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Abstract 

Restoration of degraded land to combat habitat degradation and deforestation requires 

understanding on adaptive potential of the species. Local adaptation and the geographic 

scale over which the local adaptation occurs raise issue on how well the existing 

genotypes will succeed in the face of increasing pressures from climate change and 

anthropogenic disturbances leading to new environment. This thesis examines genetic 

factors affecting the success of restoration plantings of the Eucalyptus pauciflora subsp. 

pauciflora on the island of Tasmania. Open-pollinated seed and DNA samples were 

collected from 281 trees from 37 native Tasmanian populations across the distribution 

and environmental range of the species and used to provide a quantitative and molecular 

genetics framework to understand local adaptation and guide future environmental 

planting decisions. 

It specifically aims to: i) determine the mating system parameters of E. pauciflora, and 

to explore whether population variation is related to the degree of forest fragmentation 

or altitude; ii) assess the spatial pattern of genetic diversity in chloroplast and nuclear 

molecular markers, to understand historical and contemporary barriers to gene flow; iii) 

explore climate adaptation of the species, through assessing quantitative genetic 

variation in seedling morphology and growth in a glasshouse trial; iv) determine the 

effects of inbreeding, local climate and translocation from mainland Australia on 

genetic variation in performance in Tasmanian field trials up to age 3 years; and vi) 

provide the seed collection guideline based on the above observations. 

Molecular research showed that Tasmanian E. pauciflora has a high outcrossing rate (tm 

= 0.90). Outcrossing rates differed among populations, but this variation was not 

correlated with the degree of forest fragmentation nor with altitude. Nevertheless, 

fragmentation did affect early reproductive output by reducing the number of 

germinants per gram of capsule content. Chloroplast haplotypes showed clear 

geographic structure suggesting three low-altitude glacial refugia and recent 

colonization of high altitude areas. There was little population differentiation in neutral 

nuclear markers, but populations within 27 km were more similar than average. Similar 

significant quantitative genetic structure was also detected in the glasshouse trial, 
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suggesting an operational limit for the definition of a ‘local’ population. Population 

genetic variation was found for 24 of the 25 seedling traits studied. In several cases this 

population differentiation exceeded neutral expectations arguing for the action of 

disruptive selection and that local adaptation has over-ridden historical and 

contemporary gene flow. This is supported by significant correlations with population 

altitude and climate variables, with many seedling traits best related to the maximum 

temperature of the warmest month at the site of origin. 

Integrating mating system parameters into the analysis of the two field trials revealed 

inbreeding depression for growth at the family level, but at the population level 

outcrossing rate did not affect performance. However, population differentiation was 

evident for early-age growth, survival, and susceptibility to drought and herbivory. 

Population differences in early performance appeared to reflect a trade-off between fast 

growth and herbivore susceptibility, with low altitude populations initially growing 

faster but rapidly losing their advantage through increased herbivory. Drought and high 

temperatures at one trial reshaped the fitness profile of the planting, selecting against 

populations from more moist areas. At both trials the Tasmanian populations 

outperformed those from the mainland, arguing against the need for seed translocations 

from mainland Australia. 
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Chapter 1. Introduction 

 

1.1 Habitat fragmentation and tree decline 

Habitat fragmentation is one of the major threats to biodiversity globally contributing to 

the decline and extinction of biodiversity worldwide. This partitioning of original 

vegetation into small isolated fragments, dramatically alters both the biotic and abiotic 

processes in the landscape (Broadhurst and Young 2007; Hobbs and Yates 2003; Young 

et al. 1996). Coupled with tree decline (Close and Davidson 2004) and rapid climate 

change, tree populations are being placed under unprecedented pressures. On the one 

hand, increased deforestation and tree decline have a direct impact on climate change by 

increasing the overall carbon emission and exacerbating anthropogenic climate change 

(IPCC 2007), on the other hand pronounced and rapid climate change has a profound 

impact on the vegetation, including change in current distribution of many tree species 

(Kremer et al. 2014; McKenney et al. 2007; Meshinev et al. 2000), which may lead to a 

cycle of tree decline (Bréda et al. 2006; Sabaté et al. 2002). 

 

Eucalypt forests and woodlands provide vital habitat for a large component of 

Australia’s unique birds and marsupials populations providing nesting sites and hollows 

for dens and food. Following European settlement, significant components of this 

habitat have been lost in Australia through clearing for agricultural purposes and tree 

decline (Yates and Hobbs 1997). Over the last three decades tree decline has reached 

unprecedented rates (Close and Davidson 2004; Jurskis 2005; Neyland 1996; Rice et al. 

2004). Although tree decline has been documented in many states of Australia, its 

severity has been particularly notable on the Tablelands of New South Wales (Jones et 

al. 1990) and the Midlands of Tasmania (Close and Davidson 2004). The Tasmanian 

midlands have more than 50% tree decline with the aerial extent of severe and extreme 

tree decline around 30% (Williams et al. 2010). Tree decline has several causes 

including intensive grazing, introduction of improved pasture species, decreased water 

availability and increasing salinity (Close and Davidson 2004; Kirkpatrick and Bridle 

2007; Neyland 1996; Williams et al. 2010). This has impacted on the quantity, quality 

and connectivity of forest habitat through the landscape.  
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There is increasing interest in tree plantings in the Midlands region of Tasmania for 

carbon sequestration and biodiversity benefits, including enhancing landscape 

connectivity for migration corridors (Bailey et al. 2013). If the habitat and biodiversity 

benefits from such tree plantings are to be optimized, it is important that strategies are 

developed and promoted for the use of local seed source. This might be because the 

reestablishment of ecosystem forms and function is only possible with the local 

populations (Lesica and Allendorf 1999). Whether population is local or not is a matter 

of scale as well as a matter of adaptation (Jones 2003). One of the large concerns in 

establishment of restoration projects is identifying provenances which are best adapted 

to these modified or degraded environments (Broadhurst et al. 2008; Byrne et al. 2011), 

and likely to succeed in the face of long-term climate change (Hoffmann and Sgrò 2011; 

Weeks et al. 2011).  

 

1.2 Genetic issues in restoration: adaptation versus genetic pollution 

Although restoration has been widely used to counter habitat fragmentation and tree 

decline, the extent to which restoration decisions are affected by the choice of genetic 

materials used in the restoration is unclear (McKay et al. 2005). The use of local 

genotypes is often viewed as a safe option, as they are considered to be the best adapted 

to the long term environment of the site and there is less issue with the offsite effects of 

gene flow and potential mal-adaptation increasing establishment success (Broadhurst et 

al. 2008; Hufford and Mazer 2003; Montalvo et al. 1997; O'Brien et al. 2007). Several 

studies have found that local populations can perform better (Goto et al. 2011; Linhart 

and Grant 1996). However, there are often uncertainties on the extent of local 

adaptation, on what is the geographic scale over which local adaptation occurs, and also 

whether the existing local genotypes are the best in the face of increasing pressures from 

climate change and other anthropogenic disturbances leading to a new environment 

(Byrne et al. 2011; Crowe and Parker 2008; Hoffmann and Sgrò 2011; Weeks et al. 

2011).  

 

There is a risk when using local genotypes in restoration of encouraging populations 

which do not contain sufficient genetic variation to ensure an ongoing evolutionary 

potential (Sgrò et al. 2011). As local populations in landscape that need restoration are 
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often severely fragmented and disturbed, there is a risk that local seed may be subject to 

the effects of small population processes. Such processes include increased inbreeding 

leading to inbreeding depression, which may eventually override local adaptation as 

well as genetic drift and loss of genetic variation which can curtail evolutionary 

potential (Kramer and Havens 2009; Mimura et al. 2009; O'Brien and Krauss 2010; 

Vander Mijnsbrugge et al. 2010). Fragmented populations may also be subjected to 

greater hybridization risk (Field et al. 2008) and such invasions may potentially affect 

evolutionary processes by changing the way genes move around the landscape and thus 

lead to poor genetic health of local populations (Bischoff et al. 2010; Hoffmann and 

Sgrò 2011; Mortlock 2000). These concerns have raised the idea that alternative seed 

sourcing strategies such as genetic translocations maybe of potential benefit (Byrne et 

al. 2011; Weeks et al. 2011). 

 

Identifying the seed sourcing strategies that can best cope with an ongoing altered 

environment is a challenging issue in ecological restoration, especially when aiming to 

restore the past system but at the same time build a resilient system for future changes 

(Crowe and Parker 2008; Sgrò et al. 2011). When considering the use of non-local 

genotypes in restoration, care must be taken, as choosing the wrong non local genotypes 

might reduce the success of the restoration project if they are poorly adapted to the new 

environmental conditions. Furthermore, there is a risk of genetic contamination of local 

native populations through gene flow from non-local genotypes (Hufford and Mazer 

2003; Potts et al. 2003). This may result in outbreeding depression or in the worst cases 

complete genetic swamping (Keller et al. 2000; Montalvo et al. 1997). Non-local 

genotypes may even disrupt the local patterns of gene interaction among species 

through flow-on effects at the community level, thus affecting the ecosystems ability to 

adapt to future environmental change (Jones 2013). Nevertheless, under some 

circumstances as discussed above non-local genotypes may have considerable merit 

over local genotype and their success in a given landscape will depend on the strength 

of genotype by environmental interactions and the gene flow dynamics of the species 

(Sgrò et al. 2011). 
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1.3 Evolutionary potential: genetic variation within population, genetic structure, 

gene flow and adaptability 

The capacity of a species to undergo evolutionary adaptation and respond to 

environmental/climate change depends on the presence of genetic variation within the 

species (Hoffmann and Sgrò 2011). Therefore, to understand the adaptability of a 

species or a population, knowledge of the genetic diversity, genetic structure and mating 

system of the species’ is required. The interaction between selection and gene flow 

determines the adaptive potential of species to their local environment (Davis and Shaw 

2001). Gene flow can either promote or restrict local adaptation. The mating system of a 

species describes its mode of gene transmission across generations which affect the 

genetic diversity of the offsprings (Fuchs and Hamrick 2011). Hence mating system 

may affect how populations respond to the environmental change (Levin 2012). Many 

plants, particularly forest tree species have a mixed mating system (Goodwillie et al. 

2005; White et al. 2007). While most forest tree species are predominantly outcrossing, 

some degree of self fertilization is usually present and variations in the level of 

outcrossing can have a major impact on plant fitness due to exposure of deleterious 

genes leading to inbreeding depression in the product of inbreeding (Eckert et al. 2010; 

Lowe et al. 2005). The mating system can be affected by both genetic and ecological 

factors. These factors include floral structure, self-incompatibility mechanisms and the 

ecological circumstances of individual flowers, plants, populations and species, 

including mode of pollination, pollinator type, population size and density and 

population position in the landscape (Charlesworth 2006; Coates et al. 2007).  

 

Anthropogenic fragmentation of populations is one of the important landscape factors 

known to affect the gene flow of forest trees (Lowe et al. 2005; Young et al. 1996). 

Understanding these impacts is important for the management of forest remnants as 

well as the development of restoration plantings based on local seed sources 

(Broadhurst et al. 2008; Weeks et al. 2011). Habitat loss, the reduced stand density and 

potential impact on changing pollinator’s behavior in fragmented population can disrupt 

gene flow dynamics (Sork and Smouse 2006). This disruption can lead to genetic 

erosion and increased inter-population divergence, loss of genetic diversity in the 
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offspring (genetic drift) and increased inbreeding (Bacles and Jump 2011; Lowe et al. 

2005; Young et al. 1996). 

 

There has been considerable research on natural selection and local adaptation in natural 

plant populations (Alberto et al. 2013). However, since many species are used in 

restoration there is often little information on the species used for restoration and even 

when some information is available, this usually involves a small set of populations. 

From a genetic perspective, guiding restoration decisions requires an in-depth 

understanding of several key issues. The extent and scale to which seed sources are 

locally adapted is a key issue for restoration purposes, others include the amount of 

genetic diversity present in the species and how much genetic diversity is required to 

establish and maintain restoration plantings in the long run (McKay et al. 2005). 

Understanding the patterns of genetic diversity across the species is important as it 

underscores the response of species to the evolutionary processes operating under 

current and past environments and helps predict future responses (Neale and Kremer 

2011; White et al. 2007; Finkeldey et al. 2010). The processes of mutation, gene flow, 

recombination, genetic drift and natural selection shape the patterns of genetic variation 

within species. A clear understanding of these patterns will help us in developing 

strategies for the long-term maintenance of plant genetic resources (Rao and Hodgkin 

2002) and restoration (McKay et al. 2005; Vander Mijnsbrugge et al. 2010). This 

understanding requires knowledge of the patterns of neutral genetic diversity as well as 

adaptive genetic variation of the species. The pattern of neutral genetic variation reflects 

the population dynamics and evolutionary processes such as genetic drift, mutation and 

migration that populations have experienced in the past. Adaptive variation additionally 

reflects how natural selection has changed local gene pools to adapt to new 

environments. Genetic information, both molecular and quantitative, can be used to 

identify the extant and scale of adaptive divergence across species’ geographic ranges to 

inform the choice of source populations for restoration. Many molecular markers such 

as microsatellites are considered neutral or nearly neutral to selection, so are useful in 

detecting the patterns of neutral genetic variation (Holderegger et al. 2006). Insights 

into the patterns of adaptive genetic diversity and adaptive potential of a species can be 
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obtained from quantitative genetic studies of functional traits using common garden 

experiments (Kremer et al. 2014).  

 

1.4 Study system 

1.4.1 Choice of species for the study: Eucalyptus pauciflora 

Much of the woodlands in the Midlands and Derwent Valley region of Tasmania once 

occupied by E. pauciflora subsp. pauciflora are now denuded of trees (Close et al. 

2010; Kirkpatrick and Bridle 2007). These areas have been subject to extensive tree 

decline in the last two decades, which is believed to be due to a combination of 

intensive grazing, introduction of improved pasture species and climate change (Close 

et al. 2010; Kirkpatrick and Bridle 2007; Neyland 1996). This dry, mid-altitude region 

is an important link between low-altitude and subalpine forest habitats in Tasmania, and 

there is growing interest in tree plantings in this area to achieve multiple environmental 

outcomes (Close and Davidson 2002). The University of Tasmania in a collaboration 

with Greening Australia, has established a series of long-term experiments to study and 

better optimize the carbon sequestration and biodiversity benefits from restoration 

plantings in these degraded, agriculturally marginal areas using Tasmanian native 

species (Bailey et al. 2013). As E. pauciflora previously occupied the given areas and 

has been successful in earlier restoration plantings (Close and Davidson 2002; Close et 

al. 2010), these experiments have focused on E. pauciflora. 

 

1.4.2 Biology of Eucalyptus pauciflora (Myrtaceae) 

1.4.2.1 Phylogeny/Taxonomy 

Eucalyptus pauciflora belongs to the genus Eucalyptus of Myrtaceae family. Eucalyptus 

is a dominant genus of many Australian woodland and forest ecosystems and comprises 

more than 700 species (Brooker 2000), most of which are endemic to Australia. The 

genus Eucalyptus is divided into 13 subgenera with the largest two subgenera being 

Symphyomyrtus (500 species approximately) and Eucalyptus (100 species 

approximately) (Brooker 2000). Eucalyptus pauciflora, commonly known as the snow 

gum on mainland Australia and the cabbage/weeping gum in Tasmania, belongs to the 

section Cineraceae of the subgenera Eucalyptus. Eucalyptus pauciflora’s name was 

coined by Sieber and published by Sprengel (1827) (cited in: Green 1969a). The species 
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has been documented as comprised of five subspecies (Wiltshire and Potts 2007; 

Boland et al. 2002) while others have reported six subspecies namely subsp. pauciflora, 

subsp. hedraia, subsp. niphophila, subsp. parvifructa, subsp. acerina and subsp. 

debeuzevillei (Nicolle 2006b). The subspecies defined for the species varies from author 

to author. A possible explanation on why it is difficult to define subspecies may be the 

presence of more or less continuous genetic and phenotypic variation of the species with 

the altitude (Pryor 1956). The subspecies varies markedly in habitat and morphology 

(Nicolle 2006b). One of the earliest studies on variation in E. pauciflora was carried out 

by Pryor (1956). Considering subsp. pauciflora, subsp. niphophila, and subsp. 

debeuzevillei, Pryor (1956), observed a close linear correlation of a number of 

characters with altitude, for instance decrease in tree height, leaf length, and bark 

thickness was observed with increasing altitude. However, there is close resemblance of 

some of the subspecies in many attributes, for example subsp. pauciflora and subsp. 

parvifructa closely resemble each other in leaf, bud and fruit morphology but mainly 

differ in the waxy nature of their buds and fruits (Euclid 2006).  

 

1.4.2.2 Natural distribution and ecology 

Eucalyptus pauciflora is one of the most widely distributed eucalypts species in south 

eastern Australia (Williams 1991), occurring on the mainland as well as the island of 

Tasmania. Among the six subspecies of Eucalyptus pauciflora, subsp. pauciflora has 

the widest geographical distribution, ranging from 28° to 42.5° south. It also grows 

across a wide climatic range with the mean annual rainfall of its native distribution 

ranging from approximately 600 to 1900 mm and mean annual temperature ranging 

from 4.1 to 15.4°C with mean annual temperature of 10.08°C (Boland et al. 2002). It 

occurs on wide range of substrate from both sedimentary and igneous origin.  

 

While E. pauciflora usually occurs on well drained soils in cold, dry sub-alpine habitats, 

it has the ability to withstand very cold temperature, dry winds and periodic drought and 

combinations of environmental extremes (Boland et al. 2002; Williams and Ladiges 

1985; Williams and Potts 1996). Eucalyptus pauciflora has one of the widest altitudinal 

ranges of any Eucalyptus species (Williams and Ladiges 1985). On the mainland E. 

pauciflora occurs from almost sea level to up to 2000 m altitude where it forms the tree 
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line on many mountains. The present low altitude populations of the E. pauciflora are 

believed to be relicts from the most recent glacial period, with the species having 

migrated upslope following post-glacial climate warming (Dodson 1977; Williams 

1991; Williams and Ladiges 1985). However, an expansion from high altitude refugia 

has been suggested as well (Hope and Kirkpatrick 1989).  

