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Abstract 

Alzheimer’s disease (AD) is the leading cause of dementia in the elderly. In 

countries with aging populations, such as Australia, the prevalence of AD is 

projected to increase substantially. AD is characterised by two distinctive 

pathological lesions in the brain, amyloid plaques and neurofibrillary tangles. The 

major component of amyloid plaques is an aggregating protein termed the beta-

amyloid protein (Aβ). Aβ is formed normally from a larger precursor protein, 

known as the beta-amyloid precursor protein (APP). Although APP is centrally 

involved in the pathogenesis of Alzheimer’s disease and the production of Aβ, 

relatively little is known about its normal function. Deciphering the function of 

APP in the brain may be essential for the development of effective AD 

therapeutics.  

APP is a type I transmembrane glycoprotein that can be proteolytically processed 

by α, β- and γ-secretases to produce a number of secreted ectodomain fragments 

termed sAPPβ, sAPPα, Aβ and p3. Many studies have suggested that sAPPα may 

act in the maintenance and development of the central nervous system, by acting 

as a paracrine factor. In vitro, sAPPα has been reported to modulate the 

proliferation and differentiation of a variety of cell types. However, the 

mechanistic basis for these effects is unclear. In part, this uncertainty has arisen 

because the cell-surface receptor molecules that interact with sAPPα are not 

known. 

Previous studies have reported that sAPPα may interact with a novel lipid-raft 

type membrane domain in the cell. Furthermore, sAPPα has been reported to bind 

to the lipid GM1-ganglioside. On the basis of these reports, the work in this thesis 

explored the hypothesis that an interaction of APP with cell surface lipids could 

facilitate binding and/or signalling by sAPPα.  
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To determine if sAPPα is able to interact with a sub-group of lipids. The relative 

ability of sAPPα to bind to 27 physiological lipids was examined using a protein-

lipid overlay assay. This assay identified that sAPPα could bind selectively to 

phosphoinositide lipids (PIPs). Further, a recombinant fragment of APP 

corresponding to the E1 N-terminal domain (APP-E1) also bound selectively to 

PIPs, suggesting there is a PIP-binding region within the E1 domain of APP.  

To investigate whether APP and PIP could interact on the cell surface, it was first 

necessary to demonstrate that PIPs are present on the cell surface. A live cell 

immunolabelling method was used to examine the location of cell surface PIPs. 

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) immunoreactivity was found to 

be present on the surface of cells in primary murine hippocampal cultures in 

discrete puncta <1 µm in size. This observation was also confirmed using a 

recombinant PI(4,5)P2 biosensor protein.  

To examine whether APP could interact with cell-surface PIP, studies were 

performed to examine the degree of colocalisation of exogenous APP-E1 and cell-

surface PI(4,5)P2. APP-E1 that was added to primary hippocampal cultures bound 

to the surface of neurons in discrete puncta <1 µm in size. The cell-bound APP-

E1 and the cell-surface PI(4,5)P2 were highly co-localised on the surface of 

neurons. However, cell-surface PI(4,5)P2 was also present on glial cells in culture 

where APP-E1 did not bind. Furthermore the binding of APP-E1 to cells could 

not be inhibited using a water soluble analogue of PI(4,5)P2. Therefore, these data 

suggested that APP-E1 interacts with cell-surface PI(4,5)P2, but the interaction 

was not sufficient to explain why APP-E1 binds to the cell surface.  

As the APP E1 domain contains a heparin-binding site, the role of this region was 

investigated in the binding of APP-E1 to PIP and also the binding of APP-E1 to 

cells. Heparin did not block the binding of APP-E1 to PIP in vitro, suggesting the 

heparin-binding region and the PIP-binding region in the APP E1 domain are 
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distinct. However, heparin did inhibit the binding of APP-E1 to cells, suggesting 

that the heparin-binding region of APP is required for binding to cells. 

Furthermore, heparitinase treatment of cells significantly reduced cell surface 

heparan sulfate immunoreactivity, but did not affect the binding of APP-E1 to 

cells. These results suggest that APP may interact with PIP on the cell surface 

along with another cell surface component that binds to the heparin-binding site, 

which is not heparan sulfate. 

As PIPs are involved in many aspects of cellular physiology, it was hypothesized 

that APP may signal through modulation of levels of PIPs. To address this 

hypothesis, levels of PIPs were measured in primary cortical cultures by two 

methods. Firstly, a mass-spectroscopy based method was developed to measure 

total levels of cellular PIP. No change in total PIP levels upon sAPPα treatment 

could be detected using this method. Secondly, levels of cell-surface PIPs were 

determined using an array of anti-PIP biosensors and antibodies. Under resting 

conditions, only PI(4,5)P2 was present on the surface of cells. However, in the 

presence of APP-E1, there was an increase in the level of cell surface PI(3,4,5)P3 

and an increase in the level of PI(4,5)P2, indicating that APP binding to cells may 

result in an increase level of cell surface PIPs. 

The data presented in this thesis demonstrate that APP has a novel N-terminal 

PIP-binding domain. This domain may play a role in the normal function of APP, 

by facilitating PIP-dependent signalling.  
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Alzheimer’s disease (AD) is a progressive neurodegenerative condition and the 

leading cause of dementia in the elderly. Alois Alzheimer first described the 

symptoms and pathology of AD in a 51-year-old female dementia patient to a 

meeting of psychiatrists in Tübingen, Germany (Alzheimer, 1907). Using the 

newly developed Bielschowsky’s silver-staining technique, Alzheimer was able to 

examine the post-mortem brain of the patient to identify characteristic 

pathological lesions. Alzheimer’s colleague and mentor, Emil Kraepelin later 

named the condition Alzheimer’s disease (Kraepelin, 1910). It was not until many 

decades later that it became accepted that pre-senile AD and late-onset dementia 

were indistinguishable and the definition of AD was expanded to include senile 

dementia (Blessed et al., 1968). Today, there are considered to be two forms of 

AD, early onset AD (EOAD), also known as familial AD (FAD), which has a 

clear genetic heritability and late-onset AD (LOAD), which is often referred to as 

sporadic AD (sAD). Both EOAD and LOAD have a similar clinical manifestation, 

but differ in the age of onset (Reitz et al., 2011).  

1.1.1 Clinical features of AD 

AD is the leading cause of dementia (Reitz et al., 2011). Dementia can be defined 

as an acquired syndrome of impaired cognitive function (Tarawneh and 

Holtzman, 2012). Dementia can present clinically as a combination of memory 

impairment, language disturbance, impaired motor activity, agnosia (impaired 

recognition) and disturbed executive function (Tarawneh and Holtzman, 2012). 

Currently, AD can only be confirmed as the cause of dementia by post-mortem 

pathological analysis, so the diagnosis of probable AD is used based on clinical 

criteria (Tarawneh and Holtzman, 2012). 
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The early stages of dementia are challenging to distinguish from the decline in 

cognitive function associated with normal ageing (Tarawneh and Holtzman, 

2012). Mild cognitive impairment (MCI) can often be detected in AD patients 5 

years before clinical diagnosis of probable AD (Linn et al., 1995). However, MCI 

cannot be used as an accurate predictor of AD or dementia, as MCI can often be 

caused by a short-term fluctuation in cognitive performance. The annual 

conversion rate of individuals with MCI to dementia is approximately 10% 

(Bruscoli and Lovestone, 2004; Ward et. al., 2013; Mitchell and Shiri-Feshki, 

2009). 

Clinical diagnosis of dementia usually occurs in the mild to moderate stages of 

dementia progression. In the mild stage, patients display a significant impairment 

of learning and memory, especially recent declarative memory. This memory 

impairment affects the ability to perform complex tasks, although patients with 

mild dementia are able to live independently (Forstl and Kurz, 1999). As the 

disease progresses into moderate dementia, the symptoms increase in severity, 

impacting many cognitive functions. Reasoning, organisation, planning, literacy, 

communication and facial recognition deteriorate to the extent that the patient 

requires close supervision (Forstl and Kurz, 1999). Patients with severe dementia 

are reliant on caregivers and usually require institutionalisation. Death usually 

occurs over a period of 5 – 8 years after diagnosis (Forstl and Kurz, 1999). 

Mortality in dementia patients is most often caused by bronchopneumonia or 

myocardial infarction (Brunnstrom and Englund, 2009; Burns et al., 1990).  
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1.1.2 Impact and prevalence of AD 

Alzheimer’s disease presents a major-challenge to global healthcare systems. In 

Australia, the number of people with dementia in 2012 was estimated to be over 

300,000 (Australian Institute of Health and Welfare, 2012). Globally in 2010, 

dementia was estimated to affect 35.6 million people (Prince et al., 2013). Age is 

the biggest risk factor for LOAD (Reitz et al., 2011). In developed countries with 

an aging population, the prevalence of AD is projected to increase significantly, 

resulting in an increased social and economic demand for care provision 

(Alzheimer’s Australia, 2010, Prince et al., 2013). If current dementia care health 

policy is not altered, there will be a significant shortfall of care provision to meet 

the increase in people with dementia (Alzheimer’s Australia, 2010). Therefore, 

dementia represents an emerging health care priority for the health care system in 

Australia (Alzheimer’s Australia, 2010). 

1.2 Pathological features of AD 

Pathologically, AD is characterised by a number of lesions. The original 

description of AD described the presence of neuritic plaques, neurofibrillary 

tangles, and adipose inclusions in glia (Alzheimer, 1907; Alzheimer et al., 1995). 

In AD, there is gross brain atrophy in the late stages of the disease, degradation of 

synapses, and deposition of amyloid in brain blood vessels (cerebral amyloid 

angiopathy; Braak and Braak, 1991; Thal et al., 2008; Terry et al., 1991). Much of 

the basis of our understanding for the processes that underlie Alzheimer’s disease 

has come from careful investigation of these pathological lesions. 
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1.2.1 Amyloid plaques 

Amyloid plaques are focal pathological lesions that are characteristic of AD 

(Braak and Braak, 1991). Amyloid plaques are generally found in the six layers of 

the isocortex, and are most abundant in layers II-V (Braak and Braak, 1991). At 

the centre of the amyloid plaque, there is a dense core of amyloid, which is an 

insoluble fibrous protein aggregate that can be identified by its ability to retain 

amyloid stains such thioflavin or Congo red (Sipe et al., 2010). The main 

proteinaceous component of the amyloid core was initially identified in 

cerebrovascular amyloid in both Down syndrome and AD patients (Glenner and 

Wong, 1984b). Shortly afterward, Glenner and Wong (1984a) identified the same 

protein as the amyloid forming protein in AD plaques. This observation was 

quickly replicated by a number of studies and the protein is now known as β-

amyloid (Aβ; Selkoe et al., 1986; Masters et al., 1985). Aβ is now known to be 

produced from a larger precursor protein, the β-amyloid precursor protein 

(discussed in Section 1.3.1).  

Studies of AD brain using monoclonal antibodies directed against Aβ revealed 

that there are dense-core thioflavin positive plaques present in AD, but also 

immunoreactive accumulations of Aβ that are not stained by thioflavin. These are 

termed diffuse plaques (Joachim et al., 1989; Tagliavini et al., 1989; Yamaguchi 

et al., 1988). Diffuse plaques may represent an early stage of neuritic plaque 

development (Gowing et al., 1994; Iwatsubo et al., 1994; Iwatsubo et al., 1995; 

Lemere et al., 1996). However, diffuse plaques have also been detected in non-

demented elderly individuals and in young individuals after brain injury (Roberts 

et al., 1994; Armstrong et al., 1996; Tagliavini et al., 1989; Yamaguchi et al., 
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1998). As the presence of diffuse plaques is not restricted to patients with AD, the 

conversion of diffuse plaques to dense-core plaques may be a distinguishing 

factor in the development of AD. Aged subjects with diffuse plaques may 

therefore have a pre-clinical AD phenotype (Morris et al., 1996; Villemagne et al., 

2008). 

The spatial deposition of amyloid plaques in AD appears to follow a temporal 

progression. Studies by Braak and Braak (1991) were influential in characterising 

this process, which were grouped into three stages. In stage A, amyloid deposits 

are found in the isocortex, particularly in the basal portions of the frontal, 

temporal and occipital lobes. In stage B, a medium density of Aβ deposits is 

present in all isocortical association areas except the primary sensory areas and 

the primary motor areas. In stage C, all isocortical areas have dense deposits of 

amyloid, including the hippocampus. Deposits are also present in subcortical 

structures, the striatum, thalamus, hypothalamus and sub-thalamic and red nucleus 

in this stage (Braak and Braak, 1991). More recently, a progression of plaque 

deposition with five stages has been proposed, based on immunohistochemical 

detection of plaques, as well as silver staining (Thal et al., 2002). It is important to 

note however, that although amyloid deposition does progress in a staged manner 

throughout particular regions of the brain, this does not correlate with the severity 

of symptoms of AD nor the duration of illness (Terry et al., 1991; Hyman et al., 

1993).  

Although Aβ is the main component of amyloid plaques, a number of other 

plaque components have also been identified in amyloid plaques by biochemical 

and histological techniques. These include α1-antichymotrypsin, cystatin C, 
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proteoglycans, apolipoprotein E, collagen XXV, clusterin and complement 

inhibitor (Abraham et al., 1988; Atwood et al., 2002; Hashimoto et al., 2002; 

Levy et al., 2001; May et al., 1990; Namba et al., 1991; Snow et al., 1988; DeWitt 

et al., 1994; Vinters et al., 1990; Young et al., 1989). A more recent proteomic 

study using laser-capture microdissection to isolate plaques identified 480 

different proteins that were present in amyloid plaques (Liao et al., 2004). 

However, a study with a similar approach, but with a formic acid extraction step 

only identified Aβ, suggesting that formic acid extraction may obscure the 

detection of some plaque proteins (Soderberg et al., 2006). Both studies showed 

that Aβ was the major component of plaques.  

1.2.2 Neurofibrillary tangles 

Neurofibrillary tangles (NFTs) are intracellular accumulations of protein that 

result in dystrophic, swollen tangle-bearing neurons, often found surrounding 

plaques. Importantly, NFTs are a feature of many neurodegenerative diseases, not 

only AD (Morris et al., 2011). In AD, the distribution of NFTs is less variable 

than that of amyloid plaques, and follows a temporal progression that has been 

characterised into six stages (Braak and Braak, 1991). Progression of NFT 

pathology is a better correlate of clinical symptoms of dementia than Aβ 

deposition (Bierer et al., 1995). In stages I-II, most of the NFTs are confined to a 

single layer of the transentorhinal region (Braak and Braak, 1991). Stages I-II 

represent nonclinical pathology and can be present in individuals as young as 20 

(Braak et al., 2011). In stage III-IV (the limbic stages), the transentorhinal layer 

and entorhinal layer become severely affected with NFT pathology. In addition, 

there is modest pathology in regions of the hippocampus (Braak and Braak, 
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1991). Stages III-IV are thought to represent incipient AD, and are present in 10% 

of adults aged 50, and in 50% of adults aged 80 (Braak et al., 2011). In stages V-

VI (the isocortical stage), severe NFT pathology is found in the hippocampus and 

isocortex and destruction of the isocortex is apparent (Braak and Braak, 1991). 

Stages V-VI represent full-blown AD and are present in 10% of adults aged 80 

and 20% of adults aged 90 (Braak and Braak, 1995). 

1.2.2.1 Biochemical characterisation of NFTs. 

Electron microscopy studies of NFTs reveal that dystrophic neurons contain 

accumulations of 10 nm diameter fibres that form helical pairs (Kidd, 1963; 

Wisniewski et al., 1976). These structures are termed paired helical filaments 

(PHFs). Immunohistochemical and biochemical studies show that a component of 

these PHFs is the microtubule-associated tau protein (Delacourte and Defossez, 

1986; Grundke-Iqbal et al., 1986; Kosik et al., 1986; Nukina and Ihara, 1986; 

Wischik et al., 1988; Wood et al., 1986). In PHFs, tau is abnormally 

phosphorylated (Biernat et al., 1992). In vitro phosphorylation of recombinant tau 

can induce assembly of tau into PHFs (Biernat et al., 1992; Hanger et al., 1992). 

The tau in PHFs is unable to bind to microtubules and is biologically inert (Iqbal 

et al., 1994). However, hyperphosphorylated tau that is not accumulated into 

PHFs has been suggested to actively inhibit microtubule polymerization by 

binding to normal tau and other microtubule-binding proteins (Alonso et al., 1994; 

Alonso et al., 1997). Understanding the biology of tau protein in disease remains a 

subject of intense investigation and is too extensive to be discussed here in further 

detail, however this topic has been reviewed recently elsewhere (Iqbal et al., 

2009; Morris et al., 2011). 
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1.2.3 Cerebral amyloid angiopathy 

Approximately 80% of patients with AD have amyloid accumulation in the 

cerebral and leptomeningeal vessels (Ellis et al., 1996). This type of deposit is 

termed cerebral amyloid angiopathy (CAA; Glenner and Wong, 1984; Ellis et al., 

1996). CAA is characterised in arteries and veins by deposits of Aβ in the outer 

basement membrane and between smooth muscle cells (Thal et al., 2008). CAA is 

also present in capillaries of some individuals, where Aβ accumulates on the 

capillary basement membrane (Thal et al., 2008).  

CAA is present in normal aged individuals and there is a strong increase in 

prevalence of CAA with age (Attems et al., 2008; Greenberg and Vonsattel, 1997; 

Thal et al., 2008; Sillus et al., 1993). However, CAA is distributed more widely in 

the brain in patients with AD, and is also more severe (Thal et al., 2003). CAA is 

the cause of a number of vascular complications, such as cerebral haemorrhage 

and ‘microbleeds’ that may contribute to the cognitive decline seen in AD 

(Kalyan-Raman and Kalyan-Raman, 1984; Mandybur, 1986; Benedictus et al., 

2013; Thal et al., 2008). CAA pathology has been associated with the severity of 

dementia in AD, although further research is needed to establish whether this 

represents a causal or a concurrent relationship (Attems et al., 2007; Thal et al., 

2003). 

1.3 Aβ  hypothesis of AD 

The predominant hypothesis to explain the molecular pathogenesis of AD is the 

amyloid hypothesis (reviewed by Hardy and Higgins, 1992). The amyloid 
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hypothesis places Aβ as the primary effector of the biochemical and cellular 

changes that underlie AD. This hypothesis is based on a number of lines of 

evidence that will be discussed in this section. Firstly, Aβ is the primary 

component of amyloid plaques, the pathological lesion that characterises AD. 

Secondly, mutations that cause familial forms of Alzheimer’s disease have been 

mapped to the β-amyloid precursor protein and also to enzymes that produce Aβ 

from the β-amyloid precursor protein (Section 1.5.1). Thirdly, transgenic animal 

models carrying these mutations have phenotypes that recapitulate some of the 

neurological and pathological lesions of AD (Section 1.5.2). Finally, Aβ in 

various aggregation states has a capacity to act in a neurotoxic manner (Section 

1.3.2). This section will discuss the cellular and biochemical changes that underlie 

the production of Aβ, and also discuss evidence for a central role of Aβ in AD 

pathogenesis.  

1.3.1 Aβ production  

The biochemical process that results in the production of Aβ has been well 

studied. A major breakthrough came from the observation that Aβ is derived from 

a larger precursor protein (Kang et al., 1987). The sequence of Aβ was used to 

identify a precursor gene on chromosome 21, which was termed the β-amyloid 

precursor protein (APP; Kang et al., 1987; Tanzi et al., 1987; Robakis et al., 1987; 

Goldgaber et al., 1987). APP is a 100 – 130 kilodalton (kDa) type 1 

transmembrane glycoprotein (Kang et al., 1987; Goldgaber et al., 1987). 

Alternative mRNA splicing produces three major isoforms of APP, which consist 

of 695, 751 and 770 amino-acid residues (discussed in section 1.4). The 751 and 

770 isoforms are widely expressed throughout the body, but neurons express 

higher levels of the 695 isoform (Goedert, 1987; Goldgaber et al., 1987; Tanzi et 



 11 

al., 1987). Aβ is produced by the action of proteolytic enzymes known as 

secretases on APP, which can produce Aβ isoforms ranging from 37 – 48 amino 

acids in length (Qi-Takahara et al., 2005). There are three major proteolytic 

activities identified in the processing of APP that form two distinct pathways: the 

amyloidogenic pathway and the non-amyloidogenic pathway (Fig.1.1). Under 

normal conditions, the majority of APP is processed via the non-amyloidogenic 

pathway (Sisodia et al., 1990).  

In the non-amyloidogenic pathway, α-secretase cleavage occurs at lysine 687 of 

APP (amino-acid numbering relative to the 770 amino-acid APP isoform). This 

cleavage produces two fragments, an 83-residue C-terminal fragment of APP 

(C83), which remains in the membrane, and a large soluble ectodomain fragment 

(sAPPα). 

Alternatively, in the amyloidogenic pathway, APP undergoes cleavage by β-

secretase, which cleaves APP at methionine 671. This cleavage produces a 99-

residue C-terminal fragment of APP, which also remains associated with 

membrane (C99), and a smaller ectodomain fragment (sAPPβ) that is secreted.  

Both C99 and C83, produced by α-secretase and β-secretase cleavage 

respectively, can then be sequentially cleaved by a third protease, γ-secretase. 

Cleavage of APP by γ-secretase occurs in the centre of the trans-membrane 

domain, and either leads to the production of Aβ from the C99 fragment, or a 

fragment termed p3 from the C83 fragment. Differential γ-secretase cleavage can 

occur in the processing of APP resulting in production of different isoforms of Aβ 

ranging from 37 - 48 residues in length (discussed in more detail in Section 

1.4.1.3). However, the major isoforms of Aβ in amyloid plaques are Aβ40 and 

Aβ42 (Iwatsubo et al., 1994). The predominant Aβ isoform that accumulates in 

CAA is Aβ40 (Roher et al., 1993). 
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Figure 1.1. Diagrammatic representation of the amyloidogenic and non-amyloidogenic 
pathways	of	APP	processing.	In	the	amyloidogenic	pathway,	β-secretase	cleaves	APP	to	
generate	a	secreted	ectodomain	(sAPPβ)	and	a	C-terminal	fragment	(CTF)	that	remains	
in	 the	membrane,	 termed	C99.	C99	can	be	further	cleaved	by	γ-secretase	 to	produce	
secreted	Aβ	and	an	intracelluar	domain	(AICD).	The	major	pathway	of	APP	processing	
is	the	non-amyloidogenic	pathway	(depicted	by	the	thicker	arrow).	In	this	pathway,	APP	
is	cleaved	by	α-secretase	to	produce	a	secreted	ectodomain	(sAPPα)	and	a	CTF	frag-
ment	(C83).	C83	is	further	cleaved	to	generate	a	secreted	fragment	p3	and	an	intracellu-
lar	fragment	(AICD).	
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1.3.1 Aβ aggregation  

Aβ has a high propensity to form tightly packed cross β-sheet fibrils known as 

amyloid (Eisenberg and Jucker, 2012; Toyama and Weissman, 2011). Amyloid 

fibres are typically 5 – 15 nanometres in diameter and can be micrometres in 

length (Toyama and Weissman, 2011). Amyloid formation is a feature of various 

neurodegenerative conditions and a number of amyloid-forming proteins have 

been implicated in disease. Other examples of amyloid forming proteins that have 

been associated with disease include islet amyloid polypeptide (type 2 diabetes) 

and prion protein (Creutzfeldt-Jacob disease; Eisenberg and Jucker, 2012). 

Therefore, there is great interest in understanding the formation and biological 

activity of amyloids. The exact structural processes that result in the formation of 

Aβ amyloid are unresolved and current theories have been discussed in detail by a 

number of recent reviews (Eisenberg and Jucker, 2012; Masters and Selkoe, 2012; 

Toyama and Weissman, 2011).  

The aggregation state of Aβ is strongly influenced by a number of factors. Aβ is 

partially hydrophobic and probably forms an α-helix in hydrophobic 

environments such as the cell membrane or organic solvents (Burdick et al., 

1992). In aqueous environments, Aβ transitions to β-sheet structures and 

aggregates (Burdick et al., 1992; Kirschner et al., 1987). A low pH also promotes 

insolubility of Aβ (Burdick et al., 1992). The longer chain isoforms of Aβ (e.g. 

Aβ42, Aβ43) are more prone to aggregation due to additional hydrophobic 

residues (Jarrett et al., 1993; Burdick et al., 1992). Evidence also exists that Aβ42 

can “seed” the aggregation of Aβ40 (Jarrett et al., 1993; Jan et al., 2008). 
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Consequently, the ratio of Aβ40/Aβ42 is thought to be a critical factor in plaque 

formation that may be perturbed in AD (Scheuner et al., 1996).  

It is thought that a number of intermediate size aggregated Aβ species exist that 

may represent transition states between soluble Aβ and fibrillar Aβ. These include 

globular oligomeric species, which are water-soluble, and protofibrillar species, 

which are fibrillar, but shorter than amyloid fibrils. Oligomeric species have been 

reported to exist in various natural and synthetic preparations of Aβ, appearing as 

dimers, trimers, 12-mers and other forms (Lambert et al., 1998; Lesne et al., 2006; 

Townsend et al., 2006; Shankar et al., 2008; Hepler et al., 2006). Protofibrillar Aβ 

may represent a transition state between oligomeric Aβ and fibrillar Aβ (Walsh et 

al., 1997; Harper et al., 1997). Atomic force microscopy (AFM) studies of 

protofibrils suggest that the fibres are composed of a repeating structure of 100 

nm in length, which is consistent with the idea that short protofibrils can combine 

to form longer fibres (Arimon et al., 2005). The significance placed on the 

different aggregation states of Aβ is largely due to observed differences in the 

biological interactions between various forms. The next section will discuss the 

relationship between the aggregation of Aβ and its ability to cause neurotoxicity. 

1.3.2 Aβ toxicity 

Aβ is thought to be a neurotoxic protein. This capacity has been postulated to be a 

primary cause of AD (Hardy and Higgins, 1992). However, current understanding 

of the toxicity of Aβ is complicated by its propensity to form a variety of 

aggregation states. Therefore, a consensus mechanism explaining the reported 

toxic effects of Aβ has not been reached, but there have been a number of 



 15 

suggestions. The effects of the different reported aggregation states of Aβ will not 

be discussed here in complete detail, as this topic has been discussed 

comprehensively in several recent reviews (Shankar and Walsh, 2009; Benilova et 

al., 2012; Kayed and Lasagna-Reeves, 2013; Masters and Selkoe, 2012).  

Early studies of Aβ toxicity found that an APP fragment containing the Aβ 

domain was toxic to primary hippocampal neurons (Yankner et al., 1989). Further 

experiments demonstrated that synthetic Aβ is neurotoxic for differentiated 

primary hippocampal neurons, but not undifferentiated cells (Yankner et al., 

1990). This toxic effect was attributed to a region within Aβ between residues 25 

and 35 (Yankner et al., 1990). Interestingly, at lower concentrations the Aβ 25 – 

35 fragment was reported to have trophic effects (Yankner et al., 1990). 

Subsequent studies have indicated that the aggregation state of Aβ is a key factor 

in determining its toxicity to cells. In vitro aging of Aβ, which increases the 

proportion of aggregated species, has been demonstrated to increase the toxicity 

of Aβ when compared to monomeric Aβ (Pike et al., 1991). However, it has also 

emerged that fibrillar Aβ is probably not the most toxic species of Aβ (Dahlgren 

et al., 2002). In recent years, lower molecular weight oligomeric forms of Aβ 

have been suggested to be the most toxic Aβ species (Walsh et al., 2002; 

Barghorn et al., 2005; Lambert et al., 1998).  

A number of in vitro studies report that oligomeric Aβ is toxic to neurons. 

Lambert et al. (1998) found that a preparation of synthetic Aβ termed ADDLs 

(Abeta-derived diffusible ligands) was toxic to neurons at nanomolar 

concentrations. Further, they reported that oligomeric Aβ binds neurons close to 
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synaptic sites on dendrites, which has led many investigators to question if Aβ can 

affect synaptic function (Lacor et al., 2004; Barghorn et al., 2005). A number of 

studies have now reported effects of oligomeric Aβ preparations on synaptic 

function (Mucke and Selkoe, 2012; Shankar and Walsh, 2009). Oligomeric Aβ 

has been suggested to alter the behaviour of a number of ion channels, such as 

metabotropic glutamate receptors (mGluR) and the N-methyl-D-aspartate receptor 

(NMDA-R; Lacor et al., 2007; Renner et al., 2010; Shankar et al., 2007). This 

alteration of ion channel function has been suggested to produce effects on long-

term potentiation (LTP; Lacor et al., 2007; Renner et al., 2010; Shankar et al., 

2007; Shankar et al., 2008; Barghorn et al., 2005; Walsh et al., 2002). Changes in 

the density and morphology of excitatory dendritic spines are apparent after 

oligomeric Aβ treatment, consistent with a disruption of synapses (Lacor et al., 

2007; Shrestha et al., 2006). As the levels of some soluble oligomeric Aβ species 

are reported to correlate with cognitive decline in AD better than fibrillar Aβ 

deposition, Aβ-induced disruption of synaptic function has been suggested to 

underlie cognitive decline in AD (McLean et al., 1999; Villemagne et al., 2010). 

Protofibrillar species of Aβ are also reported to act in a toxic manner. 

Protofibrillar Aβ can induce electrophysiological changes in neurons, causing 

aberrant activity and inhibition of LTP (Arispe et al., 1993; Hartley et al., 2008). 

This disruption of normal electrophysiological function may lead to neurotoxicity 

(Hartley et al., 1999; Walsh et al., 1999). 

Aβ toxicity has been postulated to be mediated by a variety of potential molecular 

mechanisms, which have been reviewed thoroughly elsewhere (Cappai and 

Barnham, 2008; Ng et al., 2007; Small, 2009; Mucke and Selkoe, 2012). One 
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possible mechanism of Aβ toxicity may be dysregulation of calcium homeostasis. 

Aβ increases the resting level of calcium in neurons, rendering them more 

sensitive to excitotoxicity (Mattson et al., 1992). This increased calcium influx 

may be caused by an effect of Aβ on endogenous membrane channels, a direct 

effect of Aβ on the cell membrane, or Aβ forming a pore in the membrane (Arispe 

et al., 1993; Ho et al., 2001; Kayed et al., 2004).  

Importantly, it is not known which mechanism or combinations of mechanisms of 

Aβ toxicity are central to AD progression. In particular, it is not clear which 

molecules Aβ interacts with in vivo. The knowledge of these molecules will help 

decipher the primary mechanisms of Aβ-induced neurotoxicity (Mucke and 

Selkoe, 2012). A simple model whereby Aβ causes neuronal death probably 

cannot account for the neurodegeneration and pathology seen in AD (Small et al., 

2001). Therefore, a loss of synapses is more likely to produce the cognitive 

decline in AD rather than cell death (Terry et al., 1991; Terry, 2000). Synapse loss 

is a much better correlate of cognitive decline in AD than Aβ plaque deposition or 

loss of neurons (Terry et al., 1991; Terry, 2000; Braak and Braak, 1991). 

Therefore, recent data that Aβ can interfere with synaptic function may provide a 

mechanistic basis for cognitive deficits in AD.  

1.4 APP expression, structure and processing 

APP is of great interest for AD research because of its role as the precursor of Aβ 

(Kang et al., 1987). APP is a member of an evolutionarily conserved family of 

proteins (Fig. 1.2). In mammals, there are three family members: APP, the 

amyloid precursor-like protein-1 (APLP1) and the amyloid precursor like protein-

2 (APLP2; Kang et al., 1987; Slunt et al., 1994; Wasco et al., 1992; Wasco et al., 

1993). Non-mammalian APP homologues also exist; apl-1 in C.elegans, APPL in 

D. melanogaster and appa/appb in D. rerio (Daigle and Li, 1993; Luo et al., 1990; 

Musa et al., 2001; Rosen et al., 1989). APP family members have a relatively 

conserved structure.  
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The extracellular region of APP and other family members have two structured 

domains, termed the E1 domain and the E2 domain, for which crystal structures 

are available (Dahms et al., 2010; Rossjohn et al., 1999; Wang and Ha, 2004). 

The E1 domain is split into a heparin-binding region and a metal-binding region 

(Small et al., 1994; Multhaup et al., 1996). This is followed by a short acidic 

region. APP-770, APP-751 and APLP2 contain a KPI domain (Tanzi et al., 1988), 

the physiological relevance of which is discussed in Section 1.6.4. APP-770 also 

contains an OX-2 antigen domain (Weidemann et al., 1989). The E2 domain is 

reported to contain a second heparin-binding region (Mok et al., 1997; Multhaup, 

1994; Ninomiya et al., 1994). The Aβ region is unique to APP and is partially 

embedded in the cell membrane (Kang et al., 1987; Slunt et al., 1994; Wasco et 

al., 1992; Wasco et al., 1993). The C-terminal intracellular domain sequence is 

conserved throughout the APP family and features a YENPTY motif involved in 

interactions with other proteins and also APP trafficking (discussed in more detail 

in Section 1.6.5). 

1.4.1  APP trafficking and post-translational modification 

After expression, APP can undergo a number of post-translational modifications 

including glycosylation, sulfation, phosphorylation and palmitoylation (Hung and 

Selkoe, 1994; Selkoe, 2001; Bhattacharyya et al., 2013). APP is cotranslationally 

translocated into the endoplasmic reticulum, and is post-translationally modified 

in the Golgi. In the Golgi, an immature N-glycosylated APP species is detectable 

with a half-life of around 30-60 minutes that is processed to produce a mature 

form that is N- and O-glycosylated (Weidemann et al., 1989; Oltersdorf et al., 

1990). Cells expressing an APP mutant that is not O-glycosylated demonstrate 



 20 

reduced secretase processing of APP, suggesting that glycosylation occurs 

upstream of secretase activity. After modification in the Golgi, mature APP is 

then trafficked to the cell surface (Koo et al., 1996). Once at the cell surface, APP 

can then be internalised by clathrin-mediated endocytosis via the endosomal-

lysosomal pathway (Yamazaki et al., 1996). The majority of APP is trafficked 

from the endosome to the lysosome, however a portion is then returned to the cell 

surface (Yamazaki et al., 1996). A pool of APP in the lysosome is degraded 

(Haass et al., 1992).  

Secretase processing of APP can occur during the secretory pathway, at the cell 

surface, or after endocytosis (Koo et al., 1996). Ectodomain shedding (e.g. by α- 

or β secretase) is likely to be a pre-requisite for the action of γ-secretase, based on 

studies of γ-secretase function (Hemming et al., 2008; Struhl and Adachi, 2000). 

Therefore, the majority of β-secretase cleavage and Aβ production is thought to 

occur in acidic endosomal/lysosomal compartments, where β-secretase is most 

active (Vassar et al., 1999; Hussain et al., 1999; Sinha et al., 1999). This is 

consistent with the observation that endocytosis is required for the production of 

Aβ (Koo and Squazzo, 1994). In contrast, most α-secretase cleavage and 

production of sAPPα occurs at the cell surface, although some may occur during 

the secretory pathway (Sisodia, 1992; Tomita et al., 1998; Parvathy et al., 1999). 

The main cellular site of γ-secretase activity remains unresolved, however, this is 

likely to be in the plasma membrane (PM) and the endosomal/lysosomal system 

(Dries and Yu, 2008; Kaether et al., 2002; Tarassishin et al., 2004; Pasternak et 

al., 2004).  
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1.4.1.1 α-Secretase 

α-Secretase cleavage of APP can be undertaken by a number of enzymes, all of 

which are members of the A disintegrin and metalloprotease (ADAM) family. 

The first APP-cleaving ADAM to be identified was ADAM 17, also known as 

tumour necrosis factor-α converting enzyme (TACE; Buxbaum et al., 1998). 

Shortly afterward, ADAM 10 and ADAM 9 were also reported to cleave APP at 

the α-secretase position (Koike et al., 1999; Lammich et al., 1999). 

Although ADAM 10, 9 and 17 all have α-secretase activity, most recent evidence 

suggests that α-cleavage of APP can occur distinctly both in a constitutive manner 

and a regulated (i.e. inducible) manner. It is not yet resolved which ADAM is 

responsible for the constitutive α-secretase activity, as ADAM 10, 17 and 9 can 

all act in an inducible fashion, in response to phorbol ester treatment (Buxbaum et 

al., 1998; Lammich et al., 1999; Tomita et al., 1998). However, recent studies 

suggest the majority of constitutive α-secretase activity may be due to ADAM 10, 

at least in primary neurons (Kuhn et al., 2010; Vingtdeux and Marambaud, 2012).  

Aside from the processing of APP, ADAMs have physiological roles in a variety 

of cellular processes. ADAMs act as sheddases, enzymes that catyalyse the 

release of soluble ectodomains from proteins (Huovila et al., 2005). Ectodomain 

shedding by ADAMs is essential for the release of many cytokines and growth 

factor ligands. ADAM 10 is the major sheddase for epidermal growth factor 

(EGF) and β-cellulin (Sahin et al., 2004). ADAM 17 is the major sheddase for 

epiregulin, transforming growth factor α (TGFα), amphiregulin, tumour necrosis 

factor (TNF) and heparin-binding EGF-like growth factor (HB-EGF; Black et al., 

1997; Moss et al., 1997; Sahin et al., 2004). Additionally, ADAMs also 
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participate in ectodomain shedding of growth factor receptors, such as human 

epidermal growth factor receptor 2 (HER2; Liu et al., 2006) and notch (Bozkulak 

and Weinmaster, 2009). Therefore, sheddase activity by ADAMs can facilitate 

cellular signalling in a variety of modes; either by release of secreted growth 

factors, or by ligand-dependent activation of cellular receptors, or a combination 

of both. This subject is covered in more detail by a number of reviews (Blobel, 

2005; Huovila et al., 2005; Vingtdeux and Marambaud, 2012). Importantly, the 

fact that the APP ectodomain is released by α-secretase suggests that APP may be 

involved in a signalling interaction similar to other α-secretase substrates. 

1.4.1.2 β-Secretase 

The β-secretase cleavage of APP was shown by several groups to be undertaken 

by an enzyme termed β-site APP-cleaving enzyme 1 (BACE1; Hussain et al., 

1999; Lin et al., 2000; Sinha et al., 1999; Vassar et al., 1999; Yan et al., 1999). 

BACE1 is a type 1 transmembrane aspartyl protease that is expressed in the 

majority of tissues (Lin et al., 2000). There is also a BACE1 homologue that can 

cleave APP at the β-site, termed BACE2. BACE2 is predominantly expressed in 

peripheral tissues, with a lower expression level in the brain than BACE1 (Lin et 

al., 2000). BACE1 has been demonstrated to be the enzyme responsible for the 

majority of Aβ production by neurons, as neuronal Aβ production is abolished in 

BACE1 KO mice (Luo et al., 2001; Roberds et al., 2001; Dominguez et al., 2005). 

As a result, BACE1 has become an attractive target for the treatment of AD 

(Klaver et al., 2010). However, not all Aβ production may be BACE1-dependent 

as glia may produce Aβ in a BACE2-dependent manner (Dominguez et al., 2005). 

Additionally, when BACE1 is overexpressed, a second cleavage site at position 
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11 of Aβ has also been reported, although the significance of this minor cleavage 

site is unclear (Liu et al., 2002; Willem et al., 2004). 

Studies from BACE1 KO mice indicate an important physiological function for 

BACE1. BACE1 KO mice have increased mortality, retinal defects and display a 

hyperactive phenotype compared to wild-type mice (Dominguez et al., 2005; 

Harrison et al., 2003; Cai et al., 2012). BACE1/BACE2 double KO mice have a 

further increased lethality phenotype compared to BACE1 KO mice, indicating an 

important role of BACE1/2 in normal physiology (Dominguez et al., 2005). 

Subsequent characterisation of BACE1 KO mice and over-expressing mice has 

revealed a role of BACE1 in myelination (Hu et al., 2006; Willem et al., 2006). 

This function of BACE1 is attributable to its action in cleaving neuregulin-1 and 

neuregulin-3, which are involved in controlling myelination (Hu et al., 2006; 

Willem et al., 2006; Hu et al., 2008). The combined sheddase action of BACE1 

and ADAM17 on neuregulin releases an ectodomain fragment, which acts in a 

paracrine manner to stimulate myelination (Fleck et al., 2013). Functionally, this 

interaction is important for the development of muscle spindles, sensory bodies 

that detect muscle elongation (Cheret et al., 2013). 

Other BACE1 substrates that have been identified include the sodium channel 

Nav1.1 β2 subunit, β-sialyltransferase-1, P-selectin glycoprotein ligand-1, Low-

density lipoprotein receptor-related protein 1, Interleukin-1 receptor II, APLP1/2, 

and VEGFR1 (Klaver et al., 2010; Cai et al., 2012). Although the biological 

significance of BACE 1 cleavage of these substrates is not yet defined, they may 

have implications for the use of BACE1 inhibitors as a strategy for the treatment 

of AD (Klaver et al., 2010).  
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1.4.1.3 γ-Secretase  

γ-Secretase is a transmembrane protease consisting of at least four protein 

subunits, presenilin (PS) 1 or 2, nicastrin, anterior pharynx-defective phenotype 

(Aph-1), and presenilin enhancer 2 (Pen-2; De Strooper et al., 1998; Francis et al., 

2002; Scheuner et al., 1996; Yu et al., 2000). Presenilin has been shown to be the 

catalytic subunit, and has been demonstrated to have intrinsic catalytic γ-secretase 

activity (Ahn et al., 2010). However, all four subunits of γ-secretase are required 

for full activity (Edbauer et al., 2003). Mutations in nicastrin modulate APP 

processing (Yu et al., 2000), and knock down of Pen-2 or Aph-1 reduces γ-

secretase processing of APP (Francis et al., 2002). 

γ-Secretase has a number of important substrates other than APP, most notably 

Notch (De Strooper et al., 1999; Struhl and Greenwald, 1999). Mechanistic 

dissection of γ-secretase function in a number of these substrates has revealed a 

number of interesting features of γ-secretase cleavage, which has been collectively 

termed “regulated intramembrane proteolysis” (RIP; Ebinu and Yankner, 2002; 

Lichtenthaler et al., 2011). RIP cleavage occurs within the transmembrane domain 

of γ-secretase substrates (Lichtenthaler et al., 2011). This process requires the 

substrate protein to have a short ectodomain and a favourable transmembrane 

region (Hemming et al., 2008; Struhl and Greenwald, 1999). No primary amino 

acid sequence motif is shared by all γ-secretase substrates, so selectivity for 

substrate may be conferred by structural requirements (Hemming et al., 2008).  

RIP cleavage is not thought to occur at a single peptide bond, but as a series of 

cleavages, starting from the C terminal end of the substrate and moving towards 

the N terminal region of the transmembrane domain (Fig.1.3).   
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Figure 1.3. Stepwise RIP γ-secretase	processing	of	APP.	γ-Secretase	cleavage	of	APP	
occurs	 at	 multiple	 sites,	 starting	 from	 the	 C-terminus	 and	 following	 the	 order	
ε-cleavage,	 ζ-cleavage	and	γ-cleavage.	 	 γ-Secretase	cleavage	has	been	proposed	 to	
occur	in	two	distinct	product	lines,	the	Aβ40	producing	(major)	product	line	depicted	
by	a	thick	arrow	and	the	Aβ42	producing	(minor)	product	line	depicted	by	a	thin	arrow.	
Both	 of	 these	 production	 lines	 follow	 the	 same	 order	 and	 3-dimensional	 interval	
between	the	ε-cleavage,	ζ-cleavage	and	γ-cleavage	sites,	however	the	starting	position	
is	shifted.	Amino	acid	numbers	refer	to	the	Aβ	sequence.	Figure	based	on	Qi-Takahara,	
et	al.	(2005),	Lichtenthaler,	et	al.	(2011)	and	Haass	et	al.	(2012).	
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In APP, these cleavage sites have been named as the γ-, ε- and ζ- sites (Gu et al., 

2001; Qi-Takahara et al., 2005; Sastre et al., 2001; Weidemann et al., 2002; Yu et 

al., 2001; Zhao et al., 2004; Zhao et al., 2005). These cleavages occur in the order 

ε-, ζ- and γ-, however the exact residues can shift (Qi-Takahara et al., 2005). This 

shift may be determined by the three-dimensional orientation of the substrate in 

the γ-secretase active site (Qi-Takahara et al., 2005). As a result, it has been 

suggested that there are two production lines for the γ-secretase processing of 

APP; the Aβ40 producing (major) line and the Aβ42 producing (minor) line (Fig. 

1.3; Qi-Takahara et al., 2005). Increasing membrane thickness has been 

demonstrated to result in the formation of less Aβ42/43, therefore the position of 

the initial γ-secretase cleavage may be regulated by the lipid environment of the γ-

secretase-substrate complex (Winkler et al., 2012).  

1.5 Genetics of AD 

1.5.1 Genetics of FAD 

A small number of families worldwide carry rare heritable mutations that cause 

AD. Studying these mutations has given insight into the molecular etiology of 

AD. There are now over two hundred mutations that have been linked to 

dominantly inherited AD (FAD; Cruts et al., 2012). Importantly, mutations 

associated with AD occur in APP and presenilin, so there are key mechanistic 

links of FAD genes to APP processing and Aβ production, which will be 

discussed in the following sections. 
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1.5.1.1 Mutations in APP 

Thirty-three FAD APP mutations have been characterised in 90 families (Cruts et 

al., 2012). These mutations include point mutations, as well as a number of APP 

locus duplications (Cruts et al., 2012; Rovelet-Lecrux et al., 2006). The first 

pathogenic APP mutation to be discovered was associated with hereditary cerebral 

haemorrhage, a condition in which amyloid is deposited in cerebral blood vessels 

(Levy et al., 1990). Shortly afterward, the V717I mutation, which is a point 

substitution near the Aβ encoding region close to the γ-secretase cleavage site, 

was linked to FAD (Goate et al., 1991). This mutation was named “London” after 

the location of the family group that carried the gene; a convention that has been 

used for a number of other APP mutations.  

In general, the APP point mutations are thought to accelerate AD progression by 

altering either the deposition of Aβ, the aggregation of Aβ or the ratio of 

Aβ40/Aβ42 (Selkoe, 2001; Tanzi and Bertram, 2005). The majority of APP 

mutations cluster in the region of the Aβ sequence, with many mutations found 

close to secretase cleavage sites (Fig. 1.4). For example, the “Swedish" mutation 

results in a substitution of two residues immediately N-terminal to the β-secretase 

cleavage site (K670N/M671L). This double mutation produces a 6 - 8 fold 

increase in the amount of Aβ that is produced (Citron et al., 1992).  

More recently, an APP mutation (A673T) has been reported to be protective 

against late-onset AD and normal age-related cognitive decline (Jonsson et al., 

2012). The A673T mutation is immediately adjacent to the β-secretase cleavage 

site, and results in a 40% reduction in β-cleavage of APP in vitro. This mutation 

provides support for a link between LOAD and Aβ production from APP.   
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1.5.1.2 Presenilin mutations 

The most common causes of FAD are mutations in the presenilins (Selkoe, 2001). 

The presenilins were initially discovered in a screen searching for mutations 

leading to FAD, and were named accordingly (Sherrington et al., 1995; Levy-

Lahad et al., 1995). There are now 185 mutations in PS1 associated with FAD and 

13 mutations in PS2 associated with FAD (Cruts et al., 2012). Interestingly, the 

first person to be diagnosed with Alzheimer’s disease carried a PS1 mutation 

(Muller et al., 2013). Presenilins (PS) are multi-pass transmembrane proteins, 

which form catalytic subunits of the γ-secretase complex (see Section 1.4.1.3). 

Mutations in PS1 and other γ-secretase components have also been implicated in 

familial scarring acne, cardiomyopathy and heart failure (Li et al., 2006; Wang et 

al., 2010; Pink et al., 2013).  

PS mutations associated with FAD cause an increase in Aβ42, which may result in 

the earlier onset of AD symptoms (Duff et al., 1996; Scheuner et al., 1996; Potter 

et al., 2013). However a recent in vitro study reported that although PS mutations 

shift the Aβ40:42 ratio, many PS mutations confer an overall reduction in γ-

secretase activity (Cacquevel et al., 2012). Therefore, further research may reveal 

other detrimental effects of PS mutations, besides alteration of Aβ production.  

1.5.2  Transgenic animal models of AD 

Transgenic animal models have provided strong evidence for Aβ being the causal 

factor in AD. There are many transgenic animal models available of AD, which 

are catalogued on the AlzForum web database 

(http://www.alzforum.org/res/com/tra/default.asp). The first transgenic mouse 
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model of AD reported was the PDAPP mouse, which over-expresses APP 

carrying a mutation around the γ-secretase site (V717F). These mice develop a 

neuropathology similar to AD, including Aβ deposits, neuritic plaques, synaptic 

loss, astrocytosis and microgliosis (Games et al., 1995). Mice expressing human 

APP with the Swedish mutation (APPSW), produce a 14-fold increase in the 

amount of Aβ42, develop Aβ plaques after 11 months and display cognitive 

deficits after 9 months (Hsiao et al., 1996). Mice carrying FAD mutations in PS 

genes produce an elevated amount of Aβ42 due to altered APP processing (Duff 

et al., 1996). When multiple FAD mutations are combined, transgenic mice 

carrying more than one AD mutation develop Aβ deposits and cognitive deficits 

more rapidly than single mutations. Double-transgenic mice harbouring the 

APPSW mutation and a PS1 mutation (A264E) go on to deposit amyloid more 

rapidly than mice with the APPSW mutation alone (Borchelt et al., 1997). 

However, reproducing the complete spectrum of pathology associated with AD 

has not been achieved in mice carrying a single mutation. None of the APP or 

presenilin mice developed to date display tangle pathology with paired helical 

fragments (German, 2007). NFTs have been produced in TauP301L mice, which 

express tau carrying a mutation associated with frontotemporal dementia with 

parkinsonism (Gotz et al., 2001; Lewis et al., 2000). Transgenic mice that express 

multiple human mutations in tau, APP and PS have been reported that reproduce a 

wider range of AD pathology. Triple transgenic mice (3xTg-AD) carrying the 

TauP301L, APPSW and PSM146V mutations develop both plaque and tangle 

pathology, with intraneuronal accumulation of Aβ preceding both tangle 

formation and plaque development (Oddo et al., 2003). 
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1.5.3 Genetics of LOAD  

Whilst the genetic risk factors for FAD have a clear influence on producing AD 

symptoms, the known genetic risk factors for LOAD have less clear effects and 

their roles in enhancing progression of AD are still poorly understood. Until 

recently, only a few genetic risk factors for LOAD had been identified. However, 

the advent of genome-wide association studies (GWAS) has revealed many more 

genetic variants that contribute to LOAD risk. The top ten risk genes for LOAD 

ranked by the Alzgene database meta-analysis are listed in Table 1-1 (Bertram et 

al., 2007). Apolipoprotein E (apoE), clusterin, and phosphatidylinositol-binding 

clathrin assembly protein (PICALM) are the most well studied genetic risk factors 

for LOAD and are discussed in the sections below. Mutations in BIN1, CR1, 

ABCA7, TREM, CD33 and MS4A6A will not be discussed here, as there are no 

studies that have elucidated how these proteins are mechanistically involved in 

AD progression. A recent systems biology study of these LOAD risk factors 

found no effect of siRNA knock down of any of these proteins on Aβ production 

(Bali et al., 2012). Therefore, it is likely that these LOAD risk alleles enhance AD 

progression through other mechanisms unrelated to an increase in Aβ production.   
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Table 1-1 Genetic risk factors for LOAD 

Gene Odds 
Ratio 

Protein Potential Functions  

ApoE 2/3/4 3.685 Apolipoprotein E  Lipid transport 

BIN1 1.116 Bridging-integrator 1 Synaptic vesicle 
endocytosis. Tumour 
suppressor 

CLU 0.879 Clusterin (apolipoprotein J) Lipid transport 

ABCA7 1.229 ATP-binding cassette, sub-
family A, Member 7 

Lipid homeostasis  

CR1 1.174 Complement receptor 1 Immune response 

PICALM 0.879 Phosphatidylinositol-binding 
clathrin assembly protein 

Endocytosis, clathrin 
assembly  

MS4A6A 0.904 Membrane-spanning 4-
domains, subfamily A, 
member 6A 

Unknown 

CD33 0.893 Myeloid cell surface antigen 
CD33 

Unknown 

MS4A4E 1.079 Membrane-spanning 4-
domains, subfamily A, 
member 4E 

Unknown 

CD2AP 1.117 CD2-associated protein Regulation of actin 
cytoskeleton 

TREM2* 2.92 Triggering receptor expressed 
on myeloid cells 2 

Inflammation/ 

phagocytosis 

Table shows risk genes for LOAD, ranked by the Alzgene database meta analysis; 
http://www.alzgene.org, accessed 18 April 2013 (Bertram et al., 2007). * The 
TREM2 association with LOAD has been recently discovered, and has not yet 
been ranked by the Alzgene database meta analysis (Guerreiro et al., 2013; 
Jonsson et al., 2013). 

  



 33 

1.5.3.1 ApoE  

The most well established genetic risk factor for LOAD is the ε4 allele of 

apolipoprotein E gene (Strittmatter et al., 1993). The ε4 allele is associated with 

an increased risk of AD, and the ε2 allele is associated with a reduced risk (Corder 

et al., 1993; Corder et al., 1994; Strittmatter et al., 1993). Physiologically, the 

main role of apoE is to transport lipids, cholesterol and lipid soluble vitamins 

throughout the body (Mahley, 1988). For example, apoE has a key role in 

transporting lipids for degradation by hepatocytes in the liver, and mutations in 

apoE cause hyperlipoproteinemia type III (Havel and Kane, 1973; Utermann et 

al., 1975). ApoE is a component of chylomicrons, very low-density lipoproteins 

(vLDL), and high-density lipoproteins (HDL; Shore and Shore, 1973; Weisgraber 

and Mahley, 1978). ApoE is a ligand for the low-density lipoprotein receptor 

(LDL receptor), apoE receptor 2, very low-density lipoprotein receptor and the 

low-density lipoprotein receptor-related protein (LRP; Innerarity et al., 1978; Kim 

et al., 1996; Takahashi et al, 1996;Beisiegel et al., 1989).  

