives the original 
2X . Farrington showed that this 

modified statistic is asymptotically independent of the regression parameter, and is thus an 
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improvement on the McCullagh method. He shows that a statistic, 2

FX , using a particular choice 

of correction factor,   1

i i ia V V     , induces local orthogonality between the modified 

statistic and the regression parameters, and has minimal variance within the family. In the 

logistic setting, where ˆ
j denotes the predicted probability for the thj  covariate pattern 

calculated, 
jn  the number of observations with that covariate pattern, and 

jy  the number of 

outcomes where 1y  , then the statistic is  
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   
 

 
      (3.35) 

(Kuss 2002). Farrington uses this choice of correction factor in a standardized statistic that can 

be used to assess the fit of a model, and that is compared to a standard normal distribution. A 

deficiency of 2

FX  is that if 1jn  , then 2

FX J  and the test will never conclude that the model 

does not fit (Kuss 2002).  

Deng and Paul (2000, 2001, 2002, 2011) furthered the work of Farrington (1996). They derived 

approximations of the first three moments of the unconditional and conditional distributions of 

the deviance (Deng, et al. 2000) and the first four moments of the unconditional and conditional 

distributions of the modified 
2X for GLM with non-canonical links for discrete but sparse data 

(Deng 2001, Paul, et al. 2011). They also derived a score test (Paul, et al. 2002) based on the 

modified Pearson statistic of Farrington to test for over-dispersion in GLM with sparse  

discrete data.  

3.5.2 Goodness-of-Fit Statistics for Assessing the Fit of Probit Models with 

Continuous Covariates 

In the economics literature, Andrews (1988) extended the Pearson chi-squared statistic to 

parametric models with covariates. This included a statistic that can be used to test the 

goodness-of-fit of probit models with continuous covariates. He suggests a variety of “non-

parametric” partitioning methods to create cells. That is, the cells are formed using methods that 

do not rely on the specific conditional parametric model. These methods partition based on both 
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the outcomes and the covariates, and the cells are considered random. After partitioning, the test 

statistic is calculated as a quadratic form based on the difference between the number of 

observed outcomes in each cell and the number expected in each cell, conditional on the 

observed covariates.  

3.5.3 Assessing the Fit of Log Binomial Models 

Blizzard and Hosmer used the Hosmer-Lemeshow statistic to assess the fit of both log binomial 

(Blizzard, et al. 2006) and the log multinomial (Blizzard and Hosmer 2007) models. In the log 

binomial study (2006), simulations were conducted to compare the performance of HL , a 

normalized 
2X , and an unweighted sum of squares, when assessing the fit of binary log 

binomial models. They found that the empirical Type I error rates of the normalized 
2X   

(3.6-11.6 per cent), were mostly within the range expected, but could be high, while those of the 

unweighted sum of squares ranged from very low to high (0.5-12.1 per cent). The Type I error 

rates of HL , however, were near the range of values expected, or slightly lower than the 

expected (3.2-6.1). Blizzard and Hosmer recommended that the “groups minus two” rule for 

determining degrees of freedom still be used with HL  until more extensive simulations are 

performed to determine whether a reduction in the degrees-of-freedom is warranted. They also 

conducted simulations to test the power of HL  to detect an incorrect logistic regression model 

that is fitted to data generated from a log binomial setting. This is the situation in which the user 

applies HL in the logistic setting. All of the statistics had low to moderate power. They did not 

study the case of a log binomial model fit to data generated from another link, nor did they 

study the case when a log binomial model was fitted with a term omitted from the true 

underlying model’s linear predictor.  
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Chapter 4 Comparison of HL, J
2
, and T when Assessing the 

Fit of Logistic Models 

4.1 Introduction 

When a logistic regression model contains continuous covariates, it is not appropriate to test the 

fit of the model using the deviance or Pearson’s chi-squared goodness-of-fit test statistics. 

Instead, other methods must be used. The statistics developed by Hosmer, et al. (1980), Pigeon, 

et al. (1999b), and Tsiatis (1980), as discussed in Chapter 3, are all appropriate goodness-of-fit 

tests in this case. To our knowledge, no studies have been presented in the literature that 

compare these statistics algebraically or compare their performances under the same grouping 

method. We study both here. First we investigate algebraic relationships between the three 

statistics. We then evaluate their performances using Monte Carlo simulations. Other test 

statistics discussed in Chapter 3 are not included in this study due to time constraints. 

In this study, we apply the deciles-of-risk grouping strategy to all three of the statistics. One 

benefit of using the same grouping method is that any differences observed can be more directly 

attributed to the algebraic differences, rather than a combination of algebraic and grouping 

method differences. We chose to use the deciles-of-risk method for all three statistics for several 

reasons. First, the method has previously been applied to all three statistics (Halteman 1980, 

Hosmer, et al. 1980, Pigeon, et al. 1999b), and the results from these studies give approximate 

asymptotic distributions under this method. Secondly, the deciles-of-risk method is intuitively 

appealing to users. It is easy to calculate, and available in most commercial software packages. 

This has made it a widely used grouping method when calculating HL  and some other test 

statistics, including some discussed in Chapter 3. Finally, although some deficiencies have been 

reported for the deciles-of-risk method (see Chapter 3), there are no alternative methods that do 

not also present difficulties. Typically, T  and 
2J  are calculated using a method that partitions 

the covariate space without reference to the data. However, as discussed in Chapter 3, there are 

potential difficulties with this method. If the model contains multiple covariates, the sample size 

may need to be large to adequately populate the potentially substantial number of regions 
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required. Also, the selection of partitions is non-standardized and subjective. Different 

partitioning choices can give differing results. 

 

4.2 Algebraic Comparison 

4.2.1 Hosmer-Lemeshow Goodness-of-fit Statistic 

One of the most often used goodness-of-fit tests developed to address the issues presented when 

continuous covariates are included in a binary logistic regression model is the Hosmer-

Lemeshow test statistic, HL  (Hosmer, et al. 1980). It is widely reported in the literature, and its 

performance has been compared to many other goodness-of-fit statistics for logistic regression, 

see (Lemeshow and Hosmer 1982, le Cessie, et al. 1991, Hosmer, et al. 1997, Pigeon, et al. 

1999b, Kuss 2002, Pulkstenis, et al. 2002, Dreiseitl, et al. 2012). Its common usage, in part, 

springs from the fact that it is straightforward, easily implemented, and is currently available in 

most major statistical packages (e.g. STATA, SAS, and SPSS). The form of HL  is similar to 

that of the 
2X , but with grouping accomplished by ordering the predicted probabilities and 

placing them into groups, usually using the deciles-of-risk method. The HL  statistic is 

conditional upon β̂  and can be expressed as (3.6). Alternatively, HL  can be written in matrix 

form as 

 
1HL  S A S          (4.1) 

where        1

1 1
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    (4.1) 

In this case, 
    1

,...,
G

i iI I  are a set of indicator functions for the thi  observation that are 

defined as  
1

g

iI   when the covariates lie in it the thg  group and  
0

g

iI   otherwise. 
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4.2.2 Pigeon-Heyse Goodness-of-fit Statistic 

The 
2J  statistic is also conditional on β̂  and can be expressed as (3.21), which simplifies to 

(3.23). Note that when the deciles-of-risk method of grouping is used, the numerators of HL  

and 
2J  are the same, but their denominators differ. Another expression for 

2J  is 

 
2 1J  S A S           (4.2) 

where S  is given following (4.1), and the G G  diagonal matrix A  with elements 
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is the covariance matrix when the nuisance parameter, in this case β , is known (Smyth 2003). 

Expression (4.2) has the same form as the score test described in (2.47). If

       
1

ˆ ˆ1 1
n

g g

i i i i g g g

i

I I n   




   , for all g , then HL  and 
2J  are equal.  

4.2.3 Tsiatis Goodness-of-Fit Statistic 

Tsiatis (1980) developed a goodness-of-fit test statistic for regression models based on Rao’s 

efficient score test (Rao 1948, Rao 2002). The basic idea of the test is to partition the covariate 

space (i.e. x  space) into G  distinct regions and then to test that the model fits the data well, 

against the alternative that the augmented model in any region produces a model that fits the 

data better. These adjustments are functions of the indicator functions only, and are thus 

constant within each region. The conditional probability of a successful outcome is given as 

(3.9). Recall that the Tsiatis statistic is T
 S V S  , as in (3.11), where S  is a G -dimensional 

column vector  1 ,..., Gl l       with l  representing the log likelihood and 


V  any 

generalized inverse of the G G  singular covariance matrix,  -1
V A - BC B' .

 

The terms of S  

and V  are given in equations (3.14) through (3.16). These are evaluated under the null 

hypothesis that 0γ , and under ˆβ β , where β̂  are the maximum likelihood estimates under 
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the null hypothesis. This results in elements (3.18) through (3.20). Note that the matrices (3.18) 

and (4.3) are equivalent.  

To establish the relationship between the three statistics, T  may be expressed using any one of 

five identities presented in Henderson and Searle (1981) (section 4) for the generalized inverse 

of a singular matrix of the form  1  A B C B . If the identity labelled 
3G  in Henderson, et al. 

(1981) is chosen, then 

  T


 -1
S A - BC B' S  

 
1  S'A S  

 
2J            (4.4) 

where 
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2J T . It is evident that 0   if 
1  B A B C 0 . The solution to this equation requires that 
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for each of the combinations of covariates, , 'k k . In the general case the problem appears to be 

intractable. However, equation (4.6) is satisfied when within any group the predicted 

probabilities are equal, which was noted previously by Pigeon, et al. (1999b). Then B 0 , and 

the parameters β  and γ  are orthogonal (Smyth 2003). In this case, HL , 
2J  and T all reduce to 

2X  and have an asymptotic distribution that is  2 1G K   . The asymptotic distribution of 

HL  was shown by Hosmer, et al. (1980) to follow    
12 2

1
1) 1

K

k kk
G K  




   , where 

k  

represents the -thk  eigenvalue of the matrix they refer to as  ˆ *H , and which is described in 
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their paper. Through simulations, Hosmer, et al. (1980) found that    
1 2 2

1
1 1

K

k k kk
K  




  , 

and hence  2~ 2HL G  . However when the predicted probabilities within each of the 

groups are the same, then 0k   for all k , resulting in the changed distribution (Hosmer, et al. 

1980, Kendall, et al. 1999). The 
2J statistic is an approximation of the statistic Q , (3.25), 

described by Pigeon, et al. (1999b). A special case of Q  occurs when all of the elements within 

each group are equal; this is 
2X , which has a known asymptotic distribution of  2 1)G K  

 

(Kendall, et al. 1994, Pigeon, et al. 1999b). 

 

4.3 HL ≤ J
2
 

The expressions for HL  and 
2J  are given in (3.6) and (3.23) respectively. Consider these 

expressions for the thg  group containing 
gn  ordered predicted probabilities, 

1
ˆ ˆ,...,

gn  . The 

contribution of the thg  group to each statistic can be expressed as 
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and 
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The numerators of (4.7) and (4.8) are the same but the denominators differ. Let 
HLgD  denote the 

denominator of HL , and 
2J gD  the denominator of 

2J , for the thg  group. That is, 
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and  

 2 2

2 1 1
ˆ ˆ ˆ ˆ...

g gJ g n nD         .      (4.10) 

Theorem 4.1 HL=J
2
 if and only if all of the predicted probabilities within each group 

are equal. 

Proof  

1. The “if” case. 

Assume that all of the predicted probabilities within each group are equal. Show that 
2HL J . 

Let all of the predicted probabilities within the thg  group be equal. Then  
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          1 1
ˆ ˆ1gn            (4.11) 

and  

  2 1 1
ˆ ˆ1J g gD n            (4.12) 

and thus 
2HLg J gD D . It follows that, if for every group the elements within that group are 

equal, then 
2HL J . 

2. The “only if” case. 

Assume that 
2HL J . Show that all of the predicted probabilities within each group are equal. 

Given that 
2HL J , then 

2 0J HL  , and thus 
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A trivial case when (4.13) is true, is when all ˆ
i iy  . The other case is when 

    ˆ ˆ1 1 0
g

i i g g g

i

n


   


    .      (4.14) 

The left hand side of (4.14) reduces to  
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Since the summands are all non-negative, the only case where (4.15) is equal to 0 is when 

ˆ ˆ
i j  , for all i  and j . Thus if 

2HL J , then all of the predicted probabilities within each 

group must be equal. 

Theorem 4.2 If any of the predicted probabilities within a group differ, then HL < J
2
. 

Proof 

If any two predicted probabilities are unequal, then  

 
 

2
1

1

ˆ ˆ
0

g gn n
i j

j i j i gn

 

  


          (4.16) 

and thus the left-hand side of (4.14) is greater than 0. It follows then that, except in the trivial 

case when all ˆ
i iy  , (4.13) is positive and thus 

2HL J . 

 

4.4 J
2
 Can Be Much Larger Than HL 

From  

Theorem 4.1 and Theorem 4.2, it is known that 
2 0J HL  . It can be shown that when the 

difference between two consecutive predicted probabilities within a group approaches 1, then 

2J HL will approach infinity. Using the notation of section 4.3, for the thg  group, write the 

difference as 
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Let ˆ
j  and 

1
ˆ

j 
 represent consecutive elements in the thg  group. Then as ˆ 0j  , all 

ˆ 0k   when k j . Likewise, as 
1

ˆ 1j   , all ˆ 0k   when 1k j  . Therefore, in this 

case, for all summands of the denominator of 2

gJ ,  ˆ ˆ1 0i i   , and thus 
2J  .  

However, as ˆ 0j   and 
1

ˆ 1j    
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which is finite as long as 
gj n  and 0j  . These are both trivial cases when either all ˆ 0i   or 

all ˆ 1i  . Thus it follows that as ˆ 0j   and 
1

ˆ 1j   , 
2J HL  .  

In practice, a situation where the difference between two consecutive predicted probabilities, 

1
ˆ ˆ

j j   , might approach 1 is when the covariate values have a bimodal distribution. The 

difference is maximized when there are equal numbers of covariate values in the subgroups. 

 

4.5 Simulation Study Comparing HL, J
2
 and T 

Simulation studies were conducted to verify the reported asymptotic distributions of HL , 
2J  

and T  when the deciles-of-risk grouping method is used, as well as to compare the 

performances of the three statistics. The studies examined how well each statistic controlled the 

Type I error rate when a correctly specified (null) model was fitted to generated data, and 

compared the power of each statistic to detect a departure from a true underlying model. An 

analysis was also made of how the decision to reject or to not reject the null hypothesis differed 
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among the test statistics. We refer to this as “decision agreement”. That is, even if the power of 

the test statistics were similar, did their decision to reject the null hypothesis differ among 

individual samples. Several settings were considered, with the following allowed to vary:         

1)  sample size  100, 500n n  ; 2) number and characteristics of the covariates in the model; 

and 3) the way in which the fitted model departed from the true underlying model in the power 

settings (the omission of a quadratic term, the omission of a dichotomous term and an 

interaction term, and the incorrect specification of the model link function). In order to verify 

the null distribution of the three statistics, a large number of simulations were conducted in two 

settings to produce highly accurate results. When comparing the null rejection percentages of 

the statistics, a smaller number of simulations were conducted under a broader variety of 

settings. The specific settings follow methods described in Hosmer, et al. (1997), as well as 

methods used by Xie, et al. (2008). This allows for the comparison of our results to those 

previously reported for HL  and several other goodness-of-fit test statistics. The settings chosen 

are representative of those encountered in practice, and produce predicted probabilities with a 

variety of ranges and distributional characteristics. First, a general description is given of how 

the simulations were conducted, followed with specific details for the settings studied. 

4.5.1 Simulation Methods 

4.5.1.1 General Simulation Methods 

In each simulation, a linear predictor, link function, coefficients, and joint distribution of 

covariates were chosen in accordance with a true underlying model. A random sample of n  

covariate vectors were generated for each of r  replications of the simulation using the specified 

distributions and ranges. Probabilities were then generated using the appropriate link function. 

Binary outcomes, y , were generated by comparing the probabilities to a value u  where 

 ~ 0,1u U  according to the rule  y I u   , where I  is an indicator function such that 

1I   when the argument is true, and 0I   otherwise. Finally, a specified model was fit to the 

generated  ,i iyx  data, ̂  was estimated, and values for the HL , 
2J  and T statistics were 
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calculated using the deciles-of-risk grouping method  10G  . All computer simulations 

described in this chapter were performed using Stata 10 (StataCorp 2007). 

4.5.1.2 Methods to Investigate the Null Distributions of HL, J
2
, and T 

Null simulations were conducted, using settings 1 and 5 of Table 4.1, to investigate the reported 

asymptotic distributions of HL , 
2J  and T , when the deciles-of-risk grouping method is used. 

The distributional characteristics of the model probabilities are also given in Table 4.1. A high 

replication rate  100,000r   was selected to give estimates of the distribution of each statistic. 

We expected the difference between HL  and 
2J  to be smallest when the denominators of the 

statistics were most similar. Under the setting 1, where  1 ~ 1,1x U  , 
0 0  , and 

1 0.8  , the 

probabilities are clustered near 0.5 , and any differences among the ̂  within groups would be 

small. We expected this setting to produce relatively small differences between HL  and 
2J . 

Under setting 5, where 2

1 ~ (4)x  , 
0 4.9   , and 

1 0.65  , the predicted probabilities are 

distributed across the  0,1
 
range and are right-skewed; and thus there is a greater potential for 

the difference between two consecutive probabilities within a group to be nearer to 1. In this 

case, based on the results discussed in section 4.4, we expected that the differences between HL  

and 
2J  would be larger. Based on the reported asymptotic distributions of the three statistics 

(Halteman 1980, Hosmer, et al. 1980, Tsiatis 1980, Pigeon, et al. 1999b), and on preliminary 

results, the value of HL  was compared to  2 8 , T  was compared to  2 9 , and 
2J  was 

compared to both  2 8
 
and  2 9  in these simulations. 
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Table 4.1 Settings used to examine the null distributions and the power of HL, J
2
, and T. 

Setting§ Linear predictor x 1 x 2 x 3 β 0 β 1 β 2 β 3 π(1) Q1 Q2 Q3 π(n)

1 β 0+β 1x 1 U(-1,1) . . 0 0.8 . . 0.31 0.40 0.50 0.61 0.69

2 β 0+β 1x 1 U(-3,3) . . 0 0.8 . . 0.08 0.23 0.50 0.77 0.92

3 β 0+β 1x 1 U(-4.5,4.5) . . 0 0.8 . . 0.03 0.14 0.50 0.86 0.97

4 β 0+β 1x 1 U(-6,6) . . 0 0.8 . . 0.01 0.08 0.50 0.92 0.99

5 β 0+β 1x 1 χ
2
(4) . . -4.9 0.65 . . 0.01 0.03 0.06 0.20 0.98

6 β 0+β 1x 1 N(0,1.5) . . 0 0.8 . . 0.06 0.31 0.50 0.69 0.94

7 β 0+β 1x 1+β 2 x 2 Ber(0.5) U(2x 1 -6,2x 1 +2) . 0 0.69 0.1 . 0.40 0.47 0.56 0.63 0.70

8 β 0+β 1x 1+β 2 x 2+β 3 x 3 U(-6,6) U(-6,6) U(-6,6) 0 0.27 0.27 0.27 0.03 0.22 0.47 0.76 0.97

9 β 0+β 1x 1+β 2 x 2+β 3 x 3 N(0,1.5) N(0,1.5) N(0,1.5) 0 0.27 0.27 0.27 0.16 0.4 0.5 0.61 0.84

10 β 0+β 1x 1+β 2 x 2+β 3 x 3 U(-6,6) N(0,1.5) χ
2
(4) -1.3 0.27 0.27 0.22 0.05 0.22 0.42 0.62 0.93

11 β 0+β 1x 1+β 2 x 1
2 U(-3,3) x1

2 . -1.1 1.3 0.0 . 0.01 0.06 0.26 0.76 0.96

12 β 0+β 1x 1+β 2 x 1
2 U(-3,3) x1

2 . -2.0 1.0 0.2 . 0.04 0.05 0.14 0.58 0.94

13 β 0+β 1x 1+β 2 x 1
2 U(-3,3) x1

2 . -2.3 0.9 0.3 . 0.06 0.07 0.11 0.49 0.94

14 β 0+β 1x 1+β 2 x 1
2 U(-3,3) x1

2 . -2.7 0.7 0.4 . 0.06 0.07 0.12 0.40 0.93

15 β 0+β 1x 1+β 2 x 1
2 U(-3,3) x1

2 . -3.2 0.6 0.5 . 0.04 0.06 0.13 0.36 0.93

Distribution of covariate Regression coefficients Distribution Characteristics†

 

§ All of the settings were used to examine the adequacy of the reported null distributions of HL , 
2J  and T  when the deciles-of-risk grouping method was applied. 