 

Widely spread in the cooler parts of Victoria, the species extends northwards across into 

New South Wales to the southern border of Queensland. It is also found on coastal sites 

specially in South Gippsland, Mornington Peninsula and to the far south west of 

Victoria, extending just into the border of South Australia (Nicolle 2006b). E. 

pauciflora subsp. pauciflora (hereafter abbreviated to E. pauciflora) is the only 

subspecies reported in Tasmania (Williams and Potts 1996; Boland et al. 2002; 

Williams and Ladiges 1985). In Tasmania the species occurs naturally from near sea-

level (10 m) to 1080 m in altitude where it is replaced by the endemic E. coccifera as 

the tree-line eucalypt. Nevertheless, it still occurs over a wide altitudinal range on the 

island and is a dominant species of many of the forests and woodlands in cold dry areas 

in the central and eastern part of the island (Williams and Potts 1996). In Tasmania, the 

species exhibits a preference for Jurassic dolerite substrates and can also occur in 

coastal sand dunes (Williams and Potts 1996). Eucalyptus pauciflora often forms mixed 

stand with other Eucalyptus species. In the lowlands of Tasmania for example it may 

coexist with E. ovata or E. rubida, while in the uplands it is usually found with E. 

delegatensis, E. amygdalina, E. dalrympleana and/or E. rodwayi (Williams and Potts 

1996). However, in the Snowy Mountains on the Australian mainland, E. pauciflora 

forms pure stands from 1650 m to 1950 m (Pryor 1956).  

 

Eucalyptus pauciflora ranges in habit from stunted mallee at high altitudes to a tall tree 

at lower altitudes, ranging in height from 6 to 30 m (Nicolle 2006b).  Eucalyptus 

pauciflora is heteroblastic to some degree with many traits differing between juvenile 

and adult leaves (Euclid 2006). Heteroblasty is common in Eucalyptus, and the timing 

of the developmental transition may vary within species and be of adaptive significance 

(Jordan et al. 1999; Lawrence et al. 2003; McArthur and Potts 2006; Wiltshire et al. 
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1998). Eucalyptus pauciflora is easily identified from other eucalypt species, especially 

in Tasmania, due to the distinctive parallel veins evident in its adult leaves.  

 

 

Fig. 1.1. Left panel shows a typical mature tree of E. pauciflora in the woodlands near 

Derwent Bridge, Tasmania. On the right is a E. pauciflora flower (Flower photo courtesy Dr. 

Tanya Bailey). 

 

1.4.2.3 Reproductive biology 

As with all eucalypts, E. pauciflora has a haploid chromosome number of 11 

(Grattapaglia et al. 2012). The chloroplast genome of eucalypts is maternally inherited 

(Byrne et al. 1993; McKinnon et al. 2001a), and while not specifically studied, this is 

likely also the case in Eucalyptus pauciflora as it is in most angiosperms (Petit et al. 

2005; Reboud and Zeyl 1994). Eucalyptus pauciflora produces small white flowers in a 

simple axillary inflorescence with clusters of between 7-15 flowers per inflorescence 

(House 1997). Most eucalypt flowers are bisexual thus allowing the opportunity for 

selfing via geitonomy. At low altitudes flowering occurs in early spring but is delayed at 

higher altitudes, occurring during mid summer around the end of December (Duncan 

1989; Pryor 1976). Similar to many other eucalypt species, E. pauciflora is 

predominantly outcrossing but a relatively high level of selfing has been reported 

(Phillips and Brown 1977). The pollination biology of the species has not been studied, 

but as with most Eucalyptus with small white flowers it is likely to be pollinated by a 

diverse range of insects with less frequent visitations by birds and mammals (House 

1997).  
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Hybridization plays an important evolutionary role in plants in speciation (see 

Rieseberg and Ellstrand 1993) as well as dispersal (Potts and Reid 1988). Natural 

hybridization between closely related eucalypts is common, but the extent of 

hybridization is limited to within subgenera (Griffin et al. 1988; Potts and Wiltshire 

1997). Eucalyptus pauciflora hybridizes with many other closely related species that 

can be observed near it. For example, hybrids between E. pauciflora and E. dives are 

quite common when the species co-occur (Pryor 1951; Pryor 1976). Natural 

hybridization of E. pauciflora and the co-occurring peppermint species E. fastigata, E. 

robertsoni, E. radiata, and E. rossii has also been observed in numerous field 

examinations in the Southern Tablelands (Pryor 1951; Pryor 1953; Whiffin 1981). A 

study of seedling character segregation has also indicated hybridization between E. 

pauciflora and E. obliqua and between E. pauciflora and E. radiata (Williams and 

Ladiges 1985). Natural hybridization of E. pauciflora with E. delegatensis, E. 

amygdalina, E. nitida, E. pulchella and E. coccifera has been observed in Tasmania 

(Duncan 1989). 

 

1.4.2.4 Genetic variation in Eucalyptus pauciflora 

In the early and mid 90s, there have been several studies on genetic variation in 

physiological and morphological traits (Ferrar et al. 1989; Harwood 1980; Harwood 

1981; Pryor 1951; Pryor 1953; Pryor 1956; Pryor 1961; Pryor 1976; Slatyer 1977a; 

Slatyer 1977b; Slatyer 1977c; Slatyer 1978; Slatyer and Ferrar 1977a; Slatyer and 

Ferrar 1977b; Slatyer and Morrow 1977; Williams and Ladiges 1985) of the species. 

One of the earliest studies on population variation in morphology within E. pauciflora 

was done by Pryor (1956). Using mainland E. pauciflora populations, Pryor (1956) 

observed a altitudinal adaptation of tree form, growth and morphology. Similarly, 

genetic based adaptation of increasing frost resistance, (Green 1969b; Harwood 1980; 

Harwood 1981) and photosynthetic physiology (Slatyer 1977a; Slatyer and Ferrar 

1977a) to increasing altitude has also been reported. Most of these studies were based 

on the mainland E. pauciflora populations. In addition, there have been no studies of 

genetic variation of Eucalyptus pauciflora using molecular methods published to date.  
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1.5 Thesis structure, objectives and hypothesis 

The thesis investigates the mating system and population genetic variation in E. 

pauciflora with a focus on Tasmanian populations, relevant to restoration work. Chapter 

1 deals with the general introduction and the background to the thesis. It also comprises 

thesis structure and overall aim of the study. Chapters 2 to 5 are experimental chapters 

presented in the format of publishable papers. Hence repetition of concepts and ideas 

particularly in introduction sections was unavoidable. Chapter 6 synthesizes the 

experimental work and summarizes the key finding of this study and implications for 

restoration.  

 

The motivation of the thesis is to link research with the theory of adaptation within the 

framework of forest restoration. This research project aims to determine the importance 

of genetic factors in determining the success of restoration planting of E. pauciflora as 

well as provide a morphological/ molecular genetics and environmental framework to 

interpret the adaptive responses observed in the field trial and guide future 

environmental planting decisions. The thesis is aimed to provide information to 

underpin seed collection guidelines and restoration decisions. Specific objectives of the 

study were: 

 to determine the mating system parameters of E. pauciflora  and variation 

pattern among the populations, and to explore whether population variation is 

related to the degree of forest fragmentation or altitude of origin; 

 to explore the spatial pattern of genetic diversity in chloroplast and nuclear 

molecular markers and to understand historical and contemporary barriers to 

gene flow; 

 to assess the adaptive potential of the species through assessing quantitative 

genetic variation in seedling morphology and growth across the native range of 

the species in Tasmania; 

 to determine the effect of inbreeding, local climate and translocation from 

mainland Australia on genetic variation in performance in Tasmanian field trials 

up to age 3 years; and 

 to inform seed collection guidelines based on the above observations. 
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Specific hypotheses tested include: 

 Populations vary in their mating system estimates and the variation in mating 

system parameters is affected by fragmentation and altitude. 

 As E. pauciflora is a widespread species, historically had large population sizes, 

and occupies diverse habitats, there will be little neutral molecular genetic 

differentiation amongst populations in Tasmania but significant genetic variation 

in adaptive traits. 

 Populations and families with higher outcrossing rate will be less affected by 

inbreeding depression and hence will perform better in the field trials. 

 Locally collected seeds might not always be better adapted (as measured by 

better growth and survival) than the seedlings raised from non-local seeds 

collected from intact native forest because of a combination of inbreeding and 

changing environments.  

 

Chapter 2 estimates mating system parameters of the species and determines the pattern 

of mating system variation among the populations. It explores the variation in mating 

system parameters across the species range to determine if it is spatially structured and 

if so, whether it will be predicable from either the altitude of origin or the degree of 

fragmentation. The mating system of the species provides insights into pollen-mediated 

gene flow. Three estimates dominates the description of the plant mating system namely 

outcrossing rate (tm), the level of biparental inbreeding (tm-ts) and correlated paternity 

(rp, estimated as a probability that two randomly chosen offspring within an open-

pollinated family are full-sibs).  

 

Chapter 3 describes the pattern of neutral genetic diversity in molecular markers and 

spatial distribution of the diversity across the native range of E. pauciflora in Tasmania. 

Maternally inherited chloroplast microsatellites are used to explore chloroplast 

haplotype diversity and variation among populations. Spatial haplotype diversity and 

the distribution of the haplotypes are used to infer the genetic signature of past climate 

change on the species distribution. Biparentally inherited and putatively neutral nuclear 

markers, were used to infer a more recent perspective on gene flow patterns and the 

level of population-level inbreeding due to genetic drift. The comparison of both 
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chloroplast and the nuclear microsatellites are made to have insights into the relative 

importance of seed- versus pollen-mediated gene flow.  

 

Chapter 4 explores the extent to which selection may have shaped the patterns of 

genetic variation in E. pauciflora through assessing seedling traits using a glasshouse 

trial. Evidence of selection having shaped variation in seedling traits is obtained from 

comparing the molecular and quantitative genetic estimates of population-level 

inbreeding, as well as looking for associations between population variation and climate 

variables at the univariate and multivariate level. The chapter addresses the extent to 

which these traits are genetically correlated and whether these correlations are likely to 

constrain or enhance the selection process. 

 

Chapter 5 determines whether there is genetic variation in early-age growth and survival 

in field trials at the population and family level. Growth, survival and other fitness 

related traits were recorded on a regular basis from pedigreed field trials over their first 

three-years after establishment. The chapter evaluates the issue of seed source choice- 

local versus non local for restoration purposes.  
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Chapter 2. The effect of forest fragmentation and altitude on the 

mating system of Eucalyptus pauciflora 

 

Abstract 

Habitat fragmentation is a key factor causing variation in important mating system 

parameters in plants, but its effect is variable. We studied mating system variation 

among 276 native trees from 37 populations of Eucalyptus pauciflora from Tasmania. 

We assayed 10 microsatellite loci from 1,359 open pollinated progeny from these trees. 

Across Tasmania, the species’ mating system was characterized by a high outcrossing 

rate (tm = 0.90) but moderate bi-parental inbreeding (tm-ts = 0.16) and moderate 

correlated paternity (rp = 0.20) in comparison to other eucalypt species. Despite 

significant differences in outcrossing rate and correlated paternity among populations, 

this variation was not correlated with fragmentation. Nevertheless, fragmentation was 

inversely correlated with the number of germinants per gram of seed capsule content. 

Outcrossing rate had been reported previously to decrease with increasing altitude in 

mainland populations of E. pauciflora, but this was not the case in Tasmania. However, 

a small but significant decrease in correlated paternity occurred with increasing altitude 

and a decrease in bi-parental inbreeding with increasing altitude was evident in 

fragmented populations only. It is argued that strong but incomplete self-incompatibility 

mechanisms may buffer the mating system from changes in population density and 

pollinators. While seed yields from highly fragmented populations were reduced, in 

most cases the seed obtained is unlikely to be more inbred than that from non-

fragmented populations and, thus, is likely to be as suitable for use in local forest 

restoration. 

 

2.1 Introduction 

The mating system of plants plays an important role in determining the distribution of 

genetic variation within and among populations (Charlesworth 2006; Hamrick and Godt 

1989). The mating system determines the mode of gene transmission across generations 

which, in turn, affect the genetic composition of the progeny (Fuchs and Hamrick 2011). 

Many plants, particularly forest tree genera, have mixed mating systems (Goodwillie et 
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al. 2005; White et al. 2007). The rate of selfing within a species can have major impacts 

on population fitness through the exposure of deleterious alleles that can lead to 

inbreeding depression (Eckert et al. 2010; Lowe et al. 2005). Mating system can be 

affected by genetic factors, including floral structure and self-incompatibility 

mechanisms, as well as the ecological circumstances of individual flowers, plants, 

populations and species, the mode of pollination, pollinator type, population size, 

population density and the position of a population in the landscape (Charlesworth 2006; 

Coates et al. 2007).  

 

Fragmentation of populations is one of the key landscape factors known to affect the 

mating system of forest trees (Lowe et al. 2005; Young et al. 1996). Understanding the 

impact of fragmentation of anthropogenic origin is important for the management of 

forest remnants as well as the development of seed sourcing policy for ecological 

restoration based on local seed sources (Broadhurst et al. 2008; Weeks et al. 2011). In 

recently fragmented populations, habitat loss and reduced stand density, as well as the 

potential impact of these on pollinator behaviour, can disrupt gene flow dynamics (Sork 

and Smouse 2006). These can lead, in turn, to genetic erosion (loss of genetic diversity), 

increased inter-population divergence (genetic drift) and increased inbreeding (Bacles 

and Jump 2011; Lowe et al. 2005; Young et al. 1996). While many studies have 

demonstrated such deleterious effects of fragmentation (Aguilar et al. 2008; Hamrick 

2004; Mimura et al. 2009), several studies have shown that genetic diversity can be 

maintained through extensive outcrossing and long distance pollen movement among 

even quite distant fragments (Byrne et al. 2008; Schuster and Mitton 2000). The impact 

of fragmentation is determined by the amount of gene flow, the diversity of the pollen 

pool and the mating system (Kramer et al. 2008; Sork and Smouse 2006). The presence 

and strength of self-incompatibility mechanisms in a species affect the impact of 

fragmentation. Some self-compatible species may be resistant to inbreeding depression, 

having already experienced genetic bottlenecks that have eliminated many deleterious 

alleles (Husband and Schemske 1996; Kramer et al. 2008). While it is commonly 

assumed that fragmented populations should be avoided as seed sources for restoration 

due to deleterious effects on the mating system (Broadhurst et al. 2008), there is 

variation in the effect of fragmentation on mating system and more studies are required 
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to better understand the effects of fragmentation and consequences for seed sourcing 

decisions.  

 

Many of Australia’s tree restoration programs are focused on species of the genus 

Eucalyptus (Bradbury and Krauss 2013; Krauss et al. 2007; O'Brien et al. 2007). 

Eucalyptus species are normally pollinated by generalist animal vectors, particularly 

insects and birds (House 1997) and, while they have a mixed mating system, they are 

predominantly outcrossing (Byrne 2008b; Horsley and Johnson 2007; Potts and 

Wiltshire 1997). The hermaphrodite flowers are protandrous in their development which 

reduces the probability of self-pollination (House 1997), but the asynchrony of flower 

development throughout the canopy facilitates geitenogamous pollination (Byrne 

2008b). Allozyme studies of mating systems in eucalypts have demonstrated variable, 

but generally high, outcrossing rates ranging from 0.51 to 0.96 and averaging 0.74 

across 23 species (Byrne 2008b). The high outcrossing rates may be explained by a 

combination of pre- and post-zygotic self-incompatibility mechanisms (Ellis and 

Sedgley 1992; Horsley and Johnson 2007; Pound et al. 2002). These endogenous self-

incompatibility mechanisms are obviously incomplete in most eucalypt species, but are 

reinforced by post-dispersal selection against inbred progeny (McDonald et al. 2003; 

Potts and Wiltshire 1997). Inbreeding depression for growth and survival following 

selfing has been reported for several species (Costa e Silva et al. 2010). Forest 

fragmentation has been reported to adversely affect the mating system of several 

eucalypt species, through increased selfing rates (Butcher et al. 2005; Hardner et al. 

1996; Millar et al. 2000; Mimura et al. 2009), but this is not always the case (Breed et 

al. 2012b; Broadhurst 2013). Management guidelines for forest restoration usually 

favour the use of locally collected seed (Mortlock 2000). However, with increasing 

interest in forest restoration for biodiversity and carbon sequestration (Broadhurst et al. 

2008), a greater understanding of the effects of forest fragmentation on the mating 

systems of eucalypts is required, because increased inbreeding may reduce the success 

of restoration plantings established from seed collected from local forest remnants 

(Borralho and Potts 1996).  
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The present study focuses on Eucalyptus pauciflora, an iconic forest and woodland tree 

of south-eastern Australia (Boland et al. 2002). It is one of the most widely distributed 

eucalypt species in Australia, occurring at the tree-line on most of the Australian Alps 

and extending to near sea level in southern (Victoria and on the island of Tasmania 

(Boland et al. 2002; Williams 1991; Williams and Potts 1996). This natural range 

includes valley bottoms in the midlands of Tasmania, where these once extensive 

woodlands have been reduced to isolated fragments as a result of agricultural land 

clearing, intensive grazing and climate related tree decline (Close et al. 2010; 

Kirkpatrick and Bridle 2007). Owing to the species’ ability to cope with harsh 

environmental conditions and its success in restoration species trials (Close and 

Davidson 2002; Close et al. 2010), E. pauciflora has been targeted as a key tree species 

for use in ecological restoration and carbon plantings in Tasmania (Bailey et al. 2013). 

 

Eucalyptus pauciflora is animal pollinated and, while having a mixed mating system, is 

predominantly outcrossing. The only published mating system study compared 

allozyme profiles in seeds and seedlings from three mainland populations that spanned 

an altitudinal gradient (Phillips and Brown 1977). The study observed reduced 

outcrossing at higher altitudes and provided evidence of early age selection against the 

products of self-fertilisation. However, the ubiquity of these trends is unknown and 

there is no data on the impact of habitat fragmentation on the outcrossing rate of the 

species. In the present study, we assess the outcrossing rate of E. pauciflora using 

microsatellite markers. We focus on the Tasmanian populations of E. pauciflora which 

are being used as seed sources for ecological restoration and carbon plantings. 

Specifically, we aim to: (i) provide species-wide estimates of mating system parameters 

for Tasmania, (ii) identify whether these parameters vary between populations and, if so, 

(iii) determine whether the variation is spatially structured and predictable from either 

the altitude of origin or the degree of fragmentation. Such basic information will form 

the foundation of further studies of genetic diversity in the species and allow assessment 

of the value of fragmented populations as seed sources for ecological restoration 

(Broadhurst et al. 2008; Sgrò et al. 2011; Weeks et al. 2011).  
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2.2 Materials and methods 

2.2.1 Sample collection 

Leaf samples for DNA extraction and seed capsules were collected from 5 to 10 trees 

from each of 37 populations representing the entire geographic and climatic distribution 

of E. pauciflora in Tasmania (Table 2.1). In total, 281 trees were sampled from the wild. 