In the CNS, apoE is mainly expressed by astrocytes (Boyles et al., 1985; Grehan 

et al., 2001) and astrocytic apoE has been shown to be involved in synaptogenesis 

and neurite outgrowth as a consequence of its role in lipid transport (Mauch et al., 

2001; Nathan et al., 1994). Although apoE knock-out (KO) mice have no major 

cognitive deficit (Anderson et al., 1998; Piedrahita et al., 1992; Anderson et al., 

1998), recent studies have demonstrated that human apoE ε4 carriers have subtle 

changes in brain structure during development (Knickmeyer et al., 2013). 
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1.5.3.2 Role of apoE in AD 

It is not yet resolved how the apoE ε4 allele increases the risk of AD, however the 

majority of mechanistic suggestions are based on the suggestion that apoE binds 

Aβ and increases Aβ load in the brain (Hass et al., 1998). The apoE isotypes ε4, 

ε3, and ε2 have been suggested to bind Aβ with differing affinities, with ε4 

having the weakest affinity for Aβ (Strittmatter et al., 1993; Yang et al., 1997; 

Tokuda et al., 2000). Cells have been reported to internalise apoE-bound Aβ via 

an LRP1-dependent mechanism, which has been suggested to be a possible 

mechanism of Aβ clearance (Yang et al., 1999; Kang et al., 2000). Consequently, 

it is suggested that the apoE ε4 allele, which binds Aβ less strongly, results in a 

perturbed degradation of the Aβ protein, predisposing individuals with the ε4 

allele to LOAD (Kim et al., 2009; Deane et al., 2008). However, It should be 

noted that there is some controversy over whether apoE actually binds Aβ. A 

recent study found that apoE does not specifically bind Aβ, and concluded that the 

observed effects of apoE on Aβ clearance were actually due to competition for the 

same clearance receptor (Verghese et al., 2013). Further, genetic mouse studies do 

not support a role of apoE in Aβ clearance. PDAPP crossed with apoE knock out 

mice display decreased Aβ deposition compared to those expressing apoE (Bales 

et al., 1997). However, when clusterin and apoE double knockout mice are 

crossed with PDAPP mice, Aβ deposition is greatly increased compared to the 

PDAPP mouse model (DeMattos et al., 2004). This may suggest an overlapping 

effect of apoE and clusterin on Aβ metabolism. 

An alternative suggestion for the role of apoE in AD is that apoE may modulate 

the aggregation of Aβ. Several studies have reported that in vitro apoE can 
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increase the fibrillisation of Aβ (Ma et al., 1994; Castano et al., 1995; Wisniewski 

et al., 1994). However, there are also reports that apoE inhibits the fibrillisation of 

Aβ (Evans et al., 1995; Wood et al., 1996), The conflicting results may be due to 

different lipidation states of apoE used in the studies, or isoforms of Aβ (Yang et 

al., 1999; Kim et al., 2009). More recently, apoE ε4 has been shown to increase 

the formation of oligomeric species of Aβ (Cerf et al., 2011; Hashimoto et al., 

2012).  

Importantly, apoE has an important physiological function, which could confer 

increased risk of AD without being involved directly in the central disease 

process. The apoE ε4 allele has been linked to developmental abnormalities, as ε4 

carriers have altered brain structure prior to birth (Knickmeyer et al., 2013). 

Therefore, further studies are required to elucidate the biochemical relationship 

between apoE function and AD progression. 

1.5.3.3 Clusterin/ApoJ  

Clusterin (also known as apolipoprotein J) has been identified as a risk factor for 

LOAD by several large GWAS studies (Harold et al., 2009; Lambert et al., 2009; 

Seshadri et al., 2010). Clusterin has been reported to be upregulated in AD 

patients, prior to its establishment as a genetic risk factor for LOAD (May et al., 

1990). Like apoE, clusterin forms HDL lipoprotein complexes and has a role in 

lipid transport throughout the circulation and the CNS (de Silva et al., 1990; 

Borghini et al., 1995). Also similar to apoE, clusterin has been identified to 

interact with Aβ, and may be involved in Aβ clearance and aggregation (Nuutinen 

et al., 2007; Oda et al., 1995; Nuutinen et al., 2009). Studies in transgenic mice 

reported that double KO of apoE and clusterin could increase the deposition of 
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Aβ, therefore these studies provide evidence that clusterin could be involved in 

the metabolism of Aβ (DeMattos et al., 2004). 

1.5.3.4 PICALM 

Alleles of the phosphatidylinositol-binding clathrin assembly protein gene 

(PICALM) have been associated with increased risk of LOAD by a number of 

large GWAS studies (Seshadri et al., 2010; Harold et al., 2009). PICALM and its 

homologue AP180 play roles in endocytosis, by recruiting AP2 and clathrin to the 

membrane (Ford et al., 2001). This process is involved in the formation of 

clathrin-coated vesicles (Ford et al., 2001). In the brain, PICALM and AP180 

have been demonstrated to play a role in the formation of synaptic vesicles 

(Zhang et al., 1998; Nonet et al., 1999; Xiao et al., 2012). 

PICALM is predominately expressed in endothelial cells in the brain (Baig et al., 

2010). One study reported slightly increased levels of PICALM expression in the 

frontal cortex of AD brain, however, the effects observed were not observed in 

other brain regions, and may need further confirmation (Baig et al., 2010). 

Additionally, there are reports of reduced AP180 expression in AD brain (Yao et 

al., 1999). Therefore, levels of PICALM and AP180 may be affected in AD.  

The mechanistic link between AD pathology and PICALM is still being 

elucidated. There are reports that both AP180 and PICALM are able to alter the 

proteolytic processing of APP. Prior to the establishment of PICALM alleles as 

risk factors for AD, AP180 knockdown was reported to affect the production of 

Aβ (Wu et al., 2009). However, the same study was not able to find an effect of 

PICALM knockdown on Aβ production (Wu et al., 2009). A more recent study 

demonstrated that PICALM and APP colocalise at the cell surface after 
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internalization of APP (Xiao et al., 2012). Knockdown of PICALM decreased the 

amount of internalised APP, and PICALM overexpression increased the 

internalisation of APP, which provides strong evidence that APP endocytosis can 

be regulated by PICALM. Additionally, the same study found an increase in 

amyloidogenic processing of APP in PICALM over-expressing cells and a 

decrease in Aβ production when PICALM expression was knocked down. These 

early studies suggest that PICALM (and AP180) may affect AD pathogenesis 

through their endocytic function (Xiao et al., 2012).  

1.5.4 Summary - Genetics of AD 

The studies reviewed in this section demonstrate central involvement of a number 

of proteins in the pathogenesis of AD. Many mutations in APP and PS are 

associated with FAD. APP and PS are essential for the production of Aβ, which 

deposits in AD to form amyloid plaques. Many FAD-associated APP and PS 

mutations are thought to modify the production of Aβ. Genetic mouse models 

carrying human APP and PS mutations mimic some of the pathology seen in AD. 

Therefore, these studies provide strong evidence implicating APP, Aβ and PS in 

the pathogenesis of AD. The mechanisms by which LOAD-associated mutations 

increase the risk of AD are not as well understood as for FAD-associated 

mutations. However many studies suggest that alleles that confer risk for LOAD 

may also affect the biology of APP and/or Aβ. Therefore, further investigation of 

the function of these genes in AD pathogenesis is required to provide insight into 

the biochemical basis of LOAD. 
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1.6 APP function 

Despite intensive research focus on the links between APP and AD pathogenesis, 

the normal function of APP is not resolved. Understanding the normal role of 

APP may be important for the development of new therapeutic strategies for the 

treatment of AD and also to determine the effects of current treatments that target 

APP processing as a strategy to reduce Aβ production (Citron, 2010). This section 

aims to summarise the main themes of research relating to APP’s function in 

order to highlight current knowledge but also to emphasise directions for further 

research. This topic has also been examined by a number of other reviews (Muller 

and Zheng, 2012; Aydin et al., 2012; Mattson, 1997; Zheng and Koo, 2006). 

1.6.1 Lessons from APP family knock-out and knock-in mice  

Genetic knockout models are one of the most powerful ways of investigating the 

functional roles of genes. APP-KO mice are viable and fertile, indicating that APP 

does not play an essential role in development (Li et al., 1996; Muller et al., 1994; 

Zheng et al., 1995). However, APP-KO mice do have a number of subtle 

phenotypic abnormalities. APP-KO mice are slightly smaller, with a reduced 

weight of 15 - 20%, and reduced brain weight (Magara et al., 1999; Zheng et al., 

1995). APP-KO mice display a number of apparent neurological deficiencies, 

such as a deficit in grip strength and locomotor activity (Ring et al., 2007; Zheng 

et al., 1995). Additionally, aged APP-KO mice have reactive gliosis in the 

entorhinal cortex, hippocampus and parietal cortex (Zheng et al., 1995). APP-KO 

mice have also been reported to have a number of phenotypes that are associated 

with altered neuronal function, such as hypersensitivity to kainate-induced 
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seizures, alterations in dendritic spine density, and reduced performance in tests of 

spatial memory (Dawson et al., 1999; Phinney et al., 1999; Steinbach et al., 1998). 

These observations provide strong evidence that APP is involved in the formation 

or maintenance of the nervous system. 

However, the fact that the phenotype of APP-KO mice is non-lethal does not 

mean that APP has no developmental function. An important insight into the 

nature of APP function has come from the combined KO of APP and its family 

members APLP1 and APLP2. Like APP, APLP1-KO mice and APLP2-KO mice 

are both viable and fertile (Heber et al., 2000; von Koch et al., 1997). Double 

knock out of APLP1 and APP also does not produce a lethal phenotype (Heber et 

al., 2000). However, APP/APLP2 double KO mice and APLP1/APLP2 double 

KO mice both have a post-natal lethal phenotype (Heber et al., 2000; von Koch et 

al., 1997). APP/APLP2 double KO mice have impaired neuromuscular junction 

formation, evident in reduced numbers of synaptic vesicles, excessive nerve 

terminal sprouting, incorrect apposition of pre-and post- synaptic proteins, and 

impaired synaptic transmission (Wang et al., 2005). These synaptic deficits may 

be responsible for the lethality phenotype in APP/APLP2 double KO mice (Wang 

et al., 2005). Together, APP family KO mice suggest that APP and APLP2 have a 

redundant essential function throughout development.  

Further insights into the biological functions of APP have come from conditional 

knockout studies. Knock in of sAPPα into APP/APLP2 KO mice (APPsα-DM 

mice) rescues the lethal phenotype (Weyer et al., 2011). Similarly, APL-1 knock 

out in C. elegans is larval-lethal, and this phenotype can be rescued by knock in of 

the APL-1 extracellular domain (Hornsten et al., 2007). These studies demonstrate 
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that the extracellular domain of APP and/or APLP2 is essential for viability. 

Knock in of APP carrying a non-functional YENPTY (Y682G mutation) motif 

into APP-KO mice (APPYG/YG mice) results in altered endocytosis of APP (Ring 

et al., 2007). Therefore, the C-terminal Y682ENPTY motif of APP probably plays 

an important role in APP trafficking in the cell, and consequently in APP 

processing (Ring et al., 2007; discussed in more detail in Section 1.6.5). 

Importantly, crossing APPYG/YG mice with APLP2-KO mice produces a lethal 

phenotype, presumably because the YENPTY motif in the C-terminus of APP is 

required for APP to function correctly (Barbagallo et al., 2011). These studies 

indicate that the APP family has at least two functional components involved in 

essential developmental functions, the extracellular secreted N-terminus, and the 

YENPTY-containing intracellular domain. However, rescued lethality does not 

exclude the possibility that other regions of APP hold non-essential 

developmental functions (i.e. functions which are not required for survival). For 

example, APPsα-DM mice still display deficits in synaptic maturation and 

hippocampal function (Weyer et al., 2011). In a similar experimental paradigm to 

APPsα-DM mice, sAPPβ has been knocked into APP/APLP2 double KO mice. 

However, there was no rescue of the lethal phenotype in these mice, which 

indicates that the α- and β- pathways of APP processing are likely to have distinct 

functions (Li et al., 2010). Perhaps importantly, the studies from Li et al. (2010) 

and Weyer et al. (2011) raise the possibility that the first 16 amino acids of the Aβ 

sequence are somehow crucial for avoiding the lethal phenotype in the 

APP/APLP2 double KO mice. 
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1.6.2 Trophic functions of APP 

APP may be involved in the growth and survival of neurons. There are a variety 

of reports of neurotrophic functions for APP and some of its metabolites, most of 

which implicate the extracellular region of APP as an important positive effector 

of cell growth. Studies in which recombinant full-length APP has been added into 

cell culture have reported that APP is able to increase neurite outgrowth and 

neuronal survival (Araki et al., 1991; Ohsawa et al., 1995). Similar effects on 

neuronal survival and neurite elongation have been reported with APP purified 

from human and mouse brain, that were attributable to the heparin-binding 

domain in the E1 region of APP (Small et al., 1994). Correspondingly, in vitro 

knockdown of APP expression is reported to reduce neurite outgrowth 

(Allinquant et al., 1995). Mice that overexpress human APP have increased 

numbers of synapses, suggesting a synaptotrophic role for APP (Mucke et al., 

1994). 

sAPPα may act in a trophic manner in a number of cell types and has been 

reported to increase the proliferation and/or survival of fibroblasts, keratinocytes, 

B109 cells, FRTL-5 cells, PC12 cells, and cortical neurons (Saitoh et al., 1989; 

Hoffmann et al., 2000; Ninomiya et al., 1994; Pietrzik et al., 1998; Milward et al., 

1992; Jin et al., 1994; Araki et al., 1991; Young-Pearse et al., 2008). A number of 

these studies also found increases in neurite outgrowth in neuronal and pseudo-

neuronal cells (Araki et al., 1991; Jin et al., 1994; Milward et al., 1992; Ninomiya 

et al., 1994). Additionally, there are some reports that infusion of sAPPα into 

animal models of traumatic brain injury can improve neuronal survival and 
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recovery (Copanaki et al., 2010; Thornton et al., 2006). Collectively, these studies 

provide strong evidence that sAPPα can act in a trophic manner. 

1.6.2.1 APP in stem cell proliferation and differentiation 

Throughout development and adulthood, pluripotent stem cell populations 

differentiate into distinct lineages of progenitor cells, which ultimately form the 

cells of the central nervous system (Gage, 2000). A number of studies have noted 

that APP is expressed in neuroblasts and neurons as they undergo differentiation 

and growth (Clarris et al., 1995; Fukuchi et al., 1992; Salbaum and Ruddle, 1994; 

Small et al., 1992; Masliah et al., 1992). This has led many investigators to 

question whether APP has a role in development in the control of stem-cell 

proliferation or differentiation. In addition, APP is processed in a manner that is 

very similar to the key developmental protein Notch, leading to the suggestion 

that APP could have a similar developmental function (De Strooper et al., 1999; 

Struhl and Greenwald, 1999; Zhang et al., 2000). This section will discuss the 

current evidence for a role of APP in stem cell proliferation and integration. 

There is ample evidence that APP is able to positively modulate the proliferation 

of neural stem and progenitor cells (NSPCs) in vitro. Studies have reported that 

sAPPα and sAPPβ can promote the proliferation of NSPCs (Ohsawa et al., 1999; 

Hayashi et al., 1994; Baratchi et al., 2012). Hayashi et al. (1994) also examined 

the effect of secreted APP-770 on NSPC proliferation and found secreted APP-

770 to have a stronger effect on NSPC proliferation than secreted APP-695. A 

more recent study has also reported that inhibition of α-secretase can reduce 

NSPC proliferation and sAPPα is able to rescue this effect (Demars et al., 2011). 

Therefore, sAPPα appears to be able to modulate NSPC proliferation in vitro. In 
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vivo, sAPPα infused into the ventricles of mice binds selectively to epidermal 

growth factor receptor (EGFR) expressing and PSA-NCAM-expressing stem cells 

in the subventricular zone (Caille et al., 2004). Both the secretion of EGF and the 

proliferation of these EGFR-expressing cells were increased by sAPPα infusion 

(Caille et al., 2004). Therefore, sAPPα may regulate proliferation of NSPCs in 

vivo. 

Aside from the reported ability of sAPPα to modify NSPC proliferation, recent 

evidence has demonstrated an effect of APP gene expression on stem cell 

proliferation. We recently reported that the expression of APP can positively 

modulate the proliferation of NSPCs and this effect was reduced in APP-KO 

NSPCs (Hu et al., 2013). The APP-driven increase in NSPC proliferation was not 

due to the secretion of sAPPα, but rather an effect of APP on the expression and 

secretion of cystatin C (Hu et al., 2013). Therefore, collectively these studies 

indicate that APP may act on NSPC proliferation in two modes. Firstly, through 

the production of sAPPα and secondly, through the modulation of other genes and 

proteins involved in NSPC regulation, such as cystatin C.  

Further indications that APP is involved in the control of NSPC proliferation have 

come from observations made in AD transgene models. Although these models 

are complicated by the presence of disease-associated processes, they have 

nevertheless provided some interesting observations linking APP to NSPC 

function. PDGF-APP(sw, ind) mice which overexpress human APP with the 

Swedish and Indiana FAD mutations, have a 2-fold increase in the number of 

proliferating stem cells in the dentate gyrus and subventricular zone at an age of 3 

months (Jin et al., 2004; Lopez-Toledano and Shelanski, 2007). However, as Aβ 
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starts to accumulate, this effect decreases (Lopez-Toledano and Shelanski, 2007). 

Other studies have also found increased NSPC proliferation in various AD mouse 

models, but suggested the effect was due to Aβ deposition (Kolecki et al., 2008; 

Sotthibundhu et al., 2009; Verret et al., 2007). Conversely, a number of studies 

have reported decreased NSPC proliferation in various AD mouse models 

(Naumann et al., 2010; Dong et al., 2004; Haughey et al., 2002; Donovan et al., 

2006). Therefore, together these studies do not clarify whether it is APP 

expression, APP mutations, Aβ deposition, transgene effects, genetic background 

or age that is able to affect NSPC proliferation in AD mouse models in vivo. 

However, the clear effects of AD mutations and/or APP expression on NSPC 

proliferation in AD mouse models warrant further investigation. 

APP may also play a role in regulating the differentiation of NSPCs. A recent 

study using human embryonic stem cells found that APP overexpression, or 

addition of sAPPα enhanced neuronal differentiation (Freude et al., 2011). We 

also found that the over-expression of APP in Tg2576 derived NSPCs increased 

neural differentiation, and APP knockout decreased neural differentiation (Hu et 

al., 2013). However, a conflicting report presents evidence that sAPPα/β may 

cause an increase in differentiation to a glial lineage (Baratchi et al., 2012). There 

were marked differences in the time scales used between these studies, so further 

investigation will be required to fully establish a role of APP in NSPC 

differentiation. It should also be noted that the APP family of proteins is not 

required for neural differentiation, as embryonic stem cells derived from APP 

triple KO mice still form neuronal precursors (Bergmans et al., 2010).  
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1.6.2.2 Mechanism of the trophic effects of APP 

It is not clear whether APP is able to directly elicit trophic effects, e.g. by 

activating a growth factor receptor. Some receptors for APP that have been 

suggested are β1-integrin, lipoprotein receptor related protein-1, death receptor 6, 

p75 neurotrophin receptor and APP itself (Young-Pearse et al., 2008; Kounnas et 

al., 1995; Nikolaev et al., 2009; Gralle et al., 2009). However, APP may interact 

with many other extracellular proteins (Bai et al., 2008). Therefore, it is unclear 

which of these interactions may be important.  

Importantly, many indirect mechanisms of action have also been reported that 

make mechanistic interpretation of APP’s trophic effects complex. A number of 

studies have demonstrated that APP is able to modify the trophic effects of other 

growth factors. For example, secreted APP is able to potentiate nerve growth 

factor (NGF) signalling, possibly by increasing the affinity of the NGF receptor 

for NGF (Wallace et al., 1997; Milward et al., 1992; Akar and Wallace, 1998). 

More recently, APP has been suggested to regulate NGF/TrkA signalling, through 

an intracellular interaction involving the C-terminal YENPTY phosphorylation 

site (Matrone et al., 2011). Curiously, NGF, EGF, basic fibroblast growth factor 

(FGF2) and brain-derived neurotrophic factor have all been reported to increase 

the expression of APP (Cosgaya et al., 1996; Lahiri and Nall, 1995; Mobley et al., 

1988; Ohyagi and Tabira, 1993; Ruiz-Leon and Pascual, 2001; Villa et al., 2001; 

Clarris et al., 1994). Also, NGF, EGF, insulin and insulin-like growth factor 1 

have been reported to increase the secretion of sAPPα (Caille et al., 2004; Slack 

et al., 1995; Ruiz-Leon and Pascual, 2001; Solano et al., 2000; Jacobsen et al., 

2010). We have recently shown that expression of APP can affect the proliferation 

of neural stem cells in an indirect manner, by modulating the expression and 
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secretion of cystatin C (Hu et al., 2013). Therefore, these studies above highlight 

that the trophic actions of APP are complex, and strongly implicate APP as a 

modulator of cellular growth pathways. Importantly, as APP has some functional 

interplay with other effectors of cell growth, careful consideration of experimental 

conditions is needed to delineate the mechanisms underlying the trophic actions of 

APP.  

1.6.3 Roles of APP in cell adhesion and synaptogenesis 

Some studies have suggested APP could have a function in cell-adhesion. The 

extracellular region of APP can bind laminin, collagen type I, heparin and 

glypican-1 (Beher et al., 1996; Clarris et al., 1997; Kibbey et al., 1993; 

Williamson et al., 1996; Mok et al., 1997). Physical adhesion to these 

extracellular components could explain the effects of APP on neurite outgrowth 

(Kibbey et al., 1993; Small et al., 1994).  

APP has also been proposed to have other roles in cell adhesion beside adherence 

to extracellular matrix components. One suggestion is that APP and its 

homologues APLP1/2 could form physical contacts between cells (Soba et al., 

2005). In the presence of heparin, APP can form trans-dimers that might act as 

cell-to-cell contacts (Dahms et al., 2010; Gralle et al., 2006). Trans-dimerisation 

of APP has also been proposed as a mechanism for the stabilisation of synapses 

by APP (Wang et al., 2009). Another suggestion for a role of APP in cell adhesion 

is that APP may modulate other proteins involved in cell adhesion. APP has been 

suggested to interact with integrin, fasciclin II, contactin 4, neuroglia cell 

adhesion molecule, and transient axonal glycoprotein-1, which are all proteins 

implicated in cell-adhesion (Ashley et al., 2005; Ma et al., 2008; Osterfield et al., 
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2008; Yamazaki et al., 1997; Young-Pearse et al., 2008). These studies provide a 

number of avenues by which APP may perform functions in cell-adhesion. 

However, it is hard to determine whether effects of APP on neurite outgrowth are 

due to increased adhesion or increased growth, and therefore further work will be 

needed to delineate the precise mechanisms of action. 

1.6.4 Non-neuronal functions of KPI domain-containing APP isoforms 

(Protease nexin II) 

The majority of research into the biology of APP has considered the roles of APP-

695, as this is the APP isoform that is predominantly expressed in neurons. 

However, the secreted KPI-domain containing 770 and 751 isoforms of APP 

(collectively termed here APP-770/751, but also known as protease nexin II (Van 

Nostrand et al., 1989) have well-described roles in non-neuronal contexts that 

may be able to inform our understanding of APP function in the brain. 

In the blood, APP is predominantly expressed in platelets (Bush et al., 1990; 

Gardella et al., 1990; Van Nostrand et al., 1991a; Smith and Broze, 1992). In 

platelets, APP, sAPP and Aβ accumulate in α-granules, intracellular vesicles that 

are used to store a variety of clotting factors (Van Nostrand et al., 1991b; Blair 

and Flaumenhaft, 2009). Upon platelet stimulation APP, secreted APP and Aβ are 

released, along with a number of another components of the coagulation cascade 

(Bush et al., 1990; Gardella et al., 1990; Smith, 1997; Smith et al., 1990; Smith 

and Broze, 1992; Van Nostrand et al., 1990). 

APP-770/751 is a potent inhibitor of the coagulation factors XIa, IXa and Xa 

(Scandura et al., 1997; Smith et al., 1990; Mahdi et al., 1995; Schmaier et al., 
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1993). This inhibition of coagulation factors is due to the KPI domain, which 

inhibits faction Xia with a Ki of 400 pM (Scandura et al., 1997; Smith et al., 

1990). However, other regions of APP also participate. Inhibition of factor XIa by 

APP is enhanced by heparin, suggesting an involvement of one of the heparin-

binding regions of APP (Smith et al., 1990). The E1 N-terminal heparin-binding 

domain of APP can inhibit the activation of factor XII and also inhibit platelet 

activation, independently of the KPI domain (Henry et al., 1998; Niwano et al., 

1995). These studies demonstrate that APP has a role as a suppressor of multiple 

stages of the coagulation cascade, which is not only due to the KPI domain.  

Consistent with this role of APP as an inhibitor of multiple stages of the 

coagulation cascade, APP-770/751 stops blood from clotting in vitro (Schmaier et 

al., 1993; Annich et al., 1999). Genetic overexpression of APP in mice decreases 

cerebral thrombosis and also increases the severity of haemorrhage in animal 

models, and knockout of APP has the opposite effect (Xu et al., 2005; Xu et al., 

2007). These functions of APP are conserved among APP family members (Xu et 

al., 2009). There is also evidence that this function of APP action may play a role 

in human disease. Familial hereditary cerebral haemorrhage, Dutch type 

(HCHWA-D) leads to haemorrhage, but also accumulation of APP and Aβ in the 

brain vasculature (Rozemuller et al., 1993). Furthermore, mutations in APP have 

been linked to this condition (Levy et al., 1990; Bakker et al., 1991; Fernandez-

Madrid et al., 1991; Van Broeckhoven et al., 1990). Therefore, considering APP-

770/751 can inhibit blood coagulation, it has been suggested that the over-

accumulation of APP in blood vessels in HCHWA-D may be a cause of 

haemorrhage (Xu et al., 2005). However, this suggestion has not yet been 

experimentally tested. The role of APP as an anti-coagulant has also led to 
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suggestions it could be used for the treatment of conditions such as stroke or as a 

biomarker for coronary syndrome (Kitazume et al., 2012; Wu et al., 2012).  

1.6.5  AICD interactions and functions 

The intracellular domain of APP is highly conserved among APP family members 

(Muller and Zheng, 2012). This region of APP has a number of phosphorylation 

sites and interacts with a number of cytosolic adaptor proteins (Fig. 1.5, Section 

1.6.5.2). Interactions between the intracellular domain of APP and cytosolic 

adaptor proteins can potentially occur with full-length APP, C99, C83, and also 

with the γ-secretase cleavage product AICD (Schettini et al., 2010). The roles of 

cytosolic adaptor protein-interactions in the trafficking and function of APP will 

be discussed in this section. 

1.6.5.1 Functional motifs and phosphorylation sites in AICD 

The APP C-terminus contains a YENPTY motif (residues 682 – 687 of the 

APP695 isoform). This motif is conserved in many tyrosine receptor kinases and 

non-receptor tyrosine kinases, which are type-1 transmembrane proteins that 

orchestrate cellular signalling processes (Lemmon and Schlessinger, 2010). The 

YENPTY motif has been demonstrated to be important in the trafficking of APP 

(Lai et al., 1995; Marquez-Sterling et al., 1997; Perez et al., 1999). 

There are three potential tyrosine phosphorylation sites in the C-terminus of APP 

that have been identified in vitro, tyr653, tyr682, and tyr687 (APP695 numbering 

system; Schettini et al., 2010). Tyr682 and tyr687 are part of the “YENPTY” motif 

in the C-terminus of APP. Proteins containing SH3 domains or phosphotyrosine 

binding (PTB) domains selectively bind tyr682 and tyr687, respectively (Lim and 

Pawson, 2010; Borg et al., 1996; Tarr et al., 2002b). Tyr653 may be involved in the 

sorting of APP to basolateral membranes, however this phosphorylation site is not 

as well characterised as tyr682 and tyr687 (Haass et al., 1995; Schettini et al., 2010).   
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Aside from the tyrosine phosphorylation sites, there are three serine and threonine 

phosphorylation sites: Ser655, thr654 and thr668. The significance of these 

phosphorylation sites is unclear. Some studies have reported contradictory effects 

of thr668 phosphorylation on APP processing (Feyt et al., 2007; Lee et al., 2003). 

Thr668 is phosphorylated in a cell-cycle dependent manner in the G2/M phase, 

suggesting that the metabolism of APP may be affected by cell-cycle state 

(Suzuki et al., 1994).  

The kinases that have been implicated in phosphorylation of AICD are 

summarised in Table 1-2. Many of these kinases have been identified using in 

vitro phosphorylation studies of AICD fragments, but have not yet been 

confirmed in vivo. 

1.6.5.2 Binding of adaptor proteins to AICD 

The AICD has a number of reported cytosolic interacting proteins. Many of the 

adaptor proteins discussed below bind to the YENPTY motif in the C terminus of 

APP. This is a conserved sorting motif that is found in many proteins, and 

accordingly, many of the adaptor proteins that interact with this site in APP are 

reported to affect its trafficking (Bonifacino and Traub, 2003).   
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Table 1-2 Kinases implicated in the phosphorylation of AICD in vitro 

AICD 
phosphorylation 
site 

Implicated kinase Reference 

Tyr682 Tyrosine receptor kinase A 
(TrkA)  

Matrone et al., 2011; Tarr 
et al., 2002a 

 Abl Zambrano et al., 2001 

 Src kinase Zhou et al., 2004 

 Fyn kinase  Hoe et al., 2008 

Tyr687 Unknown Rebelo et al., 2007  

Ser655 Protein kinase C Gandy et al., 1988; Suzuki 
et al., 1992 

 Ca2+/calmodulin-dependent 
protein kinase II  

Gandy et al., 1988 

Thr654 Protein kinase C  Gandy et al., 1988 

 Cyclin dependent kinase 5 
(Cdk5) 

Iijima et al., 2000 

Thr668 Cyclin-dependent kinase 1  

(Cdk1/cdc2k) 

Suzuki et al., 1994 

 c-Jun NH2-terminal kinase 3 
(JNK3) 

Inomata et al., 2003 

 c-Jun NH2-terminal kinase 1/2 
(JNK1-2) 

Scheinfeld et al., 2003 

Table shows potential phosphorylation sites in the C-terminal intracellular 
domain of APP, and kinases that have been implicated in the phosphorylation of 
each residue in vitro. 
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1.6.5.2.1 Fe65 

The first protein to be identified to bind to the AICD was Fe65 (Fiore et al., 1995; 

Borg et al., 1996). Fe65 binds to the YENTPTY motif of AICD in a tyrosine 

phosphorylation-independent manner through its PTB domain (Borg et al., 1996). 

Phosphorylation of thr668 can inhibit Fe65 binding to AICD in vitro (Ando et al., 

2001). The Fe65-AICD interaction is reported to have a number of biological 

consequences. Firstly, Fe65-AICD binding has been reported to affect the 

trafficking and proteolytic processing of APP, including the secretion of Aβ 

(Ando et al., 2001; Guenette et al., 1999; Sabo et al., 1999). As Fe65 also binds to 

the C-terminus of LRP1, LRP1 has been suggested to be necessary for effects of 

Fe65 on APP trafficking (Pietrzik et al., 2004). 

 A more controversial suggestion for the biological basis of the Fe65-AICD 

interaction is in the direct regulation of gene transcription. This idea has been 

formulated based on the similarities of the AICD domain to the Notch 

intracellular-domain (NICD). NICD is released from the plasma membrane after 

γ-secretase cleavage, and can translocate to the nucleus to regulate gene 

transcription (Andersson et al., 2011; De Strooper et al., 1999). γ-Secretase-

cleaved AICD has been reported to translocate to the nucleus in a similar manner 

to the NICD (Cupers et al., 2001; Gao and Pimplikar, 2001). Normally AICD is 

prone to degradation, however Fe65 may stabilise AICD allowing it to translocate 

to the nucleus (Cupers et al., 2001; Kimberly et al., 2001). In the nucleus, the 

Fe65-APP complex has been reported to form a transcriptionally active complex 

in combination with tat-interactive protein 60 (tip60), a histone acetyltransferase 

(Cao and Sudhof, 2001; Gao and Pimplikar, 2001). A number of target genes have 

been reported for this interaction, KAI1 (Baek et al., 2002; von Rotz et al., 2004; 



 54 

Zhang et al., 2007), APP (von Rotz et al., 2004), BACE1 (von Rotz et al., 2004), 

Tip60 (von Rotz et al., 2004), GSK3β (Kim et al., 2003; Ryan and Pimplikar, 

2005; von Rotz et al., 2004), EGFR (Zhang et al., 2007), p53 (Checler et al., 

2007) and LRP1 (Liu et al., 2007). However, controversy surrounding the 

transcriptional role of AICD/Fe65 has arisen from studies that question many 

aspects of the AICD nuclear signalling model. γ-Secretase-induced AICD release 

is not necessary for Tip60 activation (Hass and Yankner, 2005). Fe65 has also 

been reported to signal gene transcription independently of APP (Yang et al., 

2006). Additionally, many of the downstream gene targets of the proposed 

AICD/Fe65 complex have been questioned (Aydin et al., 2011; Chen and Selkoe, 

2007; Repetto et al., 2007; Waldron et al., 2008). Therefore, it is still unclear 

whether the Fe65-AICD gene interaction is involved in the regulation of gene 

transcription. 

1.6.5.2.2  ShcA/C and Grb2 

Of the proteins that interact with the YENPTY motif of APP, only ShcA/C and 

growth factor receptor-bound protein 2 (Grb2) require tyr682 to be phosphorylated 

(Tarr et al., 2002b; Zhou et al., 2004). ShcA contains an SH2 domain and a PTB 

domain that facilitate binding to phospho-tyr682, and this interaction is also 

possibly modulated by thr668 (Tarr et al., 2002b).  

Grb2 also binds to tyr682 in a phosphorylation dependent manner (Zhou et al., 

2004). This interaction may be involved in the trafficking of APP, as Grb2 alters 

the localisation of APP in cells (Raychaudhuri and Mukhopadhyay, 2010). Both 

ShcA and Grb2 are implicated in activating the mitogen-activated protein kinase 3 

pathway (MAPK3, also known as extracellular signal-regulated kinase 1 ERK1), 
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which may represent the downstream signalling mechanism for these processes 

(Nizzari et al., 2007; Schettini et al., 2010).  

1.6.5.2.3  X11/mint 

X11/mint (Munc-18-interacting proteins) proteins also bind the APP YENPTY 

motif through their PTB domains (Borg et al., 1996; Tanahashi and Tabira, 1999). 

The X11/mint proteins are scaffolding components that play roles in polarized 

trafficking of proteins. Studies in Drosophila suggest that X11/mint proteins 

target APP and a number of other proteins to axons (Gross et al., 2013). A number 

of studies have illustrated that the X11/Mint binding to APP reduces Aβ 

production and APP processing in vitro and in vivo (Borg et al., 1998; Lee et al., 

2004; Sastre et al., 1998). This may be due to the altered trafficking and 

metabolism of APP, as the X11/mint interaction prolongs the half-life of full 

length APP (Borg et al., 1998). 

1.6.5.2.4 Dab 

Disabled 1 (Dab1) and Disabled 2 (Dab2) are another family of proteins that bind 

to the YENPTY motif of APP through a PTB domain (Homayouni et al., 1999; 

Howell et al., 1997a; Lee et al., 2008). Dab1 is a key mediator of reelin signalling, 

a process that is crucial during neuronal development (Howell et al., 1997a; 

Howell et al., 1997b). Dab1 binds to the NPxY motifs of apoE receptor 2 

(apoER2) and also vLDL receptor through its PTB domain to initiate reelin 

signalling (Bock et al., 2004). Phosphoinositide binding by Dab1 is also required 

for activity (Huang et al., 2005; Stolt et al., 2003; Stolt et al., 2004; Stolt et al., 

2005). Interestingly, modulation of Dab1-YENPTY interactions alters the 

proteolytic processing of APP and decreases the production of Aβ (Hoe et al., 
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2006). Dab2 has also been demonstrated to affect the trafficking of APP (Lee et 

al., 2008). 

1.6.5.2.5 Jip1 

Members of the APP family also bind the Jun NH2-terminal kinase interacting 

protein (Jip1) via the YENPTY motif (Scheinfeld et al., 2002; Taru et al., 2002). 

This interaction enhances the phosphorylation of APP at Thr668 by JNK1 (Inomata 

et al., 2003; Scheinfeld et al., 2003). Inhibition of JNK phosphorylation of Thr668 

is reported to prevent the ectodomain cleavage of APP and Aβ production and 

also induce degradation of APP (Colombo et al., 2009). Therefore, Jip/JNK 

interactions with the APP C-terminus may play a role in targeting APP for 

degradation. 

1.6.5.2.6  Pin1 

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), is a 

prolylisomerase that has been found to bind to Thr668 of APP. Pin1 knockout 

increased the secretion of Aβ, while conversely Pin1 overexpression decreased 

the secretion of Aβ, suggesting that Pin1 promotes non-amyloidogenic processing 

of APP (Pastorino et al., 2006). Pin1 binding has been suggested to convert Thr668 

from a cis-conformation to a trans-conformation to mediate this effect (Pastorino 

et al., 2006). However, more recently, Pin1 has also been suggested to affect the 

turnover of APP by inhibiting GSK3β mediated phosphorylation at Thr668 (Ma et 

al., 2012).  
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1.6.5.2.7  Numb  

Numb is a protein that binds to the intracellular domain of APP and also to Notch 

through its PTB domain (Roncarati et al., 2002). Numb has been implicated in a 

number of endocytic pathways, and directly binds to clathrin adaptor protein AP2 

(Ntelios et al., 2012). Numb-APP interactions modulate the trafficking of APP, in 

a Numb-isoform dependent manner (Kyriazis et al., 2008). Levels of different 

Numb isoforms are perturbed in AD brain and also AD mouse models; suggesting 

a role of the Numb/APP interaction in AD (Chigurupati et al., 2011).  

1.6.5.2.8 Sorting nexins 

Sorting nexins (SNX) are endocytic adaptor proteins that are components of the 

endocytic machinery (see Section 1.7.5.2). SNX17 and SNX33 have been 

reported to bind to the YENPTY motif and affect the trafficking of APP (Lee et 

al., 2008; Schobel et al., 2008). As the α-secretase and β-secretase cleavage of 

APP occurs in different cellular compartments, modulation of SNX-APP 

interactions has also been reported to affect APP processing (Lee et al., 2008; 

Schobel et al., 2008). Interestingly, mutations in the Sortilin-related receptor, a 

protein that also interacts with sorting nexins and can affect APP trafficking, have 

been linked to Alzheimer’s disease (Rogaeva et al., 2007). 

1.6.5.3 Summary: Functional roles of the APP intracellular domain 

In summary, although the C-terminal interactions of APP are complex, there are 

clear and overlapping links to a role for this region in controlling the trafficking 

and consequently the proteolytic processing of APP. This idea is supported by 

evidence from APP-conditional knock in mice discussed in Section 1.6.1 that 

have a non-functional YENPTY motif, which have altered trafficking of APP. 
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Importantly, many adaptor proteins that interact with the C-terminus of APP also 

interact with other type-1 transmembrane proteins, allowing for a broader 

reflection on possible roles of these adaptor proteins in the normal biology of 

APP. 

1.6.6 Summary: Function of APP. 

The reported functions of APP are diverse, although there are some broad 

connecting themes between current studies. There are many reports of trophic 

effects of APP on the proliferation, growth and differentiation of cells. However, 

whether these effects are due to secreted APP, full length APP, or a combination 

of both has not yet been conclusively determined in vivo. It is clear that the 

extracellular region of APP is involved in aspects of APP function. This is 

demonstrated by studies with sAPPα that show effects on cell growth in vitro and 

also conditional knock-in studies which show that the extracellular region of APP 

can rescue the lethal phenotype of APP/APLP2 double knockout mice. The 

intracellular region of APP is clearly involved in the regulation of APP trafficking 

through interaction with cytosolic adaptor proteins. However, it is also possible 

that AICD may facilitate some APP functions, for example by regulating the 

expression of a number of genes in combination with Fe65. 

There are a number of aspects of APP biology that complicate interpretation of 

functional data. Firstly, there may be tissue- and cell-specific roles for APP. For 

example, the role of APP in the clotting cascade is apparently distinct from its 

function in the differentiation and growth of neural stem cells. However, the 

modes of action that elicit APP functions in different contexts may be similar. 
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Secondly, the APP homologues APLP1/2 may share functions with APP to some 

extent, which makes experimental determination of APP’s function more difficult. 

This compensation is best illustrated by APP/APLP2 double KO mice, which 

have a lethal phenotype, whereas APP-KO and APLP2-KO mice are viable. 

Thirdly, the secretase processing of APP means that full length APP and its 

derivative proteolytic fragments may all have separate cellular actions. Secreted 

APP fragments may have a paracrine function, as illustrated by the reported 

effects of sAPPα on cell proliferation. However, it is not clear at present if the 

reported effects of sAPPα on cell proliferation are direct or indirect. APP 

ectodomain shedding to produce sAPPα can be stimulated by a number of growth 

factors; therefore, the physiological roles of sAPPα may be closely related to the 

actions of those growth factors. To fully understand the biological roles of APP, 

further research is required, with careful consideration of the complexities 

outlined above. 

1.7 Phosphatidylinositol phosphate lipids: Minor lipids with 

major roles in cellular function 

Lipids are a class of molecule that hold many roles beyond the formation of 

cellular membranes. In the last three decades, studies of lipid metabolism have 

revealed sophisticated lipid signalling interactions, which are involved in almost 

all aspects of cellular physiology. To explain some of the findings presented later 

in this thesis, this section will give a brief introduction to lipid signalling. 

Although the field of lipid signalling is too large to discuss here in complete 

detail, the reader is directed to a number of excellent reviews for further 
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information (Hannun and Obeid, 2008; Wymann and Schneiter, 2008; Di Paolo 

and De Camilli, 2006; McLaughlin and Murray, 2005; Lemmon, 2008; Stace and 

Ktistakis, 2006; Cullen et al., 2001). This next section will discuss a particularly 

interesting class of lipid; the phosphorylated derivatives of phosphatidylinositol, 

known as phosphoinositides or PIPs.  

1.7.1 Structure and nomenclature of phosphatidylinositol phosphates. 

Phosphatidylinositol (PI) is a glycerophospholipid, consisting of an inositol head 

group, linked to two fatty-acid chains via a glycerol backbone and phosphate 

group (Fig. 1.6). Each of the hydroxyl groups of PI can be substituted with a 

phosphate group, resulting in mono, bis- and tris- phosphate PI species. These 

phosphorylated derivatives of phosphatidylinositol are termed 

phosphatidylinositol phosphates, phosphoinositides, PtdInsP or PIPs for short. 

There are seven different species of PIP. The mono, bis- and tris- phosphate 

species are therefore called PIP, PIP2 and PIP3 respectively. As the phosphate 

groups can be added at the 3, 4 or 5 position, both PIP and PIP2 species can exist 

as different regioisomers, for example, monophosphate species PI(3)P, PI(4)P or 

PI(5)P, and the bisphosphate species PI(4,5)P2, PI(3,5)P2 and PI(3,4)P2. 

Confusingly, PIP2 in the older literature is often used to refer specifically to 

PI(4,5)P2, however the other PIP2 regioisomers such as PI(3,4)P2 also hold 

important biological roles (McLaughlin et al., 2002; Posor et al., 2013). 

  



ph
os

ph
at

id
yl

in
os

ito
l

 h
ea

d 
gr

ou
p

G
ly

ce
ro

l
 b

ac
kb

on
e

Fa
tty

 a
ci

d 
ta

il

PI(3)P

PI(5)P

PI(3,5)P2

PI(3,4)P2

PI

PI(4)P

PI(4,5)P2

PI(3,4,5)P3

PIP
regioisomers

PIP2
regioisomers

PIP3
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1.7.2 Introduction to modes of PIP signalling 

PIPs account for less than 1% of the total lipid content in mammalian cells 

(McLaughlin and Murray, 2005; van Meer et al., 2008; Lemmon, 2008). 

However, PIP lipids are intimately involved in many cellular processes. Levels of 

PIPs are tightly controlled by an elaborate network of kinases and phosphatases 

that can rapidly convert PIP isoforms (discussed in Section 1.7.3). This means the 

cell has exquisite control of the PIP composition of membranes and can alter this 

upon stimulation. Many proteins contain evolutionarily conserved modular PIP-

binding domains, which can selectively bind to specific PIP regioisomers (Section 

1.7.4). The combination of these two features of PIP biology means that proteins 

containing a PIP-binding domain can be targeted to a particular membrane within 

the cell in a reversible fashion. As different cellular compartments have different 

prevalent PIP compositions, PIP-protein interactions ensure that proteins are in 

the correct cellular location (Di Paolo and De Camilli, 2006; Varnai and Balla, 

1998; Balla and Varnai, 2002). For example, endosomal membranes 

predominantly contain PI(3)P and endosomal proteins such as EEA1 associate 

with endosomes through a domain that specifically binds to PI(3)P (Gaullier et al., 

1998; Simonsen et al., 1998). Further, PIPs carry a strong negative charge, and 

there is some indication that this is involved in the lateral clustering of proteins 

into discrete membrane domains to enable function (Khuong et al., 2013; van den 

Bogaart et al., 2011; Huang et al., 2004). Therefore, PIPs can ensure proteins are 

in the right location at the right time, to facilitate a variety of functions within the 

cell.  

1.7.3 PIP metabolism 

PIP levels in the cell are tightly controlled by a number of kinases and 

phosphatases outlined in (Fig. 1.7). A summary of the main phosphoinositide 

kinases and phosphatases is presented below. The structure, function and 

regulation of PIP kinases is discussed in more detail in a recent volume (Balla, 

Wymann and York, 2012a).   
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Figure 1.7. Metabolism of phosphoinositides. The phosphorylation of PIPs in the 
cell is controlled by the action of phosphoinositide kinases (shown in blue) and 
phosphoinositide phosphatases (shown in red, numbers correspond to enzymes in 
list). Phospholipase C-mediated production of IP3 and DAG is shown in green. 
Figure based on Wymann (2012), Di Paolo and Di Camilli (2006) and Rusten and 
Stenmark (2006).
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1.7.3.1 Phosphoinositide kinases  

PI and PIP kinases are grouped into three main families based on their substrate 

specificity (Table 1-3). These are the phosphatidylinositol 3-kinases (PI3K), 

phosphatidylinositol 4-kinases (PI4K), and phosphatidylinositol phosphate 

kinases (PIPK). 

PI3Ks are enzymes that phosphorylate PI and PIP at the three position of the 

inositol head group. There are three classes of PI3Ks, type I, II and III based on 

structural homology (Table 1-3A). PI3Ks generally consist of a regulatory subunit 

and catalytic subunit, with a conserved catalytic core (Wymann, 2012; Wymann 

and Schneiter, 2008). PI3Ks have been intensively studied as these kinases have 

central roles in the regulation of cell proliferation, which means that they are 

strongly implicated in many human cancers (Wymann, 2012; Wymann and 

Schneiter, 2008).  

Phosphatidylinositol 4-kinases (PI4K) and phosphatidylinositol phosphate kinases 

(PIPKs or PIP4Ks) phosphorylate PI and PIP respectively in the 4 position of the 

inositol head group. There are two classes of PI4Ks based on structural homology 

with two genes (α, β) in each class (Table 1-3B). Confusingly, PI4Ks only use PI 

as a substrate, whereas PI3K use both PI and PIP as substrates. PIPKs (or PIP4Ks) 

are the enzymes that phosphorylate PIPs in the 4 positions. The PIPKs are also 

divided into three main classes (Table 1-3C), with three genes (α,β,γ) in each 

class.   
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Table 1-3 Classes of phosphoinositide kinases 
 
Class Genes Substrate Product References 

A. Phosphoinositide 3-Kinases (PI3K) 
 Catalytic 

Subunits 
Regulatory 
Subunits 

   

PI3K 1A 
 

p110α, 
p110β,  
or 
p110δ 
 

p85α, p55α, 
p50α, p85β, 
p55γ 

PI(4,5)P2, PI(3,4,5)P3 Vanhaesebroeck et 
al., 2010 

PI3K 1B p110γ p101, p84    
PI3K II PI3K-C2α, 

PI3K-C2β 
PI3K-C2γ 

 PI, PI(4)P PI(3)P, 
PI(3,4)P2 

Vanhaesebroeck et 
al., 2010 

PI3K III Vps34 Vps15 PI PI(3)P Vanhaesebroeck et 
al., 2010 

B. Phosphoinositide 4-Kinases (PI4K) 
PI4K II α, β PI PI(4)P Endemann et al., 

1987; Whitman et 
al., 1987; Minogue 
and Waugh, 2012 

PI4K III α, β PI PI(4)P Endemann et al., 
1987; Whitman et 
al., 1987; Minogue 
and Waugh, 2012 

C. Phosphatidylinositol phosphate kinases (PIPK) 
PIPK I 
(also referred to 
as PI(4)P 5-
Kinase) 

α, β, γ PI(4)P PI(4,5)P2 Ishihara et al., 
1996; Jenkins et al., 
1991; Schramp et 
al., 2012 

PIPK II 
(also referred to 
as PI(5)P 4-
Kinase) 

α, β, γ PI(5)P PI(4,5)P2 Boronenkov and 
Anderson, 1995; 
Rameh et al., 1997; 
Schramp et al., 
2012 

PIPK III 
(also referred to 
as PI(3)P 5-
Kinase) 

PIKfyve (human) PI(3)P PI(3,5)P2 Cabezas et al., 
2006; Schramp et 
al., 2012 

Table shows classes of phosphoinositide kinases and substrates. Individual genes in each class are 
indicated. Functional PI3K 1 and PI3K III proteins are expressed by two genes, a regulatory subunit 
and a catalytic subunit. 
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1.7.3.2 Phosphoinositide phosphatases 

There are currently over 35 known mammalian phosphoinositide phosphatases 

that remove phosphate groups from PIP (Dyson et al., 2012). These can be 

separated into 3-phosphatases, 4-phosphatases and 5-phosphatases, although there 

are some phosphatases (e.g. SAC1) that have mixed specificity (Table 1-4). By 

counteracting the role of many PI kinases, phosphoinositide phosphatases control 

many important developmental and disease related processes. A well known 

example is phosphatase and tensin homolog (PTEN), a phosphatase that 

dephosphorylates PI(3,4,5)P3. Mutations in PTEN are frequently associated with 

cancer due to its critical role in deactivation of PI(3,4,5)P3-dependent signalling 

(Li and Sun, 1998).  

1.7.4 PIP-binding domains 

Lipid-binding domains are a feature of many proteins that interact with cellular 

membranes. The scientific literature surrounding the discovery and 

characterisation of lipid-binding domains is too extensive to review 

comprehensively here. However, lipid-binding domains have been discussed by a 

number of excellent reviews (Balla, 2005; Lemmon, 2008; McLaughlin et al., 

2002; McLaughlin and Murray, 2005; Carlton and Cullen, 2005).  

In general, lipid-binding domains interact with acidic phospholipids, such as 

phosphatidylserine, phosphatidic acid, PI and PIPs (Lemmon, 2008). There is 

great structural diversity amongst different lipid-binding domain families, ranging 

from relatively ordered domains with high specificity for a particular lipid, to 

loosely structured regions that interact with the membrane in a broad electrostatic 

manner (McLaughlin and Murray, 2005).  
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Table 1-4. Mammalian phosphoinositide phosphatases 
Name Locus Substrate(s) Product(s) Reference 

3-phosphatases 

Phosphatase and tensin 

homolog deleted on 

chromosome ten 

PTEN  PI(3,4,5)P3 

PI(3,4)P2 

 

PI(4,5)P2 

PI(4)P 

 

Li et al., 1997; Leslie 

et al., 2012 

Myotubularins and 

myotubularin-related 

phosphatases 

MTM 

MTMR 

(16 family 

members) 

PI(3)P 

PI(3,5)P2 

PI 

PI(5)P 

Leslie et al., 2012 

4-phosphatases 

Inositol polyphosphate 4-

phosphatase type I  

INPP4A PI(3,4)P2 PI(3)P Norris and Majerus, 

1994 

Inositol polyphosphate 4-

phosphatase type II 

INPP4B PI(3,4)P2 PI(3)P Norris et al., 1997 

PI(4,5)P2 4-phosphatase 

type I 

 

TMEM55A PI(4,5)P2 PI(5)P Ungewickell et al., 

2005 

PI(4,5)P2 4-phosphatase 

type I 

 

TMEM55B PI(4,5)P2 PI(5)P Ungewickell et al., 

2005 

5-phosphatases 

Inositol-polyphosphate 5-

phosphatase type II 

INPP5B PI(4,5)P2 

PI(3,4,5)P3 

PI(4)P 

PI(3,4)P2 

Jefferson and Majerus, 

1995 

SH2- containing inositol 

phosphatase SHIP-1 

INPP5D PI(3,4,5)P3 PI(4,5)P2 Damen et al., 1996 

SHIP2 INPPL1 PI(3,5)P2 

PI(4,5)P2 

PI(3,4,5)P3 

PI(3)P 

PI(4)P 

PI(3,4)P3 

Hejna et al., 1995; 

Pesesse et al., 1997 

Pharbin 

Type IV 5-phosphatase 

INPP5E PI(3,5)P2 

PI(4,5)P2 

PI(3,4,5)P3 

PI(3)P 

PI(4)P 

PI(3,4)P3 

Asano et al., 1999; 

Kisseleva et al., 2000; 

Kong et al., 2000 

Lowe oculocerebrorenal 

syndrome protein  

OCRL 

OCRL 

INPP5F 

PI(3,5)P2 

PI(4,5)P2 

PI(3,4,5)P3 

PI(3)P 

PI(4)P 

PI(4,5)P2 

Zhang et al., 1995 
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Table 1-4. Mammalian phosphoinositide phosphatases 
Name Locus Substrate(s) Product(s) Reference 

Synaptojanin-1  INPP5G 

SYNJ1 

PI(3,5)P2 

PI(4,5)P2 

PI(3,4,5)P3 

PI(3)P 

PI(4)P 

PI(4,5)P2 

McPherson et al., 1996 

Synaptojanin-2 INPP5H PI(3,5)P2 

PI(4,5)P2 

PI(3,4,5)P3 

PI(3)P 

PI(4)P 

PI(4,5)P2 

Nemoto et al., 1997 

PIPP 

Proline rich inositol 

polyphosphate 5-

phosphatase 

INPP5J PI(3,5)P2 

PI(4,5)P2 

PI(3,4,5)P3 

PI(3)P 

PI(4)P 

PI(4,5)P2 

Mochizuki and 

Takenawa, 1999 

SKIP 

Skeletal muscle and 

kidney inositol 

phosphatase  

INPP5K PI(3,4,5)P3 

PI(4,5)P2 

PI(3,4)P2 

PI(4)P 

Ooms et al., 2006 

PLIP 

Phospholipid-inositol 

phosphatase 

PLIP PI(5)P PI Pagliarini et al., 2004 

Sac Phosphatases 

SAC1 SACM1L PI(4,5)P2 

PI(3,4,5)P3 

PI(4)P 

PI(3,4)P2 

Nemoto et al., 2000 

SAC2  INPP5F PI(3)P 

PI(4)P 

PI Minagawa et al., 2001 

SAC3  FIG4 PI(4,5)P2, 

PI(3,4,5)P3 

PI(3,5)P2 

PI(4)P 

PI(3,4)P2 

PI(3)P 

Sbrissa et al., 2007 

Table shows the classes of known phosphoinositide phosphatases, genetic loci, substrates and products. 
Note, these phosphatases have been characterised in vitro, and are differentially expressed throughout the 
body. 
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Although PIPs are a relatively minor cellular lipid, a disproportionate number of 

classes of PIP-binding domains have been identified (Table 1-5). The first PIP-

binding domain to be identified was in a region of pleckstrin that specifically 

binds to PI(4,5)P2 (Harlan et al., 1994). Later, a homologous region of 

phospholipase C also was identified to bind to PI(4,5)P2, which was then named 

the pleckstrin-homology (PH) domain (Lemmon et al., 1995; Garcia et al., 1995). 