Only settings 11-24 were used to compare the power of HL , 
2J  and T  to detect incorrectly specified models. 

† Expected values of the smallest, largest, and three quartiles of the resulting distribution of the logistic probabilities for a sample size of 500. 

Table 4.1 Settings used to examine the null distributions and the power of HL, J
2
, and T. (cont.) 
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Setting Linear predictor x 1 x 2 x 3 β 0 β 1 β 2 β 3 π(1) Q1 Q2 Q3 π(n)

16 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 U(-3,3) x1

2 U(-3,3) -1.1 1.3 0.0 1.0 0.00 0.05 0.29 0.70 0.99

17 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 U(-3,3) x1

2 U(-3,3) -2.0 1.0 0.2 1.0 0.00 0.04 0.23 0.57 0.99

18 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 U(-3,3) x1

2 U(-3,3) -2.3 0.9 0.3 1.0 0.01 0.04 0.21 0.52 0.99

19 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 U(-3,3) x1

2 U(-3,3) -2.7 0.7 0.4 1.0 0.00 0.04 0.18 0.49 0.99

20 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 U(-3,3) x1

2 U(-3,3) -3.2 0.6 0.5 1.0 0.00 0.03 0.14 0.42 0.99

21 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-3,3) Ber(0.5) . -1.8 0.1 0.3 0.1 0.08 0.14 0.16 0.19 0.31

22 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-3,3) Ber(0.5) . -1.8 0.1 0.7 0.2 0.07 0.15 0.17 0.23 0.53

23 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-3,3) Ber(0.5) . -1.8 0.1 1.1 0.4 0.08 0.15 0.17 0.29 0.64

24 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-3,3) Ber(0.5) . -1.8 0.1 1.8 0.6 0.07 0.15 0.18 0.42 0.87

Distribution of covariate Regression coefficients Distribution Characteristics

 

 

Table 4.2 The linear predictors and distributional characteristics of the Stukel models used in the power simulations.  

Linear

Setting Model Predictor x 1 α1 α2 β 0 β 1 π(1) Q1 Q2 Q3 π(n)

25 Probit β 0+β 1x 1 U(-3,3) 0.165 0.165 0 0.8 0.06 0.20 0.51 0.82 0.94

26 Long tail β 0+β 1x 1 U(-3,3) -1 -1 0 0.8 0.20 0.34 0.52 0.70 0.82

27 Short tail β 0+β 1x 1 U(-3,3) 1 1 0 0.8 0.01 0.08 0.49 0.93 0.99

28 Complementary log-log β 0+β 1x 1 U(-3,3) 0.62 0.37 0 0.8 0.04 0.17 0.54 0.88 0.97

29 Asymmetric long-short tails β 0+β 1x 1 U(-3,3) -1 1 0 0.8 0.04 0.13 0.38 0.73 0.90

Distribution Characteristics
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4.5.1.3 Methods for Comparing of the Null Empirical Rejection Percentages of HL, 

J
2
, and T 

Fewer replications  10,000r   were performed to examine how well each of the statistics 

controlled a Type I error rate at the 0.05   level. Data simulated under the null hypothesis 

were conducted in a variety of settings following the methods of Hosmer, et al. (1997) for 

comparability. The settings used for the linear predictors and their distributional characteristics 

are given in Table 4.1. The covariate and outcome values were generated, a correctly specified 

logistic model was fit to the data, probabilities were estimated, and HL , 
2J  and T  were 

calculated. Settings were chosen to magnify the potential difference between HL  and 
2J . It 

was thought that the magnitude of these differences may affect rejection percentages. As noted 

above, we expected the differences between HL  and 
2J  to be relatively small under setting 1. 

Under setting 4, when  1 ~ 6,6x U  , 
0 0  , and 

1 0.8  , the probabilities are distributed 

across the  0,1  range, and concentrated at the extremes. Like setting 5, the differences between 

HL  and 
2J  in this case could be larger. Setting 7 was not used in the original Hosmer, et al. 

(1997) study . It is similar to a setting used to evaluate HL  in the log binomial setting in 

Blizzard, et al. (2006). This setting contains a dichotomous covariate and a uniformly 

distributed continuous covariate that is associated with the dichotomous covariate. Based on the 

results presented in Blizzard, et al. (2006), we investigated whether the inclusion of a 

dichotomous term in the linear predictor of a model may affect the distribution of HL . Settings 

8 - 10 produced predicted probabilities that are fairly evenly distributed with moderate to large 

ranges, which would be likely to produce moderate differences between HL  and 
2J . The other 

settings in Table 4.1 were used both for assessing the adequacy of the reported null 

distributions, and for investigating the power of each statistic to determine whether the Type I 

error rates were controlled in these settings. These settings are described in section 4.5.1.4. 
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4.5.1.4 Methods for Comparing the Power of HL, J
2
, and T 

A comparison was made of the power of HL , 
2J  and T  to detect departures from a true 

underlying model when terms in the true model were omitted or the link function was 

incorrectly specified. All power simulations were replicated 10,000r   times. 

First, in two series of settings (11-15, 16-20), a quadratic term was omitted from the fitted 

model. The linear predictor and distributional characteristics of the settings for the true 

underlying model are given in Table 4.1. The logit function (2.26) was used in both the true 

model used to generate the data and the deficient model fitted to the data. Covariate values were 

independently generated such that  1 ~ 3,3x U   and  2 ~ 3,3x U  . The first series uses 

settings 11-15. Outcome values were generated with the linear predictor, 2

0 1 1 2 1x x      . 

Regression coefficients were chosen such that the model curve passed through the points

( 1.5) 0.05   , (3) 0.95  , and ( 3) W   , where 0.01,W   0.05,  0.1,  0.2,  and 0.4 . As 

the value of W  increases, the departure from linearity increases. The second series of models, 

settings 16-20, are similar, but the true model included the additional term, 
2x , so that the linear 

predictor for the series of models is 2

0 1 1 2 1 2x x x       . A logistic model with linear 

predictor 
0 1 1x     was incorrectly fit to data from the first series, while the linear predictor 

0 1 1 3 2x x       was fitted to the data of the second series. 

Next, four settings, (21-24), were used to investigate the power of each statistic to detect the 

omission of both a dichotomous covariate and an interaction term. Again, (2.26) was used to 

produce both the true and fitted models. Values of a continuous covariate
1x  were generated 

such that  1 ~ 3,3x U  . A random value  ~ 0,1u U  was generated, and the expression 

 2 0.5x I u   evaluated. Here I  is an indicator function. Additionally an interaction term, 

3 1 2x x x , was created. Outcome values were generated using the linear predictor 

0 1 1 2 2 3 3x x x         and regression coefficients chosen such that the model curve passed 

through the points ( 3,0) 0.1   , ( 3,1) 0.1   , (3,0) 0.2  , and (3,1) 0.2 V   , where 

0.1,V  0.3, 0.5,  and 0.7 . The influence of the interaction term increases as V  increases. An 
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incorrectly specified logistic model with linear predictor 
0 1 1x     was incorrectly fitted to 

the data.  

Finally, five settings (25-29), were used to investigate the power of each statistic to detect an 

incorrectly specified link function. The settings and distributional characteristic of the model 

probabilities are given in Table 4.2. Data were generated using a link function based on the 

Stukel generalized logistic model (Stukel 1988) specified in (3.27), rather than the usual logistic 

model. The   were calculated using a linear predictor with shaping terms, 
1  and 

2 , defined 

in (3.29) and (3.30) respectively. Values of the covariate
 
were generated such that 

 1 ~ 3,3x U  . The values of 
1  and 

2  used to investigate the power of the three statistics are 

given in Table 4.2. Two settings (25 and 28), produce models with shapes similar to the probit 

 1 2 0.165    and the complementary log-log (
1 0.62  ,

2 0.37  ) models respectively. 

The other settings produced models with varying tail shapes. Setting 26 produces long tails 

 1 2 1    , setting 27 produces short tails  1 2 1    , and setting 29 produces 

asymmetric tails that are long on one side and short on the other (
1 1   , 

2 1  ). A logistic 

model with the linear predictor 
0 1 1x     was incorrectly fitted to the data produced using 

these Stukel models. 

4.5.2 Simulation Results 

4.5.2.1 Distribution of J
2
 

Histograms are presented in Figure 4.1 and Figure 4.2, and summary statistics in Table 4.3. In 

setting 1, when  1 ~ 1,1x U  , the histograms of the HL (blue) and 
2J  (black dashed) values 

have distributions that follow the probability density function of  2 8  (red) closely. Similarly, 

the histogram of the T  (grey) values follows the probability density function of  2 9  (dash 

and dot) closely. The Kolmogorov-Smirnov tests evaluate the null hypothesis that the 

probability distributions of the three statistics are the same as their theoretical and/or reported 

distributions, against the alternative hypothesis that the probability distributions differ in some 

way. Our results indicate that the probability distributions of both HL  and 
2J  were 
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significantly different from  2 8 , and that the distributions of 
2J  and T  were significantly 

different from  2 9 . Note however, that with the very large samples sizes, the test statistics 

may be overpowered, and the significant differences may be considered unimportant. In the case 

of 
2J , the largest differences observed, in parentheses, were much higher when  2 9  was 

assumed to be the theoretical distribution instead of  2 8 . The means of all three statistics 

were slightly higher than the mean of these distributions while the variances were slightly 

lower. However, the mean and variance of 
2J  was much lower than that of  2 9 . If it was 

assumed that  2 2~ 8J  , all three statistics had the expected percentage of observations above 

the 90
th
 , 95

th
 and 99

th
 percentiles. On the other hand, 

2J  had a much lower proportion of 

observations than expected if  2 2~ 9J  . 

In setting 5, when 2

1 ~ (4)x  , the histograms still followed these same chi square density 

functions, but not quite as closely. All had higher peaks and narrower spreads. The 

Kolmogorov-Smirnov tests again indicated that the probability distributions of HL  and 
2J  

were significantly different than  2 8 , and that the distributions of 
2J  and T  were 

significantly different than  2 9 . The largest differences observed were again when 
2J  was 

assumed to follow a  2 9  distribution rather than  2 8 . Again, the means and variances of 

HL  and T were within the 95% confidence intervals for those of  2 8  and  2 9  

respectively. However, this time the mean and variance of 
2J  were slightly higher than the 

values expected if  2 2~ 8J  . In contrast to the first simulations, all three statistics had less 

than the expected percentage of observations above the 90
th
 percentile and more than expected 

above the 99
th
 percentiles for these distributions, again falling outside of 95% confidence 

intervals for the respective distributions. The percentage of observations above the 95
th
 

percentile fell within 95% confidence intervals for all three statistics. If it was assumed that 

 2 2~ 9J  , the percentage of observations above all three percentiles was much lower  

than expected.  



 

79 

  

 

Figure 4.1 Histogram of 100,000 replications of setting 1. (η=0.8x1, x1~U(-1,1), n=500) 

The probability density function curves for χ2(8) and χ2(9) are included for 

comparison. 

 

 

Figure 4.2 Histogram of 100,000 replications of setting 5. (η=-4.9+0.65x1, x1~χ
2
(4), 

n=500) The probability density function curves for χ2(8) and χ2(9) are 

included for comparison. 
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Table 4.3 Summary statistics, rejection percentages, and Kolmogorov-Smirnov test 

results for HL, J
2
 and T Simulations are based on settings in Table 4.1, using 

the deciles-of-risk grouping method (G =10) and r =100,000. HL and J
2
 were 

compared to critical values for χ
2
(8), and T and J

2
 to χ

2
(9), when α=0.01, 

α=0.05, and α=0.1. 

Kolmogorov-Smirnov†

Setting Statistic Mean* Var. 90
th

95
th

99
th

p-value (D)

HL 8.03 15.73 9.99 4.86 0.94 0.000 (0.0074)

1 J
2

G-2 8.04 15.75 10.02 4.87 0.94 0.000 (0.0077)

J
2

G-1 8.04 15.75 6.50 3.01 0.54 0.000 (0.0951)

T 9.03 17.74 9.99 4.90 0.96 0.000 (0.0065)

HL 7.98 15.92 9.41 4.88 1.22 0.000(0.0158)

5 J
2

G-2 8.06 16.22 9.77 5.12 1.29 0.000 (0.0184)

J
2

G-1 8.06 16.22 6.61 3.33 0.79 0.000 (0.1050)

T 8.99 18.00 9.69 4.94 1.16 0.000 (0.0131)

Percent above Percentile**

 

* Significantly different from χ2(8) at the 5 per cent level if outside interval (7.975, 8.025), and 

from χ2(9) if it fell outside interval (8.974, 9.026). 

**Significantly different from the percentages expected if outside of the 95% confidence 

intervals (9.814, 10.186), (4.865, 5.135), and (0.938, 1.062). 

†  H0: No difference between the distribution of the statistic and χ2(df)  

 HA: The distribution of the statistic and χ2(df) are different. 

 

Our results indicate that both HL  and T  have distributions near to those reported by others (i.e. 

 2~ 2HL G  ,  2~ 1T G  ). In the case of 
2J  however, our results strongly indicated 

that the distribution was closer to  2 2G   rather than  2 1G   when the deciles-of-risk 

grouping method is used. Based on these findings, we compared 
2J  to the critical value for 

 2 8  in all of our other analyses. 

4.5.2.2 Empirical Rejection Percentage Under the Null Hypothesis 

Table 4.4 contains the simulated rejection percentages  0.05   of the settings in Table 4.1 

when a correct model is fit to the data generated. Rejection percentages were significantly 

different from five per cent at the 0.05   level if they fell outside of the interval (4.6, 5.4). 

Empirical rejection percentages below, within, and above this criterion were observed for all 

three statistics, but T was within sampling variation more often (46% for 100n  , 88% for  
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Table 4.4 Simulated null rejection per cent† (n=100 and 500, r=10,000, α=0.05) for settings 1-24. 

Setting Linear predictor Covariate distributions§ 100 500 100 500 100 500

1 β 0+ β 1x 1 x 1~U(-1,1) 5.4 4.8 5.4 4.8 5.2 4.9

2 β 0+ β 1x 1 x 1~U(-3,3) 4.4 4.8 4.5 4.9 6.2 5.0

3 β 0+ β 1x 1 x 1~U(-4.5, 4.5) 4.6 4.4 4.8 4.5 4.4 4.8

4 β 0+ β 1x 1 x 1~U(-6,6) 5.9 4.9 6.0 5.0 5.8 5.1

5 β 0+ β 1x 1 x 1~χ
2
(4) 6.0 4.9 6.2 5.1 5.7 5.0

6 β 0+ β 1x 1 x 1~N(0,1.5) 4.7 4.6 4.9 4.8 4.7 4.6

7 β 0 + β 1 x 2 +β 2 x 2 x 1 ~ Ber(0.5), x 2 ~ U(-3,3) 3.6 3.5 3.7 3.5 4.7 4.7

8 β 0+ β 1x 1+ β 2x 2+ β 3 x 3 x 1, x 2, x 3 ~U(-6,6)  4.5 4.8 4.7 4.9 5.0 4.8

9 β 0+ β 1x 1+ β 2x 2+ β 3 x 3 x 1, x 2, x 3 ~N0,1.5)  4.8 5.2 4.9 5.2 5.0 5.2

10 β 0+ β 1x 1+ β 2x 2+ β 3 x 3 x 1, x 2, x 3 ~U(-6,6), N(0,1.5), χ
2
(4) 4.6 4.6 4.7 4.7 5.1 4.9

11 β 0+ β 1x 1+ β 2x 1
2 x 1~U(-3,3)                      W=0.01 1.8 2.9 2.0 2.9 3.6 4.7

12 β 0+ β 1x 1+ β 2x 1
2 x 1~U(-3,3)                     W=0.05 2.6 3.3 2.6 3.4 4.1 5.1

13 β 0+ β 1x 1+ β 2x 1
2 x 1~U(-3,3)                     W=0.1 3.5 3.8 3.6 4.0 4.5 4.7

14 β 0+ β 1x 1+ β 2x 1
2 x 1~U(-3,3)                     W=0.2 4.2 4.2 4.5 4.2 5.1 4.8

15 β 0+ β 1x 1+ β 2x 1
2 x 1~U(-3,3)                     W=0.4 4.4 4.3 4.5 4.4 4.9 4.9

16 β 0+ β 1x 1+ β 2x 1
2
+x 2 x 1, x 2~U(-3,3)               W=0.01 5.5 5.6 5.7 5.7 6.1 5.9

17 β 0+ β 1x 1+ β 2x 1
2
+x 2 x 1, x 2~U(-3,3)               W=0.05 6.5 5.3 6.7 5.4 7.1 5.8

18 β 0+ β 1x 1+ β 2x 1
2
+x 2 x 1, x 2~U(-3,3)               W=0.1 6.0 5.2 6.2 5.3 6.5 5.4

19 β 0+ β 1x 1+ β 2x 1
2
+x 2 x 1, x 2~U(-3,3)               W=0.2 6.3 4.9 6.5 5.1 6.9 5.3

20 β 0+ β 1x 1+ β 2x 1
2
+x 2 x 1, x 2~U(-3,3)               W=0.4 6.4 5.6 6.5 5.8 6.9 5.7

HL J
2
* T
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Table 4.4 Simulated null rejection per cent† (n=100 and 500, r=10,000, α=0.05) for settings 1-24. (cont.) 

Setting Linear predictor Covariate distributions§ 100 500 100 500 100 500

21 β 0+ β 1x 1+ β 2x 2+ β 3x 1x 2 x 1~U(-3,3), x 2=(0,1)     V=0.01 2.2 3.1 2.2 3.1 4.4 4.9

22 β 0+ β 1x 1+ β 2x 2+ β 3x 1x 2 x 1~U(-3,3), x 2=(0,1)     V=0.03 2.6 2.6 2.6 2.6 4.9 5.0

23 β 0+ β 1x 1+ β 2x 2+ β 3x 1x 2 x 1~U(-3,3), x 2=(0,1)     V=0.05 2.4 2.7 2.5 2.7 5.0 5.2

24 β 0+ β 1x 1+ β 2x 2+ β 3x 1x 2 x 1~U(-3,3), x 2=(0,1)     V=0.07 2.2 2.3 2.2 2.4 4.8 5.0

HL J
2
* T

 

* The distribution of J
2
 was assumed to be χ

2
(8). 

§ For settings 11-20, the coefficients were chosen such that the model curve passed through the points π(-1.5)=0.05, π(3)=0.95, and π(-3)=W.  

   For settings 21-24, the coefficients were chosen such that the model curve passed through the points π(-3,0)=0.1, π(-3,1)=0.1, π(3,0)=0.2, and π(3,1)=0.2 + V. 