To avoid sampling closely related individuals, a minimum distance of 100 m separated 

the sampled trees. This was more than double the average tree height and would 

transgress any family group structure in the forest (Jones et al. 2007; Skabo et al. 1998). 

Geographic coordinates and altitude were recorded for each tree. Sampled populations 

were classified into four stand types based on the classification system of Borralho and 

Potts (1996): i) stand type I, isolated trees; ii) stand type II, few trees in a small isolated 

patch; iii) stand type III, trees in open stands of continuous distribution; and iv) stand 

type IV, trees in closed stands of continuous distribution. This classification was applied 

in the field at both the population level and at the individual tree level to account for 

local variation in tree density within a population. Leaf samples were dried with silica 

gel crystals and sealed in aluminium foil bags for long term storage. 

 

2.2.2 Progeny growth and sampling  

The 281 families derived from the open-pollinated seed collection were used to 

establish a progeny trial embedded in restoration plantings of E. pauciflora at Dungrove 

(-42° 16' 29.3052" S, 146° 53' 28.0098" E) (Bailey et al. 2013). For each seedlot, a 

measured weight of capsule content comprising both seed and chaff (Boland et al. 

1980), was soaked in water overnight, drained, and then stratified at 4°C for 4 weeks 

(from 25
th

 January 2010). Each seedlot was then sown onto soil in germination trays and 

allowed to germinate at room temperature in a commercial nursery. After 8 weeks, the 

number of germinants per gram of capsule content sown was recorded for each seedlot. 

Germinants were pricked out (9
th

 to 19
th

 March 2010) into individual cells in Hyko 

seedling trays; each tray contained 40 plants of one family. Family tray positions were 

then randomised in an indoor growing area of a nursery and transferred outside after 10 

weeks. Eight months after sowing, the number of seedlings surviving per tray was 

recorded. Seedlings were then used to establish a field trial (date of planting: 5
th

 October 

2010) in which families were randomised into a resolvable row (20) X column (20) 
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Table 2.1. Mating system parameters for 37 populations of Eucalyptus pauciflora. Population location (latitude, longitude, altitude), stand classification (SC; Borralho and 

Potts 1996) and number of maternal trees (Nm) and progenies (Np) sampled per population are shown. Multilocus outcrossing rate (tm), single locus outcrossing rate (ts), bi-

parental inbreeding (tm-ts), correlated paternity (rp) and effective number of pollen donors (1/rp) were estimated from offspring and the maternal parent genotypes using the 

Expectation-Maximization method (MLTR version 2.4; Ritland 2002). Standard error (S.E.) is provided for each estimate. 

Code Population Latitude Longitude Altitude SC Nm Np tm S.E (tm) ts S.E (ts) tm - ts S.E (tm - ts) rp  S.E (rp) 1/rp 

1 Waterhouse -40.9098 147.65993 16 2 6 39 0.98 0.003 0.82 0.051 0.17 0.05 0.17 0.10 5.81 

2 Nunamara -41.3728 147.32153 405 3 8 39 0.87 0.040 0.79 0.049 0.08 0.03 0.11 0.04 9.17 

3 Brushy Lagoon -41.4094 146.74695 282 4 7 38 0.80 0.086 0.82 0.061 -0.01 0.04 0.07 0.02 14.08 
4 Tyne River -41.4709 147.81712 297 3 6 29 0.89 0.049 0.75 0.058 0.14 0.05 0.19 0.05 5.18 

5 Longford -41.6302 147.09729 159 2 10 37 0.91 0.041 0.76 0.033 0.16 0.03 0.26 0.05 3.82 

6 Symmons Plains -41.6594 147.2491 166 2 6 38 0.89 0.085 0.79 0.042 0.10 0.06 0.24 0.07 4.17 
7 Rossarden -41.6888 147.69499 731 4 7 40 0.97 0.005 0.86 0.044 0.11 0.05 0.18 0.14 5.52 

8 Avoca -41.7095 147.83446 237 2 6 39 0.98 0.003 0.86 0.024 0.12 0.03 0.18 0.05 5.52 
9 Cressy -41.7193 147.10455 160 2 8 38 0.97 0.005 0.85 0.021 0.12 0.02 0.19 0.04 5.18 

10 Lake Rowallan -41.7218 146.21847 460 3 8 39 0.94 0.024 0.88 0.023 0.06 0.02 0.07 0.03 13.51 

11 Dukes Marshes -41.7225 148.12791 498 3 8 38 0.90 0.044 0.80 0.037 0.10 0.04 0.09 0.02 11.63 
12 Conara -41.8416 147.46348 206 3 8 39 0.98 0.003 0.85 0.014 0.12 0.02 0.18 0.03 5.59 

13 Lake Arthur -41.9565 146.87693 1004 4 9 36 0.90 0.057 0.85 0.021 0.04 0.04 0.07 0.02 13.89 

14 Great Lake -41.9868 146.69913 1138 3 10 37 0.90 0.030 0.84 0.036 0.07 0.02 0.06 0.01 17.54 
15 Ross -42.0017 147.53229 240 3 9 37 0.89 0.040 0.87 0.018 0.02 0.03 0.08 0.01 12.50 

16 Lake Leake -42.0211 147.81729 597 4 9 39 0.95 0.024 0.88 0.015 0.07 0.02 0.08 0.02 12.05 

17 Wihareja -42.0614 146.81432 895 2 7 39 0.89 0.035 0.88 0.020 0.01 0.03 0.26 0.05 3.89 
18 Pine Tier -42.0937 146.51663 818 4 8 36 0.94 0.025 0.85 0.025 0.09 0.03 0.11 0.02 9.35 

19 Tunbridge -42.1249 147.36459 229 2 9 38 0.94 0.023 0.83 0.024 0.11 0.02 0.20 0.05 5.05 

20 Interlaken -42.1461 147.14116 818 2 8 37 0.97 0.004 0.89 0.010 0.08 0.01 0.10 0.04 10.20 

21 The Point -42.1929 146.42217 674 2 7 38 0.91 0.025 0.87 0.013 0.04 0.02 0.07 0.01 14.93 

22 Lake St Clair -42.2014 146.14225 816 3 9 36 0.97 0.003 0.89 0.007 0.08 0.01 0.07 0.02 13.51 

23 Woodbury Hill -42.2124 147.28282 626 3 5 29 0.88 0.072 0.84 0.040 0.04 0.04 0.08 0.03 11.90 
24 Tooms Lake -42.2205 147.79278 487 4 5 40 0.80 0.087 0.75 0.108 0.05 0.10 0.31 0.13 3.18 

25 Dungrove -42.2664 146.88613 552 2 10 37 0.84 0.072 0.75 0.051 0.09 0.05 0.17 0.04 5.88 

26 Butlers Gorge -42.2792 146.33043 682 4 8 39 0.93 0.029 0.84 0.025 0.09 0.02 0.09 0.02 11.63 
27 Oatlands -42.3013 147.38423 402 1 8 39 0.81 0.056 0.80 0.032 0.01 0.04 0.15 0.02 6.67 

28 Tin Dish Rivulet -42.3079 147.43698 412 3 6 39 0.76 0.078 0.77 0.065 -0.01 0.03 0.08 0.02 12.66 

29 Osterley -42.3543 146.74082 347 2 4 21 0.84 0.100 0.85 0.049 -0.01 0.06 0.06 0.01 16.95 
30 Bothwell Lake -42.3798 146.99545 370 2 10 38 0.91 0.040 0.88 0.022 0.04 0.02 0.06 0.02 16.39 

31 Bignells Bothwell -42.4014 147.09624 481 2 7 34 0.96 0.022 0.87 0.027 0.08 0.03 0.27 0.09 3.68 

32 Ellesmere -42.4014 147.29766 422 1 5 37 0.77 0.082 0.81 0.058 -0.04 0.03 0.26 0.07 3.83 

33 Stonor -42.4277 147.43164 444 2 8 37 0.84 0.045 0.84 0.033 0.00 0.02 0.17 0.07 6.02 

34 Uralla -42.5462 146.85911 193 1 5 29 0.97 0.006 0.85 0.044 0.12 0.05 0.14 0.06 7.14 

35 Curringa -42.5698 146.77209 100 2 8 38 0.81 0.061 0.77 0.056 0.04 0.03 0.08 0.02 12.99 
36 Gatehouse Marsh -42.5949 147.78101 41 2 6 36 0.75 0.072 0.72 0.063 0.03 0.05 0.25 0.05 4.02 

37 South Arm -43.0341 147.42227 16 2 8 40 0.96 0.016 0.76 0.063 0.21 0.05 0.38 0.11 2.66 

  Overall species        
 

276 1359 0.90      0.013 0.74 0.015 0.155 0.013 0.20 0.022 4.95 
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design with eight replicates using CycDesigN 4.0 (Whitaker et al. 2002). Families were 

represented as single-tree plots within each replicate. After 4 months of growth in the 

field, seedling survival was assessed and 1-2 leaves were collected from each survivor 

for molecular studies. Sampling was undertaken in such a way that each of the 37 

populations was represented by 40 seedlings from 5 - 8 families, giving a total of 1480 

seedlings. When sampling, priority was given to the replicates within the field trial that 

had the lowest mortality; replicates were sampled until the required number of seedlings 

per population was obtained. Leaf samples were freeze-dried and sealed in aluminium 

foil bags until DNA extraction was undertaken. 

 

2.2.3 DNA extraction and microsatellite analysis 

Genomic DNA was extracted from maternal trees and progenies using a modified 

CTAB method (Doyle and Doyle 1990; McKinnon et al. 2004b). Fifteen nuclear 

microsatellites were screened: CRC6, CRC11 (Steane et al. 2001), EL13 (Ottewell et al. 

2005), ES140, ES157, ES211, ES255 (Glaubitz et al. 2001), EMBRA08, EMBRA011, 

EMBRA042, EMBRA187, EMBRA196, EMBRA210, EMBRA232 (Brondani et al. 

1998; Brondani et al. 2006) and EPIL_MYB2 (Shepherd et al. 2010). Two loci 

EMBRA042 and EPIL_MYB2 did not amplify and three loci (EMBRA08, CRC6 and 

ES157) yielded many spurious peaks that made scoring difficult, so these five loci were 

excluded from further analysis. The forward primer for each locus was labelled with 

NED, VIC, 6-FAM, or PET fluorescent dyes (Perkin Elmer Applied Biosystems, Foster 

City, CA, USA). PCRs were performed in 5 µl reactions containing approximately 1 µl 

of 20 ng DNA, 2.5 µl of 2X QIAGEN Multiplex PCR Master Mix (providing a final 

concentration of 3 mM MgCl2), 0.5 µl of 5X Q-Solution, and 0.1 µl of Primer mix 

containing 10µM of each forward and reverse primer.  

 

The PCR profile consisted of 15 min denaturation at 95 °C followed by 30 cycles of 

94 °C for 30 sec, 57 °C for 90 sec and 72 °C extension for 60 sec, followed by a final 

extension for 10 min at 60 °C. PCR products were sent to the Australian Genome 

Research Facility Ltd for capillary separation on an AB3730 analyser (Perkin Elmer, 

Applied Biosystems, Foster City, CA, USA). Alleles were sized and scored using 

Genemapper software version 3.7 (Perkin Elmer, Applied Biosystems) and these results 

were checked visually. MLTR version 3.4 (Ritland 2002) was used to further check for 
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genotyping errors. Progeny with microsatellite profiles that did not have at least one 

maternal allele at all loci, were removed from the analysis. Maternal samples from the 

South Arm population were not available for the study so MLTR was used to predict 

maternal genotypes using genotype information from their progeny. These simulated 

genotypes were used in subsequent analyses. Five families and their parents were 

excluded from further analyses because technical problems (e.g. failed DNA extractions, 

failed PCRs or poor allele resolution) resulted in excessively small sample sizes. This 

left 276 families and 1635 individuals (including maternal samples) available for 

analysis. 

 

2.2.4 Mating system analysis 

Maximum likelihood estimates of single-locus (ts) and multilocus (tm) outcrossing rates 

from offspring and the seed parent genotypes based on mixed mating analysis (Ritland 

2002) were estimated. The level of bi-parental inbreeding was estimated as the 

difference between the multilocus and the single-locus outcrossing rates (tm-ts; Ritland 

2002). The correlation of outcrossed paternity within a progeny array was estimated as 

rp, which corresponds to the probability that two randomly chosen progenies share the 

same pollen donor and, thus, are full sibs. An estimate of the effective number of pollen 

donors was obtained as 1/rp (Sun and Ritland 1998). MLTR version 2.4 (Ritland 2002) 

was used to estimate all mating system parameters. Population level maximum 

likelihood parameters for each population were estimated using both Newton Raphson 

(NR) and Expectation Maximization (EM) methods. The multilocus outcrossing values 

were greater than 1 for some populations, and rp estimates had higher standard errors 

and occasional negative parameters when the NR method was used. The EM method 

was therefore chosen to estimate both overall and population level mating system 

parameters. Overall estimates were obtained ignoring population structure. Standard 

errors for population and family level parameter estimates were calculated using 1000 

bootstrap replicates. We considered differences in estimates to be statistically 

significant if bootstrap-derived standard error estimates did not overlap. Family level 

estimates of tm and ts were obtained using the method of ‘moments procedure’ within 

MLTR (Ritland 2002) and were used to test for the effects fragmentation (see below).  
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2.2.5 Statistical analysis 

The differences between populations and the effect of fragmentation on mating system 

parameters (tm, ts and tm-ts), number of germinants per gram of capsule content, and 

nursery and field survival were tested using family-level values and the non-parametric 

Kruskal-Wallis test. The correlation between these traits was examined using Pearson’s 

correlation coefficients. Matrices of the pair-wise differences between populations were 

generated for outcrossing rate, number of germinants per gram of capsule content and 

geographic distance. The geographic distances among populations were calculated from 

differences in latitude and longitude (Table 2.1), which, for each population, were the 

average of the tree GPS coordinates. These matrices were used in Mantel tests (Mantel 

1967) and spatial autocorrelation analyses using GENALEX 6.501 (Peakall and Smouse 

2006). The effect of population altitude on mating system parameters and number of 

germinants was analysed using linear regressions and population-level data. The effect 

of forest fragmentation on mating system parameters and number of germinants was 

tested using the stand type score and the non-parametric Kruskal-Wallis test applied 

with both population and family-level data. In the case of the mating system parameters, 

population level estimates were derived from the EM methods, as described above. The 

non-parametric Kruskal-Wallis tests and regressions were undertaken using standard 

functions in R (Team 2010). Whether the effect of altitude differed amongst stand types 

was tested by analysis of covariance fitting a model with altitude (covariate), stand type 

(fixed) and their interaction using PROC MIXED of SAS (version 9.1; SAS Institute) 

and the population-level data. 

 

2.3 Results 

Eucalyptus pauciflora had an overall multilocus outcrossing rate (tm) of 90%, with 

population estimates ranging from 75% (Gatehouse Marsh) to 98% (Waterhouse) 

(Table 2.1). Single locus outcrossing estimates (ts) were generally lower than the 

multilocus outcrossing rates, indicating overall significant bi-parental inbreeding (tm-ts = 

0.16±0.013). Population estimates of bi-parental inbreeding ranged from -0.04 

(Ellesmere) to 0.21 (South Arm), with standard errors indicating that most values were 

significantly greater than zero (21 populations out of 37). The overall correlation of 

paternity amongst open-pollinated progeny of the same family was also significantly 

greater than zero (rp = 0.20±0.013), ranging from 0.06 to 0.38. 
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Fig. 2.1. Geographic variation of a) outcrossing rate, and b) number of germinants per gram of 

capsule content among 37 Eucalyptus pauciflora populations. Lower outcrossing rates were 

observed in the south-east of the distribution with significant variation (P < 0.01) among 

populations. Note that central-eastern populations tended to have a higher reproductive output. 

 

The multilocus outcrossing rates differed significantly (P < 0.01) among populations 

(Table 2.2). Despite a tendency for lower outcrossing rates in populations in the south-

east of the distribution (Fig. 2.1a), the Mantel test (r = 0.05, P = 0.243) and the spatial 

autocorrelation analysis (result not shown) revealed no statistically significant spatial 

structure. In addition there was no significant association of the multilocus outcrossing 

rate with altitude (Table 2.2). There was a trend for bi-parental inbreeding to increase 

with decreasing altitude (P < 0.1; Table 2.2). Bi-parental inbreeding was the only 

parameter for which a significant interaction between altitude and stand type was 

detected (F3,29 = 3.2, P < 0.05). This interaction was due to the altitudinal effect only 

being evident in the fragmented stand types I and II. These fragmented stand types also 

tended to be more common at lower altitudes (F3,33 = 2.7, P = 0.061). While family 

level-estimates of correlated paternity and the effective number of pollen donors were 

not available to test for population differences, the standard errors of their estimates 

clearly indicated significant differences among populations (Table 2.2). The Mantel test 

(r = 0.14, P = 0.051) and the spatial autocorrelation analysis showed no statistically 

significant spatial structure in correlated paternity. However, regression analysis 

revealed that correlated paternity decreased, and thus the effective number of pollen 

donors increased, with increasing altitude (Table 2.2). Altitude explained 15.4% and 
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17.4% of the variation between populations in correlated paternity and effective number 

of pollen donors, respectively. No significant effect of stand type on outcrossing rate or 

on any other mating system parameter was detected, regardless of whether analyses 

were done using population-level estimates (Table 2.2) or family-level estimates (tm: 

Kruskal-Wallis χ
2

3 = 2.2, P = 0.54; tm-ts: Kruskal-Wallis χ
2
3 = 5.6, P = 0.132). 

 

Table 2.2. Mating system parameters and number of germinants per gram of capsule content 

estimated across 37 populations of Eucalyptus pauciflora. Overall and population level 

estimates were obtained using the Expectation-Maximization method. Overall estimates were 

obtained ignoring population structure. Population level parameter estimates were used for the 

regression analysis to test the effect of altitude on populations. Kruskal-Wallis χ
2
 test were 

performed to test the effect of population stand types and altitude on the mating system and seed 

yield. Stand type classification was applied to each population. 