About 250 PH domain-containing proteins are present in the human genome, 

making PH domains the eleventh most common protein domain (Yu et al., 2004). 

However, only about 10% of PH domains bind phosphoinositides with high 

affinity, based on studies in S. cerevisiae (Yu et al., 2004).  

Since the identification of PH domains, other PIP-binding domain families have 

been discovered (Table 1-5). These include the epsin amino terminal homology 

(A/ENTH) domain; Fab1, YOTB, Vac1 and EEA1 (FYVE) domains; band 4.1, 

ezrin, radixin and moesin (FERM) domain and phox homology domains (PX). 

Additionally, domains that have other functions in the cell also bind to PIPs. 

Phosphotyrosine binding domains (PTB) are well known to bind to 

phosphotyrosine NPxY sorting motifs, however a number of these domains also 

bind PIP and this may be required for function (Huang et al., 2005; Mishra et al., 

2002; Stolt et al., 2004; Stolt et al., 2005).  

Many lipid-binding domains share little primary amino-acid sequence similarity, 

however some computational methods exist for identifying lipid-binding regions 

based on structural and electrostatic properties (Honing et al., 2005). There are 

also some examples of lipid-binding domains that may be very difficult to identify 

from computational methods alone. There are reports of ‘split’ PH domains,   
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Table 1-5: PIP-binding domains, binding specificity and examples of domain 
containing proteins 

PIP-binding domain  Binding 

specificity  

Examples of proteins 

containing domain 

A/ENTH domain (epsin amino 

terminal homology)  

PI(4)P 

PI(3,5)P2 

PI(4,5)P2 

EpsinR 

Ent3p, Ent5p 

AP180, PICALM, Epsin 

C2 domain PI(4,5)P2 Synaptogamin 

FERM domain (band 4.1,ezrin, 

radixin and moesin) 

PI(4,5)P2 Ezrin, Moesin, radixin, talin 

FYVE domain (Fab1, YOTB, 

Vac1 and EEA1)  

PI(3)P EEA1, Hrs, SARA, PIKfyve 

GRAM domain (glucosyl 

transferase, Rab-like GTPase 

activator and myotubularins)  

PI(3,5)P2 Myotubularin 

 PDZ domain (PSD-95, Dig1, zo-

1) 

PI(4,5)P2 Syntenin 

PH domain (pleckstrin homology 

domain) 

 

PI(4)P 

PI(3,4)P2 

PI(4,5)P2 

PI(3,4,5)P3 

FAPP1/2, OSBP 

AKT, TAPP1,2 

PLCδ1, dynamin 

BTK, AKT, ARNO, GRP1 

PHD finger (plant homeo domain) PI(5)P ING2 

PTB domain (phosphotyrosine 

binding domain) 

PI(4,5)P2 

PI(3,4,5)P3 

Dab, ARH, SHC 

SHC 

 PX domain (Phox homology 

domains) 

PI(3)P 

PI(5)P 

PI(3,4)P2 

PI(4,5)P2 

PI(3,4,5)P3 

SNX2,3,7,13 

SNX13 

P47phox 

Class II PI(3) Kinase 

CISK 

Table shows examples of PIP-binding domains, binding specificity and examples of proteins that 
contain each domain. Table based on Di Paolo and De Camilli, 2006.  
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domains that are split into two halves that are found within separate regions of 

proteins, or even between two distinct proteins (Teo et al., 2006; van Rossum et 

al., 2005). Split PH domains can form functional lipid-binding sites when the two 

halves of the domain come together in their cellular context (Teo et al., 2006; van 

Rossum et al., 2005). Therefore, it is quite likely that the number of proteins 

known to contain PIP-binding domains will continue to expand.  

In general, the affinity of lipid domains for their specific ligands is lower than 

would be expected to be biologically significant for a receptor binding to a soluble 

ligand. For example, the PH domain of PLC binds PI(4,5)P2 with a Kd of 2 µM 

(Hirose et al., 1999; Lemmon et al., 1995). However, the restriction of lipids and 

lipid-binding proteins to a membrane interface (i.e. resulting in reduced 

dimensionality) can greatly increase the effective concentration of lipid that is 

encountered by the domain (McLaughlin et al., 2002). In addition, lipid-binding 

domains commonly act in co-operation with other binding domains, in a 

phenomenon known as co-incidence detection (Carlton and Cullen, 2005; Di 

Paolo and De Camilli, 2006; Lemmon, 2008). In co-incidence detection, multiple 

low affinity binding interactions can add to produce a stronger interaction. There 

are a number of examples of different modes of this phenomenon, illustrated in 

Fig. 1.8.  

In summary, a rapidly expanding number of proteins have been identified to 

contain lipid-binding and PIP-binding domains. These can act in a variety of 

modes, and in combination with other binding domains, giving a diverse range of 

functional interactions. The next sections will discuss examples of how PIP-

binding domains are used in a number of important neuronal functions.   



Weak Strong

1. Oligomerisation - e.g. dynamin

pYpYWeak

Weak Strong

2. Co-receptor - e.g. dab1  

Weak Strong

3. Co-receptor - two lipids - e.g. SNX1   

Figure 1.8. Coincidence detection by PIP-binding domains. The combination of mul-
tiple low-affinity domains can produce high specificity for recognising target mem-
branes. Example 1: Dynamin has low affinity for membranes until it oligomerises, 
which results in a higher affinity interaction. Example 2: the combination of a lipid-
binding domain and a tyrosine binding motif, as found in the PTB domain of dab1, can 
produce a high affinity interaction to a particular receptor, such as apoER2. Example 3: 
the combination of multiple low affinity lipid-binding domains can produce high affin-
ity interactions. SNX1 is depicted, which contains a PI(3)P-binding PX domain and a 
BAR (Bin/Amphiphysin/Rvs) domain that binds to curved membranes and targets 
SNX1 to endosomes. Figure adapted from Lemmon (2008).
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1.7.5 Neuronal roles of PIPs 

PIPs are ideally suited to the control of many cellular processes, due to the 

combination of high turnover, regulated location and specific recognition by PIP-

binding proteins (Di Paolo and De Camilli, 2006). Comprehensively reviewing 

the current state of knowledge regarding biological roles of PIPs will not be done 

here as this topic has been extensively reviewed in a recent volume (Balla, 

Wymann and York, 2012b). The important cellular functions involving PIPs that 

are not discussed here include the regulation of cytoskeleton, roles in the cell 

nucleus, Golgi complex function, signal transduction, and chemotaxis. Instead, 

this section will illustrate some ways that PIP interactions are important in 

neuronal function with a focus on processes that are intimately involved in 

synaptic transmission.  

1.7.5.1 Roles of PIPs in synaptic vesicle exocytosis 

Studies of large dense core vesicle (LDCV) secretion in PC12 and chromaffin 

cells gave early insight into the role of PIPs in exocytosis (Eberhard et al., 1990; 

Hay et al., 1995). PI(4,5)P2 is required for exocytosis and PIPK1 has been 

identified as a factor required for LDCV vesicle priming (Eberhard et al., 1990; 

Hay et al., 1995). A number of components of the secretory system in LDCV 

exocytosis have now been identified as PIP-binding proteins (Osborne et al., 

2006; Wen et al., 2012). These PIP-binding components of the secretory system 

include synaptogamin (Syt; Schiavo et al., 1996), calcium-dependent activator 

protein for secretion (CAPS; Loyet et al., 1998) and SNARE proteins (Lam et al., 

2008). CAPS, SNARE and Syt all have roles in bringing secretory vesicles into 
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proximity with the plasma membrane (“priming”) and facilitating fusion with the 

plasma membrane (Frere et al., 2012).  

Although LDCV exocytosis and synaptic vesicle exocytosis may operate by 

slightly different mechanisms, there are strong indications of the importance of 

PIP in synaptic vesicle exocytosis. For example, deficiency in PIPK1γ, the main 

PIP kinase in neuronal synapses results in impaired neurotransmitter release (Di 

Paolo et al., 2004). Additionally, inhibition of PI(4)P synthesis with phenylarsine 

oxide decreases the release of glutamate from synaptosomes (Wiedemann et al., 

1998). More recently, it has been shown that PI(4,5)P2 and PI(3,4,5)P3 are 

required for the clustering of syntaxin 1A (a SNARE protein) at neurotransmitter 

release sites to allow synaptic vesicle release (Aoyagi et al., 2005; Khuong et al., 

2013; van den Bogaart et al., 2011). Therefore, PIPs are involved in many aspects 

of the regulation of correct release of synaptic vesicles. 

1.7.5.2 Roles of PIPs in synaptic vesicle recycling and endocytosis 

To maintain sustained signalling at the synapse, neurons must be able to recover 

membrane from PM-fused synaptic vesicles, to enable production of new synaptic 

vesicles. This process is known as synaptic vesicle recycling (Rohrbough and 

Broadie, 2005; Sudhof, 2004). A number of modes of endocytosis are involved in 

this event (Rohrbough and Broadie, 2005; Sudhof, 2004). The best-characterised 

PIP-dependent mechanism is clathrin-mediated endocytosis (Doherty and 

McMahon, 2009; Royle and Lagnado, 2003; Frere et al., 2012). The early 

evidence for the involvement of PIPs in synaptic vesicle recycling came from the 

observation that a number of proteins intimately involved in endocytosis also bind 

to phosphoinositides. Examples include Dynamin, AP180/PICALM, and AP2, 
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which are components of clathrin assemblies and all contain PIP-binding domains 

(Ford et al., 2001; Jost et al., 1998; Salim et al., 1996; Klein et al., 1998).  

A compelling model involving PIPs for the co-ordination of clathrin-coated 

vesicle (CCV) formation has emerged (Frere et al., 2012; Posor et al., 2013). At 

sites of endocytosis, an accumulation of PI(4,5)P2 recruits PIP-binding adaptor 

proteins such as epsins, AP2 or AP180 to the membrane (Jost et al., 1998). 

Adaptor protein binding to the membrane is essential for assembly of the clathrin 

coat (Ford et al., 2001; Jost et al., 1998). Recent evidence suggests the maturation 

of the endocytic vesicle may then be co-ordinated by spatiotemporal regulation of 

PIP composition in the forming vesicle bud. The phosphoinositide phosphatase 

synaptojanin associates with the membrane and hydrolyses PI(4,5)P2 to PI(4)P 

(Posor et al., 2013; Cremona et al., 1999). PI(4)P is then converted to PI(3,4)P2 by 

the phosphoinositide kinase PI3K C2α (Posor et al., 2013). PI(3,4)P2 production 

allows for the association of sorting nexin 9 (SNX9) with the forming vesicle. 

SNX9 is a BAR-domain (Bin/Amphiphysin/Rvs) containing protein that binds to 

the PI(3,4)P2 produced by PI3K C2α (Posor et al., 2013). BAR domains are large, 

banana-shaped domains with a charged surface that bind anionic lipids such as 

PIP and induce membrane curvature (Takei et al., 1999; Peter et al., 2004). 

Therefore, SNX9 may help the formation of the budding vesicles (Posor et al., 

2013). 

Fission of the endocytic vesicle from the plasma membrane is achieved by the 

GTPase dynamin, which requires PI(4,5)P2 binding for function (Salim et al., 

1996; Klein et al., 1998). Once the endocytic vesicle has separated from the 

plasma membrane (PM), disassembly of the endocytic machinery has been 
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suggested to occur through the action of a number of phosphoinositide 

phosphatases such as synaptojanin, however the exact mechanism has not yet 

been elucidated (Cremona et al., 1999).  

Perturbation of PIP dependent processes in endocytosis leads to a number of 

neuronal phenotypes. Knockout or mutation of synaptojanin, the synaptic PIP 

phosphatase, results in failure of synaptic vesicle endocytosis and accumulation of 

clathrin coated vesicles within the synapse, consistent with its proposed role in 

clathrin coated vesicle maturation (Cremona et al., 1999; Harris et al., 2000; 

Verstreken et al., 2003). Loss of PIPK1γ function in the synapse decreases the rate 

of synaptic vesicle endocytosis, resulting in the accumulation of bulk endosomes 

(Di Paolo et al., 2004). These examples illustrate that PIPs have many roles in the 

regulation of endocytosis. 

1.7.5.3 Modulation of ion channel function by PIPs 

An interesting emerging role of PIPs is as modulators and facilitators of ion 

channel function. PI(4,5)P2 is known to directly regulate inwardly rectifying 

potassium channels (Kir channels; Rohacs et al., 2003; Du et al., 2004), voltage 

gated calcium channels (Wu et al., 2002) and transient-receptor potential (TRP) 

channels (Wu et al., 2002). Kir channels and TRP channels interact with PIPs 

through lipid-binding domains in the cytoplasmic regions of the proteins (Lopes et 

al., 2002; Nilius et al., 2008). Most of these channels are activated in the presence 

of PI(4,5)P2, which has led to the suggestion that PI(4,5)P2 binding by ion 

channels prevents their activity while they are trafficked to the PM (Hilgemann et 

al., 2001). Some TRP channels are also inhibited by PIPs, which has been 
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suggested to be a physiological mechanism of negative TRP channel regulation to 

allow proper function (Gamper and Rohacs, 2012; Cao et al., 2013). 

A number of ion channels may also be regulated by PIPs in an indirect manner. 

NMDA-R activity can be modulated by PI(4,5)P2 (Michailidis et al., 2007). 2-

Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid receptor (AMPA-R) 

activity can also be modulated by PIPs, which are involved in the clustering of 

AMPA-R and control of cell surface levels of AMPA-R (Jin et al., 2006; Frere et 

al., 2012). As neuronal function is highly dependent on the action of ion channels, 

PIP-ion channel interactions therefore provide further evidence for the wide 

utilization of PIP in cellular function. 

1.7.5.4 PI(4,5)P2 as the metabolic precursor of IP3 and DAG 

PIPs are probably most well known for their role in Ca2+ signalling. The Ca2+ 

signalling pathway has been largely elucidated (Berridge et al., 2000). Activation 

of G-protein coupled receptors or receptor tyrosine kinases can activate 

phospholipase C (Berridge et al., 2000). Phospholipase C at the plasma membrane 

catalyses the hydrolysis of PI(4,5)P2 into inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG; Lapetina and Michell, 1973). Interestingly, phospholipase 

C has a higher affinity for IP3 than for PI(4,5)P2, which probably represents an in-

built negative feedback mechanism (Garcia et al., 1995). IP3 is water-soluble so it 

can diffuse into the cell and act as a second messenger. IP3 binds to the IP3 

receptor on the endoplasmic reticulum, and stimulates the release of Ca2+ from the 

intracellular calcium stores (Streb et al., 1983; Ferris et al., 1989). The activation 

of the IP3 receptor results in a rapid local increase in cytosolic calcium, that can 

have a number of effects in controlling cellular processes such as gene 
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transcription, apoptosis, proliferation and activation of ion channels (Berridge et 

al., 2000).  

DAG also acts as a second messenger once produced from PI(4,5)P2. Where IP3 

produces rapid cellular responses, DAG produces a longer lasting signalling 

response through protein kinase C (PKC; Nishizuka, 1995; Rosse et al., 2010). 

DAG activates PKC in combination with Ca2+ and other phospholipids (Rosse et 

al., 2010). PKC is inactive in its resting state, however the binding of its C1 and 

C2 domains to DAG and/or Ca2+ promotes a conformational change to an active 

form (Oancea and Meyer, 1998). Once active, PKC can phosphorylate a number 

of downstream signalling proteins in processes such as cell-growth and control of 

the cytoskeleton (Nishizuka, 1995; Rosse et al., 2010).  

1.7.6 Summary 

The studies reviewed in this section demonstrate that PIP-lipid signalling 

represents a highly sophisticated, evolutionarily conserved system that is involved 

in many cellular processes. The cell has a high degree of control over the location 

and level of PIPs, so PIP-binding by proteins can facilitate the targeting of 

proteins to particular cellular locations. As a result, PIP lipids appear to be 

involved in almost all aspects of cellular physiology (Balla, 2005; Di Paolo and 

De Camilli, 2006).  

1.7.7 General links between PIP and AD 

There are some reports of perturbed PIP metabolism in patients with AD and in 

experimental animals models of AD. Studies report that there is a reduction in 
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PI3K and PI4K activity in the AD brain, when compared to healthy controls 

(Bothmer et al., 1994a; Jolles et al., 1992; Zubenko et al., 1999; Wallace, 1994). 

A reason for this loss of PI3K and PI4K activity may be that the AD brain has 

reduced synapses, where there is a significant pool of PI3K and PI4K (Bothmer et 

al., 1994b). However, synaptic PIP kinase activity was found to be unaffected in 

some of these studies, potentially supporting the possibility of a selective down-

regulation of PI4K in AD (Bothmer et al., 1994b; Jolles et al., 1992; Wallace, 

1994).  

A number of in-vitro studies suggest that the reported decrease in PI3K and PI4K 

activity in AD may be related to some of the pathology in AD. Aβ has been 

reported to directly inhibit PI4K in a competitive manner (Wallace, 1994; Wu et 

al., 2004). Levels of PI(4)P and PI(4,5)P2 are also lowered in cells by Aβ 

treatment, and this has been suggested to be a mechanism of Aβ toxicity (Berman 

et al., 2008). Interestingly, overexpression of the synaptic PIP phosphatase 

synaptojanin1 reportedly reduces the toxic effects of Aβ in cell culture and also in 

mouse models of AD (Berman et al., 2008; McIntire et al., 2012). These studies 

suggest Aβ could modify PIP levels. 

Some studies also suggest that PIPs may have a role in the metabolism of APP. 

Inhibition of PI3K with wortmannin or LY294002 inhibits Aβ and sAPPα 

secretion in cell-based systems, suggesting that PIPs can regulate APP processing 

(Haugabook et al., 2001; Petanceska and Gandy, 1999). Wortmannin has also 

been reported to significantly reduce Aβ deposition in Tg2576 mice, which 

suggests that PI3K inhibition could form a therapeutic strategy for the treatment 

of AD (Haugabook et al., 2001). Recently, the trafficking of APP has been shown 



 80 

to be dependent on PI(3)P (Morel et al., 2013). This could explain why inhibition 

of PI3K is able to reduce the secretion of sAPPα and Aβ.  

There is also some evidence to suggest that PIPs may regulate γ-secretase to some 

extent. PI and PI(4,5)P2 have been reported to potently inhibit γ-secretase activity, 

suggesting that PIP may be an endogenous inhibitor of γ-secretase (Osenkowski et 

al., 2008; Osawa et al., 2008). Interestingly, cells expressing presenilin mutations 

associated with Alzheimer’s disease have a consistently lower level of PI(4,5)P2 

(Landman et al., 2006). These reports suggest that γ-secretase activity could be 

affected by PIP and also affect PIP metabolism in a feedback loop. However, 

more research would be needed to establish whether this is the case.  

In summary, there are some suggestions that PIP metabolism is perturbed in AD 

and that PIPs can affect the processing of APP to form Aβ. However, it is not 

known whether the alterations of PIP metabolism that have been reported are 

involved in AD progression or a result of the disease state. 
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1.8 Hypothesis and aims of the study. 

The studies reviewed in this chapter demonstrate that APP is intimately involved 

in the pathogenesis of AD. However, despite intensive research, the normal 

function of APP is unclear. Further understanding of the biology of this protein 

may provide insight not only into the biochemical processes that are disrupted in 

AD, but also into the normal function of the brain. 

Several functions of APP have been suggested to be mediated through the 

production of a secreted factor, sAPPα. sAPPα may act in a trophic manner and 

elicit effects on cellular proliferation, differentiation and neurite outgrowth 

(Saitoh et al., 1989; Hoffmann et al., 2000; Ninomiya et al., 1994; Pietrzik et al., 

1998; Milward et al., 1992; Jin et al., 1994; Araki et al., 1991; Young-Pearse et 

al., 2008; Caille et al., 2004; Baratchi et al., 2012). This trophic capacity of 

sAPPα suggests that it may interact with a cell surface receptor or receptors on 

the signal-receiving cell. However, the cell-surface interactions of sAPPα have 

been incompletely characterised. Understanding the interactions of sAPPα with 

the surface of cells will give insight into the mechanisms of binding and possibly 

also mechanisms of signalling that are directly activated by APP.  

Some cell-surface receptors for sAPPα have been proposed. sAPPα is known to 

bind to cell-surface or extracellular-matrix components such as laminin, glypican-

1 and other heparan sulfate containing matrix components (Narindrasorasak et al., 

1992; Williamson et al., 1996; Ninomiya et al., 1994; Small et al., 1994). 

However, binding interactions with glycosaminoglycans may not be the sole 

determinant of binding to the cell surface, as proteoglycans often act in 
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combination with other receptors (Spivak-Kroizman et al., 1994). Several studies 

have reported both heparitinase-sensitive and heparitinase-insensitive cell-surface 

sAPPα binding sites on cells, supporting this idea (Hoffmann et al., 1999; 

Ninomiya et al., 1994; Kounnas et al., 1995). In addition to its interaction with 

heparan sulfate proteoglycans, sAPPα may also interact with β1-integrin, 

lipoprotein receptor related protein-1, death receptor 6, p75 neurotrophin receptor 

and APP itself (Young-Pearse et al., 2008; Kounnas et al., 1995; Nikolaev et al., 

2009; Gralle et al., 2009). However, APP may interact with many other 

extracellular proteins (Bai et al., 2008). Therefore, it still remains to be established 

which of these interactions are most important in vivo. 

In addition to its potential interaction with proteins and carbohydrates, there are 

some reports that APP may also interact with lipids. sAPPα has also been 

reported to localise to a novel ‘lipid raft’ fraction on cells (Tikkanen et al., 2002) 

and more recently, a direct interaction of sAPP with gangliosides has been 

proposed (Zhang et al., 2009). However, the interactions of APP with lipids have 

not been studied in detail. The studies reviewed in Section 1.7 demonstrate that 

lipids play active roles in many signalling processes, by targeting proteins to 

membranes. Therefore, the aim of the experiments presented in this thesis was to 

further investigate the role of APP-lipid interactions in its binding to cells. 

1.8.1 Hypothesis 

The central hypothesis behind the studies presented in this thesis is: 

Secreted forms of APP function through direct interactions with lipids on the cell 

surface 
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1.8.2 Aims 

To address the central hypothesis, the experimental aims in this thesis were to: 

1. Examine the ability of secreted APP to bind to lipids in vitro;  

2. Investigate the role of lipid binding in the cell-surface interactions of 

secreted APP; 

3. Investigate which regions of APP are involved in binding to cells;  

4. Examine the ability of secreted APP to affect levels of lipids in cells; 

5. Investigate if APP can affect lipid-signalling pathways. 
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2.1 Materials  

All materials and suppliers of materials used in this study are listed in Appendix I. 

2.1.1 Buffers, solutions and cell culture media  

All buffers and solutions used in this study are listed in Appendix II. 

2.1.2 Antibodies and dilutions  

All primary antibodies, suppliers and antibody dilutions used in this study are 

listed in Appendix III. All secondary antibodies and antibody dilutions used in 

this study are listed in Appendix IV.  

2.2 Methods 

2.2.1 Protein-lipid overlay assay  

Commercially available hydrophobic membranes (PIP StripsTM, SphingoStripsTM, 

Membrane Lipid StripsTM) spotted with 27 different lipids were used to examine 

the binding of sAPPα to lipids in vitro. For experiments investigating the effect of 

diC8PI(4,5)P2 and mucosal heparin on PI(4,5)P2 binding, PI(4,5)P2 was spotted 

on hydrophobic membranes according to the method of Dowler et al. (2002). 

Briefly, a 1 mM stock solution of 37:4 PI(4,5)P2 in CH3Cl:CH3OH was prepared 

and stored at -80°C. For spotting, the PI(4,5)P2 stock was diluted to 100 µM 

concentration in 1:2:0.8 CHCl3:CH3OH:H2O and 1 µL of the PI(4,5)P2 solution 
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containing 100 pmol of PI(4,5)P2 was spotted on to Hybond C Extra nitrocellulose 

at 4°C. Membranes were dried for one hour before use.  

Membranes were incubated with recombinant sAPPα or APP-E1 (described in 

Appendix I) at the concentrations indicated in figure legends overnight at 4°C in 

2.5 mL of 2 mg mL-1 fatty-acid free bovine serum albumin (BSA) in tris-buffered 

saline with tween-20 (TBS-T). Alternatively, membranes were incubated with 

conditioned cell medium for one hour. Membranes were then washed five times 

over 30 min with TBS-T. Lipid-bound sAPPα or APP-E1 was detected using an 

anti-6xHis antibody, 22C11 or 6E10. The concentrations of primary antibodies 

that were used are listed in Appendix III. Primary antibodies were incubated for 1 

h at room temperature in 2.5 mL 2 mg mL-1 BSA/TBS-T. Membranes were 

washed five times in TBS-T over 30 min, followed by incubation with horse 

radish peroxidase (HRP)-conjugated secondary antibody in 2.5 mL BSA/TBS-T 

for 1 h. Membranes were then washed in TBS-T five times over 30 min, and 

bound secondary antibody was detected using Immobilon chemiluminescent 

detection substrate which was incubated with membranes for 5 min before 

detection. Chemiluminescence was monitored using a Chemi-smart 5000 and 

images were collected using Chemicapt 5001 software (Vilber-Lourmat GmbH, 

Eberhardzell, Germany). For quantification of immunoreactivity, 16-bit 2x2 

binned images were collected and the integrated density of luminescence for each 

lipid spot was measured using Image J (National Institutes of Health, Maryland, 

USA). 
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2.2.2 Neural stem and progenitor cell culture and conditioned medium 

collection 

Neural stem and progenitor cells (NSPCs) were cultured from the cerebral 

cortices of newborn Tg2576 or wild-type (WT) littermate mice (P0). Brain 

cortices were cleared of meninges and hippocampus, and then incubated in 

1×TrypLE Express for 10 min at 37°C. Tissue was disrupted mechanically with 

1000 µL fine tip and then the tissue was passed through a 40 µm cell strainer (BD 

Biosciences, North Ryde, Australia) to remove undissociated cells. NSPCs were 

grown as neurospheres by culturing cells in suspension in T75 cell culture flasks 

at a density of 20,000 cells mL-1 in proliferation medium. Neurosphere cultures 

were incubated in a humidified incubator at 37°C with 5% CO2. After 7 days in 

culture, cells were centrifuged at 500 x g for 5 min. At this stage, the supernatant 

conditioned medium was collected and stored at -80°C. Neurospheres in the cell 

pellet were dissociated mechanically with 200 µL fine tips, cells were counted in 

a Bright-LineTM haemocytometer (Sigma-Aldrich Pty. Ltd. Castle Hill, Australia) 

and then reseeded as suspension cultures in a T75 cell culture flask. 

2.2.3 Primary murine hippocampal and cortical culture 

All animal use was approved by the University of Tasmania Animal Ethics 

Committee (Permit No. A12555). Mice were housed in the animal facility at the 

University of Tasmania. For immunocytochemistry, primary neuronal cultures 

were prepared from the hippocampi of neonatal C57BL/6xSJL mice. For western 

blotting and lipid extraction, primary neuronal cultures were prepared from the 

whole cortices of neonatal C57BL/6xSJL mice.  
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Dissected tissue was transferred to 0.25% (w/v) papain and 0.06% (w/v) 

deoxyribonuclease-1 in Hank’s balanced salt solution and incubated for 15 min at 

37°C. Tissue was then washed in Neurobasal medium three times and dissociated 

by trituration. Single cell suspensions were centrifuged at 500 x g for 5 min and 

re-suspended in Neurobasal plating medium. The number of viable cells was 

determined using the Trypan blue exclusion method, and a Bright-LineTM 

Haemocytometer (Sigma-Aldrich). For immunocytochemistry, hippocampal cells 

were plated on nitric acid-washed poly-L-lysine-coated 13 mm glass coverslips in 

24-well tissue culture plates at a density of 1.25 x 105 viable cells per well. For 

western blotting and lipid extraction, cortical cells were plated in 12-well tissue 

culture plates, at a density of 1 x 106 viable cells per well. Cultures were 

maintained at 37° C in 5% CO2. After 24 h, the medium was replaced with 

Neurobasal maintenance medium. Half of the cell culture media was replaced 

every 4 days and cultures were used for experiments after 10 days in vitro (DIV). 

2.2.4 Immunocytochemistry 

Antibody labelling was performed on live, unfixed cells except where explicitly 

stated. Cells were washed twice in 500 µL Neurobasal maintenance medium 

warmed to 37°C. After washing, all antibody incubations and washes were 

performed at 4°C to prevent endocytosis of the antibodies. Cells were labelled by 

incubation with primary antibodies in 100 µL of imaging buffer (Appendix II). 

Incubations with primary antibodies were performed for 30 min, and the cells 

were washed three times with 500 µL of imaging buffer. Alexa-fluor-conjugated 

secondary antibodies were incubated for 30 min in 100 µL of imaging buffer, 
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before washing three times with 500 µL of imaging buffer. Cells were then fixed 

in 4% paraformaldehyde in phosphate buffered saline (PBS) for 20 min, washed 

twice in PBS and stained with 300 nM 4',6-diamidino-2-phenylindole (DAPI) in 

PBS for five min. Coverslips were then washed two times in PBS and once in 

dH2O. Coverslips were mounted in DAKO mounting medium and allowed to dry 

overnight before imaging.  

2.2.5 Microscopy and image analysis 

Confocal images were acquired using a Zeiss 510 confocal microscope, using a 

63x/1.4 oil immersion objective and Zen software (Carl Zeiss, Pty. Ltd. Sydney, 

Australia). Confocal slices were collected with one Airy unit pinhole size. 

Epifluorescence images were acquired using a Nikon Ti-E microscope (Nikon 

corporation, Tokyo, Japan) with 20x/0.5, 40x/0.95, 60x/1.27 objectives. 

Representative images are shown of at least 3 independent experiments.  

To quantify the level of immunoreactivity, 10 random fields from 3 coverslips 

were collected for each treatment group. Multichannel images were acquired 

using a microscope with an automated stage, automated filters and Nikon Perfect 

Focus system. Twelve-bit, 2x2 binned images were collected using a 40x/0.95 

objective. The average background intensity for each channel was defined as the 

sum pixel intensity measured from appropriate negative controls. For each field, 

the sum of all pixel intensities was measured and background was subtracted from 

these values. Statistical analysis was performed using Graph-Pad Prism v.6 

(Graphpad software Inc. La Jolla, CA, USA). Statistical significance was assumed 

at a 95% confidence level was determined using an unpaired Student’s t-test or 
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one-way analysis of variance (ANOVA) with Tukey’s or Dunnett’s post-hoc tests. 

Data with a p value < 0.05 were considered significantly different. 

2.2.6 Western blotting 

Cells were grown for 7 DIV before lysis and analysis of proteins. All extraction 

steps were performed on ice to reduce degradation of the extracted proteins. Cells 

were washed twice in warmed Neurobasal medium, prior to the addition of 150 

µL of lysis buffer containing protease inhibitor cocktail (Roche cOmplete ultra 

protease inhibitor tablets; 1 tablet 10 mL-1). For the experiments investigating the 

phosphorylation state of Akt, phosphatase inhibitor cocktail was included in the 

lysis buffer (Roche PhosStop phosphatase inhibitor tablets; 1 tablet 10 mL-1). 

Cells were scraped, triturated 15 times and transferred to an Eppendorf tube. Cell 

membranes were removed by centrifugation (13,000 rpm, 10 min, 4°C). The 

supernatant fraction was flash frozen in liquid nitrogen and stored at -80°C prior 

to analysis.  

The amount of protein in each sample was measured using the Bio-Rad DC 

protein assay, using bovine serum albumin as the standard. Absorbance was 

measured on a Fluostar Optima microplate reader (BMG Labtech GmbH, 

Ortenberg, Germany). The protein concentration in each sample was normalised 

by the addition of an appropriate volume of MilliQ H2O. Laemmli Sample buffer 

(Appendix II) was added to samples, which were then heated at 95°C for 10 min. 

Samples were briefly centrifuged and 15 – 25 µg of protein was loaded on an 8% 

tris-glycine polyacrylamide gel. To determine the ratio of pAkt to total Akt, 

individual samples were run twice on two separate gels in parallel. Samples were 
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separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE), and transferred to polyvinylidene fluoride (PVDF) membranes. Blots 

were blocked for 20 min in TBS-T containing 5% (w/v) non-fat dry milk powder 

(NFDM). Specific proteins were detected using primary antibodies at 

concentrations outlined in Appendix III. An anti-GAPDH antibody was used to 

verify equal loading of samples. Primary antibodies were incubated with blots in 

TBS-T/NFDM for 1 h at room temperature or at 4°C overnight. Blots were 

washed three times in TBS-T, prior to incubation with a HRP-conjugated 

secondary antibody for 1 hour at room temperature in TBS-T/NFDM. Blots were 

washed three times, and signal was detected using Immobilon chemiluminescent 

detection substrate according to the manufacturer’s instructions. 

Chemiluminescence was monitored using a Chemi-smart 5000 image acquisition 

system and images were collected using Chemicapt 5001 software (Vilber-

Lourmat GmbH, Eberhardzell, Germany). For quantification of immunoreactivity, 

12-bit 2x2 binned images of chemiluminescence were collected and the integrated 

density of luminescence for each band was measured using Image J. Data analysis 

was performed using Graph Pad Prism V.6. Statistical significance was 

determined using one-way ANOVA with Tukey’s or Dunnett’s post-hoc tests, or 

Student’s t-tests. Data with a p value < 0.05 were considered significantly 

different. 

2.2.7 Computational modelling of IP3 binding sites on APP 

Modelling of potential binding sites in APP was performed using Protein Data 

Bank (PDB) crystal structures for the heparin-induced APP E1 dimer (PDB ID: 

3KTM; chains B + D; Dahms et al., 2010) and the pleckstrin homology domain of 
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β-spectrin (PDB ID: 1BTN; Hyvonen et al., 1995). The binding of D-myo-inositol 

1,4,5-triphosphate (Zinc database accession No. 6973597) and inositol (Zinc 

database accession No. 1530357) was computationally modelled using the 

SwissDock server (Grosdidier et al., 2011b; Grosdidier et al., 2011a). Molecular 

graphics and analyses were performed with the University of California San 

Francisco Chimera package (Pettersen et al., 2004). Docked ligands were viewed 

using the ViewDock function of Chimera. The predicted free energy of binding 

(ΔG) values were calculated using SwissDock, which uses SwissParam (Zoete et 

al., 2011) and CHARMM (Brooks et al., 2009) to predict ΔG. To generate figures, 

predicted binding sites were sorted according to predicted ΔG values using 

ViewDock, and binding clusters with a calculated ΔG more than was calculated 

for inositol were displayed. Figures were generated using Persistence of Vision 

RaytracerTM V3.6 (Persistence of Vision Pty. Ltd., Williamstown, Australia). 

Electrostatic surface calculations were performed using PDB2PQR (Dolinsky et 

al., 2007), APBS (Baker et al., 2001) with default settings and visualised using 

Chimera.  

2.2.8 Lipid extraction 

To measure changes in total levels of PIP, a reverse phase UPLC-MS method was 

developed, based on methods previously reported (Ivanova et al., 2007; Ogiso and 

Taguchi, 2008; Ogiso et al., 2010; Pettitt, 2010). Cells were washed in warmed 

Neurobasal medium, prior to scraping in PBS containing PhosStop phosphatase 

inhibitor cocktail (1 tablet 10 mL-1) at 4°C. Cell suspensions were centrifuged 

(13,000 rpm, 10 min, 4°C in a microcentrifuge) and the supernatant fraction was 

removed. Extraction buffer (200 µL of 1:1 CHCL3:MeOH with 0.25% (v/v) 12N 
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HCL) containing 50 pmol of each non-natural internal PIP standard (37:4 PI, 37:4 

PI(3)P, 37:4 PI(3,4)P2, 37:4 PI(3,4,5)P3) was added to the cell pellets. Cell pellets 

were then thoroughly mixed for 30s using a vortex mixer. The phases were split 

by addition of 40 µL 1M HCL and 5.7 µL 2M NaCl, and separated by a brief 

pulse of centrifugation. The lower organic phase (80 µL) was transferred to a new 

Eppendorf tube, and the solvent was removed by evaporation using a centrifugal 

evaporator (Centrivap: Labconco Kansas City, USA). The dried lipid was 

resuspended in 50 µl 1:2:0.8 CHCL3:MeOH:H2O, thoroughly mixed using a 

vortex mixer and then centrifuged in a microcentrifuge (13,000 rpm, 20 min, 4°C) 

to remove any cellular debris. The supernatant fraction (45 µL) was then 

transferred to an autosampler vial with a small volume insert (Waters Australia 

Pty. Ltd, Rydalmere, Australia). Samples were snap frozen in liquid nitrogen and 

stored at -80°C prior to analysis. Samples were analysed by UPLC-MS within 24 

hours after lipid extraction. 

2.2.9 UPLC-MS lipid analysis 

Cell lipid extracts were analysed by UPLC-MS in a random order. Cell lipid 

extracts (10 µL) were injected into a Waters Acquity H-series UPLC coupled to a 

Waters Xevo triple quadrupole mass spectrometer (Waters Australia). A Waters 

Acquity UPLC C18 column (2.1 x 100mm x 1.7 micron particles) was used for 

reverse phase liquid chromatography, with 0.13% ethylamine in water as solvent 

A and 0.13% ethylamine in acetonitrile as solvent B at a flow rate of 0.35 mL 

min-1. The column was eluted with an initial isocratic mobile phase mixture of 

90% A: 10% B for 1 min followed by a linear gradient to 0% A: 100% B over 9 

min. The column was then washed with 0% A: 100% B for a further 3 min before 
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re-equilibration to initial conditions over 3 min. The column temperature was 

40°C and the samples maintained at 6°C prior to injection. The mass spectrometer 

was operated in negative ion electrospray mode, and selected ion monitoring 

(SIM) was used to detect the specific phospholipids. The SIM masses for each ion 

and cone voltage are shown below in Table 2-1. The ion source temperature was 

150°C, the desolvation gas was nitrogen (950 L hr-1), and the desolvation 

temperature was 450°C. It was noticed that signals improved after priming the 

column, so before each batch of samples a 37:4 PIP2 standard solution was 

injected 4 times. A PIP2 standard solution was run after every 12 samples to 

ensure system performance was maintained.   
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Table 2-1 SIM ions, dwell times and cone voltages used for 
UPLC-MS 

Lipid (acyl chain) Ion m/z 
[M-H]- 

Dwell time 
(ms) 

Cone voltage 
(V) 

PI 37:4 standard 871.4 18 55 

PI 36:4 857.4 18 55 

PI 38:5 883.4 18 55 

PI 38:4 885.4 18 55 

PI 38:3 887.4 18 55 

PI(3)P 37:4 standard 951.4 18 65 

PIP 36:4 937.4 18 65 

PIP 38:5 963.4 18 65 

PIP 38:4 965.4 18 65 

PIP 38:3 967.4 18 65 

PI(3,4)P2 37:4 standard 1031.4 18 70 

PIP2 36:4 1017.4 18 65 

PIP2 38:5 1043.4 18 65 

PIP2 38:4 1045.4 18 65 

PIP2 38:3 1047.4 18 70 

PI(3,4,5)P3 37:4 standard 1111.4 18 70 

PIP3 36:4 1097.4 18 70 

PIP3 38:5 1123.4 18 70 

PIP3 38:4 1125.4 18 70 

PIP3 38:3 1127.4 18 70 

Table shows the m/z ions that were monitored using selective ion monitoring 

(SIM), as well as the dwell times and cone voltages used for detection of each 

ion. 
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2.2.10 Mass spectroscopy data analysis 

The total SIM intensity for each lipid elution peak was calculated by integrating 

the elution peak area. Elution peaks were selected for measurement according to 

the following criteria. Firstly, peaks had to be unambiguously identified using 

expected m/z and elution time relative to standards and/or other acyl chain 

variants. Secondly, the signal-to-noise ratio had to exceed 1:10, to allow for 

proper measurement. To account for variations in extraction efficiency between 

samples, PIP levels were normalized to the applicable internal standard. For each 

individual sample, the pmol of lipid per 1 million cells were calculated according 

to the formula (Raw elution intensity / 10 pmol internal standard elution intensity) 

x (total lipid extract volume / injection volume). Mean values for each treatment 

group were derived from 5 – 12 replicate wells (1 x 106 cells each) per treatment 

group. Experiments shown are representative of three independent experiments. 

Data analysis was performed using Graph Pad Prism V.6. Statistical significance 

was determined using one-way ANOVA with Tukey’s or Dunnett’s post-hoc 

tests, or Student’s t-tests. Data with a p value < 0.05 were considered significantly 

different.  
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3.1 Studies on the binding of APP to lipids 

sAPPα has been reported to elicit trophic effects in a number of cell types 

(Hoffmann et al., 2000; Pietrzik et al., 1998; Saitoh et al., 1989; Chasseigneaux et 

al., 2011; Gakhar-Koppole et al., 2008; Milward et al., 1992; Small et al., 1994; 

Jin et al., 1994; Ninomiya et al., 1994; Wallace et al., 1997; Caille et al., 2004; 

Demars et al., 2011; Freude et al., 2011; Ohsawa et al., 1999). sAPPα also binds 

to the surface of cells (Hoffmann et al., 1999), however the interactions of sAPPα 

with molecules on the surface of cells have been incompletely characterised.  

There have been some reports that suggest sAPPα could interact directly with 

lipids on the cell surface. sAPPα has been reported to localise to a lipid raft type 

domain (Tikkanen et al., 2002). Recently sAPPα has been reported to directly 

interact with GM1-ganglioside (Zhang et al., 2009). However, the ability of 

sAPPα to bind to different types of lipids has not been explored in detail. 

Therefore, the first aim of the experiments presented in this thesis was to identify 

the types of lipid that sAPPα is able to bind. 

3.1.1 Examination of the ability of sAPPα to bind to lipids 

To investigate whether secreted forms of APP are able to bind to lipids, the 

binding of a recombinant sAPPα with an N-terminal 6xHis affinity tag (Appendix 

I) to lipids was examined using a protein-lipid overlay assay. This assay allows 

for the comparison of a protein’s ability to bind to different types of lipid (Dowler 

et al., 2002). Recombinant sAPPα was incubated with hydrophobic membranes 

onto which 27 different types of lipid were immobilised. Membranes were 
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washed to remove any unbound sAPPα and the lipid-bound sAPPα was detected 

using an anti-6xHis antibody.  

No significant sAPPα immunoreactivity was associated with major lipid species 

such as phosphatidylcholine, phosphatidylethanolamine and cholesterol (Fig. 3.1). 

However, sAPPα immunoreactivity was associated with several 

phosphatidylinositol phosphates (PIPs) and 3-sulfogalactosylceramide (Fig. 3.1). 

The most sAPPα immunoreactivity was associated with the PIP species PI(3)P, 

PI(4)P and PI(5)P, followed by PI(3,5)P2 (Fig. 3.1B,C). Interestingly, there was 

minimal sAPPα immunoreactivity associated with phosphatidylinositol, which is 

structurally closely related to PIPs, but lacks the phosphate groups. Furthermore, 

there was no significant sAPPα immunoreactivity associated with GM1 (Fig. 

3.1A), which has previously been reported to be capable of binding to sAPPα 

(Zhang et al., 2009).  

To exclude the possibility that the binding of the recombinant sAPPα was due to 

an interaction of PIPs with the 6xHis tag, the binding of native sAPPα produced 

by mammalian cells was also examined. sAPPα-containing conditioned medium 

(Tg2576-CM) was collected from neural stem and progenitor cell (NSPC) 

cultures that were derived from Tg2576 mice. These cells over-express human 

APP carrying the K670N/M671L Swedish mutation and secrete human sAPPα 

into the cell medium (Hu et al., 2013). The ability of APP in the conditioned 

medium to bind to lipids was then examined using the protein-lipid overlay assay. 

As a control, wild-type conditioned medium (WT-CM) was also collected from 

NSPC cultures that were derived from littermate wild–type mice, which do not 

express human APP.  
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Figure 3.1. Recombinant 6xHis-tagged sAPPα binds selectively to PIP lipids and 
sulfatide. Panels A-C: Lipid binding preference of sAPPα for 50 pmol of each lipid 
was compared using a protein-lipid overlay assay. Membranes were incubated with 
1 nM sAPPα	 overnight.	Membranes	were	washed	 and	 lipid-bound	 protein	was	
detected using a 6xHis antibody. Panel C: 6xHis immunoreactivity (I.R.) of 3 
experiments as shown in panel B was quantified by densitometry. Bars show 
means	±	SEM	of	 sAPPα	 I.R.	 Statistical	 significance	was	 determined	 by	 1	way	
ANOVA with Tukey’s post-hoc test ( * = p < 0.05 vs. PI). Abbreviations:  Sps – 
Sphingosine, S1P - Sphingosine-1-phosphate, PhyS – Phytosphingosine, CER – 
Ceramide, SM – Sphingomyelin, SPC - Sphingosylphosphorylcholine, LPA - 
Lysophosphatdic acid, MS - Myriosine, GM1- Monosialoganglioside, GD3 - 
Disialoganglioside, ST - 3-sulfogalactosylceramide (sulfatide),  Psy – Psychosine, 
Ch – Cholesterol, LPC - Lysophosphocholine, PC – Phosphatidylcholine, PI – 
Phosphatidylinositol, PI(3)P - Phosphatidylinositol (3) phosphate,   PI(4)P - Phos-
phatidylinositol (4) phosphate, PI(5)P - Phosphatidylinositol (5) phosphate, PE – 
phosphatidylethanolamine, PI(3,4)P2 - Phosphatidylinositol (3,4) bisphosphate, 
PI(3,5)P2 - Phosphatidylinositol (3,5) bisphosphate, PI(4,5)P2 - Phosphatidylinosi-
tol (4,5) bisphosphate, PI(3,4,5)P3 - Phosphatidylinositol (3,4,5) trisphosphate, PA 
- Phosphatidic acid, PS – Phosphatidylserine.
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The conditioned medium was incubated with hydrophobic membranes onto which 

different lipids were immobilised. Membranes were washed to remove any 

unbound APP, and lipid-bound APP was then detected using the monoclonal 

antibody 6E10, which detects amino acid residues 672 to 688 of human APP. No 

lipid-associated sAPPα immunoreactivity was present using the conditioned 

medium collected from WT neurosphere cultures (Fig. 3.2A). When membranes 

were incubated with Tg2576-CM, no lipid-associated APP immunoreactivity was 

present for major lipid species such as phosphatidylcholine, 

phosphatidylethanolamine or cholesterol (Fig. 3.2B). However, sAPPα 

immunoreactivity was associated with PIPs, phosphatidic acid and 3-

sulfogalactosylceramide (Fig. 3.2B). As the epitope of 6E10 antibody used to 

detect sAPPα is residues 1 - 16 of the Aβ region of APP, this antibody can detect 

both sAPPα and Aβ in the cell medium. Therefore, to determine if sAPPα bound 

to PIPs, the anti-APP N-terminus antibody 22C11 was also used to confirm that 

sAPPα in the Tg2576-CM binds to PIPs. When membranes were incubated with 

Tg2576-CM, 22C11 immunoreactivity was also associated with PIPs, 

demonstrating that sAPPα in the Tg2576-CM binds to PIPs (Fig. 3.2C). 

3.1.2 Identification of a PIP-binding region in the E1 domain of APP  

As the E1 domain of APP has a highly ordered structure, with some positively 

charged surfaces (Rossjohn et al., 1999), it was hypothesised that this region of 

APP could be responsible for the binding of sAPPα to the anionic PIPs observed 

in the experiments described in Section 3.1.1. Therefore, the possibility that there 

may be a PIP-binding domain in the E1 region of APP was examined using the 

protein-lipid overlay assay.   



Figure 3.2. Human sAPPα	 secreted	 by	 human	APP-overexpressing	NSPC	 cultures 
binds	to	PIP	lipids.		Membrane	strips	were	incubated	with	conditioned	cell	medium	
collected	 from	WT-derived	 neurosphere	 cultures	 (WT-CM;	 panel	A)	 or	 Tg2576-
derived	neurosphere	cultures	(Tg2576-CM;	panels	B	and	C)	for	1h.	Membranes	were	
washed	 and	 lipid-bound	APP	 was	 detected	 using	 the	 monoclonal	 6E10	 antibody	
(panels	A	 and	 B)	 or	 the	 monoclonal	APP	 N-terminal	 	 antibody	 22C11	 (panel	 C).		
Abbreviations	 not	 used	 previously:	 TG	 -	 triglyceride,	 DAG	 -	 diacylglycerol, PG-	
Phosphatidylglycerol.
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A recombinant protein corresponding to the E1 domain of APP with a C-terminal 

6xHis affinity tag (APP-E1) was incubated with hydrophobic membranes onto 

which lipids were immobilised. Membranes were washed, and lipid-associated 

APP-E1 was detected using an antibody against the 6xHis tag. Like sAPPα, the 

APP-E1 immunoreactivity was not associated with most lipids (Fig. 3.3). APP-E1 

immunoreactivity was associated with PIPs and 3-sulfogalactosylceramide (Fig. 

3.3). The APP-E1 bound more uniformly to all PIPs than was observed for sAPPα 

and gave a stronger chemiluminescent signal under similar incubation conditions 

(Fig. 3.1C vs. Fig. 3.3C). Therefore, these results suggested that APP has a PIP-

binding region in the N-terminal E1 domain.  

3.1.3 Competition of APP-E1 binding to PI(4,5)P2 with a water soluble PIP 

analogue and mucosal heparin.  

To determine that the binding of APP-E1 recombinant protein to PI(4,5)P2 in the 

protein-lipid overlay assay was due to a specific interaction and could be reduced 

by competition, a water soluble short acyl chain PI(4,5)P2 analog (diC8PI(4,5)P2) 

was used to compete for binding. The effect of a range of concentrations of a 

water-soluble PIP analogue diC8PI(4,5)P2 on APP-E1 binding to PI(4,5)P2 was 

determined in the protein-lipid overlay assay. These results demonstrated that at 

least 5µM concentration of diC8PI(4,5)P2 was required to significantly block the 

binding of 0.5 nM APP-E1 to 100 pmol PI(4,5)P2 in vitro (Fig. 3.4A).  



Figure 3.3. APP-E1 binds selectively to PIP lipids. Panels A -C: The lipid 
binding of APP-E1 was examined using the protein-lipid assay. Membranes 
were incubated with 1 nM APP-E1 overnight and lipid-bound protein was 
detected using a 6xHis antibody. Panel C: Immunoreactivity (I.R.) of lipid-
bound APP-E1 from 3 experiments as shown in panel B was quantified by 
densitometry. Bars show means ± SEM APP-E1 immunoreactivity. Statisti-
cal significance determined by 1 way ANOVA with Tukey’s post-hoc test (* 
= p < 0.05 vs. PI). 
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Figure 3.4. Dic8PI(4,5)P2 but not mucosal heparin (MH) com-
petes for APP-E1 binding to PI(4,5)P2. Panel A: The effect of 
increasing diC8PI(4,5)P2 concentration on APP-E1 (0.5 nM) 
binding to PI(4,5)P2 (100 pmol) was examined in the protein-lipid 
overlay assay. Panel B: APP-E1 (0.5 nM) was incubated with  
MH	(100	μg	mL-1,	approx.	5.8	μM),		dic8PI(4,5)P2 (50	μM,	58.4	
μg	mL-1) or PBS (control). PI(4,5)P2-bound APP-E1 immunoreac-
tivity (I.R.) was then quantified using densitometry. Bars show 
mean ± SEM of PI(4,5)P2-bound APP-E1 immunoreactivity 
expressed as a percentage of PBS control from 9 replicates per 
treatment. Statistical significance was determined using 1-way 
ANOVA and Dunnett’s post-hoc test (*p < 0.05 vs control). 
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The amount of APP-E1 immunoreactivity associated with PI(4,5)P2 in the 

presence of 0.5 µM, 5 µM and 50 µM diC8PI(4,5)P2 was observed to be 80%, 

50% and 20% of control respectively (Fig 3.4A). However, only the 5 µM and 50 

µM concentrations were significantly different from the PBS control (Fig. 3.4A). 

These data demonstrated that diC8PI(4,5)P2 can compete for APP-E1 binding to 

PI(4,5)P2, and also that the protein-lipid overlay assay was suitable for measuring 

the effect of a competitive inhibitor. 

The E1 domain of APP contains a heparin-binding region (residues 95 – 110) and 

a metal-binding region (Small et al., 1994; Multhaup et al., 1996). As the heparin-

binding region carries a positively charged surface (Rossjohn et al., 1999), it was 

hypothesised that this region of APP could be responsible for binding to PIPs. To 

investigate whether the heparin-binding domain could be responsible for the 

binding of APP to PIP, the ability of heparin to inhibit the binding of APP-E1 to 

PI(4,5)P2 was assessed using the protein-lipid overlay assay. The concentration of 

heparin that was used (100 µg mL-1) was a ≈ 40-fold molar excess compared to 

the amount of PI(4,5)P2. This concentration of heparin has previously been 

demonstrated to block the binding of APP to cells (Ninomiya et. al., 1994). 