† Rejection percentages were significantly different from 5% at α=0.05 if they fell above 5.43 or below 4.57 (bold).  
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500n  ) than HL  and 
2J  (25% for 100n  , 46% for 500n   in both cases). This was 

reflected in the overall rejection percentages of T , which were 5.3  100n   and 5.1 

 500n  . In contrast, those of HL  and 
2J , were 4.4 and 4.5 for 100n  , and 4.2 and 4.3 

for 500n  , respectively. We note that the results for HL  in Table 4.3 are similar to those 

reported in Hosmer, et al. (1997) . Among the 24 null settings considered, the test statistics 

agreed on whether to reject the null hypothesis 97 to 98% of the time. When the statistics did 

disagree, most of the time HL  and 
2J  agreed with each other and disagreed with T . 

4.5.2.3 Power - Rejection Percentage Under the Alternative Hypothesis 

Simulations investigating the power of HL , 
2J , and T  to detect different types of departure 

from a true underlying model were performed. Our results for HL  agreed closely with those 

reported by Xie (2005) and Xie, et al. (2008). Our results also agreed with those reported by 

Hosmer, et al. (1997), except for the incorrectly specified link simulations, for which some 

difference between results was observed. 

The power of each statistic to detect the omission of a quadratic term from the fitted model 

was examined, and the rejection percentages are presented in Table 4.5. Each of the statistics 

had low ( 33% ) power to detect a slight departure from linearity (setting 11 and setting 12 

( 100n  only) ), but the power quickly increased to moderate to high levels ( 51 100% ) as 

the influence of the quadratic term increased (settings 13-15). As might be expected, this 

increase in power occurred more rapidly when the sample size was larger. When these same 

models included an additional covariate (settings 16-20), all statistics had low power to 

detect the omitted quadratic term. Among these 10 settings and two sample numbers of 

observations, the test statistics agreed on whether to reject the null hypothesis 95 to 100% of 

the time. When the statistics did disagree, most of the time HL  and 
2J  agreed with each 

other and disagreed with T . 

All of the statistics had low  7%  power to detect the omission of dichotomous and 

interaction terms in the settings studied (settings 21-24), regardless of sample size. The 
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rejection percentages for these simulations are also given in Table 4.5. Among these 5 

settings and two levels of observations, the test statistics agreed on whether to reject the null 

hypothesis 97 to 98% of the time. When the statistics did disagree, most of the time HL  and 

2J  agreed with each other and disagreed with T . 

The power of HL  to detect an alternative link (settings 25-29) was variable, with the 

rejection per cent ranging from 4.2  to 92.4  for the settings considered. Our results are 

reported in  Table 4.6. When 100n  , the power to detect the use of an incorrect link was 

very low  6%  except when the underlying model had an asymmetric tails link. In this 

case it was slightly higher  ~ 15% . For 500n  , the results were more variable. All of the 

statistics had low power  8%  to detect an incorrectly specified logistic model when the 

underlying model had a probit or long-tail link. The power to detect departure was slightly 

greater when the underlying model had a short tails or complementary log-log link 

 17 28% , and it was very strong  91%  when the model had an asymmetric tails link. 

Among these 5 settings and two sample sizes, the test statistics agreed on whether to reject 

the null hypothesis 93 to 99% of the time. When the statistics did disagree, most of the time 

HL  and 
2J  agreed with each other and disagreed with T . 
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Table 4.5 Power of HL, J
2
 and T to detect a logistic model with an incorrectly 

specified linear predictor. 

True Specified 

Setting Linear Predictor Linear Predictor 100 500 100 500 100 500

11 β 0+β 1x 1+β 2 x 1
2 β 0+β 1x 1 7.4 7.5 7.6 7.6 7.3 7.5

12 β 0+β 1x 1+β 2 x 1
2 β 0+β 1x 1 32.0 80.1 32.2 80.3 30.8 78.6

13 β 0+β 1x 1+β 2 x 1
2 β 0+β 1x 1 53.0 98.3 53.2 98.3 51.4 98.1

14 β 0+β 1x 1+β 2 x 1
2 β 0+β 1x 1 76.2 100 76.3 100 74.5 100

15 β 0+β 1x 1+β 2 x 1
2 β 0+β 1x 1 93.8 100 93.8 100 92.7 100

16 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 β 0+β 1x 1+β 3 x 3 6.3 6.3 6.5 6.4 6.4 6.4

17 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 β 0+β 1x 1+β 3 x 3 8.4 10.7 8.5 10.9 8.5 10.5

18 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 β 0+β 1x 1+β 3 x 3 10.0 13.1 10.2 13.4 10.1 12.7

19 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 β 0+β 1x 1+β 3 x 3 10.6 17.1 10.9 17.5 10.8 16.8

20 β 0+β 1x 1+β 2 x 1
2
+β 3 x 3 β 0+β 1x 1+β 3 x 3 10.5 19.3 10.7 19.9 10.4 19.5

21 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 β 0+β 1x 1 4.0 4.8 4.0 4.8 4.0 4.7

22 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 β 0+β 1x 1 3.9 5.2 4.0 5.2 4.1 4.9

23 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 β 0+β 1x 1 4.6 5.0 4.7 5.1 4.6 5.1

24 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 β 0+β 1x 1 4.6 6.8 4.7 6.9 4.5 7.0

HL J
2
* T

 

* The distribution of J
2
 is assumed to be χ

2
(8). 

 

 

 Table 4.6 Power of HL, J
2
 and T to detect a Stukel generalized model with an 

incorrectly specified logistic link function. 

Setting True Model Fitted Model 100 500 100 500 100 500

25 Probit Logit 4.3 4.9 4.4 5.1 4.2 5.0

26 Long tail Logit 5.3 7.5 5.3 7.6 5.3 8.0

27 Short tail Logit 2.3 17.6 2.5 18.3 2.6 17.2

28 Complementary log-log Logit 5.8 27.2 6.0 27.6 5.5 26.1

29 Asymptotic long-short Logit 14.5 92.3 14.7 92.4 14.1 91.1

HL J
2
* T

 

* The distribution of J
2
 is assumed to be χ

2
(8). 
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4.6 Examples 

Our simulations indicate that if HL  and 
2J  are assumed to follow a  2 2G   distribution 

and T  a  2 1G   distribution, their assessments of model fit are similar. However, we 

showed in section 4.4 that the difference between HL  and 
2J  may be large if any group 

contains consecutive predicted probabilities whose difference is close to 1. A difference 

between two consecutive predicted probabilities this large was not observed in the 

simulations studied. Thus, to illustrate this we considered two examples with real data sets 

from the Low Birth Weight study described in Applied Logistic Regression (2000) and one 

example with a computer generated data set. In both of the real data examples, a binary 

logistic regression model was chosen to predict the incidence of low birth weights among 

babies, using covariates that relate to their mother’s behaviour and physical characteristics. 

The first model considered is discussed in chapter 2 of Applied Logistic Regression (2000), 

and contains race (white, black, other) and the weight of the mother at her last menstrual 

period as covariates. The second model uses the mother’s age, her smoking status, and the 

presence of uterine irritability as covariates. Both have logits that are linear in their variables. 

The values of HL , 
2J , andT  were calculated using grouping criteria (e.g. how to deal with 

ties) from a standard commercial software package (StataCorp 2007). In the case of the first 

model, each of the statistics indicated that the model is a fairly good fit to the data 

 7.60HL    0.47 ,p 
2 7.61J    0.47p  , and 8.20T    0.51p  . In the second 

example, each of the statistics indicate a poor fit to the data  15.84HL    0.045p  , 

2 15.86J    0.044p  , and 16.78T    0.052p  . In the first case the largest difference 

between any two consecutive predicted probabilities within one group was 0.12 , while in 

the second model the largest difference was 0.18 . In both cases, HL  and 
2J  are very close 

and the probability values (p) of the three statistics are very similar. 

Our third example was simulated to mimic a real world example using one continuous 

covariate and one dichotomous covariate. Five hundred covariate values of 
1x  were 
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randomly sampled (using Stata 10.1 with seed 13988101) from a  0.7,0.2N  distribution, 

and then 1.6  was added to 275  observations, making the distribution of
1x bimodal with one 

of the decile groups containing values from each mode. The first 225  observations are 

distinguished from the last 275  observations using an indicator variable D . Probabilities 

were then generated using a logit link with linear predictor, 2

1 15 2 0.7x x   . Binary 

outcomes of y  were simulated by comparing the generated probabilities to a value u  where 

 ~ 0,1u U  according to the rule  y I u   , where I  is an indicator function such that 

1I   when the argument is true, and 0I   otherwise. An analyst would be given 3  fields, 

the outcome, an indicator variable D  that could represent gender and the continuous variable 

1x  that would represent some biological output. We used Stata’s frapoly command 

(StataCorp 2007) to perform a fractional polynomial regression. We found that 
1x  

is linear 

in the logit of y  and that there is no interaction between 
1x  

and D . That is, the outcome is 

best predicted in terms of 
1x  

and D . Hence, in truth the final model is incorrectly specified. 

The calculated statistics from this example were 12.75HL    0.121p  ,
2 15.95J   

 0.043p  , and 16.00T    0.067p  . In this case
2J  correctly rejected the incorrectly 

specified model, but HL  and T  did not. The same simulation was run again under the null, 

using the covariates 
1x  

and 2

1x ,
 
and the seed 12268179 . The calculated results were 

13.55HL    0.094p  , 
2 15.624J    0.045p  , and 15.850T    0.070p  . In this 

case 
2J  incorrectly rejected the correctly specified model, but HL  and T  did not. Finally, 

the null scenario was rerun again (seed 20859170). Here the calculated values of the 

statistics were 11.793HL    0.161p  ,
2 12.429J   0.133p  , and 22.594T   

 0.007p  , giving an example where HL  and 
2J  correctly fail to reject the null 

hypothesis while T  incorrectly rejects it. In the three bimodal examples the greatest 

difference between predicted probabilities within one group was 0.8 . This was much larger 

than the differences observed in the low birth weight study, causing the difference between 
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the values of HL  and 
2J  in the bimodal cases to be greater. Neither rejected the null 

hypothesis, however.  

 

4.7 Discussion 

We have shown that when the deciles-of-risk grouping method is used, the HL , 
2J and T  

goodness-of-fit statistics are closely related algebraically. In fact, the tests are equivalent 

when all covariate patterns within each of the groups are the same. It has been shown that 

random cells created when the grouping rule is based on estimated parameters reduces the 

degrees of freedom of the distribution of HL (Hosmer, et al. 1980) from  2 1G   in the 

case when the outcomes are multinomial and the cells are not random, to approximately 

 2 2G   when at least one covariates is continuous and the boundaries are random. 

Halteman (1980) showed that the asymptotic distribution of T  is not affected by random 

cells. The effect of random cells on 
2J  has not, to our knowledge, been reported in the 

literature, although Pigeon, et al. (1999b) state that the choice of grouping method does not 

affect its distribution. Our results suggest that this is not the case, at least in the scenarios we 

examined. Our simulations indicate that when the deciles-of-risk grouping method is used, 

the null distributions reported for HL  and T  are indeed those reported (i.e. approximately 

 2 2G   for HL  (Hosmer, et al. 1980) and approximately  2 1G   for T  (Halteman 

1980)). Our simulations gave stronger evidence in the case of T  than the simulations 

reported by Halteman (1980). We however found the null distribution of 
2J , when 10G  , 

to be  2 8  rather than the  2 9  reported by Pigeon, et al. (1999b). Further research on 

how random cells affect the distribution of 
2J  is needed.  

Our simulations with large numbers of replication showed that the distributions of the three 

test statistics were most similar to their respective chi-squared distributions when the linear 

predictor contained a covariate with a uniform distribution rather than with a skewed 



  

89 

 

distribution, such as a chi-squared distribution. This suggests that the distributions of all 

three of the statistics are affected by the distribution of the continuous covariates in  

the model.  

When HL  and 
2J  were assumed to follow a  2 2G   distribution and T  a  2 1G   

distribution, the empirical Type I error rate was controlled by T about twice as often as HL  

or 
2J . All three statistics had similar power to detect incorrectly specified models, and 

agreed on whether to reject the null hypothesis most of the time  97% . When there was 

disagreement among the tests, usually decisions based on T  disagreed with those based on 

the other two statistics. This is interesting since, as a consequence of  

Theorem 4.1 and Theorem 4.2, the rejection rate under the null hypothesis and the power 

under the alternative hypothesis must always be greater for 
2J  than for HL . However, the 

close agreement between HL  and 
2J  is not entirely surprising because we did not 

specifically look at cases where their difference would be very large. That is, our simulations 

did not specifically look at cases where one of the decile groups contained two consecutive 

predicted probabilities whose difference was near 1. In our simulated example however, 

when a difference between two predicted probabilities is much closer to 1, we demonstrated 

that examples exist where 
2J  is much greater than HL , and where T is much greater  

than 
2J .  

We investigated whether these types of cases would produce any difference in the 

distributional properties and the performances of the three statistics (data not shown). We 

reran the analysis introduced in section 6 using the settings in the third example for 500n  . 

We found that the null rejection percentages amongst the three statistics were similar, all 

controlled the Type I error rate, and all had low power  10%  to detect an incorrectly 

specified model, although there was a significant difference  0.004p   between the power 

of HL  and T , with T  having the greater power in our simulations ( 7.8 vs. 9.6  per cent 
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rejection). Although there were some differences between the three statistics, in general we 

found that the statistics all performed similarly under this bimodal setting.   

Hosmer, et al. (1997) note that when a goodness-of-fit test uses a grouping method that pre-

specifies the group boundaries, decisions on model fit may be more influenced by the choice 

of boundary cut-points rather than by the lack of fit of the model. Because the deciles-of-risk 

grouping method is more standardized than partitioning the covariate space and more easily 

implemented, it can be a more attractive option. If the deciles-of-risk method is chosen as a 

grouping method, our results show that T  controlled the Type I error rate about twice as 

often as HL  and 
2J , but all three had similar power to detect an incorrectly specified model. 

Although HL  and 
2J  performed similarly, more work needs to be done to clarify the 

distributional properties of 
2J . The properties of HL  under the null distribution using the 

deciles-of-risk partitioning method have been extensively studied, and this test is easily 

implemented and understood by most users. Because of this, among these test statistics we 

recommend either HL  or T  for validating the goodness-of-fit of logistic models when the 

deciles-of-risk grouping method is used.  
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Chapter 5 Proposed Goodness-of-Fit Statistic for Binary 

GLM with Non-Canonical Links 

5.1 Expanded Tsiatis model 

Several GLMs with different link functions have been used to model binary data. These 

include the logit, probit, log-log, complementary log-log, and log binomial models (Hardin, 

et al. 2007). The model and link functions, as well as the canonical parameter evaluated 

under these models, are described in section 2.6. 

The original Tsiatis goodness-of-fit score test (Tsiatis 1980) was developed to assess the fit 

of logistic regression models to observed outcome data. Under the canonical logit link, the 

elements of S , (3.12), can be expressed using the chain rule (Hardin, et al. 2007) as 
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 
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,

,
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ig i i i i g

l l  
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    
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x I
     (5.1) 
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 

   




x β

    (5.2) 

     

1
= ,

n g

i i i ii
y I


 x I       (5.3) 

because    under the canonical link. Here 
    1

,...,
G

i iI I  are a set of indicator functions 

for the thi  observation that are defined as 
 

1
g

iI   when the covariates lie in it the thg  

region, and 
 

0
g

iI   otherwise, and  1,..., G   is the set of additional coefficients associated 

with each of the G  indicator functions. 

To our knowledge, the application of the Tsiatis score test to non-canonical GLM for binary 

outcomes has not been presented in the literature. A problem with making this direct 

application is that under non-canonical link functions, the canonical parameter,  , and the 

linear predictor,  , are not equal, and thus the second term on the right-hand side of (5.2) 

does not cancel, and (5.3) does not result in the “observed minus expected” form that is 
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desired for a goodness-of-fit test statistic. Instead, under any non-canonical link function, the 

resulting expression is 

 
 

 

1

,

,

n
i ii i i

ig i i i i g

l l  
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x I
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  
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     

1
,

n gi
i i i ii

i

y I






 


 x I       (5.6) 

Here   is used in place of   to differentiate between the probabilities under the canonical 

and non-canonical links. 

A new model is proposed that is an augmented version of the usual GLM model for 

Bernoulli outcomes,  

    1  x x βg        (5.7) 

and is an analog of the Tsiatis model (3.9) (Tsiatis 1980). Here (5.7) is referred to as the null 

model, and has the linear predictor 

 0  x β         (5.8) 

Under the null model the canonical parameter is expressed as 

 
 

 
0 ln

1

o

o

 


 

 
    

       (5.9) 

The augmented model has terms that are added to 0  so that, under any link function, the 

resulting test statistic will be a quadratic form of observed minus expected count, as is the 

case with the Tsiatis statistic under the canonical logit link, as it is in (5.3). This augmented 

model allows for the assessment of the fit of the null model via a score test. The model is 

referred to here as the generalized Tsiatis model and is expressed as 

    1, x I g        (5.10) 



  

93 

 

where the linear predictor,  , of the new model is 

    

1

G
g

g

g

h I 


   x β x β       (5.11) 

As in the case of the original Tsiatis model, 
    1

,...,
G

I I  is a set of indicator functions 

defined as 
 

1
g

I   when the thi  observation is in the thg  region (or group under the 

deciles-of-risk method), and 
 

0
g

I   otherwise, and  1,..., G   are the set of constant terms 

that are multiplied by the respective indicator function. The  

1

G
g

g

g

I


 term is multiplied by 

an additional term that is the inverse of the second and third terms of (5.4) under the null 

model. That is, 

  
 

 
1

0 0

0 0

ˆ

ˆ
ii i

i

i ii

h
 

 
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  
   

   

x
x β

x
     (5.11) 

The term  h x β  has the effect of transforming the form of (5.6) into the desired “observed 

minus expected” form of (5.3) for any Bernoulli GLM model. Note that when the link 

function is canonical , then 0 0   and   1h  x β , and      

1 1

G Gg g

g i g ig g
h I I 

 
  ix β . 

Thus, in the canonical case, the augmentation of the model by    

1

G g

i g ig
h I


 x β  will be 

constant over the entire thg  region or group. When the link is non-canonical, however, 

   

1

G g

i g ig
h I


 x β  varies as a function of the covariate data. 

 

5.2 Generalized Tsiatis GOF Statistic 

A new test statistic, TG , is proposed to assess the goodness-of-fit of GLMs for binary data. It 

is an adaptation of the original Tsiatis score test statistic for logistic regression models 

(Tsiatis 1980) that can be used to evaluate a GLM with a non-canonical link function. The 
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null hypothesis tested is that  1,..., G  γ 0 , and thus under the null hypothesis (5.7) and 

(5.10) are equal.  

The log-likelihood of the new expanded model is  

       
1

log ln , 1 ln 1 ,
n

i i i i i i

i

l L y y 


     x I x I    (5.12) 

The beta coefficients of the model are treated as nuisance parameters with respect to 

assessing goodness-of-fit, and are estimated using maximum likelihood estimation under the 

null hypothesis and expressed as β̂ . The goodness-of-fit score test statistic, conditional on  

β̂ , is calculated as 

 1T  -
S'V SG         (5.13) 

where S  is the 1G   score vector  1 ,..., Gl l      , and V  is the G G  conditional 

covariance matrix 

 
1 ' V A BC B        (5.14) 

with the general entries of the matrices of (5.14) being 
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β β γ 0

   (5.17) 

All of the terms of TG  are evaluated under γ 0  and ˆβ β , where β̂  are the maximum 

likelihood estimates of β  in the null model (5.7). Under the null hypothesis,    , x I x , 

and so in general will be designated as ̂ . 
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The thg element of the score vector S  is expressed as
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which under the null hypothesis evaluates to 
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Using (2.9), (2.10), and (2.14), the elements in V  are 
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which under the null hypothesis becomes 
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which under the null hypothesis becomes 
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and 
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which under the null hypothesis is 
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5.3 Forms of TG  Under Several Common Link Functions 

The TG  statistic can be adapted to assess the fit of the logit, probit, log-log, complementary 

log-log, and log binomial models. The symbol TG  will be used when referring to the 

generalized Tsiatis statistics calculated under any link function, or to a group of these 

statistics. However, under the non-canonical, probit, log-log, complementary log-log, and 

log links, the TG  statistic will be designated as PrT , LLT , CllT , and LBT , respectively. Under 
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the canonical logit link TG  is the original T statistic. In general, the predicted probability 

under any link will be designated as ̂G . Under the non-canonical probit, log-log, 

complementary log-log, and log links, the predicted probabilities will be represented by Pr̂ , 

ˆ
LL , ˆ

Cll , and ˆ
LB  respectively. The general form of the terms in the score vector are (5.21), 

and are designated in general as 
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i ii
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G      (5.31) 

where ̂G may be replaced by any of the links studied. The terms necessary for the 

evaluation of V , that is terms (5.25), (5.27), and (5.30) , evaluated under the probit, log-log, 

complementary log-log, and log links are given in Table 5.1, and their derivations are 

presented in Appendix A. 