Parameter Overall
a
  Population  Stand_types  Altitude 

 χ
2
36 P  χ

2
3 P  R

2
 (%) Relationship F1,35 P 

Multilocus 

outcrossing rate, tm 0.90 (0.013) 

 

62.3 0.004 

 

1.0 0.810 

 

1.2 ns 0.4 0.523 

Single locus 

outcrossing rate, ts 0.74 (0.015) 

 

47.2 0.100 

 

0.4 0.942 

 

4.2 positive 9.8 0.003 

Bi-parental 

inbreeding, tm-ts 0.16 (0.013) 

 

47.5 0.095 

 

1.4 0.703 

 

7.9 ns 3.0 0.091 

Correlated paternity, 

rp 0.20 (0.022) 

 

 

b 

 

5.8 0.122 

 

15.4 negative 6.4 0.016 

Effective number of 

pollen donors, 1/ rp 4.95  

 

 

b 

 

5.4 0.147 

 

17.4 positive 7.4 0.010 

Number of germinants 

per gram of capsule 

content 43.5 (15.2) 

 

83.1 0.001 

 

3.5 0.019 

 

9 ns 3.7 0.07 

a
For overall tm, ts, tm-ts and rp, standard errors are given in parentheses. For overall number of germinants 

per gram of capsule content, standard deviation is given in parentheses. 
b
Family level estimate could not be obtained to undertake Kruskal-Wallis test, however, population 

differences were significantly different based on the standard error (Table 2.1). 

 

Populations differed significantly (P < 0.001) in the number of germinants per gram of 

capsule content (Table 2.2), with a four-fold difference across populations. Populations 

in the central-east of the range tended to have higher values (Fig. 2.1b), but this spatial 

structuring was not statistically significant (Mantel r = 0.14, P = 0.062). The number of 

germinants per gram of capsule content tended to increase with altitude, but again this 
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was not significant (P = 0.070). There was, however, a highly significant effect of stand 

type on the number of germinants per gram of capsule content obtained, using 

population-level estimates (Table 2.2) or family-level estimates (Kruskal-Wallis χ
2

3= 

21.6, P < 0.001). The average number of germinants per gram of capsule content 

decreased with increasing stand fragmentation, with a significant reduction in number of 

germinants obtained from Stand Types I and II compared with Stand Type IV (Fig. 2.2). 

Despite the absence of a significant effect of stand type on the multilocus outcrossing 

rate (tm), there was a weak positive correlation of the number of germinants with tm 

(Pearson r= 0.42, P = 0.009). 

 

Fig. 2.2. Number of germinants in different stand types based on the 37 studied populations of 

Eucalyptus pauciflora. Stand type I and II were significantly different from stand type IV at P < 

0.05. 

 

Population differences in seedling survival in the nursery ranged from 83% to 99.5 % 

(mean = 94%, sd = 3.28, n = 37) and, across all replicates in the field trial, survival 

ranged from 93.7% to 100% (mean = 98%, sd = 1.67, n = 37). Neither survival rates 

were significantly different among populations (nursery - Kruskal-Wallis χ
2

36 = 44, P = 

0
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0.165; field trial - Kruskal-Wallis χ
2

36 = 36, P = 0.468). Survival was not affected by the 

population altitude (nursery - F1, 35 = 0.44, r
2
 = 1 %, P = 0.508; field - F1, 35 = 0.29, r

2
 = 

0 %, P = 0.590) nor the Stand Type (nursery - Kruskal-Wallis χ
2

3 = 7.43, P = 0.059; 

field - Kruskal-Wallis χ
2

3 = 2.11, P = 0.549). There was no significant correlation 

between population-level mating system estimates and seedling survival in the nursery 

or in the field.  

 

2.4 Discussion 

The overall multilocus outcrossing rate (tm) obtained for E. pauciflora was high (90%), 

but comparable to that obtained in microsatellite studies of many other Eucalyptus 

species (E. camaldulensis: Butcher and Williams 2002; E. morrisbyi: Jones et al. 2005; 

E. melliodora: Broadhurst 2013; E. melliodora: Broadhurst 2013, E. incrassate: Breed 

et al. 2012). Our estimate was greater than the average allozyme-based outcrossing rate 

reported for 23 eucalypt species of 0.74 (Byrne 2008b), as well as that reported in a 

previous study of E. pauciflora (Phillips and Brown 1977). This previous study of three 

mainland E. pauciflora populations reported an allozyme-based multilocus outcrossing 

rate of 63% at the seed stage. This rate increased to 76% in two lower altitude 

populations when assessed in 6-week old seedlings, but did not reach the levels found in 

the present study in 1 year-old seedlings (8 months in the nursery after sowing and 4 

months in the field). Our higher outcrossing rate estimate could be due to difference in 

assessment age, with selfed progenies having been eliminated from our older samples. 

The study of Phillips and Brown (1977) provided evidence of early-age post-zygotic 

selection against the products of self-fertilization (at least, in two of the three 

populations studied). There is also evidence for strong selection against the products of 

self-fertilization at later ages in other eucalypt species (Hardner and Potts 1997), as well 

as reports of rare deleterious mutations expressed in young seedlings (Patterson et al. 

2000). However, there are other studies in which no evidence was found of early age 

inbreeding depression affecting germination or survival in the first year of field planting 

(Hardner and Potts 1995; Hardner and Potts 1997). In the present study, there was little 

evidence for early-age selection operating differentially among populations from the 

period between germination and sampling. Populations with high outcrossing rates also 

had high germinant yields per weight of capsule content; which is the opposite of what 

would be expected if high outcrossing levels were a consequence of early post-zygotic 
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selection against the products of self-fertilisation (Pound et al. 2003). Furthermore, 

overall mortality rates in the nursery and in the field trial (at the time of assessment) 

were low; population-level mortality was not correlated with outcrossing rate as might 

be expected if significant post-planting mortality of selfs as a driver of outcrossing rate 

variation. The most likely cause of the difference between the two studies of E. 

pauciflora is the use of different marker technologies. Allozyme markers can 

underestimate the true outcrossing rate by approximately 10 % (Byrne 2008b). This 

adjustment would bring the previous estimates for lower altitude populations close to 

our estimate. The possibility that the island and mainland populations have different 

inherent outcrossing rates cannot be completely dismissed. However, the differences 

between studies is the reverse of that which might be expected because, if anything, 

small, isolated island populations are more likely to have higher self-compatibility (and, 

thus, lower outcrossing rates) than more extensive mainland populations (Schueller 

2004). 

 

The significant bi-parental inbreeding (tm-ts = 0.16) observed in E. pauciflora is 

consistent with nearest-neighbour pollinations coupled with the presence of related 

individuals growing in close proximity in the mature forest. Such spatial clustering of 

related individuals in eucalypt forests is common, as a result of limited seed dispersal 

(Eldridge et al. 1993; Jones et al. 2007; Skabo et al. 1998). With such spatial structure, 

bi-parental inbreeding is favoured not only by synchronous flowering of related 

neighbours (flowering time is under strong genetic control in eucalypts: Jones et al. 

2011) but also by nearest-neighbour foraging behaviour of animal pollinators, 

particularly insects (Morgan and Barrett 1990; Patterson et al. 2004). The bi-parental 

inbreeding observed in E. pauciflora is in the upper range of microsatellite-derived 

estimates from many eucalypt species, including E. gomphocephala (Bradbury and 

Krauss 2013), E. melliodora (Broadhurst 2013), E. morrisbyi (Jones et al. 2005) and E. 

globulus (Mimura et al. 2009), and is similar to species such as E. incrassata (Breed et 

al. 2012b) and E. benthamii (Butcher et al. 2005). The level of correlated paternity in E. 

pauciflora (rp = 0.20) was also similar to that reported in other Australian plant taxa 

reviewed in, Coates et al. 2007, including Eucalyptus (Breed et al. 2012b; Broadhurst 

2013; Butcher et al. 2005; Jones et al. 2005; Mimura et al. 2009). Some level of 
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correlated paternity would be expected simply through a tendency for nearest-neighbour 

matings, as discussed above.  

 

There are few studies where the differences in mating system parameters among 

populations have been assessed in Eucalyptus (Bradbury and Krauss 2013; Mimura et al. 

2009; Phillips and Brown 1977), and the present study is clearly the largest. An 

important finding of our study was that the significant variation in outcrossing rates 

among populations was related neither to stand fragmentation nor to altitude, as initially 

hypothesised. Population variation in mating system parameters may result from 

environmental and/or genetic effects (Levin 2012), and both may be involved in the 

variation in mating system among our wild-sampled trees. Environmental factors may 

include variation in pollinator availability or mobility (Groom 1998; Llorens et al. 2012; 

Wilcock and Neiland 2002) and plastic changes in floral biology (Kay and Picklum 

2013), including self-incompatibility (McGowen et al. 2010). Indeed, several studies 

have shown that variation in outcrossing rate is linked to variation in self-

incompatibility (Patterson et al. 2004; Willi and Määttänen 2010) which, in the case of 

the eucalypts, may have both genetic and plastic components (McGowen et al. 2010). 

 

The earlier study of population variation in outcrossing rate in E. pauciflora suggested 

that outcrossing rate was inversely correlated with altitude (Phillips and Brown 1977). 

This trend may be expected due to severe environmental conditions at high altitude, 

such as low temperatures and strong winds, that limit pollen production or availability 

and reduce pollinator efficiency (Garcia-Camacho and Totland 2009). Such altitude-

related factors may favour self-compatibility, thereby lowering outcrossing rates at 

higher altitudes, but evidence for this is equivocal (Arroyo et al. 2006; Wirth et al. 

2010). A meta analysis by Garcia-Camacho and Totland (2009) failed to support this as 

a general trend and found cases where limited pollen availability at high altitude was 

compensated by higher pollinator efficiency (Arroyo et al. 2006), despite pollinator 

limitations (Totland 1993). Seasonal (year to year) variation in, for example, pollinator 

or flower abundance, may have contributed to the differences among populations 

observed by Philips and Brown (1977), but high stability of outcrossing rates across 

seasons has been reported within populations of E. globulus (McGowen et al. 2004). It 

is possible that the absence of an altitudinal effect on outcrossing rate in our study is 
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due to our upper altitudinal populations not being at the tree line as was the case for the 

upper population studied by Philips and Brown (1977) on mainland Australia. 

Eucalyptus pauciflora does not form the upper altitudinal tree line on Tasmanian 

Mountains whereas it does on the mainland. In the present study, the difference in 

altitude among populations ranged to more than 1100 m, while in the study of Philips 

and Brown (1977) the altitude differential was 340 m. Thus, if there were a purely 

altitudinal effect we expect that we would have found it. It is possible that the effect 

found by Philips and Brown (1977) was an edge effect at the tree line (Tarazi et al. 

2013). For example, Mimura et al. (2009) noted that coastal populations of E. globulus 

had lower gene flow and hypothesised that this was due to the absence of forest on the 

seaward side. 

 

While we found no effect of altitude on the outcrossing rate of E. pauciflora, correlated 

paternity did decrease with increasing altitude. Several factors may contribute to this 

decrease: greater pollen availability (Surles et al. 1990), greater pollen dispersal 

(Smouse et al. 1999), more synchronous flowering (Erickson and Adams 1989), and 

higher population density (Robledo-Arnuncio et al. 2004) at higher altitudes. E. 

pauciflora tends to flower in early spring at low altitudes and in mid-summer at higher 

altitudes (Duncan 1989; Pryor 1976). This later flowering may occur when ambient 

temperatures are higher which could lead to more synchronous flowering and a greater 

build up of insect pollinator diversity, abundance and activity, leading to greater gene 

flow and decreased correlated paternity. There is little published literature on the 

pollination biology of E. pauciflora but, as with most eucalypts with small flowers, it is 

probably pollinated by a diverse range of insects and less frequently by birds and 

mammals (House 1997). It is also possible that the difference in correlated paternity 

could reflect a change in the profile of the pollinator community with altitude which has 

been reported to occur in Tasmania (Hingston and McQuillan 2000). Bi-parental 

inbreeding decreased with altitude, but only in the more fragmented populations. This 

resulted in a trend for fragmentation to increase bi-parental inbreeding, but only at lower 

altitudes. Increased bi-parental inbreeding in the fragmented populations have been 

reported in other species (Bradbury and Krauss 2013; Breed et al. 2012a; Mimura et al. 

2009), which might be due to the increased likelihood of mates being spatially proximal 

relatives (Sebbenn et al. 2011).  
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The degree of forest fragmentation does not appear to have a significant impact on the 

outcrossing rate in E. pauciflora. In many taxa, habitat disturbance, reduced stand 

density and increased population isolation, disrupts gene flow, resulting in increased 

inbreeding and reduced pollen diversity in forest fragments (Eckert et al. 2010; Kramer 

et al. 2008; Lowe et al. 2005; Sork and Smouse 2006). While a negative effect of 

fragmentation on outcrossing rate has been reported in some Eucalyptus species 

(Butcher et al. 2005; Hardner et al. 1996; Millar et al. 2000; Mimura et al. 2009), 

several recent studies have found limited or no impact of forest fragmentation on the 

mating system parameters (E. incrassata: Breed et al 2012; E. melliodora: Broadhurst 

2013; E. gomphocephala: Bradbury and Krauss 2013). In some species, even small, 

isolated, undisturbed populations appear to maintain high outcrossing rates through 

strong self-incompatibility mechanisms (E. morrisbyi: Jones et al. 2005). Late-acting 

post-zygotic self-incompatibility mechanisms are common among the eucalypts 

(Horsley and Johnson 2007; Pound et al. 2002) and may help to buffer a population 

against the expected negative consequences of forest fragmentation (Byrne et al. 2008; 

Kramer et al. 2008). 

 

The fact that forest fragmentation reduced the number of germinants per gram by up to 

45% is consistent with a strong late-acting post-zygotic self-incompatibility 

mechanisms operating in E. pauciflora. The absence of an effect of fragmentation on 

mating system, but an impact on seed yield, has also been reported in other taxa 

(Friedman and Barrett 2008), including eucalypts (Broadhurst 2013; Burrows 2000; 

Krauss et al. 2007). Burrows (2000) reported a 60% reduction in seed germinant yield 

when comparing woodland trees to isolated trees of E. melliodora, somewhat higher 

than our 45% lower yield in isolated trees. In some eucalypt species (e.g., E. globulus: 

Mimura et al. 2009; E. benthamii: Butcher et al. 2005) a reduction of both outcrossing 

rate and seed germinant yield with fragmentation has been reported, while in E. 

gomphocephala there was little or no impact of fragmentation on either outcrossing rate 

or germinant yield (Bradbury and Krauss 2013). The impact of fragmentation on 

outcrossing rate and germinant yield may depend on the strength and nature of the self-

incompatibility mechanism(s) of the species involved. In E. pauciflora, the reduced 

germinant yield in the presence of high outcrossing could be a result of a strong post-



Chapter 2                    Mating system variation in Eucalyptus pauciflora 

31 

 

zygotic self-incompatibility mechanism coupled with either (i) reduced number of 

pollinations through reduced pollinator activity in fragmented populations the 'Allee 

effect', Groom 1998; Wilcock and Neiland 2002; see also Aguilar et al. 2008; Quesada 

et al. 2013), or (ii) an increased self-fertilization rate in fragmented populations 

followed by post-zygotic abortion of the selfed seed (Horsley and Johnson 2007; Pound 

et al. 2002). 

 

The variation in outcrossing rates observed among populations of E. pauciflora may be 

due to other factors not assessed in this study. The mating system may be influenced by 

the position of a population relative to the geographic distribution of the species 

(Michalski and Durka 2007; Tarazi et al. 2013). Peripheral populations may be exposed 

to different abiotic and biotic factors, subject to greater fluctuations in population size 

and density and be more prone to founder effects which favour selfing as a reproductive 

assurance strategy (Leimu et al. 2006; Michalski and Durka 2007). Populations 

occupying recently colonised areas often show increased self-compatibility, a 

phenomenon known as “Bakers Law” (Baker 1955; Cheptou 2012). It appears, however, 

that populations of Tasmanian E. pauciflora do not conform to Baker’s Law: 

populations that have the lowest outcrossing rates tend to occupy refugial areas rather 

than areas of more recent post-glacial recolonisation (Williams 1991). Environmental 

stresses such as drought or salinity can change pollinator activity, phenology and 

physiology of plants that can drive a transition to increased self-compatibility (Kay and 

Picklum 2013). Plants are expected to become more stressed with global climate change 

(Beaumont et al. 2011), and this is likely to be expressed most strongly at the trailing 

edge of species distributions (Levin 2012). Indeed, Levin argues that plastic changes in 

the mating system in these populations may lead to increases in self-compatibility and 

selfing rates as an adaptive mechanism in stressed environment (Levin 2012). Tree 

decline and dieback have been particularly severe over the last decade in Tasmania 

(Close and Davidson 2002), partly due to severe drought periods (Jurskis 2005; Neyland 

1996). Such stresses may have caused population differences in the mating system of E. 

pauciflora. However, the focal point of severe tree decline is mainly in the midland 

regions of Tasmania and does not correspond well with the distribution of populations 

with lower outcrossing rates, and regardless there was also no effect of fragmentation.  
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In conclusion, outcrossing rates were variable among populations of Eucalyptus 

pauciflora, although no populations had low outcrossing rates. The variation in 

outcrossing rate was not related to variation in the degree of fragmentation nor altitude 

of the population. While fragmentation may increase bi-parental inbreeding, this trend 

was only evident at lower altitudes. With this exception, these results argue that in most 

cases restoration plantings established from seed collected from fragmented forests are 

unlikely to experience more inbreeding depression than those established using seeds 

collected from continuous forests. This resilience to habitat disturbance might be due to 

strong genetic-based self-incompatibility in E. pauciflora. The reduced seed yield from 

capsules collected from fragmented populations can be countered by collection of more 

seed per tree or, if capsule crops are limited, by collection of seed from more trees. 

While most populations are highly outcrossed, the extent to which the reduced 

outcrossing in particular populations is a stable or transitory effect of the pollinator 

environment, or a plastic or genetic attribute of the tree, requires further study. 
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Chapter 3. Molecular genetic diversity and population structure in 

Eucalyptus pauciflora 

 

Abstract 

Genetic diversity and population structure in Eucalyptus pauciflora was assessed using 

seven chloroplast microsatellite markers and 10 nuclear microsatellite markers. Thirty-

seven populations (281 wild trees) were sampled across the species’ geographic and 

altitudinal distribution in Tasmania. In addition, samples were collected from five to 

eight open-pollinated progenies from each tree giving a total of 1,359 samples. Thirty-

one chloroplast haplotypes were identified from the wild trees. The distribution of 

chloroplast haplotype richness showed a clear geographic structure with suggestion of 

three major refugia (Storm Bay, Tamar Valley and St Pauls River Valley) two of which 

are consistent with previously reported glacial refugia for other eucalypts. Chloroplast 

haplotype affinities provided evidence of migration of populations from north and east 

towards the south and west of Tasmania. High nuclear microsatellite diversity was 

observed across the species’ range in both maternal samples and progenies. Most of this 

variation was distributed within populations with low but significant FST (maternal 

samples = 0.034; progenies = 0.055), suggesting high gene flow among populations that 

is more manifest in the mature stand. Higher nuclear genetic diversity in newly 

colonized areas compared to lowland putative refugial regions, and the converse in 

chloroplast DNA markers, suggest limited seed dispersal into newly colonised regions 

combined with high pollen flow between different source populations in newly 

colonised areas. Our results provide evidence against the hypothesis that highland 

populations of E. pauciflora originate from in situ high altitude refugia but instead 

originate from lowland refugia. 