Heparin was not able to block the binding of APP-E1 to PI(4,5)P2 in the protein-

lipid overlay assay (Fig. 3.4B). In contrast, half the amount by weight (58.4 µg 

mL-1) of dic8PI(4,5)P2 was able to block the binding of APP-E1 to PI(4,5)P2 in the 

protein-lipid overlay assay (Fig. 3.4B). This suggests that the binding of APP-E1 

to PI(4,5)P2 is not via the heparin-binding domain in APP-E1 between residues 95 

– 110, but through another region (Small et al., 1994; Clarris et al., 1997).  
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3.1.3.1 Computational modelling of the PIP-binding domain in the E1 domain of 

APP 

The E1 domain of APP is a highly structured region, for which crystal structures 

are available (Dahms et al., 2010; Rossjohn et al., 1999). To identify possible 

binding sites for PIP in the APP E1 domain, a computational modelling approach 

was used. D-myo-inositol 1,4,5-trisphosphate (IP3) is homologous in structure to 

the head group of PI(4,5)P2. As a result, PI(4,5)P2 binding proteins often bind to 

IP3 with similar or higher affinity than to PI(4,5)P2 (Lemmon et al., 1995; Garcia 

et al., 1995; Hyvonen et al., 1995). Therefore, the binding of IP3 to the APP E1 

domain was computationally modelled using the SwissDock protein-ligand 

docking tool (Grosdidier et al., 2011b; Grosdidier et al., 2011a). This tool models 

the interactions of small molecule ligands with proteins, to allow for visualisation 

of clusters of potential binding sites. The SwissDock server also estimates the free 

energy of binding (ΔG) based on electrostatic interactions calculated using the 

CHARMM fields for the protein (Brooks et al., 2009) and SwissParam field for 

the ligand (Zoete et al., 2011). These estimated ΔG values were used to indicate 

how strongly IP3 could potentially interact with a particular binding site on the 

APP E1 domain.  

The computational modelling of the interactions between the APP E1 domain and 

IP3 suggested that there were two potential IP3 binding pockets present on the E1 

domain of APP (Fig. 3.5). The highest ranked binding pocket was at the heparin-

binding loop, with energetically favorable predicted free energy of binding values 

(ΔG) in the range of -12.5 to -6.6 kcal mol-1 (Fig 3.5).  
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Figure 3.5. Possible binding sites of D-myo-inositol 1,4,5-trisphosphate (IP3) on the  
APP E1 domain. The binding of IP3 to the crystal structure of the APP E1 domain 
(PDB ID: 3KTM, Chain B) was modelled using the SwissDock protein docking 
server. Panel A: Electrostatic surface charge representation of the APP E1 domain.  
Panel B: Secondary structure cartoon representation of the APP E1 domain. Alpha-
helices are coloured in orange and beta-sheets are coloured in purple. The heparin-
binding domain (residues 95 - 110) has been highlighted in yellow. Clusters of 
predicted binding sites for IP3 with a predicted free energy of binding (∆G)	more	nega-
tive than -6.52 kcal mol-1 are shown. Labels indicate the range of predicted ∆G	for	
each binding cluster. The positions of histidine 151, lysine 155, glycine 90 and proline 
91 are also indicated. 
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Electrostatic surface modelling demonstrates this region of the APP E1 domain 

has a positively charged surface, which could theoretically interact with anionic 

PIP (Fig 3.5A). A second potential IP3 binding pocket was present closer to the N-

terminus in a pocket formed by the amino acid residues histidine 151, lysine 155, 

glycine 90 and proline 91. This potential binding site had a slightly less negative 

range of predicted ΔG values, in the range of -9.85 to -6.6 kcal mol-1 (Fig 3.5).  

As the E1 domain of APP may also form a dimer (Dahms et al., 2010), the 

binding of IP3 was also modelled to the APP E1 domain dimer (PDB ID: 3KTM). 

The computational modelling suggested a number of potential binding sites for 

IP3 on the APP E1 dimer (Fig. 3.6). A number of binding pockets were predicted 

around the heparin-binding region (residues 95 - 110) and interestingly, these had 

more negative predicted ΔG values (in the range of -17 to -9 kcal mol-1) than was 

predicted for the APP E1 domain monomer (Fig. 3.6). The positively charged 

surface around the heparin-binding site is larger in the APP E1 domain dimer, 

which could explain the more negative predicted ΔG (Fig. 3.6A). Additionally, 

there were other potential binding pockets closer to the N-terminus of the APP E1 

domain, with less negative predicted ΔG values in the range of -9 to -7 kcal mol-1.  

To provide context to these modelled interactions of APP with IP3, positive and 

negative control models were produced. As a negative control, the binding of the 

APP E1 domain to inositol was computationally modelled. Inositol was used as a 

control as inositol is structurally similar to IP3, but does not have the negatively 

charged phosphate groups.  
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Figure 3.6. Possible binding sites for D-myo-inositol 1,4,5-trisphosphate (IP3) on the 
heparin-induced APP dimer. The binding of  IP3 to the crystal structure of the heparin-
induced APP E1 dimer (PDB ID: 3KTM, Chains B+D) was modelled using the Swiss-
Dock protein docking server. Panel A: Electrostatic surface charge representation of 
the APP E1 dimer. Panel B: Secondary structure cartoon representation of the APP E1 
dimer. Alpha-helices are coloured in orange and beta-sheets are coloured in purple. 
The heparin-binding domain (residues 95 - 110) has been highlighted in yellow. Clus-
ters of predicted binding sites for IP3 with a predicted ∆G	more	negative	than	-6.7	kcal	
mol-1 are shown. Labels indicate the range of predicted ∆G	for	each	binding	cluster.
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The computational modelling of the binding of inositol to the APP E1 domain 

monomer and the APP E1 domain dimer produced a number of potential binding 

sites on the APP E1 domain (Fig. 3.7 A, B). The potential binding sites for 

inositol were distinct from those predicted for IP3, and all had less energetically 

favourable predicted ΔG values (in the range of -6.7 to -4.2 kcal mol-1) than was 

predicted for APP binding to IP3. Therefore, these results suggested that 

interactions of IP3 with the APP E1 domain were more energetically favorable 

than the interaction of inositol with the APP E1 domain. This was consistent with 

the results of the protein-lipid overlay assay, which found that APP-E1 bound to 

PIP but not to PI.  

As a positive control model, the binding of IP3 to the pleckstrin homology domain 

of spectrin (spectrin-PH) was modelled using the SwissDock server. The 

pleckstrin homology domain of spectrin (spectrin-PH) binds selectively to 

PI(4,5)P2 with a dissociation constant (Kd) of around 40 µM (Hyvonen et al., 

1995). Further, the IP3 binding site for spectrin-PH has been identified using X-

ray crystallography (Hyvonen et al., 1995). Modelling the interactions between 

spectrin-PH and IP3 produced a number of potential binding sites for IP3 that 

matched the previously reported binding site (Fig. 3.7C; Hyvonen et al., 1995). 

The range of predicted ΔG values for these interactions were -15.8 to -7.87 kcal 

mol-1 (Fig 3.7C). Therefore, this modelling suggested that some of the potential 

IP3 binding sites identified for the APP E1 domain (predicted ΔG range -17.0 to -

6.6 kcal mol-1) were as energetically favorable as were predicted for the spectrin 

PH domain (predicted ΔG range -15.8 to -7.87 kcal mol-1). Therefore, these 

theoretical data supported the presence of a PIP-binding region in the E1 domain 

of APP.   
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Figure 3.7. Positive and negative tests of the computational docking model. Panel A shows 
the	predicted	binding	clusters	and	the	range	of	predicted	free	energy	of	binding	(∆G)	for	
inositol binding to the APP E1 domain (PDB	ID:	3KTM,	chain	B),	modelled using the 
SwissDock protein docking server. Panel B shows the predicted binding clusters and the 
range	of	predicted	∆G	for	inositol	binding	to	the	heparin-induced	APP	E1	dimer	(PDB ID: 
3KTM,	chain	B	and	D). The	heparin-binding	domain	(residues	95	-	110)	has	been	high-
lighted in yellow.	Panel	C	shows	predicted	binding	sites	and	predicted	∆G	for	D-myo-
inositol	1,4,5-trisphosphate	(IP3)	binding	to	 the	pleckstrin	homology	domain	of	spectrin	
(PDB	ID:	1BTN).		Alpha-helices	are	coloured	in	orange	and	beta-sheets	are	coloured	in	
purple. 
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3.2 Studies on the binding of APP to hippocampal neurons 

The central hypothesis of this thesis was that APP directly interacts with lipids on 

the cell surface. The results reported in Section 3.1 showed that sAPPα and APP-

E1 are able to bind to PIPs in an in vitro assay. Therefore, to test the hypothesis 

that APP can interact with PIPs on the cell surface, a cell culture model was 

developed. Previous studies have reported that sAPPα binds to the surface of a 

number of different cell types (Hoffmann et al., 1999; Tikkanen et al., 2002). In 

these studies, purified sAPPα was added to cell cultures and cell-bound sAPPα 

was detected using immunocytochemistry (Hoffmann et al., 1999; Tikkanen et al., 

2002). Therefore, the same experimental approach was chosen for the following 

experiments. 

Primary murine hippocampal cultures were prepared at a low density of 1x105 

cells per coverslip to enable visualisation of individual cells. Cultures were 

initially plated in 10% serum, which produced a glial feeder layer, with neuronal 

cells growing on top (Fig. 3.8A). To examine the binding of APP to cells, the 

primary murine hippocampal cultures were incubated with recombinant 6xHis 

tagged sAPPα and recombinant 6xHis tagged APP-E1, after which unbound 

protein was removed by washing with culture medium. Cell-bound sAPPα or cell-

bound APP-E1 was then detected using an antibody directed against the 6xHis tag 

on the recombinant proteins.   



Figure 3.8. APP-E1 and sAPP_ bind to neuronal cells. Primary hippocampal cultures 
were incubated with PBS control (panel A), 50 nM sAPP_ (panel B) or 50 nM APP-E1 
(panel C) for 2 h. Cells were washed, and cell-surface bound APP was detected by immu-
nocytochemistry using an anti-6xHis antibody. The nuclei of glial cells in the feeder layer 
are visible in the DAPI channel on the left. Note: the contrast in panel C is lower than 
panels A and B. Insets show enlargement of cell soma region shown in white boxes, 
focussed	on	the	cell	surface.	Scale	bars	=	20	μm.	Panel	D	shows	a	western	blot	of	recom-
binant sAPP_ immunoreactivity over time, showing evidence for low stability of the 
recombinant sAPP_. Recombinant sAPP_	(350	ng)	was	incubated	in	105	μL	tris	buffered	
saline	at	22°C.	At	each	time	point	15	μL		(50	ng	equivalent)	was	removed,	added	to	SDS-
PAGE sample buffer and heated to 95°C for 10 minutes. The samples were then analysed 
by SDS-PAGE, blotted onto PVDF membranes, and immunolabelled using the monoclo-
nal antibody 6E10.  
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Some sAPPα bound to cells with a punctate pattern, however, this 

immunoreactivity was only visible when the contrast of the images was enhanced, 

and the signal was difficult to distinguish from background fluorescence (Fig. 

3.8B, A). However, much more immunoreactivity associated with cells was 

observed using the APP-E1 recombinant protein than was observed using sAPPα 

recombinant protein (Fig. 3.8). APP-E1 bound selectively to neurons, with a 

distinctive punctate pattern along the dendrites and over the surface of the cell 

soma (Fig. 3.8C). There was no binding of APP-E1 to the glial cells in the feeder 

layer (Fig. 3.8C), indicating that the cell binding of exogenously added APP-E1 is 

to a specific site present on neuronal cells.  

Subsequent investigation suggested that the recombinant sAPPα was unstable, as 

the 6E10 immunoreactivity of the recombinant sAPPα spontaneously declined 

over time with a half-life of approximately two hours (Fig. 3.8C). This may 

explain why the cell-associated APP immunoreactivity was weak. Therefore, as 

the recombinant sAPPα was unstable and the sAPPα immunoreactivity associated 

with cells was weak, the APP-E1 recombinant protein was used for the majority 

of experiments in this study. 

3.2.1 Identification of PIPs on the extracellular surface of the cell membrane  

As APP-E1 was able to bind to PIP in vitro and was also able to bind to the 

surface of neurons, the possibility that APP-E1 could bind to PIPs on the surface 

of neurons was investigated. Although there have been some reports of the 

presence of PIPs on the surface of cells (Gascard et al., 1991; Fogler et al., 1987; 

Kale et al., 2010), most studies of PIPs have focussed on the role of PIPs on the 

cytoplasmic side of the plasma membrane (PM). Therefore, to investigate whether 

APP could interact with PIPs on the cell surface, it was first necessary to 

determine whether PIPs were present on the surface of cells. 
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3.2.1.1 Immunocytochemical detection of cell-surface PIPs 

A number of studies have used monoclonal antibodies to investigate the 

localisation of PIPs inside the cell (Hammond et al., 2012; Hammond et al., 

2009). To determine whether PIPs were present on the surface of cells, primary 

hippocampal cultures were incubated with anti-PIP monoclonal antibodies. 

Antibody labelling was performed on live cells at 4°C to minimise the possibility 

of disruption of the cell membrane and the consequent detection of intracellular 

PIPs (Rusten and Stenmark, 2006; Hammond et al., 2009). 

PI(4)P, PI(3)P, PI(3,5)P2 and PI(3,4,5)P3 immunoreactivity was not detected on 

the surface of primary hippocampal cultures (Fig. 3.9A, B, D, E). However, 

PI(4,5)P2 immunoreactivity was detectable on the surface of cells in primary 

hippocampal cultures (Fig. 3.9C). The anti-PI(4,5)P2 antibody labelled the surface 

of both neurons and glia in the feeder layer (Fig. 3.9C, 3.10A). PI(4,5)P2 

immunoreactivity exhibited a punctate distribution with puncta < 1 µm present 

along dendrites and on the surface of the neuron soma (Fig. 3.10A). The 

specificity of the anti-PI(4,5)P2 monoclonal antibody for binding to cellular 

PI(4,5)P2 was demonstrated by pre-adsorbing the antibody with a 1000x molar 

excess of a water-soluble analog of PI(4,5)P2 (diC8 PI(4,5)P2). Pre-absorption of 

the PI(4,5)P2 antibody abolished antibody binding to cells (Fig. 3.10B).  

To confirm that the PI(4,5)P2 immunoreactivity that was observed on the cells 

was extracellular and not intracellular, the localisation of the PI(4,5)P2 

immunoreactivity was compared with that of the intracellular proteins MAP2 and 

GFAP using both live unfixed cells and cells that had been fixed and 

permeabilised with 4% paraformaldehyde and 0.3% triton X-100. The principle of 

the experiment was that the antibodies directed against intracellular antigens 

would not be immunoreactive with cells when the cell membrane is intact, but 

extracellular antigens would be detected.  
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Figure 3.9. Evidence for the presence of cell-surface PI(3)P, PI(4)P, 
PI(4,5)P2 PI(3,5)P2  and PI(3,4,5)P3 immunoreactivity on cells in 
hippocampal culture. Live hippocampal cultures were labelled at 4 ºC with 
monoclonal PIP antibodies. Inset shows enlargement of region in white 
box	focused	on	surface	of	the	neuron	soma.	Scale	bars	=	10	μm.
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Figure 3.10. Effect of preabsorption of anti-PI(4,5)P2 antibody with 
diC8PI(4,5)P2 on cell-surface PI(4,5)P2 staining. Primary hippocampal 
cultures	were	 labelled	at	4˚C	with	a	PI(4,5)P2 antibody (Panel A), or a 
PI(4,5)P2 antibody that had been preabsorbed with	20	μM	diC8PI(4,5)P2  
(approx. 1000x molar excess; Panel B). Insets show enlargement of 
region indicated in white box, but focussed on the surface of the neuron 
soma.	Scale	bars	=	20	μm.
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Anti-MAP2, anti-GFAP and anti-PI(4,5)P2 antibodies were incubated with live 

cells and with cells that had been first fixed and permeabilised prior to 

immunolabelling. MAP2 immunoreactivity was not detectable in the live-cell 

labelled cells (Fig. 3.11A), but punctate PI(4,5)P2 immunoreactivity was 

detectable along the dendrites and over the surface of cells (Fig. 3.11C). Cells that 

were fixed and permeabilised prior to antibody labelling were immunoreactive for 

both antibodies (Fig. 3.11B, D). In the fixed/permeabilised cells, the MAP2 

antibody labelled the dendrites and soma of neurons, and intracellular PI(4,5)P2 

immunoreactivity was present in neurons and glia (Fig. 3.11B, D).  

Similarly, GFAP immunoreactivity was not detectable in the live-cell labelled 

cells (Fig. 3.11E), but punctate PI(4,5)P2 immunoreactivity was present on the 

surface of glia (Fig. 3.11G). When cells were fixed and permeabilised prior to 

antibody labelling, GFAP immunoreactivity was present in glia and PI(4,5)P2 

immunoreactivity was present in neurons and glia (Fig. 3.11F, H). Therefore, 

these results demonstrated that PI(4,5)P2 is present on the surface of both neuronal 

and glial cells in the hippocampal cultures.  

3.2.1.2 Biosensor detection of cell-surface PIP 

To confirm the specificity of the staining of PIPs on the cell surface, 

commercially available PIP biosensors were also used. PIP biosensors are 

recombinant glutathione-s-transferase (GST) -tagged PIP-binding domains that 

have been well characterised for their ability to bind selectively to individual PIP 

species. Cells were incubated with a PI(3)P biosensor (recombinant GST-tagged 

PX domain of p40phox; Stahelin et al., 2003), a PI(4)P biosensor (recombinant 

GST-tagged SidC_3C domain; Weber et al., 2006), a PI(4,5)P2 biosensor   
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Figure 3.11. PI(4,5)P2 immunoreactivity is present on the surface of cells in hippocampal 
cultures. Live or fixed/permeabilised primary hippocampal neurons were labelled with 
anti-MAP2, anti-GFAP and anti-PI(4,5)P2 antibodies. DAPI staining is shown in panels 
A,C,E and G. Panels A, C: Extracellular MAP2 and PI(4,5)P2 immunoreactivity of live 
cells	labelled	at	4˚C.	Panels	B	and	D	show	MAP2	and	PI(4,5)P2 immunoreactivity, with 
labelling	performed	in	parallel	at	4˚C	on	cells	that	have	been	fixed	(4%	PFA,	20	minutes),	
permeabilised	(5	min,	0.3%	Triton	X-100	in	PBS)	and	washed	immediately	prior	to	label-
ling.	Note,	the	contrast	between	panels		A	+	B,	C	+	D,	and	B	+	D	is	not	equivalent,	as	
intracellular PI(4,5)P2 immunoreactivity is much higher than extracellular PI(4,5)P2 
immunoreactivity.	 Contrast	 between	 panels	A	 +	 C	 is	 equivalent.	 Panels	 E	 -	 H	 show	
equivalent	experiment	using	an	anti-GFAP	antibody.	Panels	E	+	G	show	extracellular	
GFAP and PI(4,5)P2	immunoreactivity	of	live	cells	labelled	at	4˚C.	Panels	F	+	H	show	
GFAP and PI(4,5)P2	 immunoreactivity	with	 labelling	 performed	 in	 parallel	 at	 4˚C	on	
cells that have been fixed, permeabilised and washed immediately prior to labelling. 
Note:	contrast	between	panels	E	+	F,	G	+	H,	F	+	H	is	not	equivalent.	Contrast	between	
panels	E	+	G	is	equivalent.	Scale	bars	=	20	μm.
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(recombinant GST tagged pleckstrin homology domain of phospholipase C-δ1; 

Kavran et al., 1998) or a PI(3,4,5)P3 biosensor (recombinant GST-tagged 

pleckstrin homology domain of general receptor for phosphoinositides-1; Kavran 

et al., 1998). Cells were washed and then cell-bound biosensors were detected 

using an antibody directed against the GST affinity tags attached to the 

biosensors. 

The PI(4,5)P2 biosensor was the only biosensor that was observed to bind to the 

surface of primary neuronal cultures (Fig. 3.12D). The PI(4,5)P2 biosensor 

binding pattern was similar to that observed with the anti-PI(4,5)P2 antibody, as it 

stained cells with a punctate distribution on the surface of both neurons and glia. 

PI(4)P, PI(3)P and PI(3,4,5)P3 biosensors stained the surface of cells poorly, or 

not at all (Fig. 3.12B, C, E). A low-level of biosensor binding was observed using 

the PI(3)P biosensor (Fig. 3.12B). The PI(3,4,5)P3 biosensor had a high 

propensity to bind to extracellular debris, visible as regions of high intensity 

staining (Fig. 3.12E). These data supported the conclusion that PI(4,5)P2 is present 

extracellularly on neuronal and glial cells. Some of the other PIPs may also be 

present on the surface of cells, although the detectable levels of these lipids are 

much lower than PI(4,5)P2. 

3.2.2 Co-localisation of exogenous APP-E1 and cell-surface PI(4,5)P2 

The data presented in Section 3.1 demonstrate that APP-E1 contains a PIP-

binding domain, while the data presented in Section 3.2.1 demonstrate that 

PI(4,5)P2 is present on the surface of hippocampal cells in culture. Therefore, to 

assess whether APP-E1 could bind to PI(4,5)P2 on the neuronal cell surface, the 

distribution of PI(4,5)P2 immunoreactivity, as well as the distribution of the   



Figure 3.12. Detection of cell-surface PIPs using PIP biosen-
sor proteins. Primary hippocampal cultures were incubated 
with 50 nM of each biosensor for 2h at 37°C. Cells were 
washed, and cell-bound biosensors were detected by fluores-
cence immunocytochemistry using an anti-GST antibody 
performed on live cells at 4°C. Insets show enlargement of 
the neuronal soma shown in white boxes, focused on the cell 
surface. Scale bars = 20 µm 
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PI(4,5)P2 biosensor and APP-E1 was examined. First, primary hippocampal 

cultures were incubated with APP-E1, or APP-E1 and the PI(4,5)P2 biosensor. 

Cells were washed and cell-bound APP-E1 was detected using antibodies directed 

against the 6xHis tag and cell-bound PI(4,5)P2 biosensor was detected using an 

antibody directed against the GST tag. Alternatively, the cell-surface PI(4,5)P2 

was labelled using the PI(4,5)P2 antibody.  

A high degree of co-localisation of APP-E1 and PI(4,5)P2 was observed on 

neuronal cells using both the PI(4,5)P2 biosensor and the PI(4,5)P2 antibody (Fig. 

3.13C, F). This co-localisation was confirmed using confocal microscopy (Fig. 

3.14A). APP-E1 bound to neurons with a punctate pattern and PI(4,5)P2 was 

present in small puncta that were highly colocalised with APP-E1 (Fig. 3.13, 

3.14). However, APP-E1 was found to bind only to neuronal cells, whereas 

PI(4,5)P2 immunoreactivity was present both on neurons and on the surface of 

glia in the feeder layer (Fig. 3.13). Taken together the data suggest that APP-E1 

binds to the neuronal cell surface and localises to PI(4,5)P2 micro-domains. The 

data also show that while APP-E1 colocalises with PI(4,5)P2 on neurons, 

PI(4,5)P2 cannot be the sole determinant of APP binding to the cell surface, as 

PI(4,5)P2 was detected on glia where no APP-E1 was bound.  

3.2.3 Competition of APP-E1 binding to cells with diC8PI(4,5)P2 

The data in Section 3.2.2 indicated that PI(4,5)P2 and APP-E1 was co-localised on 

the cell surface of neurons. However, these data also suggested that the binding of 

APP-E1 to PI(4,5)P2 was not sufficient for binding to neurons, as PI(4,5)P2 was 

also detected on glial cells where APP-E1 did not bind.   



Figure 3.13. Co-localisation of PI(4,5)P2 and APP-E1 on the neuronal cell surface. Panels A, 
B, C show APP-E1 immunoreactivity and PI(4,5)P2 immunoreactivity after incubation of 
primary hippocampal cultures with 50 nM APP-E1 for 2h. Panels D, E, F show APP-E1 
immunoreactivity and PI(4,5)P2 biosensor immunoreactivity after incubation of cultures with 
25 nM APP-E1 and 25 nM PI(4,5)P2 biosensor for 2h at 37°C prior to detection of cell-bound 
APP-E1 and cell-bound PI(4,5)P2 biosensor by immunocytochemistry at 4°C. DAPI staining 
of nuclei is shown in panels C and F in blue. The nuclei of glia in the feeder layer are marked 
with	an	asterisk.	Scale	bars	=	20	μm.	
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Figure 3.14.  APP-E1 co-localises with cell-surface PI(4,5)P2 microdomains. 
Cells were incubated with 50 nM of  APP-E1 (panel A) or PBS (control; 
panel	B)	for	2.5	hours	at	37˚C.	Cells	were	washed	and	cell-bound	APP-E1	
and cell-surface PI(4,5)P2 were detected by immunocytochemistry 
performed at 4˚C.	Exogenous	APP-E1	 is	 shown	 in	green	 and	 cell-surface	
PI(4,5)P2  is shown in red.	Panels	A	and	B	show	maximum	intensity	projec-
tion of a confocal z-stack of primary hippocampal neurons. Insets (A’ - B’’’) 
show	images	of	a	single	1	airy	unit	confocal	slice	of	the	cell	soma	region	
indicated	in	the	white	box,	focused	on	the	cell	surface.	Scale	bars	=	10	μm	or	
5	μm	in	insets.
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To further examine the possibility that APP-E1 only binds to PI(4,5)P2 on the cell 

surface, the ability of a water-soluble PI(4,5)P2 analogue (diC8PI(4,5)P2) to 

compete for APP-E1 binding to the cell surface was investigated. APP-E1 (10 

nM) was pre-incubated with 500 µM diC8PI(4,5)P2 for two hours, prior to 

incubation with primary hippocampal cultures. This concentration of 

diC8PI(4,5)P2 was chosen based on the protein-lipid overlay assay data in Fig. 3.4 

and was determined to be sufficient to inhibit the binding of APP to PI(4,5)P2. 

After incubation, cells were washed, and cell-bound APP-E1 was detected using 

an antibody directed against the 6xHis tag.  

The water soluble PI(4,5)P2 analogue did not significantly reduce the binding of 

10 nM APP-E1 to primary hippocampal cultures (Fig. 3.15A, B). Therefore, the 

results did not provide clear evidence that PIPs were the major binding site for 

APP-E1 on the cell surface, as diC8PI(4,5)P2 could not compete for binding of 

APP-E1 to the cell surface. 

3.2.4 Investigation into the role of the heparin-binding domain in the binding of 

APP-E1 to the cell surface 

The APP-E1 recombinant protein also contains an N-terminal heparin-binding 

domain (residues 95 - 110). This heparin-binding domain has been reported to be 

important in the stimulation of neurite outgrowth (Small et al., 1994). 

Furthermore, APP has been demonstrated to bind to heparan sulfate proteoglycans 

such as glypican 1 (Williamson et al., 1996). Therefore, the cell surface receptor 

for APP could be a heparan sulfate proteoglycan. As the results in Sections 3.2.2 

and 3.2.3 indicated that PIPs might not be the main binding site for APP-E1 on 

the cell surface, the role of the heparin-binding region in cell-surface binding by 

APP-E1 was investigated.   
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Figure 3.15. Incubation of APP-E1 with diC8PI(4,5)P2 has no effect on APP-E1 
binding to hippocampal neurons. Primary hippocampal cultures were incubated 
with	 APP-E1	 (10	 nM)	 for	 2	 hours	 at	 37°C	 in	 the	 presence	 of	 500	 μM	
diC8PI(4,5)P2 or PBS (control) prior to detection of cell-bound APP-E1 by immu-
nocytochemistry performed at 4°C. Panel A shows representative images of 
APP-E1	immunoreactivity	(I.R.).	Scale	bars	=	20	μm.	Panel	B	shows	quantifica-
tion of cell-bound APP-E1 immunoreactivity. Bars show mean ± SEM cell-bound 
APP-E1 immunoreactivity expressed as a percentage of control determined from 
30 fields per treatment group. n.s. - Data not significantly different between treat-
ment groups determined by Students t-test (p > 0.05)

Control
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To investigate whether the heparin-binding domain in APP-E1 could facilitate the 

binding of APP-E1 to cells, primary hippocampal cultures were incubated with 

APP-E1 in the presence or absence of a large excess of mucosal heparin. Cells 

were washed and cell-bound APP-E1 was detected by immunocytochemistry. 

Mucosal heparin (100 µg mL-1) significantly reduced the amount of APP-E1 

immunoreactivity associated with cells (Fig. 3.16). The concentration of mucosal 

heparin that blocked binding to cells was not sufficient to block binding to 

PI(4,5)P2 in the protein-lipid overlay assay (Fig. 3.4). This indicated that the 

heparin-binding region and the PIP-binding region on APP-E1 may be distinct, 

and that the heparin-binding region is required for binding to the cell surface. 

To investigate whether APP-E1 can bind to endogenous cell-surface heparan 

sulfate proteoglycans, the effect of removal of endogenous heparan sulfate on the 

ability of APP-E1 to bind to the cells was investigated. Primary hippocampal 

cultures were incubated with heparitinase, prior to incubation with APP-E1. Cells 

were washed and APP-E1 was detected using an antibody against the 6xHis tag. 

Heparitinase treatment significantly reduced the amount of cell-surface heparan 

sulfate immunoreactivity (Fig. 3.17A, C). However, removal of endogenous 

heparan sulfate with heparitinase did not affect the amount of APP-E1 that bound 

to cells (Fig. 3.17B, D). As endogenous heparan sulfate was present on cells in the 

glial feeder layer where APP-E1 did not bind, this also suggested that heparan 

sulfate proteoglycans do not represent the major binding site for APP-E1 (Fig 

3.17A). Together the results suggested that the heparin-binding domain in APP-

E1 is involved in the binding of APP-E1 to the cell surface, however the heparin-

binding domain of APP-E1 may not bind to a heparan sulfate proteoglycan on the 

cell surface. This data suggests that there may be another type of receptor on the 

surface of neurons that is responsible for binding to APP. 
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Figure 3.16. Incubation of APP-E1 with mucosal heparin (MH) blocks 
the binding of APP-E1 to cells. APP-E1 (25 nM) was incubated with 
100	μg	mL-1 MH or PBS control for 1h in cell culture medium, prior to 
incubation	with	 primary	 hippocampal	 neurons	 for	 2h	 at	 37˚C.	 Cells	
were then washed and cell-bound APP-E1 was detected by immunocy-
tochemistry	at	4˚C.	Panel	A		shows	representative	images	of	cell-bound	
APP-E1	immunoreactivity.	Scale	bars	=	20	μm. Panel B shows quanti-
fication	 of	 	 cell-bound	APP-E1	 immunoreactivity	measured	 from	60	
fields.	Bars	 show	mean	±	SEM	APP-E1	 immunoreactivity	 per	 field,	
expressed as a percentage of control.  *Statistically significant as deter-
mined by Student’s t-test (p < 0.05).
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Figure 3.17. Heparitinase treatment does not affect APP-E1 binding to 
cells. Cells were treated with or without 0.8 mU ML-1 heparitinase I (Hep. I) 
for 24 hours, prior to incubation with 25 nM APP-E1 for 2 hours at 37ºC. 
Cells were washed and cell-surface heparan sulfate (HS) and cell-bound 
APP-E1 was detected using immunocytochemistry performed at 4ºC. 
Panels A and B show representative images of the effect of heparitinase 
treatment on cell-surface heparan sulfate immunoreactivity (I.R.) and corre-
sponding effect of heparitinase treatment on cell-bound APP-E1 I.R. Scale 
bars = 20 µm. Panels E + F show quantification of the effect of heparitinase 
treatment on HS I.R. and APP-E1 I.R. measured from 60 fields. Bars show 
mean ± SEM I.R. expressed as a percentage of untreated controls. *Statisti-
cally significant as determined by Student’s t-test (p < 0.05).
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3.3 Studies on the biological effects of APP-PIP interactions 

3.3.1 Effect of sAPPα on PIP levels in primary cortical cultures 

Many important cellular signalling mechanisms are reliant on changes in the 

levels of PIPs, for example calcium signalling (Lapetina and Michell, 1973) and 

PI3K/Akt signalling (Watton and Downward, 1999; Andjelkovic et al., 1997). 

Therefore, changes to levels of PIPs could potentially result in effects on cellular 

signalling pathways. As APP was found to bind to PI(4,5)P2, it was hypothesised 

that APP might be able to affect levels of cellular PIPs. Therefore, the effect of 

sAPPα treatment on total cellular levels of PIPs was assessed.  

In order to examine the effect of APP on PIPs, a mass spectrometry (MS) method 

was used. The principle of this technique is that PIP lipids can be extracted from 

cells using an acidified-chloroform extraction (Ivanova et al., 2007; Ogiso and 

Taguchi, 2008; Pettitt, 2010). PIPs can then be separated by reverse-phase ultra 

performance liquid chromatography (UPLC), which allows for the rapid 

chromatographic separation of PIPs. PIPs can be selectively identified from a 

complex cellular extract using electrospray MS with selective ion monitoring 

(SIM; Ogiso and Taguchi, 2008). In selective ion mode, the MS detector only 

measures ions at selected m/z, which results in significantly greater sensitivity 

that full scan-based MS. Quantification of the relative levels of PIPs can then be 

inferred by integration of the chromatographic elution peaks. Theoretically, this 

approach allows for the detection of different acyl chain species of PIP, and also 

the different phosphorylated isoforms, e.g. PIP vs. PIP2 vs. PIP3. However, this 

method does not allow for the quantitative determination of individual PIP 

regioisomers, as these have identical mass (Pettitt, 2010).  
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To achieve chromatographic separation of PIPs by reversed phase UPLC on a 

C18 column, a mixture containing non-natural acyl chain 37:4 PI(3)P, 37:4 

PI(3,4)P2 and 37:4 PI(3,4,5)P3 standards was first analyzed. Lipids in the eluate 

were detected by SIM. The solvent system gave good chromatographic separation 

of each one of the standards in the mixture. Elution peaks for each of the 37:4 

PI(3)P, 37:4 PI(3,4)P2 and 37:4 PI(3,4,5)P3 standards were detected at the 

appropriate m/z and eluted at 6.52 min, 5.90 min and 5.63 min respectively (Fig. 

3.18). There was a small elution peak detected at 5.63 min in the 37:4 PI(3,4)P2 

and 37:4 PI(3)P channels, which was attributed to an in-source fragmentation 

product of the 37:4 PI(3,4,5)P3 standard (Fig. 3.18B).  

To determine if cellular PIPs could be detected using UPLC-MS with SIM, lipids 

were extracted from cultures using an acidified-chloroform extraction. As large 

numbers of cells were needed, cultures from the whole cortex were used instead 

of hippocampal cultures. Synthetic non-naturally occurring 37:4 PI, 37:4 PI(3)P, 

37:4 PI(3,4)P2 and 37:4 PI(3,4,5)P3 were added as internal standards to the cell 

extracts to correct for differences in the efficiency of the extraction procedure. PI, 

PIP and PIP2 species were all detectable in the primary cortical neuron extracts 

(Fig. 3.19, Fig. 3.20, Fig. 3.21). The retention times for different acyl chain 

species followed a clear pattern consistent with the number of carbons and 

saturation, for example different PIP acyl chain species eluted from the column in 

the order 38:5, 38:4, 38:3, corresponding to the degree of saturation (Fig. 3.20 C, 

B, A). The amount of PIP that was detectable was approximately inversely 

correlated to the degree of phosphorylation. For example, the SIM intensity was 

an approximately an order of magnitude lower for PIP2 (in the 104 range) than for 

PIP (in the 105 range; e.g. Fig. 3.20C vs. 3.21C). Natural PIP3 species were not 

detectable using this method (data not shown), in agreement with previous studies 

(Ogiso and Taguchi, 2008; Ogiso et al., 2010; Pettitt, 2010).   
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Figure 3-18. Separation of a mixture of non-natural 37:4 PIP standards by reverse 
phase	UPLC	and		detection	by	MS	with	SIM.	A	solution	containing	5	μg	mL-1 of 
each PIP standard was subjected to reverse phase UPLC on a C18 column (2.1 x 
100 mm x 1.7 µm particles). The column was eluted with an initial isocratic 
mobile phase mixture of 90% A: 10% B for 1 minute followed by a linear gradient 
to 0% A: 100% B over 9 minutes. PIPs were detected by SIM of the mass to 
charge ratios (m/z) indicated on the right. Chromatograms A, B and C show 
elution peaks for 42 pmol 37:4 PI(3,4,5)P3, 46 pmol 37:4 PI(3,4)P2 and 50 pmol 
37:4 PI(3)P standards respectively,	separated	from	a	single	10	μL	injection.	The	y	
axis shows SIM current intensity, expressed as a % of the maximum SIM current 
intensity for each m/z ion, which is indicated on the right.
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Figure 3.19. Chromotagraphic separation and SIM detection of PI species 
extracted from primary cortical cultures. Lipid extracts were subjected to reverse 
phase UPLC on a C18 column (2.1 x 100mm x 1.7 micron particles). The column 
was eluted with an initial isocratic mobile phase mixture of 90% A: 10% B for 1 
minute followed by a linear gradient to 0% A: 100% B over 9 minutes. PIPs were 
detected by SIM of the mass to charge ratios (m/z) indicated on the right. Chro-
matograms A - E show the results obtained from analysis of a 10 µL injection of 
lipids extracted from 1x106 cells. Each chromatogram shows SIM monitoring of an 
individual PI acyl chain species. Chromatogram E is the 37:4 PI internal standard 
which represents 10 pmol of standard assuming perfect extraction. The y axis 
shows SIM current intensity, as a % of the maximum SIM current intensity for 
each m/z ion, which is indicated on the right.  
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Figure 3.20. Chromatographic separation and detection by SIM of PIP species 
extracted from primary cortical cultures. Lipid extracts were subjected to reverse 
phase UPLC on a C18 column (2.1 x 100 mm x 1.7 µm particles). The column was 
eluted with an initial isocratic mobile phase mixture of 90% A: 10% B for 1 minute 
followed by a linear gradient to 0% A: 100% B over 9 minutes. PIPs were detected by 
SIM of the mass to charge ratios (m/z) indicated on the right. Chromatograms  A - E 
show the results obtained from analysis of a 10 µL injection of lipids extracted from 
1x106 cells. Each chromatogram shows SIM monitoring of an individual PIP acyl 
chain species. Chromatogram E is the 37:4 PI(3)P internal standard which represents 
10 pmol of standard assuming perfect extraction. The y axis shows SIM current inten-
sity, expressed as a % of the maximum SIM current intensity for each m/z ion, which 
is indicated on the right.  
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Figure 3.21. Chromatographic separation and SIM detection of PIP2 species extracted 
from primary cortical cultures. Lipid extracts were subjected to reverse phase UPLC on 
a C18 column (2.1 x 100mm x 1.7 µm particles). The column was eluted with an initial 
isocratic mobile phase mixture of 90% A: 10% B for 1 minute followed by a linear 
gradient to 0% A: 100% B over 9 minutes. PIP2 species were detected by SIM of the 
mass to charge ratios (m/z) indicated on the right. Chromatograms  A - E show the 
results obtained from analysis of a 10 µL injection of lipids extracted from 1x106 cells. 
Each chromatogram shows SIM monitoring of an individual PIP2 acyl chain species. 
Chromatogram E is the 37:4 PI(3,4)P2 internal standard which represents 10 pmol of 
standard assuming perfect extraction. The y axis shows SIM current intensity, as a % of 
the maximum SIM current intensity for each m/z ion, which is indicated on the right.       
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The area for each elution peak was then measured to calculate the levels of 

individual PIPs in the cell extracts (Table 3-1). The PI, PIP, PIP2 internal 

standards were added to lipid extracts at the same molar amounts (50 pmol), but 

were not recovered at the same levels (Table 3-1). This suggested that the PIP and 

PIP2 species may undergo degradation during the lipid extraction process. 

Therefore, levels of PIPs in the cell extracts were corrected to the level of the 

internal standard, to calculate the amount of PIPs in pmol per million cells (Ogiso 

and Taguchi, 2008). The 38:4 and 38:3 PIPs were the most abundant acyl chain 

species of PIPs in the primary cortical cultures (Table 3-1). The amount of each 

acyl chain species was summed to estimate the total levels of PIPs in the cells, 

which was 143.7±14.1 pmol PIP 106 cells-1 and 127.1±25.5 pmol PIP2 106 cells-1 

(Table 3-1). The level of PIP and PIP2 species was approximately an order of 

magnitude below that of PI, which was present at 1010.81±55 pmol PI 106 cells-1 

(Table 3-1). 

To confirm that the assay could detect changes in levels of cellular PIPs, the effect 

of wortmannin on PIP levels was assessed. Wortmannin is a potent inhibitor of 

PI3K and at higher concentrations can inhibit PI4K (Arcaro and Wymann, 1993; 

Yano et al., 1993). Both PI3K and PI4K are essential for the production of PIP. 

Therefore, wortmannin treatment would be expected to cause a reduction in the 

levels of 3-phosphorylated and 4-phosphorylated PIPs. Primary cortical cells were 

treated with a high concentration (10 µM) of wortmannin for 30 min prior to 

extraction of lipids and analysis by UPLC-MS. The primary cultures treated with 

wortmannin had lower levels of PIP and PIP2 relative to vehicle-treated control 

cultures (Fig. 3.22). In contrast, the level of PI was unaffected by wortmannin 

treatment as expected (Fig. 3.22). Therefore, it was concluded that the assay 

method was appropriate for measuring changes in levels of cellular PIPs extracted 

from primary cortical cultures.   
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Table 3-1 Levels of PIPs in mouse primary cortical cultures 
 PI PIP  PIP2 

Acyl 

chain 

isoform 

Raw elution 

intensity 

Arb. Unit. 

(±SD) 

Corrected 

mean pmol 

lipid/106 cells 

(±SD) 

Raw elution 

intensity 

Arb. Unit. 

(±SD) 

Corrected 

mean pmol 

lipid/106 cells 

(±SD) 

Raw elution 

intensity 

Arb. Unit. 

(±SD) 

Corrected 

mean pmol 

lipid/106 cells 

(±SD) 

37:4 

Standard 

21.04 (3.9) 50.00 8.22 (1.6) 50.00 1.01 (0.2) 50.00 

36:4 60.76 (9.8) 144.92 (6.4) 3.08 (0.6) 18.86 (2.1) n.d. n.d. 

38:5 47.98 (7.0) 114.65 (7.3) 2.60 (0.5) 15.96 (1.8) n.d. n.d. 

38:4 235.40 (36.4) 562.12 (36.2) 15.40 (2.4) 94.44 (9.1) 2.01 (0.4) 99.58 (17.3) 

38:3 80.06 (20.1) 189.13 (21.6) 2.39 (0.7) 14.47 (2.3) 0.57 (0.2) 27.61 (17.8) 

Total 424.20 (67.8) 1010.81(55.4) 23.47 (4.1) 143.74 (14.1) 2.59 (0.7) 127.19 (25.5) 

 

PIPs were measured in primary cortical culture lipid extracts by UPLC-MS. Each value 

represents mean (± SD) derived from 12 replicates. Mean raw elution intensities, calculated 

from the mass chromatogram elution peak area for each lipid are shown, including the PIP 

internal standards. There were significant differences in the recovery of PI, PIP and PIP2 

internal standards suggesting some degradation of PIP and PIP2 throughout lipid extraction 

and measurement (shown in bold, p > 0.05, 1-way ANOVA). Levels of PIPs were corrected 

to the amount of internal standards according to the formula: (raw elution intensity / internal 

standard elution intensity) x (total lipid extract volume / injection volume) to calculate the 

amount of lipid in pmol per million cells. n.d. = lipid was not detectable at measurable levels. 

 

  



Figure 3.22. Wortmannin reduced the levels of PIP and PIP2 in 
primary cortical cultures.  Primary cortical neurons were treated with 
10	μM	wortmannin	or	vehicle	(DMSO)	control	for	30	minutes	prior	to	
lipid	extraction	and	analysis	by	UPLC-MS.	PIP	37:4	internal standards 
were used to correct for differences in extraction efficiency between 
samples. Graph shows the total amounts of PI, PIP and PIP2 species, 
expressed as a percentage of the control. Bars show mean lipid level  ± 
SEM	determined	 from	6	 replicate	wells	containing	1	x	106	cells per 
treatment	group.			*Statistically	significant	as	determined	using	indi-
vidual	Student’s	t-tests	(p	<	0.05).	
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As the UPLC-MS method was determined to be suitable for measuring levels of 

total PIPs in the primary cortical cultures, the effect of sAPPα treatment was then 

investigated. Cells were treated with sAPPα for 72 hours prior to the extraction of 

lipids and measurement of PIPs. However, no significant effect of sAPPα was 

found on levels of PI or on the levels of PIP or PIP2 in the cultures (Fig. 3.23). 

Therefore, the results suggested that total levels of PIP and PIP2 in primary 

cortical cultures were unaffected by sAPPα treatment. 

3.3.2 Effect of APP-E1 on levels of cell-surface PIP  

Many functions of PIPs in the cell are highly localised to specific membrane 

compartments and possibly also to distinct lateral domains within the membrane 

(Di Paolo and De Camilli, 2006; Posor et al., 2013; Khuong et al., 2013). 

Therefore, APP binding to PIPs could theoretically produce small, rapid changes 

in the levels of PIPs that would not be detectable by measuring the total cellular 

levels of PIPs. The experiments described in Section 3.2.2 reported evidence for 

discrete PI(4,5)P2 domains on the cell surface, and APP-E1 was found to localise 

to these domains. Therefore, the possibility that APP-E1 could affect the amount 

of PIPs on the cell surface was also examined.  

3.3.2.1 Effect of APP-E1 on cell-surface PI(4,5)P2 

The data in Section 3.2.1 showed that PI(4,5)P2 was on the surface of primary 

hippocampal cultures. To examine whether APP-E1 can alter the level of cell-

surface PI(4,5)P2, cells were incubated with APP-E1 and the level of PI(4,5)P2 

immunoreactivity was measured. In the presence of APP-E1, there was a 

significantly higher level of PI(4,5)P2 immunoreactivity observed on the surface 

of neurons, but not on glia (Fig. 3.24A, C). As APP-E1 binds selectively to the 

neurons in the hippocampal cultures (Section 3.2), this suggests that the effect 

was due to the binding of APP-E1 to the cell surface.  



Figure 3.23. sAPPα	does	not	affect	 total	PIP	 levels	 in	primary	
cortical	cultures.	Primary	cortical	cultures	were	treated	with	1	nM	
sAPPα	 or	 PBS	 (control)	 for	 72h	 prior	 to	 lipid	 extraction	 and	
analysis	by	UPLC-MS.	Internal	standards	were	used	to	correct	for	
differences	 in	 extraction	 efficiency	 between	 samples.	 Graphs	
show	the	effect	of	sAPPα	treatment	on	levels	of	PI,	PIP	and	PIP2	
respectively,	expressed	as	percentage	of	control.	Bars	show	mean	
±	SEM	levels	of	PIPs	derived	from	11	replicate	wells	containing	
1	x	106	cells	per	treatment	group.	Data	not	significantly	different	
between	treatment	groups	as	determined	by	individual	Student’s	
t-tests	(p	>	0.05).					
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Figure 3.24. APP-E1 increases cell-surface PI(4,5)P2 immunoreactivity, but 
decreases PI(4,5)P2 biosensor binding. Panel A and C: Primary hippocampal 
cultures	were	incubated	with	50	nM	APP-E1	or	PBS	control	for	2	hours	at	37˚C	
prior to labelling with the PI(4,5)P2 antibody	at	4˚C.	Panel	A	shows	representa-
tive image of PI(4,5)P2 immunoreactivity. Panel C shows quantification of 
PI(4,5)P2 immunoreactivity (I.R.) from 60 fields. Panels B and D: Primary 
hippocampal cultures were incubated with 25 nM APP-E1 or PBS control and 
25 nM PI(4,5)P2 biosensor for 2 hours at 37ºC prior to labelling of cell-bound 
biosensor by immunocytochemistry at 4ºC. Panel B shows representative image 
of PI(4,5)P2 biosensor immunoreactivity. Panel D shows quantification of cell 
bound PI(4,5)P2  biosensor immunoreactivity from 60 fields. Bars show mean ± 
SEM I.R. Statistical significance determined using Student’s t-tests. * = Signifi-
cantly different from PBS control p < 0.05. Scale bars = 10 µm.  
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Despite the previous result, it was not possible to reproduce the effect of APP-E1 

on PI(4,5)P2 when a biosensor was used to measure the PIP levels (Fig. 3.24B, D). 

In contrast to the result with the PI(4,5)P2 antibody, the amount of PI(4,5)P2 

biosensor that bound to cells decreased in the presence of APP-E1 (Fig. 3.24D). 

As the PI(4,5)P2 antibody was incubated with cells after APP-E1 treatment, but 

the PI(4,5)P2 biosensor was incubated at an equal concentration as APP-E1 and at 

the same time, it was hypothesised that the PI(4,5)P2 biosensor could compete 

with APP-E1. To investigate this possibility, the binding of APP-E1 to cells was 

assessed in the presence of a 10-fold molar excess of the PI(4,5)P2 biosensor. 

Under these conditions, it was observed that the amount of APP-E1 that bound to 

cells was significantly reduced by the excess of the PI(4,5)P2 biosensor (Fig. 

3.25). Therefore, these results supported the conclusion that the PI(4,5)P2 

biosensor and APP-E1 can compete for PI(4,5)P2 binding to the cell surface. This 

result explained why an increase in cell-surface PI(4,5)P2 after incubation with 

APP-E1 was only observed using the antibody and not the PI(4,5)P2 biosensor. 

Presumably, the PI(4,5)P2 biosensor present in an excess can obstruct the binding 

of APP-E1 to the cell surface. 

3.3.2.2 Effect of APP-E1 on cell-surface PI(3,4,5)P3 

As there was an increase in the levels of PI(4,5)P2 immunoreactivity in the 

presence of APP-E1 (Section 3.3.2.1), the possibility that APP-E1 might affect the 

levels of other PIPs was investigated. Although the experiments described in 

Section 3.2.1 indicated that PI(3)P, PI(4)P, PI(3,4)P2 and PI(3,4,5)P2 were not 

present at detectable levels on the cell surface under resting conditions, it seemed 

possible that APP-E1 might increase levels of PIPs on the cell surface.   
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To examine whether APP binding to the cell surface could alter the levels of other 

cell-surface PIPs, the binding of the PI(3)P biosensor, the PI(4)P biosensor and 

the PI(3,4,5)P3 biosensor was examined in the presence or the absence of APP-E1. 

Neither the PI(4)P biosensor nor the PI(3)P biosensors bound to cells in the 

presence or absence of APP-E1 (Fig. 3.26). However, an increase in the binding 

of the PI(3,4,5)P3 biosensor to neurons was observed in the presence of APP-E1 

(Fig. 3.27). The cell-bound PI(3,4,5)P3 biosensor was highly co-localised with 

APP-E1 on the surface of neurons in puncta <1 µm (Fig. 3.27). This effect was 

not due to non-specific cross-reaction of the anti-6xHis antibody with the anti-

GST antibody as the APP-E1-only control showed staining in the APP-E1 channel 

but no other channels (Fig. 3.27B, E). Neither was the effect due to spectral 

overlap or bleedthrough, because the increase in neuronal PI(3,4,5)P3 biosensor 

immunoreactivity was also observed when APP-E1 was not detected using 

antibodies (Fig. 3.28). However, quantification of pixel intensities was not 

possible, because the PI(3,4,5)P3 biosensor had a propensity to bind to 

extracellular debris (Fig. 3.28A, 3.12E). The high intensity staining of the 

extracellular debris obscured measurement of the increase in PI(3,4,5)P3 biosensor 

observed on neurons in the presence of APP-E1. Despite repeated attempts to 

optimise the experimental conditions to reduce the amount of extracellular debris, 

this issue could not be resolved. 

Instead, the same experimental paradigm was performed using an antibody to 

detect the cell surface PI(3,4,5)P3. The PI(3,4,5)P3 antibody did not label cells in 

the absence of APP-E1 and there was minimal non-specific binding to 

extracellular debris (Fig. 3.28B). When APP-E1 was added, cell surface 

PI(3,4,5)P3 immunoreactivity was observed on neurons (Fig. 3.28B).   
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Quantification of pixel intensities confirmed that the presence of APP-E1 

significantly increased the amount of PI(3,4,5)P3 immunoreactivity (Fig. 3.28C). 

Therefore, these data suggest that the binding of APP-E1 to the cell surface 

induces an increase in the level of cell-surface PI(3,4,5)P3.  

3.3.3 Effect of APP-E1 on Akt phosphorylation 

Many cellular signalling pathways are dependent on PIPs (Di Paolo and De 

Camilli, 2006). One such pathway is the PI3K/Akt pathway, which is activated by 

growth factors such as PDGF, NGF and IGF-1, all of which bind to receptors on 

the cell surface (Franke et al., 1995; Park et al., 1996; Kulik et al., 1997). 

Receptor activation by these growth factors results in activation of PI3K, which 

produces PI(3,4,5)P3 (Franke et al., 1995; Park et al., 1996; Kulik et al., 1997). 

The production of PI(3,4,5)P3 results in the downstream phosphorylation of Akt, 

which can be measured using phospho-specific antibodies (Andjelkovic et al., 

1997). APP N-terminally truncated species similar to the APP-E1 recombinant 

protein used in this study have also been reported to exist in the brain (Vella and 

Cappai, 2012). Therefore, it was hypothesised that APP-E1 might induce an 

increase in cell-surface PI(3,4,5)P3, which might result in a change in Akt 

phosphorylation. 

To examine the effect of APP-E1 on Akt phosphorylation, primary cortical 

neurons were treated with APP-E1, proteins were extracted and the 

phosphorylation state of Akt was investigated by western blotting. Two anti-Akt 

antibodies were used, a phospho-specific antibody that only detects Akt that is 

phosphorylated at the serine 473 position, and a pan Akt antibody that detects 

total Akt. The ratio of the pAkt473/total Akt was used to indicate changes in the 
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phosphorylation state of Akt. The PI3K inhibitor wortmannin was used as a 

negative control (Arcaro and Wymann, 1993), and insulin was used as a positive 

control because insulin receptor activation results in the phosphorylation of Akt 

(Kulik et al., 1997). As the B27 supplement routinely used to culture these cells 

contains insulin, cultures were grown in the absence of B27 supplement for two 

hours prior to treatment.  

There was a significant increase in the pAkt:total Akt ratio for the insulin-treated 

positive control cells, and a significant decrease in the pAkt:total Akt ratio in 

wortmannin treated negative control cells, which demonstrated that the assay was 

suitable for assessing Akt phosphorylation in primary cortical neurons (Fig. 3.29). 