5.4 Distribution and Degrees of Freedom of T
G
 

Score test statistics have distributions that are asymptotically 
2  with degrees of freedom 

equal to the dimension of the vector of parameters of interest, which is also the rank of the 

covariance matrix (Kendall, et al. 1999, Smyth 2003). In his dissertation, Halteman (1980) 

derived the same GOF score test statistic for assessing the fit of logistic regression models as 

the one reported by Tsiatis (1980) , T . He presented a theorem that states that the sum of 

any row or any column of V  is zero, and thus that the rank of V can be at most 1G  , and 

so is always singular. It is easy to show a counter example to prove that this does not always 

hold for TG  when evaluating non-canonical models. In fact, in our simulations described 

below in section 5.8.1.2, which are used to study the distribution of TG  for the non-

canonical links, every replicate (1.2 million) returned a V  matrix with a rank of 10G  . 

Thus by counter example, Theorem 5.1 does not hold for the non-canonical link functions 

we studied, and thus it is possible for V  to be nonsingular. This is possible because under 

the non-canonical links, the canonical link function   and the linear predictor   are not  
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Table 5.1 General elements of the covariance matrix V, used in the calculation of TG, under the logit, probit, log-log, complementary log-log, and log 

links. 
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equal as they are under the canonical logit link. To see in detail why this occurs, we present 

Halteman’s theorem using our notation.  

Halteman begins by algebraically manipulating the expression for the sum across the thg  

row of the matrix, V , (3.13). He then shows, using an expression due to (Rao 1973) for the 

inverse of C , (3.20), that this sum always reduces to zero. Let 0 1, ,...,g g g gKB B B    B  

represent the vector that is the thg  row of the matrix B , (3.19). Then an element of V  from 

the thg  row and the thg  column can be expressed as  

 1

' ' 'gg gg g gV A  B C B        (5.32) 

By adding 1 1

g g

 


B C CC B and subtracting 1

g g




B C B to the right-hand side, and algebraically 

manipulating, (5.32) reduces to  

   
   

2

1 10 0 0
'

1 0 0 0

ˆ

ˆ

n
g g

gg i i g i i g

i i i ii

V I I
   

  

 





             
                         

 x C B x C B  (5.33) 

Let ' 0 11 1 1 1
, ,...,

G G G G

g g g g g Kg g g g
B B B          

  
    B B , which is a 1K   column 

vector. Then the sum across the thg  row of V  can be written as 
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  x C B x C B  

 
 

2

1 10 0 0

1 0 0 0

ˆ

ˆ

n
g

i i g i g

i i i ii

I
   

  

 





             
                         

 x C B x C B   (5.34) 

Substituting in    0 0 01

ˆn

g ii i i
   


    B x  and    0 0 01

ˆn

i iii i
   


    C x x , 

which follow from (5.27), (5.30), and 0 1, ,...,g g g gKB B B    B , this reduces to  

     10
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1 1 0

ˆ ˆ1 1
G n
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gg i i i i g

g i i

V I
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Under the canonical link function,   , and so (5.35) becomes 
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     1

'

1 1

ˆ ˆ1 1
G n

g

gg i i i i g

g i

V I  



 

    x C B     (5.36) 

We now present Halteman’s theorem and proof using our notation. 

Theorem 5.1  The sum across any row or down any column of V , (3.13), is equal to 

zero. (Due to Halteman (1980)) 

Proof 

The matrix V  of (3.13), is the same as (5.14) used in the calculations of TG  when the 

canonical link function is chosen. A necessary condition for V to be singular is for the right-

hand side of (5.36) to reduce to zero. Partition C  as  
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where 00CG ,  01 02 0, , ... KC C C H , and  

 

11 1

1

...

... ... ....

...

K

K KK

C C

C C

 
 
 
  

J        (5.38) 

The elements of C  where , ' 0,1,...,k k K , are then    
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By Rao (2002), 
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where -1
L = J - HG H  and 

-1
M = G H . Since 0 0 1    , the elements of 'gB can be 

expressed as  ' ,g
B G  H . Then  
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 

x
0

 

     1         (5.39) 

where  * 1,...,i i iKx x x . This reduction occurs since G  is a scalar and so  H GM MG . 

Thus every summand of (5.36) reduces to zero, and the expression reduces to zero.  

Now consider the expression (5.36) under the generalized Tsiatis model  

     10
'

1 1 0

ˆ ˆ1 1
G n

g

gg i i i i g

g i i

V I


 






 

   
    

   
  x C B    (5.39) 

Under the canonical model, when 0 0  , (5.39) reduces to (5.36). However, this does not 

occur when the link is non-canonical, and thus it is possible for (5.39) to sum to something 

other than zero. Therefore Halteman’s proof that V  must be singular under the canonical 

link does not hold for models with non-canonical links.  

 

5.5 Grouping Method 

In the original Tsiatis model, groups are formed by partitioning the covariate space. An 

alternative is to use a grouping method that is based on the predicted probabilities, such as 

the deciles-of-risk method. In this method the observed data are first collected, then the 

predicted probabilities are calculated, ordered, and divided into approximately even groups. 

These groups are then used in place of a partition of the covariate space. This allows for a 

more direct comparison of the performance of TG  to HL .  
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5.6 Examples of Alternative Tsiatis and Generalized Tsiatis 

Models 

The alternative hypothesis of both the original Tsiatis GOF test and the generalized Tsiatis 

GOF does not provide a specific, fitted alternative model, only the null model under 

consideration. In addition, because score tests are performed under the null hypothesis, the 

only model fitted when performing the test is the null model with the linear predictor (5.8). 

However, to illustrate how the original Tsiatis model and the generalized Tsiatis model 

might behave if they were fitted to data, we present an example. We generated logistic data  

( 10000n  ) using setting 1 from Table 4.1. We then fit a log-log GLM, (5.7), to the data,  

as well as a generalized Tsiatis model, with log-log link and linear predictor (5.11), and the 

original Tsiatis model, (3.9), also with log-log link and linear predictor (5.11). The original 

Tsiatis model had the constant term omitted, since for each observation the indicator 

functions and the term 0 1ix  , defined in section 2.1, are linearly dependent. A graph of the 

fitted probabilities from the three models, as well as those of the true underlying logistic 

model, each as functions of 1x  are presented in Figure 5.1. The original Tsiatis (with the 

constant term omitted) and the generalized Tsiatis have similar graphs, with their green and 

purple lines intersecting over much of the range of x . Both fit the true logistic model more 

closely than the incorrectly specified null log-log model. 

original Tsiatis (with the constant term omitted) and the generalized Tsiatis have similar 

graphs, with their green and purple lines intersecting over much of the range of x . Both fit 

the true logistic model more closely than the incorrectly specified null log-log model. 
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Figure 5.1 Graph of the predicted probabilities of a null log-log model (pink), an 

original Tsiatis log-log model (purple), a generalized Tsiatis log-log model 

(green), and the true logistic model (black) as a function of x. The data 

were generated from a logistic model with η=0.8x, x~U(-6,6) and n=1000. 

Note that the graphs for the original and generalized Tsiatis models are 

nearly the same, and both follow the true logistic model’s line more closely 

than the null model does.  

 

5.7 HL and J
2
 for Binary GLM with Non-Canonical Links 

The usual forms of the HL  and 
2J  statistics are given as (3.6) and (3.23) respectively. As 

discussed previously in Chapter 4, 
2J  can also be expressed as 

1S A S . Thus, applying the 

probit, log-log, complementary log-log, and log link functions to the terms (5.31) and the 

appropriate term for the elements of A  in Table 5.1, 
2J  may be constructed to assess the fit 

of the corresponding non-canonical model. Similarly, HL  may be expressed as (4.1) using a 

term similar to (4.1), but replacing g  with ˆ /
g

g gi
n


 


G Gi . 
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5.8 Simulation Study Comparing HL, J
2
, and T

G
 Under Non-

Canonical Links 

5.8.1 Simulation Methods 

Simulations were performed to investigate the distributional properties and compare the 

performances of HL , 
2J , and TG  when assessing probit, log-log, complementary log-log 

and log models under the deciles-of-risk grouping method. Simulations with a large number 

of replications were performed, to assess whether the distributions of HL  and 
2J  were 

approximately  2 2G  , and whether the distribution of TG  was approximately  2 G  

under non-canonical link functions. Simulations with fewer replications were performed to 

examine how well the three statistics under each of the four links maintained test size when a 

correctly specified model was fitted to generated data, and to compare the power of the 

statistics to detect a lack of fit when an incorrectly specified model was fit to the data.  

Data were generated that varied in the following ways: 1) number of covariates in the model; 

2) distributional characteristics of the covariates; 3) inclusion of a quadratic or interaction 

term; and 4) the number of observations in a sample set. When evaluating the power of each 

statistic, the ways in which the fitted model departed from the true underlying model were 1) 

an incorrectly specified link function; 2) omission of a covariate; 3) omission of a quadratic 

term; or 4) omission of an interaction term. In addition, several settings were based on those 

used in a study by Blizzard, et al. (2006), who evaluated the performance and distributional 

characteristics of HL  when used to assess log binomial models. Additional settings with 

other complex models were also studied. A general description of the methods used to 

perform the simulations is given below, followed by more specific details of the  

settings studied. 

5.8.1.1 General Simulation Methods 

Under the settings studied, a model was fit to generated data, predicted probabilities were 

estimated, and HL , 
2J , and TG  (for the specified link) were calculated using the deciles-of-
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risk grouping method  10G  . Samples with 500 observations were generated under all of 

the settings. In addition, samples with only 100 observations were generated under a subset 

of these settings. 

To generate the  , yx  data, a true underlying model was first chosen with a specific linear 

predictor, coefficients, distribution of covariates, and a specified link function. Using the 

chosen setting, a random sample of n  covariate vectors x  was then generated for each of r  

replications of the simulation. Then, to generate outcomes y , probabilities were calculated 

using (5.7). An exception was when simulations were performed to compare the power of 

the statistics to detect an incorrectly fitted non-canonical model to data that followed a 

logistic curve. In this case a logistic probability,      exp /1 exp   x βx βx , was used to 

generate the outcomes. The true probabilities were then compared to a value  ~ 0,1u U , 

and the outcome y  generated according to the rule   y I u   x , where I  is an 

indicator function such that 1I   when the argument is true, and 0I   otherwise. All 

computer simulations described in this chapter were performed using Stata 12 

 (StataCorp 2012).  

5.8.1.2 Investigation of Null Distribution of HL, J
2
, and T

G
 

Simulations with a large number of replications  100,000r   were performed to investigate 

whether HL  and 
2J  had distributions near  2 2G  , and TG  had a distribution that was 

approximately  2 G  when evaluating the fit of the non-canonical models studied. All 

statistics were calculated using the deciles-of-risk grouping method. Data were generated, 

and then a correctly specified model was fit to the data. Descriptions of the settings used are 

given in Table 5.2 (a-e). The models studied varied in complexity, and included a model 

with a single continuous covariate (setting 3), a model with a continuous and a dichotomous 

covariate (setting 8), and a model with two continuous covariates and an interaction term 

(setting 21). 
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5.8.1.3 Empirical Rejection Percentage Under the Null Hypothesis 

Simulations with a lower replication number  10,000r   but a wider range of scenarios 

were conducted to evaluate how well HL , 
2J , and TG  maintained a Type I error rate at the 

0.05   level. By increasing the variety and complexity of the scenarios studied, it was 

hoped that a deeper understanding of the empirical rejection rates of the statistics could be 

gained. The settings used to study the null distributions were applied again at this lower 

replication rate for comparison. Data were generated from models that have linear predictors 

with the distributional characteristics listed in Table 5.2 (a-e). Datasets of 500 observations 

were generated for all of these settings, with additional datasets of 100 observations also 

generated for settings 1, 6, 9, 14, and 20. Correctly specified models were then fitted to these 

datasets, and the predicted probabilities and test statistics calculated. Finally, HL , 
2J , and 

TG  were compared to the critical value for their respective postulated distributions at the  

0.05   level. 

Some of the settings chosen were based on those used in previous studies, thus allowing for 

the comparison to the results of those studies, which applied HL  to logistic and log binomial 

settings. Settings 1-3 and 8-10 were used by Blizzard, et al. (2006) to evaluate HL  as a 

goodness-of-fit statistic for log binomial models, although they used fewer replications 

(1000) in their simulations. Settings 1-3 correspond to the first three settings in Blizzard, et 

al. (2006). These are univariate models with a covariate from a uniform distribution. The 

slope coefficients were chosen so that  Pr 1| 6 0.01Y x     and  Pr 1| 6 0.1Y x     

for settings 1 and 2, while  Pr 1| 0 0.3Y x    for setting 3. Then, given the choice of 

coefficients that produce these settings, the upper bound of the uniform distributions of 

settings 1-3 were chosen to be 6, 4 and 2 respectively, so that the marginal probability of 

response was equal to near 0.2 for settings 1 and 3, and near 0.1 for setting 2. This yielded 

maximum probabilities for settings 1-3 near 0.99, 0.46 and 0.93 respectively. Thus setting 2 

would produce a curve most similar to a logistic, while settings 1 and 3 would be more likely 
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to have convergence and admissibility problems. For settings 8-10, like Blizzard, et al. 

(2006), we chose the parameters and coefficients such that under the log link the maximum 

probabilities were near 0.9, the uniform covariate was a significant predictor, and the log 

binomial and logistic settings would differ as much as possible. Settings 8 and 9 differ only 

in the Bernoulli parameter selected, with setting 8 having unbalanced groups and setting 9 

balanced. Settings 9, 10 and 11 have balanced groups but the separation between the groups 

becomes progressively more pronounced.  

Settings 1, 4, 5, 13-16, and 17-20 were similar to those used by Hosmer, et al. (1997) who 

evaluated HL  and other goodness-of-fit statistics for logistic models. These were also used 

in the simulation study presented in 4.5 to study HL , 
2J , and T  in the logistic setting. The 

values of the regression coefficients for the non-canonical models differ from those of the 

logistic setting, but were chosen so that the distributions of the predicted probabilities were 

comparable to the earlier study. Settings which might produce groups containing only 

probabilities near 0 or 1 were avoided. Settings 13 to 16 have a linear predictor with a 

quadratic term, and the regression coefficients are chosen such that the model curve passed 

through the points  1.5 0.05   ,  3 0.95  , and  3 W   , where 0.01W  , 0.05 , 

0.1 , and 0.4 . As the value of W  increases, the departure from linearity increases. Settings 

17 and 18 were similar to settings in Hosmer, et al. (1997), but the range of the uniform 

covariates was more narrow. In settings 19 and 20, the linear predictor contains a continuous 

covariate, a dichotomous covariate and an interaction term. Regression coefficients were 

chosen such that the model curve passes through the points  3,0 0.1   ,  3,1 0.1   , 

 3,0 0.2  , and  3,1 0.3   or 0.9 , with more interaction occurring with the higher 

maximum probability. Setting 21 also contains an interaction term, but has two continuous 

covariates rather than a dichotomous and a continuous covariate. Like settings 13-16, 

settings 22 – 24 also demonstrate increasing departure from linearity, but in these cases, the 

settings contain a dichotomous covariate along with a continuous covariate and quadratic 

term. Additional settings studied included other models with two or three covariates (settings 

6, 7). All settings used in the power simulations were included in the null simulations. 
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All of the settings studied were applied to the probit, log-log, complementary log-log and log 

binomial models. The range of the probabilities for all of these models is limited to between 

0 and 1, with the exception of the log binomial model. Because the log link can result in 

probabilities greater than 1, there can be difficulties fitting the model parameters and results 

may be inadmissible. Therefore, in addition to the specifications for the settings described 

above, the settings were also chosen so that these problems would not occur frequently in the 

log binomial simulations. Table 5.2(a-e) contains the specifications of the settings for the 

simulations used to investigate the null distributions of HL, J
2
 , and T

G
 , as well as the power 

of each statistic to detect an incorrectly specified link function.  
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Table 5.2 (a-e) Settings for simulations used to investigate the null distributions of 

HL, J
2
 , and T

G
 , and to evaluate the power of each statistic to detect an 

incorrectly specified link function. 

 

Table 5.2a. Linear predictor characteristics for settings 1-24 for all links. 

Setting Linear predictor x 1 x 2 x 3

1 β 0+β 1x 1 U(-6,6) . .

2 β 0+β 1x 1 U(-6,4) . .

3 β 0+β 1x 1 U(-6,2) .

4 β 0+β 1x 1 χ
2
(4) . .

5 β 0+β 1x 1 N(0,1.5) . .

6 β 0+β 1x 1+β 2 x 2 U(-6,0) N(3,1) .

7 β 0+β 1x 1+β 2 x 2 U(-6,0) χ
2
(4) .

8 β 0+β 1x 1+β 2 x 2 Ber(0.2) U(2x 1 -6,2x 1 +2) .

9 β 0+β 1x 1+β 2 x 2 Ber(0.5) U(2x 1 -6,2x 1 +2) .

10 β 0+β 1x 1+β 2 x 2 Ber(0.5) U(2x 1 -6,2x 1 +2) .

11 β 0+β 1x 1+β 2 x 2 Ber(0.5) U(2x 1 -6,2x 1 +2) .

12 β 0+β 1x 1+β 2 x 2 Ber(0.5) U(2x 1 -6,2x 1 +2) .

13 β 0+β 1x 1+β 2 x 1
2 U(-3,3) x 1

2 .

14 β 0+β 1x 1+β 2 x 1
2 U(-3,3) x 1

2 .

15 β 0+β 1x 1+β 2 x 1
2 U(-3,3) x 1

2 .

16 β 0+β 1x 1+β 2 x 1
2 U(-3,3) x 1

2 .

17 β 0+β 1x 1+β 2 x 2 +β 3 x 3 U(-1,1) U(-1,1) U(-1,1)

18 β 0+β 1x 1+β 2 x 2 +β 3 x 3 U(-1,1) N(0,1.5) χ
2
(4)

19 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-3,3) Ber(0.5) x 1 x 2

20 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-3,3) Ber(0.5) x 1 x 2

21 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-1,1) N(0,1.5) x 1 x 2

22 β 0+β 1x 1+β 2x 2+β 3 x 1
2 U(-3,3) Ber(0.5) x 1

2

23 β 0+β 1x 1+β 2x 2+β 3 x 1
2 U(-3,3) Ber(0.5) x 1

2

24 β 0+β 1x 1+β 2x 2+β 3 x 1
2 U(-3,3) Ber(0.5) x 1

2

Distribution of covariate
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Table 5.2b. The regression coefficients for the probit models and the distributional 

characteristics of the probit probabilities.  