 

Keyword: Eucalyptus pauciflora, molecular markers, haplotypes, genetic diversity, 

spatial structure, glacial refugia 
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3.1 Introduction 

Eucalyptus pauciflora has a widespread distribution throughout the south east of 

Australia (28°S to 42.5°S), forming the tree-line on most of the mountains of the 

Australian Alps and extending to near sea level in Southern Victoria and Tasmania 

(Boland et al. 2002; Williams 1991; Williams and Potts 1996). In Tasmania, E. 

pauciflora subsp. pauciflora (hereafter as abbreviated to E. pauciflora) is the only 

naturally occurring subspecies, growing from 10 m to 1080 m above sea level (Boland 

et al. 2002; Williams and Ladiges 1985). It is a dominant species of many of the forests 

and woodlands in cold, dry regions of the central and eastern part of the island 

(Williams and Potts 1996) and is replaced at the tree-line by E. coccifera. Eucalyptus 

pauciflora also has a relatively wide climatic envelope: for example, mean annual 

temperatures range from 4.1°C to 15.4°C and mean annual precipitation varies from 450 

mm to 2537 mm (Williams 1991).  

 

Southern Victoria on continental Australia and the island of Tasmania share many plant 

species, including E. pauciflora (Nicolle 2006b). This is probably because of the 

repeated formation of land bridges between Victoria and Tasmania during 

Quaternary/Pleistocene glacial periods when sea levels were much lower (Kirkpatrick 

and Fowler 1998; McKinnon et al. 2004a; McKinnon et al. 1999; Steane et al. 1998). 

There is geological evidence for at least five glacial periods in Tasmania, and during 

interglacial periods Tasmania and the mainland would have become isolated. During 

glacial periods gene flow may have occurred across Bass Strait; the presence of remnant 

coastal populations of E. pauciflora on either side of Bass Strait indicate the possibility 

that the Bassian Plains were forested with this species (Kirkpatrick and Fowler 1998). 

Morphological (Williams and Ladiges 1985) and pollen studies (Dodson 1977) have 

suggested that the present-day low altitude populations of E. pauciflora are relicts from 

the most recent glacial period. Expansion of these refugial populations by upslope range 

migration as the climate became warmer might have resulted in the current high altitude 

populations (Dodson 1977; Williams and Ladiges 1985). However, Hope and 

Kirkpatrick (1989) proposed that the highland populations might have resulted from 

expansion out of high altitude refugia where E. pauciflora might have been present as 

rare savannah trees within a grassy/daisy steppe. Both hypotheses on the origin of high 

altitude populations were given support in a climate modelling study of E. pauciflora 
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(Williams 1991), as this would explain how E. pauciflora managed to occupy most of 

its predicted range.  

 

On the basis of its broad ecological tolerances and successful common garden field 

trials (Close and Davidson 2002; Close et al. 2010), E. pauciflora has been selected as a 

key species for ecological restoration and carbon planting in Tasmania (Bailey et al. 

2013). Thus, a better understanding of this species, including its genetic architecture and 

the evolutionary processes shaping the patterns of genetic variation is important. 

Understanding the evolutionary processes operating in current and past environments 

requires a detailed knowledge of species’ genetic diversity and gene flow mechanisms 

(Neale and Kremer 2011; White et al. 2007). Molecular methods are standard 

techniques used to investigate processes of species evolution and population dynamics 

(Duran et al. 2009; Steane et al. 1999). Chloroplast and nuclear markers, when used 

together, are powerful tools for understanding historical and contemporary processes 

that have contributed to the present day gene pool. Chloroplast DNA (cpDNA) is used 

widely for phylogeographic studies because of its uniparental mode of inheritance 

(maternal in most angiosperms), absence of recombination and low rate of mutation 

mean that the molecule retains ancient patterns of genetic diversity and can be used to 

infer historical processes such as refugial isolation and post-glacial recolonisation (Petit 

et al. 2005). Chloroplast DNA markers have been used widely for the analysis of 

postglacial recolonisation (Kremer et al. 2010; Okaura et al. 2007; Petit et al. 1997; 

Worth 2009), and studies have included several species of eucalypt (Bloomfield et al. 

2011a; Byrne 2008a; Freeman et al. 2001; McKinnon et al. 2004a; Nevill et al. 2010). 

The historical information gained from cpDNA can be combined with information from 

biparentally-inherited, rapidly evolving nuclear DNA (e.g, nuclear microsatellites 

(SSRs)) to assess spatial genetic structure, diversity and gene flow. 

 

In this study, we use both nuclear and chloroplast microsatellite markers to examine the 

spatial distribution of genetic diversity in E. pauciflora in Tasmania. We aim to test four 

hypotheses: i) there is little neutral molecular genetic differentiation amongst 

populations in Tasmania; ii) spatial distribution of cpDNA will provide evidence of the 

historical gene flow of the species; iii) whether high land populations of E. pauciflora 

are derived from lowland refugia or from highland refugia; and iv) contemporary gene 
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flow, depicted through nuclear markers, will be different from the historical gene flow 

of the species shown by chloroplast markers. Information on genetic diversity, gene 

flow, migration and dispersal of the species from these potentially neutral markers will 

inform quantitative genetic studies of the species as well as guide seed collection and 

restoration decisions. 

 

3.2 Materials and methods 

3.2.1 Sample collection and DNA extraction 

Leaf samples and seed capsules derived from open-pollination were collected from five 

to eight mature trees from each of 37 native populations across the entire geographic 

and ecological distribution of E. pauciflora in Tasmania (see Table 2.1), giving a total 

of 281 Tasmanian wild samples. Trees were sampled in such a way that the distance 

between two consecutive trees was at least double the tree height, to avoid sampling 

within the family group structure known to occur in eucalypts (Jones et al. 2007; Skabo 

et al. 1998). Altitude and the geographic coordinates of each sampled tree were 

recorded. The open-pollinated seeds were used to establish several progeny trials, with 

each family represented by a single tree in each replicate (Bailey et al. 2013). When the 

seedlings were one year old, leaf material was collected from a field trial at Dungrove 

(42° 16' 29.3052" S, 146° 53' 28.0098" E) in such a way that 40 seedlings were sampled 

per population. These seedlings were taken from five to eight families per population so 

that, given 37 populations, a total of 1,480 seedlings were sampled (see Chapter 2). At 

the time of sampling, seedling mortality rate was 2%, and there was no significant 

difference in field mortality rate among populations (see Chapter 2). Leaves collected 

from the maternal samples were dried in silica gel, but leaves from seedlings were 

freeze-dried and sealed in aluminium foil bags until DNA extraction. 

 

3.2.2 Molecular methods 

Genomic DNA was extracted from leaves using a modified CTAB method (Doyle and 

Doyle 1990; McKinnon et al. 2004b). Seven chloroplast microsatellite primer pairs 

(EMCRC59cp, EMCRC60cp, EMCRC65cp, EMCRC67cp, EMCRC74cp, 

EMCRC86cp and EMCRC90cp; Steane et al. 2005) were tested in 16 randomly 

selected samples (including mainland samples supplied by Dr Michael Bayly, 

University of Melbourne, Australia). Five microsatellite primer pairs namely 
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EMCRC60cp, EMCRC67cp, EMCRC74cp, EMCRC86cp and EMCRC90cp were 

previously used in previous studies on related Eucalyptus species (Bloomfield et al. 

2011a; Nevill 2010; Nevill et al. 2010). While all microsatellites were polymorphic in 

mainland populations, only primer pairs EMCRC59cp, EMCRC60cp, EMCRC65cp and 

EMCRC86cp were polymorphic in Tasmania. In order to make results comparable with 

mainland populations and previous studies, all primer pairs were used in this study. 

 

In addition, 15 nuclear microsatellites (CRC6, CRC11 (Steane et al. 2001), EL13 

(Ottewell et al. 2005), ES140, ES157, ES211, ES255 (Glaubitz et al. 2001), EMBRA08, 

EMBRA011, EMBRA042, EMBRA187, EMBRA196, EMBRA210, EMBRA232 

(Brondani et al. 1998; Brondani et al. 2006), and EPIL_MYB2 (Shepherd et al. 2010)) 

were screened against the same 16 individuals. Of these, two loci (EMBRA042 and 

EPIL_MYB2) did not amplify and, hence, 13 were used for further analysis. Studied 

loci and their characteristics are shown in Table 3.1. 

 

Forward primers of each chloroplast and nuclear locus were labelled with NED, VIC, 6-

FAM, or PET fluorescent dye (Perkin Elmer Applied Biosystems, Foster City, CA, 

USA). Polymerase chain reaction (PCR) for chloroplast microsatellite loci was 

performed in 12.5 µl reactions containing approximately 1 µl of 20 ng DNA, 6.25 µl of 

2X QIAGEN Multiplex PCR Master Mix (providing a final concentration of 3 mM 

MgCl2), and 1.25 µl of primer mix containing 10 µM of each forward and reverse 

primer. PCR for nuclear microsatellite loci was performed in 5 µl reactions containing 

approximately 1 µl of 20 ng DNA, 2.5 µl of 2X QIAGEN Multiplex PCR Master Mix 

(providing a final concentration of 3 mM MgCl2), 0.5 µl of 5X Q-Solution, and 0.1 µl of 

primer mix containing 10 µM of each forward and reverse primer. 

 

The PCR profile consisted of 15 min denaturation at 95 °C followed by 30 cycles of 

94 °C for 30 sec, 90 sec at an annealing temperature of 53 °C to 60 °C (depending upon 

annealing temperature of each primer pair used; Table 3.1) and 72 °C extension for 60 

sec, followed by a final extension of 10 min at 60 °C. PCR products were checked for 

quality, diluted and combined as needed and were sent to the Australian Genome 

Research Facility Ltd. (Adelaide) for capillary separation on an ABI3730 analyser 
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(Perkin Elmer, Applied Biosystems, Foster City, CA, USA). Alleles were sized and 

scored using Genemapper software version 3.7 (Perkin Elmer, Applied Biosystems). 

 

Samples that were missing data for five or more nuclear loci were discarded from the 

analysis, reducing the sample size to 276 maternal samples and 1,359 progenies. In the 

chloroplast DNA set, one sample could not be amplified, so a total of 280 samples were 

included in the final analysis. 

 

Maternal samples were unavailable for the South Arm population. To overcome this 

problem, MLTR version 3.1 (Ritland 2002) was used to infer the most likely maternal 

nuclear genotypes, using data from the progeny array. These inferred ‘maternal’ 

genotypes were used in subsequent analyses. 

 

3.2.3 Chloroplast microsatellite analysis 

Within populations, the number of chloroplast haplotypes (A), number of private 

chloroplast haplotypes (AE), and chloroplast haplotype composition for each population 

was calculated using GENALEX 6.501 (Peakall and Smouse 2006). Haplotypes are 

defined as a distinct combination of the alleles at a given set of microsatellites. 

Haplotypes were classified and named according to Nevill et al. (2010) and Bloomfield 

et al. (2011b). However, as the current study used two more markers than these 

previous studies, each haplotype was named as an extension to previously described 

ones. For example, haplotypes 19/1 and 19/2 in this study are identical in the five 

microsatellites of haplotype 19 of previous studies, but with additional information from 

two more microsatellite markers. New haplotypes were named in the order of discovery, 

following those already listed for E. obliqua, E. delegatensis and E. regnans. 

Haplotypes that were in only one population were defined as ‘private’ haplotypes. As 

the current study had an uneven sample size, rarefied haplotype richness (R) was 

computed using Contrib 1.02 (Petit et al. 1998).  
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Table 3.1. Nuclear microsatellite loci used to study Tasmanian Eucalyptus pauciflora. Repeat motif; forward (F) and reverse (R) primer sequence (5´-

3´); product size range (PSR ); annealing temperature (°C); position of each SSR locus in E. globulus linkage map; dye used for labelling forward (F) 

primer. 
SSR locus Repeat motif Primer sequences 5‘-3´ PSR  Annealing 

temp. (°C) 

Linkage group, position (cM); data source 

 

dye 

CRC11 (TC)10(AC)10 

F: AACTGACTGTGGATTTGAAGC  

216-268 60 6, 50.1; Hudson 2012 VIC R: GTGAGTCATTATTTGGCAACC 

EL13 (TC)17(AC)10 

F: CAAGAGTCACAGCCAAGCC  

160-184 60 10; (1966423.1966584 bp); this study
1
 FAM R: GACAACGCATCTTTCTTTCTG 

EMBRA011 (AG)4GG(AG)13 

F: GCTTAGAATTTGCCTAAACC  

105-165 53 1, start of chromosome; Hudson 2012 FAM R: AGGATTTGTGGGGCAAGT 

EMBRA187 (GA)9CAGG(GA)20 

F: CTCATGCATAGCTGCTACTC 
 

176-220 53 6, 19.9; Hudson 2012 FAM R: GCAGCTCAGTGTACATTGG 

EMBRA196 (GA)46 

F: GTGAAGCTCAACCTGTTGTCT  

243-349 57 6, 39.4; Hudson 2012 FAM R: GTGACCGATCATGTGTGGACT 

EMBRA210 (TC)25 

F: CGTGTGGTTATGTGAACT  

190-236 53 9, 70.2; Hudson 2012 NED R: CCTAACAATGCATAAGCTC 

EMBRA232 (AG)12 

F: TCCTTATCGTCAATTCTTGC 

102-160 55 4; Brondani et al. 2006 PET R: GGTCTAGCGTGATTCATCCT 

ES140 (GT)20(GA)10 

F: GCTCATTGTACTGCACAGAGG  

122-180 60 9, 45.6; Hudson 2012 VIC R: AAGGCACCAACAGTACCTGG 

ES211 (GA)17 

F:  GGGAGAGCTGATTGAGTAATTG 
 

84-118 60 

9, 55; (Mapped to LG9 in Evandro's map 

(unpublished), 6.5 cM from EMBRA18. In 

composite map, EMBRA18 mapped to LG9, 

49.13) FAM R: GCTGAGAATGGAAGCACATC 

ES255 (GT)12 

F: TTTGCCATAGCGAAGTGTTG 

91-107 60 

(Not mapped by Thumma 2010, primers do 

not return blast hits in E. grandis sequence 

(BOGAS server)) PET R: GACCACTTACCAAACTCACCG 

1 Blasted to E. grandis genome  

(Phytosome: http://www.phytozome.com/search.php?show=blast&targetType=genome&method=Org_Egrandis); position is in bp (not cM). 
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The program Permut (available at http://www.pierroton.inra.fr/genetics/labo/Software 

/PermutCpSSR/index.html) was used to compute (i) the mean within-population genetic 

diversity, (ii) species-level total genetic diversity, and (iii) population differentiation 

calculated with alleles treated as unordered, where comparisons do not account for 

variation in allele size (hS, hT and GST respectively), and ordered, where the assumed 

number of mutational steps between alleles provides additional information (vS, vT and 

NST respectively). Population differentiation parameters, GST and NST were used to test 

for phylogeographic structure. When NST was significantly higher than GST we inferred 

that closely related haplotypes are more likely to occur within a population than less 

closely related haplotypes, indicating a degree of phylogeographic structure (Pons and 

Petit 1996). A haplotype network was constructed using the medium joining network 

algorithm (Bandelt et al. 1999) using Network 4.6.1.1 (fluxus-engineering 2012) to 

visualize the number of base pair differences between haplotypes. The difference 

between each pair of haplotypes was the sum of nucleotide differences between them 

over the four polymorphic chloroplast loci. Analysis of molecular variance (AMOVA) 

was performed on the allelic data to estimate the partitioning of genetic variation within 

and among populations. AMOVA was computed using GENALEX 6.501 (Peakall and 

Smouse 2006) and significance testing was performed using 9,999 permutations. 

 

3.2.4 Nuclear microsatellite analysis 

Population genetic parameters were estimated using various software packages. The 

number of alleles (A), observed (Ho) and expected heterozygosity (He) and Wright’s 

fixation index (F) were calculated and averaged over loci and populations using GDA 

1.1 (Lewis and Zaykin 2002). Null allele frequencies (A(0)) in each locus were 

estimated using GENEPOP (Rousset 2008). F-statistics (FIS, FIT and FST, Weir and 

Cockerham 1984) for each locus, and pairwise FST values among populations were 

estimated using FSTAT 2.9.3 (Goudet 2001). F-statistics were calculated with 99% 

confidence intervals using 1000 bootstrap replicates. FSTAT 2.9.3 (Goudet 2001) was 

used to calculate the Rarefied Allelic Richness (AR; El Mousadik and Petit 1996) for 

each population, using a minimum sample size of four. 

 

A pair-wise matrix of Nei’s genetic distance was calculated using GENALEX 6.501 

(Peakall and Smouse 2006). The significance of the association between genetic 

http://www.pierroton.inra.fr/genetics/labo/Software
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distance and the geographic distance was tested using a Mantel test (Mantel 1967) with 

10,000 permutations. Spatial autocorrelation analysis was used to determine the pattern 

of change of genetic distance with reference to geographic distance. The Mantel test and 

spatial autocorrelation analysis were performed in GENALEX 6.501. The relationships 

among populations were explored through UPGMA clustering, using Nei’s genetic 

distance (Nei 1972). UPGMA dendrograms were constructed from 1,000 bootstrap 

replicates using GDA 1.1 (Lewis and Zaykin 2002) software and figures were produced 

using software TREEVIEW (Page 1996). To further study relationships among 

individuals and populations, structure analyses, based on a Bayesian clustering 

approach, was performed using STRUCTURE 2.3 (Pritchard et al. 2000). Assuming no 

prior population grouping, and using the options of admixture and both correlated and 

uncorrelated allele frequencies, the optimum value of the number of groups of 

genetically similar individuals (K) was determined. For the analyses, 100,000 Markov 

chain Monte Carlo repetitions, after a burnin period of 100,000 iterations, was used. The 

optimum value of K was determined from five runs at each value of K, ranging from K 

= 1 to K = 20, using the method described by Evanno et al. (2005) and the ad hoc 

statistic ∆K, based on the rate of change in the log probability of the data between 

successive K values. Structure Harvester v 0.6.93 (Earl and vonHoldt 2012) was used to 

choose the K value that best fit the data, using both log posterior probability of the data 

(ln Pr (X/K)) and ∆K (Evanno et al. 2005) . 