However, there was no effect of APP-E1 on the pAkt:total Akt ratio after two 

hours APP-E1 treatment (Fig. 3.29). Therefore, the results did not support the 

hypothesis that the up-regulation of PI(3,4,5)P3 observed on the cell surface after 

two hours of APP-E1 treatment would coincide with an increase in the 

phosphorylation state of Akt.   
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4.1 Summary of results 

The experiments presented in this thesis provide a number of novel conclusions 

relating to the biological interactions of APP and the role of PIPs in cell 

signalling. APP was found to contain a PIP-binding domain. This domain was 

located in the N-terminal E1 region of APP. The presence of the E1 PIP-binding 

domain was demonstrated by the experiments that showed that sAPPα and APP-

E1 selectively bound to PIPs in the protein-lipid overlay assay (Fig 3.2, 3.1). Both 

sAPPα and APP-E1 did not bind to any major lipid species such as 

phosphatidylinositol, phosphatidylglycerol or phosphatidylethanolamine. 

Furthermore, the binding of APP-E1 to PI(4,5)P2 could be reduced by competition 

with a water soluble analogue of PI(4,5)P2 (Fig. 3.4A). This demonstrated 

specificity of the interaction of the APP E1 domain with PI(4,5)P2. Computational 

modelling using the crystal structure of the E1 domain suggested that there could 

be at least two energetically favourable possible binding sites for IP3 on the APP 

E1 domain (Fig. 3.5). Therefore, these data suggest that the E1 domain of APP is 

a bona-fide PIP-binding domain. 

The data also suggested that the E1 domain of APP is sufficient for targeting 

secreted forms of APP to the cell surface. The APP-E1 recombinant protein bound 

selectively to neurons and not to glia (Fig 3.8). APP-E1 bound to the surface of 

neurons with a punctate distribution, in puncta less than 1 µm in size (Fig 3.8). 

Therefore, the lack of APP-E1 binding to glial cells suggested that the E1 domain 

of APP interacts with a particular binding site that is only found on neurons (Fig. 

3.8).  
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The results also demonstrate that mouse hippocampal cells possess discrete 

domains on the cell surface that are rich in PIP lipids, which were detected using 

specific monoclonal antibodies and biosensor proteins (Section 3.2.1). These PIP 

domains had a punctate distribution over the surface of neurons and glia, and were 

less than 1 µm in size. APP-E1 bound to neurons and was highly co-localised with 

the cell-surface PI(4,5)P2 domains (Fig. 3.14 and 3.13). These data suggested that 

APP interacts with PI(4,5)P2 on the surface of neurons. However, the results also 

suggested that the binding of APP to PI(4,5)P2 was not sufficient for binding to 

cells. This insufficiency was evident as PI(4,5)P2 was also present on glial cells to 

which APP-E1 did not bind (Fig. 3.13). Furthermore, the binding of APP to the 

surface of cells could not be reduced using competition with a water soluble 

PI(4,5)P2 analogue (Fig 3.15). Therefore, the interaction of APP-E1 with cell-

surface PI(4,5)P2 was not sufficient to explain why APP-E1 binds to the cell 

surface.  

Instead, the results suggest that APP may interact not only with PIP on the cell 

surface, but also another cell-surface component, which binds to the heparin-

binding site. Heparin could block the binding of APP-E1 to the cell surface (Fig. 

3.16), but not the binding of APP-E1 to PI(4,5)P2 in the protein-lipid overlay 

assay (Fig. 3.4). This suggested that the heparin-binding domain was sufficient for 

binding to cells and was distinct from the PIP-binding domain. However, 

heparitinase treatment of cells, which significantly reduced cell surface heparan 

sulfate immunoreactivity, did not affect the binding of APP-E1 to cells (Fig. 

3.17). This evidence, along with the high specificity of APP-E1 binding to 

particular cells, suggested that APP-E1 might bind to a specific cell-surface 

receptor that is not heparan sulfate.  
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As the data suggest that the PIP-binding domain in APP-E1 does not determine 

the binding of APP-E1 to cells, it is possible that the PIP-binding site may be 

involved in eliciting another biological function. Many cellular signalling 

pathways are PIP-dependent; therefore, it was hypothesised that changes in the 

levels of PIPs may reflect a biological action of APP. To determine if APP could 

affect levels of PIPs, the effect of sAPPα on levels of total PIPs was examined 

and the effect of APP-E1 on levels of cell-surface PIPs was also examined. No 

effect of sAPPα was found on total cellular levels of PIP. However, the binding of 

APP-E1 to the cell surface increased the levels of cell-surface PI(4,5)P2 (Fig. 

3.24) and cell-surface PI(3,4,5)P3 (Fig. 3.27). The increase in cell-surface PIP was 

highly localised to where APP-E1 bound to neurons (Fig. 3.27). This suggests that 

the effect was due to the binding of APP-E1 to the cell surface. Therefore, APP-

E1 may bind to the neuronal cell surface and alter the levels of PIPs. 

To investigate whether APP-E1 could affect a known PI(3,4,5)P3-dependent 

signalling pathway, the effect of APP-E1 on Akt phosphorylation was examined. 

In these experiments, APP-E1 was not found to effect the phosphorylation of Akt 

(Fig 3.29) after two hours APP-E1 treatment. This data suggested that two hours 

APP-E1 treatment does not activate the PI3K/Akt signalling pathway. Therefore, 

binding of APP to cell surface PIPs may alter other cellular signalling pathways.  

These results support the existence of a PIP-binding domain in the E1 domain of 

APP. The data also suggest the presence of a specific receptor for APP, that is not 

heparan sulfate, which binds to APP via the heparin-binding site. The PIP-binding 

site may facilitate the binding of APP to the cell-surface receptor, or hold a 

functional role by modulating cell-surface PIP levels.   
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4.2 Discussion 

APP has been a subject of intense investigation since it was first cloned in 1987 

(Kang et al., 1987). APP is intimately involved in the pathogenesis of Alzheimer’s 

disease as it is the precursor of Aβ, the protein that is deposited in the AD brain to 

form amyloid plaques (Glenner and Wong, 1984; Masters et al., 1985; Selkoe et 

al., 1986). Despite much research into the biosynthesis, structure and metabolism 

of APP, the normal function of APP is unresolved. Importantly, understanding the 

biological function of APP will give insight into systems that are perturbed in AD, 

and will also be important for assessing possible off-target effects for AD 

treatments that target APP processing. 

Numerous studies suggest that APP is likely to have an important physiological 

function. Many studies suggest that the major secreted form of APP (sAPPα) may 

mediate some of these functions. For example, sAPPα is able to act in a 

neurotrophic and a neuritotrophic manner (Chasseigneaux et al., 2011; Gakhar-

Koppole et al., 2008; Milward et al., 1992; Jin et al., 1994; Ninomiya et al., 1994; 

Wallace et al., 1997; Hoffmann et al., 2000; Pietrzik et al., 1998; Saitoh et al., 

1989; Demars et al., 2011; Freude et al., 2011; Ohsawa et al., 1999). The fact that 

sAPPα can specifically bind to particular types of cells suggests the presence of a 

receptor for APP that could mediate trophic effects (Hoffmann et al., 2000; 

Reinhard et al., 2013). A number of carbohydrates and proteins have been 

reported to interact with APP on the cell surface (Young-Pearse et al., 2008; 

Kounnas et al., 1995; Nikolaev et al., 2009; Gralle et al., 2009; Narindrasorasak et 

al., 1992; Williamson et al., 1996; Ninomiya et al., 1994; Small et al., 1994). 

However, the role of lipids in the binding of APP to cells has not been 
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investigated in detail. Therefore, this study explored the interactions of APP with 

lipids to evaluate if APP-lipid interactions could contribute to APP binding to the 

cell surface. 

The experiments presented in this thesis showed that both APP-E1 and 

sAPPα were highly selective for binding to PIPs and did not bind to other major 

types of lipid. This selectivity is illustrated by the fact that sAPPα and APP-E1 

did not bind to PI, but did bind to PIPs, which only differ by the presence of one 

phosphate group. Interestingly, APP was not found to bind to GM1-ganglioside in 

this study, in contrast to a previous report (Zhang et al., 2009). Although the 

experiments did not find that APP bound to GM1 in the protein-lipid overlay 

assay, the data did suggest that the E1 region of APP was responsible for binding 

to PIPs, which was the same region suggested to be a lipid-binding region by 

Zhang et al. (2009).  

PIPs are quantitatively minor lipids in the cell, but are of great biological interest 

as PIPs are signalling lipids that are involved in many aspects of cellular function 

(Di Paolo and De Camilli, 2006; Section 1.6). For example, PIPs are involved in 

the regulation of endocytosis (Posor et al., 2013), exocytosis (Khuong et al., 

2013), Ca2+signalling (Lapetina and Michell, 1973), ion channel function 

(Gamper and Rohacs, 2012) and cytoskeletal function (Golub and Caroni, 2005). 

PIP signalling represents a sophisticated and evolutionarily conserved system in 

eukaryotes for controlling the interactions of proteins with membranes (discussed 

in Section 1.7). The levels of PIPs can be rapidly and precisely controlled in the 

cell by the action of phosphoinositide kinases and phosphatases (Di Paolo and De 

Camilli, 2006). Furthermore, PIP-binding domains are highly common in biology 
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and are present in many proteins (Lemmon, 2008; Michell, 2008). This means that 

PIPs target proteins to particular cellular locations, through interactions with 

specific lipid-binding domains (Lemmon, 2008). As PIPs are involved in many 

cellular functions, it is highly likely that the PIP-binding domain in APP identified 

in this study is involved in the biological function of APP. 

4.2.1 PIP-binding regions in APP 

The E1 domain of APP has been suggested to be an important functional region of 

APP as it has a growth factor-like structure and contains a heparin-binding region 

(D1) and a metal-binding region (D2; Small et al., 1994; Multhaup et al., 1996). 

Furthermore, previous studies have suggested that this region of APP could bind 

to gangliosides (Zhang et al., 2009). For these reasons, the ability of an APP-E1 

recombinant protein to bind to PIPs was examined in the protein-lipid overlay 

assay. These experiments found that APP-E1 bound to PIPs, suggesting that a 

PIP-binding domain in APP resides within the E1 domain.  

Based on the crystal structures of the APP E1 domain that are available, there are 

some candidate regions that could be involved in PIP binding by APP-E1. 

(Rossjohn et al., 1999; Dahms et al., 2010). The E1 heparin-binding region 

(residues 95 - 110) has a large positively charged surface that could interact with 

PIPs (Small et al., 1994). A positively charged surface of this type is typical of 

many PIP-binding domains, which in general bind to PIPs through electrostatic 

interactions (McLaughlin et al., 2002; McLaughlin and Murray, 2005; Lumb and 

Sansom, 2012; Lemmon, 2008). The computational modelling of APP-E1 IP3 

interactions predicted that APP could interact with PIP at the heparin-binding site 

in an energetically favorable manner, consistent with the suggestion that the 
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positively charged heparin-binding region could bind to PIP. However, in the lipid 

overlay assay, heparin did not block the binding of APP to PIP, which suggested 

that the PIP-binding region of APP-E1 might be distinct from the heparin-binding 

region. The computational modelling of the E1 domain also predicted other 

binding pockets that could contribute to PIP binding by APP, with the largest 

around the amino acids residues his151, lys155, gly90 and pro91. The presence of 

a separate PIP-binding pocket may explain why heparin did not block the binding 

of APP to PIP in the protein-lipid overlay assay.  

Although the computational docking models are theoretical, and are not yet 

supported by in vitro binding data, these models can give some indication of the 

affinity of PIPs for APP. The predicted ΔG values for the APP-E1 protein binding 

to IP3 were comparable to that obtained with the PH domain of spectrin binding to 

IP3. The spectrin PH domain binds to IP3 with a Kd of 40 µM, which suggests that 

the affinity of APP-E1 for IP3 may be in a similar range (Hyvonen et al., 1995). 

Importantly, these theoretical data suggest that the affinity of APP for PIP may be 

in a physiologically relevant range.  

To determine the direct mechanism of the interaction of APP-E1 with PIP, the 

computationally predicted binding model will need to be experimentally verified. 

The binding affinities of APP for IP3 could be determined by a direct method such 

as isothermal titration calorimetry (Lemmon et al., 1995). Precise binding sites for 

PIP on APP-E1 can be determined by a number of approaches. Some studies have 

experimentally identified PIP binding sites by X-Ray crystallography (Hyvonen et 

al., 1995). Alternatively, a mutagenesis study could be used to identify the PIP-

binding site, by producing recombinant APPs with the residues that are predicted 
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to be involved in binding to PIPs mutated (Kale et al., 2010). An advantage of this 

approach would be that once a non-PIP binding mutant APP is produced, the 

effect of removing interactions of APP with PIPs could be characterised in cells. 

For example, the effect of non-PIP binding APP expression on APP trafficking 

could be examined. 

Most PIP-binding domains do not bind to a particular PIP with absolute 

specificity, but will bind to a number of PIPs (Kavran et al., 1998). From the data 

in Fig. 3.1 and Fig. 3.3, it is not clear whether APP binds selectively to different 

PIP regioisomers. In the protein-lipid overlay assay, most sAPPα 

immunoreactivity was associated with PI(3)P, PI(4)P and PI(5)P, whereas APP-

E1 immunoreactivity was associated more uniformly with all PIPs (Fig 3.1 and 

3.3). Importantly, the proteins used in this study were not directly comparable, as 

the recombinant sAPPα had a N-terminal 6xHis affinity tag, whereas the 

recombinant APP-E1 had a C-terminal 6xHis affinity tag. Therefore, although it is 

possible that regions of sAPPα outside the E1 domain could modify the binding 

of the APP E1 domain to PIP, this possibility would have to be investigated using 

recombinant proteins expressed in the same expression system with identical 

affinity tags.  

4.2.2 Extracellular PIP is present on the surface of neurons and glia 

Most studies of the function of PIPs have considered roles for PIPs in the 

cytoplasmic leaflets of membranes. This has lead to the commonly held 

assumption that PIPs are only present intracellularly. The data presented in this 

study shows for the first time evidence for the presence of PIP on the outer 
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surface of cells of the central nervous system. Also, this study demonstrates that a 

number of PIP-binding proteins (the PI(4,5)P2 biosensor, PI(3,4,5)P3 biosensor 

and APP-E1) can bind to PIPs on the surface of hippocampal cells in culture. 

These results suggest that PIPs may target proteins to the cell surface, similar to 

the known roles of PIPs in the cytoplasmic leaflet of the plasma membrane (PM; 

Lemmon, 2008). Importantly, these data raise the possibility that many 

extracellular proteins could bind to PIP as a physiological mechanism of targeting 

to the cell surface. If this is the case, it is possible that many extracellular proteins 

may contain PIP-binding domains. 

The presence of PIPs on the surface of cells is perhaps not surprising, as 

phospholipids are known to “flip” from the outer leaflet to the cytoplasmic leaflet, 

and “flop” from the cytoplasmic leaflet to the outer leaflet (van Meer et al., 2008). 

In the PM, the concentration of particular lipids such as phosphatidylserine and 

phosphatidylethanolamine is enriched in the cytosolic leaflet (van Meer et al., 

2008; van Meer, 2011). The asymmetric distribution of lipids in the PM is 

maintained in an ATP-dependent manner by enzymes known as flippases (Daleke, 

2007). The asymmetrical distribution of lipids is a highly dynamic process and is 

known to be altered in processes such as apoptosis and platelet activation (van 

Meer, 2011; Fadok et al., 1992; Bevers et al., 1982).  

Although the majority of studies investigating the function of PIPs have only 

considered intracellular PIPs, a few studies have previously noted the existence of 

PIPs on the surface of cells. Studies of membrane asymmetry in erythrocytes have 

demonstrated that 20% of PI(4,5)P2 is present in the outer leaflet of the PM, but 

no PIP is present (Gascard et al., 1991). The first study to generate antibodies 
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against PIPs noted that anti-PIP antibodies were immunoreactive with the surface 

of live adherent macrophages (Fogler et al., 1987). Recently, some studies have 

demonstrated that some eukaryotic plant pathogens can use extracellular PI(3)P as 

a binding site to gain entry to plant and mammalian cells (Kale et al., 2010; Lu et 

al., 2013). Collectively these studies and the results in this thesis demonstrate that 

PIPs are present on the surface of cells.  

The data in this study suggested that PI(3,4,5)P3 is present on the surface of cells, 

however this was only detected in the presence of APP-E1. Therefore it is 

possible that the levels of cell surface PIPs can be altered. It is also not clear at 

present if PIPs can flip/flop from one leaflet to another. If PIPs could flip from 

one leaflet of the membrane to the other, it is possible that PIP lipid signalling 

could occur in a trans-membrane fashion. However, this prospect has not been 

investigated.  

Interestingly, the PI(4,5)P2 immunoreactivity and the PI(4,5)P2 biosensor data 

(Section 3.2.1) suggested that cell surface PIPs were present in punctate 

microdomains that were smaller than 1 µm in size. This is consistent with other 

studies that report that PIPs segregate into punctate PIP microdomains that are 

less than 1 µm in size in intracellular membranes (van den Bogaart et al., 2011; 

Wang and Richards, 2012). There has been some controversy surrounding 

whether PIP can form microdomains (McLaughlin et al., 2002; McLaughlin and 

Murray, 2005; van Rheenen et al., 2005). It is also not clear whether PIP 

microdomains are distinct from other type of membrane domains, such as lipid 

rafts (Lingwood and Simons, 2010). However, recent evidence suggests that on 

the cytoplasmic leaflet of cell membranes at least, PI(4,5)P2 is not uniformly 
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distributed and may be organised into discrete lateral domains (Golebiewska et 

al., 2008; Golebiewska et al., 2011). A potential mechanism to explain the 

formation of PIP domains is that anionic PIPs may cluster together with cationic 

proteins (van den Bogaart et al., 2011). Further, the clustering of PIPs with 

proteins has been suggested to be important for spatial regulation of processes 

such as synaptic vesicle release and endocytosis (Aoyagi et al., 2005; Khuong et 

al., 2013; Posor et al., 2013). Therefore, the observation in this study that cell-

surface PI(4,5)P2 was present in discrete puncta provides support to the theory 

that PIP can form microdomains, and these domains can spatially segregate 

proteins.  

The APP-E1 recombinant protein that bound to cells was highly localised to the 

PI(4,5)P2 microdomains (Fig 3.14). Previous studies exploring the ability of 

sAPPα to bind to raft fractions of cells have reported that sAPPα binds to cells 

and localises to detergent-resistant membrane fractions (Tikkanen et al., 2002). 

Although the sAPPα cofractionated with markers of caveolae in the detergent-

resistant membrane fractions, immunocytochemical detection of caveolar markers 

showed that sAPPα localised to a novel, non-caveolar type of domain (Tikkanen 

et al., 2002). The data presented in this thesis suggests a possible explanation for 

the observations by Tikkanen et al., (2002), which is that sAPPα localises to 

PI(4,5)P2 rich domains on the cell surface. 
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4.2.3 Mechanism of APP-E1 binding to the cell surface 

The data in this thesis show that APP-E1 can bind to PIP in vitro, and that APP-

E1 localises to PI(4,5)P2 domains on the surface of cells. However, the results did 

not support the hypothesis that PI(4,5)P2 is the only binding site for APP-E1, as 

PI(4,5)P2 was detected on glial cells which APP-E1 did not bind to. Also, the 

binding of APP to the surface of cells could not be reduced by competition with a 

water soluble PI(4,5)P2 analogue. This suggested that there might be another 

binding site for APP on the surface of cells, which has a higher affinity than the 

PIP-binding site. As the binding of PIPs to a protein is commonly a low-affinity 

interaction (Lemmon, 2008), PIPs rarely act alone in membrane targeting 

interactions, but rather act as co-receptors (Di Paolo and De Camilli, 2006; 

Lemmon, 2008; Carlton and Cullen, 2005). Typically, the combination of a PIP-

binding domain and another interaction domain in a protein results in a stronger 

affinity for a particular binding site (Carlton and Cullen, 2005). The data in this 

study suggest that the PIP-binding site could act in combination with another 

component, such as a glycosaminoglycan and/or a receptor.  

Heparin did not block the binding of APP-E1 to PI(4,5)P2 in vitro, which 

suggested that the PIP-binding site is distinct from the heparin-binding site. 

However, heparin was able to block the binding of APP-E1 to cells, which 

provided evidence that the heparin-binding site is involved in binding of APP-E1 

to the cell surface. Importantly, the data did not support the possibility that a 

heparan sulfate proteoglycan was a cell-surface receptor for APP, as heparitinase 

treatment did not affect the binding of APP to cells. This result is consistent with 

a number of other studies, which report that sAPPα binding to cells is 
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heparitinase-insensitive (Hoffmann et al., 1999), or only partially sensitive to 

heparitinase (Ninomiya et al., 1994), or occurs independently of 

glycosaminoglycan synthesis (Reinhard et al., 2013).  

A model to explain the results in this study is presented in Fig. 4.1. In the model, 

the APP E1 domain binds through the heparin-binding site to a high affinity 

receptor that is expressed on neurons. This receptor is present in cell surface 

PI(4,5)P2 microdomains, and APP-E1 interacts with this cell-surface PI(4,5)P2 

through its PIP-binding domain. The PIP-binding site may therefore facilitate 

binding of APP to the receptor by tethering APP to the membrane, or it may play 

another role (discussed in Section 4.2.6). 

Recently, a study was published which supports the conclusion that the APP E1 

domain may bind to a receptor (Reinhard et al., 2013). Reinhard et al. (2013) 

explored the binding of sAPPα, the APP E1 domain and the APP-E2 domain to 

cells. They reported that the E1 domain of APP binds to a high affinity cell-

surface receptor, but this receptor was not a heparan sulfate proteoglycan. 

Interestingly, the E1 domain of APP was necessary for binding to the cell surface, 

and the E2 domain positively modulated this interaction (Reinhard et al., 2013).  
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Further, they reported two binding sites for the APP E1 domain on cells, a high-

affinity binding site (Kd = 10 - 80 nM) and a lower affinity-binding site (Kd > 5 

µM), which they suggested could be a lipid (Reinhard et al., 2013). Therefore, the 

low-affinity binding interaction of the APP E1 domain with cells reported by 

Reinhard et al. (2013) could be a result of the PIP-binding domain identified in 

this thesis.  

The data in this study demonstrated that the APP E1 domain is able to bind 

selectively to neuronal cells. Therefore, these data support the presence of a 

specific receptor for APP that is expressed on neurons. Importantly, the presence 

of such a receptor suggests that APP is involved in a cell-surface signalling 

interaction. Many growth factors are known to signal through specific receptors 

(Lemmon and Schlessinger, 2010). Notably, the structure of the APP extracellular 

domain has been likened to a growth factor (Rossjohn et al., 1999; Reinhard et al., 

2013). Many studies have also suggested that APP acts in a trophic capacity 

(Saitoh et al., 1989; Chasseigneaux et al., 2011; Pietrzik et al., 1998; Gakhar-

Koppole et al., 2008; Milward et al., 1992; Jin et al., 1994; Ninomiya et al., 1994; 

Wallace et al., 1997; Caille et al., 2004; Demars et al., 2011; Freude et al., 2011; 

Ohsawa et al., 1999). Therefore, it is likely that the interaction of APP E1 domain 

with the receptor could be involved in the regulation of cellular growth. 

However, the receptor for the APP E1 domain that is expressed on neurons 

remains to be identified. Previous studies have suggested a number of potential 

receptors for APP including β1-integrin, lipoprotein receptor related protein-1 

(LRP1), death receptor 6, p75 neurotrophin receptor and APP itself (Young-

Pearse et al., 2008; Kounnas et al., 1995; Nikolaev et al., 2009; Gralle et al., 
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2009). Of these suggested receptors, LRP1 was reported to bind preferentially to 

KPI-containing isoforms of APP, therefore it is unlikely that LRP1 represents the 

cellular receptor for APP-E1 observed in the experiments this thesis (Kounnas et 

al., 1995). The APP-E1 recombinant protein that was used in this thesis was also 

used by the study that reported that DR6 and p75 neurotrophin receptor were 

receptors for APP. Therefore it is possible that DR6 and p75 neurotrophin 

receptor could be candidate receptors for the binding of APP-E1 to cells observed 

in this study (Nikolaev et al., 2009). Further, APP and β-1 integrin are expressed 

on hippocampal neurons, so these too are possible candidate receptors (Shi and 

Ethell, 2006). The method of detecting cell-bound APP-E1 used in this study 

could easily be applied to compare the distribution of candidate receptors to 

investigate whether any of these receptors are responsible for APP-E1 binding to 

hippocampal neurons. Importantly, identifying the cellular receptor for secreted 

forms of APP will help explain how APP functions. Knowledge of this receptor 

will give understanding of the signalling pathways that are activated by APP, and 

also the types of cells in which APP functions.  

4.2.4  Effect of APP on levels of PIPs  

The results presented in Section 3.3.2 show that the binding of APP-E1 to cells 

increased the level of both PI(4,5)P2 and PI(3,4,5)P3 on the cell surface. This 

increase in PI(4,5)P2 and PI(3,4,5)P3 was localised to neurons but not to glia. As 

APP bound to the cell surface of neurons but not glia, this provides strong 

evidence that APP interacts with PIP on the cell surface of neurons. PIPs are key 

signalling lipids and many cellular signalling pathways such as the PI3K/Akt 

pathway and the Ca2+ pathway involve changes in the level of PIPs (Di Paolo and 
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De Camilli, 2006). Therefore, it is possible that the APP-E1-induced increase in 

the level of cell-surface PIP may influence a signal transduction pathway. 

However, it must be borne in mind that to date the role of cell-surface PIPs in cell 

signalling is unknown. 

In some cellular signalling pathways, such as the PI3K/Akt pathway, signalling is 

mediated through an increase in levels of PI(3,4,5)P3 (Andjelkovic et al., 1997). 

Therefore, the possibility that APP-E1 could activate the PI3K/Akt pathway was 

investigated by assessing the effect of APP-E1 on Akt phosphorylation in primary 

cortical cultures. This experiment did not find an effect of APP-E1 on Akt 

phosphorylation after two hours APP-E1 treatment. Although it is possible that 

APP-E1 could induce a very rapid transient activation of the PI3K pathway, 

which is not observed after two hours, the experimental conditions that were used 

were sufficient to observe an increase in Akt phosphorylation in the positive 

control treatment (insulin). Therefore, the results suggest that the observed 

increase in PIP immunoreactivity on the cell surface does not cause activation of 

the PI3K/Akt pathway by APP-E1.  

A more likely explanation for the increase in the level of cell surface PI(3,4,5)P3 

and the increase in the level of cell surface PI(4,5)P2 is that APP-E1 binding to 

cells sequesters PI(3,4,5)P3 and PI(4,5)P2 on the cell surface. There are reports 

that PI(4,5)P2 binding proteins can induce trans-bilayer redistribution of lipids 

across the membrane (Bucki et al., 2000). Further, PIP-binding proteins have been 

suggested to laterally cluster PIPs in lipid bilayers by binding to them (Gambhir et 

al., 2004; McLaughlin and Murray, 2005). So, it is possible that the presence of a 

PIP-binding protein (APP-E1) stabilises clusters of PIP to some extent, which 
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may explain the increased levels of cell-surface PI(4,5)P2 and PI(3,4,5)P3 that 

were observed in this study. 

A redistribution of PIPs at the cell surface could also occur independently of a 

change in the total level of PIPs. This would be consistent with data from the 

UPLC-measurement of total PIP levels in response to sAPPα treatment (Section 

3.3.1). The results of the UPLC-MS indicated that sAPPα did not affect levels of 

total PIPs. However, as the UPLC-MS approach was unable to measure changes 

in PI(3,4,5)P3, this method was not suitable for detecting the increase in cell-

surface PI(3,4,5)P3 observed using the antibody and biosensor. 

In summary, the observation that APP binding to cells affects the levels of cell-

surface PIP provides strong evidence that APP interacts with PIP on the cell 

surface. These data suggest that APP-E1 increases the level of PIPs on the cell 

surface, which could have a biological consequence. Further investigation is 

required to determine whether the observed effects of APP-E1 on cell surface PIP 

have a resultant effect on cellular physiology.  

4.2.5 Other possible roles for the PIP-binding domain in APP 

The biological role of the PIP-binding domain in APP is not yet clear. However, it 

is not known what roles PIPs play on the cell surface. Many studies of PIPs in an 

intracellular context suggest that PIPs are involved in the targeting of proteins to 

membranes (Lemmon, 2008; Balla, 2005). Therefore, it is quite likely that APP 

binding to PIP is involved in its targeting to the correct cellular location. A study 

has reported that some plant pathogens can use cell surface PIP to gain entry to 

cells (Kale et al., 2010). Therefore, it is possible that sAPPα binding to cell 

surface PIP could result in endocytosis of the sAPPα. The experiments in this 

thesis did not investigate whether sAPPα or APP-E1 was internalised after 

binding to the cell surface, however endocytosis of sAPPα has been previously 

reported to occur (Tikkanen, et al., 2002) 
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Importantly, there are also some studies that suggest PIPs may affect the biology 

of APP. Recently, APP trafficking has been demonstrated to be dependent on 

PI(3)P (Morel, et al., 2013). In addition, it has been known for some time that 

sAPPα and Aβ secretion are reduced by PI3K inhibition (Petanceska et al., 1999). 

Therefore, the E1-PIP-binding domain in APP could also play a role in the 

trafficking and processing of APP. APP could also potentially interact with PIP 

inside the cell, where there is a significant pool of APP (Yamazaki et al., 1996; 

Koo et al., 1996).  

4.2.6 Hypothetical suggestions for roles of the lipid-binding domain in APP 

This study identified a novel PIP-binding domain in the E1 region of APP. 

However, determining the biological role of this domain will require further 

investigation. The data in this study demonstrate that APP binding to PIP alone is 

not sufficient to explain the cell-surface binding of APP as there is at least one 

other binding site on the cell surface. However, APP is able to alter cell surface 

PIPs demonstrating that APP and PIP interact on the cell surface. Therefore, the 

results suggest that the APP PIP-binding domain could elicit another biological 

effect. 

Some speculative suggestions for role of the PIP-binding domain in APP function 

are provided in Fig. 4.2. In the first hypothetical model, PIP binding by APP aids 

the interaction of APP with its receptor by tethering APP to the membrane (Fig. 

4.2A). This kind of co-incidence detection is used by many PIP-binding proteins 

to increase the specificity of binding interactions to particular locations (Carlton 

and Cullen, 2005). The PIP-binding domain could therefore be involved in 

targeting sAPPα to regions of cells where the receptor is present. Alternatively, 

PIP binding could promote a conformational change in APP that allows 

interaction with the receptor (Jackson et al., 2010). Activation of this receptor 

might theoretically elicit a trophic effect of APP.  
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In the second hypothetical model, APP binds to its receptor, and sequesters cell- 

surface PIP (Fig. 4.2B). This could result in the recruitment of other PIP-binding 

proteins, resulting in signalling. This type of process could be involved in the 

mechanism of activation of the receptor and therefore elicit a trophic effect by 

APP. Importantly, propagation of PIP signals could occur either laterally, or if PIP 

is able to “flip” from the extracellular leaflet into the intracellular leaflet (van 

Meer, 2011), trans-bilayer signalling could occur. Hypothetically, outer leaflet to 

inner leaflet PIP signalling could have important biological implications, for 

example transmission of a signal to stimulate endocytosis, which is known to 

involve the assembly of a number of PIP-binding proteins on the cytosolic side of 

the membrane (Frere et al., 2012).  

Determining the function of the PIP-binding domain in APP will be challenging, 

as the exact function of APP is unclear at this point. However, investigation into 

the function of the PIP-binding domain may also shed light on aspects of the 

physiological roles of APP. To investigate some of the hypothetical models 

above, a possible experimental approach would be to produce cells or animals 

expressing mutant APP with a non-functional PIP-binding domain. This approach 

has been used to convincingly demonstrate that the APP intracellular domain 

controls the trafficking of APP (Perez et al., 1999). Once non-PIP binding APP 

mutants are produced, the effect of the mutations on a number of aspects of APP 

biology could be investigated. Trafficking, expression, processing and effects on 

cellular proliferation could be used as a starting point for further investigation. 

Additionally, if the PIP-binding domain has an unexpected function, this would be 

apparent in the mutant cells and could be characterised.  
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4.3 Final conclusions 

The experiments presented in this thesis demonstrate the existence of a novel PIP-

binding site in the E1 domain of APP. PIP lipids were found to be present on the 

surface of cells, and secreted forms of APP localise to these domains. This study 

increases our understanding of the way APP interacts with the surface of cells, by 

demonstrating APP interacts with PIPs on the cell surface. Also, this study 

increases our understanding of the normal composition of the surface of cells by 

demonstrating the presence of cell surface PIPs. Importantly, many extracellular 

proteins could potentially interact with cell-surface PIPs, which may have broad 

implications for many aspects of biology.  

These data support the possibility that APP could act in a signalling interaction, 

possibly by modulating levels of PIPs, which are lipids that are known to be 

involved in many cellular signalling pathways. The study also provides evidence 

that sAPPα is likely to function as a paracrine factor, and that the E1 domain is 

important in this process. This was demonstrated by the experiments that showed 

the isolated E1 domain could selectively bind to neurons. The PIP-binding 

domain may contribute to this process, but the data also implicate the presence of 

a specific high-affinity receptor for the APP E1 domain. This receptor is only 

expressed on neurons in primary murine hippocampal cultures, and is not likely to 

be a heparan sulfate glycosaminoglycan. Identifying this receptor will provide a 

significant advance for our understanding of how APP functions, by determining 

the direct actions of APP. Understanding of the normal function of APP will 

provide insight into the biochemical processes that are disrupted in AD, and also 

into the normal function of the brain.  



 175 

References 

Abraham, C. R., Selkoe, D. J., and Potter, H. (1988). Immunochemical 
identification of the serine protease inhibitor alpha 1-antichymotrypsin in the 
brain amyloid deposits of Alzheimer’s disease. Cell 52, 487-501. 

Ahn, K., Shelton, C. C., Tian, Y., Zhang, X., Gilchrist, M. L., Sisodia, S. S., and 
Li, Y. M. (2010). Activation and intrinsic {gamma}-secretase activity of 
presenilin 1. Proc Natl Acad Sci U S A  

Akar, C. A., and Wallace, W. C. (1998). Amyloid precursor protein modulates the 
interaction of nerve growth factor with p75 receptor and potentiates its 
activation of TrkA phosphorylation. Brain Res Mol Brain Res 56, 125-132. 

Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., and Prochiantz, 
A. (1995). Downregulation of amyloid precursor protein inhibits neurite 
outgrowth in vitro. J Cell Biol 128, 919-927. 

Alonso, A. C., Zaidi, T., Grundke-Iqbal, I., and Iqbal, K. (1994). Role of 
abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer 
disease. Proc Natl Acad Sci U S A 91, 5562-5566. 

Alonso, A. D., Grundke-Iqbal, I., Barra, H. S., and Iqbal, K. (1997). Abnormal 
phosphorylation of tau and the mechanism of Alzheimer neurofibrillary 
degeneration: sequestration of microtubule-associated proteins 1 and 2 and the 
disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci U S A 
94, 298-303. 

Alzheimer, A. (1907). Über eine eigenartige Erkrankung der Hirnrinde. 
Allegmeine Zeitschrift für Psychiatrie 64, 146-148. 

Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N., and Murtagh, F. R. (1995). 
An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige 
Erkankung der Hirnrinde”. Clin Anat 8, 429-431. 

Alzheimer's Australia. (2010). Caring places: planning for aged care and dementia 
2010-2050. http://www.fightdementia.org.au/research-publications/access-
economics-reports.aspx 

Anderson, R., Barnes, J. C., Bliss, T. V., Cain, D. P., Cambon, K., Davies, H. A., 
Errington, M. L., Fellows, L. A., Gray, R. A., Hoh, T., Stewart, M., Large, C. 
H., and Higgins, G. A. (1998). Behavioural, physiological and morphological 
analysis of a line of apolipoprotein E knockout mouse. Neuroscience 85, 93-
110. 

Andersson, E. R., Sandberg, R., and Lendahl, U. (2011). Notch signaling: 
simplicity in design, versatility in function. Development 138, 3593-3612. 

Andjelkovic, M., Alessi, D. R., Meier, R., Fernandez, A., Lamb, N. J., Frech, M., 
Cron, P., Cohen, P., Lucocq, J. M., and Hemmings, B. A. (1997). Role of 



 176 

translocation in the activation and function of protein kinase B. J Biol Chem 
272, 31515-31524. 

Ando, K., Iijima, K. I., Elliott, J. I., Kirino, Y., and Suzuki, T. (2001). 
Phosphorylation-dependent regulation of the interaction of amyloid precursor 
protein with Fe65 affects the production of beta-amyloid. J Biol Chem 276, 
40353-40361. 

Annich, G., White, T., Damm, D., Zhao, Y., Mahdi, F., Meinhardt, J., Rebello, S., 
Lucchesi, B., Bartlett, R. H., and Schmaier, A. H. (1999). Recombinant Kunitz 
protease inhibitory domain of the amyloid beta-protein precursor as an 
anticoagulant in venovenous extracorporeal circulation in rabbits. Thromb 
Haemost 82, 1474-1481. 

Aoyagi, K., Sugaya, T., Umeda, M., Yamamoto, S., Terakawa, S., and Takahashi, M. 
(2005). The activation of exocytotic sites by the formation of phosphatidylinositol 
4,5-bisphosphate microdomains at syntaxin clusters. J Biol Chem 280, 17346-
17352. 

Araki, W., Kitaguchi, N., Tokushima, Y., Ishii, K., Aratake, H., Shimohama, S., 
Nakamura, S., and Kimura, J. (1991). Trophic effect of beta-amyloid precursor 
protein on cerebral cortical neurons in culture. Biochem Biophys Res Commun 
181, 265-271. 

Arcaro, A., and Wymann, M. P. (1993). Wortmannin is a potent phosphatidylinositol 
3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in 
neutrophil responses. Biochem J 296, 297-301. 

Arimon, M., Diez-Perez, I., Kogan, M. J., Durany, N., Giralt, E., Sanz, F., and 
Fernandez-Busquets, X. (2005). Fine structure study of Abeta1-42 fibrillogenesis 
with atomic force microscopy. FASEB J 19, 1344-1346. 

Arispe, N., Rojas, E., and Pollard, H. B. (1993). Alzheimer disease amyloid beta 
protein forms calcium channels in bilayer membranes: blockade by tromethamine 
and aluminum. Proc Natl Acad Sci U S A 90, 567-571. 

Armstrong, R. A., Cairns, N. J., Myers, D., Smith, C. U., Lantos, P. L., and Rossor, 
M. N. (1996). A comparison of beta-amyloid deposition in the medial temporal 
lobe in sporadic Alzheimer’s disease, Down’s syndrome and normal elderly 
brains. Neurodegeneration 5, 35-41. 

Asano, T., Mochizuki, Y., Matsumoto, K., Takenawa, T., and Endo, T. (1999). 
Pharbin, a novel inositol polyphosphate 5-phosphatase, induces dendritic 
appearances in fibroblasts. Biochem Biophys Res Commun 261, 188-195. 

Ashley, J., Packard, M., Ataman, B., and Budnik, V. (2005). Fasciclin II signals new 
synapse formation through amyloid precursor protein and the scaffolding protein 
dX11/Mint. J Neurosci 25, 5943-5955. 

Attems, J., Lauda, F., and Jellinger, K. A. (2008). Unexpectedly low prevalence of 
intracerebral hemorrhages in sporadic cerebral amyloid angiopathy: an autopsy 
study. J Neurol 255, 70-76. 



 177 

Attems, J., Quass, M., Jellinger, K. A., and Lintner, F. (2007). Topographical 
distribution of cerebral amyloid angiopathy and its effect on cognitive decline are 
influenced by Alzheimer disease pathology. J Neurol Sci 257, 49-55. 

Atwood, C. S., Martins, R. N., Smith, M. A., and Perry, G. (2002). Senile plaque 
composition and posttranslational modification of amyloid-beta peptide and 
associated proteins. Peptides 23, 1343-1350. 

Australian Institute of Health and Welfare (2012). Dementia In Australia. Cat. no. 
AGE 70. Canberra: AIHW.  

Aydin, D., Filippov, M. A., Tschape, J. A., Gretz, N., Prinz, M., Eils, R., Brors, B., 
and Muller, U. C. (2011). Comparative transcriptome profiling of amyloid 
precursor protein family members in the adult cortex. BMC Genomics 12, 160. 

Aydin, D., Weyer, S. W., and Muller, U. C. (2012). Functions of the APP gene 
family in the nervous system: insights from mouse models. Exp Brain Res 217, 
423-434. 

Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K., and Rosenfeld, M. 
G. (2002). Exchange of N-CoR corepressor and Tip60 coactivator complexes 
links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 
110, 55-67. 

Bai, Y., Markham, K., Chen, F., Weerasekera, R., Watts, J., Horne, P., Wakutani, Y., 
Bagshaw, R., Mathews, P. M., Fraser, P. E., Westaway, D., St George-Hyslop, P., 
and Schmitt-Ulms, G. (2008). The in vivo brain interactome of the amyloid 
precursor protein. Mol Cell Proteomics 7, 15-34. 

Baig, S., Joseph, S. A., Tayler, H., Abraham, R., Owen, M. J., Williams, J., Kehoe, 
P. G., and Love, S. (2010). Distribution and expression of picalm in Alzheimer 
disease. J Neuropathol Exp Neurol 69, 1071-1077. 

Baker, N. A., Sept, D., Joseph, S., Holst, M. J., and McCammon, J. A. (2001). 
Electrostatics of nanosystems: application to microtubules and the ribosome. Proc 
Natl Acad Sci U S A 98, 10037-10041. 

Bakker, E., van Broeckhoven, C., Haan, J., Voorhoeve, E., van Hul, W., Levy, E., 
Lieberburg, I., Carman, M. D., van Ommen, G. J. and Frangione, B. (1991). DNA 
diagnosis for hereditary cerebral hemorrhage with amyloidosis (Dutch type). Am 
J Hum Genet 49, 518-521. 

Bales, K. R., Verina, T., Dodel, R. C., Du, Y., Altstiel, L., Bender, M., Hyslop, P., 
Johnstone, E. M., Little, S. P., Cummins, D. J., Piccardo, P., Ghetti, B., and Paul, 
S. M. (1997). Lack of apolipoprotein E dramatically reduces amyloid beta-peptide 
deposition. Nat Genet 17(3), 263-264. 

Bali, J., Gheinani, A. H., Zurbriggen, S., and Rajendran, L. (2012). Role of genes 
linked to sporadic Alzheimer’s disease risk in the production of beta-amyloid 
peptides. Proc Natl Acad Sci U S A 109, 15307-15311. 



 178 

Balla, T. (2005). Inositol-lipid binding motifs: signal integrators through protein-
lipid and protein-protein interactions. J Cell Sci 118, 2093-2104. 

Balla, T., and Varnai, P. (2002). Visualizing cellular phosphoinositide pools with 
GFP-fused protein-modules. Sci STKE 2002, pl3. 

Balla, T., Wymann, M., and York, J. (2012a) Phosphoinositides I: Enzymes of 
Synthesis and Degradation. (Heidelberg: Springer) 

Balla, T., Wymann, M., and York, J. (2012b) Phosphoinositides II: The Diverse 
Biological Functions (Heidelberg: Springer) 

Baratchi, S., Evans, J., Tate, W. P., Abraham, W. C., and Connor, B. (2012). 
Secreted amyloid precursor proteins promote proliferation and glial differentiation 
of adult hippocampal neural progenitor cells. Hippocampus 22, 1517-1527. 

Barbagallo, A. P., Wang, Z., Zheng, H., and D’Adamio, L. (2011). A single tyrosine 
residue in the amyloid precursor protein intracellular domain is essential for 
developmental function. J Biol Chem 286, 8717-8721. 

Barghorn, S., Nimmrich, V., Striebinger, A., Krantz, C., Keller, P., Janson, B., Bahr, 
M., Schmidt, M., Bitner, R. S., Harlan, J., Barlow, E., Ebert, U., and Hillen, H. 
(2005). Globular amyloid beta-peptide oligomer - a homogenous and stable 
neuropathological protein in Alzheimer’s disease. J Neurochem 95, 834-847. 

Beher, D., Hesse, L., Masters, C. L., and Multhaup, G. (1996). Regulation of 
amyloid protein precursor (APP) binding to collagen and mapping of the binding 
sites on APP and collagen type I. J Biol Chem 271, 1613-1620. 

Beisiegel, U., Weber, W., Ihrke, G., Herz, J., and Stanley, K. K. (1989). The LDL-
receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 341, 
162-164. 

Benedictus, M. R., Goos, J. D., Binnewijzend, M. A., Muller, M., Barkhof, F., 
Scheltens, P., Prins, N. D., and van der Flier, W. M. (2013). Specific risk factors 
for microbleeds and white matter hyperintensities in Alzheimer’s disease. 
Neurobiol Aging  

Benilova, I., Karran, E., and De Strooper, B. (2012). The toxic Abeta oligomer and 
Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15, 349-357. 

Bergmans, B. A., Shariati, S. A., Habets, R. L., Verstreken, P., Schoonjans, L., 
Muller, U., Dotti, C. G., and De Strooper, B. (2010). Neurons generated from 
APP/APLP1/APLP2 triple knockout embryonic stem cells behave normally in 
vitro and in vivo: lack of evidence for a cell autonomous role of the amyloid 
precursor protein in neuronal differentiation. Stem Cells 28, 399-406. 

Berman, D. E., Dall’Armi, C., Voronov, S. V., McIntire, L. B., Zhang, H., Moore, A. 
Z., Staniszewski, A., Arancio, O., Kim, T. W., and Di Paolo, G. (2008). 
Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate 
metabolism. Nat Neurosci 11, 547-554. 



 179 

Berridge, M. J., Lipp, P., and Bootman, M. D. (2000). The versatility and 
universality of calcium signalling. Nat Rev Mol Cell Biol 1, 11-21. 

Bertram, L., McQueen, M. B., Mullin, K., Blacker, D., and Tanzi, R. E. (2007). 
Systematic meta-analyses of Alzheimer disease genetic association studies: the 
AlzGene database. Nat Genet 39, 17-23. 

Bevers, E. M., Comfurius, P., van Rijn, J. L., Hemker, H. C., and Zwaal, R. F. 
(1982). Generation of prothrombin-converting activity and the exposure of 
phosphatidylserine at the outer surface of platelets. Eur J Biochem 122, 429-436. 

Bhattacharyya, R., Barren, C., and Kovacs, D. M. (2013). Palmitoylation of amyloid 
precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 33, 
11169-11183. 

Bierer, L. M., Hof, P. R., Purohit, D. P., Carlin, L., Schmeidler, J., Davis, K. L., and 
Perl, D. P. (1995). Neocortical neurofibrillary tangles correlate with dementia 
severity in Alzheimer’s disease. Arch Neurol 52, 81-88. 

Biernat, J., Mandelkow, E. M., Schroter, C., Lichtenberg-Kraag, B., Steiner, B., 
Berling, B., Meyer, H., Mercken, M., Vandermeeren, A. and Goedert, M. (1992). 
The switch of tau protein to an Alzheimer-like state includes the phosphorylation 
of two serine-proline motifs upstream of the microtubule binding region. EMBO J 
11, 1593-1597. 

Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. 
F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, 
N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, 
R. J., March, C. J., and Cerretti, D. P. (1997). A metalloproteinase disintegrin that 
releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733. 

Blair, P., and Flaumenhaft, R. (2009). Platelet alpha-granules: basic biology and 
clinical correlates. Blood Rev 23, 177-189. 

Blessed, G., Tomlinson, B. E., and Roth, M. (1968). The association between 
quantitative measures of dementia and of senile change in the cerebral grey matter 
of elderly subjects. Br J Psychiatry 114, 797-811. 

Blobel, C. P. (2005). ADAMs: key components in EGFR signalling and 
development. Nat Rev Mol Cell Biol 6, 32-43. 

Bock, H. H., Jossin, Y., May, P., Bergner, O., and Herz, J. (2004). Apolipoprotein E 
receptors are required for reelin-induced proteasomal degradation of the neuronal 
adaptor protein Disabled-1. J Biol Chem 279, 33471-33479. 

Bonifacino, J. S., and Traub, L. M. (2003). Signals for sorting of transmembrane 
proteins to endosomes and lysosomes. Annu Rev Biochem 72, 395-447. 

Borchelt, D. R., Ratovitski, T., van Lare, J., Lee, M. K., Gonzales, V., Jenkins, N. A., 
Copeland, N. G., Price, D. L., and Sisodia, S. S. (1997). Accelerated amyloid 
deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and 
amyloid precursor proteins. Neuron 19, 939-945. 



 180 

Borg, J. P., Ooi, J., Levy, E., and Margolis, B. (1996). The phosphotyrosine 
interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif 
of amyloid precursor protein. Mol Cell Biol 16, 6229-6241. 

Borg, J. P., Yang, Y., De Taddeo-Borg, M., Margolis, B., and Turner, R. S. (1998). 
The X11alpha protein slows cellular amyloid precursor protein processing and 
reduces Abeta40 and Abeta42 secretion. J Biol Chem 273, 14761-14766. 

Borghini, I., Barja, F., Pometta, D., and James, R. W. (1995). Characterization of 
subpopulations of lipoprotein particles isolated from human cerebrospinal fluid. 
Biochim Biophys Acta 1255, 192-200. 

Boronenkov, I. V., and Anderson, R. A. (1995). The sequence of 
phosphatidylinositol-4-phosphate 5-kinase defines a novel family of lipid kinases. 
J Biol Chem 270, 2881-2884. 

Bothmer, J., Markerink, M., and Jolles, J. (1994a). Phosphoinositide kinase activities 
in synaptosomes prepared from brains of patients with Alzheimer’s disease and 
controls. Neurosci Lett 176, 169-172. 

Bothmer, J., Markerink, M., and Jolles, J. (1994b). Evidence for a selective decrease 
in type 1 phosphatidylinositol kinase activity in brains of patients with 
Alzheimer’s disease. Dementia 5, 6-11. 

Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W., and Taylor, J. M. (1985). 
Apolipoprotein E associated with astrocytic glia of the central nervous system and 
with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76, 1501-
1513. 

Bozkulak, E. C., and Weinmaster, G. (2009). Selective use of ADAM10 and 
ADAM17 in activation of Notch1 signaling. Mol Cell Biol 29, 5679-5695. 

Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-related 
changes. Acta Neuropathol 82, 239-259. 

Braak, H., and Braak, E. (1995). Staging of Alzheimer’s disease-related 
neurofibrillary changes. Neurobiol Aging 16, 271-8; discussion 278. 

Braak, H., Thal, D. R., Ghebremedhin, E., and Del Tredici, K. (2011). Stages of the 
pathologic process in Alzheimer disease: age categories from 1 to 100 years. J 
Neuropathol Exp Neurol 70, 960-969. 

Brooks, B. R., Brooks, C. L., Mackerell, A. D. J., Nilsson, L., Petrella, R. J., Roux, 
B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, 
Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, 
K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R. W., Post, C. B., Pu, 
J. Z., Schaefer, M., Tidor, B., Venable, R. M., Woodcock, H. L., Wu, X., Yang, 
W., York, D. M., and Karplus, M. (2009). CHARMM: the biomolecular 
simulation program. J Comput Chem 30, 1545-1614. 

Brunnstrom, H. R., and Englund, E. M. (2009). Cause of death in patients with 
dementia disorders. Eur J Neurol 16, 488-492. 



 181 

Bruscoli, M., and Lovestone, S. (2004). Is MCI really just early dementia? A 
systematic review of conversion studies. Int Psychogeriatr 16, 129-140. 

Bucki, R., Giraud, F., and Sulpice, J. C. (2000). Phosphatidylinositol 4,5-
bisphosphate domain inducers promote phospholipid transverse redistribution in 
biological membranes. Biochemistry 39, 5838-5844. 

Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., 
Yates, J., Cotman, C., and Glabe, C. (1992). Assembly and aggregation properties 
of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267, 546-
554. 

Burns, A., Jacoby, R., Luthert, P., and Levy, R. (1990). Cause of death in 
Alzheimer’s disease. Age Ageing 19, 341-344. 

Bush, A. I., Martins, R. N., Rumble, B., Moir, R., Fuller, S., Milward, E., Currie, J., 
Ames, D., Weidemann, A. and Fischer, P. (1990). The amyloid precursor protein 
of Alzheimer’s disease is released by human platelets. J Biol Chem 265, 15977-
15983. 

Buxbaum, J. D., Liu, K. N., Luo, Y., Slack, J. L., Stocking, K. L., Peschon, J. J., 
Johnson, R. S., Castner, B. J., Cerretti, D. P., and Black, R. A. (1998). Evidence 
that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-
secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 273, 
27765-27767. 

Cabezas, A., Pattni, K., and Stenmark, H. (2006). Cloning and subcellular 
localization of a human phosphatidylinositol 3-phosphate 5-kinase, PIKfyve/Fab1. 
Gene 371, 34-41. 

Cacquevel, M., Aeschbach, L., Houacine, J., and Fraering, P. C. (2012). Alzheimer’s 
disease-linked mutations in presenilin-1 result in a drastic loss of activity in 
purified gamma-secretase complexes. PLoS One 7, e35133. 

Cai, J., Qi, X., Kociok, N., Skosyrski, S., Emilio, A., Ruan, Q., Han, S., Liu, L., 
Chen, Z., Bowes Rickman, C., Golde, T., Grant, M. B., Saftig, P., Serneels, L., de 
Strooper, B., Joussen, A. M., and Boulton, M. E. (2012). beta-Secretase (BACE1) 
inhibition causes retinal pathology by vascular dysregulation and accumulation of 
age pigment. EMBO Mol Med 4, 980-991. 

Caille, I., Allinquant, B., Dupont, E., Bouillot, C., Langer, A., Muller, U., and 
Prochiantz, A. (2004). Soluble form of amyloid precursor protein regulates 
proliferation of progenitors in the adult subventricular zone. Development 131, 
2173-2181. 

Cao, E., Cordero-Morales, J. F., Liu, B., Qin, F., and Julius, D. (2013). TRPV1 
Channels Are Intrinsically Heat Sensitive and Negatively Regulated by 
Phosphoinositide Lipids. Neuron 77, 667-679. 

Cao, X., and Sudhof, T. C. (2001). A transcriptionally [correction of transcriptively] 
active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 
293, 115-120. 



 182 

Cappai, R., and Barnham, K. J. (2008). Delineating the mechanism of Alzheimer’s 
disease A beta peptide neurotoxicity. Neurochem Res 33, 526-532. 

Carlton, J. G., and Cullen, P. J. (2005). Coincidence detection in phosphoinositide 
signaling. Trends Cell Biol 15, 540-547. 

Castano, E. M., Prelli, F., Wisniewski, T., Golabek, A., Kumar, R. A., Soto, C., and 
Frangione, B. (1995). Fibrillogenesis in Alzheimer’s disease of amyloid beta 
peptides and apolipoprotein E. Biochem J 306, 599-604. 