Setting β 0 β 1 β 2 β 3 θ(1) Q1 Q2 Q3 θ(N)

1 -0.20 0.38 . . 0.01 0.09 0.44 0.86 0.98

2 -0.20 0.38 . . 0.01 0.07 0.30 0.69 0.91

3 0.40 0.38 . . 0.03 0.13 0.38 0.71 0.90

4 -2.20 0.18 . . 0.02 0.04 0.06 0.12 0.98

5 -0.50 0.32 . . 0.01 0.20 0.31 0.45 0.87

6 0.00 0.40 0.40 . 0.01 0.28 0.54 0.79 0.97

7 -0.50 0.20 0.05 . 0.03 0.08 0.16 0.25 0.75

8 -0.10 0.41 0.18 . 0.15 0.25 0.38 0.50 0.79

9 -0.10 0.41 0.18 . 0.13 0.32 0.45 0.60 0.83

10 -0.10 0.69 0.10 . 0.25 0.38 0.56 0.70 0.81

11 -0.10 0.99 0.01 . 0.43 0.49 0.76 0.80 0.83

12 -0.10 0.18 0.10 . 0.27 0.37 0.44 0.50 0.63

13 -0.83 0.60 0.03 . 0.02 0.06 0.23 0.63 0.92

14 -1.23 0.49 0.12 . 0.04 0.05 0.14 0.48 0.88

15 -1.45 0.43 0.16 . 0.04 0.05 0.08 0.38 0.88

16 -2.04 0.26 0.28 . 0.01 0.02 0.09 0.30 0.88

17 0.00 0.27 0.27 0.27 0.27 0.26 0.44 0.52 0.61

18 -1.90 0.12 0.12 0.10 0.02 0.05 0.07 0.10 0.68

19 -1.06 0.07 0.16 0.06 0.08 0.14 0.16 0.17 0.31

20 -1.06 0.07 1.10 0.36 0.07 0.15 0.16 0.42 0.87

21 -0.50 0.10 0.10 0.10 0.11 0.26 0.27 0.30 0.51

22 -1.60 0.49 0.50 0.11 0.02 0.05 0.09 0.37 0.91

23 -1.90 0.38 0.50 0.18 0.01 0.03 0.08 0.26 0.91

24 -2.20 0.28 0.50 0.26 0.01 0.04 0.08 0.26 0.92

Regression coefficients Distribution Characteristics of θ Pr †

 

† Expected values of the smallest, largest, and three quartiles of the resulting distribution of 

the probit probabilities for a sample size of 500. 
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Table 5.2c. The regression coefficients for the log-log models, and the distributional 

characteristics of the log-log probabilities.  

Setting β 0 β 1 β 2 β 3 θ(1) Q1 Q2 Q3 θ(N)

1 0.80 0.38 . . 0.02 0.27 0.66 0.89 0.96

2 0.80 0.38 . . 0.02 0.20 0.52 0.78 0.89

3 1.70 0.57 . . 0.01 0.19 0.57 0.84 0.94

4 -1.20 0.18 . . 0.03 0.07 0.13 0.25 0.96

5 0.50 0.32 . . 0.01 0.42 0.54 0.66 0.89

6 0.80 0.40 0.40 . 0.02 0.45 0.66 0.81 0.93

7 0.40 0.20 0.05 . 0.12 0.25 0.38 0.48 0.76

8 0.20 0.41 0.18 . 0.14 0.24 0.37 0.47 0.70

9 0.20 0.41 0.18 . 0.11 0.30 0.42 0.55 0.73

10 0.20 0.69 0.10 . 0.27 0.38 0.53 0.64 0.72

11 0.20 0.99 0.01 . 0.41 0.47 0.69 0.72 0.76

12 0.20 0.18 0.10 . 0.26 0.36 0.43 0.50 0.60

13 -0.32 0.63 0.08 . 0.02 0.05 0.25 0.69 0.92

14 -0.53 0.56 0.12 . 0.04 0.05 0.21 0.64 0.9

15 -0.83 0.51 0.17 . 0.04 0.06 0.11 0.55 0.9

16 -1.31 0.36 0.28 . 0.02 0.03 0.15 0.45 0.91

17 0.50 0.27 0.27 0.27 0.30 0.51 0.59 0.66 0.81

18 -0.70 0.12 0.12 0.10 0.02 0.18 0.26 0.31 0.67

19 -0.66 0.06 0.15 0.05 0.07 0.14 0.17 0.2 0.3

20 -0.66 0.06 1.36 0.45 0.08 0.16 0.19 0.56 0.87

21 -0.20 0.10 0.10 0.10 0.11 0.25 0.27 0.31 0.56

22 -0.90 0.49 0.50 0.11 0.02 0.06 0.16 0.54 0.86

23 -1.20 0.38 0.50 0.18 0.02 0.07 0.12 0.42 0.84

24 -1.30 0.28 0.50 0.26 0.02 0.08 0.19 0.44 0.89

Regression coefficients Distribution Characteristics of θ LL †

 

† Expected values of the smallest, largest, and three quartiles of the resulting distribution of 

the log-log probabilities for a sample size of 500.
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Table 5.2d. The regression coefficients for the complementary log-log models, and 

the distributional characteristics of the complementary log-log 

probabilities.  

Setting β 0 β 1 β 2 β 3 θ(1) Q1 Q2 Q3 θ(N)

1 -1.10 0.38 . . 0.04 0.11 0.30 0.70 0.96

2 -2.00 0.38 . . 0.02 0.04 0.10 0.26 0.49

3 -0.30 0.57 . . 0.03 0.08 0.22 0.56 0.89

4 -4.00 0.18 . . 0.02 0.03 0.03 0.05 0.78

5 -1.20 0.32 . . 0.03 0.18 0.26 0.35 0.81

6 -1.20 0.40 0.40 . 0.02 0.15 0.29 0.50 0.89

7 -1.30 0.20 0.05 . 0.05 0.09 0.14 0.20 0.67

8 -0.60 0.41 0.18 . 0.20 0.27 0.37 0.47 0.76

9 -0.60 0.41 0.18 . 0.17 0.31 0.42 0.55 0.80

10 -0.60 0.69 0.10 . 0.28 0.37 0.52 0.64 0.76

11 -0.60 0.99 0.01 . 0.39 0.44 0.71 0.76 0.80

12 -0.60 0.18 0.10 . 0.28 0.36 0.41 0.48 0.60

13 -1.52 0.91 -0.04 . 0.01 0.06 0.22 0.61 0.92

14 -2.44 0.63 0.15 . 0.04 0.05 0.09 0.32 0.87

15 -2.86 0.51 0.24 . 0.04 0.05 0.08 0.21 0.88

16 -3.75 0.25 0.43 . 0.02 0.03 0.07 0.21 0.93

17 -0.30 0.27 0.27 0.27 0.33 0.48 0.55 0.64 0.84

18 -1.40 0.12 0.12 0.10 0.10 0.23 0.29 0.34 0.61

19 -1.88 0.13 0.24 0.08 0.08 0.14 0.16 0.19 0.32

20 -1.88 0.13 1.17 0.39 0.07 0.15 0.17 0.34 0.90

21 -1.50 0.10 0.10 0.10 0.06 0.16 0.18 0.21 0.57

22 -2.20 0.49 0.50 0.11 0.08 0.10 0.15 0.37 0.84

23 -2.60 0.38 0.50 0.18 0.07 0.09 0.12 0.29 0.82

24 -3.20 0.28 0.50 0.26 0.03 0.05 0.09 0.18 0.83

Regression coefficients Distribution Characteristics of θ Cll †

 

† Expected values of the smallest, largest, and three quartiles of the resulting distribution of 

the complementary log-log probabilities for a sample size of 500.
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Table 5.2e. The regression coefficients for the log binomial models, and the 

distributional characteristics of the log probabilities.  

Setting β 0 β 1 β 2 β 3 θ(1) Q1 Q2 Q3 θ(N)

1 -2.30 0.38 . . 0.01 0.03 0.10 0.32 0.95

2 -2.30 0.38 . . 0.01 0.03 0.07 0.18 0.46

3 -1.20 0.57 . . 0.01 0.03 0.10 0.30 0.90

4 -2.60 0.13 . . 0.08 0.10 0.12 0.15 0.63

5 -1.20 0.20 . . 0.13 0.25 0.30 0.37 0.73

6 -2.20 0.40 0.40 . 0.02 0.06 0.11 0.21 0.75

7 -1.10 0.20 0.05 . 0.11 0.16 0.22 0.30 0.62

8 -1.20 0.41 0.18 . 0.11 0.16 0.24 0.35 0.88

9 -1.20 0.41 0.18 . 0.11 0.21 0.31 0.46 0.90

10 -1.20 0.69 0.10 . 0.17 0.25 0.38 0.60 0.89

11 -1.20 0.99 0.01 . 0.28 0.29 0.53 0.81 0.85

12 -1.20 0.18 0.10 . 0.17 0.23 0.30 0.37 0.54

13 -1.71 0.75 -0.07 . 0.01 0.05 0.18 0.48 0.88

14 -2.51 0.48 0.11 . 0.04 0.05 0.08 0.22 0.86

15 -2.86 0.37 0.18 . 0.05 0.05 0.07 0.16 0.85

16 -3.55 0.14 0.34 . 0.03 0.04 0.06 0.16 0.83

17 -0.80 0.27 0.27 0.27 0.23 0.37 0.45 0.55 0.88

18 -2.20 0.12 0.12 0.10 0.07 0.13 0.16 0.20 0.65

19 -1.96 0.12 0.20 0.07 0.08 0.12 0.15 0.19 0.31

20 -1.96 0.12 0.75 0.25 0.09 0.13 0.17 0.30 0.88

21 -1.40 0.10 0.10 0.10 0.12 0.22 0.24 0.28 0.55

22 -3.11 0.49 0.50 0.11 0.02 0.04 0.06 0.16 0.80

23 -3.40 0.38 0.50 0.18 0.03 0.04 0.06 0.12 0.80

24 -3.80 0.28 0.50 0.26 0.02 0.03 0.05 0.10 0.80

Regression coefficients Distribution Characteristics of θ LB †

 

† Expected values of the smallest, largest, and three quartiles of the resulting distribution of 

the log binomial probabilities for a sample size of 500. 

 

5.8.1.4 Power 

Simulations were performed to assess the power of HL , 
2J , and TG  to detect a departure 

from a true underlying model under each of the non-canonical links. Data were generated 

using some of the settings of Table 5.2(a-e), and then a model was fitted to the data using an 

incorrectly specified linear predictor, which had either a covariate, a quadratic term or an 

interaction term omitted. In the second set of power analyses, log binomial models were 

fitted to data generated from the logistic settings described in Table 5.3. This included 

individual settings (25-27, 36-37), as well as three series of related settings. In one series, the 

dichotomous term has increasing influence (settings 28-30). In the second series, the non-
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linearity of the model increases (settings 31-35). In the third series, the interaction between 

terms in the model increases (settings 38-40). All simulations were performed with a 

replication number of 10,000r  . A dataset of 500 observations were generated for each 

setting. In addition, datasets with 100 observations were generated for settings 6, 14, and 20.  

5.8.2 Simulation Results 

5.8.2.1 Distribution of HL, J
2
, and T

G
 Under Non-Canonical Link Functions 

Simulations were performed with a large number of replications 100,000r  under settings 

3, 10, and 21 described in Table 5.2 (a-e) for each of the non-canonical links studied. 

Histograms of the values observed that were less than 32 are presented in Figure 5.2 through 

Figure 5.13. Summary statistics for all observations are presented in Table 5.4.  

The statistics were each compared to the critical value of their postulated distributions. The 

asymptotic distribution of HL  under the logit link was reported by Hosmer and Lemeshow 

to be  2 2G  . Pigeon, et al. (1999b) state that 
2J  has an asymptotic distribution that is 

approximately  2 1G  , which is not dependent on grouping method. However, the results 

of the simulation study described in section 4.5 indicate that, when the deciles-of-risk 

grouping method is used, the distribution of 
2J  under the logit link is close to  2 2G  . 

Thus, with the number of groups set at 10, the values of HL  and 
2J  were both compared to 

the critical value of  2 8  at the 0.05   level. Based on section 5.4, the values of TG  for 

all links were compared to the critical value of  2 10  at the 0.05   level, which differs 

from the critical value derived from a  2 1G   used under the original Tsiatis statistic in 

the logistic setting. The rank of V  was recorded for each replication, and was observed to be 

10 in all cases.  

The means of HL  and 
2J  were significantly different from 8, and likewise TG  from 10, at 

the five per cent level, if they fell outside of the intervals (7.98, 8.03) and (9.97, 10.03)  
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Table 5.3 The distributional characteristics of the covariates and the linear predictors of the settings used to examine the power of HL, J
2
, and T, to 

detect an incorrectly specified link function. 

Setting Linear predictor x 1 x 2 x 3 β 0 β 1 β 2 β 3 θ(1) Q1 Q2 Q3 θ(N)

25 β 0+β 1x 1 U(-6,6) . . -0.80 0.38 . . 0.04 0.13 0.31 0.58 0.81

26 β 0+β 1x 1 U(-6,6) . . -2.30 0.38 . . 0.01 0.03 0.09 0.24 0.49

27 β 0+β 1x 1+β 2 x 2 Ber(0.2) U(2x 1 -6,2x 1 +2) . -1.20 0.41 0.55 . 0.01 0.04 0.12 0.29 0.80

28 β 0+β 1x 1+β 2 x 2 Ber(0.5) U(2x 1 -6,2x 1 +2) . -1.20 0.41 0.55 . 0.01 0.07 0.18 0.39 0.80

29 β 0+β 1x 1+β 2 x 2 Ber(0.5) U(2x 1 -6,2x 1 +2) . -1.20 0.69 0.48 . 0.02 0.09 0.21 0.41 0.80

30 β 0+β 1x 1+β 2 x 2 Ber(0.5) U(2x 1 -6,2x 1 +2) . -1.20 0.90 0.50 . 0.02 0.09 0.22 0.44 0.84

31 β 0+β 1x 1+β 2 x 1
2

U(-3,3) x 1
2

. -1.40 1.00 -0.02 . 0.01 0.05 0.20 0.51 0.80

32 β 0+β 1x 1+β 2 x 1
2

U(-3,3) x 1
2

. -2.22 0.72 0.16 . 0.05 0.05 0.10 0.32 0.80

33 β 0+β 1x 1+β 2 x 1
2

U(-3,3) x 1
2 -2.59 0.60 0.24 . 0.05 0.06 0.08 0.24 0.79

34 β 0+β 1x 1+β 2 x 1
2

U(-3,3) x 1
2

. -3.00 0.46 0.33 . 0.04 0.05 0.08 0.19 0.79

35 β 0+β 1x 1+β 2 x 1
2

U(-3,3) x 1
2

. -3.49 0.30 0.44 . 0.03 0.04 0.07 0.21 0.79

36 β 0+β 1x 1+β 2 x 2 +β 3 x 3 U(-1,1) U(-1,1) U(-1,1) -0.40 0.63 0.63 0.63 0.12 0.30 0.40 0.51 0.77

37 β 0+β 1x 1+β 2 x 2 +β 3 x 3 U(-1,1) N(0,1.5) χ
2
(4) -1.40 0.25 0.25 0.12 0.09 0.22 0.28 0.36 0.72

38 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-3,3) Ber(0.5) x 1 x 2 -1.79 0.14 0.27 0.09 0.10 0.12 0.16 0.19 0.30

39 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-3,3) Ber(0.5) x 1 x 2 -1.79 0.14 0.90 0.30 0.10 0.13 0.17 0.29 0.60

40 β 0+β 1x 1+β 2 x 2 +β 3 x 1 x 2 U(-3,3) Ber(0.5) x 1 x 2 -1.79 0.14 1.56 0.52 0.10 0.13 0.18 0.44 0.85

Logistic Fitted Log binomial Pr (n=500)

Distribution of covariate Coefficients Distribution characteristics
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respectively. The percentage of observations that were larger than the critical values for the 

corresponding chi-square distributions at the 0.01  , 0.05, and 0.10 levels were  

significantly different from the percentages expected if they fell outside of the 95% 

confidence intervals (0.94, 1.06), (4.87, 5.14) and (9.81, 10.19) respectively. The standard 

deviation, skewness and kurtosis of  2 8  are 4, 1 and 4.5 respectively, while for  2 10  

they are 4.47, 0.89 and 4.2 respectively. 

The histograms for the values of the three statistics calculated under the univariate model of 

setting 3 for each of the four non-canonical links studied are shown in Figure 5.2 through 

Figure 5.5. When the probit, log-log, and complementary log-log links were used, the 

histograms of all three statistics followed the curve of their theoretical distributions closely. 

However, when the log link was used, the histograms had peaks that were slightly higher 

than those of the respective postulated distributions of the statistics,  2 8  and  2 10 . 

The Kolmogorov-Smirnov tests, reported in Table 5.4 evaluate the null hypothesis that the 

probability distributions of the statistics are the same as their theoretical distributions, against 

the alternative that the distributions are different. Note that with very large samples sizes, the 

test may be overpowered and significant differences may be considered unimportant. The 

largest observed difference is given in parentheses. Our results indicated that the 

distributions of HL  and 
2J  were significantly different from  2 8 under all links, and that 

the distribution of TG  is significantly different than  2 10  under all links. Note that the 

largest differences observed for HL  and 
2J  were very similar. For setting 3, under the log 

link, the mean, skewness and kurtosis values of HL  and 
2J  were higher than expected, and 

there were higher percentages of observations above all of the percentiles studied. The 

skewness and kurtosis of LBT were also higher than expected, but the mean was lower, and 

there were fewer than expected observations above the 90
th
 percentile. Under the probit link, 

the means of 
2J  and PrT  were higher than expected. Under the log-log link, the mean of 

2J  

and the kurtosis of all three statistics were high. For both 
2J  and LLT , there were fewer than 

expected observations above the 90
th
 and 95

th
 percentiles. Under the complementary log-log 
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link, the mean of HL  was high, as was the kurtosis of both HL  and 
2J . For both HL  and 

CllT , there were fewer than expected observations above the 90
th
 percentile. 

The histograms for setting 10, displayed in Figure 5.6 through Figure 5.9 , indicate that the 

histograms of TG  for all links again followed the  2 10  curve closely, while in contrast, 

the histograms of HL  and 
2J  for all links were shifted to the left and had higher peaks than 

that of the  2 8 curve. The Kolmogorov-Smirnov tests, reported in Table 5.4, indicated that 

the distributions of both HL  and 
2J  were significantly different from  2 8 under all links, 

while the distribution of TG  was significantly different from  2 10  under all links. The 

largest differences observed were small and relatively unimportant. The mean and number of 

observations above the specified percentiles for HL  and 
2J  were much lower than expected 

for all links. Standard deviation values were also low, while skewness and kurtosis were 

close to the values expected. For TG , the means under all of the links were slightly higher 

than expected. All other summary statistics were near the values expected except for the 

skewness and kurtosis of CllT , which were high. This was driven by a single large value of 

CllT  near 143. When this one value was removed, the skewness dropped to 0.86 and the 

kurtosis to 4.17.  

The histograms of the statistics under setting 21 for each of the four non-canonical links 

studied are displayed in Figure 5.10 through Figure 5.13. The histograms of TG  for all links 

followed the  2 10  curve closely. The histograms of HL  and 
2J  followed the  2 8  

curve fairly closely, except in the case of the complementary log-log, where the histograms 

had a somewhat higher peak and was shifted left. The Kolmogorov-Smirnov tests, reported 

in Table 5.4, indicated that the distribution of both HL  and 
2J  were significantly different 

than  2 8 under all links, and that the distribution of TG  was significantly different than 

 2 10  under all links. The largest differences observed were small and relatively 

unimportant. The mean, standard deviation, and the percentage of observations above the 
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percentiles studied were lower than expected for both HL  and 
2J  under all links, while the 

values of skewness and kurtosis were near those expected. The means of TG  were higher 

than expected for all links. There were also higher numbers of observations above the 90
th
 

and 95
th
 percentiles for LLT , and higher numbers of observations above the 90

th
 percentile  

of PrT . 