 

Genetic differentiation estimates from nuclear markers (nssr) and chloroplast markers 

(cpssr) were used to estimate the relative influences of pollen- and seed-mediated gene 

flow in E. pauciflora, using equation 5a of Ennos (1994): 

Pollen flow/seed flow = [(    (    )⁄   )(     )   (    (     )⁄   )] (    (     )⁄   ) 

 

3.3 Results 

3.3.1 Chloroplast haplotype diversity 

Four of the seven chloroplast microsatellites (EMCRC59cp, EMCRC60cp, 

EMCRC65cp and EMCRC86cp) were polymorphic in Tasmanian E. pauciflora, 

yielding three, five, five and four alleles, respectively. Allelic variation at the four loci 

combined into 31 haplotypes (Table 3.2). The haplotype tree (Fig. 3.1) showed a 

relatively continuous network of haplotypes with most differentiated by only one base-
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pair from adjacent haplotypes. A few haplotypes were separated by longer distances 

resulting from multiple changes at a single locus: in H56 there was a change of three 

base pairs at EMCRC60, and a cluster of haplotypes (H61, H60, H43/1 and H24/1) was 

separated from the main network by 8 base-pair differences at EMCRC65.  

 

Half of the haplotypes were present at very low frequencies (< 0.7%; Table 3.2). H24/3 

was the most frequent haplotype (present at a frequency of 20.4%) followed by H21/3 

(17.9%). Mean rarefied haplotype richness per population was 1.3 and twelve (45%) 

haplotypes were population-specific (see ‘private haplotypes’ in Table 3.3). Overall, 

there was moderate within-population diversity (hS = 0.49±0.048, vS = 0.45±0.053), and 

high total chloroplast diversity (hT = 0.91±0.018, vT = 0.91±0.023).  

 

 

Fig. 3.1. Statistical parsimony tree of chloroplast microsatellite haplotypes found in the 

Tasmanian Eucalyptus pauciflora. The size of the circle represents the relative frequency of a 

haplotype. Each haplotype is represented by a unique colour. Branch lengths indicate the 

number of nucleotide differences between haplotypes. Branch lengths equal one base pair 

difference unless indicated.  
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Table 3.2. Chloroplast haplotypes found in Eucalyptus pauciflora in Tasmania, their respective 

frequencies and counts and the allele at each cpSSR locus. The presence of the haplotype class 

in other species is given as E. obliqua (obl), E. delegatensis (del), E. regnans (reg). 

Haplotypes Frequency 

(%) 

Count EMCRC59 EMCRC60 EMCRC65 EMCRC86 *Presence in 

other species 

H19/1 0.4 1 241 195 254 147 obl, reg 

H19/2 1.8 5 241 195 255 147 obl, reg 

H20/1 0.7 2 241 194 255 147 del, obl, reg 

H21/1 0.4 1 241 194 254 148 obl, reg 

H21/2 7.5 21 241 194 255 148 obl, reg 

H21/3 17.9 50 242 194 255 148 obl, reg 

H21/4 0.4 1 242 194 256 148 obl, reg 

H21/5 2.1 6 243 194 255 148 obl, reg 

H24/1 1.1 3 241 195 245 148 del, obl, reg 

H24/2 0.7 2 241 195 254 148 del, obl, reg 

H24/3 20.4 57 241 195 255 148 del, obl, reg 

H24/4 0.4 1 241 195 256 148 del, obl, reg 

H24/5 3.9 11 242 195 255 148 del, obl, reg 

H24/6 0.4 1 242 195 256 148 del, obl, reg 

H30/1 2.1 6 241 196 254 148 obl, reg 

H30/2 8.9 25 241 196 255 148 obl, reg 

H43/1 11.8 33 241 195 245 149 del 

H43/2 0.7 2 241 195 254 149 del 

H43/3 2.9 8 241 195 255 149 del 

H56 0.4 1 241 190 255 148 

 H57 1.4 4 241 193 255 148 

 H58 1.4 4 241 194 255 149 

 H59 0.7 2 241 194 255 150 

 H60 6.1 17 241 196 245 149 

 H61 0.4 1 241 196 246 149 

 H62 1.8 5 241 196 254 149 

 H63 0.4 1 241 196 254 150 

 H64 0.4 1 241 196 255 147 

 H65 1.8 5 241 196 255 149 

 H66 0.4 1 242 194 255 149 

 H67 0.7 2 243 193 255 148 

 

In addition to the four loci shown here, three more (EMCRC67, EMCRC74 and EMCRC90) were also 

used for the study. These three loci were monomorphic in Tasmanian E. pauciflora; EMCRC67 was fixed 

at 234 bp, EMCRC74 at 127 bp and EMCRC90 at 231 bp. 

*Presence of haplotype class (e.g., H19); for details see methods.  
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Populations were highly differentiated, with a GST of 0.47 ± 0.049, NST of 0.51 ± 0.056 

and AMOVA indication that 88% of the variation was between populations (P < 0.001). 

Both GST and NST were significantly different from zero (P < 0.001), indicating 

significant genetic structure. NST was not significantly greater than GST, providing little 

support for clear phylogenetic structure of haplotypes among populations. There was a 

weak but significant signal of isolation by distance among populations (Mantel r = 0.12, 

P = 0.044). The spatial autocorrelation analysis indicated that genetic distance between 

populations increased linearly up to 93 km, with populations within 38 km being 

significantly more similar in their chloroplast microsatellite affinities than would be 

expected from chance (Fig. 3.2a). The spatial distribution of haplotypes in each 

population, showed geographical structure, especially in the central region of the E. 

pauciflora distribution, where each of three regions was dominated by a distinct 

haplotype (Fig. 3.3). The central west region was dominated by haplotype H21/3, the 

central region by H24/3 and the central east by H43/1. This dominance resulted in these 

haplotypes being the most common haplotypes in E. pauciflora (Fig. 3.1). H24/3 

dominated mid-altitude (347 m to 895 m) populations on the south-eastern slopes of the 

Central Plateau of Tasmania (populations 17, 20, 25, 29, 30 & 31), but also occurred at 

low frequency in an adjacent western population (21) as well as in lower-altitude (16 m 

to 498 m) populations to the north (1, 3, 4, 5, 6, 8 and 11), including the near-sea-level 

population at Waterhouse (1) in the far north-east of the distribution. H21/3, together 

with phylogenetically similar haplotypes H24/5 and H66, completely dominated the 

high-altitude (460 m -1138 m) western populations (10, 13, 14, 18, 22, 26), but H21/3 

also occurred in lower altitude populations in the southern (35 m to 100 m) and northern 

(3 m to 282 m) central regions. The other common haplotype, H43/1 and 

phylogenetically similar haplotypes (H60 and H24/1), dominated a wide altitudinal 

range in the southern Midlands and Eastern Tiers (229 m to 626 m), but these 

haplotypes also occurred in two highly polymorphic populations, one in the northern 

Midlands (9 m to 160 m) and the other to the south (28 m to 412 m). 

 

Across the range of E. pauciflora in Tasmania, chloroplast haplotype diversity was not 

associated with altitude (F1,35 = 0.01, r
2
 = 0 %, P = 0.91; Table 3.4), but populations 

formed three spatial clusters, representing ‘hot-spots’ of haplotype diversity (Fig. 3.4a). 

The first cluster comprised the low-altitude (16 m to 405 m) northern populations (1, 3, 
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5, 9) extending from the northern Midlands to the north-east coast (Tamar Valley), the 

second comprised the low altitude (41 m to 444 m) populations in the south-east (Storm 

Bay region) (28, 32, 33, 34, and 36), and the third cluster included two eastern 

populations in the upper Avoca Valley (8) and Dukes Marsh (11) (St Pauls River Valley) 

between 237 m and 498 m altitude. While the most southern, small disjunct population 

growing near sea-level at South Arm (37) was relatively depauperate in chloroplast 

haplotype diversity, it contained the same haplotype (H24/2) as well as haplotypes that 

differed from H24/2 by only one mutation (H43/2, H30/1, H19/1 and H21/1; Fig. 3.1) 

as its two closest northern populations (33 and 36), suggesting an historic link. The 

populations in central Tasmania tended to have relatively low chloroplast haplotype 

diversity (Fig. 3.3). 

 

A comparison of haplotype diversity of E. pauciflora with E. obliqua (Bloomfield et al. 

2011b), E. delegatensis and E. regnans (Nevill 2010; Nevill et al. 2010), revealed five 

haplotypes (H19, H20, H21, H24, H30) that were shared with E. obliqua and E. regnans, 

and three haplotypes (H20, H24 and H43) that were shared with E. delegatensis. 

However, there was no geographic coincidence in the distribution of shared haplotypes 

across Tasmania for these species.  
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Table 3.3. Tasmanian Eucalyptus pauciflora populations studied with their codes, geographic 

locations, number of haplotypes (A), number of private haplotypes (AE), rarefied haplotype 

richness (R) and haplotypes codes (when more than one sample shared a haplotype, the number 

is indicated preceding the symbol X). Private haplotypes are underlined. 

ID Population Latitude 

(°S) 

Longitude 

(°E) 

Altitude A AE R Haplotypes 

1 Waterhouse -40.91 147.66 16 4 0 2.5 3×H24/3 H30/2 H43/3 H65 

2 Nunamara -41.37 147.32 405 3 1 1.5 5×H21/5 H43/3 2×H67 

 
3 Brushy Lagoon -41.41 146.75 282 4 0 2.6 2×H21/2 2×H21/3 2×H24/3    H30/2 

4 Tyne River -41.47 147.82 297 2 0 1.0 2×H24/3 5×H30/2 

  
5 Longford -41.63 147.10 159 4 0 2.3 4×H21/2 2×H24/3 2×H43/3 2×H58 

6 Symmons Plains -41.66 147.25 166 3 0 1.7 4×H21/2 H24/3 H43/3 

 
7 Rossarden -41.69 147.70 731 2 0 0.7 H20/1 6×H21/2 

  
8 Avoca -41.71 147.83 237 4 0 2.7 H21/5 H24/3 2×H43/3 2×H65 

9 Cressy -41.72 147.10 160 5 0 2.9 H20/1 2×H24/1 2×H43/1 2×H58 

        

H65 

   
10 Lake Rowallan -41.72 146.22 460 2 0 0.6 7×H21/3 H24/5 

  
11 Dukes Marshes -41.72 148.13 498 4 1 2.1 4×H19/2 2×H24/3 H43/3 H64 

12 Conara -41.84 147.46 206 2 1 1.0 4×H21/2 4×H57 

  
13 Lake Arthur -41.96 146.88 1004 2 0 0.6 8×H21/3 H24/5 

  
14 Great Lake -41.99 146.70 1138 2 0 1.0 4×H21/3 6×H24/5 

  
15 Ross -42.00 147.53 240 1 0 0.0 9×H43/1 

   
16 Lake Leake -42.02 147.82 597 2 0 1.0 4×H43/1 5×H60 

  
17 Wihareja -42.06 146.81 895 2 0 1.0 5×H24/3 2×H30/2 

  
18 Pine Tier -42.09 146.52 818 2 0 1.0 5×H21/3 3×H24/5 

  
19 Tunbridge -42.12 147.36 229 3 0 1.1 H24/1 7×H43/1 H60 

 
20 Interlaken -42.15 147.14 818 1 0 0.0 8×H24/3 

   
21 The Point -42.19 146.42 674 3 0 1.4 H21/3 H24/3 5×H30/2 

 
22 Lake St Clair -42.20 146.14 816 1 0 0.0 8×H21/3 

   
23 Woodbury Hill -42.21 147.28 626 1 0 0.0 6×H43/1  

   
24 Tooms Lake -42.22 147.79 487 2 0 1.0 3×H43/1 2×H60 

  
25 Dungrove -42.27 146.89 552 3 0 1.3 7×H21/3 2×H24/3 H30/2 

 
26 Butlers Gorge -42.28 146.33 682 2 1 0.6 7×H21/3 H66 

  
27 Oatlands -42.30 147.38 402 2 0 0.6 H43/1 7×H60 

  
28 Tin Dish Rivulet -42.31 147.44 412 4 0 3.0 H24/3 H30/2 H43/1 2×H60 

29 Osterley -42.35 146.74 347 2 1 0.7 6×H24/3 H56 

  
30 Bothwell Lake -42.38 147.00 370 2 0 0.8 8×H24/3 2×H30/2 

  

31 

Bignells 

Bothwell -42.40 147.10 481 1 0 0.0 8×H24/3 

   
32 Ellesmere -42.40 147.30 422 3 1 2.0 2×H30/2 2×H59 H61 

 
33 Stonor -42.43 147.43 444 4 2 1.9 H43/2 5×H62 H63 H65 

34 Uralla -42.55 146.86 193 4 2 2.5 H19/2 H21/4 H24/6 3×H30/2 

35 Curringa -42.57 146.77 100 2 0 0.6 7×H21/3 H30/2 

  
36 Gatehouse Marsh -42.59 147.78 41 6 3 4.0 H19/1 H21/1 H21/2    H24/2 

        

  H24/4    H43/2 

  
37 South Arm -43.03 147.42 16 2 1 0.7 H24/2 6×H30/1 

    



Chapter 3                  Molecular genetic diversity of Eucalyptus pauciflora 

47 

 

a) Results of spatial structure analysis using chloroplast markers 

 

b) Results of spatial structure analysis based on the maternal samples using nuclear markers 

 

c) Results of spatial structure analysis based on the progenies using nuclear markers 

d) Results of fine scale spatial structure analysis based on maternal samples using nuclear 

markers 

 

Fig. 3.2. Correlograms of Eucalyptus pauciflora from Tasmania based on the geographic distance and 

Nei’s (1972) genetic distance, based on: a) the maternal populations using four polymorphic chloroplast 

marker; b) the maternal populations using 10 nuclear microsatellite markers; c) the progenies using 10 

nuclear microsatellite markers; and d) fine scale analysis of maternal samples based on 10 nuclear 

microsatellite markers. r is the autocorrelation coefficient, upper and lower confidence limits bound the 

95% confidence interval about the null hypothesis of no spatial structure for the combined data set as 

determined by the permutation. 
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Fig. 3.3. Geographic distribution of chloroplast DNA haplotypes found in Eucalyptus pauciflora, 

superimposed on the whole species distribution (grey diamonds) in Tasmania based on the 

information from Williams and Potts (1996), Natural Value Atlas 

(www.naturalvaluesatlas.tas.gov.au) and additional records from the University of Tasmania. 

Population numbers correspond to those defined in Table 3.3. Pie charts represent relative 

proportions of each population that contains the given (colour-coded) chloroplast haplotypes. 

Colour code of the haplotypes corresponds to the Fig. 3.1. Note that the chloroplast haplotypes 

are structured geographically. Three coloured regions group populations hypothesised to have 

been in glacial refugia. 

 

http://www.naturalvaluesatlas.tas.gov.au/
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Fig. 3.4. Geographic variation in chloroplast and nuclear diversity parameters for populations of 

Eucalyptus pauciflora. The maps show spatial variation in population means for a) chloroplast 

haplotype richness per population (rarified) (R in Table 3.3); b) nuclear microsatellite allelic 

richness (rarefied) per population (AR, Table 3.5); c) nuclear microsatellite expected 

heterozygosity (He, Table 3.5); and d) nuclear microsatellite observed heterozygosity (Ho, 

Table 3.5). The contour mapping is based on an inverse distance weighted interpolation (IDW) 

between data points. The numbers against each point are the population identification numbers 

(ID) given in Table 3.3. Note the figures shows many discrepancies between chloroplast and 

nuclear diversity.  
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Table 3.4. Regression analysis testing the effect of altitude on population-level genetic diversity 

parameters and also to test the correlation between population-level chloroplast diversity 

(haplotype richness) and nuclear diversity parameters (allelic richness, expected heterozygosity, 

observed heterozygosity and the fixation index) in Tasmanian Eucalyptus pauciflora.  

Diversity parameter 

Altitude Correlation with 

haplotype 

richness (R) 

Maternal Progenies 

R2 (%) relationship F1,35 P R2  relationship F1,35 P r  P 

Haplotype richness, R 0 NA  0.01 0.912 NA NA NA NA NA NA 

Allelic richness, AR 13.2 positive  5.3 0.027     45.2 positive 28.9 0.000 0.01 0.951 

Expected 

heterozygosity, He 11.8 positive  4.7 0.037 19.7 positive 8.6 0.006 -0.09 0.582 

Observed 

heterozygosity, Ho 0.01 NA 0.5 0.471 11.7 positive 4.7 0.038 0.09 0.598 

Fixation index, F 0 NA 0.3 0.566 0 NA 0.05 0.822 -0.16 0.352 

 

3.3.2 Nuclear microsatellites 

Of the 13 nuclear microsatellites screened, EMBRA08, CRC6 and ES157 had many 

spurious peaks, so were dropped from further analysis. Technical replicates of 5% of the 

samples showed an error rate of 4.6 % per allele in the final set of 10 loci analysed. The 

10 loci used for the study were highly variable in the 276 maternal samples, with a total 

of 229 alleles scored. Each locus had from nine (ES255) to 47 (EMBRA196) alleles, 

with a mean of 23 alleles per locus (Table 3.5). In the 1,359 progenies sampled, a total 

of 270 alleles were observed, with a mean number of 27 alleles per locus, ranging from 

11 (ES255) to 53 (EMBRA196) alleles. The expected heterozygosity (He) was higher 

than the observed heterozygosity (Ho) in all loci, both in maternal samples and in 

progenies. The total diversity (HT) in maternal trees and progenies was the same (mean 

He or HT; maternal = 0.83, progenies = 0.83), however, observed heterozygosity in 

progenies was less than the maternal samples (maternal Ho = 0.75: progenies Ho = 

0.70). In maternal samples, FIS was positive for all loci except CRC11 where FIS was 

slightly negative (-0.01). In the progenies, none of the FIS values were negative. For all 

loci, estimates of FIS, FIT and FST were higher in progenies than in the maternal samples 

(Table 3.5). 
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The population level genetic diversity statistics for maternal samples and progenies are 

given in Table 3.6. Expected heterozygosity averaged over loci was high for all 

populations for maternal samples and progenies (maternal He = 0.80: progenies He = 

0.79). In virtually all maternal populations (32 out of 37) expected heterozygosity was 

higher than observed heterozygosity. While the overall average expected heterozygosity 

in progenies was essentially the same as that of maternal samples, the observed 

heterozygosity in progenies was slightly lower than in maternal populations (maternal 

Ho = 0.80: progenies Ho = 0.79). For all but four of the populations, maternal fixation 

indices were positive and close to zero, with an average of 0.07 indicating the presence 

of slightly more homozygosity than expected under random mating. Population-level 

fixation indices for the progenies were all positive and the average (0.12) was slightly 

higher than the average fixation index for maternal samples, indicating slightly greater 

inbreeding in the progenies. Similarly, private alleles were observed in many 

populations (20 out of 37; data not shown), but the distribution of private alleles did not 

show any geographic pattern. 