Cerf, E., Gustot, A., Goormaghtigh, E., Ruysschaert, J. M., and Raussens, V. (2011). 
High ability of apolipoprotein E4 to stabilize amyloid-beta peptide oligomers, the 
pathological entities responsible for Alzheimer’s disease. FASEB J 25, 1585-
1595. 

Chasseigneaux, S., Dinc, L., Rose, C., Chabret, C., Coulpier, F., Topilko, P., 
Mauger, G., and Allinquant, B. (2011). Secreted amyloid precursor protein beta 
and secreted amyloid precursor protein alpha induce axon outgrowth in vitro 
through Egr1 signaling pathway. PLoS One 6, e16301. 

Checler, F., Sunyach, C., Pardossi-Piquard, R., Sevalle, J., Vincent, B., Kawarai, T., 
Girardot, N., St George-Hyslop, P., and da Costa, C. A. (2007). The 
gamma/epsilon-secretase-derived APP intracellular domain fragments regulate 
p53. Curr Alzheimer Res 4, 423-426. 

Chen, A. C., and Selkoe, D. J. (2007). Response to: Pardossi-Piquard et al., 
“Presenilin-dependent transcriptional control of the abeta-degrading enzyme 
neprilysin by intracellular domains of betaAPP and APLP.” Neuron 46, 541-554. 
Neuron 53, 479-483. 

Cheret, C., Willem, M., Fricker, F. R., Wende, H., Wulf-Goldenberg, A., Tahirovic, 
S., Nave, K. A., Saftig, P., Haass, C., Garratt, A. N., Bennett, D. L., and 
Birchmeier, C. (2013). Bace1 and Neuregulin-1 cooperate to control formation 
and maintenance of muscle spindles. EMBO J  

Chigurupati, S., Madan, M., Okun, E., Wei, Z., Pattisapu, J. V., Mughal, M. R., 
Mattson, M. P., and Chan, S. L. (2011). Evidence for altered Numb isoform levels 
in Alzheimer’s disease patients and a triple transgenic mouse model. J Alzheimers 
Dis 24, 349-361. 

Citron, M. (2010). Alzheimer’s disease: strategies for disease modification. Nat Rev 
Drug Discov 9, 387-398. 

Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., 
Vigo-Pelfrey, C., Lieberburg, I., and Selkoe, D. J. (1992). Mutation of the beta-
amyloid precursor protein in familial Alzheimer’s disease increases beta-protein 
production. Nature 360, 672-674. 

Clarris, H. J., Cappai, R., Heffernan, D., Beyreuther, K., Masters, C. L., and Small, 
D. H. (1997). Identification of heparin-binding domains in the amyloid precursor 
protein of Alzheimer’s disease by deletion mutagenesis and peptide mapping. J 
Neurochem 68, 1164-1172. 



 183 

Clarris, H. J., Key, B., Beyreuther, K., Masters, C. L., and Small, D. H. (1995). 
Expression of the amyloid protein precursor of Alzheimer’s disease in the 
developing rat olfactory system. Brain Res Dev Brain Res 88, 87-95. 

Clarris, H. J., Nurcombe, V., Small, D. H., Beyreuther, K., and Masters, C. L. 
(1994). Secretion of nerve growth factor from septum stimulates neurite 
outgrowth and release of the amyloid protein precursor of Alzheimer’s disease 
from hippocampal explants. J Neurosci Res 38, 248-258. 

Colombo, A., Bastone, A., Ploia, C., Sclip, A., Salmona, M., Forloni, G., and 
Borsello, T. (2009). JNK regulates APP cleavage and degradation in a model of 
Alzheimer’s disease. Neurobiol Dis 33, 518-525. 

Copanaki, E., Chang, S., Vlachos, A., Tschape, J. A., Muller, U. C., Kogel, D., and 
Deller, T. (2010). sAPPalpha antagonizes dendritic degeneration and neuron death 
triggered by proteasomal stress. Mol Cell Neurosci 44, 386-393. 

Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., 
Gaskell, P. C. J., Rimmler, J. B., Locke, P. A., Conneally, P. M. and Schmader, K. 
E. (1994). Protective effect of apolipoprotein E type 2 allele for late onset 
Alzheimer disease. Nat Genet 7, 180-184. 

Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., 
Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A. (1993). Gene 
dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late 
onset families. Science 261, 921-923. 

Cosgaya, J. M., Latasa, M. J., and Pascual, A. (1996). Nerve growth factor and ras 
regulate beta-amyloid precursor protein gene expression in PC12 cells. J 
Neurochem 67, 98-104. 

Cremona, O., Di Paolo, G., Wenk, M. R., Luthi, A., Kim, W. T., Takei, K., Daniell, 
L., Nemoto, Y., Shears, S. B., Flavell, R. A., McCormick, D. A., and De Camilli, 
P. (1999). Essential role of phosphoinositide metabolism in synaptic vesicle 
recycling. Cell 99, 179-188. 

Cruts, M., Theuns, J., and Van Broeckhoven, C. (2012). Locus-specific mutation 
databases for neurodegenerative brain diseases. Hum Mutat 33, 1340-1344. 

Cullen, P. J., Cozier, G. E., Banting, G., and Mellor, H. (2001). Modular 
phosphoinositide-binding domains--their role in signalling and membrane 
trafficking. Curr Biol 11, R882-R893. 

Cupers, P., Orlans, I., Craessaerts, K., Annaert, W., and De Strooper, B. (2001). The 
amyloid precursor protein (APP)-cytoplasmic fragment generated by gamma-
secretase is rapidly degraded but distributes partially in a nuclear fraction of 
neurones in culture. J Neurochem 78, 1168-1178. 

Dahlgren, K. N., Manelli, A. M., Stine, W. B. J., Baker, L. K., Krafft, G. A., and 
LaDu, M. J. (2002). Oligomeric and fibrillar species of amyloid-beta peptides 
differentially affect neuronal viability. J Biol Chem 277, 32046-32053. 



 184 

Dahms, S. O., Hoefgen, S., Roeser, D., Schlott, B., Guhrs, K. H., and Than, M. E. 
(2010). Structure and biochemical analysis of the heparin-induced E1 dimer of the 
amyloid precursor protein. Proc Natl Acad Sci U S A 107, 5381-5386. 

Daigle, I., and Li, C. (1993). apl-1, a Caenorhabditis elegans gene encoding a protein 
related to the human beta-amyloid protein precursor. Proc Natl Acad Sci U S A 
90, 12045-12049. 

Daleke, D. L. (2007). Phospholipid flippases. J Biol Chem 282, 821-825. 

Damen, J. E., Liu, L., Rosten, P., Humphries, R. K., Jefferson, A. B., Majerus, P. W., 
and Krystal, G. (1996). The 145-kDa protein induced to associate with Shc by 
multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-
triphosphate 5-phosphatase. Proc Natl Acad Sci U S A 93, 1689-1693. 

Dawson, G. R., Seabrook, G. R., Zheng, H., Smith, D. W., Graham, S., O’Dowd, G., 
Bowery, B. J., Boyce, S., Trumbauer, M. E., Chen, H. Y., Van der Ploeg, L. H., 
and Sirinathsinghji, D. J. (1999). Age-related cognitive deficits, impaired long-
term potentiation and reduction in synaptic marker density in mice lacking the 
beta-amyloid precursor protein. Neuroscience 90, 1-13. 

De Silva, H. V., Stuart, W. D., Duvic, C. R., Wetterau, J. R., Ray, M. J., Ferguson, 
D. G., Albers, H. W., Smith, W. R., and Harmony, J. A. (1990). A 70-kDa 
apolipoprotein designated ApoJ is a marker for subclasses of human plasma high 
density lipoproteins. J Biol Chem 265, 13240-13247. 

De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., 
Schroeter, E. H., Schrijvers, V., Wolfe, M. S., Ray, W. J., Goate, A., and Kopan, 
R. (1999). A presenilin-1-dependent gamma-secretase-like protease mediates 
release of Notch intracellular domain. Nature 398, 518-522. 

De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, 
W., Von Figura, K., and Van Leuven, F. (1998). Deficiency of presenilin-1 
inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387-390. 

Deane, R., Sagare, A., Hamm, K., Parisi, M., Lane, S., Finn, M. B., Holtzman, D. 
M., and Zlokovic, B. V. (2008). apoE isoform-specific disruption of amyloid beta 
peptide clearance from mouse brain. J Clin Invest 118, 4002-4013. 

Delacourte, A., and Defossez, A. (1986). Alzheimer’s disease: Tau proteins, the 
promoting factors of microtubule assembly, are major components of paired 
helical filaments. J Neurol Sci 76, 173-186. 

Demars, M. P., Hollands, C., Zhao, K. D. T., and Lazarov, O. (2013). Soluble 
amyloid precursor protein-α rescues age-linked decline in neural progenitor cell 
proliferation. Neurobiology of aging  

Demars, M. P., Bartholomew, A., Strakova, Z., and Lazarov, O. (2011). Soluble 
amyloid precursor protein: a novel proliferation factor of adult progenitor cells of 
ectodermal and mesodermal origin. Stem Cell Res Ther 2, 36. 



 185 

DeMattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’Dell, M. A., Taylor, J. 
W., Harmony, J. A., Aronow, B. J., Bales, K. R., Paul, S. M., and Holtzman, D. 
M. (2004). ApoE and clusterin cooperatively suppress Abeta levels and 
deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. 
Neuron 41, 193-202. 

DeWitt, D. A., Richey, P. L., Praprotnik, D., Silver, J., and Perry, G. (1994). 
Chondroitin sulfate proteoglycans are a common component of neuronal 
inclusions and astrocytic reaction in neurodegenerative diseases. Brain Res 656, 
205-209. 

Di Paolo, G., and De Camilli, P. (2006). Phosphoinositides in cell regulation and 
membrane dynamics. Nature 443, 651-657. 

Di Paolo, G., Moskowitz, H. S., Gipson, K., Wenk, M. R., Voronov, S., Obayashi, 
M., Flavell, R., Fitzsimonds, R. M., Ryan, T. A., and De Camilli, P. (2004). 
Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic 
vesicle trafficking. Nature 431, 415-422. 

Doherty, G. J., and McMahon, H. T. (2009). Mechanisms of endocytosis. Annu Rev 
Biochem 78, 857-902. 

Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., and 
Baker, N. A. (2007). PDB2PQR: expanding and upgrading automated preparation 
of biomolecular structures for molecular simulations. Nucleic Acids Res 35, 
W522-W525. 

Dominguez, D., Tournoy, J., Hartmann, D., Huth, T., Cryns, K., Deforce, S., 
Serneels, L., Camacho, I. E., Marjaux, E., Craessaerts, K., Roebroek, A. J., 
Schwake, M., D’Hooge, R., Bach, P., Kalinke, U., Moechars, D., Alzheimer, C., 
Reiss, K., Saftig, P., and De Strooper, B. (2005). Phenotypic and biochemical 
analyses of BACE1- and BACE2-deficient mice. J Biol Chem 280, 30797-30806. 

Dong, H., Goico, B., Martin, M., Csernansky, C. A., Bertchume, A., and Csernansky, 
J. G. (2004). Modulation of hippocampal cell proliferation, memory, and amyloid 
plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. 
Neuroscience 127, 601-609. 

Donovan, M. H., Yazdani, U., Norris, R. D., Games, D., German, D. C., and Eisch, 
A. J. (2006). Decreased adult hippocampal neurogenesis in the PDAPP mouse 
model of Alzheimer’s disease. J Comp Neurol 495, 70-83. 

Dowler, S., Kular, G., and Alessi, D. R. (2002). Protein lipid overlay assay. Sci 
STKE 2002, pl6. 

Dries, D. R., and Yu, G. (2008). Assembly, maturation, and trafficking of the 
gamma-secretase complex in Alzheimer’s disease. Curr Alzheimer Res 5, 132-
146. 

Du, X., Zhang, H., Lopes, C., Mirshahi, T., Rohacs, T., and Logothetis, D. E. (2004). 
Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine 
regulation of kir channels by diverse modulators. J Biol Chem 279, 37271-37281. 



 186 

Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C. M., Perez-tur, J., Hutton, M., Buee, 
L., Harigaya, Y., Yager, D., Morgan, D., Gordon, M. N., Holcomb, L., Refolo, L., 
Zenk, B., Hardy, J., and Younkin, S. (1996). Increased amyloid-beta42(43) in 
brains of mice expressing mutant presenilin 1. Nature 383, 710-713. 

Dyson, J. M., Fedele, C. G., Davies, E. M., Becanovic, J., and Mitchell, C. A. (2012). 
Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 
58, 215-279. 

Eberhard, D. A., Cooper, C. L., Low, M. G., and Holz, R. W. (1990). Evidence that 
the inositol phospholipids are necessary for exocytosis. Loss of inositol 
phospholipids and inhibition of secretion in permeabilized cells caused by a 
bacterial phospholipase C and removal of ATP. Biochem J 268, 15-25. 

Ebinu, J. O., and Yankner, B. A. (2002). A RIP tide in neuronal signal transduction. 
Neuron 34, 499-502. 

Edbauer, D., Winkler, E., Regula, J. T., Pesold, B., Steiner, H., and Haass, C. (2003). 
Reconstitution of gamma-secretase activity. Nat Cell Biol 5, 486-488. 

Eisenberg, D., and Jucker, M. (2012). The amyloid state of proteins in human 
diseases. Cell 148, 1188-1203. 

Ellis, R. J., Olichney, J. M., Thal, L. J., Mirra, S. S., Morris, J. C., Beekly, D., and 
Heyman, A. (1996). Cerebral amyloid angiopathy in the brains of patients with 
Alzheimer’s disease: the CERAD experience, Part XV. Neurology 46, 1592-1596. 

Endemann, G., Dunn, S. N., and Cantley, L. C. (1987). Bovine brain contains two 
types of phosphatidylinositol kinase. Biochemistry 26, 6845-6852. 

Evans, K. C., Berger, E. P., Cho, C. G., Weisgraber, K. H., and Lansbury, P. T. J. 
(1995). Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of 
amyloid formation: implications for the pathogenesis and treatment of Alzheimer 
disease. Proc Natl Acad Sci U S A 92, 763-767. 

Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., and 
Henson, P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic 
lymphocytes triggers specific recognition and removal by macrophages. J 
Immunol 148, 2207-2216. 

Fernandez-Madrid, I., Levy, E., Marder, K., and Frangione, B. (1991). Codon 618 
variant of Alzheimer amyloid gene associated with inherited cerebral hemorrhage. 
Ann Neurol 30, 730-733. 

Ferris, C. D., Huganir, R. L., Supattapone, S., and Snyder, S. H. (1989). Purified 
inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid 
vesicles. Nature 342, 87-89. 

Feyt, C., Pierrot, N., Tasiaux, B., Van Hees, J., Kienlen-Campard, P., Courtoy, P. J., 
and Octave, J. N. (2007). Phosphorylation of APP695 at Thr668 decreases 
gamma-cleavage and extracellular Abeta. Biochem Biophys Res Commun 357, 
1004-1010. 



 187 

Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Duilio, A., and Russo, T. (1995). 
The regions of the Fe65 protein homologous to the phosphotyrosine 
interaction/phosphotyrosine binding domain of Shc bind the intracellular domain 
of the Alzheimer’s amyloid precursor protein. J Biol Chem 270, 30853-30856. 

Fleck, D., van Bebber, F., Colombo, A., Galante, C., Schwenk, B. M., Rabe, L., 
Hampel, H., Novak, B., Kremmer, E., Tahirovic, S., Edbauer, D., Lichtenthaler, 
S. F., Schmid, B., Willem, M., and Haass, C. (2013). Dual Cleavage of 
Neuregulin 1 Type III by BACE1 and ADAM17 Liberates Its EGF-Like Domain 
and Allows Paracrine Signaling. J Neurosci 33, 7856-7869. 

Fogler, W. E., Swartz, G. M. J., and Alving, C. R. (1987). Antibodies to 
phospholipids and liposomes: binding of antibodies to cells. Biochim Biophys 
Acta 903, 265-272. 

Ford, M. G., Pearse, B. M., Higgins, M. K., Vallis, Y., Owen, D. J., Gibson, A., 
Hopkins, C. R., Evans, P. R., and McMahon, H. T. (2001). Simultaneous binding 
of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on 
membranes. Science 291, 1051-1055. 

Forstl, H., and Kurz, A. (1999). Clinical features of Alzheimer’s disease. Eur Arch 
Psychiatry Clin Neurosci 249, 288-290. 

Francis, R., McGrath, G., Zhang, J., Ruddy, D. A., Sym, M., Apfeld, J., Nicoll, M., 
Maxwell, M., Hai, B., Ellis, M. C., Parks, A. L., Xu, W., Li, J., Gurney, M., 
Myers, R. L., Himes, C. S., Hiebsch, R., Ruble, C., Nye, J. S., and Curtis, D. 
(2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-
secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell 3, 
85-97. 

Franke, T. F., Yang, S. I., Chan, T. O., Datta, K., Kazlauskas, A., Morrison, D. K., 
Kaplan, D. R., and Tsichlis, P. N. (1995). The protein kinase encoded by the Akt 
proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. 
Cell 81, 727-736. 

Frere, S. G., Chang-Ileto, B., and Di Paolo, G. (2012). Role of phosphoinositides at 
the neuronal synapse. Subcell Biochem 59, 131-175. 

Freude, K. K., Penjwini, M., Davis, J. L., LaFerla, F. M., and Blurton-Jones, M. 
(2011). Soluble amyloid precursor protein induces rapid neural differentiation of 
human embryonic stem cells. J Biol Chem 286, 24264-24274. 

Fujita, A., Cheng, J., Tauchi-Sato, K., Takenawa, T., and Fujimoto, T. (2009). A 
distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a 
nanoscale labeling technique. Proc Natl Acad Sci U S A 106, 9256-9261. 

Fukuchi, K., Deeb, S. S., Kamino, K., Ogburn, C. E., Snow, A. D., Sekiguchi, R. T., 
Wight, T. N., Piussan, H., and Martin, G. M. (1992). Increased expression of beta-
amyloid protein precursor and microtubule-associated protein tau during the 
differentiation of murine embryonal carcinoma cells. J Neurochem 58, 1863-
1873. 



 188 

Gage, F. H. (2000). Mammalian neural stem cells. Science 287, 1433-1438. 

Gakhar-Koppole, N., Hundeshagen, P., Mandl, C., Weyer, S. W., Allinquant, B., 
Muller, U., and Ciccolini, F. (2008). Activity requires soluble amyloid precursor 
protein alpha to promote neurite outgrowth in neural stem cell-derived neurons 
via activation of the MAPK pathway. Eur J Neurosci 28, 871-882. 

Gambhir, A., Hangyas-Mihalyne, G., Zaitseva, I., Cafiso, D. S., Wang, J., Murray, 
D., Pentyala, S. N., Smith, S. O., and McLaughlin, S. (2004). Electrostatic 
sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of 
proteins. Biophys J 86, 2188-2207. 

Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., 
Carr, T., Clemens, J., Donaldson, T. and Gillespie, F. (1995). Alzheimer-type 
neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor 
protein. Nature 373, 523-527. 

Gamper, N., and Rohacs, T. (2012). Phosphoinositide sensitivity of ion channels, a 
functional perspective. Subcell Biochem 59, 289-333. 

Gandy, S., Czernik, A. J., and Greengard, P. (1988). Phosphorylation of Alzheimer 
disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-
dependent protein kinase II. Proc Natl Acad Sci U S A 85, 6218-6221. 

Gao, Y., and Pimplikar, S. W. (2001). The gamma -secretase-cleaved C-terminal 
fragment of amyloid precursor protein mediates signaling to the nucleus. Proc 
Natl Acad Sci U S A 98, 14979-14984. 

Garcia, P., Gupta, R., Shah, S., Morris, A. J., Rudge, S. A., Scarlata, S., Petrova, V., 
McLaughlin, S., and Rebecchi, M. J. (1995). The pleckstrin homology domain of 
phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-
bisphosphate in bilayer membranes. Biochemistry 34, 16228-16234. 

Gardella, J. E., Ghiso, J., Gorgone, G. A., Marratta, D., Kaplan, A. P., Frangione, B., 
and Gorevic, P. D. (1990). Intact Alzheimer amyloid precursor protein (APP) is 
present in platelet membranes and is encoded by platelet mRNA. Biochem 
Biophys Res Commun 173, 1292-1298. 

Gascard, P., Tran, D., Sauvage, M., Sulpice, J. C., Fukami, K., Takenawa, T., Claret, 
M., and Giraud, F. (1991). Asymmetric distribution of phosphoinositides and 
phosphatidic acid in the human erythrocyte membrane. Biochim Biophys Acta 
1069, 27-36. 

Gaullier, J. M., Simonsen, A., D’Arrigo, A., Bremnes, B., Stenmark, H., and 
Aasland, R. (1998). FYVE fingers bind PtdIns(3)P. Nature 394(6692), 432-433. 

German, D. C. (2007). Mouse models of Alzheimer’s Disease. In Abeta Peptide and 
Alzheimers Disease: Celebrating a Century of Research, C. H. Barrow and D. H. 
Small, eds. (London: Springer-Verlag), pp. 259 -260. 



 189 

Glenner, G. G., and Wong, C. W. (1984a). Alzheimer’s disease and Down’s 
syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem 
Biophys Res Commun 122, 1131-1135. 

Glenner, G. G., and Wong, C. W. (1984b). Alzheimer’s disease: initial report of the 
purification and characterization of a novel cerebrovascular amyloid protein. 
Biochem Biophys Res Commun 120, 885-890. 

Goate, A., Chartier-Harlin, M.-C., Mullan, M., Brown, J., Crawford, F., Fidani, L., 
Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., 
Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., 
Owen, M., and Hardy, J. (1991). Segregation of a missense mutation in the 
amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 
704-706. 

Goedert, M. (1987). Neuronal localization of amyloid beta protein precursor mRNA 
in normal human brain and in Alzheimer’s disease. EMBO J 6, 3627-3632. 

Goldgaber, D., Lerman, M. I., McBride, O. W., Saffiotti, U., and Gajdusek, D. C. 
(1987). Characterization and chromosomal localization of a cDNA encoding brain 
amyloid of Alzheimer’s disease. Science 235, 877-880. 

Golebiewska, U., Kay, J. G., Masters, T., Grinstein, S., Im, W., Pastor, R. W., 
Scarlata, S., and McLaughlin, S. (2011). Evidence for a fence that impedes the 
diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes 
of macrophages. Mol Biol Cell 22, 3498-3507. 

Golebiewska, U., Nyako, M., Woturski, W., Zaitseva, I., and McLaughlin, S. (2008). 
Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the 
plasma membrane of cells. Mol Biol Cell 19, 1663-1669. 

Golub, T., and Caroni, P. (2005). PI(4,5)P2-dependent microdomain assemblies 
capture microtubules to promote and control leading edge motility. J Cell Biol 
169, 151-165. 

Gotz, J., Chen, F., Barmettler, R., and Nitsch, R. M. (2001). Tau filament formation 
in transgenic mice expressing P301L tau. J Biol Chem 276, 529-534. 

Gowing, E., Roher, A. E., Woods, A. S., Cotter, R. J., Chaney, M., Little, S. P., and 
Ball, M. J. (1994). Chemical characterization of A beta 17-42 peptide, a 
component of diffuse amyloid deposits of Alzheimer disease. J Biol Chem 269, 
10987-10990. 

Gralle, M., Botelho, M. G., and Wouters, F. S. (2009). Neuroprotective secreted 
amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J 
Biol Chem 284, 15016-15025. 

Gralle, M., Oliveira, C. L., Guerreiro, L. H., McKinstry, W. J., Galatis, D., Masters, 
C. L., Cappai, R., Parker, M. W., Ramos, C. H., Torriani, I., and Ferreira, S. T. 
(2006). Solution conformation and heparin-induced dimerization of the full-length 
extracellular domain of the human amyloid precursor protein. J Mol Biol 357, 
493-508. 



 190 

Greenberg, S. M., and Vonsattel, J. P. (1997). Diagnosis of cerebral amyloid 
angiopathy. Sensitivity and specificity of cortical biopsy. Stroke 28, 1418-1422. 

Grehan, S., Tse, E., and Taylor, J. M. (2001). Two distal downstream enhancers 
direct expression of the human apolipoprotein E gene to astrocytes in the brain. J 
Neurosci 21, 812-822. 

Grosdidier, A., Zoete, V., and Michielin, O. (2011a). SwissDock, a protein-small 
molecule docking web service based on EADock DSS. Nucleic Acids Res 39, 
W270-W277. 

Grosdidier, A., Zoete, V., and Michielin, O. (2011b). Fast docking using the 
CHARMM force field with EADock DSS. J Comput Chem  

Gross, G. G., Lone, G. M., Leung, L. K., Hartenstein, V., and Guo, M. (2013). 
X11/Mint genes control polarized localization of axonal membrane proteins in 
vivo. J Neurosci 33, 8575-8586. 

Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., and Wisniewski, 
H. M. (1986). Microtubule-associated protein tau. A component of Alzheimer 
paired helical filaments. J Biol Chem 261, 6084-6089. 

Gu, Y., Misonou, H., Sato, T., Dohmae, N., Takio, K., and Ihara, Y. (2001). Distinct 
intramembrane cleavage of the beta-amyloid precursor protein family resembling 
gamma-secretase-like cleavage of Notch. J Biol Chem 276, 35235-35238. 

Guenette, S. Y., Chen, J., Ferland, A., Haass, C., Capell, A., and Tanzi, R. E. (1999). 
hFE65L influences amyloid precursor protein maturation and secretion. J 
Neurochem 73, 985-993. 

Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., 
Cruchaga, C., Sassi, C., Kauwe, J. S., Younkin, S., Hazrati, L., Collinge, J., 
Pocock, J., Lashley, T., Williams, J., Lambert, J. C., Amouyel, P., Goate, A., 
Rademakers, R., Morgan, K., Powell, J., St George-Hyslop, P., Singleton, A., and 
Hardy, J. (2013). TREM2 variants in Alzheimer’s disease. N Engl J Med 368, 
117-127. 

Haass, C., Koo, E. H., Capell, A., Teplow, D. B., and Selkoe, D. J. (1995). Polarized 
sorting of beta-amyloid precursor protein and its proteolytic products in MDCK 
cells is regulated by two independent signals. J Cell Biol 128, 537-547. 

Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., and Selkoe, D. J. (1992). Targeting 
of cell-surface beta-amyloid precursor protein to lysosomes: alternative 
processing into amyloid-bearing fragments. Nature 357, 500-503. 

Hammond, G. R., Fischer, M. J., Anderson, K. E., Holdich, J., Koteci, A., Balla, T., 
and Irvine, R. F. (2012). PI4P and PI(4,5)P2 Are Essential But Independent Lipid 
Determinants of Membrane Identity. Science 337, 727-30 

Hammond, G. R., Schiavo, G., and Irvine, R. F. (2009). Immunocytochemical 
techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). 
Biochem J 422, 23-35. 



 191 

Hanger, D. P., Hughes, K., Woodgett, J. R., Brion, J. P., and Anderton, B. H. (1992). 
Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of 
tau: generation of paired helical filament epitopes and neuronal localisation of the 
kinase. Neurosci Lett 147, 58-62. 

Hannun, Y. A., and Obeid, L. M. (2008). Principles of bioactive lipid signalling: 
lessons from sphingolipids. Nat Rev Mol Cell Biol 9, 139-150. 

Hardy, J. A., and Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade 
hypothesis. Science 256, 184 - 185. 

Harlan, J. E., Hajduk, P. J., Yoon, H. S., and Fesik, S. W. (1994). Pleckstrin 
homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 
168-170. 

Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., 
Pahwa, J. S., Moskvina, V., Dowzell, K., Williams, A., Jones, N., Thomas, C., 
Stretton, A., Morgan, A. R., Lovestone, S., Powell, J., Proitsi, P., Lupton, M. K., 
Brayne, C., Rubinsztein, D. C., Gill, M., Lawlor, B., Lynch, A., Morgan, K., 
Brown, K. S., Passmore, P. A., Craig, D., McGuinness, B., Todd, S., Holmes, C., 
Mann, D., Smith, A. D., Love, S., Kehoe, P. G., Hardy, J., Mead, S., Fox, N., 
Rossor, M., Collinge, J., Maier, W., Jessen, F., Schurmann, B., van den Bussche, 
H., Heuser, I., Kornhuber, J., Wiltfang, J., Dichgans, M., Frolich, L., Hampel, H., 
Hull, M., Rujescu, D., Goate, A. M., Kauwe, J. S., Cruchaga, C., Nowotny, P., 
Morris, J. C., Mayo, K., Sleegers, K., Bettens, K., Engelborghs, S., De Deyn, P. 
P., Van Broeckhoven, C., Livingston, G., Bass, N. J., Gurling, H., McQuillin, A., 
Gwilliam, R., Deloukas, P., Al-Chalabi, A., Shaw, C. E., Tsolaki, M., Singleton, 
A. B., Guerreiro, R., Muhleisen, T. W., Nothen, M. M., Moebus, S., Jockel, K. H., 
Klopp, N., Wichmann, H. E., Carrasquillo, M. M., Pankratz, V. S., Younkin, S. 
G., Holmans, P. A., O’Donovan, M., Owen, M. J., and Williams, J. (2009). 
Genome-wide association study identifies variants at CLU and PICALM 
associated with Alzheimer’s disease. Nat Genet 41, 1088-1093. 

Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T. (1997). Observation of 
metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol 4, 
119-125. 

Harris, T. W., Hartwieg, E., Horvitz, H. R., and Jorgensen, E. M. (2000). Mutations 
in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol 150, 589-600. 

Harrison, S. M., Harper, A. J., Hawkins, J., Duddy, G., Grau, E., Pugh, P. L., Winter, 
P. H., Shilliam, C. S., Hughes, Z. A., Dawson, L. A., Gonzalez, M. I., Upton, N., 
Pangalos, M. N., and Dingwall, C. (2003). BACE1 (beta-secretase) transgenic and 
knockout mice: identification of neurochemical deficits and behavioral changes. 
Mol Cell Neurosci 24, 646-655. 

Hartley, D. M., Walsh, D. M., Ye, C. P., Diehl, T., Vasquez, S., Vassilev, P. M., 
Teplow, D. B., and Selkoe, D. J. (1999). Protofibrillar intermediates of amyloid 
beta-protein induce acute electrophysiological changes and progressive 
neurotoxicity in cortical neurons. J Neurosci 19, 8876-8884. 



 192 

Hartley, D. M., Zhao, C., Speier, A. C., Woodard, G. A., Li, S., Li, Z., and Walz, T. 
(2008). Transglutaminase induces protofibril-like amyloid beta-protein assemblies 
that are protease-resistant and inhibit long-term potentiation. J Biol Chem 283, 
16790-16800. 

Hashimoto, T., Serrano-Pozo, A., Hori, Y., Adams, K. W., Takeda, S., Banerji, A. 
O., Mitani, A., Joyner, D., Thyssen, D. H., Bacskai, B. J., Frosch, M. P., Spires-
Jones, T. L., Finn, M. B., Holtzman, D. M., and Hyman, B. T. (2012). 
Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of 
amyloid beta peptide. J Neurosci 32, 15181-15192. 

Hashimoto, T., Wakabayashi, T., Watanabe, A., Kowa, H., Hosoda, R., Nakamura, 
A., Kanazawa, I., Arai, T., Takio, K., Mann, D. M., and Iwatsubo, T. (2002). 
CLAC: a novel Alzheimer amyloid plaque component derived from a 
transmembrane precursor, CLAC-P/collagen type XXV. EMBO J 21, 1524-1534. 

Hass, M. R., and Yankner, B. A. (2005). A {gamma}-secretase-independent 
mechanism of signal transduction by the amyloid precursor protein. J Biol Chem 
280, 36895-36904. 

Hass, S., Fresser, F., Kochl, S., Beyreuther, K., Utermann, G., and Baier, G. (1998). 
Physical interaction of ApoE with amyloid precursor protein independent of the 
amyloid Abeta region in vitro. J Biol Chem 273, 13892-13897. 

Haugabook, S. J., Le, T., Yager, D., Zenk, B., Healy, B. M., Eckman, E. A., Prada, 
C., Younkin, L., Murphy, P., Pinnix, I., Onstead, L., Sambamurti, K., Golde, T. 
E., Dickson, D., Younkin, S. G., and Eckman, C. B. (2001). Reduction of Abeta 
accumulation in the Tg2576 animal model of Alzheimer’s disease after oral 
administration of the phosphatidyl-inositol kinase inhibitor wortmannin. FASEB J 
15, 16-18. 

Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S., and Mattson, M. 
P. (2002). Disruption of neurogenesis by amyloid beta-peptide, and perturbed 
neural progenitor cell homeostasis, in models of Alzheimer’s disease. J 
Neurochem 83, 1509-1524. 

Havel, R. J., and Kane, J. P. (1973). Primary dysbetalipoproteinemia: predominance 
of a specific apoprotein species in triglyceride-rich lipoproteins. Proc Natl Acad 
Sci U S A 70, 2015-2019. 

Hay, J. C., Fisette, P. L., Jenkins, G. H., Fukami, K., Takenawa, T., Anderson, R. A., 
and Martin, T. F. (1995). ATP-dependent inositide phosphorylation required for 
Ca(2+)-activated secretion. Nature 374, 173-177. 

Hayashi, Y., Kashiwagi, K., Ohta, J., Nakajima, M., Kawashima, T., and Yoshikawa, 
K. (1994). Alzheimer amyloid protein precursor enhances proliferation of neural 
stem cells from fetal rat brain. Biochem Biophys Res Commun 205, 936-943. 

Heber, S., Herms, J., Gajic, V., Hainfellner, J., Aguzzi, A., Rulicke, T., von 
Kretzschmar, H., von Koch, C., Sisodia, S., Tremml, P., Lipp, H. P., Wolfer, D. 
P., and Muller, U. (2000). Mice with combined gene knock-outs reveal essential 



 193 

and partially redundant functions of amyloid precursor protein family members. J 
Neurosci 20, 7951-7963. 

Hejna, J. A., Saito, H., Merkens, L. S., Tittle, T. V., Jakobs, P. M., Whitney, M. A., 
Grompe, M., Friedberg, A. S., and Moses, R. E. (1995). Cloning and 
characterization of a human cDNA (INPPL1) sharing homology with inositol 
polyphosphate phosphatases. Genomics 29, 285-287. 

Hemming, M. L., Elias, J. E., Gygi, S. P., and Selkoe, D. J. (2008). Proteomic 
profiling of gamma-secretase substrates and mapping of substrate requirements. 
PLoS Biol 6, e257. 

Henry, A., Li, Q. X., Galatis, D., Hesse, L., Multhaup, G., Beyreuther, K., Masters, 
C. L., and Cappai, R. (1998). Inhibition of platelet activation by the Alzheimer’s 
disease amyloid precursor protein. Br J Haematol 103, 402-415. 

Hepler, R. W., Grimm, K. M., Nahas, D. D., Breese, R., Dodson, E. C., Acton, P., 
Keller, P. M., Yeager, M., Wang, H., Shughrue, P., Kinney, G., and Joyce, J. G. 
(2006). Solution state characterization of amyloid beta-derived diffusible ligands. 
Biochemistry 45, 15157-15167. 

Hilgemann, D. W., Feng, S., and Nasuhoglu, C. (2001). The complex and intriguing 
lives of PIP2 with ion channels and transporters. Sci STKE 2001, re19. 

Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H., and Iino, M. (1999). 
Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex 
Ca2+ mobilization patterns. Science 284, 1527-1530. 

Ho, R., Ortiz, D., and Shea, T. B. (2001). Amyloid-beta promotes calcium influx and 
neurodegeneration via stimulation of L voltage-sensitive calcium channels rather 
than NMDA channels in cultured neurons. J Alzheimers Dis 3, 479-483. 

Hoe, H. S., Minami, S. S., Makarova, A., Lee, J., Hyman, B. T., Matsuoka, Y., and 
Rebeck, G. W. (2008). Fyn modulation of Dab1 effects on amyloid precursor 
protein and ApoE receptor 2 processing. J Biol Chem 283, 6288-6299. 

Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W., and Rebeck, G. W. (2006). 
DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 
trafficking and processing. J Biol Chem 281, 35176-35185. 

Hoffmann, J., Pietrzik, C. U., Kummer, M. P., Twiesselmann, C., Bauer, C., and 
Herzog, V. (1999). Binding and selective detection of the secretory N-terminal 
domain of the alzheimer amyloid precursor protein on cell surfaces. J Histochem 
Cytochem 47, 373-382. 

Hoffmann, J., Twiesselmann, C., Kummer, M. P., Romagnoli, P., and Herzog, V. 
(2000). A possible role for the Alzheimer amyloid precursor protein in the 
regulation of epidermal basal cell proliferation. Eur J Cell Biol 79, 905-914. 

Homayouni, R., Rice, D. S., Sheldon, M., and Curran, T. (1999). Disabled-1 binds to 
the cytoplasmic domain of amyloid precursor-like protein 1. J Neurosci 19, 7507-
7515. 



 194 

Honing, S., Ricotta, D., Krauss, M., Spate, K., Spolaore, B., Motley, A., Robinson, 
M., Robinson, C., Haucke, V., and Owen, D. J. (2005). Phosphatidylinositol-
(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated 
adaptor complex AP2. Mol Cell 18, 519-531. 

Hornsten, A., Lieberthal, J., Fadia, S., Malins, R., Ha, L., Xu, X., Daigle, I., 
Markowitz, M., O’Connor, G., Plasterk, R., and Li, C. (2007). APL-1, a 
Caenorhabditis elegans protein related to the human beta-amyloid precursor 
protein, is essential for viability. Proc Natl Acad Sci U S A 104, 1971-1976. 

Howell, B. W., Gertler, F. B., and Cooper, J. A. (1997a). Mouse disabled (mDab1): a 
Src binding protein implicated in neuronal development. EMBO J 16, 121-132. 

Howell, B. W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997b). Neuronal 
position in the developing brain is regulated by mouse disabled-1. Nature 389, 
733-737. 

Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., 
and Cole, G. (1996). Correlative memory deficits, Abeta elevation, and amyloid 
plaques in transgenic mice. Science 274, 99-102. 

Hu, X., He, W., Diaconu, C., Tang, X., Kidd, G. J., Macklin, W. B., Trapp, B. D., 
and Yan, R. (2008). Genetic deletion of BACE1 in mice affects remyelination of 
sciatic nerves. FASEB J 22, 2970-2980. 

Hu, X., Hicks, C. W., He, W., Wong, P., Macklin, W. B., Trapp, B. D., and Yan, R. 
(2006). Bace1 modulates myelination in the central and peripheral nervous 
system. Nat Neurosci 9, 1520-1525. 

Hu, Y., Hung, A. C., Cui, H., Dawkins, E., Bolos, M., Foa, L., Young, K. M., and 
Small, D. H. (2013). Role of cystatin C in amyloid precursor protein-induced 
proliferation of neural stem/progenitor cells. J Biol Chem 288, 18853-18862. 

Huang, S., Lifshitz, L., Patki-Kamath, V., Tuft, R., Fogarty, K., and Czech, M. P. 
(2004). Phosphatidylinositol-4,5-bisphosphate-rich plasma membrane patches 
organize active zones of endocytosis and ruffling in cultured adipocytes. Mol Cell 
Biol 24, 9102-9123. 

Huang, Y., Shah, V., Liu, T., and Keshvara, L. (2005). Signaling through Disabled 1 
requires phosphoinositide binding. Biochem Biophys Res Commun 331, 1460-
1468. 

Hung, A. Y., and Selkoe, D. J. (1994). Selective ectodomain phosphorylation and 
regulated cleavage of beta-amyloid precursor protein. EMBO J 13, 534-542. 

Huovila, A. P., Turner, A. J., Pelto-Huikko, M., Karkkainen, I., and Ortiz, R. M. 
(2005). Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30, 
413-422. 

Hussain, I., Powell, D., Howlett, D. R., Tew, D. G., Meek, T. D., Chapman, C., 
Gloger, I. S., Murphy, K. E., Southan, C. D., Ryan, D. M., Smith, T. S., Simmons, 



 195 

D. L., Walsh, F. S., Dingwall, C., and Christie, G. (1999). Identification of a novel 
aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14, 419-427. 

Hyman, B. T., Marzloff, K., and Arriagada, P. V. (1993). The lack of accumulation 
of senile plaques or amyloid burden in Alzheimer’s disease suggests a dynamic 
balance between amyloid deposition and resolution. J Neuropathol Exp Neurol 
52, 594-600. 

Hyvonen, M., Macias, M. J., Nilges, M., Oschkinat, H., Saraste, M., and Wilmanns, 
M. (1995). Structure of the binding site for inositol phosphates in a PH domain. 
EMBO J 14, 4676-4685. 

Iijima, K., Ando, K., Takeda, S., Satoh, Y., Seki, T., Itohara, S., Greengard, P., 
Kirino, Y., Nairn, A. C., and Suzuki, T. (2000). Neuron-specific phosphorylation 
of Alzheimer’s beta-amyloid precursor protein by cyclin-dependent kinase 5. J 
Neurochem 75, 1085-1091. 

Innerarity, T. L., Mahley, R. W., Weisgraber, K. H., and Bersot, T. P. (1978). 
Apoprotein (E--A-II) complex of human plasma lipoproteins. II. Receptor binding 
activity of a high density lipoprotein subfraction modulated by the apo(E--A-II) 
complex. J Biol Chem 253, 6289-6295. 

Inomata, H., Nakamura, Y., Hayakawa, A., Takata, H., Suzuki, T., Miyazawa, K., 
and Kitamura, N. (2003). A scaffold protein JIP-1b enhances amyloid precursor 
protein phosphorylation by JNK and its association with kinesin light chain 1. J 
Biol Chem 278, 22946-22955. 

Iqbal, K., Liu, F., Gong, C. X., Alonso Adel, C., and Grundke-Iqbal, I. (2009). 
Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118, 53-69. 

Iqbal, K., Zaidi, T., Bancher, C., and Grundke-Iqbal, I. (1994). Alzheimer paired 
helical filaments. Restoration of the biological activity by dephosphorylation. 
FEBS Lett 349, 104-108. 

Ishihara, H., Shibasaki, Y., Kizuki, N., Katagiri, H., Yazaki, Y., Asano, T., and Oka, 
Y. (1996). Cloning of cDNAs encoding two isoforms of 68-kDa type I 
phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 271, 23611-23614. 

Ivanova, P. T., Milne, S. B., Byrne, M. O., Xiang, Y., and Brown, H. A. (2007). 
Glycerophospholipid identification and quantitation by electrospray ionization 
mass spectrometry. Methods Enzymol 432, 21-57. 

Iwatsubo, T., Mann, D. M., Odaka, A., Suzuki, N., and Ihara, Y. (1995). Amyloid 
beta protein (A beta) deposition: A beta 42(43) precedes A beta 40 in Down 
syndrome. Ann Neurol 37, 294-299. 

Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., and Ihara, Y. 
(1994). Visualization of A beta 42(43) and A beta 40 in senile plaques with end-
specific A beta monoclonals: evidence that an initially deposited species is A beta 
42(43). Neuron 13, 45-53. 



 196 

Jackson, L. P., Kelly, B. T., McCoy, A. J., Gaffry, T., James, L. C., Collins, B. M., 
Honing, S., Evans, P. R., and Owen, D. J. (2010). A large-scale conformational 
change couples membrane recruitment to cargo binding in the AP2 clathrin 
adaptor complex. Cell 141, 1220-1229. 

Jacobsen, K. T., Adlerz, L., Multhaup, G., and Iverfeldt, K. (2010). Insulin-like 
growth factor-1 (IGF-1)-induced processing of amyloid-beta precursor protein 
(APP) and APP-like protein 2 is mediated by different metalloproteinases. J Biol 
Chem 285, 10223-10231. 

Jan, A., Gokce, O., Luthi-Carter, R., and Lashuel, H. A. (2008). The ratio of 
monomeric to aggregated forms of Abeta40 and Abeta42 is an important 
determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity. J Biol 
Chem 283, 28176-28189. 

Jarrett, J. T., Berger, E. P., and Lansbury, P. T. J. (1993). The carboxy terminus of 
the beta amyloid protein is critical for the seeding of amyloid formation: 
implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693-
4697. 

Jefferson, A. B., and Majerus, P. W. (1995). Properties of type II inositol 
polyphosphate 5-phosphatase. J Biol Chem 270, 9370-9377. 

Jenkins, G. H., Subrahmanyam, G., and Anderson, R. A. (1991). Purification and 
reconstitution of phosphatidylinositol 4-kinase from human erythrocytes. Biochim 
Biophys Acta 1080, 11-18. 

Jin, K., Galvan, V., Xie, L., Mao, X. O., Gorostiza, O. F., Bredesen, DE, and 
Greenberg, D. A. (2004). Enhanced Neurogenesis in Alzheimer’s disease 
transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci U S A 101, 13363-
13367. 

Jin, L. W., Ninomiya, H., Roch, J. M., Schubert, D., Masliah, E., Otero, D. A., and 
Saitoh, T. (1994). Peptides containing the RERMS sequence of amyloid beta/A4 
protein precursor bind cell surface and promote neurite extension. J Neurosci 14, 
5461-5470. 

Jin, W., Ge, W. P., Xu, J., Cao, M., Peng, L., Yung, W., Liao, D., Duan, S., Zhang, 
M., and Xia, J. (2006). Lipid binding regulates synaptic targeting of PICK1, 
AMPA receptor trafficking, and synaptic plasticity. J Neurosci 26, 2380-2390. 

Joachim, C. L., Morris, J. H., and Selkoe, D. J. (1989). Diffuse senile plaques occur 
commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135, 309-319. 

Jolles, J., Bothmer, J., Markerink, M., and Ravid, R. (1992). Phosphatidylinositol 
kinase is reduced in Alzheimer’s disease. J Neurochem 58, 2326-2329. 

Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., 
Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, 
A., Liu, Y., Lu, Y., Bhangale, T., Graham, R. R., Huttenlocher, J., Bjornsdottir, 
G., Andreassen, O. A., Jonsson, E. G., Palotie, A., Behrens, T. W., Magnusson, O. 
T., Kong, A., Thorsteinsdottir, U., Watts, R. J., and Stefansson, K. (2012). A 



 197 

mutation in APP protects against Alzheimer’s disease and age-related cognitive 
decline. Nature 488, 96-99. 

Jonsson, T., Stefansson, H., Steinberg, S., Jonsdottir, I., Jonsson, P. V., Snaedal, J., 
Bjornsson, S., Huttenlocher, J., Levey, A. I., Lah, J. J., Rujescu, D., Hampel, H., 
Giegling, I., Andreassen, O. A., Engedal, K., Ulstein, I., Djurovic, S., Ibrahim-
Verbaas, C., Hofman, A., Ikram, M. A., van Duijn, C. M., Thorsteinsdottir, U., 
Kong, A., and Stefansson, K. (2013). Variant of TREM2 associated with the risk 
of Alzheimer’s disease. N Engl J Med 368, 107-116. 

Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A., and Schmid, S. L. (1998). 
Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle 
formation. Curr Biol 8, 1399-1402. 

Kaether, C., Lammich, S., Edbauer, D., Ertl, M., Rietdorf, J., Capell, A., Steiner, H., 
and Haass, C. (2002). Presenilin-1 affects trafficking and processing of betaAPP 
and is targeted in a complex with nicastrin to the plasma membrane. J Cell Biol 
158, 551-561. 

Kale, S. D., Gu, B., Capelluto, D. G., Dou, D., Feldman, E., Rumore, A., Arredondo, 
F. D., Hanlon, R., Fudal, I., Rouxel, T., Lawrence, C. B., Shan, W., and Tyler, B. 
M. (2010). External lipid PI3P mediates entry of eukaryotic pathogen effectors 
into plant and animal host cells. Cell 142, 284-295. 

Kalyan-Raman, U. P., and Kalyan-Raman, K. (1984). Cerebral amyloid angiopathy 
causing intracranial hemorrhage. Ann Neurol 16, 321-329. 

Kang, D. E., Pietrzik, C. U., Baum, L., Chevallier, N., Merriam, D. E., Kounnas, M. 
Z., Wagner, S. L., Troncoso, J. C., Kawas, C. H., Katzman, R., and Koo, E. H. 
(2000). Modulation of amyloid beta-protein clearance and Alzheimer’s disease 
susceptibility by the LDL receptor-related protein pathway. J Clin Invest 106, 
1159-1166. 

Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, 
K. H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. (1987). The precursor of 
Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 
325, 733-736. 

Kavran, J. M., Klein, D. E., Lee, A., Falasca, M., Isakoff, S. J., Skolnik, E. Y., and 
Lemmon, M. A. (1998). Specificity and promiscuity in phosphoinositide binding 
by pleckstrin homology domains. J Biol Chem 273, 30497-30508. 

Kayed, R., and Lasagna-Reeves, C. A. (2013). Molecular mechanisms of amyloid 
oligomers toxicity. J Alzheimers Dis 33 Suppl 1, S67-S78. 

Kayed, R., Sokolov, Y., Edmonds, B., McIntire, T. M., Milton, S. C., Hall, J. E., and 
Glabe, C. G. (2004). Permeabilization of lipid bilayers is a common 
conformation-dependent activity of soluble amyloid oligomers in protein 
misfolding diseases. J Biol Chem 279, 46363-46366. 

Khuong, T. M., Habets, R. L., Kuenen, S., Witkowska, A., Kasprowicz, J., Swerts, 
J., Jahn, R., van den Bogaart, G., and Verstreken, P. (2013). Synaptic PI(3,4,5)P3 



 198 

Is Required for Syntaxin1A Clustering and Neurotransmitter Release. Neuron 77, 
1097-1108. 

Kibbey, M. C., Jucker, M., Weeks, B. S., Neve, R. L., Van Nostrand, W. E., and 
Kleinman, H. K. (1993). beta-Amyloid precursor protein binds to the neurite-
promoting IKVAV site of laminin. Proc Natl Acad Sci U S A 90, 10150-10153. 

Kidd, M. (1963). Paired helical filaments in electron microscopy of Alzheimer’s 
disease. Nature 197, 192-193. 

Kim, D. H., Iijima, H., Goto, K., Sakai, J., Ishii, H., Kim, H. J., Suzuki, H., Kondo, 
H., Saeki, S., and Yamamoto, T. (1996). Human apolipoprotein E receptor 2. A 
novel lipoprotein receptor of the low density lipoprotein receptor family 
predominantly expressed in brain. J Biol Chem 271, 8373-8380. 

Kim, H. S., Kim, E. M., Lee, J. P., Park, C. H., Kim, S., Seo, J. H., Chang, K. A., Yu, 
E., Jeong, S. J., Chong, Y. H., and Suh, Y. H. (2003). C-terminal fragments of 
amyloid precursor protein exert neurotoxicity by inducing glycogen synthase 
kinase-3beta expression. FASEB J 17, 1951-1953. 

Kim, J., Basak, J. M., and Holtzman, D. M. (2009). The role of apolipoprotein E in 
Alzheimer’s disease. Neuron 63, 287-303. 

Kimberly, W. T., Zheng, J. B., Guenette, S. Y., and Selkoe, D. J. (2001). The 
intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 
and translocates to the nucleus in a notch-like manner. J Biol Chem 276, 40288-
40292. 

Kirschner, D. A., Inouye, H., Duffy, L. K., Sinclair, A., Lind, M., and Selkoe, D. J. 
(1987). Synthetic peptide homologous to beta protein from Alzheimer disease 
forms amyloid-like fibrils in vitro. Proc Natl Acad Sci U S A 84, 6953-6957. 

Kisseleva, M. V., Wilson, M. P., and Majerus, P. W. (2000). The isolation and 
characterization of a cDNA encoding phospholipid-specific inositol 
polyphosphate 5-phosphatase. J Biol Chem 275, 20110-20116. 

Kitazume, S., Yoshihisa, A., Yamaki, T., Oikawa, M., Tachida, Y., Ogawa, K., 
Imamaki, R., Hagiwara, Y., Kinoshita, N., Takeishi, Y., Furukawa, K., Tomita, 
N., Arai, H., Iwata, N., Saido, T., Yamamoto, N., and Taniguchi, N. (2012). 
Soluble amyloid precursor protein 770 is released from inflamed endothelial cells 
and activated platelets: a novel biomarker for acute coronary syndrome. J Biol 
Chem 287, 40817-40825. 

Klaver, D. W., Wilce, M. C., Cui, H., Hung, A. C., Gasperini, R., Foa, L., and Small, 
D. H. (2010). Is BACE1 a suitable therapeutic target for the treatment of 
Alzheimer’s disease? Current strategies and future directions. Biol Chem 391, 
849-859. 

Klein, D. E., Lee, A., Frank, D. W., Marks, M. S., and Lemmon, M. A. (1998). The 
pleckstrin homology domains of dynamin isoforms require oligomerization for 
high affinity phosphoinositide binding. J Biol Chem 273, 27725-27733. 



 199 

Knickmeyer, R. C., Wang, J., Zhu, H., Geng, X., Woolson, S., Hamer, R. M., 
Konneker, T., Lin, W., Styner, M., and Gilmore, J. H. (2013). Common Variants 
in Psychiatric Risk Genes Predict Brain Structure at Birth. Cereb Cortex  

Koike, H., Tomioka, S., Sorimachi, H., Saido, T. C., Maruyama, K., Okuyama, A., 
Fujisawa-Sehara, A., Ohno, S., Suzuki, K., and Ishiura, S. (1999). Membrane-
anchored metalloprotease MDC9 has an alpha-secretase activity responsible for 
processing the amyloid precursor protein. Biochem J 343 Pt 2, 371-375. 

Kolecki, R., Lafauci, G., Rubenstein, R., Mazur-Kolecka, B., Kaczmarski, W., and 
Frackowiak, J. (2008). The effect of amyloidosis-beta and ageing on proliferation 
of neuronal progenitor cells in APP-transgenic mouse hippocampus and in 
culture. Acta Neuropathol 116, 419-424. 

Kong, A. M., Speed, C. J., O’Malley, C. J., Layton, M. J., Meehan, T., Loveland, K. 
L., Cheema, S., Ooms, L. M., and Mitchell, C. A. (2000). Cloning and 
characterization of a 72-kDa inositol-polyphosphate 5-phosphatase localized to 
the Golgi network. J Biol Chem 275, 24052-24064. 

Koo, E. H., and Squazzo, S. L. (1994). Evidence that production and release of 
amyloid beta-protein involves the endocytic pathway. Journal of Biological 
Chemistry 269, 17386. 

Koo, E. H., Squazzo, S. L., Selkoe, D. J., and Koo, C. H. (1996). Trafficking of cell-
surface amyloid beta-protein precursor. I. Secretion, endocytosis and recycling as 
detected by labeled monoclonal antibody. J Cell Sci 109, 991-998. 