Under all of the links and all three settings, the three statistics agree on whether or not to 

reject the null hypothesis approximately 97% of the time. In most cases, when they did 

disagree, HL  and 
2J  agreed with each other and disagreed with TG  

5.8.2.2 Empirical Rejection Percentage Under the Null Hypothesis 

Simulations were performed with a smaller number of replications  10,000r   under the 

settings listed in Table 5.2 for each non-canonical model. The values of HL  and 
2J  were 

compared to the critical value of  2 8  at the 0.05   level, while the values of TG  were 

compared to the critical value of  2 10  at the 0.05   level. Summary statistics and the 

empirical null rejection percentages of HL , 
2J  and TG  from the simulations are presented 

in Table 5.5 (a-d). The means of HL  and 
2J  were significantly different from eight, and 

likewise TG  from ten, at the five per cent level if they fell outside of the intervals 

 7.92,8.02  and  9.91,10.09  respectively. Rejection percentages were significantly 

different from five per cent at the five per cent level if they fell outside of the  

interval  4.57,5.43 .  

Overall, when the number of observations was 500, the null Type I error rate of TG  was 

consistently well maintained. In contrast, HL  and 
2J  both had rates that were often lower 

than expected, but also had settings where rejection percentages were higher than expected. 

The results of the simulations indicate that the rejection percentages of HL  and 
2J  were  
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Figure 5.2 Histogram of 100,000 replications of setting 3 using the probit link.  

(η=0.4 + 0.38x1, x1~U(-6,2), and n=500) The probability density function 

curves for χ2
(8) and χ2

(10) are included for comparison.  

 

Figure 5.3 Histogram of 100,000 replications of setting 3 using the log-log link. 

(η=1.7+ 0.57x1, x1~U(-6,2), and n=500) The probability density function 

curves for χ2(8) and χ2(10) are included for comparison. 
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Figure 5.4 Histogram of 100,000 replications of setting 3 using the complementary 

log-log link.  (η=-0.3 + 0.57x1, x1~U(-6,2), and n=500).The probability 

density function curves for χ2
(8) and χ2

(10) are included for comparison. 

 

 

Figure 5.5 Histogram of 100,000 replications of setting 3 using the log link. (η=-1.2 

+ 0.57x1, x1~U(-6,2), and n=500) The probability density function curves 

for χ2
(8) and χ2

(10) are included for comparison. 
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Figure 5.6 Histogram of 100,000 replications of setting 10 using the probit link.   

(η=-0.1+0.69x1+0.1x2, x1~Bern(0.5), x2~U(2 x1-6,2 x1+2), and n=500) The 

probability density function curves for χ2
(8) and χ2

(10) are included for 

comparison. 

  

Figure 5.7 Histogram of 100,000 replications of setting 10 using the log-log link. 

(η=0.2+0.69x1+0.1x2, x1~Bern(0.5), x2~U(2 x1-6,2 x1+2), and n=500) The 

probability density function curves for χ2
(8) and χ2

(10) are included for 

comparison. 
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Figure 5.8 Histogram of 100,000 replications of setting 10 using the complementary 

log- log link. (η=-0.6+0.69x1+0.1x2, x1~Bern(0.5), x2~U(2 x1-6,2 x1+2), and 

n=500) The probability density function curves for χ2
(8) and χ2

(10) are 

included for comparison. 

 

Figure 5.9 Histogram of 100,000 replications of setting 10 using the log link.           

(η = -1.2+0.69x1+0.1x2, x1~Bern(0.5), x2~U(2 x1-6,2 x1+2), and n=500) The 

probability density function curves for χ2
(8) and χ2

(10) are included for 

comparison. 
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Figure 5.10 Histogram of 100,000 replications of setting 21 using the probit link. 

(η=-0.5+0.1x1+0.1x2, +0.1 x1x2, x1~U(-1,1), x2~N(0,1.5), and n=500)The 

probability density function curves for χ2
(8) and χ2

(10) are included for 

comparison. 

 

Figure 5.11 Histogram of 100,000 replications of setting 21 using the log-log link. 

(η=-0.2+0.1x1+0.1x2, +0.1 x1x2, x1~U(-1,1), x2~N(0,1.5), and n=500) The 

probability density function curves for χ2
(8) and χ2

(10) are included for 

comparison. 
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Figure 5.12 Histogram of 100,000 replications of setting 21 using the complementary 

log- log link. (η=-1.5+0.1x1+0.1x2, +0.1 x1x2, x1~U(-1,1), x2~N(0,1.5), and 

n=500) The probability density function curves for χ2
(8) and χ2

(10) are 

included for comparison. 

 

Figure 5.13 Histogram of 100,000 replications of setting 21 using the log link.     

(η=-1.4+0.1x1+0.1x2, +0.1 x1x2, x1~U(-1,1), x2~N(0,1.5), and n=500) The 

probability density function curves for χ2
(8) and χ2

(10) are included for 

comparison. 
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Table 5.4 Summary statistics, rejection per cent, and Kolmogorov-Smirnov test results for HL, J
2
, and T

G
.  Simulations were performed using settings 

3, 10 and 21 of Table 1 (n=500 and r=100,000) using the deciles-of-risk grouping method with G=10 groups. HL and J
2
 were compared to 

critical values of χ
2
(G-2) and TG  to χ

2
(G) when α=0.10, α=0.05, and α=0.01. 

Kolmogorov-Smirnov†

Setting Link Statistic Mean Std Dev Skewness Kurtosis 90th %-ile 95th %-ile 99th %-ile p-value (D)

3 Probit HL 8.03 3.93 0.98 4.43 9.80 4.78 0.93 0.000 (0.0113)

J
2 8.06 3.94 0.98 4.43 9.96 4.89 0.96 0.000 (0.0133)

T Pr 10.05 4.39 0.87 4.13 9.84 4.76 0.93 0.000 (0.0118)

Log-log HL 8.01 3.94 1.10 5.43 9.73 4.67 0.92 0.000 (0.0087)

J
2 8.05 3.96 1.10 5.42 9.98 4.82 0.95 0.000 (0.0119)

T LL 10.01 4.43 0.99 4.96 9.65 4.77 0.95 0.000 (0.0071)

Complementary HL 8.02 3.94 1.05 4.82 9.66 4.82 1.00 0.000 (0.0112)

log-log J
2 8.06 3.96 1.05 4.81 9.84 4.93 1.04 0.000 (0.0133)

T Cll 10.03 4.41 0.92 4.37 9.68 4.82 0.98 0.000 (0.0100)

Log HL 8.17 4.01 1.31 6.55 10.12 5.21 1.26 0.000 (0.0281)

J
2 8.21 4.03 1.30 6.51 10.34 5.34 1.30 0.000 (0.0308)

T LB 9.94 4.45 1.11 5.53 9.47 4.86 1.08 0.000 (0.0137)

10 Probit HL 7.37 3.77 1.04 4.70 7.28 3.49 0.61 0.000 (0.066)

J
2 7.38 3.78 1.04 4.70 7.33 3.52 0.62 0.000 (0.065)

T Pr 10.07 4.41 0.87 4.18 10.00 4.84 0.91 0.000 (0.0112)

Log-log HL 7.39 3.79 1.02 4.61 7.33 3.49 0.63 0.000 (0.0637)

J
2 7.40 3.80 1.02 4.61 7.37 3.52 0.64 0.000 (0.0625)

T LL 10.06 4.43 0.87 4.28 10.00 4.90 0.91 0.000 (0.0116)

Percent above

 

*   The mean was significantly different from that of χ
2
(8) at α=0.05 if outside of the interval (7.975, 8.025). Similarly for χ

2
(10) if outside of (9.972,10.028). 
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Table 5.4 Summary statistics, rejection per cent, and Kolmogorov-Smirnov test results for HL, J
2
, and T

G
. (cont.) 

Kolmogorov-Smirnov†

Setting Link Statistic Mean* Std Dev Skewness Kurtosis 90th %-ile 95th %-ile 99th %-ile p-value (D)

10 Complementary HL 7.39 3.79 1.02 4.58 7.42 3.47 0.63 0.000 (0.0635)

log-log J
2 7.40 3.79 1.02 4.58 7.47 3.50 0.63 0.000 (0.0625)

T Cll 10.07 4.44 1.13 12.34 9.96 4.86 0.96 0.000 (0.0107)

Log HL 7.37 3.74 0.99 4.45 7.24 3.38 0.54 0.000 (0.0656)

J
2 7.39 3.75 0.99 4.45 7.32 3.43 0.55 0.000 (0.0635)

T LB 10.04 4.40 0.85 4.03 9.92 4.86 0.90 0.000 (0.0092)

21 Probit HL 7.79 3.85 0.98 4.38 8.85 4.23 0.75 0.000 (0.0220)

J
2 7.80 3.86 0.98 4.38 8.89 4.25 0.76 0.000 (0.0211)

T Pr 10.12 4.47 0.87 4.16 10.40 5.18 1.01 0.000 (0.0128)

Log-log HL 7.81 3.85 0.99 4.50 8.72 4.23 0.79 0.000 (0.0194)

J
2 7.82 3.86 0.99 4.50 8.76 4.27 0.80 0.000 (0.0186)

T LL 10.13 4.48 0.87 4.12 10.39 5.24 1.04 0.000 (0.0186)

Complementary HL 7.82 3.85 0.98 4.46 8.85 4.22 0.73 0.000 (0.0178)

log-log J
2 7.82 3.85 0.98 4.46 8.87 4.24 0.74 0.000 (0.0173)

T Cll 10.09 4.44 0.88 4.22 10.11 4.93 0.97 0.000 (0.0132)

Log HL 7.87 3.83 0.98 4.47 8.80 4.21 0.76 0.000 (0.0155)

J
2 7.88 3.83 0.98 4.47 8.84 4.24 0.77 0.000 (0.0149)

T LB 10.13 4.41 0.86 4.09 10.14 5.00 0.93 0.000 (0.0188)

Percent above **

 

** The 95% confidence intervals at the α=0.01, α=0.05, and α=0.1 levels were (0.938,1.062), (4.865,5.135) and (9.814, 10.186) respectively. 

†   H0: No difference between the distribution of the statistic and χ2(df);   HA: The distribution of the statistic differs from χ2(df). 
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most affected by the inclusion of a dichotomous covariate, or the addition of an interaction or 

quadratic term in the model. The simulations were repeated with only 100 observations under 

settings 1, 6, 9, 14, and 20. There was no clear pattern when compared to the rates observed 

when the number of observations was 500. In some cases the rejection percentages were higher 

while in others they were lower. More than half of the time, the change in TG  went from 

outside the expected range of rejection percentages under 100n  , to within the expected range 

under 500n  . This occurred much less often for the other two statistics. On average, in the 

null settings the statistics agreed on whether or not to reject the null hypothesis 97% of the time, 

regardless of the number of observations or the link specified. When there was disagreement 

between the statistics, in most cases HL  and 
2J  agreed with each other and disagreed with TG .  

5.8.2.2.a Probit 

The means and rejection percentages of PrT  were near or within sampling variation in most 

settings. There were a few exceptions, mainly when the sample size was 100n  . The mean and 

rejection percentages were low in setting 14 ( 100n  ). The rejection percentages were also low 

in settings 9 ( 100n  ) and 22 ( 500n  ). The mean was high in settings 6, 9, and 20 when 

100n  , and high in settings 21 and 23 when 500n  . The means and rejection percentages of 

HL  and 
2J  were lower than expected in over half of the cases studied. In the univariate 

settings, the rejection percentages of HL  and 
2J  were very close to or within sampling 

variation. However, in the settings with more than one covariate, their rejection percentages 

were often conservative, and in some cases much lower than expected. The lowest rejection 

percentages observed were among settings where the model contained a dichotomous, a 

quadratic, or an interaction term.  

5.8.2.2.b Log-log 

The means and rejection percentages of LLT  were again near or within sampling variation in 

most settings, with some exceptions. The mean and rejection percentages of setting 14 

 100n   were low. The rejection percentages of settings 1, 14, and 20 where 100n  , and 13 
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and 14 where 500n   were also low. The means of settings 6, 9, 20, 21 ( 100n  ) and 11, 20, 

21 ( 500n  ) were high. The mean and especially the standard deviation were also high in 

setting 11 ( 500n  ). This was the result of seven extreme values of LLT , which were not 

observed in the other two statistics. When these were removed, the mean of LLT  was 10.07, the 

standard deviation was 4.41, and the rejection per cent was 4.91, while the summary statistics of 

HL  and 
2J  were essentially unchanged. The means, standard deviations, and rejection 

percentages of HL  and 
2J  were lower than expected in most cases when the settings contained 

more than one covariate. Very low rejection percentages were observed in some cases when the 

model contained a dichotomous, a quadratic, or an interaction term. The means were higher than 

expected in settings 4 and 6 ( 100n  ). 

5.8.2.2.c Complementary Log-log 

The means and rejection percentages of CllT  were near or within sampling variation in most 

settings. Exceptions were observed in settings 4 and 14 ( 100n  ) when the rejection percentage 

was low. Also, the means of settings 1, 6, 9, and 20 ( 100n  ), as well as settings 21 and 22  

( 500n  ) were higher than expected. In setting 11 the standard deviation was higher than 

expected. In this case there were 6 extreme values of CllT , with the largest being 377. This was 

not the case for HL  and 
2J . When the 6 extreme values were removed, the mean of CllT  was 

10.04, the standard variation was 4.41, and the rejection per cent was 4.7. The means of HL  

and 
2J  were higher than expected in a few of the univariate settings and in some of the 

complex models containing only continuous covariates (settings 1, 6, under 100n   only, and 

settings 4, 5, 18 ). Over half of the settings had means, standard deviations, and rejection 

percentages that were lower than expected, and in some cases they were very low. The lowest 

rejection percentages were observed when the model contained a dichotomous, a quadratic, or 

an interaction term.  
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5.8.2.2.d Log 

Both the means and rejection percentages of LBT  were near or within sampling variation in most 

settings. Exceptions were observed in settings 9, 14, and 20 ( 100n  ), as well as 19 ( 500n  ), 

when rejection percentages were low. The means of settings 6, 9, and 20 ( 100n  ), as well as 

21 ( 500n  ), were high. The means of HL  and 
2J  were higher than expected in most of the 

univariate settings, while they ranged from higher than expected to much lower than expected in 

the settings with more complex models. In the univariate settings, the rejection percentages of 

HL  and 
2J  were generally within sampling variation. An exception was in setting 1 ( 100n  ,

500n  ), when the rejection percentages were higher than expected. In this setting, the 

maximum of the ranges of the predicted probabilities were near 1. In the settings with more 

complex models, the rejection percentages of HL  and 
2J  were either within sampling variation 

or lower than expected, in some cases much lower. The lowest rejection percentages were 

observed when the model contained a dichotomous, a quadratic, or an interaction term. 

5.8.2.3 Power 

Simulations were performed to compare the power of HL , 
2J , and TG  to detect a departure 

from a true underlying model under each of the link functions studied. The number of 

replications run was 10,000r  , using some of the settings listed in Table 5.2(a-e) and those in 

Table 5.3. All settings were run with 500 generated observations ( 500n  ) per dataset. In 

addition, settings 6, 14, and 20 were also run with 100 observations ( 100n  ) per dataset. The 

rejection percentage of each statistic, when the linear predictor specified is incorrect, are 

reported in Table 5.6. The rejection percentages for each statistic when a non-canonical model 

was incorrectly fit to data generated from logistic settings are reported in Table 5.7. 

Overall, the power to detect the departure of a fitted model from that of the true underlying 

model was similar for all of the statistics. The exception to this was under the log link, when  

had more power than HL  and 
2J  to detect an incorrectly fitted log binomial model to logistic 

data in most settings. The power to detect an incorrectly specified link function when the   

TG
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 Table 5.5(a-d) Simulated null rejection per cent (n=500, r=100,000, α=0.05). 

 

 Table 5.5a. Probit Link 

Setting n HL J
2 T Pr HL J

2 T Pr HL J
2 T Pr

1 100 7.86 7.92 9.91 4.41 4.43 4.81 4.61 4.83 4.72

1 500 7.99 8.05 10.05 3.95 3.97 4.42 4.59 4.72 4.99

2 500 7.97 8.02 9.99 3.95 3.97 4.46 4.78 4.94 4.96

3 500 8.03 8.06 10.07 3.91 3.92 4.40 4.77 4.89 4.86

4 500 8.07 8.10 10.02 3.89 3.91 4.47 4.64 4.72 4.99

5 500 8.07 8.10 10.02 4.00 4.01 4.51 5.34 5.44 5.01

6 100 8.12 8.17 10.21 3.75 3.77 4.47 4.44 4.50 5.01

6 500 7.92 7.96 9.96 3.93 3.95 4.48 4.77 4.90 4.87

7 500 7.97 7.98 10.07 3.84 3.84 4.35 4.34 4.38 4.81

8 500 7.69 7.70 10.06 3.83 3.84 4.45 4.00 4.03 5.16

9 100 7.92 7.95 10.24 3.76 3.77 4.25 3.91 4.00 4.30

9 500 7.74 7.76 10.04 3.86 3.87 4.44 4.22 4.25 4.97

10 500 7.28 7.30 10.07 3.74 3.75 4.42 3.47 3.47 4.97

11 500 7.17 7.21 10.04 3.70 3.72 4.42 3.09 3.17 4.80

12 500 7.73 7.73 9.99 3.87 3.88 4.44 4.17 4.18 4.94

13 500 7.11 7.15 10.03 3.66 3.68 4.39 2.67 2.74 4.73

14 100 7.21 7.26 9.84 3.57 3.59 4.14 2.86 2.94 3.65

14 500 7.38 7.43 10.14 3.77 3.79 4.46 3.23 3.35 5.10

15 500 7.64 7.68 10.05 3.81 3.83 4.43 3.51 3.64 4.67

16 500 7.92 7.97 10.09 3.87 3.89 4.40 4.62 4.81 4.94

17 500 7.94 7.95 9.96 3.87 3.88 4.37 4.56 4.58 4.68

18 500 7.98 7.99 10.06 3.86 3.86 4.39 4.48 4.54 4.91

19 500 7.19 7.19 10.06 3.68 3.68 4.39 2.97 2.98 4.75

20 100 6.97 7.02 10.38 3.37 3.39 4.20 2.08 2.14 4.84

20 500 6.82 6.86 10.09 3.59 3.61 4.45 2.30 2.41 5.02

21 500 7.84 7.84 10.15 3.89 3.90 4.50 4.28 4.30 5.25

22 500 7.34 7.39 10.06 3.58 3.61 4.33 3.00 3.08 4.53

23 500 7.79 7.84 10.14 3.75 3.78 4.35 3.83 3.96 4.74

24 500 7.88 7.94 10.09 3.88 3.91 4.43 4.37 4.51 5.05

Standard Emperical

Mean  Deviation Rejection Rate (%) †

 

† Rejection percentages were significantly different from 5% at α=0.05 level if they fell above 

5.43 or below 4.57 (bold). 
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 Table 5.5b. Log-log Link 