 

AMOVA indicated that low but significant molecular genetic variation occurred among 

populations (maternal = 3%; progenies = 5%; P < 0.001). Similarly, the overall FST for 

the maternal populations was low (0.03±0.003), half that observed in the progenies 

(0.055±0.003). Using nuclear and cpDNA estimates of population differentiation, the 

ratio of pollen- to seed-mediated gene-flow was estimated at 24.4 for the maternal 

samples and 14.7 for progenies. This result indicates that pollen dispersal is the 

predominant contributor to gene flow in E. pauciflora. 

 

A Mantel test of the correlation of pairwise FST values from maternal and progeny 

estimates was highly significant (n = 37; Mantel r
 
= 0.80, P < 0.001), with the positive 

correlation indicating similar patterns of population differentiation across generations. 

UPGMA dendrograms constructed using Nei’s (1972) genetic distance did not reflect 

any clear spatial grouping of populations for either maternal or progeny data (data not 

shown). However, the South Arm (37) and Butlers George (26) populations were 

outliers in both dendrograms. Similarly, a Bayesian STRUCTURE analysis (results not 

shown) of maternal samples did not detect any geographic clustering of the genetic 

diversity. With every cluster partition starting at K = 2, populations were admixed and   
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Table 3.5. Genetic parameters for ten nuclear microsatellite loci in Tasmanian Eucalyptus 

pauciflora. ‘Source’ refers to the result for either maternal (Mat) or progeny (Prog) samples; 

Rppt (%) = repeatability percentage; A(0) = frequency of null alleles; n = number of scored 

individuals per locus; A = observed number of alleles per locus; He = expected heterozygosity; 

Ho = observed heterozygosity; Fit, Fst, Fis are the total, between- and within-population 

inbreeding coefficients, respectively, and S.E. is their standard error. Percent repeatability 

estimates and null allele frequencies were calculated from combined maternal and progeny data. 

Note that the mean of He across loci is equal to HT. 

Locus Source Rppt (%) A(0) n A He Ho Fit S.E Fst S.E Fis S.E 

CRC11 Mat 97.3 0.005 276 25 0.91 0.89 0.02 0.02 0.02 0.01 -0.01 0.02 

 

Prog 

  

1344 27 0.91 0.83 0.10 0.02 0.05 0.01 0.05 0.01 

EL13 Mat 98.2 0.053 276 12 0.47 0.39 0.17 0.05 0.03 0.02 0.14 0.05 

 

Prog 

  

1339 17 0.47 0.36 0.27 0.03 0.05 0.01 0.23 0.03 

Embra011 Mat 93.8 0.034 273 27 0.92 0.79 0.14 0.02 0.03 0.01 0.11 0.02 

 

Prog 

  

1301 29 0.92 0.71 0.24 0.02 0.06 0.01 0.20 0.02 

EMBRA187 Mat 93.3 0.057 275 22 0.92 0.73 0.21 0.03 0.04 0.01 0.17 0.03 

 

Prog 

  

1279 25 0.91 0.66 0.28 0.02 0.06 0.01 0.23 0.02 

EMBRA196 Mat 88.8 0.031 274 47 0.93 0.81 0.14 0.03 0.04 0.01 0.10 0.03 

 

Prog 

  

1276 53 0.93 0.72 0.24 0.02 0.07 0.01 0.18 0.02 

EMBRA210 Mat 98.3 0.017 276 24 0.87 0.77 0.12 0.02 0.03 0.01 0.09 0.03 

 

Prog 

  

1327 29 0.88 0.78 0.12 0.01 0.06 0.01 0.07 0.02 

EMBRA232 Mat 93.3 0.015 275 25 0.94 0.91 0.03 0.02 0.03 0.01 0.00 0.02 

 

Prog 

  

1330 31 0.94 0.84 0.11 0.02 0.06 0.01 0.06 0.02 

ES140 Mat 96.4 0.015 276 22 0.77 0.74 0.03 0.03 0.02 0.01 0.01 0.03 

 

Prog 

  

1290 30 0.77 0.71 0.09 0.02 0.04 0.01 0.05 0.02 

ES211 Mat 96.4 0.012 276 16 0.78 0.73 0.06 0.03 0.04 0.02 0.02 0.03 

 

Prog 

  

1334 18 0.80 0.70 0.13 0.02 0.07 0.01 0.07 0.02 

ES255 Mat 98.2 0.06 276 9 0.80 0.72 0.11 0.03 0.05 0.01 0.06 0.03 

 

Prog 

  

1300 11 0.81 0.66 0.19 0.02 0.07 0.01 0.13 0.02 

Mean Mat 95.4 0.03 276 23 0.83 0.75 0.10 0.02 0.03 0.003 0.07 0.02 

  Prog 

 

  1312 27 0.83 0.70 0.16 0.02 0.06 0.003 0.12 0.02 

 

the likelihood values were lower than that of K = 1, arguing for little spatial structuring 

of genetic variation. Nevertheless, the Mantel test for an association between Nei’s 

(1972) genetic distance and geographic distance among populations showed a 

significant but weak correlation for both maternal (Mantel r = 0.22, P = 0.010) and 

progeny (Mantel r = 0.32, P = 0.003) samples. Spatial autocorrelation based on both 

maternal samples and progenies showed that this was due to populations within 27 km 

of each other being significantly more similar than would be expected from chance 

alone, but beyond that distance there was no evidence of spatial structure of genetic 

variation (Fig. 3.2b and 3.2c). Fine-scale spatial structure analysis using individual-level 

rather than population-level genetic distances for maternal samples, showed a similar 
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trend, but allowed the patch size to be narrowed further, with the major change in 

genetic distance occurring at approximately 10 km (Fig. 3.2d). Mantel tests also showed 

a weak positive correlation of Nei’s (1972) genetic distance and the differences in 

altitude among populations (maternal samples r 
 
= 0.15, P = 0.06; progenies r = 0.19, P 

= 0.03).  

 

The population-level genetic diversity parameters were highly positively correlated 

between maternal and progeny samples (A, r
2 

= 0.77, P < 0.001; He, r
2 

= 0.87, P < 0.001; 

AR, r
2 

= 0.83, P < 0.001), except for observed heterozygosity (Ho, r
2 

= 0.45, P = 0.004) 

and the fixation index (F, r
2 

= 0.27, P = 0.136). The populations varied markedly in 

nuclear genetic diversity. Western high altitude (460 m to 1138 m) populations (10, 14, 

17, 20, and 22) had high allelic richness (Fig. 3.4b) and heterozygosity (Fig. 3.4c). This 

relatively high nuclear diversity contrasted with the low chloroplast haplotype richness 

in these populations (Fig. 3.4a). Populations exhibiting high haplotype and high nuclear 

genetic diversity, for example the northern-most coastal population (1) and two eastern 

populations (11 and 36), appear to be ‘hot spots’ of genetic diversity. The centre of high 

chloroplast haplotype richness in this area (5, 6 and 9) was clearly contrasted by the 

depauperate nuclear diversity of the same populations. While there was no association 

of chloroplast haplotype diversity with altitude, there was a positive relationship 

between altitude and nuclear microsatellite diversity (Table 3.4), particularly notable in 

the western central highland area (14, 17, 18, and 20). For the maternal samples, a 

regression analysis showed that population heterozygosity (He) increased with 

increasing altitude (P = 0.037), and this trend was even more apparent with the 

progenies (P = 0.006). Allelic richness similarly increased with altitude (maternal 

samples P = 0.027: progenies P < 0.001). The contrasting patterns of variation in 

chloroplast haplotype richness and nuclear diversity were reflected by there being no 

significant correlation between the chloroplast haplotype richness and any of the nuclear 

diversity parameters among populations of E. pauciflora (Table 3. 4). 
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Table 3.6. Genetic parameters for Tasmanian Eucalyptus pauciflora populations estimated for 

the maternal samples (Mat) and progenies (Prog) and averaged across 10 nuclear microsatellite 

loci: n = number of scored individuals per population; A =observed number of alleles per locus; 

He =expected heterozygosity; Ho =observed heterozygosity; AR = allelic richness (standardized 

to a sample size of 4); F = Wright’s fixation index.  

  

ID 

  

Population 

n A He Ho AR F 

Mat Prog Mat Prog Mat Prog Mat Prog Mat Prog Mat Prog 

1 Waterhouse 6 38 6.4 11.0 0.82 0.79 0.78 0.73 5.07 4.71 0.05 0.07 

2 Nunamara 8 38 7.3 11.2 0.8 0.78 0.79 0.65 4.91 4.70 0.01 0.17 

3 Brushy Lagoon 7 37 7.4 12.3 0.8 0.81 0.74 0.70 5.15 4.99 0.08 0.13 

4 Tyne River 6 28 6.1 9.10 0.76 0.73 0.68 0.56 4.74 4.32 0.11 0.24 

5 Longford 10 37 7.1 9.40 0.74 0.70 0.69 0.61 4.34 4.07 0.07 0.13 

6 Symmons Plains 6 36 5.5 9.00 0.76 0.72 0.78 0.62 4.43 4.06 -0.03 0.13 

7 Rossarden 7 38 7.6 14.1 0.84 0.82 0.76 0.72 5.29 5.08 0.10 0.12 

8 Avoca 6 37 5.2 9.20 0.74 0.75 0.77 0.72 4.27 4.27 -0.03 0.03 

9 Cressy 8 38 6.8 10.2 0.74 0.73 0.66 0.66 4.59 4.38 0.11 0.09 

10 Lake Rowallan 8 38 8.0 12.7 0.83 0.82 0.80 0.75 5.19 4.97 0.04 0.08 

11 Dukes Marshes 8 36 7.8 12.6 0.83 0.82 0.78 0.68 5.17 5.04 0.07 0.17 

12 Conara 8 37 7.2 11.5 0.79 0.76 0.74 0.70 4.90 4.62 0.06 0.08 

13 Lake Arthur 9 35 7.7 12.1 0.78 0.77 0.70 0.68 4.83 4.74 0.11 0.12 

14 Great Lake 10 37 9.0 13.8 0.84 0.84 0.78 0.74 5.35 5.30 0.07 0.12 

15 Ross 10 35 7.5 11.4 0.75 0.78 0.64 0.69 4.60 4.68 0.16 0.11 

16 Lake Leake 9 38 9.7 14.4 0.85 0.84 0.82 0.76 5.57 5.26 0.03 0.09 

17 Wihareja 7 39 7.8 12.7 0.82 0.83 0.81 0.74 5.43 5.22 0.01 0.11 

18 Pine Tier 8 35 7.6 11.7 0.82 0.79 0.75 0.68 5.06 4.75 0.09 0.13 

19 Tunbridge 9 38 7.4 10.4 0.78 0.75 0.78 0.68 4.79 4.46 0.0 0.09 

20 Interlaken 8 36 7.8 13.7 0.82 0.82 0.73 0.73 5.17 5.13 0.12 0.11 

21 The Point 7 36 6.9 12.8 0.79 0.78 0.70 0.69 4.93 4.88 0.12 0.12 

22 Lake St Clair 9 35 7.6 12.1 0.84 0.82 0.8 0.78 5.05 5.02 0.05 0.05 

23 Woodbury Hill 5 28 5.0 9.50 0.77 0.75 0.70 0.69 4.41 4.43 0.10 0.08 

24 Tooms Lake 5 38 5.5 10.3 0.80 0.79 0.74 0.66 4.82 4.59 0.09 0.17 

25 Dungrove 10 36 7.7 10.3 0.77 0.77 0.75 0.63 4.72 4.63 0.03 0.19 

26 Butlers Gorge 8 37 6.8 12.8 0.81 0.84 0.74 0.73 4.75 5.06 0.1 0.13 

27 Oatlands 8 38 6.9 11.0 0.78 0.77 0.78 0.68 4.70 4.51 0.01 0.11 

28 Tin Dish Rivulet 6 38 6.2 11.4 0.77 0.76 0.73 0.69 4.80 4.56 0.06 0.10 

29 Osterley 4 20 4.7 9.0 0.76 0.76 0.75 0.69 4.70 4.47 0.02 0.09 

30 Bothwell Lake 10 35 8.6 11.4 0.81 0.79 0.77 0.76 5.04 4.77 0.06 0.03 

31 Bignells Bothwell 7 33 7.0 10.4 0.79 0.80 0.83 0.76 4.93 4.78 -0.05 0.05 

32 Ellesmere 5 36 5.9 10.5 0.8 0.78 0.7 0.66 5.10 4.71 0.14 0.15 

33 Stonor 8 35 7.4 12.4 0.82 0.81 0.7 0.72 5.03 4.97 0.16 0.11 

34 Uralla 5 28 6.4 11.0 0.85 0.83 0.78 0.76 5.48 5.04 0.10 0.09 

35 Curringa 8 37 7.6 11.1 0.83 0.81 0.74 0.69 5.14 4.84 0.12 0.15 

36 Gatehouse Marsh 6 35 6.7 9.9 0.83 0.79 0.85 0.66 5.18 4.60 -0.03 0.16 

37 South Arm 7 38 5.3 9.6 0.79 0.80 0.67 0.67 4.45 4.58 0.07 0.16 

  Mean 7 35 7 11.3 0.80 0.79 0.75 0.70 5.33 4.73 0.07 0.12 
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3.4 Discussion 

The overall pattern of nuclear genetic diversity in Tasmanian E. pauciflora was 

characterized by high total diversity (HT = 0.83), low inbreeding (FIS = 0.07) and low 

population differentiation (FST = 0.03) in the mature forest. The level of total genetic 

diversity in the species was comparable to the average reported for predominantly 

outcrossing tree species (HT = 0.82, Petit et al. 2005) and other widely distributed 

Eucalyptus species (E. regnans HT = 0.82, Nevill 2010; E. obliqua HT = 0.83, 

Bloomfield et al. 2011a; E. globulus HT = 0.87, Jones et al. 2002). The high genetic 

diversity of trees such as eucalypts is believed to be due to efficient gene flow 

mechanisms and the predominance of outcrossing, which are life history traits that 

promote the maintenance of high diversity (Austerlitz et al. 2000). The FST in the 

Tasmanian E. pauciflora (0.03) was lower than the average reported for predominantly 

outcrossing tree species (FST = 0.14; Petit et al. 2005) and the average reported for many 

eucalypt species using nuclear microsatellite markers (FST = 0.147; Byrne 2008b). 

However, E. pauciflora populations showed slightly more genetic differentiation than 

the co-occurring wide-spread E. obliqua which was sampled similarly across its 

distributional range in Tasmania (FST = 0.02; Bloomfield et al. 2011a).  

 

Pollen appears to be the predominant vehicle for gene flow in E. pauciflora, given the 

positive pollen-to-seed FST ratio. Seeds are dispersed mainly by gravity and/or wind in 

Eucalyptus, so that they generally fall within twice the canopy height of the maternal 

tree (Potts and Wiltshire 1997). While there is little published literature on the 

pollination biology of E. pauciflora, other small-flowered eucalypt species tend to be 

pollinated by insects and, less frequently, by birds and mammals (House 1997). The 

pollen- to seed-flow ratios measured in E. pauciflora are higher than that reported for 

the insect-pollinated E. nitens (pollen: seed FST ratio of 7.2: Byrne et al. 1998), are 

comparable with an average of 17 reported for 93 plant species (Petit et al. 2005), but 

are markedly lower than the average reported for eight other eucalypt species (145.7; 

Byrne 2008b; Bloomfield et al. 2011a ). 

 

While similar levels of total genetic diversity were observed in progenies and maternal 

samples, there was a discrepancy in FST between the two (maternal FST = 0.03; progenies 

FST = 0.06). This difference in the FST might be related to inbreeding, as seen in the 
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increase in inbreeding coefficient (FIS) for progenies. Both of these differences could be 

explained by the combined presence of selfing (ts = 0.10) and biparental inbreeding (tm-

ts = 0.16) in the E. pauciflora populations (Gauli et al. 2014), coupled with selection 

against the products of inbreeding (e.g., deleterious mutations in selfed and homozygote 

seedlings; Patterson et al. 2000) between the seedling and the mature cohorts, a 

common phenomenon in trees (Hufford and Hamrick 2003; Naito et al. 2005). This 

hypothesis is supported further by the difference in the ratio of pollen- to seed-mediated 

gene flow between the mature generation and the progenies (maternal samples: 24.5, 

progenies: 14.7). As a forest matures, selection may act against the products of selfing 

and biparental inbreeding that arise from near-neighbour matings, thereby favouring the 

products of long distance pollen dispersal. Such selection may explain the lack of 

geographic structuring of nuclear genetic diversity observed in E. pauciflora.  

 

The correlation between population differentiation and geographic distance between 

populations of E. pauciflora was weak. Trees within 10 km were genetically more 

similar to each other than would be expected from chance alone. Within a distance of 27 

km, there was still an above-average nuclear genetic similarity between populations, 

which indicates a distance over which broad-scale pollen dispersal is likely to define the 

local population. Beyond this distance the degree of differentiation of populations was 

unrelated to their separation distance. Similarly significant but weak genetic structuring 

has been observed in other widespread eucalypts over quite large distances, for example, 

40 km in E. globulus (Yeoh et al. 2012) and 51 km in E. obliqua (Bloomfield et al. 

2011a). The present study has shown that pollen has a much greater dispersal capacity 

than seed in Eucalyptus, and this enables long distance gene flow between populations 

and, perhaps, homogenisation of nuclear genetic variation across populations, thus 

masking or erasing the differentiation that may have accumulated in glacial refugia. The 

same trend of weak but significant isolation by distance was found for chloroplast DNA. 