Kosik, K. S., Joachim, C. L., and Selkoe, D. J. (1986). Microtubule-associated 
protein tau (tau) is a major antigenic component of paired helical filaments in 
Alzheimer disease. Proc Natl Acad Sci U S A 83, 4044-4048. 

Kounnas, M. Z., Moir, R. D., Rebeck, G. W., Bush, A. I., Argraves, W. S., Tanzi, R. 
E., Hyman, B. T., and Strickland, D. K. (1995). LDL receptor-related protein, a 
multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and 
mediates its degradation. Cell 82, 331-340. 

Kraepelin, E. (1910). Psychiatrie. Ein Lehrbuch Für Studierende Und Ärzte. 
(Leipzig: Barth)  

Kuhn, P. H., Wang, H., Dislich, B., Colombo, A., Zeitschel, U., Ellwart, J. W., 
Kremmer, E., Rossner, S., and Lichtenthaler, S. F. (2010). ADAM10 is the 
physiologically relevant, constitutive alpha-secretase of the amyloid precursor 
protein in primary neurons. EMBO J 29, 3020-3032. 

Kulik, G., Klippel, A., and Weber, M. J. (1997). Antiapoptotic signalling by the 
insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol 
Cell Biol 17, 1595-1606. 

Kyriazis, G. A., Wei, Z., Vandermey, M., Jo, D. G., Xin, O., Mattson, M. P., and 
Chan, S. L. (2008). Numb endocytic adapter proteins regulate the transport and 
processing of the amyloid precursor protein in an isoform-dependent manner: 
implications for Alzheimer disease pathogenesis. J Biol Chem 283, 25492-25502. 



 200 

Lacor, P. N., Buniel, M. C., Chang, L., Fernandez, S. J., Gong, Y., Viola, K. L., 
Lambert, M. P., Velasco, P. T., Bigio, E. H., Finch, C. E., Krafft, G. A., and 
Klein, W. L. (2004). Synaptic targeting by Alzheimer’s-related amyloid beta 
oligomers. J Neurosci 24, 10191-10200. 

Lacor, P. N., Buniel, M. C., Furlow, P. W., Clemente, A. S., Velasco, P. T., Wood, 
M., Viola, K. L., and Klein, W. L. (2007). Abeta oligomer-induced aberrations in 
synapse composition, shape, and density provide a molecular basis for loss of 
connectivity in Alzheimer’s disease. J Neurosci 27, 796-807. 

Lahiri, D. K., and Nall, C. (1995). Promoter activity of the gene encoding the beta-
amyloid precursor protein is up-regulated by growth factors, phorbol ester, 
retinoic acid and interleukin-1. Brain Res Mol Brain Res 32, 233-240. 

Lai, A., Sisodia, S. S., and Trowbridge, I. S. (1995). Characterization of sorting 
signals in the beta-amyloid precursor protein cytoplasmic domain. J Biol Chem 
270, 3565-3573. 

Lam, A. D., Tryoen-Toth, P., Tsai, B., Vitale, N., and Stuenkel, E. L. (2008). 
SNARE-catalyzed fusion events are regulated by Syntaxin1A-lipid interactions. 
Mol Biol Cell 19, 485-497. 

Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., 
Combarros, O., Zelenika, D., Bullido, M. J., Tavernier, B., Letenneur, L., Bettens, 
K., Berr, C., Pasquier, F., Fievet, N., Barberger-Gateau, P., Engelborghs, S., De 
Deyn, P., Mateo, I., Franck, A., Helisalmi, S., Porcellini, E., Hanon, O., de 
Pancorbo, M. M., Lendon, C., Dufouil, C., Jaillard, C., Leveillard, T., Alvarez, V., 
Bosco, P., Mancuso, M., Panza, F., Nacmias, B., Bossu, P., Piccardi, P., Annoni, 
G., Seripa, D., Galimberti, D., Hannequin, D., Licastro, F., Soininen, H., Ritchie, 
K., Blanche, H., Dartigues, J. F., Tzourio, C., Gut, I., Van Broeckhoven, C., 
Alperovitch, A., Lathrop, M., and Amouyel, P. (2009). Genome-wide association 
study identifies variants at CLU and CR1 associated with Alzheimer’s disease. 
Nat Genet 41, 1094-1099. 

Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., 
Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., 
Finch, C. E., Krafft, G. A., and Klein, W. L. (1998). Diffusible, nonfibrillar 
ligands derived from Abeta1-42 are potent central nervous system neurotoxins. 
Proc Natl Acad Sci U S A 95, 6448-6453. 

Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, 
C., and Fahrenholz, F. (1999). Constitutive and regulated alpha-secretase cleavage 
of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc 
Natl Acad Sci U S A 96, 3922-3927. 

Landman, N., Jeong, S. Y., Shin, S. Y., Voronov, S. V., Serban, G., Kang, M. S., 
Park, M. K., Di Paolo, G., Chung, S., and Kim, T. W. (2006). Presenilin 
mutations linked to familial Alzheimer’s disease cause an imbalance in 
phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci U S A 
103, 19524-19529. 



 201 

Lapetina, E. G., and Michell, R. H. (1973). A membrane-bound activity catalysing 
phosphatidylinositol breakdown to 1,2-diacylglycerol, D-myoinositol 1:2-cyclic 
phosphate an D-myoinositol 1-phosphate. Properties and subcellular distribution 
in rat cerebral cortex. Biochem J 131, 433-442. 

Lee, J., Retamal, C., Cuitino, L., Caruano-Yzermans, A., Shin, J. E., van Kerkhof, P., 
Marzolo, M. P., and Bu, G. (2008). Adaptor protein sorting nexin 17 regulates 
amyloid precursor protein trafficking and processing in the early endosomes. J 
Biol Chem 283, 11501-11508. 

Lee, J. H., Lau, K. F., Perkinton, M. S., Standen, C. L., Rogelj, B., Falinska, A., 
McLoughlin, D. M., and Miller, C. C. (2004). The neuronal adaptor protein 
X11beta reduces amyloid beta-protein levels and amyloid plaque formation in the 
brains of transgenic mice. J Biol Chem 279, 49099-49104. 

Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., Neve, R., 
Ahlijanian, M. K., and Tsai, L. H. (2003). APP processing is regulated by 
cytoplasmic phosphorylation. J Cell Biol 163, 83-95. 

Lemere, C. A., Blusztajn, J. K., Yamaguchi, H., Wisniewski, T., Saido, T. C., and 
Selkoe, D. J. (1996). Sequence of deposition of heterogeneous amyloid beta-
peptides and APO E in Down syndrome: implications for initial events in amyloid 
plaque formation. Neurobiol Dis 3, 16-32. 

Lemmon, M. A. (2008). Membrane recognition by phospholipid-binding domains. 
Nat Rev Mol Cell Biol 9, 99-111. 

Lemmon, M. A., Ferguson, K. M., O’Brien, R., Sigler, P. B., and Schlessinger, J. 
(1995). Specific and high-affinity binding of inositol phosphates to an isolated 
pleckstrin homology domain. Proc Natl Acad Sci U S A 92, 10472-10476. 

Lemmon, M. A., and Schlessinger, J. (2010). Cell signaling by receptor tyrosine 
kinases. Cell 141, 1117-1134. 

Leslie, N. R., Davies, E. M., Sheffield, D. A., Tibarewal, P., Fedele, C. G., and 
Mitchell, C. A. (2012). The PTEN and Myotubularin Phosphoinositide 3-
Phosphatases: Linking Lipid Signalling to Human Disease. Subcell Biochem 58, 
281-336. 

Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, 
M., and Ashe, K. H. (2006). A specific amyloid-beta protein assembly in the brain 
impairs memory. Nature 440, 352-357. 

Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. 
H., Yu, C. E., Jondro, P. D., Schmidt, S. D. and Wang, K. (1995). Candidate gene 
for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973-977. 

Levy, E., Carman, M. D., Fernandez-Madrid, I. J., Power, M. D., Lieberburg, I., van 
Duinen, S. G., Bots, G. T., Luyendijk, W., and Frangione, B. (1990). Mutation of 
the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch 
type. Science 248, 1124-1126. 



 202 

Levy, E., Sastre, M., Kumar, A., Gallo, G., Piccardo, P., Ghetti, B., and Tagliavini, 
F. (2001). Codeposition of cystatin C with amyloid-beta protein in the brain of 
Alzheimer disease patients. J Neuropathol Exp Neurol 60, 94-104. 

Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van 
Slegtenhorst, M., Gwinn-Hardy, K., Paul Murphy, M., Baker, M., Yu, X., Duff, 
K., Hardy, J., Corral, A., Lin, W. L., Yen, S. H., Dickson, D. W., Davies, P., and 
Hutton, M. (2000). Neurofibrillary tangles, amyotrophy and progressive motor 
disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25, 402-
405. 

Li, D., Parks, S. B., Kushner, J. D., Nauman, D., Burgess, D., Ludwigsen, S., Partain, 
J., Nixon, R. R., Allen, C. N., Irwin, R. P., Jakobs, P. M., Litt, M., and 
Hershberger, R. E. (2006). Mutations of presenilin genes in dilated 
cardiomyopathy and heart failure. Am J Hum Genet 79, 1030-1039. 

Li, D. M., and Sun, H. (1998). PTEN/MMAC1/TEP1 suppresses the tumorigenicity 
and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci 
U S A 95, 15406-15411. 

Li, H., Wang, B., Wang, Z., Guo, Q., Tabuchi, K., Hammer, R. E., Sudhof, T. C., 
and Zheng, H. (2010). Soluble amyloid precursor protein (APP) regulates 
transthyretin and Klotho gene expression without rescuing the essential function 
of APP. Proc Natl Acad Sci U S A 107, 17362-17367. 

Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., Puc, J., Miliaresis, 
C., Rodgers, L., McCombie, R., Bigner, S. H., Giovanella, B. C., Ittmann, M., 
Tycko, B., Hibshoosh, H., Wigler, M. H., and Parsons, R. (1997). PTEN, a 
putative protein tyrosine phosphatase gene mutated in human brain, breast, and 
prostate cancer. Science 275, 1943-1947. 

Li, Z. W., Stark, G., Gotz, J., Rulicke, T., Gschwind, M., Huber, G., Muller, U., and 
Weissmann, C. (1996). Generation of mice with a 200-kb amyloid precursor 
protein gene deletion by Cre recombinase-mediated site-specific recombination in 
embryonic stem cells. Proc Natl Acad Sci U S A 93, 6158-6162. 

Liao, L., Cheng, D., Wang, J., Duong, D. M., Losik, T. G., Gearing, M., Rees, H. D., 
Lah, J. J., Levey, A. I., and Peng, J. (2004). Proteomic characterization of 
postmortem amyloid plaques isolated by laser capture microdissection. J Biol 
Chem 279, 37061-37068. 

Lichtenthaler, S. F., Haass, C., and Steiner, H. (2011). Regulated intramembrane 
proteolysis--lessons from amyloid precursor protein processing. J Neurochem 
117, 779-796. 

Lim, W. A., and Pawson, T. (2010). Phosphotyrosine signaling: evolving a new 
cellular communication system. Cell 142, 661-667. 

Lin, X., Koelsch, G., Wu, S., Downs, D., Dashti, A., and Tang, J. (2000). Human 
aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid 
precursor protein. Proc Natl Acad Sci U S A 97, 1456-1460. 



 203 

Lingwood, D., and Simons, K. (2010). Lipid rafts as a membrane-organizing 
principle. Science 327, 46-50. 

Linn, R. T., Wolf, P. A., Bachman, D. L., Knoefel, J. E., Cobb, J. L., Belanger, A. J., 
Kaplan, E. F., and D’Agostino, R. B. (1995). The ‘preclinical phase’ of probable 
Alzheimer’s disease. A 13-year prospective study of the Framingham cohort. 
Arch Neurol 52, 485-490. 

Liu, K., Doms, R. W., and Lee, V. M. (2002). Glu11 site cleavage and N-terminally 
truncated A beta production upon BACE overexpression. Biochemistry 41, 3128-
3136. 

Liu, P. C., Liu, X., Li, Y., Covington, M., Wynn, R., Huber, R., Hillman, M., Yang, 
G., Ellis, D., Marando, C., Katiyar, K., Bradley, J., Abremski, K., Stow, M., 
Rupar, M., Zhuo, J., Li, Y. L., Lin, Q., Burns, D., Xu, M., Zhang, C., Qian, D. Q., 
He, C., Sharief, V., Weng, L., Agrios, C., Shi, E., Metcalf, B., Newton, R., 
Friedman, S., Yao, W., Scherle, P., Hollis, G., and Burn, T. C. (2006). 
Identification of ADAM10 as a major source of HER2 ectodomain sheddase 
activity in HER2 overexpressing breast cancer cells. Cancer Biol Ther 5, 657-664. 

Liu, Q., Zerbinatti, C. V., Zhang, J., Hoe, H. S., Wang, B., Cole, S. L., Herz, J., 
Muglia, L., and Bu, G. (2007). Amyloid precursor protein regulates brain 
apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. 
Neuron 56, 66-78. 

Lopes, C. M., Zhang, H., Rohacs, T., Jin, T., Yang, J., and Logothetis, D. E. (2002). 
Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. 
Neuron 34, 933-944. 

Lopez-Toledano, M. A., and Shelanski, M. L. (2007). Increased neurogenesis in 
young transgenic mice overexpressing human APP(Sw, Ind). J Alzheimers Dis 
12, 229-240. 

Loyet, K. M., Kowalchyk, J. A., Chaudhary, A., Chen, J., Prestwich, G. D., and 
Martin, T. F. (1998). Specific binding of phosphatidylinositol 4,5-bisphosphate to 
calcium-dependent activator protein for secretion (CAPS), a potential 
phosphoinositide effector protein for regulated exocytosis. J Biol Chem 273, 
8337-8343. 

Lu, S., Chen, L., Tao, K., Sun, N., Wu, Y., Lu, X., Wang, Y., and Dou, D. (2013). 
Intracellular and extracellular phosphatidylinositol 3-phosphate produced by 
Phytophthora species is important for infection. Mol Plant 6,1592-604  

Lumb, C. N., and Sansom, M. S. (2012). Finding a needle in a haystack: the role of 
electrostatics in target lipid recognition by PH domains. PLoS Comput Biol 8, 
e1002617. 

Luo, L. Q., Martin-Morris, L. E., and White, K. (1990). Identification, secretion, and 
neural expression of APPL, a Drosophila protein similar to human amyloid 
protein precursor. J Neurosci 10, 3849-3861. 



 204 

Luo, Y., Bolon, B., Kahn, S., Bennett, B. D., Babu-Khan, S., Denis, P., Fan, W., 
Kha, H., Zhang, J., Gong, Y., Martin, L., Louis, J. C., Yan, Q., Richards, W. G., 
Citron, M., and Vassar, R. (2001). Mice deficient in BACE1, the Alzheimer’s 
beta-secretase, have normal phenotype and abolished beta-amyloid generation. 
Nat Neurosci 4, 231-232. 

Ma, J., Yee, A., Brewer, H. B. J., Das, S., and Potter, H. (1994). Amyloid-associated 
proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of 
Alzheimer beta-protein into filaments. Nature 372, 92-94. 

Ma, Q. H., Futagawa, T., Yang, W. L., Jiang, X. D., Zeng, L., Takeda, Y., Xu, R. X., 
Bagnard, D., Schachner, M., Furley, A. J., Karagogeos, D., Watanabe, K., Dawe, 
G. S., and Xiao, Z. C. (2008). A TAG1-APP signalling pathway through Fe65 
negatively modulates neurogenesis. Nat Cell Biol 10, 283-294. 

Ma, S. L., Pastorino, L., Zhou, X. Z., and Lu, K. P. (2012). Prolyl isomerase Pin1 
promotes amyloid precursor protein (APP) turnover by inhibiting glycogen 
synthase kinase-3beta (GSK3beta) activity: novel mechanism for Pin1 to protect 
against Alzheimer disease. J Biol Chem 287, 6969-6973. 

Magara, F., Muller, U., Li, Z. W., Lipp, H. P., Weissmann, C., Stagljar, M., and 
Wolfer, D. P. (1999). Genetic background changes the pattern of forebrain 
commissure defects in transgenic mice underexpressing the beta-amyloid-
precursor protein. Proc Natl Acad Sci U S A 96, 4656-4661. 

Mahdi, F., Van Nostrand, W. E., and Schmaier, A. H. (1995). Protease nexin-
2/amyloid beta-protein precursor inhibits factor Xa in the prothrombinase 
complex. J Biol Chem 270, 23468-23474. 

Mahley, R. W. (1988). Apolipoprotein E: cholesterol transport protein with 
expanding role in cell biology. Science 240, 622-630. 

Mandybur, T. I. (1986). Cerebral amyloid angiopathy: the vascular pathology and 
complications. J Neuropathol Exp Neurol 45, 79-90. 

Marquez-Sterling, N. R., Lo, A. C., Sisodia, S. S., and Koo, E. H. (1997). Trafficking 
of cell-surface beta-amyloid precursor protein: evidence that a sorting 
intermediate participates in synaptic vesicle recycling. J Neurosci 17, 140-151. 

Masliah, E., Mallory, M., Ge, N., and Saitoh, T. (1992). Amyloid precursor protein is 
localized in growing neurites of neonatal rat brain. Brain Res 593, 323-328. 

Masters, C. L., and Selkoe, D. J. (2012). Biochemistry of amyloid beta-protein and 
amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2, 
a006262. 

Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and 
Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and 
Down syndrome. Proc Natl Acad Sci U S A 82, 4245-4249. 

Matrone, C., Barbagallo, A. P., La Rosa, L. R., Florenzano, F., Ciotti, M. T., 
Mercanti, D., Chao, M. V., Calissano, P., and D’Adamio, L. (2011). APP is 



 205 

phosphorylated by TrkA and regulates NGF/TrkA signaling. J Neurosci 31, 
11756-11761. 

Mattson, M. P. (1997). Cellular actions of beta-amyloid precursor protein and its 
soluble and fibrillogenic derivatives. Physiol Rev 77, 1081-1132. 

Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. 
(1992). beta-Amyloid peptides destabilize calcium homeostasis and render human 
cortical neurons vulnerable to excitotoxicity. J Neurosci 12, 376-389. 

Mauch, D. H., Nagler, K., Schumacher, S., Goritz, C., Muller, E. C., Otto, A., and 
Pfrieger, F. W. (2001). CNS synaptogenesis promoted by glia-derived cholesterol. 
Science 294, 1354-1357. 

May, P. C., Lampert-Etchells, M., Johnson, S. A., Poirier, J., Masters, J. N., and 
Finch, C. E. (1990). Dynamics of gene expression for a hippocampal glycoprotein 
elevated in Alzheimer’s disease and in response to experimental lesions in rat. 
Neuron 5, 831-839. 

McIntire, L. B., Berman, D. E., Myaeng, J., Staniszewski, A., Arancio, O., Di Paolo, 
G., and Kim, T. W. (2012). Reduction of synaptojanin 1 ameliorates synaptic and 
behavioral impairments in a mouse model of Alzheimer’s disease. J Neurosci 32, 
15271-15276. 

McLaughlin, S., and Murray, D. (2005). Plasma membrane phosphoinositide 
organization by protein electrostatics. Nature 438, 605-611. 

McLaughlin, S., Wang, J., Gambhir, A., and Murray, D. (2002). PIP(2) and proteins: 
interactions, organization, and information flow. Annu Rev Biophys Biomol 
Struct 31, 151-175. 

McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, 
K., Bush, A. I., and Masters, C. L. (1999). Soluble pool of Abeta amyloid as a 
determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 
46, 860-866. 

McPherson, P. S., Garcia, E. P., Slepnev, V. I., David, C., Zhang, X., Grabs, D., 
Sossin, W. S., Bauerfeind, R., Nemoto, Y., and De Camilli, P. (1996). A 
presynaptic inositol-5-phosphatase. Nature 379, 353-357. 

Michailidis, I. E., Helton, T. D., Petrou, V. I., Mirshahi, T., Ehlers, M. D., and 
Logothetis, D. E. (2007). Phosphatidylinositol-4,5-bisphosphate regulates NMDA 
receptor activity through alpha-actinin. J Neurosci 27, 5523-5532. 

Michell, R. H. (2008). Inositol derivatives: evolution and functions. Nat Rev Mol 
Cell Biol 9, 151-161. 

Mitchell, A. J., and Shiri-Feshki, M. (2009). Rate of progression of mild cognitive 
impairment to dementia--meta-analysis of 41 robust inception cohort studies. Acta 
Psychiatr Scand 119, 252-265. 



 206 

Milward, E. A., Papadopoulos, R., Fuller, S. J., Moir, R. D., Small, D., Beyreuther, 
K., and Masters, C. L. (1992). The amyloid protein precursor of Alzheimer’s 
disease is a mediator of the effects of nerve growth factor on neurite outgrowth. 
Neuron 9, 129-137. 

Minagawa, T., Ijuin, T., Mochizuki, Y., and Takenawa, T. (2001). Identification and 
characterization of a sac domain-containing phosphoinositide 5-phosphatase. J 
Biol Chem 276, 22011-22015. 

Minogue, S., and Waugh, M. G. (2012). The Phosphatidylinositol 4-Kinases: Don’t 
Call it a Comeback. Subcell Biochem 58, 1-24. 

Mishra, S. K., Watkins, S. C., and Traub, L. M. (2002). The autosomal recessive 
hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat 
machinery. Proc Natl Acad Sci U S A 99, 16099-16104. 

Mobley, W. C., Neve, R. L., Prusiner, S. B., and McKinley, M. P. (1988). Nerve 
growth factor increases mRNA levels for the prion protein and the beta-amyloid 
protein precursor in developing hamster brain. Proc Natl Acad Sci U S A 85, 
9811-9815. 

Mochizuki, Y., and Takenawa, T. (1999). Novel inositol polyphosphate 5-
phosphatase localizes at membrane ruffles. J Biol Chem 274, 36790-36795. 

Mok, S. S., Sberna, G., Heffernan, D., Cappai, R., Galatis, D., Clarris, H. J., Sawyer, 
W. H., Beyreuther, K., Masters, C. L., and Small, D. H. (1997). Expression and 
analysis of heparin-binding regions of the amyloid precursor protein of 
Alzheimer’s disease. FEBS Lett 415, 303-307. 

Morel, E., Chamoun, Z., Lasiecka, Z. M., Chan, R. B., Williamson, R. L., 
Vetanovetz, C., Dall’armi, C., Simoes, S., Point Du Jour, K. S., McCabe, B. D., 
Small, S. A., and Di Paolo, G. (2013). Phosphatidylinositol-3-phosphate regulates 
sorting and processing of amyloid precursor protein through the endosomal 
system. Nat Commun 4, 2250. 

Morris, J. C., Storandt, M., McKeel, D. W. J., Rubin, E. H., Price, J. L., Grant, E. A., 
and Berg, L. (1996). Cerebral amyloid deposition and diffuse plaques in “normal” 
aging: Evidence for presymptomatic and very mild Alzheimer’s disease. 
Neurology 46, 707-719. 

Morris, M., Maeda, S., Vossel, K., and Mucke, L. (2011). The many faces of tau. 
Neuron 70, 410-426. 

Moss, M. L., Jin, S. L., Milla, M. E., Bickett, D. M., Burkhart, W., Carter, H. L., 
Chen, W. J., Clay, W. C., Didsbury, J. R., Hassler, D., Hoffman, C. R., Kost, T. 
A., Lambert, M. H., Leesnitzer, M. A., McCauley, P., McGeehan, G., Mitchell, J., 
Moyer, M., Pahel, G., Rocque, W., Overton, L. K., Schoenen, F., Seaton, T., Su, 
J. L. and Becherer, J. D. (1997). Cloning of a disintegrin metalloproteinase that 
processes precursor tumour-necrosis factor-alpha. Nature 385, 733-736. 

Mucke, L., Masliah, E., Johnson, W. B., Ruppe, M. D., Alford, M., Rockenstein, E. 
M., Forss-Petter, S., Pietropaolo, M., Mallory, M., and Abraham, C. R. (1994). 



 207 

Synaptotrophic effects of human amyloid beta protein precursors in the cortex of 
transgenic mice. Brain Res 666, 151-167. 

Mucke, L., and Selkoe, D. J. (2012). Neurotoxicity of amyloid beta-protein: synaptic 
and network dysfunction. Cold Spring Harb Perspect Med 2, a006338. 

Muller, U., Cristina, N., Li, Z. W., Wolfer, D. P., Lipp, H. P., Rulicke, T., Brandner, 
S., Aguzzi, A., and Weissmann, C. (1994). Behavioral and anatomical deficits in 
mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79, 
755-765. 

Muller, U., Winter, P., and Graeber, M. B. (2013). A presenilin 1 mutation in the 
first case of Alzheimer’s disease. Lancet Neurol 12, 129-130. 

Muller, U. C., and Zheng, H. (2012). Physiological functions of APP family proteins. 
Cold Spring Harb Perspect Med 2, a006288. 

Multhaup, G. (1994). Identification and regulation of the high affinity binding site of 
the Alzheimer’s disease amyloid protein precursor (APP) to glycosaminoglycans. 
Biochimie 76, 304-311. 

Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C. L., and 
Beyreuther, K. (1996). The amyloid precursor protein of Alzheimer’s disease in 
the reduction of copper(II) to copper(I). Science 271, 1406-1409. 

Musa, A., Lehrach, H., and Russo, V. A. (2001). Distinct expression patterns of two 
zebrafish homologues of the human APP gene during embryonic development. 
Dev Genes Evol 211, 563-567. 

Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E., and Ikeda, K. (1991). 
Apolipoprotein E immunoreactivity in cerebral amyloid deposits and 
neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in 
Creutzfeldt-Jakob disease. Brain Res 541, 163-166. 

Narindrasorasak, S., Lowery, D. E., Altman, R. A., Gonzalez-DeWhitt, P. A., 
Greenberg, B. D., and Kisilevsky, R. (1992). Characterization of high affinity 
binding between laminin and Alzheimer’s disease amyloid precursor proteins. 
Lab Invest 67, 643-652. 

Nathan, B. P., Bellosta, S., Sanan, D. A., Weisgraber, K. H., Mahley, R. W., and 
Pitas, R. E. (1994). Differential effects of apolipoproteins E3 and E4 on neuronal 
growth in vitro. Science 264, 850-852. 

Naumann, N., Alpar, A., Ueberham, U., Arendt, T., and Gartner, U. (2010). 
Transgenic expression of human wild-type amyloid precursor protein decreases 
neurogenesis in the adult hippocampus. Hippocampus 20, 971-979. 

Nemoto, Y., Arribas, M., Haffner, C., and DeCamilli, P. (1997). Synaptojanin 2, a 
novel synaptojanin isoform with a distinct targeting domain and expression 
pattern. J Biol Chem 272, 30817-30821. 



 208 

Nemoto, Y., Kearns, B. G., Wenk, M. R., Chen, H., Mori, K., Alb, J. G. J., De 
Camilli, P., and Bankaitis, V. A. (2000). Functional characterization of a 
mammalian Sac1 and mutants exhibiting substrate-specific defects in 
phosphoinositide phosphatase activity. J Biol Chem 275, 34293-34305. 

Ng, J., Aguilar, M. I., and Small, D. H. (2007). Amyloid Toxicity, Synaptic 
Dysfunction, and the Biochemistry of Neurodgeneration in Alzheimer’s Disease. 
In Abeta Peptide and Alzheimer’s Disease, Celebrating a century of research, 
Barrow, C. J., and D. H. Small, eds. (London: Springer-Verlag),  

Nikolaev, A., McLaughlin, T., O’Leary, D. D., and Tessier-Lavigne, M. (2009). APP 
binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 
457, 981-989. 

Nilius, B., Owsianik, G., and Voets, T. (2008). Transient receptor potential channels 
meet phosphoinositides. EMBO J 27, 2809-2816. 

Ninomiya, H., Roch, J. M., Jin, L. W., and Saitoh, T. (1994). Secreted form of 
amyloid beta/A4 protein precursor (APP) binds to two distinct APP binding sites 
on rat B103 neuron-like cells through two different domains, but only one site is 
involved in neuritotropic activity. J Neurochem 63, 495-500. 

Nishizuka, Y. (1995). Protein kinase C and lipid signaling for sustained cellular 
responses. FASEB J 9, 484-496. 

Niwano, H., Embury, P. B., Greenberg, B. D., and Ratnoff, O. D. (1995). Inhibitory 
action of amyloid precursor protein against human Hageman factor (factor XII). J 
Lab Clin Med 125, 251-256. 

Nizzari, M., Venezia, V., Repetto, E., Caorsi, V., Magrassi, R., Gagliani, M. C., 
Carlo, P., Florio, T., Schettini, G., Tacchetti, C., Russo, T., Diaspro, A., and 
Russo, C. (2007). Amyloid precursor protein and Presenilin1 interact with the 
adaptor GRB2 and modulate ERK 1,2 signaling. J Biol Chem 282, 13833-13844. 

Nonet, M. L., Holgado, A. M., Brewer, F., Serpe, C. J., Norbeck, B. A., Holleran, J., 
Wei, L., Hartwieg, E., Jorgensen, E. M., and Alfonso, A. (1999). UNC-11, a 
Caenorhabditis elegans AP180 homologue, regulates the size and protein 
composition of synaptic vesicles. Mol Biol Cell 10, 2343-2360. 

Norris, F. A., Atkins, R. C., and Majerus, P. W. (1997). The cDNA cloning and 
characterization of inositol polyphosphate 4-phosphatase type II. Evidence for 
conserved alternative splicing in the 4-phosphatase family. J Biol Chem 272, 
23859-23864. 

Norris, F. A., and Majerus, P. W. (1994). Hydrolysis of phosphatidylinositol 3,4-
bisphosphate by inositol polyphosphate 4-phosphatase isolated by affinity elution 
chromatography. J Biol Chem 269, 8716-8720. 

Ntelios, D., Berninger, B., and Tzimagiorgis, G. (2012). Numb and Alzheimer’s 
disease: the current picture. Front Neurosci 6, 145. 



 209 

Nukina, N., and Ihara, Y. (1986). One of the antigenic determinants of paired helical 
filaments is related to tau protein. J Biochem 99, 1541-1544. 

Nuutinen, T., Huuskonen, J., Suuronen, T., Ojala, J., Miettinen, R., and Salminen, A. 
(2007). Amyloid-beta 1-42 induced endocytosis and clusterin/apoJ protein 
accumulation in cultured human astrocytes. Neurochem Int 50, 540-547. 

Nuutinen, T., Suuronen, T., Kauppinen, A., and Salminen, A. (2009). Clusterin: a 
forgotten player in Alzheimer’s disease. Brain Res Rev 61, 89-104. 

O’Brien, J., Wilson, I., Orton, T., and Pognan, F. (2000). Investigation of the Alamar 
Blue (resazurin) fluorescent dye for the assessment of mammalian cell 
cytotoxicity. Eur J Biochem 267, 5421-5426. 

Oancea, E., and Meyer, T. (1998). Protein kinase C as a molecular machine for 
decoding calcium and diacylglycerol signals. Cell 95, 307-318. 

Oda, T., Wals, P., Osterburg, H. H., Johnson, S. A., Pasinetti, G. M., Morgan, T. E., 
Rozovsky, I., Stine, W. B., Snyder, S. W. and Holzman, T. F. (1995). Clusterin 
(apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms 
slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol 136, 
22-31. 

Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., 
Metherate, R., Mattson, M. P., Akbari, Y., and LaFerla, F. M. (2003). Triple-
transgenic model of Alzheimer’s disease with plaques and tangles: intracellular 
Abeta and synaptic dysfunction. Neuron 39, 409-421. 

Ogiso, H., Nakamura, K., Yatomi, Y., Shimizu, T., and Taguchi, R. (2010). Liquid 
chromatography/mass spectrometry analysis revealing preferential occurrence of 
non-arachidonate-containing phosphatidylinositol bisphosphate species in nuclei 
and changes in their levels during cell cycle. Rapid Commun Mass Spectrom 24, 
436-442. 

Ogiso, H., and Taguchi, R. (2008). Reversed-phase LC/MS method for 
polyphosphoinositide analyses: changes in molecular species levels during 
epidermal growth factor activation in A431 cells. Anal Chem 80, 9226-9232. 

Ohsawa, I., Hirose, Y., Ishiguro, M., Imai, Y., Ishiura, S., and Kohsaka, S. (1995). 
Expression, purification, and neurotrophic activity of amyloid precursor protein-
secreted forms produced by yeast. Biochem Biophys Res Commun 213, 52-58. 

Ohsawa, I., Takamura, C., Morimoto, T., Ishiguro, M., and Kohsaka, S. (1999). 
Amino-terminal region of secreted form of amyloid precursor protein stimulates 
proliferation of neural stem cells. Eur J Neurosci 11, 1907-1913. 

Ohyagi, Y., and Tabira, T. (1993). Effect of growth factors and cytokines on 
expression of amyloid beta protein precursor mRNAs in cultured neural cells. 
Brain Res Mol Brain Res 18, 127-132. 

Oltersdorf, T., Ward, P. J., Henriksson, T., Beattie, E. C., Neve, R., Lieberburg, I., 
and Fritz, L. C. (1990). The Alzheimer amyloid precursor protein. Identification 



 210 

of a stable intermediate in the biosynthetic/degradative pathway. J Biol Chem 
265, 4492-4497. 

Ooms, L. M., Fedele, C. G., Astle, M. V., Ivetac, I., Cheung, V., Pearson, R. B., 
Layton, M. J., Forrai, A., Nandurkar, H. H., and Mitchell, C. A. (2006). The 
inositol polyphosphate 5-phosphatase, PIPP, Is a novel regulator of 
phosphoinositide 3-kinase-dependent neurite elongation. Mol Biol Cell 17, 607-
622. 

Osawa, S., Funamoto, S., Nobuhara, M., Wada-Kakuda, S., Shimojo, M., Yagishita, 
S., and Ihara, Y. (2008). Phosphoinositides suppress gamma-secretase in both the 
detergent-soluble and -insoluble states. J Biol Chem 283, 19283-19292. 

Osborne, S. L., Wen, P. J., and Meunier, F. A. (2006). Phosphoinositide regulation of 
neuroexocytosis: adding to the complexity. J Neurochem 98, 336-342. 

Osenkowski, P., Ye, W., Wang, R., Wolfe, M. S., and Selkoe, D. J. (2008). Direct 
and potent regulation of gamma-secretase by its lipid microenvironment. J Biol 
Chem 283, 22529-22540. 

Osterfield, M., Egelund, R., Young, L. M., and Flanagan, J. G. (2008). Interaction of 
amyloid precursor protein with contactins and NgCAM in the retinotectal system. 
Development 135, 1189-1199. 

Pagliarini, D. J., Worby, C. A., and Dixon, J. E. (2004). A PTEN-like phosphatase 
with a novel substrate specificity. J Biol Chem 279, 38590-38596. 

Park, E. K., Yang, S. I., and Kang, S. S. (1996). Activation of Akt by nerve growth 
factor via phosphatidylinositol-3 kinase in PC12 pheochromocytoma cells. Mol 
Cells. 6, 494-498. 

Parvathy, S., Hussain, I., Karran, E. H., Turner, A. J., and Hooper, N. M. (1999). 
Cleavage of Alzheimer’s amyloid precursor protein by alpha-secretase occurs at 
the surface of neuronal cells. Biochemistry 38, 9728-9734. 

Pasternak, S. H., Callahan, J. W., and Mahuran, D. J. (2004). The role of the 
endosomal/lysosomal system in amyloid-beta production and the pathophysiology 
of Alzheimer’s disease: reexamining the spatial paradox from a lysosomal 
perspective. J Alzheimers Dis 6, 53-65. 

Pastorino, L., Sun, A., Lu, P. J., Zhou, X. Z., Balastik, M., Finn, G., Wulf, G., Lim, 
J., Li, S. H., Li, X., Xia, W., Nicholson, L. K., and Lu, K. P. (2006). The prolyl 
isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta 
production. Nature 440, 528-534. 

Perez, R. G., Soriano, S., Hayes, J. D., Ostaszewski, B., Xia, W., Selkoe, D. J., Chen, 
X., Stokin, G. B., and Koo, E. H. (1999). Mutagenesis identifies new signals for 
beta-amyloid precursor protein endocytosis, turnover, and the generation of 
secreted fragments, including Abeta42. J Biol Chem 274, 18851-18856. 

Pesesse, X., Deleu, S., De Smedt, F., Drayer, L., and Erneux, C. (1997). 
Identification of a second SH2-domain-containing protein closely related to the 



 211 

phosphatidylinositol polyphosphate 5-phosphatase SHIP. Biochem Biophys Res 
Commun 239, 697-700. 

Petanceska, S. S., and Gandy, S. (1999). The phosphatidylinositol 3-kinase inhibitor 
wortmannin alters the metabolism of the Alzheimer’s amyloid precursor protein. J 
Neurochem 73, 2316-2320. 

Peter, B. J., Kent, H. M., Mills, I. G., Vallis, Y., Butler, P. J., Evans, P. R., and 
McMahon, H. T. (2004). BAR domains as sensors of membrane curvature: the 
amphiphysin BAR structure. Science 303, 495-499. 

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., 
Meng, E. C., and Ferrin, T. E. (2004). UCSF Chimera--a visualization system for 
exploratory research and analysis. J Comput Chem 25, 1605-1612. 

Pettitt, T. R. (2010). Phosphoinositide analysis by liquid chromatography-mass 
spectrometry. Methods Mol Biol 645, 203-217. 

Phinney, A. L., Calhoun, M. E., Wolfer, D. P., Lipp, H. P., Zheng, H., and Jucker, 
M. (1999). No hippocampal neuron or synaptic bouton loss in learning-impaired 
aged beta-amyloid precursor protein-null mice. Neuroscience 90, 1207-1216. 

Piedrahita, J. A., Zhang, S. H., Hagaman, J. R., Oliver, P. M., and Maeda, N. (1992). 
Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene 
targeting in embryonic stem cells. Proc Natl Acad Sci U S A 89, 4471-4475. 

Pietrzik, C. U., Hoffmann, J., Stober, K., Chen, C. Y., Bauer, C., Otero, D. A., Roch, 
J. M., and Herzog, V. (1998). From differentiation to proliferation: the secretory 
amyloid precursor protein as a local mediator of growth in thyroid epithelial cells. 
Proc Natl Acad Sci U S A 95, 1770-1775. 

Pietrzik, C. U., Yoon, I. S., Jaeger, S., Busse, T., Weggen, S., and Koo, E. H. (2004). 
FE65 constitutes the functional link between the low-density lipoprotein receptor-
related protein and the amyloid precursor protein. J Neurosci 24, 4259-4265. 

Pike, C. J., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W. (1991). In vitro 
aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain 
Res 563, 311-314. 

Pink, A. E., Simpson, M. A., Desai, N., Trembath, R. C., and Barker, J. N. (2013). 
gamma-Secretase mutations in hidradenitis suppurativa: new insights into disease 
pathogenesis. J Invest Dermatol 133, 601-607. 

Posor, Y., Eichhorn-Gruenig, M., Puchkov, D., Schoneberg, J., Ullrich, A., Lampe, 
A., Muller, R., Zarbakhsh, S., Gulluni, F., Hirsch, E., Krauss, M., Schultz, C., 
Schmoranzer, J., Noe, F., and Haucke, V. (2013). Spatiotemporal control of 
endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499, 233-237. 

Potter, R., Patterson, B. W., Elbert, D. L., Ovod, V., Kasten, T., Sigurdson, W., 
Mawuenyega, K., Blazey, T., Goate, A., Chott, R., Yarasheski, K. E., Holtzman, 
D. M., Morris, J. C., Benzinger, T. L., and Bateman, R. J. (2013). Increased in 



 212 

Vivo Amyloid-beta42 Production, Exchange, and Loss in Presenilin Mutation 
Carriers. Sci Transl Med 5, 189ra77. 

Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., and Ferri, C. P. (2013). 
The global prevalence of dementia: a systematic review and metaanalysis. 
Alzheimers Dement 9, 63-75.e2. 

Qi-Takahara, Y., Morishima-Kawashima, M., Tanimura, Y., Dolios, G., Hirotani, N., 
Horikoshi, Y., Kametani, F., Maeda, M., Saido, T. C., Wang, R., and Ihara, Y. 
(2005). Longer forms of amyloid beta protein: implications for the mechanism of 
intramembrane cleavage by gamma-secretase. J Neurosci 25, 436-445. 

Rameh, L. E., Tolias, K. F., Duckworth, B. C., and Cantley, L. C. (1997). A new 
pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192-
196. 

Raychaudhuri, M., and Mukhopadhyay, D. (2010). Grb2-mediated alteration in the 
trafficking of AbetaPP: insights from Grb2-AICD interaction. J Alzheimers Dis 
20, 275-292. 

Rebelo, S., Vieira, S. I., Esselmann, H., Wiltfang, J., da Cruz e Silva, E. F., and da 
Cruz e Silva, O. A. (2007). Tyrosine 687 phosphorylated Alzheimer’s amyloid 
precursor protein is retained intracellularly and exhibits a decreased turnover rate. 
Neurodegener Dis 4, 78-87. 

Reinhard, C., Borgers, M., David, G., and De Strooper, B. (2013). Soluble amyloid-
beta precursor protein binds its cell surface receptor in a cooperative fashion with 
glypican and syndecan proteoglycans. J Cell Sci In press  

Reitz, C., Brayne, C., and Mayeux, R. (2011). Epidemiology of Alzheimer disease. 
Nat Rev Neurol 7, 137-152. 

Renner, M., Lacor, P. N., Velasco, P. T., Xu, J., Contractor, A., Klein, W. L., and 
Triller, A. (2010). Deleterious effects of amyloid beta oligomers acting as an 
extracellular scaffold for mGluR5. Neuron 66, 739-754. 

Repetto, E., Yoon, I. S., Zheng, H., and Kang, D. E. (2007). Presenilin 1 regulates 
epidermal growth factor receptor turnover and signaling in the endosomal-
lysosomal pathway. J Biol Chem 282, 31504-31516. 

Ring, S., Weyer, S. W., Kilian, S. B., Waldron, E., Pietrzik, C. U., Filippov, M. A., 
Herms, J., Buchholz, C., Eckman, C. B., Korte, M., Wolfer, D. P., and Muller, U. 
C. (2007). The secreted beta-amyloid precursor protein ectodomain APPs alpha is 
sufficient to rescue the anatomical, behavioral, and electrophysiological 
abnormalities of APP-deficient mice. J Neurosci 27, 7817-7826. 

Robakis, N. K., Ramakrishna, N., Wolfe, G., and Wisniewski, H. M. (1987). 
Molecular cloning and characterization of a cDNA encoding the cerebrovascular 
and the neuritic plaque amyloid peptides. Proc Natl Acad Sci U S A 84, 4190-
4194. 



 213 

Roberds, S. L., Anderson, J., Basi, G., Bienkowski, M. J., Branstetter, D. G., Chen, 
K. S., Freedman, S. B., Frigon, N. L., Games, D., Hu, K., Johnson-Wood, K., 
Kappenman, K. E., Kawabe, T. T., Kola, I., Kuehn, R., Lee, M., Liu, W., Motter, 
R., Nichols, N. F., Power, M., Robertson, D. W., Schenk, D., Schoor, M., Shopp, 
G. M., Shuck, M. E., Sinha, S., Svensson, K. A., Tatsuno, G., Tintrup, H., 
Wijsman, J., Wright, S., and McConlogue, L. (2001). BACE knockout mice are 
healthy despite lacking the primary beta-secretase activity in brain: implications 
for Alzheimer’s disease therapeutics. Hum Mol Genet 10, 1317-1324. 

Roberts, G. W., Gentleman, S. M., Lynch, A., Murray, L., Landon, M., and Graham, 
D. I. (1994). Beta amyloid protein deposition in the brain after severe head injury: 
implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg 
Psychiatry 57, 419-425. 

Rogaeva, E., Meng, Y., Lee, J. H., Gu, Y., Kawarai, T., Zou, F., Katayama, T., 
Baldwin, C. T., Cheng, R., Hasegawa, H., Chen, F., Shibata, N., Lunetta, K. L., 
Pardossi-Piquard, R., Bohm, C., Wakutani, Y., Cupples, L. A., Cuenco, K. T., 
Green, R. C., Pinessi, L., Rainero, I., Sorbi, S., Bruni, A., Duara, R., Friedland, R. 
P., Inzelberg, R., Hampe, W., Bujo, H., Song, Y. Q., Andersen, O. M., Willnow, 
T. E., Graff-Radford, N., Petersen, R. C., Dickson, D., Der, S. D., Fraser, P. E., 
Schmitt-Ulms, G., Younkin, S., Mayeux, R., Farrer, L. A., and St George-Hyslop, 
P. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated 
with Alzheimer disease. Nat Genet. 39, 168-177. 

Rohacs, T., Lopes, C. M., Jin, T., Ramdya, P. P., Molnar, Z., and Logothetis, D. E. 
(2003). Specificity of activation by phosphoinositides determines lipid regulation 
of Kir channels. Proc Natl Acad Sci U S A 100, 745-750. 

Roher, A. E., Lowenson, J. D., Clarke, S., Woods, A. S., Cotter, R. J., Gowing, E., 
and Ball, M. J. (1993). beta-Amyloid-(1-42) is a major component of 
cerebrovascular amyloid deposits: implications for the pathology of Alzheimer 
disease. Proc Natl Acad Sci U S A 90, 10836-10840. 

Rohrbough, J., and Broadie, K. (2005). Lipid regulation of the synaptic vesicle cycle. 
Nat Rev Neurosci 6, 139-150. 

Roncarati, R., Sestan, N., Scheinfeld, M. H., Berechid, B. E., Lopez, P. A., Meucci, 
O., McGlade, J. C., Rakic, P., and D’Adamio, L. (2002). The gamma-secretase-
generated intracellular domain of beta-amyloid precursor protein binds Numb and 
inhibits Notch signaling. Proc Natl Acad Sci U S A 99, 7102-7107. 

Rosen, D. R., Martin-Morris, L., Luo, L. Q., and White, K. (1989). A Drosophila 
gene encoding a protein resembling the human beta-amyloid protein precursor. 
Proc Natl Acad Sci U S A 86, 2478-2482. 

Rosse, C., Linch, M., Kermorgant, S., Cameron, A. J., Boeckeler, K., and Parker, P. 
J. (2010). PKC and the control of localized signal dynamics. Nat Rev Mol Cell 
Biol 11, 103-112. 

Rossjohn, J., Cappai, R., Feil, S. C., Henry, A., McKinstry, W. J., Galatis, D., Hesse, 
L., Multhaup, G., Beyreuther, K., Masters, C. L., and Parker, M. W. (1999). 



 214 

Crystal structure of the N-terminal, growth factor-like domain of Alzheimer 
amyloid precursor protein. Nat Struct Biol 6, 327-331. 

Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerriere, A., Vital, 
A., Dumanchin, C., Feuillette, S., Brice, A., Vercelletto, M., Dubas, F., Frebourg, 
T., and Campion, D. (2006). APP locus duplication causes autosomal dominant 
early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38, 
24-26. 

Royle, S. J., and Lagnado, L. (2003). Endocytosis at the synaptic terminal. J Physiol 
553, 345-355. 

Rozemuller, A. J., Roos, R. A., Bots, G. T., Kamphorst, W., Eikelenboom, P., and 
Van Nostrand, W. E. (1993). Distribution of beta/A4 protein and amyloid 
precursor protein in hereditary cerebral hemorrhage with amyloidosis-Dutch type 
and Alzheimer’s disease. Am J Pathol 142, 1449-1457. 

Ruiz-Leon, Y., and Pascual, A. (2001). Brain-derived neurotrophic factor stimulates 
beta-amyloid gene promoter activity by a Ras-dependent/AP-1-independent 
mechanism in SH-SY5Y neuroblastoma cells. J Neurochem 79, 278-285. 

Rusten, T. E., and Stenmark, H. (2006). Analyzing phosphoinositides and their 
interacting proteins. Nat Methods 3, 251-258. 

Ryan, K. A., and Pimplikar, S. W. (2005). Activation of GSK-3 and phosphorylation 
of CRMP2 in transgenic mice expressing APP intracellular domain. J Cell Biol 
171, 327-335. 

Sabo, S. L., Lanier, L. M., Ikin, A. F., Khorkova, O., Sahasrabudhe, S., Greengard, 
P., and Buxbaum, J. D. (1999). Regulation of beta-amyloid secretion by FE65, an 
amyloid protein precursor-binding protein. J Biol Chem 274, 7952-7957. 

Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., 
Hartmann, D., Saftig, P., and Blobel, C. P. (2004). Distinct roles for ADAM10 
and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164, 769-
779. 

Saitoh, T., Sundsmo, M., Roch, J. M., Kimura, N., Cole, G., Schubert, D., Oltersdorf, 
T., and Schenk, D. B. (1989). Secreted form of amyloid beta protein precursor is 
involved in the growth regulation of fibroblasts. Cell 58, 615-622. 

Salbaum, J. M., and Ruddle, F. H. (1994). Embryonic expression pattern of amyloid 
protein precursor suggests a role in differentiation of specific subsets of neurons. J 
Exp Zool 269, 116-127. 

Salim, K., Bottomley, M. J., Querfurth, E., Zvelebil, M. J., Gout, I., Scaife, R., 
Margolis, R. L., Gigg, R., Smith, C. I., Driscoll, P. C., Waterfield, M. D., and 
Panayotou, G. (1996). Distinct specificity in the recognition of phosphoinositides 
by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. 
EMBO J 15, 6241-6250. 



 215 

Sastre, M., Steiner, H., Fuchs, K., Capell, A., Multhaup, G., Condron, M. M., 
Teplow, D. B., and Haass, C. (2001). Presenilin-dependent gamma-secretase 
processing of beta-amyloid precursor protein at a site corresponding to the S3 
cleavage of Notch. EMBO Rep 2, 835-841. 

Sastre, M., Turner, R. S., and Levy, E. (1998). X11 interaction with beta-amyloid 
precursor protein modulates its cellular stabilization and reduces amyloid beta-
protein secretion. J Biol Chem 273, 22351-22357. 

Sbrissa, D., Ikonomov, O. C., Fu, Z., Ijuin, T., Gruenberg, J., Takenawa, T., and 
Shisheva, A. (2007). Core protein machinery for mammalian phosphatidylinositol 
3,5-bisphosphate synthesis and turnover that regulates the progression of 
endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve 
complex. J Biol Chem 282, 23878-23891. 

Scandura, J. M., Zhang, Y., Van Nostrand, W. E., and Walsh, P. N. (1997). Progress 
curve analysis of the kinetics with which blood coagulation factor XIa is inhibited 
by protease nexin-2. Biochemistry 36, 412-420. 

Scheinfeld, M. H., Ghersi, E., Davies, P., and D’Adamio, L. (2003). Amyloid beta 
protein precursor is phosphorylated by JNK-1 independent of, yet facilitated by, 
JNK-interacting protein (JIP)-1. J Biol Chem 278, 42058-42063. 

Scheinfeld, M. H., Roncarati, R., Vito, P., Lopez, P. A., Abdallah, M., and 
D’Adamio, L. (2002). Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) 
binds the cytoplasmic domain of the Alzheimer’s beta-amyloid precursor protein 
(APP). J Biol Chem 277, 3767-3775. 

Schettini, G., Govoni, S., Racchi, M., and Rodriguez, G. (2010). Phosphorylation of 
APP-CTF-AICD domains and interaction with adaptor proteins: signal 
transduction and/or transcriptional role--relevance for Alzheimer pathology. J 
Neurochem 115, 1299-1308. 

Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T. D., 
Hardy, J., Hutton, M., Kukull, W., Larson, E., Levy-Lahad, E., Viitanen, M., 
Peskind, E., Poorkaj, P., Schellenberg, G., Tanzi, R., Wasco, W., Lannfelt, L., 
Selkoe, D., and Younkin, S. (1996). Secreted amyloid beta-protein similar to that 
in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 
1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2, 
864-870. 

Schiavo, G., Gu, Q. M., Prestwich, G. D., Sollner, T. H., and Rothman, J. E. (1996). 
Calcium-dependent switching of the specificity of phosphoinositide binding to 
synaptotagmin. Proc Natl Acad Sci U S A 93, 13327-13332. 

Schmaier, A. H., Dahl, L. D., Rozemuller, A. J., Roos, R. A., Wagner, S. L., Chung, 
R., and Van Nostrand, W. E. (1993). Protease nexin-2/amyloid beta protein 
precursor. A tight-binding inhibitor of coagulation factor IXa. J Clin Invest 92, 
2540-2545. 



 216 

Schobel, S., Neumann, S., Hertweck, M., Dislich, B., Kuhn, P. H., Kremmer, E., 
Seed, B., Baumeister, R., Haass, C., and Lichtenthaler, S. F. (2008). A novel 
sorting nexin modulates endocytic trafficking and alpha-secretase cleavage of the 
amyloid precursor protein. J Biol Chem 283, 14257-14268. 

Schramp, M., Hedman, A., Li, W., Tan, X., and Anderson, R. (2012). PIP Kinases 
from the Cell Membrane to the Nucleus. Subcell Biochem 58, 25-59. 

Selkoe, D. J. (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 
81, 741-766. 

Selkoe, D. J., Abraham, C. R., Podlisny, M. B., and Duffy, L. K. (1986). Isolation of 
low-molecular-weight proteins from amyloid plaque fibers in Alzheimer’s 
disease. J Neurochem 46, 1820-1834. 

Seshadri, S., Fitzpatrick, A. L., Ikram, M. A., DeStefano, A. L., Gudnason, V., 
Boada, M., Bis, J. C., Smith, A. V., Carassquillo, M. M., Lambert, J. C., Harold, 
D., Schrijvers, E. M., Ramirez-Lorca, R., Debette, S., Longstreth, W. T. J., 
Janssens, A. C., Pankratz, V. S., Dartigues, J. F., Hollingworth, P., Aspelund, T., 
Hernandez, I., Beiser, A., Kuller, L. H., Koudstaal, P. J., Dickson, D. W., Tzourio, 
C., Abraham, R., Antunez, C., Du, Y., Rotter, J. I., Aulchenko, Y. S., Harris, T. 
B., Petersen, R. C., Berr, C., Owen, M. J., Lopez-Arrieta, J., Varadarajan, B. N., 
Becker, J. T., Rivadeneira, F., Nalls, M. A., Graff-Radford, N. R., Campion, D., 
Auerbach, S., Rice, K., Hofman, A., Jonsson, P. V., Schmidt, H., Lathrop, M., 
Mosley, T. H., Au, R., Psaty, B. M., Uitterlinden, A. G., Farrer, L. A., Lumley, T., 
Ruiz, A., Williams, J., Amouyel, P., Younkin, S. G., Wolf, P. A., Launer, L. J., 
Lopez, O. L., van Duijn, C. M., and Breteler, M. M. (2010). Genome-wide 
analysis of genetic loci associated with Alzheimer disease. JAMA 303, 1832-
1840. 

Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., and 
Sabatini, B. L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein 
induce reversible synapse loss by modulating an NMDA-type glutamate receptor-
dependent signaling pathway. J Neurosci 27, 2866-2875. 

Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, 
I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, 
D. M., Sabatini, B. L., and Selkoe, D. J. (2008). Amyloid-beta protein dimers 
isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. 
Nat Med 14, 837-842. 

Shankar, G. M., and Walsh, D. M. (2009). Alzheimer’s disease: synaptic dysfunction 
and Abeta. Mol Neurodegener 4, 48. 

Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., 
Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J. F., Bruni, A. 
C., Montesi, M. P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., 
Pollen, D., Brookes, A., Sanseau, P., Polinsky, R. J., Wasco, W., Da Silva, H. A., 
Haines, J. L., Perkicak-Vance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P. E., 
Rommens, J. M., and St George-Hyslop, P. H. (1995). Cloning of a gene bearing 



 217 

missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754-
760. 

Shi, Y., and Ethell, I. M. (2006). Integrins control dendritic spine plasticity in 
hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent 
protein kinase II-mediated actin reorganization. J Neurosci 26, 1813-1822. 

Shore, V. G., and Shore, B. (1973). Heterogeneity of human plasma very low density 
lipoproteins. Separation of species differing in protein components. Biochemistry 
12, 502-507. 

Shrestha, B. R., Vitolo, O. V., Joshi, P., Lordkipanidze, T., Shelanski, M., and 
Dunaevsky, A. (2006). Amyloid beta peptide adversely affects spine number and 
motility in hippocampal neurons. Mol Cell Neurosci 33, 274-282. 

Sillus, M., Saeger, W., Linke, R. P., Muller, D., and Voigt, C. (1993). Cerebral 
amyloid angiopathy. Frequency, significance and immunohistochemistry. 
Zentralbl Pathol 139, 207-215. 

Simonsen, A., Lippe, R., Christoforidis, S., Gaullier, J. M., Brech, A., Callaghan, J., 
Toh, B. H., Murphy, C., Zerial, M., and Stenmark, H. (1998). EEA1 links PI(3)K 
function to Rab5 regulation of endosome fusion. Nature 394, 494-498. 

Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., Doan, 
M., Dovey, H. F., Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., 
Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., 
Seubert, P., Suomensaari, S. M., Wang, S., Walker, D., Zhao, J., McConlogue, L., 
and John, V. (1999). Purification and cloning of amyloid precursor protein beta-
secretase from human brain. Nature 402, 537-540. 

Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., and 
Westermark, P. (2010). Amyloid fibril protein nomenclature: 2010 
recommendations from the nomenclature committee of the International Society 
of Amyloidosis. Amyloid 17, 101-104. 

Sisodia, S. S. (1992). Beta-amyloid precursor protein cleavage by a membrane-
bound protease. Proc Natl Acad Sci U S A 89, 6075-6079. 

Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., and Price, D. L. (1990). 
Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by 
normal processing. Science 248, 492-495. 

Slack, B. E., Breu, J., Petryniak, M. A., Srivastava, K., and Wurtman, R. J. (1995). 
Tyrosine phosphorylation-dependent stimulation of amyloid precursor protein 
secretion by the m3 muscarinic acetylcholine receptor. J Biol Chem 270, 8337-
8344. 

Slunt, H. H., Thinakaran, G., Von Koch, C., Lo, A. C., Tanzi, R. E., and Sisodia, S. 
S. (1994). Expression of a ubiquitous, cross-reactive homologue of the mouse 
beta-amyloid precursor protein (APP). J Biol Chem 269, 2637-2644. 



 218 

Small, D. H. (2009). Dysregulation of calcium homeostasis in Alzheimer’s disease. 
Neurochem Res 34, 1824-1829. 

Small, D. H., Nurcombe, V., Moir, R., Michaelson, S., Monard, D., Beyreuther, K., 
and Masters, C. L. (1992). Association and release of the amyloid protein 
precursor of Alzheimer’s disease from chick brain extracellular matrix. J Neurosci 
12, 4143-4150. 

Small, D. H., Nurcombe, V., Reed, G., Clarris, H., Moir, R., Beyreuther, K., and 
Masters, C. L. (1994). A heparin-binding domain in the amyloid protein precursor 
of Alzheimer’s disease is involved in the regulation of neurite outgrowth. J 
Neurosci 14, 2117-2127. 

Small, D. H., San Mok, S., and Bornstein, J. C. (2001). Alzheimer’s disease and Aβ 
toxicity: from top to bottom. Nature Reviews Neuroscience 2, 595-598. 

Smith, C. C. (1997). Stimulated release of the beta-amyloid protein of Alzheimer’s 
disease by normal human platelets. Neurosci Lett 235, 157-159. 

Smith, R. P., and Broze, G. J. J. (1992). Characterization of platelet-releasable forms 
of beta-amyloid precursor proteins: the effect of thrombin. Blood 80, 2252-2260. 

Smith, R. P., Higuchi, D. A., and Broze, G. J. J. (1990). Platelet coagulation factor 
XIa-inhibitor, a form of Alzheimer amyloid precursor protein. Science 248, 1126-
1128. 

Snow, A. D., Mar, H., Nochlin, D., Kimata, K., Kato, M., Suzuki, S., Hassell, J., and 
Wight, T. N. (1988). The presence of heparan sulfate proteoglycans in the neuritic 
plaques and congophilic angiopathy in Alzheimer’s disease. Am J Pathol 133, 
456-463. 

Soba, P., Eggert, S., Wagner, K., Zentgraf, H., Siehl, K., Kreger, S., Lower, A., 
Langer, A., Merdes, G., Paro, R., Masters, C. L., Muller, U., Kins, S., and 
Beyreuther, K. (2005). Homo- and heterodimerization of APP family members 
promotes intercellular adhesion. EMBO J 24, 3624-3634. 

Soderberg, L., Bogdanovic, N., Axelsson, B., Winblad, B., Naslund, J., and 
Tjernberg, L. O. (2006). Analysis of single Alzheimer solid plaque cores by laser 
capture microscopy and nanoelectrospray/tandem mass spectrometry. 
Biochemistry 45, 9849-9856. 

Solano, D. C., Sironi, M., Bonfini, C., Solerte, S. B., Govoni, S., and Racchi, M. 
(2000). Insulin regulates soluble amyloid precursor protein release via 
phosphatidyl inositol 3 kinase-dependent pathway. FASEB J 14, 1015-1022. 

Sotthibundhu, A., Li, Q. X., Thangnipon, W., and Coulson, E. J. (2009). Abeta(1-42) 
stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. 
Neurobiol Aging 30, 1975-1985. 

Spivak-Kroizman, T., Lemmon, M. A., Dikic, I., Ladbury, J. E., Pinchasi, D., Huang, 
J., Jaye, M., Crumley, G., Schlessinger, J., and Lax, I. (1994). Heparin-induced 



 219 

oligomerization of FGF molecules is responsible for FGF receptor dimerization, 
activation, and cell proliferation. Cell 79, 1015-1024. 

Stace, C. L., and Ktistakis, N. T. (2006). Phosphatidic acid- and phosphatidylserine-
binding proteins. Biochim Biophys Acta 1761, 913-926. 

Stahelin, R. V., Burian, A., Bruzik, K. S., Murray, D., and Cho, W. (2003). 
Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox 
and p47phox. J Biol Chem 278, 14469-14479. 

Steinbach, J. P., Muller, U., Leist, M., Li, Z. W., Nicotera, P., and Aguzzi, A. (1998). 
Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice. Cell 
Death Differ 5, 858-866. 

Stolt, P. C., Chen, Y., Liu, P., Bock, H. H., Blacklow, S. C., and Herz, J. (2005). 
Phosphoinositide binding by the disabled-1 PTB domain is necessary for 
membrane localization and Reelin signal transduction. J Biol Chem 280, 9671-
9677. 

Stolt, P. C., Jeon, H., Song, H. K., Herz, J., Eck, M. J., and Blacklow, S. C. (2003). 
Origins of peptide selectivity and phosphoinositide binding revealed by structures 
of disabled-1 PTB domain complexes. Structure 11, 569-579. 

Stolt, P. C., Vardar, D., and Blacklow, S. C. (2004). The dual-function disabled-1 
PTB domain exhibits site independence in binding phosphoinositide and peptide 
ligands. Biochemistry 43, 10979-10987. 

Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I. (1983). Release of Ca2+ from 
a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-
trisphosphate. Nature 306, 67-69. 

Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., 
Salvesen, G. S., and Roses, A. D. (1993). Apolipoprotein E: high-avidity binding 
to beta-amyloid and increased frequency of type 4 allele in late-onset familial 
Alzheimer disease. Proc Natl Acad Sci U S A 90, 1977-1981. 

Struhl, G., and Adachi, A. (2000). Requirements for presenilin-dependent cleavage 
of notch and other transmembrane proteins. Mol Cell 6, 625-636. 

Struhl, G., and Greenwald, I. (1999). Presenilin is required for activity and nuclear 
access of Notch in Drosophila. Nature 398, 522-525. 

Sudhof, T. C. (2004). The synaptic vesicle cycle. Annu Rev Neurosci 27, 509-547. 

Suzuki, T., Nairn, A. C., Gandy, S. E., and Greengard, P. (1992). Phosphorylation of 
Alzheimer amyloid precursor protein by protein kinase C. Neuroscience 48, 755-
761. 

Suzuki, T., Oishi, M., Marshak, D. R., Czernik, A. J., Nairn, A. C., and Greengard, 
P. (1994). Cell cycle-dependent regulation of the phosphorylation and metabolism 
of the Alzheimer amyloid precursor protein. EMBO J 13, 1114-1122. 



 220 

Tagliavini, F., Giaccone, G., Linoli, G., Frangione, B., and Bugiani, O. (1989). 
Cerebral extracellular preamyloid deposits in Alzheimer’s disease, Down 
syndrome and nondemented elderly individuals. Prog Clin Biol Res 317, 1001-
1005.  

Takahashi, S., Oida, K., Ookubo, M., Suzuki, J., Kohno, M., Murase, T., Yamamoto, 
T., and Nakai, T. (1996). Very low density lipoprotein receptor binds 
apolipoprotein E2/2 as well as apolipoprotein E3/3. FEBS Lett 386, 197-200. 

Takei, K., Slepnev, V. I., Haucke, V., and De Camilli, P. (1999). Functional 
partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. 
Nat Cell Biol 1, 33-39. 

Tanahashi, H., and Tabira, T. (1999). X11L2, a new member of the X11 protein 
family, interacts with Alzheimer’s beta-amyloid precursor protein. Biochem 
Biophys Res Commun 255, 663-667. 

Tanzi, R. E., and Bertram, L. (2005). Twenty years of the Alzheimer’s disease 
amyloid hypothesis: a genetic perspective. Cell 120, 545-555. 

Tanzi, R. E., Gusella, J. F., Watkins, P. C., Bruns, G. A., St George-Hyslop, P., Van 
Keuren, M. L., Patterson, D., Pagan, S., Kurnit, D. M., and Neve, R. L. (1987). 
Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near 
the Alzheimer locus. Science 235, 880-884. 

Tanzi, R. E., McClatchey, A. I., Lamperti, E. D., Villa-Komaroff, L., Gusella, J. F., 
and Neve, R. L. (1988). Protease inhibitor domain encoded by an amyloid protein 
precursor mRNA associated with Alzheimer’s disease. Nature 331, 528-530. 

Tarassishin, L., Yin, Y. I., Bassit, B., and Li, Y. M. (2004). Processing of Notch and 
amyloid precursor protein by gamma-secretase is spatially distinct. Proc Natl 
Acad Sci U S A 101, 17050-17055. 

Tarawneh, R., and Holtzman, D. M. (2012). The clinical problem of symptomatic 
Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect 
Med 2, a006148. 

Tarr, P. E., Contursi, C., Roncarati, R., Noviello, C., Ghersi, E., Scheinfeld, M. H., 
Zambrano, N., Russo, T., and D’Adamio, L. (2002a). Evidence for a role of the 
nerve growth factor receptor TrkA in tyrosine phosphorylation and processing of 
beta-APP. Biochem Biophys Res Commun 295, 324-329. 

Tarr, P. E., Roncarati, R., Pelicci, G., Pelicci, P. G., and D’Adamio, L. (2002b). 
Tyrosine phosphorylation of the beta-amyloid precursor protein cytoplasmic tail 
promotes interaction with Shc. J Biol Chem 277, 16798-16804. 

Taru, H., Iijima, K., Hase, M., Kirino, Y., Yagi, Y., and Suzuki, T. (2002). 
Interaction of Alzheimer’s beta -amyloid precursor family proteins with scaffold 
proteins of the JNK signaling cascade. J Biol Chem 277, 20070-20078. 



 221 

Teo, H., Gill, D. J., Sun, J., Perisic, O., Veprintsev, D. B., Vallis, Y., Emr, S. D., and 
Williams, R. L. (2006). ESCRT-I core and ESCRT-II GLUE domain structures 
reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125, 99-111. 

Terry, R. D. (2000). Cell death or synaptic loss in Alzheimer disease. Journal of 
Neuropathology & Experimental Neurology 59, 1118. 

Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, 
L. A., and Katzman, R. (1991). Physical basis of cognitive alterations in 
Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. 
Ann Neurol 30, 572-580. 

Thal, D. R., Ghebremedhin, E., Orantes, M., and Wiestler, O. D. (2003). Vascular 
pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and 
arteriosclerosis/lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 
62, 1287-1301. 

Thal, D. R., Griffin, W. S., de Vos, R. A., and Ghebremedhin, E. (2008). Cerebral 
amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol 
115, 599-609. 

Thal, D. R., Rub, U., Orantes, M., and Braak, H. (2002). Phases of A beta-deposition 
in the human brain and its relevance for the development of AD. Neurology 58, 
1791-1800. 

Thornton, E., Vink, R., Blumbergs, P. C., and Van Den Heuvel, C. (2006). Soluble 
amyloid precursor protein alpha reduces neuronal injury and improves functional 
outcome following diffuse traumatic brain injury in rats. Brain Res 1094, 38-46. 

Tikkanen, R., Icking, A., Beicht, P., Waneck, G. L., and Volker, H. (2002). The 
receptor-bound N-terminal ectodomain of the amyloid precursor protein is 
associated with membrane rafts. Biol Chem 383, 1855-1864. 

Tokuda, T., Calero, M., Matsubara, E., Vidal, R., Kumar, A., Permanne, B., 
Zlokovic, B., Smith, J. D., Ladu, M. J., Rostagno, A., Frangione, B., and Ghiso, J. 
(2000). Lipidation of apolipoprotein E influences its isoform-specific interaction 
with Alzheimer’s amyloid beta peptides. Biochem J 348, 359-365. 

Tomita, S., Kirino, Y., and Suzuki, T. (1998). Cleavage of Alzheimer’s amyloid 
precursor protein (APP) by secretases occurs after O-glycosylation of APP in the 
protein secretory pathway. Identification of intracellular compartments in which 
APP cleavage occurs without using toxic agents that interfere with protein 
metabolism. J Biol Chem 273, 6277-6284. 

Townsend, M., Shankar, G. M., Mehta, T., Walsh, D. M., and Selkoe, D. J. (2006). 
Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic 
plasticity: a potent role for trimers. J Physiol 572, 477-492. 

Toyama, B. H., and Weissman, J. S. (2011). Amyloid structure: conformational 
diversity and consequences. Annu Rev Biochem 80, 557-585. 



 222 

Ungewickell, A., Hugge, C., Kisseleva, M., Chang, S. C., Zou, J., Feng, Y., Galyov, 
E. E., Wilson, M., and Majerus, P. W. (2005). The identification and 
characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. 
Proc Natl Acad Sci U S A 102, 18854-18859. 

Utermann, G., Jaeschke, M., and Menzel, J. (1975). Familial hyperlipoproteinemia 
type III: deficiency of a specific apolipoprotein (apo E-III) in the very-low-density 
lipoproteins. FEBS Lett 56, 352-355. 

Van Broeckhoven, C., Haan, J., Bakker, E., Hardy, J. A., Van Hul, W., Wehnert, A., 
Vegter-Van der Vlis, M., and Roos, R. A. (1990). Amyloid beta protein precursor 
gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248, 
1120-1122. 

Van den Bogaart, G., Meyenberg, K., Risselada, H. J., Amin, H., Willig, K. I., 
Hubrich, B. E., Dier, M., Hell, S. W., Grubmuller, H., Diederichsen, U., and Jahn, 
R. (2011). Membrane protein sequestering by ionic protein-lipid interactions. 
Nature 479, 552-555. 

Van Meer, G. (2011). Dynamic transbilayer lipid asymmetry. Cold Spring Harb 
Perspect Biol 3,  

Van Meer, G., Voelker, D. R., and Feigenson, G. W. (2008). Membrane lipids: 
where they are and how they behave. Nat Rev Mol Cell Biol 9, 112-124. 

Van Nostrand, W. E., Schmaier, A. H., Farrow, J. S., Cines, D. B., and Cunningham, 
D. D. (1991a). Protease nexin-2/amyloid beta-protein precursor in blood is a 
platelet-specific protein. Biochem Biophys Res Commun 175, 15-21. 

Van Nostrand, W. E., Schmaier, A. H., Farrow, J. S., and Cunningham, D. D. (1990). 
Protease nexin-II (amyloid beta-protein precursor): a platelet alpha-granule 
protein. Science 248, 745-748. 

Van Nostrand, W. E., Schmaier, A. H., Farrow, J. S., and Cunningham, D. D. 
(1991b). Platelet protease nexin-2/amyloid beta-protein precursor. Possible 
pathologic and physiologic functions. Ann N Y Acad Sci 640, 140-144. 

Van Nostrand, W. E., Wagner, S. L., Suzuki, M., Choi, B. H., Farrow, J. S., Geddes, 
J. W., Cotman, C. W., and Cunningham, D. D. (1989). Protease nexin-II, a potent 
antichymotrypsin, shows identity to amyloid beta-protein precursor. Nature 341, 
546-549. 

Van Rheenen, J., Achame, E. M., Janssen, H., Calafat, J., and Jalink, K. (2005). PIP2 
signaling in lipid domains: a critical re-evaluation. EMBO J 24, 1664-1673. 

Van Rossum, D. B., Patterson, R. L., Sharma, S., Barrow, R. K., Kornberg, M., Gill, 
D. L., and Snyder, S. H. (2005). Phospholipase Cgamma1 controls surface 
expression of TRPC3 through an intermolecular PH domain. Nature 434, 99-104. 

Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M., and Bilanges, B. (2010). 
The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell 
Biol 11, 329-341. 



 223 

Varnai, P., and Balla, T. (1998). Visualization of phosphoinositides that bind 
pleckstrin homology domains: calcium- and agonist-induced dynamic changes 
and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 
143, 501-510. 

Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., 
Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., 
Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess, T., 
Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. (1999). Beta-
secretase cleavage of Alzheimer’s amyloid precursor protein by the 
transmembrane aspartic protease BACE. Science 286, 735-741. 

Vella, L. J., and Cappai, R. (2012). Identification of a novel amyloid precursor 
protein processing pathway that generates secreted N-terminal fragments. FASEB 
J 26, 2930-2940. 

Verghese, P. B., Castellano, J. M., Garai, K., Wang, Y., Jiang, H., Shah, A., Bu, G., 
Frieden, C., and Holtzman, D. M. (2013). ApoE influences amyloid-beta (Abeta) 
clearance despite minimal apoE/Abeta association in physiological conditions. 
Proc Natl Acad Sci U S A  

Verret, L., Jankowsky, J. L., Xu, G. M., Borchelt, D. R., and Rampon, C. (2007). 
Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn 
neurons derived from adult hippocampal neurogenesis. J Neurosci 27, 6771-6780. 

Verstreken, P., Koh, T. W., Schulze, K. L., Zhai, R. G., Hiesinger, P. R., Zhou, Y., 
Mehta, S. Q., Cao, Y., Roos, J., and Bellen, H. J. (2003). Synaptojanin is recruited 
by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733-748. 

Villa, A., Latasa, M. J., and Pascual, A. (2001). Nerve growth factor modulates the 
expression and secretion of beta-amyloid precursor protein through different 
mechanisms in PC12 cells. J Neurochem 77, 1077-1084. 

Villemagne, V. L., Perez, K. A., Pike, K. E., Kok, W. M., Rowe, C. C., White, A. R., 
Bourgeat, P., Salvado, O., Bedo, J., Hutton, C. A., Faux, N. G., Masters, C. L., 
and Barnham, K. J. (2010). Blood-borne amyloid-beta dimer correlates with 
clinical markers of Alzheimer’s disease. J Neurosci 30, 6315-6322. 

Villemagne, V. L., Pike, K. E., Darby, D., Maruff, P., Savage, G., Ng, S., 
Ackermann, U., Cowie, T. F., Currie, J., Chan, S. G., Jones, G., Tochon-Danguy, 
H., O’Keefe, G., Masters, C. L., and Rowe, C. C. (2008). Abeta deposits in older 
non-demented individuals with cognitive decline are indicative of preclinical 
Alzheimer’s disease. Neuropsychologia 46, 1688-1697. 

Vingtdeux, V., and Marambaud, P. (2012). Identification and biology of alpha-
secretase. J Neurochem 120 Suppl 1, 34-45. 

Vinters, H. V., Nishimura, G. S., Secor, D. L., and Pardridge, W. M. (1990). 
Immunoreactive A4 and gamma-trace peptide colocalization in amyloidotic 
arteriolar lesions in brains of patients with Alzheimer’s disease. Am J Pathol 137, 
233-240. 



 224 

Von Koch, C. S., Zheng, H., Chen, H., Trumbauer, M., Thinakaran, G., van der 
Ploeg, L. H., Price, D. L., and Sisodia, S. S. (1997). Generation of APLP2 KO 
mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol 
Aging 18, 661-669. 

Von Rotz, R. C., Kohli, B. M., Bosset, J., Meier, M., Suzuki, T., Nitsch, R. M., and 
Konietzko, U. (2004). The APP intracellular domain forms nuclear multiprotein 
complexes and regulates the transcription of its own precursor. J Cell Sci 117, 
4435-4448. 

Waldron, E., Isbert, S., Kern, A., Jaeger, S., Martin, A. M., Hebert, S. S., Behl, C., 
Weggen, S., De Strooper, B., and Pietrzik, C. U. (2008). Increased AICD 
generation does not result in increased nuclear translocation or activation of target 
gene transcription. Exp Cell Res 314, 2419-2433. 

Wallace, M. A. (1994). Effects of Alzheimer’s disease-related beta amyloid protein 
fragments on enzymes metabolizing phosphoinositides in brain. Biochim Biophys 
Acta 1227, 183-187. 

Wallace, W. C., Akar, C. A., and Lyons, W. E. (1997a). Amyloid precursor protein 
potentiates the neurotrophic activity of NGF. Brain Res Mol Brain Res 52, 201-
212. 

Wallace, W. C., Akar, C. A., Lyons, W. E., Kole, H. K., Egan, J. M., and Wolozin, 
B. (1997b). Amyloid precursor protein requires the insulin signaling pathway for 
neurotrophic activity. Brain Res Mol Brain Res 52, 213-227. 

Walsh, D. M., Hartley, D. M., Kusumoto, Y., Fezoui, Y., Condron, M. M., Lomakin, 
A., Benedek, G. B., Selkoe, D. J., and Teplow, D. B. (1999). Amyloid beta-
protein fibrillogenesis. Structure and biological activity of protofibrillar 
intermediates. J Biol Chem 274, 25945-25952. 

Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., 
Rowan, M. J., and Selkoe, D. J. (2002). Naturally secreted oligomers of amyloid 
beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 
416, 535-539. 

Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B. 
(1997). Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar 
intermediate. J Biol Chem 272, 22364-22372. 

Wang, B., Yang, W., Wen, W., Sun, J., Su, B., Liu, B., Ma, D., Lv, D., Wen, Y., Qu, 
T., Chen, M., Sun, M., Shen, Y., and Zhang, X. (2010). Gamma-secretase gene 
mutations in familial acne inversa. Science 330, 1065. 

Wang, J., and Richards, D. A. (2012). Segregation of PIP2 and PIP3 into distinct 
nanoscale regions within the plasma membrane. Biol Open 1, 857-862. 

Wang, P., Yang, G., Mosier, D. R., Chang, P., Zaidi, T., Gong, Y. D., Zhao, N. M., 
Dominguez, B., Lee, K. F., Gan, W. B., and Zheng, H. (2005). Defective 
neuromuscular synapses in mice lacking amyloid precursor protein (APP) and 
APP-Like protein 2. J Neurosci 25, 1219-1225. 



 225 

Wang, Y., and Ha, Y. (2004). The X-ray structure of an antiparallel dimer of the 
human amyloid precursor protein E2 domain. Mol Cell 15, 343-353. 

Wang, Z., Wang, B., Yang, L., Guo, Q., Aithmitti, N., Songyang, Z., and Zheng, H. 
(2009). Presynaptic and postsynaptic interaction of the amyloid precursor protein 
promotes peripheral and central synaptogenesis. J Neurosci 29, 10788-10801. 

Ward, A., Tardiff, S., Dye, C., and Arrighi, H. M. (2013). Rate of conversion from 
prodromal Alzheimer’s disease to Alzheimer’s dementia: a systematic review of 
the literature. Dement Geriatr Cogn Dis Extra 3, 320-332. 

Wasco, W., Bupp, K., Magendantz, M., Gusella, J. F., Tanzi, R. E., and Solomon, F. 
(1992). Identification of a mouse brain cDNA that encodes a protein related to the 
Alzheimer disease-associated amyloid beta protein precursor. Proc Natl Acad Sci 
U S A 89, 10758-10762. 

Wasco, W., Gurubhagavatula, S., Paradis, M. D., Romano, D. M., Sisodia, S. S., 
Hyman, B. T., Neve, R. L., and Tanzi, R. E. (1993). Isolation and characterization 
of APLP2 encoding a homologue of the Alzheimer’s associated amyloid beta 
protein precursor. Nat Genet 5, 95-100. 

Watton, S. J., and Downward, J. (1999). Akt/PKB localisation and 3’ 
phosphoinositide generation at sites of epithelial cell-matrix and cell-cell 
interaction. Curr Biol 9, 433-436. 

Weber, S. S., Ragaz, C., Reus, K., Nyfeler, Y., and Hilbi, H. (2006). Legionella 
pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative 
vacuole. PLoS Pathog 2, e46. 

Weidemann, A., Eggert, S., Reinhard, F. B., Vogel, M., Paliga, K., Baier, G., 
Masters, C. L., Beyreuther, K., and Evin, G. (2002). A novel epsilon-cleavage 
within the transmembrane domain of the Alzheimer amyloid precursor protein 
demonstrates homology with Notch processing. Biochemistry 41, 2825-2835. 

Weidemann, A., Konig, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C. L., 
and Beyreuther, K. (1989). Identification, biogenesis, and localization of 
precursors of Alzheimer’s disease A4 amyloid protein. Cell 57, 115-126. 

Weisgraber, K. H., and Mahley, R. W. (1978). Apoprotein (E--A-II) complex of 
human plasma lipoproteins. I. Characterization of this mixed disulfide and its 
identification in a high density lipoprotein subfraction. J Biol Chem 253, 6281-
6288. 

Wen, P. J., Osborne, S. L., and Meunier, F. A. (2012). Phosphoinositides in 
neuroexocytosis and neuronal diseases. Curr Top Microbiol Immunol 362, 87-98. 

Weyer, S. W., Klevanski, M., Delekate, A., Voikar, V., Aydin, D., Hick, M., 
Filippov, M., Drost, N., Schaller, K. L., Saar, M., Vogt, M. A., Gass, P., Samanta, 
A., Jaschke, A., Korte, M., Wolfer, D. P., Caldwell, J. H., and Muller, U. C. 
(2011). APP and APLP2 are essential at PNS and CNS synapses for transmission, 
spatial learning and LTP. EMBO J 30, 2266-2280. 



 226 

Whitman, M., Kaplan, D., Roberts, T., and Cantley, L. (1987). Evidence for two 
distinct phosphatidylinositol kinases in fibroblasts. Implications for cellular 
regulation. Biochem J 247, 165-174. 

Wiedemann, C., Schafer, T., Burger, M. M., and Sihra, T. S. (1998). An essential 
role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in 
neurotransmitter release. J Neurosci 18, 5594-5602. 

Willem, M., Dewachter, I., Smyth, N., Van Dooren, T., Borghgraef, P., Haass, C., 
and Van Leuven, F. (2004). beta-site amyloid precursor protein cleaving enzyme 
1 increases amyloid deposition in brain parenchyma but reduces cerebrovascular 
amyloid angiopathy in aging BACE x APP[V717I] double-transgenic mice. Am J 
Pathol 165, 1621-1631. 

Willem, M., Garratt, A. N., Novak, B., Citron, M., Kaufmann, S., Rittger, A., 
DeStrooper, B., Saftig, P., Birchmeier, C., and Haass, C. (2006). Control of 
peripheral nerve myelination by the beta-secretase BACE1. Science 314, 664-666. 

Williamson, T. G., Mok, S. S., Henry, A., Cappai, R., Lander, A. D., Nurcombe, V., 
Beyreuther, K., Masters, C. L., and Small, D. H. (1996). Secreted glypican binds 
to the amyloid precursor protein of Alzheimer’s disease (APP) and inhibits APP-
induced neurite outgrowth. J Biol Chem 271, 31215-31221. 

Winkler, E., Kamp, F., Scheuring, J., Ebke, A., Fukumori, A., and Steiner, H. (2012). 
Generation of Alzheimer disease-associated amyloid beta42/43 peptide by 
gamma-secretase can be inhibited directly by modulation of membrane thickness. 
J Biol Chem 287, 21326-21334. 

Wischik, C. M., Novak, M., Thogersen, H. C., Edwards, P. C., Runswick, M. J., 
Jakes, R., Walker, J. E., Milstein, C., Roth, M., and Klug, A. (1988). Isolation of a 
fragment of tau derived from the core of the paired helical filament of Alzheimer 
disease. Proc Natl Acad Sci U S A 85, 4506-4510. 

Wisniewski, H. M., Narang, H. K., and Terry, R. D. (1976). Neurofibrillary tangles 
of paired helical filaments. J Neurol Sci 27, 173-181. 

Wisniewski, T., Castano, E. M., Golabek, A., Vogel, T., and Frangione, B. (1994). 
Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J 
Pathol 145, 1030-1035. 

Wood, J. G., Mirra, S. S., Pollock, N. J., and Binder, L. I. (1986). Neurofibrillary 
tangles of Alzheimer disease share antigenic determinants with the axonal 
microtubule-associated protein tau (tau). Proc Natl Acad Sci U S A 83, 4040-
4043. 

Wood, S. J., Chan, W., and Wetzel, R. (1996). Seeding of A beta fibril formation is 
inhibited by all three isotypes of apolipoprotein E. Biochemistry 35, 12623-
12628. 

Wu, B., Kitagawa, K., Zhang, N. Y., Liu, B., and Inagaki, C. (2004). 
Pathophysiological concentrations of amyloid beta proteins directly inhibit rat 



 227 

brain and recombinant human type II phosphatidylinositol 4-kinase activity. J 
Neurochem 91, 1164-1170. 

Wu, F., Matsuoka, Y., Mattson, M. P., and Yao, P. J. (2009). The clathrin assembly 
protein AP180 regulates the generation of amyloid-beta peptide. Biochem 
Biophys Res Commun 385, 247-250. 

Wu, L., Bauer, C. S., Zhen, X. G., Xie, C., and Yang, J. (2002). Dual regulation of 
voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419, 947-952. 

Wu, W., Li, H., Navaneetham, D., Reichenbach, Z. W., Tuma, R. F., and Walsh, P. 
N. (2012). The kunitz protease inhibitor domain of protease nexin-2 inhibits factor 
XIa and murine carotid artery and middle cerebral artery thrombosis. Blood 120, 
671-677. 

Wymann, M. (2012). PI3Ks-Drug Targets in Inflammation and Cancer. Subcell 
Biochem 58, 111-181. 

Wymann, M. P., and Schneiter, R. (2008). Lipid signalling in disease. Nat Rev Mol 
Cell Biol 9, 162-176. 

Xiao, Q., Gil, S. C., Yan, P., Wang, Y., Han, S., Gonzales, E., Perez, R., Cirrito, J. 
R., and Lee, J. M. (2012). Role of Phosphatidylinositol Clathrin Assembly 
Lymphoid-Myeloid Leukemia (PICALM) in Intracellular Amyloid Precursor 
Protein (APP) Processing and Amyloid Plaque Pathogenesis. J Biol Chem 287, 
21279-21289. 

Xu, F., Davis, J., Miao, J., Previti, M. L., Romanov, G., Ziegler, K., and Van 
Nostrand, W. E. (2005). Protease nexin-2/amyloid beta-protein precursor limits 
cerebral thrombosis. Proc Natl Acad Sci U S A 102, 18135-18140. 

Xu, F., Previti, M. L., Nieman, M. T., Davis, J., Schmaier, A. H., and Van Nostrand, 
W. E. (2009). AbetaPP/APLP2 family of Kunitz serine proteinase inhibitors 
regulate cerebral thrombosis. J Neurosci 29, 5666-5670. 

Xu, F., Previti, M. L., and Van Nostrand, W. E. (2007). Increased severity of 
hemorrhage in transgenic mice expressing cerebral protease nexin-2/amyloid beta-
protein precursor. Stroke 38, 2598-2601. 

Yamaguchi, H., Hirai, S., Morimatsu, M., Shoji, M., and Harigaya, Y. (1988). 
Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta 
Neuropathol 77, 113-119. 

Yamazaki, T., Koo, E. H., and Selkoe, D. J. (1996). Trafficking of cell-surface 
amyloid beta-protein precursor. II. Endocytosis, recycling and lysosomal targeting 
detected by immunolocalization. J Cell Sci 109, 999-1008. 

Yamazaki, T., Koo, E. H., and Selkoe, D. J. (1997). Cell surface amyloid beta-
protein precursor colocalizes with beta 1 integrins at substrate contact sites in 
neural cells. J Neurosci 17, 1004-1010. 



 228 

Yan, R., Bienkowski, M. J., Shuck, M. E., Miao, H., Tory, M. C., Pauley, A. M., 
Brashier, J. R., Stratman, N. C., Mathews, W. R., Buhl, A. E., Carter, D. B., 
Tomasselli, A. G., Parodi, L. A., Heinrikson, R. L., and Gurney, M. E. (1999). 
Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase 
activity. Nature 402, 533-537. 

Yang, D. S., Small, D. H., Seydel, U., Smith, J. D., Hallmayer, J., Gandy, S. E., and 
Martins, R. N. (1999). Apolipoprotein E promotes the binding and uptake of beta-
amyloid into Chinese hamster ovary cells in an isoform-specific manner. 
Neuroscience 90, 1217-1226. 

Yang, D. S., Smith, J. D., Zhou, Z., Gandy, S. E., and Martins, R. N. (1997). 
Characterization of the binding of amyloid-beta peptide to cell culture-derived 
native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human 
plasma. J Neurochem 68, 721-725. 

Yang, Z., Cool, B. H., Martin, G. M., and Hu, Q. (2006). A dominant role for FE65 
(APBB1) in nuclear signaling. J Biol Chem 281, 4207-4214. 

Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., 
and Neve, R. L. (1989). Neurotoxicity of a fragment of the amyloid precursor 
associated with Alzheimer’s disease. Science 245, 417-420. 

Yankner, B. A., Duffy, L. K., and Kirschner, D. A. (1990). Neurotrophic and 
neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. 
Science 250, 279-282. 

Yano, H., Nakanishi, S., Kimura, K., Hanai, N., Saitoh, Y., Fukui, Y., Nonomura, Y., 
and Matsuda, Y. (1993). Inhibition of histamine secretion by wortmannin through 
the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J Biol Chem 
268, 25846-25856. 

Yao, P. J., Morsch, R., Callahan, L. M., and Coleman, P. D. (1999). Changes in 
synaptic expression of clathrin assembly protein AP180 in Alzheimer’s disease 
analysed by immunohistochemistry. Neuroscience 94, 389-394. 

Young-Pearse, T. L., Chen, A. C., Chang, R., Marquez, C., and Selkoe, D. J. (2008). 
Secreted APP regulates the function of full-length APP in neurite outgrowth 
through interaction with integrin beta1. Neural Dev 3, 15. 

Young, I. D., Willmer, J. P., and Kisilevsky, R. (1989). The ultrastructural 
localization of sulfated proteoglycans is identical in the amyloids of Alzheimer’s 
disease and AA, AL, senile cardiac and medullary carcinoma-associated 
amyloidosis. Acta Neuropathol 78, 202-209. 

Yu, C., Kim, S. H., Ikeuchi, T., Xu, H., Gasparini, L., Wang, R., and Sisodia, S. S. 
(2001). Characterization of a presenilin-mediated amyloid precursor protein 
carboxyl-terminal fragment gamma. Evidence for distinct mechanisms involved in 
gamma -secretase processing of the APP and Notch1 transmembrane domains. J 
Biol Chem 276, 43756-43760. 



 229 

Yu, G., Nishimura, M., Arawaka, S., Levitan, D., Zhang, L., Tandon, A., Song, Y. 
Q., Rogaeva, E., Chen, F., Kawarai, T., Supala, A., Levesque, L., Yu, H., Yang, 
D. S., Holmes, E., Milman, P., Liang, Y., Zhang, D. M., Xu, D. H., Sato, C., 
Rogaev, E., Smith, M., Janus, C., Zhang, Y., Aebersold, R., Farrer, L. S., Sorbi, 
S., Bruni, A., Fraser, P., and St George-Hyslop, P. (2000). Nicastrin modulates 
presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. 
Nature 407, 48-54. 

Yu, J. W., Mendrola, J. M., Audhya, A., Singh, S., Keleti, D., DeWald, D. B., 
Murray, D., Emr, S. D., and Lemmon, M. A. (2004). Genome-wide analysis of 
membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell 13, 
677-688. 

Zambrano, N., Bruni, P., Minopoli, G., Mosca, R., Molino, D., Russo, C., Schettini, 
G., Sudol, M., and Russo, T. (2001). The beta-amyloid precursor protein APP is 
tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl 
protoncogene. J Biol Chem 276, 19787-19792. 

Zhang, B., Koh, Y. H., Beckstead, R. B., Budnik, V., Ganetzky, B., and Bellen, H. J. 
(1998). Synaptic vesicle size and number are regulated by a clathrin adaptor 
protein required for endocytosis. Neuron 21, 1465-1475. 

Zhang, H., Ding, J., Tian, W., Wang, L., Huang, L., Ruan, Y., Lu, T., Sha, Y., and 
Zhang, D. (2009). Ganglioside GM1 binding the N-terminus of amyloid precursor 
protein. Neurobiol Aging 30, 1245-1253. 

Zhang, X., Jefferson, A. B., Auethavekiat, V., and Majerus, P. W. (1995). The 
protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-
phosphatase. Proc Natl Acad Sci U S A 92, 4853-4856. 

Zhang, Y. W., Wang, R., Liu, Q., Zhang, H., Liao, F. F., and Xu, H. (2007). 
Presenilin/gamma-secretase-dependent processing of beta-amyloid precursor 
protein regulates EGF receptor expression. Proc Natl Acad Sci U S A 104, 10613-
10618. 

Zhang, Z., Nadeau, P., Song, W., Donoviel, D., Yuan, M., Bernstein, A., and 
Yankner, B. A. (2000). Presenilins are required for gamma-secretase cleavage of 
beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2, 463-465. 

Zhao, G., Cui, M. Z., Mao, G., Dong, Y., Tan, J., Sun, L., and Xu, X. (2005). 
gamma-Cleavage is dependent on zeta-cleavage during the proteolytic processing 
of amyloid precursor protein within its transmembrane domain. J Biol Chem 280, 
37689-37697. 

Zhao, G., Mao, G., Tan, J., Dong, Y., Cui, M. Z., Kim, S. H., and Xu, X. (2004). 
Identification of a new presenilin-dependent zeta-cleavage site within the 
transmembrane domain of amyloid precursor protein. J Biol Chem 279, 50647-
50650. 

Zheng, H., Jiang, M., Trumbauer, M. E., Sirinathsinghji, D. J., Hopkins, R., Smith, 
D. W., Heavens, R. P., Dawson, G. R., Boyce, S., Conner, M. W., Stevens, K. A., 



 230 

Slunt, H. H., Sisoda, S. S., Chen, H. Y., and Van der Ploeg, L. H. (1995). beta-
Amyloid precursor protein-deficient mice show reactive gliosis and decreased 
locomotor activity. Cell 81, 525-531. 

Zheng, H., and Koo, E. H. (2006). The amyloid precursor protein: beyond amyloid. 
Mol Neurodegener 1, 5. 

Zhou, D., Noviello, C., D’Ambrosio, C., Scaloni, A., and D’Adamio, L. (2004). 
Growth factor receptor-bound protein 2 interaction with the tyrosine-
phosphorylated tail of amyloid beta precursor protein is mediated by its Src 
homology 2 domain. J Biol Chem 279, 25374-25380. 

Zoete, V., Cuendet, M. A., Grosdidier, A., and Michielin, O. (2011). SwissParam: a 
fast force field generation tool for small organic molecules. J Comput Chem 32, 
2359-2368. 

Zubenko, G. S., Stiffler, J. S., Hughes, H. B., and Martinez, A. J. (1999). Reductions 
in brain phosphatidylinositol kinase activities in Alzheimer’s disease. Biol 
Psychiatry 45, 731-736. 

  



 231 

Appendices 

Appendix I. Materials 

Material  Supplier 
30% Acrylamide/Bis Solution Bio Rad Laboratories Pty. Ltd, 

Gladesville, Australia 
37:4 PI (LM-1502) Avanti Polar Lipids Inc. Alabaster, USA. 
37:4 PI(3,4,5)P3 (LM-1906) Avanti Polar Lipids Inc. Alabaster, USA. 
37:4 PI(3,4)P2 (LM-1903) Avanti Polar Lipids Inc. Alabaster, USA. 
37:4 PI(4,5)P2 (LM-1904) Avanti Polar Lipids Inc. Alabaster, USA. 
37:4 PI(4)P (LM-1900) Avanti Polar Lipids Inc. Alabaster, USA. 
4-(2-Hydroxyethyl)piperazine-1- 
ethanesulfonic acid sodium salt (NA-
HEPES) 

Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

4',6-Diamidino-2-Phenylindole, 
Dihydrochloride (DAPI) 

Life Technologies Australia Pty. Ltd., 
Mulgrave, Australia. 

APP N-terminal domain recombinant protein 
corresponding to APP amino acids 18 – 286 
with an C-terminal 6xHis tag (APP-E1)  

ProSci Inc., Poway, USA 

sAPPα* recombinant protein (APP-695 
isoform residues 18-612) with a N-terminal 
6xHis tag 

Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Acetonitrile (Lichrosolv grade) Merck Australia Pty. Ltd, Kilsyth, 
Australia 

AlamarBlue® reagent Life Technologies Australia Pty. Ltd., 
Mulgrave, Australia. 

B27 supplement Life Technologies Australia Pty. Ltd., 
Mulgrave, Australia. 

Bio Rad DC protein assay kit Bio Rad Laboratories Pty. Ltd, 
Gladesville, Australia 

Calcium chloride Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Chloroform  Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

cOmplete ultra protease inhibitor tablets Roche Diagnostics Australia Pty. Ltd. 
Castle Hill, Australia 

Dako mounting medium Dako Australia Pty. Ltd. Campbellfield, 
Australia. 

Deoxyribonuclease-1 Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Dextrose Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

diC8PI(4,5)P2 Echelon Bioscience Inc., Salt Lake City, 
USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Disodium hydrogen phosphate Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Dulbecco’s modified Eagle’s medium 
(DMEM) 

Life Technologies Australia Pty. Ltd., 
Mulgrave, Australia. 

Ethylamine British Drug Houses Ltd., Poole, UK 
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Appendix I. Materials 

Material  Supplier 
Fatty-acid free bovine serum albumin (BSA) Sigma-Aldrich Pty. Ltd., Castle Hill, 

Australia 
Fetal bovine serum (FBS) Life Technologies Australia Pty. Ltd., 

Mulgrave, Australia. 
GlutaMAXTM Life Technologies Australia Pty. Ltd., 

Mulgrave, Australia. 
Glycerol Sigma-Aldrich Pty. Ltd., Castle Hill, 

Australia 
Glycine Sigma-Aldrich Pty. Ltd., Castle Hill, 

Australia 
Hanks Balanced salt solution (HBSS) Life Technologies Australia Pty. Ltd., 

Mulgrave, Australia. 
Human recombinant basic fibroblast growth 
factor (FGF2) 

Peprotech Inc., Rocky Hill, USA 

Human recombinant epidermal growth factor 
(EGF) 

Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Hybond C Extra nitrocellulose membrane GE Healthcare Pty. Ltd., Rydalmere, 
Australia 

Hydrochloric Acid (37%) Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Igepal CA-630 Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Immobilon chemiluminescent substrate Millipore Australia Pty. Ltd, Kilsyth, 
Australia 

Magnesium chloride  Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Membrane Lipid StripsTM Echelon Bioscience Inc., Salt Lake City, 
USA 

Methanol (HPLC grade) Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Neurobasal medium Life Technologies Australia Pty. Ltd., 
Mulgrave, Australia. 

Nitric Acid Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Non-fat dry milk powder Woolworths Ltd., Bella Vista, Australia. 
Papain Sigma-Aldrich Pty. Ltd., Castle Hill, 

Australia 
Paraformaldehyde Sigma-Aldrich Pty. Ltd., Castle Hill, 

Australia 
Penicillin/streptomycin Life Technologies Australia Pty. Ltd., 

Mulgrave, Australia. 
PhosStop phosphatase inhibitor tablets Roche Diagnostics Australia Pty. Ltd. 

Castle Hill, Australia 
PI(3,4,5)P3 Biosensor (recombinant GST-
tagged pleckstrin homology domain of 
general receptor for phosphoinositides-1)* 

Echelon Bioscience Inc., Salt Lake City, 
USA 

PI(3)P biosensor (recombinant GST-tagged 
PX domain of p40phox)* 

Echelon Bioscience Inc., Salt Lake City, 
USA 

PI(4,5)P2 biosensor (recombinant GST 
tagged pleckstrin homology domain of 
phospholipase C-δ1)* 

Echelon Bioscience Inc., Salt Lake City, 
USA 
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Appendix I. Materials 

Material  Supplier 
PI(4)P biosensor (recombinant GST-tagged 
SidC_3C domain)* 

Echelon Bioscience Inc., Salt Lake City, 
USA 

PIP StripsTM 

 
Echelon Bioscience Inc., Salt Lake City, 
USA 

Poly-L-Lysine Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Polyvinylidene fluoride membrane (PVDF) Bio Rad Laboratories Pty. Ltd, 
Gladesville, Australia 

Porcine mucosal heparin Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Sodium chloride Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Sodium deoxycholate Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Sodium phosphate monobasic dihydrate Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

SphingoStripsTM Echelon Bioscience Inc., Salt Lake City, 
USA 

Tris Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Triton X-100 Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Trypan Blue Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

TrypLETM Life Technologies Australia Pty. Ltd., 
Mulgrave, Australia. 

Tween-20 Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

Wortmannin DMSO solution Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

β-Mercaptoethanol Sigma-Aldrich Pty. Ltd., Castle Hill, 
Australia 

* During the course of the study, it was observed that these recombinant proteins are 
unstable, and will loose the ability to bind to PIP over time. For best results, aliquots 
should be flash frozen in liquid nitrogen, stored at -80°C, and only thawed once.  
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Appendix II. Cell culture media, buffers and solutions 

Cell culture media 
Neurobasal plating 
medium 

Neurobasal medium supplemented with 10% v/v FBS, 2 % v/v 
B27 supplement, 1 mM GlutaMAXTM, 100 U mL-1 penicillin and 
100 µg mL-1 streptomycin 

Neurobasal 
maintenance 
medium 

Neurobasal medium supplemented with 2 % v/v B27 
supplement, 1 mM GlutamaxTM, 100 U mL-1 penicillin and 100 
µg mL-1 streptomycin. 

Neurosphere 
proliferation 
medium 

DMEM supplemented with 2% B27, 100 U mL-1 penicillin, 100 
U mL-1 streptomycin, 20 ng mL-1 human FGF2 and human EGF 
20 ng mL-1 

Buffers and solutions 
Phosphate buffered 
saline (PBS) 

154 mM NaCl, 8 mM NaH2PO4, 2 mM Na2HPO4, pH 7.3  

Imaging buffer 125 mM NaCl, 5 mM KCL, 10 mM dextrose, 1 mM MgCl2, 2 
mM CaCl2, 10 mM Na-HEPES, 2% B27 supplement, pH 7.5.  

Tris-buffered saline 
with tween (TBS-
T; protein-lipid 
overlay assay)  

150 mM NaCl, 50 mM Tris-base, pH 7.5, 0.1% Tween-20. 

TBS-T (western 
blotting) 

150 mM NaCl, 25 mM Tris-base, pH 8, 0.2% Tween-20 

SDS-PAGE 
running buffer 

25 mM Tris, 192 mM Glycine, 0.1% SDS 

Laemmli sample 
buffer 

10% β-mercaptoethanol, 2% SDS, 50 mM Tris pH 6.8, 10% 
glycerol 

Cell lysis buffer 150 mM NaCl, 50 mM Tris, 0.5% w/v sodium-deoxycholate, 1% 
v/v Igepal-CA630, 0.1% SDS, pH 7.4 
 

Electroblotting 
buffer 

25 mM Tris, 192 mM Glycine, 20% v/v Ethanol 
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Appendix III. Primary antibodies used in the study 

Antigen 
[clone] 

Type Species Applicati
on 

Dilution Supplier (Catalogue No.) 

6xHis Polyclonal 
(ChIP Grade) 

Rabbit ICC 
PLO 

1:1000 
1:3000 

Abcam Ltd., Cambridge, UK. 
(ab9108) 

APP (a.a.66-
81) 
[22C11] 

Monoclonal 
IgG 

Mouse PLO 1:1000 Millipore Australia Pty. Ltd, 
Kilsyth, Australia. (MAB348) 

APP/Aβ 
(a.a.1-16 of 
Aβ) 
[6E10] 

Monoclonal 
IgG1 

Mouse PLO 
WB 

1:1000 
1:2000 

Covance Pty. Ltd., North 
Ryde, Australia. 
(SIG-39300) 

GAPDH Polyclonal Rabbit WB 1:20,000 Millipore Australia Pty. Ltd, 
Kilsyth, Australia. 
(ABS16) 

GFAP Polyclonal Rabbit ICC 1:1000 Millipore Australia Pty. Ltd, 
Kilsyth, Australia. (AB5804) 

GST 
[GST-R 6G9] 

Monoclonal 
IgG 

Rat ICC 1:500 Sigma-Aldrich Pty. Ltd., 
Castle Hill, Australia. 
(SAB4200055) 

Heparan 
Sulfate [F58-
10E4] epitope 

Monoclonal 
IgM 

Mouse ICC 1:250 Seikagaku Corporation 
Tokyo, Japan. 
(370255) 

MAP2 Polyclonal Rabbit ICC 1:1000 Millipore Australia Pty. Ltd, 
Kilsyth Australia. (AB5622) 

PanAkt 
[C67E7] 

Monoclonal 
IgG 

Rabbit WB 1:1000 
 

Cell Signalling Technology 
Inc. Boston, USA (4691) 

PhosphoAkt-
Ser473 
[D9E] 

Monoclonal 
IgG 

Rabbit WB 1:1000 Cell Signalling Technology 
Inc. Boston, USA (4060) 

PI(3,4,5)P3 Monoclonal 
IgM 

Mouse ICC 1:500 Echelon Bioscience Inc., Salt 
Lake City, USA. (Z-P345) 

PI(3,5)P2 Monoclonal 
IgM 

Mouse ICC 1:500 Echelon Bioscience Inc., Salt 
Lake City, USA. (Z-P035) 

PI(3)P Monoclonal 
IgM 

Mouse ICC 1:500 Echelon Bioscience Inc., Salt 
Lake City, USA. (Z-P003) 

PI(4,5)P2 Monoclonal 
IgM 

Mouse ICC 1:500 Echelon Bioscience Inc., Salt 
Lake City, USA. (Z-P045) 

PI(4)P Monoclonal 
IgM 

Mouse ICC 1:500 Echelon Bioscience Inc., Salt 
Lake City, USA. (Z-P004) 

Abbreviations: PLO – protein-lipid overlay assay, ICC – immunocytochemistry, WB – western blot, 
a.a. – amino acids. Monoclonal antibody clones are indicated in square brackets. Antibody dilutions 
refer to 1 mg mL-1 stocks 
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Appendix IV. Secondary antibodies used in the study 

 
Antibody Conjugate Application Dilution Supplier (Catalogue No.) 
Goat anti-
mouse IgG 

Alexa-594 ICC 1:1000 Life Technologies Australia 
Pty. Ltd., Mulgrave, 
Australia. (A-11037) 

Goat anti-
mouse IgG 

Alexa-488 ICC 1:1000 Life Technologies Australia 
Pty. Ltd., Mulgrave, 
Australia. (A-11029) 

Goat anti-
mouse IgM 

Alexa-594 ICC 1:1000 Life Technologies Australia 
Pty. Ltd., Mulgrave, 
Australia. (A-21044) 

Goat anti-
rat IgG 

Alexa-594 ICC 1:1000 Life Technologies Australia 
Pty. Ltd., Mulgrave, 
Australia. (A-11007) 

Goat anti 
rabbit IgG 

Alexa-488 ICC 1:1000 Life Technologies Australia 
Pty. Ltd., Mulgrave, 
Australia.(A-11034) 

Goat anti 
rabbit 

HRP PLO 
WB 

1:1000 Dako Australia Pty. Ltd., 
Campbellfield, Australia. 
(P044801-2) 

Goat anti-
mouse 

HRP PLO 
WB 

1:5000 
1:5000 

Dako Australia Pty. Ltd., 
Campbellfield, Australia. 
(P044701-2) 

Abbreviations: HRP - Horse-radish peroxidase. PLO – protein-lipid overlay assay, 
ICC – immunocytochemistry, WB – western blot, Ig – Immunoglobulin, Antibody 
dilutions refer to 1 mg mL-1 stocks. 
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