Setting n HL J
2 T LL HL J

2 T LL HL J
2 T LL

1 100 8.02 8.07 10.04 3.84 3.86 4.29 4.30 4.47 4.13

1 500 8.04 8.09 10.10 3.92 3.94 4.40 4.96 5.16 5.02

2 500 8.03 8.07 10.06 3.90 3.92 4.37 4.87 4.97 4.71

3 500 7.99 8.04 10.00 3.94 3.96 4.42 4.56 4.67 4.75

4 500 8.10 8.13 10.10 3.96 3.97 4.48 4.81 4.90 5.03

5 500 8.05 8.07 9.98 3.88 3.90 4.36 4.62 4.63 4.58

6 100 8.17 8.21 10.23 3.77 3.79 4.33 4.20 4.29 4.83

6 500 8.03 8.06 10.05 3.98 3.99 4.48 4.73 4.80 4.86

7 500 7.99 8.00 10.07 3.96 3.97 4.49 4.66 4.68 4.94

8 500 7.85 7.87 10.06 3.86 3.87 4.44 4.21 4.24 4.99

9 100 7.97 8.00 10.31 3.77 3.78 4.26 4.11 4.20 4.56

9 500 7.89 7.91 9.99 3.90 3.91 4.42 4.62 4.65 5.05

10 500 7.37 7.38 10.03 3.78 3.78 4.42 3.60 3.62 4.83

11 500 7.22 7.25 10.33 3.71 3.73 19.71 3.08 3.19 4.98

12 500 7.88 7.89 10.00 3.94 3.95 4.45 4.59 4.60 4.73

13 500 7.10 7.14 9.99 3.61 3.63 4.37 2.75 2.83 4.51

14 100 7.21 7.26 9.86 3.53 3.55 4.15 2.64 2.74 3.73

14 500 7.31 7.35 10.12 3.75 3.77 4.45 3.16 3.28 4.93

15 500 7.74 7.79 10.11 3.88 3.90 4.44 4.33 4.43 4.98

16 500 7.81 7.86 9.97 3.86 3.89 4.38 4.48 4.65 4.80

17 500 7.97 7.98 10.04 3.97 3.98 4.48 4.96 4.99 5.16

18 500 7.95 7.97 10.03 3.94 3.95 4.49 4.76 4.80 5.08

19 500 7.22 7.22 10.10 3.71 3.71 4.45 3.04 3.04 5.13

20 100 6.94 6.98 10.32 3.31 3.34 4.13 1.89 1.98 4.30

20 500 6.85 6.89 10.14 3.57 3.59 4.44 2.27 2.29 5.12

21 500 7.86 7.87 10.16 3.89 3.90 4.50 4.47 4.54 5.27

22 500 7.25 7.29 10.03 3.63 3.65 4.43 3.00 3.13 4.88

23 500 7.63 7.67 10.06 3.77 3.79 4.45 3.61 3.72 4.98

24 500 7.71 7.76 10.04 3.78 3.80 4.41 4.11 4.14 5.06

Standard Emperical

Mean  Deviation Rejection Rate (%) †

 

† Rejection percentages were significantly different from 5% at α=0.05 if they fell above 5.43 

or below 4.57 (bold). 
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 Table 5.5c. Complementary log-log Link 

Setting n HL J
2 T Cll HL J

2 T Cll HL J
2 T Cll

1 100 8.13 8.18 10.17 3.87 3.89 4.27 4.66 4.80 4.82

1 500 8.04 8.08 10.06 3.91 3.93 4.40 4.91 5.10 4.80

2 500 8.03 8.04 10.04 3.92 3.92 4.37 4.86 4.93 4.73

3 500 8.03 8.07 10.05 3.95 3.97 4.44 4.81 5.01 4.78

4 500 8.17 8.19 10.08 3.84 3.84 4.25 4.72 4.74 4.35

5 500 8.10 8.11 10.04 3.97 3.98 4.45 5.00 5.06 5.04

6 100 8.18 8.21 10.34 3.89 3.90 4.46 4.65 4.82 5.39

6 500 8.08 8.10 10.11 4.01 4.02 4.53 5.20 5.31 5.17

7 500 8.01 8.02 10.11 3.93 3.93 4.40 4.66 4.68 4.71

8 500 7.82 7.84 10.03 3.85 3.86 4.41 4.41 4.50 5.22

9 100 7.87 7.89 10.32 3.78 3.79 4.31 3.83 3.92 4.56

9 500 7.92 7.94 10.03 3.90 3.91 4.46 4.34 4.37 5.02

10 500 7.35 7.36 10.01 3.74 3.74 4.42 3.46 3.51 4.86

11 500 7.17 7.22 10.12 3.70 3.72 6.20 2.96 3.07 4.76

12 500 7.82 7.83 9.99 3.92 3.92 4.48 4.59 4.60 5.06

13 500 7.12 7.16 10.02 3.67 3.69 4.37 2.84 2.92 4.77

14 100 7.36 7.41 10.04 3.52 3.54 4.11 2.71 2.80 3.79

14 500 7.37 7.41 10.11 3.74 3.76 4.44 3.50 3.61 5.34

15 500 7.84 7.89 10.13 3.92 3.94 4.47 4.43 4.54 5.24

16 500 7.96 8.01 10.06 3.93 3.95 4.45 4.55 4.64 5.03

17 500 7.97 7.98 10.04 3.95 3.96 4.44 4.82 4.84 4.87

18 500 8.10 8.12 10.09 3.97 3.98 4.49 5.07 5.17 5.30

19 500 7.19 7.20 10.04 3.61 3.61 4.34 2.70 2.72 4.54

20 100 7.12 7.16 10.42 3.40 3.42 4.22 2.06 2.11 4.74

20 500 6.89 6.93 10.06 3.57 3.58 4.38 2.40 2.47 4.72

21 500 7.87 7.88 10.14 3.87 3.87 4.43 4.47 4.49 5.05

22 500 7.46 7.49 10.16 3.75 3.76 4.48 3.58 3.64 5.30

23 500 7.68 7.72 10.02 3.72 3.74 4.35 3.82 3.95 4.55

24 500 7.89 7.92 10.05 3.82 3.84 4.37 4.43 4.50 4.83

Standard Emperical

Mean  Deviation Rejection Rate (%) †

 

† Rejection percentages were significantly different from 5% at α=0.05 if they fell above 5.43 

or below 4.57 (bold).
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 Table 5.5d. Log Link 

Setting n HL J
2 T LB HL J

2 T LB HL J
2 T LB

1 100 8.03 8.08 9.88 4.28 4.29 4.63 5.48 5.53 5.01

1 500 8.23 8.29 9.81 4.07 4.09 4.46 5.68 5.84 4.77

2 500 8.04 8.05 10.04 3.99 3.99 4.44 4.80 4.83 4.71

3 500 8.14 8.19 9.89 4.02 4.04 4.43 5.27 5.43 4.80

4 500 8.31 8.33 10.12 4.03 4.04 4.43 5.31 5.39 4.91

5 500 8.14 8.15 9.98 3.97 3.97 4.40 5.30 5.33 4.96

6 100 8.11 8.13 10.24 3.75 3.76 4.29 4.27 4.40 4.64

6 500 8.07 8.10 9.98 3.89 3.90 4.38 4.68 4.75 4.60

7 500 8.03 8.04 10.11 3.86 3.87 4.40 4.68 4.70 4.94

8 500 8.07 8.10 9.99 3.88 3.89 4.41 4.81 4.94 4.64

9 100 7.98 8.00 10.23 3.76 3.77 4.24 3.95 4.02 4.12

9 500 8.03 8.06 10.04 3.89 3.90 4.42 4.83 4.89 4.95

10 500 7.34 7.36 10.02 3.71 3.72 4.39 3.40 3.42 4.84

11 500 7.11 7.20 10.03 3.69 3.73 4.44 2.97 3.16 4.85

12 500 7.84 7.85 10.00 3.93 3.93 4.47 4.45 4.46 4.82

13 500 7.27 7.31 10.01 3.73 3.75 4.41 3.39 3.47 4.74

14 100 7.34 7.38 10.00 3.53 3.55 4.17 2.52 2.58 3.82

14 500 7.48 7.52 10.07 3.77 3.79 4.45 3.49 3.60 4.97

15 500 7.97 8.01 10.11 3.92 3.93 4.47 4.65 4.82 5.04

16 500 8.16 8.21 10.05 3.96 3.98 4.43 4.92 5.07 4.71

17 500 8.13 8.14 10.00 3.96 3.97 4.43 5.33 5.36 5.08

18 500 8.21 8.23 10.14 3.98 3.99 4.46 5.05 5.09 4.82

19 500 7.18 7.19 10.04 3.65 3.65 4.38 2.84 2.84 4.55

20 100 7.10 7.13 10.31 3.34 3.35 4.13 2.03 2.06 4.30

20 500 7.07 7.10 10.01 3.58 3.60 4.41 2.62 2.69 4.78

21 500 7.90 7.91 10.17 3.90 3.90 4.47 4.33 4.37 5.21

22 500 7.57 7.61 10.06 3.66 3.67 4.35 3.45 3.55 4.70

23 500 7.82 7.86 10.02 3.81 3.83 4.38 4.27 4.36 4.94

24 500 8.06 8.10 9.99 3.87 3.88 4.37 4.68 4.79 4.69

Standard Emperical

Mean  Deviation Rejection Rate (%) †

 

† Rejection percentages were significantly different from 5% at α=0.05 if they fell above 5.43 

or below 4.57 (bold). 
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underlying model was logistic was highest when the incorrectly specified link was either log or 

log-log. On average, in the power settings the statistics agreed on whether or not to reject the 

null hypothesis when an incorrect link was specified between 91% and 96% of the time. When a 

term was incorrectly omitted from the linear predictor, they agreed between 95% and 97% of 

occasions if 500n  , and between 93% and 96% of occasions when 100n  . When there was 

disagreement between the statistics, most of the time HL  and 
2J  agreed with each other and 

disagreed with TG .   

5.8.2.3.a Probit 

Under the probit model, the power to detect either an incorrectly specified probit link function 

or the linear predictor with an omitted term was similar for all the three statistics. The power to 

detect the omission of a quadratic term ranged from low to high, with power increasing as the 

lack of linearity became more pronounced or when the number of observations increased from 

100 to 500. The power to detect an omitted interaction term was low to moderate. There was 

low power to detect the omission of a continuous covariate. In general, the statistics had more 

power to detect the omission of terms from the linear predictor than to detect an incorrectly 

specified link function. All had very little power to identify an incorrect probit model fitted to 

logistic data. This was not surprising, due to the similarities between the logistic and probit 

curves. On average, when an incorrect probit link was specified, the statistics agreed on whether 

or not to reject the null hypothesis 96% of the time. When the linear predictor of the probit 

model had a term omitted, they agreed 97% of the time when  and 96% of the time 

when . When there was disagreement between the statistics, usually HL  and 
2J  agreed 

with each other and disagreed with PrT . 

5.8.2.3.b Log-log 

Under the log-log model, the power to detect either an incorrectly specified log-log link 

function or the linear predictor with an omitted term was similar for all the three statistics. The 

power to detect the omission of a quadratic term ranged from low to high, with power 

500n 

100n 



  

135 

 

increasing as the lack of linearity became more pronounced or when the number of observations 

increased from 100 to 500. The power to detect an omitted interaction term was low to high. 

There was low power to detect the omission of a continuous covariate. In general, the statistics 

had more power to detect the omission of terms from the linear predictor than to detect an 

incorrectly specified link function. All had very little power to detect an incorrect log-log model 

fitted to logistic data. On average, when an incorrect log-log link was specified, the statistics 

agreed on whether or not to reject the null hypothesis 94% of the time. When the linear 

predictor of the log-log model had a term omitted, they agreed 97% of the time when 500n   

and 93% of the time when 100n  . When there was disagreement between the statistics, 

usually HL  and 
2J  agreed with each other and disagreed with LLT . 

5.8.2.3.c Complementary Log-log 

Under the complementary log-log model, the power to detect either an incorrectly specified link 

function or a linear predictor with an omitted term was similar for all the three statistics. All 

three of the statistics had generally more power to detect the omission of terms in the linear 

predictor than to detect an incorrectly specified link function. The power to detect the omission 

of a quadratic term ranged from low to high, with power increasing as the lack of linearity 

became more pronounced or when the number of observations increased from 100 to 500. The 

power to detect an omitted interaction term was low to moderate. There was low power to detect 

the omission of a continuous covariate. The power to detect an incorrect complementary log-log 

model fitted to logistic data was very low, similar to that under the probit settings. On average, 

when a complementary log-log link was incorrectly specified, the statistics agreed on whether or 

not to reject the null hypothesis 96% of the time. When the linear predictor of the 

complementary log-log model had a term omitted, they agreed 96% of the time when 500n   

and 95% of the time when 100n  . When there was disagreement between the statistics, 

usually HL  and 
2J  agreed with each other and disagreed with CllT . 
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5.8.2.3.d Log 

The power to detect an incorrect model when a term was omitted from the linear predictor was 

similarly low among the three statistics; however, when an incorrectly specified log link 

function was fitted to logistic data, LBT  had more power than either HL  or 
2J  to detect the 

incorrect model in most settings. The largest differences in power were observed in settings 

with either a dichotomous term, a quadratic term, or a strongly influential interaction term, with 

the greatest difference in the percentage rejected observed (about 14%) in setting 27, when the 

linear predictor contained a continuous and a dichotomous covariate. The power to detect the 

omission of a quadratic term ranged from low to high, with power increasing as the lack of 

linearity became more pronounced. The power to detect an omitted interaction term was low to 

moderate. There was low power to detect the omission of a continuous covariate. On average, 

when an incorrect log link was specified, the statistics agreed on whether or not to reject the null 

hypothesis 91% of the time. When the linear predictor of the log binomial model had a term 

omitted, they agreed 95% of the time when 500n   and 96% of the time when 100n  . When 

there was disagreement between the statistics, usually HL  and 
2J  agreed with each other and 

disagreed with LBT . 

5.9 Examples 

In two examples, we fit logistic, probit, log-log, complementary log-log, and log binomial 

regression models to data from the Low Birth Weight study described in Applied Logistic 

Regression (2000). The models relate an outcome of a low birth weight among babies to 

variables that are measures of their mother’s behaviour and physical characteristics. In both 

examples we chose covariates with significant Wald test statistics  0.05  for at least one of 

the link functions. We then compared the GOF statistics for the models under all of the links. 

The first group of models, each fitted with a different link function, contain race (white, black, 

other) and the weight of the mother at her last menstrual period as predictors. These variables 

were considered medically important (Hosmer, et al. 2000). In this case, all of the covariates 

had significant Wald test statistics at the 5% level when the logistic model was fit to the data,   
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Table 5.6 Empirical rejection per cent (α=0.05) when a model with a term omitted from 

the linear predictor was fitted to data generated from a model with all terms. 

Setting n HL J
2

T Pr HL J
2

T Pr HL J
2

T Pr HL J
2

T LB

6 100 4.5 4.6 4.4 4.2 4.3 4.1 4.8 4.9 4.6 4.2 4.2 4.0

6 500 5.3 5.3 5.4 4.9 4.9 4.8 5.3 5.3 5.0 4.7 4.7 4.8

7 500 5.2 5.2 5.1 5.1 5.1 4.8 5.0 5.0 4.9 5.0 5.0 5.0

13 500 11.9 12.1 11.6 48.9 49.1 49.7 4.8 4.9 4.9 16.9 17.3 19.5

14 100 32.4 32.6 31.2 26.4 26.6 27.2 25.8 26.0 24.5 18.2 18.4 17.2

14 500 88.5 88.6 87.9 89.9 90.0 89.7 66.7 66.8 65.5 50.8 51.1 50.3

15 500 99.0 99.0 98.9 99.7 99.7 99.7 97.2 97.2 97.0 91.2 91.2 92.0

16 500 100 100 100 100 100 100 100 100 100 100 100 100

19 500 7.3 7.3 7.9 5.5 5.5 6.0 5.2 5.2 5.8 4.6 4.6 5.5

20 100 24.3 24.5 26.1 29.9 30.2 32.9 15.9 16.1 17.0 9.4 9.5 9.9

20 500 51.6 51.8 54.4 98.8 98.8 98.7 62.3 62.5 61.6 33.5 33.7 32.4

21 500 6.9 7.0 7.9 7.2 7.2 7.8 5.7 5.7 6.1 5.9 5.9 6.5

22 500 68.7 69.0 68.3 67.1 67.4 67.9 38.6 38.8 39.0 32.8 33.0 33.9

23 500 97.7 97.7 97.9 96.6 96.7 96.7 76.2 76.4 78.6 65.3 65.4 69.3

24 500 99.9 99.9 100 99.9 99.9 99.9 91.1 91.2 94.1 88.0 88.0 92.4

Probit Log-Log log-log Log

Complementary

 

Table 5.7 Empirical rejection per cent (α=0.05) when a model with an incorrectly 

specified link function was fitted to data generated from an underlying logistic 

model. 

Setting HL J2 TLB HL J2 TLB HL J2 TLB HL J2 TLB

25 5.5 5.6 5.8 17.0 17.2 16.7 7.5 7.6 7.7 30.4 30.8 32.7

26 7.7 7.7 7.5 16.0 16.0 17.6 4.3 4.4 4.6 4.4 4.5 4.7

27 8.2 8.4 8.7 23.6 23.8 24.6 3.9 4.0 5.6 7.8 8.1 21.8

28 8.8 8.9 9.0 30.9 31.1 33.6 5.2 5.4 6.3 20.9 21.3 28.1

29 7.6 7.7 8.2 26.6 26.8 28.8 5.8 5.9 6.5 20.3 20.6 26.8

30 7.8 7.9 8.6 33.6 33.8 35.7 6.7 6.9 8.0 30.5 31.1 42.1

31 2.9 3.0 5.2 2.8 2.8 4.7 3.1 3.2 5.2 3.6 3.6 5.6

32 4.0 4.0 5.6 6.9 7.1 9.3 3.7 3.7 6.2 6.9 7.1 11.5

33 4.9 5.0 5.7 10.3 10.5 11.0 3.8 3.9 5.9 6.7 6.9 14.8

34 5.8 5.9 5.8 13.6 13.9 13.4 4.0 4.2 6.1 9.1 9.3 18.6

35 6.2 6.3 6.6 15.0 15.2 15.4 4.1 4.2 6.0 9.5 9.9 21.8

36 4.7 4.7 4.7 5.6 5.7 5.9 5.3 5.4 5.7 8.2 8.2 10.3

37 5.0 5.0 5.5 5.1 5.2 5.7 5.3 5.3 5.8 6.1 6.3 7.9

38 3.1 3.1 4.9 2.9 2.9 4.8 3.1 3.1 4.8 3.2 3.2 5.0

39 2.5 2.5 4.7 2.6 2.6 5.2 2.5 2.6 4.7 2.7 2.7 5.7

40 2.6 2.7 4.9 3.7 3.8 7.2 2.7 2.9 6.4 7.4 7.6 18.2

Complementary

Probit Log-log log-log Log

 

   



  

138 

 

except for one of the race categories which was kept in the model because it was one of the 

design variables. 

For the second set of models, the covariates selected include the history of hypertension, 

smoking status during pregnancy, race (white, black or other), and the weight, raised to the third 

power, of the mother at her last menstrual period (i.e.
3lwt ). In this case, the covariates were not 

chosen based on medical theory, but based only on Wald test significance levels  0.05   

obtained when a log model was fit to the data.  

The HL , 
2J , and TG  statistics were calculated to assess the fit of these models to the observed 

data, and are reported in Table 5.8. The Low Birth Weight dataset contains 189 observations. 

Groups were formed by ordering the predicted probabilities, and placing 19 in each of the first 

nine groups and 18 in the tenth. Ties were placed into the same group. When they occurred on 

group boundaries, the placement of the ties into the upper or lower group was consistent among 

the different links. 

All three statistics gave similar results in both examples. In the first set of models, the p-values 

of the three statistics indicate that all of the models give a reasonable fit to the data, with the 

complementary log-log model having the closest agreement between the expected and observed 

data values. In the second set of models, all three statistics indicated that both the logit and the 

log-log models fit the data poorly, with p-values less than or near 0.05. All three statistics 

indicate that either the complementary log-log or the log models gave the closest fit.  

 

 

 

 

 

 



  

139 

 

Table 5.8 Values of HL, J
2
, and T

G
., along with their associated p-values, calculated for 

models using data from the Low Birth Weight Study described in Applied 

Logistic Regression (Hosmer, et al. 2000).  

 

Model Link HL p-value J
2

p-value T p-value

logit 7.60 0.47 7.61 0.47 8.20 0.51

probit 7.59 0.47 7.89 0.44 8.53 0.58

1 log-log 8.25 0.41 8.25 0.41 8.70 0.56

complementary log-log 5.28 0.73 5.29 0.73 7.45 0.68

log 9.78 0.28 9.79 0.28 10.18 0.43

logit 16.77 0.03 16.92 0.03 17.93 0.04

probit 12.68 0.12 12.79 0.12 14.26 0.16

2 log-log 15.36 0.05 15.46 0.05 17.51 0.06

complementary log-log 10.44 0.24 10.54 0.23 10.96 0.36

log 9.62 0.29 10.01 0.26 10.31 0.41  

 

5.10 Discussion 

The statistic, TG , based on the Tsiatis goodness-of-fit test for logistic regression, is proposed as 

a goodness-of-fit statistic for GLMs for Bernoulli outcome data with any link function. The 

distributional properties and the performance of TG  under four non-canonical links (probit,  

log-log, complementary log-log, and log) was compared to that of two other test statistics 

developed originally for logistic regression, HL  and 
2J . The deciles-of-risk method was used 

to form groups for all three statistics.  

The distributions of the statistics under each link function were compared to their postulated 

distributions. That is, HL  and 
2J  were both compared to  2 2G  , and TG  to  2 G . In 

the settings investigated, the distribution of TG  followed  2 G  closely under all four links, 

but the distributions of HL  and 
2J  were more dependent on the characteristics of the model. 

When the model contained only a continuous covariate, the distributions of HL  and 
2J  were 

close to  2 2G  , but when the linear predictor contained one continuous covariate and a 

dichotomous term, or two continuous covariates and an interaction term, the curves tended to be 

shifted left and to have higher peaks than that of  2 2G  . The Type I error rates reflected the 
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results of the histograms. The empirical rejection percentages of TG  were within the values 

expected in nearly all cases examined, but this was not true for HL  and 
2J . Although their 

Type I error rates were well maintained overall when the model setting contained only a single 

continuous covariate, they were generally lower than expected when the model also contained 

more than one term, especially when one of the terms was a dichotomous, quadratic, or 

interaction term. The results in the case of the log binomial link were similar to those reported 

by Blizzard, et al. (2006). Because the results indicate that the distribution of HL  or 
2J  varies 

depending on the characteristics of the underlying model, it is unclear how an adjustment to the 

degrees-of-freedom could be made to improve performance, and thus it is recommended that 

HL  and 
2J  be compared to  2 2G   under non-canonical links, when the deciles-of-risk 

grouping method is used.  

The results of the power simulations indicate that all three statistics had only low to moderate 

power to detect an incorrectly specified link function when the true underling model was 

logistic. This is not very surprising, given the potential similarities between the shape of the 

logistic function and those of some of the non-canonical GLM. For example, the lower tail of 

the logit, probit, log, and complementary log-log functions can be very similar, as can the upper 

tail of the logit, probit, and log-log functions. Potential differences are illustrated in Figure 2.2, 

with the largest difference usually occurring between the upper tails of the log function and the 

other link functions when the range of the predicted probabilities includes larger values, much 

greater than 0.5. Under the probit and complementary log-log links, we observed that the power 

was low. However in some settings, when the link function was log or log-log, the power of all 

three statistics was moderate. Under the log link, TG  had more power than either HL  or 
2J  in 

many of the settings. All of the statistics had very similar power to detect the omission of a term 

from the linear predictor. The power ranged from very low to very high, with the greatest power 

observed when the term omitted was a quadratic or interaction term, especially when these 

terms had greater influence in the model. The power to detect the omission of a continuous 

covariate was poor in all cases.  
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The results of the simulation study indicate that TG  offers some advantages over HL  or 
2J  

when evaluating the fit of non-canonical GLM, particularly when the log link function is 

chosen. Under all of the links studied, TG  maintained the Type I error rate well, regardless of 

the number or types of terms included in the model. This was not the case for HL  and 
2J . In 

addition, our simulation study indicates that under the log link, LBT  offers higher power to 

detect an incorrectly specified log link when the true underlying model is logistic.  
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Chapter 6 Overall Discussion 

6.1 Overview of the Chapter 

 

We begin by giving an overview of the earlier chapters, and then outline the structure of the 

current chapter. The background material for this work was discussed in Chapters 1 to 3. In 

Chapter 4, an analysis was made comparing the algebraic forms of three goodness-of-fit 

statistics, HL , 
2J , and T , all of which can be used to assess the fit of logistic regression 

models with continuous covariates. A simulation study was also presented that investigates the 

distributional characteristics of these statistics and compares their performances when applied to 

settings with finite samples. In Chapter 5, a generalized form of the Tsiatis statistic, TG , was 

introduced. It can be applied to any GLM with Bernoulli outcomes, regardless of link function. 

We show that when TG  was derived for the canonical logistic model, it reduces to the usual 

Tsiatis statistic, T . We also derived the terms of TG  for four non-canonical GLM in common 

use: the probit, log-log, complementary log-log, and log binomial models. Corresponding forms 

of HL  and 
2J  are also given. A simulation study was conducted to investigate whether the 

distribution of the new statistic when applied to a finite sample and when the deciles-of-risk 

grouping method is used would be approximately  2 G .In addition, the performance of the 

three statistics when evaluating probit, log-log, complementary log-log, and log binomial 

models was also studied. Chapter 5 concludes with the presentation of two examples where  

HL , 
2J , and TG  are used to assess the fit of probit, log-log, complementary log-log and log 

binomial models that were fitted to a real world dataset. In this current chapter we synthesize 

the results of the earlier chapters, and discuss how the work fits into the broader scope of current 

research. We discuss what contribution it makes, why this is significant, and the limitations of 

the work. Finally, we make suggestions for future research. 
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6.2 Broad View of Research 

The relationship between observed Bernoulli outcomes and a set of explanatory covariates can 

be modelled with a GLM. The most commonly used GLM in this situation is the logistic 

regression model. One critical step in the evaluation of any GLM is to assess how well it fits the 

observed data. When the explanatory covariates are discrete and the model estimated 

frequencies are not small, it is appropriate to use two well-known goodness-of-fit statistics: the 

deviance and Pearson’s chi-squared. However, when the model contains continuous covariates, 

or covariates that behave as though they were continuous, then the distributional theory behind 

these statistics is violated, and their use is not appropriate. Other goodness-of-fit statistics must 

be used for the assessment of the model fit. Several statistics have been proposed that employ 

artificial grouping methods. 

The Hosmer-Lemeshow goodness-of-fit statistic is one of the most widely used statistics for 

evaluating the fit of logistic regression models containing continuous covariates. Usually, HL  

is calculated using the deciles-of-risk grouping method. This method forms groups based on the 

predicted probabilities. Under this method, the group boundaries are determined by referencing 

the random outcome data; thus, the boundaries are themselves random. This results in a 

reduction of the degrees of freedom of the distribution of the statistic. Extensive simulations  

by Hosmer, et al. (1980) confirmed that the asymptotic distribution of HL  is  

approximately  2 2G  . 

Two other goodness-of-fit statistics for logistic regression are 
2J  (Pigeon, et al. 1999b) and T  

(Tsiatis 1980). When calculating these two statistics, artificial grouping of the data is usually 

accomplished through partitioning the covariate space. Because partitioning is performed 

without reference to the observed data, the boundaries of the partition are not random. Pigeon 

and Heyse state that the distribution of 
2J  does not rely on a particular grouping strategy. They 

report the asymptotic distribution of 
2J  to be approximately  2 1G  , regardless of grouping 

method, which suggests that applying other methods such as the deciles-of-risk should not 

affect its distribution. Halteman (1980), in his unpublished thesis, evaluated the distributional 
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characteristics of T  when the deciles-of-risk method was used. He found that the distribution of 

T  was unaffected by random cell boundaries. Through simulations he found that under finite 

samples, the distribution of T  was approximately  2 1G  . 

 

6.3 Need For This Research 

This work addresses several questions. One topic that we address is how HL , 
2J , and T  are 

related algebraically. Another is whether there is any difference in their performances. Although 

the performance of HL  has been compared to many other omnibus goodness-of-fit statistics 

(Hosmer, et al. 1997, Kuss 2002), we know of no published simulation studies that assess the 

performances of HL , 
2J , and T  under the same grouping method. We applied the deciles-of-

risk method to all three statistics in order to isolate any differences in performance attributable 

to differences in their algebraic forms. 

In addition, we sought to verify the reported distributions of the three statistics. Specifically, we 

checked whether HL  had a distribution that was approximately  2 2G  , and sought to 

confirm that 
2J , and T  had distributions that were approximately  2 1G  .  

Few goodness-of-fit statistics have been developed for non-canonical GLM with Bernoulli 

outcomes when the models contain continuous covariates. Farrington (1995, 1996) considered 

goodness-of-fit methods for non-canonical GLM; however, these methods only address the 

assessment of the fit of models with discrete covariates. Blizzard, et al. (2006, 2007), have 

considered the distributional characteristics and performance of HL  when applied to binary log 

binomial models. Other statistics they evaluated for assessing the fit of log binomial models 

included the standard normalized version of the Pearson chi-square (Osius, et al. 1992), the 

standardized unweighted sum of squares, the Stukel score test (Stukel 1988), the Hjort-Hosmer 

statistic (Hosmer, et al. 2002), and the le Cressie and van Houwelingen statistic (le Cessie, et al. 

1991). Without appropriate test statistics for evaluating the fit of non-canonical GLM, a less 

than optimal model may be selected. A poorly selected model could affect the interpretation of 

research results. 
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6.4 Contribution and Significance of This Research  

Our research shows that HL , 
2J , and T  are closely related algebraically. We observed that the 

2J  statistic is simply the T  statistic calculated with the covariance matrix (4.3) rather than the 

conditional covariance matrix (5.14). We showed that 
2HL J , and also under what conditions 

2J  is much larger than HL .  

In a simulation study, we examined the distributional properties and performance of HL , 
2J , 

and T  when assessing logistic regression models with continuous covariates under the deciles-

of-risk grouping method. We found that HL  and T  followed their reported approximate 

asymptotic null distributions,  2 2G   and  2 1G   respectively, but that 
2J  did not. 

Instead, we found the distribution of 
2J  to be much closer to  2 2G  , rather than the 

reported  2 1G   (Pigeon, et al. 1999b), when calculated using the deciles-of-risk  

grouping method.  

When HL  and 
2J  were assumed to follow a  2 2G   distribution, and T  a  2 1G   

distribution, we found that T  controlled the Type I error rate ( 0.05  ) about twice as often as 

HL  and 
2J . The null rejection percentages of all three statistics were at or near the values 

expected when the linear predictor contained only continuous covariates. However, the Type I 

error rates of HL  and 
2J , in some settings, were lower than expected when the models 

contained either a dichotomous, quadratic, or interaction term. Curiously, all three statistics 

were observed to have Type I error rates that were higher than expected in a series of settings 

with two continuous covariates and a quadratic term when the sample size was small  100n  .  

All three statistics had similar power to detect an incorrectly specified logistic model. The 

statistics agreed on whether to reject the null hypothesis about 97% of the time. However, when 

they did not agree, in most cases HL  and 
2J  agreed with each other and disagreed with T . 

When the linear predictor was incorrectly specified, all three statistics had low power to detect 

the omission of an interaction term and the omission of a quadratic term that had limited 

departure from linearity. As the departure from linearity of the quadratic term increased, the 
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power of each of the statistics to detect the omission of the quadratic term also increased. In one 

series of settings in which the nonlinearity of the model increased, the power became very high. 

Finally, all three of the statistics generally had low power to detect an incorrectly specified link 

function, but there were two exceptions. The first was when the true model had asymmetric tails 

and the sample size was 500n  . In this case the power of all three statistics was very high. 

The second was when the true model was a complementary log-log model, again with 500n  . 

In this case the power of T  was higher than the other two statistics, although all three had  

low power. 

The original Tsiatis goodness-of-fit score test for logistic regression is a quadratic form of 

observed counts minus expected counts. We found, however, that this test statistic could not be 

applied to non-canonical GLM, as it did not result in this form under non-canonical link 

functions. By augmenting the original Tsiatis model with an additional term, we generalized the 

original Tsiatis score test so that when it is applied to any GLM with Bernoulli distributed 

outcomes, regardless of link function, it will result in a quadratic form of observed counts minus 

expected counts. We derived both the general formula for the new statistic and the specific 

terms of the statistic under the probit, log-log, complementary log-log, and log binomial models. 

Unlike the original Tsiatis statistic, we showed that the conditional covariance matrix used in 

the calculation of TG  is nonsingular. Thus the calculation of a generalized inverse is not 

required. This simplifies the calculation of the statistic. This, along with the simplicity of the 

deciles-of-risk grouping method, may make this test statistic more accessible to researchers who 

lack skills in advanced mathematics.  

We conducted a simulation study comparing the distributional characteristics and performance 

of HL , 
2J , and TG , when assessing the fit of probit, log-log, complementary log-log, and log 

binomial models with continuous covariates. We postulated, based on our earlier results and the 

results in section 5.4, that the distributions of HL  and 
2J  were approximately  2 2G  , 

while the distribution of TG  was approximately  2 G . Our results, from three simulation runs 

with very high replication rates, indicate that the distribution of TG  followed  2 G  closely 
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under all four links, but the distributions of HL  and 
2J  were more dependent on the 

characteristics of the model. The distributions of HL  and 
2J  were close to  2 2G   when 

the model contained only a continuous covariate, but when the linear predictor contained one 

continuous and a dichotomous term, or two continuous covariates and an interaction term, the 

results indicated that the degrees of freedom of the distributions of HL  and 
2J  may be reduced. 

We observed similar results in our null simulations, which were conducted with fewer 

replications, but over a greater variety of settings. Overall, TG  maintained the Type I error rate 

well under all of the links studied, regardless of the number or types of terms included in the 

model. On the other hand, the Type I error rates of HL  and 
2J  were more dependent on the 

characteristics of the linear predictor. They were generally well maintained when the model 

setting contained only a single continuous covariate, but were often lower than expected when 

the model was more complex, especially if the one of the terms was dichotomous, quadratic, or 

an interaction term. 

All three of the statistics had similar power to detect the omission of a term from the linear 

predictor in the fitted model. Power ranged from low to high, with the greatest power observed 

when the omitted term was a quadratic or interaction term. The three statistics had low to 

moderate power to detect an incorrectly specified probit, log-log and complementary log-log 

link function when the true underling model was logistic. The highest power was observed 

under the log and log-log links. When evaluating incorrectly fit log binomial models, LBT  had 

more power than HL  and 
2J  to detect an incorrectly specified log link, especially when the 

underlying logistic model included dichotomous, quadratic or interaction terms.  

 

6.5 Limitations of This Research 

A limitation of any simulation study is that it is impossible to investigate all conceivable 

scenarios. This is due to limitations in time and funding, and the need to state a finite focus for 

the thesis. We limited our focus in several ways. First we compared only three goodness-of-fit 
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statistics, HL , 
2J , and TG  (including the original T ). We selected these because of their 

apparent close algebraic relationships, and because little published work had been done to 

compare their performances under the same grouping method.  

Secondly, we chose to compare the statistics under only one grouping method, the deciles-of-

risk method. More grouping methods were not considered, in part due to time constraints. 

Although the deciles-of-risk method has some deficiencies, it is a well-established method cited 

widely in the literature, and it is easily calculated and intuitively appealing to applied scientists.  

We also limited the number of settings studied, again due mainly to restrictions on time. 

Although the number and variability of the settings were limited, we felt that there was enough 

variation in the combinations studied to be able to make some assessment of the performances 

of the statistics.  

A further limitation is that only four non-canonical links were studied. This again was mainly 

dictated by time constraints. We strove to evaluate the statistics under some of the more 

commonly used GLM for Bernoulli outcomes, focusing on the logistic (as the original T ), and 

the non-canonical probit, log-log, complimentary log-log, and log binomial models. Other 

possible links that could be studied are the log complement and the identity links  

(see Hardin, et al. (2007)). 

Another limitation is that we were unable to recommend an adjustment for the degrees-of-

freedom of HL  and 
2J . Because the distribution seemed to vary depending on the types of 

covariates in the model and their relative influence in the model, it was not possible to 

determine a single adjustment.  

 

6.6 Future Research 

The scope of this research is finite, and has produced some further questions that could be 

pursued in future research. More work needs to be done to establish the distributional properties 

of 
2J . Specifically, further research needs to be done to determine its distribution under 
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different grouping methods. This should include simulation studies where 
2J  is calculated 

using grouping strategies that partition the covariate space, as well as methods that reference the 

observed data.  

In addition, simulation studies using more complex settings (i.e. >3 covariates) could be 

conducted to further establish the distributional characteristics and performance of HL , 
2J , and 

TG  (including T ). 

Another potential research direction would be to study how HL , 
2J , and TG  can be 

implemented when data are sparse. One approach is to use parametric Monte Carlo bootstrap 

methods to generate empirical distributions that represent the distributions of HL , 
2J , and TG  

when the null hypothesis holds. The methods used by Tollenaar and Mooijaart (2003), who 

performed a simulation study on several well-known goodness-of-fit tests whose distributions 

are affected by sparse data, could be adopted for this research. 

Finally, another possible research direction would be to apply the TG  goodness-of-fit statistic to 

the evaluation of other non-canonical GLM. This might include simulation studies of other non-

canonical GLM with Bernoulli outcomes, such as the log complement link (Hardin, et al. 2007). 

Another tack would be to extend the TG  methods to non-canonical GLM with outcomes from 

the Poisson distribution. 
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Appendix A Derivation of Terms for the Calculation of T
G
 

The derivation of the terms need for the calculation of TG  when assessing logit, probit,  

log-log, complementary log-log, and log binomial models are given below. 

 

A1 Canonical Logit Link 

Under the logistic model the additional term (5.11), using (2.29), is  

   0

0

1h





  


x β        (A1.1) 

Thus the model becomes the original Tsiatis model, (3.9), and the usual Tsiatis statistic 

(3.11), T , is used to test the fit of the null model to the data. 

 

A2 Non-Canonical Links 

A2.1 Probit Link (TPr) 

Under the probit model, the term (5.11), using (2.34), is 
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and thus the model (5.10) is 

    Pr ,  x I        (A1.3) 

where  
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The derivatives necessary for calculating the terms of PrT  are 
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since  
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and 
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(Hardin, et al. 2007) 

Under the null hypothesis,    Pr Pr
ˆ ˆ x,I x  and    0

ˆ ˆ    , and will be denoted 

generally as Pr̂  and ̂  respectively. Thus under the null hypothesis the thg  term of the 

score vector, (5.21), becomes 
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The elements of the covariance matrix  under the null hypothesis are 
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A2.2 Log-log Link (TLL) 

Under the log-log model the term (5.11), using (2.41), is 

V
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and thus the model (5.10) is  
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The derivatives necessary for calculating the terms of LLT  are 
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Under the null hypothesis,    ˆ ˆ
LL LL x,I x , and will be denoted generally as ˆ

LL . Thus 

under the null hypothesis the thg  term of the score vector, (5.21), becomes 
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The elements of the covariance matrix V  under the null hypothesis are
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A2.3 Complementary Log-log Link (TCll) 

Under the complementary log-log model the additional term (5.11), using (2.42), is 
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and thus the model (5.10) is  
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The derivative necessary for calculating the terms is 
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Under the null hypothesis,    ˆ ˆ
Cll Cll x,I x , and will be denoted generally as ˆ

Cll . Under 

the null hypothesis the thg  term of the score vector, (5.21), becomes 
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The elements of the covariance matrix V  under the null hypothesis are 
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A2.4 Log Link (TLB) 

Under the log binomial model, which has the log link function, the additional term (5.11), 

using (2.46), is 
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and thus the model (5.10) is  
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The derivatives necessary for calculating the terms of LBT  are 
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Under the null hypothesis,    ˆ ˆ,LB LB x I x , and will be denoted generally as ˆ
LB . 

Thus under the null hypothesis the thg  term of the score vector, (5.21), becomes 
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The elements of the covariance matrix  under the null hypothesis are 
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