In this case, populations within 38 km were more similar in their chloroplast 

microsatellite affinities than average. The discrepancy between the population structures 

found using nuclear and chloroplast markers may reflect differences in mutation rates 

between nuclear and chloroplast DNA, or the fact that the chloroplast DNA maintains a 

stronger historical signal.  
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Several studies have revealed that there is a trend towards high chloroplast diversity 

and/or high frequency of private haplotypes in glacial refugia relative to recently 

colonized areas (Heuertz et al. 2004; Hewitt 1996; Newton et al. 1999). Based on this 

premise, our evidence suggests three glacial refugia in Tasmania: Tamar Valley 

(lowland populations extending from the northern midlands to the north coast); St Pauls 

River Valley (eastern populations in the upper Avoca valley including Dukes Marsh); 

and Storm Bay region (the south eastern lowland populations). Using the current 

climatic envelope of the species, Williams (1991) suggested that E. pauciflora was once 

widespread throughout the lowlands of south eastern Tasmania (i.e., Storm Bay region 

in this study). Williams (1991) further argued that E. pauciflora may also have had 

populations in the north and in the east, in regions that coincide well with areas of high 

haplotype diversity in this study. Further support for E. pauciflora glacial refugia in 

these areas comes from a glacial climate modelling study by Kirkpatrick and Fowler 

(1998) that proposed the existence of multiple small, scattered refugia in northern and 

south eastern Tasmania for frost resistant eucalypts such as E. pauciflora. 

Morphological variation (Williams and Ladiges 1985) and pollen studies (Dodson 1977) 

also suggested the present low altitude population of E. pauciflora are relicts from the 

most recent glacial period. The hypothesised glacial refugia in Storm Bay (south eastern 

Tamania) and the eastern region of Tasmania are consistent with the hypothesised 

locations of glacial refugia for many other eucalypts species (Freeman et al. 2001; 

McKinnon et al. 2004a; McKinnon et al. 2001b; Nevill et al. 2010; Potts and Reid 

1985). In addition to the high level of chloroplast haplotype diversity in E. pauciflora, 

the St Pauls River Valley region also harbours high levels of endemism in other plant 

taxa, an observation consistent with an area of glacial refuge (Kirkpatrick and Brown 

1984).  

 

Low chloroplast haplotype diversity in the midlands of Tasmania is consistent with 

palynological study which proposed that this region was deforested during glacial 

periods (Sigleo and Colhoun 1981). This suggests probable migration of haplotypes 

from the hypothesized glacial refugia into the midlands following deglaciation. Near 

fixation of three different chloroplast haplotypes in the relatively high altitude 

populations in the central west, central and the central east regions suggests that these 

populations were the result of such post-glacial upslope colonization (Dodson 1977; 
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Williams and Ladiges 1985). Similar scenarios of post-glacial migration have been 

proposed in numerous other species in Europe (Demesure et al. 1996; Ferris et al. 1998; 

Marchelli et al. 1998; Petit et al. 1997). However, as Hope and Kirkpatrick (1989) 

proposed, there is a possibility that highland populations may have resulted from 

populations expansion out of high altitude refugia where E. pauciflora might have been 

able to survive in savannah habitats during the glaciations. Williams (1991), using 

climate modelling, found support for this hypothesis, because the present distribution of 

E. pauciflora occupies most of the predicted potential range which may not have been 

expected with post-glacial migration from lowland refugia. However, the lower 

chloroplast DNA diversity in broad areas of haplotype sharing amongst populations 

found in the central Midlands (which would have had a glacial arid environment 

supporting mainly grassland; Kirkpatrick and Fowler (1998)) and the high altitude 

Central Plateau region argues against the Hope and Kirkpatrick (1989) hypothesis of 

multiple small refugial populations in these areas. This study is, to our knowledge, the 

first to provide empirical evidence on this issue. 

 

The combination of high nuclear microsatellite diversity combined with low chloroplast 

haplotype diversity in the newly colonized areas, suggests that, following de-glaciation, 

highland areas were colonised relatively rarely by seed, but once established these 

populations were able to exchange genetic material with other populations through 

pollen. Similar discrepancies between chloroplast and nuclear differentiation were also 

observed in oak species (Finkeldey and Mátyás 2003; Kremer et al. 2002; Petit et al. 

2002a; Petit et al. 2002b) and extensive pollen flow was suggested to mask the 

chloroplast differentiation. Another explanation for populations having high nuclear 

diversity and low cpDNA diversity includes the impact of hybridisation and 

introgression. Eucalyptus pauciflora is known to hybridize with the ‘ash’ eucalypts, E. 

obliqua, E. delegatensis and E. regnans, as well as endemic ‘peppermint’ eucalypt 

species, including the tree-line species, E. coccifera (Duncan 1989; Pryor 1951; Pryor 

1953; Williams and Ladiges 1985). Genetic introgression arising from such 

hybridisation might be expected to increase both nuclear and chloroplast genetic 

diversity in populations of these species. However, although they share many common 

haplotypes, suggesting common ancestry, the absence of common geographic patterns 

of haplotype diversity suggests the absence of introgression, at least with the ash species. 
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However, the possibility of hybridisation and introgression with other co-occurring 

peppermint species which have-not been studied cannot be dismissed. 

 

3.5 Conclusion 

This study has shown that Tasmanian populations of E. pauciflora have high levels of 

genetic diversity of both chloroplast and nuclear loci. There was little population 

differentiation in nuclear markers, but there was above-average genetic similarity in 

populations within 27 km, which indicates a distance over which broad-scale pollen 

dispersal is likely to define the local population. The distribution of chloroplast 

haplotype diversity provides evidence of three major glacial refugia for E. pauciflora in 

the north and east of Tasmania. Haplotype affinities provided evidence of migration of 

populations from north and east towards the south and west of Tasmania and from 

lowland areas to highland areas. Higher nuclear diversity in newly colonised areas 

compared to lowland refugial regions, and the contrary in chloroplast DNA markers, 

suggest bottlenecks in seed dispersal in newly colonised regions, but persistent high 

gene flow between immigration zones through pollen dispersal. Our results provide 

evidence against the hypothesis that central highland populations of E. pauciflora 

originate from in situ high altitude refugia. 
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Chapter 4. Evidence for climate adaptation in early-life cycle 

traits of a wide-spread eucalypt 

 

Abstract 

Understanding the genetic basis of adaptation to contemporary environments is 

fundamental to predicting the evolutionary responses of tree species to future climates 

and thus is important in providing guidance for forest restoration and translocation 

activities. We studied the adaptive potential of the widespread Eucalyptus pauciflora, a 

tree species of increasing interest for restoration purposes due to its capacity to 

withstand harsh environments. Using seedlings grown in a glasshouse, we assessed 

quantitative genetic variation of seedling traits in 275 open-pollinated families collected 

from 37 populations native to the island of Tasmania and studied the association of this 

variation with climatic factors. Most traits exhibited significant genetic variation both 

within and between populations. Significant spatial genetic structure was detected 

within 27 km, suggesting an operational limit for the definition of a ‘local’ population. 

While there was no association of genetic distance with geographic distance for 

populations separated by greater spatial distances, there were significant associations 

with altitudinal and climatic differences over the full range of values. Strong evidence 

of adaptation to local environments was found for traits associated with ontogenetic 

maturation and resource allocation, as well as stem oil glands and leaf colour. This 

evidence was high quantitative inbreeding coefficients (QST) estimates and strong 

correlations with climatic factors, especially for maximum temperature of the warmest 

month and moisture indices. Populations originating from hotter, drier regions exhibited 

greater lignotuber development, delayed ontogenetic development, reduced oil gland 

development and had lighter green leaves than populations from cooler, wetter regions. 

While many traits exhibited parallel responses to the same climatic variables, analysis 

of intra- and inter-population genetic correlations indicated that these were likely to be 

independent responses, controlled by different genes, rather than correlated responses to 

selection arising from pleiotropy or linkage. It is argued that small changes in climate, 

such as a 1ºC change in the maximum temperature of the warmest month, are likely to 

lead to mal-adaptation of local populations of the species. However, additive variation 

and heritability within populations was maintained for many key adaptive traits, arguing 
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that populations maintain significant evolutionary potential from the standing genetic 

variation.  

 

Keyword: Eucalyptus pauciflora, seedling traits, climatic variables, genetic correlation, 

adaptation 

 

4.1 Introduction 

The response of plants to climate change are being discussed widely (Aitken et al. 2008; 

Duputié et al. 2012; Hoffmann and Sgrò 2011; McKenney et al. 2007; 2007; Sgrò et al. 

2011). The three possible alternatives are a shift of the plant to a better habitat following 

the changing environment, persistence through a plastic response and/or adaptation to 

the altered habitat, or population extinction (Aitken et al. 2008; Parmesan 2006; Petit et 

al. 2008). Persistence of the tree species through glacial and post glacial periods during 

the Pleistocene and the Holocene (Davis and Shaw 2001; Hofreiter and Stewart 2009; 

Petit et al. 2008), as well as studies of plant migration (Lloyd 2005; Mimura and Aitken 

2007; Villarreal et al. 2012), have provided evidence of the capacity of these species to 

cope with climate change through a combination of adaptation (involving a genetic 

change), phenotypic plasticity and geographic range shift. However, with rapidly 

changing environment, tracking favourable habitat through migration or adaptation 

might not be easy, particularly for tree species because of their longevity, sedentary 

nature (Kremer et al. 2012) and the complex biotic interactions involved (Bailey et al. 

2014). Thus prediction of the potential of a species to genetically adapt to a changed 

environment requires the integration of knowledge from individual level genetic to 

ecosystems level interactions (Bailey et al. 2014). 

 

The ability of species to respond to changing climate is likely to vary widely as a 

consequence of variation within and among species in their degree of phenotypic 

plasticity and their potential for genetic adaptation, the later in turn depending on the 

amount of standing genetic variation, the adaptive potential of this variation and the 

ability to redistribute genetic diversity through recombination and probably inter-

population gene flow (Hancock et al. 2011). The response of a population to selection 

cannot be predicted on the basis of the additive genetic variance of single traits alone 

(Guillaume 2011). Instead, several factors need to be considered in order to predict the 
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adaptive potential of a species: the extent to which traits are genetically correlated; the 

additive genetic variance among individuals in each trait; and the direction and intensity 

of selection (Hellmann and Pineda-Krch 2007). Although the presence of genetic 

correlations among traits is often regarded as a constraint to adaptation (Etterson and 

Shaw 2001), their effect depends on the direction of selection and the multidimensional 

pattern of trait variation (Guillaume 2011), and genetic correlations can also facilitate 

adaptation (Agrawal and Stinchcombe 2009). Thus both multivariate trait space and 

univariate responses need to be well understood before the adaptive response of a 

species can be predicted. However, for most tree species, empirical data on patterns of 

genetic correlations among key ecological traits and on the spatial and temporal 

variation of their joint selection pressures is missing (Kremer et al. 2012). 

 

Eucalypts are foundation species of many forest and woodland ecosystems across the 

Australian continent (Williams and Woinarski 1997). Eucalypts are well-known for the 

large amount of genetic diversity which may occur within species in their native range 

(Potts and Wiltshire 1997). This genetic variation may be geographically dispersed at a 

broad-scale (e.g. population or racial- Dutkowski and Potts 1999), as local 

differentiation over steep environmental gradients (Foster et al. 2007) or as fine-scale 

genetic differentiation over just metres (Jones et al. 2007).  

 

Eucalyptus pauciflora, the iconic ‘snow gum’ of mainland Australia, has the widest 

altitudinal range of any eucalypt species, forming the tree-line on most of the mountains 

of the Australian Alps and also extending almost to sea level (Boland et al. 2002; 

Williams 1991; Williams and Potts 1996). Owing to its ability to withstand very cold 

temperatures, dry winds and periodic drought, and given these stresses, E. pauciflora 

performs remarkably well in restoration field trials (Close et al. 2010). It has been 

selected as a key species for ecological restoration in the drought prone midlands of 

Tasmania, where intensive farming over 200 years has resulted in severe land 

degradation and tree decline (Bailey et al. 2013). While current guidelines favour the 

use of local seed sources for such restoration (Broadhurst et al. 2008; Mortlock 2000), 

local seed may no-longer be the best due to multiple factors, including forest 

fragmentation resulting in inbreeding in the open-pollinated seed (see Chapter 2), direct 

anthropogenic modification of the environment (e.g. soils), new pests and diseases, as 
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well as global climate change (Jones 2013; Lesica and Allendorf 1999). Global climate 

change is receiving increasing attention in restoration research as a key consideration in 

the choice of seed source (Hancock and Hughes 2012; Harris et al. 2006; McKay et al. 

2005). In the present case, an indication of its importance can be gauged from 

understanding the extent to which climate variation across the range of E. pauciflora 

has structured the genetic variation in functional traits, and whether local populations 

retain genetic variation to adapt to climate change. 

 

The present chapter explores the climate adaptation and adaptive potential of E. 

pauciflora through assessing the pattern of quantitative genetic variation in 25 seedling 

traits using a glasshouse trial established with seeds collected across the natural 

distribution of the species in Tasmania. The chapter studies the spatial patterns of 

genetic differentiation between populations, and whether this differentiation is adaptive 

and associated with altitude and climate variation across the species range. The levels of 

additive genetic variation within populations is assessed and the genetic covariance 

amongst traits is studied to determine whether parallel patterns of trait variation across 

the range of the species are likely caused by pleiotropy/linkage or correlated response to 

selection. 

 

4.2 Materials and methods 

4.2.1 Sampling sites and experimental design 

Open-pollinated seeds were collected from 5 to 10 trees from each of 37 populations 

from Tasmania giving a total of 275 families, covering the full geographic and 

altitudinal range of the species on the island (Table 4.1, Fig. 4.1). The minimum 

distance between trees was approximately 100 m. During sample collection, the altitude, 

latitude and longitude of each tree were recorded. This information was used to derive 

estimates of climatic parameters for each tree using ANUCLIM version 6.1 software 

(Xu and Hutchinson 2010) which were averaged to provide population level values. 

These seedlots were grown in a glasshouse trial which also included 14 bulk open-

pollinated seedlots of E. pauciflora from mainland Australia and 60 open-pollinated 

families of a Tasmanian co-occurring species, E. tenuiramis. Seedlings were pricked 

and raised in the nursery, when the plants had expanded two nodes. The seedlings were 

then grown in a glasshouse trial comprising three replicates and nine incomplete blocks 
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(i.e. trays), with each family represented once per replicate and randomised into the 

incomplete block design using CycDesign 4.0 (Whitaker et al. 2002). Altogether 432 

plants were assigned in each replication, but only the 279 open-pollinated E. pauciflora 

families from Tasmania are used in the present study. In total 1,296 seedlings were 

measured during this experiment. 

Table 4.1. Tasmanian populations of Eucalyptus pauciflora used for the study. Numerical codes, 

latitude, longitude, altitude (metres) and number of parent trees sampled from each population 

are shown. 

Code Population Latitude Longitude Altitude 

(m) 

Number of trees 

sampled 

1 Waterhouse -40.9098 147.6599 16 6 

2 Nunamara -41.3728 147.3215 405 6 

3 Brushy Lagoon -41.4094 146.7470 282 7 

4 Tyne River -41.4709 147.8171 297 7 

5 Longford -41.6302 147.0973 159 8 

6 Symmons Plains -41.6594 147.2491 166 5 

7 Rossarden -41.6888 147.6950 731 7 

8 Avoca -41.7095 147.8345 237 6 

9 Cressy -41.7193 147.1046 160 8 

10 Lake Rowallan -41.7218 146.2185 460 7 

11 Dukes Marshes -41.7225 148.1279 498 8 

12 Conara -41.8416 147.4635 206 8 

13 Lake Arthur -41.9565 146.8769 1004 9 

14 Great Lake -41.9868 146.6991 1138 10 

15 Ross -42.0017 147.5323 240 10 

16 Lake Leake -42.0211 147.8173 597 9 

17 Wihareja -42.0614 146.8143 895 6 

18 Pine Tier -42.0937 146.5166 818 8 

19 Tunbridge -42.1249 147.3646 229 9 

20 Interlaken -42.1461 147.1412 818 8 

21 The Point -42.1929 146.4222 674 7 

22 Lake St Clair -42.2014 146.1422 816 9 

23 Woodbury Hill -42.2124 147.2828 626 6 

24 Tooms Lake -42.2205 147.7928 487 5 

25 Dungrove -42.2664 146.8861 552 9 

26 Butlers Gorge -42.2792 146.3304 682 8 

27 Oatlands -42.3013 147.3842 402 8 

28 Tin Dish Rivulet -42.3079 147.4370 412 6 

29 Osterley -42.3543 146.7408 347 8 

30 Bothwell Lake -42.3798 146.9954 370 10 

31 Ellesmere -42.4014 147.2977 422 5 

32 Bignells Bothwell -42.4014 147.0962 481 8 

33 Stonor -42.4277 147.4316 444 8 

34 Uralla -42.5462 146.8591 193 6 

35 Curringa -42.5698 146.7721 100 8 

36 Gatehouse Marsh -42.5949 147.7810 41 6 

37 South Arm -43.0341 147.4223 16 6 
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Fig. 4.1. Distribution and seed collection sites of E. pauciflora in Tasmania. Information on 

Tasmanian distribution of Eucalyptus pauciflora is based on the Williams and Potts (1996), 

Natural Value Atlas (www.naturalvaluesatlas.tas.gov.au) and additional records from the 

University of Tasmania. Population details are given in Table 4.1. 

  

http://www.naturalvaluesatlas.tas.gov.au/
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4.2.2 Traits measured 

A series of morphological traits assessing growth (height, nodes expanded, stem 

diameter), facets of whole plant development (lignotuber size, leaf ontogeny), and 

seedling leaf morphology were assessed at 2 and 6 months. Details of measured traits 

are given in Table 4.2. Many of the traits assessed, were recorded previously by other 

authors (Turner et al. 2001; Williams and Ladiges 1985; Wiltshire et al. 1992). To be 

consistent with the previous studies in E. pauciflora (Williams and Ladiges 1985) the 

cotyledonary (cot) node was identified as 1. Most Eucalyptus species including E. 

pauciflora are heteroblastic; they have a discrete vegetative phase change between 

seedling and adult forms (Euclid 2006). Leaves in adult eucalypts are completely 

different in shape size and other characteristics. This makes eucalypts especially 

suitable for genetic study of the timing of developmental events (Jordan et al. 1999). 

Traits like development of petiolate from sessile leaves as well as changes from 

opposite to alternate leaves were included in the study to examine the marked 

ontogenetic change in this species. In addition, the adult leaf of E. pauciflora has 

parallel venation while juvenile leaves have venation with acute angles, so the transition 

between these was also recorded. A leaf at the fourth node was removed at the time of 

first scoring and a leaf at the eleventh node was removed at the time of second scoring 

and pressed onto a labelled sheet of paper for later measurement of leaf traits. The 

leaves were later photocopied and leaf dimensions measured using object J and image J 

(Abramoff et al. 2004). 

 

4.2.3 NIR spectroscopy 

Following O’Reilly-Wapstra et al. (2013), near infra-red (NIR) spectroscopy was used 

to obtain a holistic measure of the foliar physio-chemical differences between 

populations (see also Foley et al. 1998). Leaves at the eleventh node (or nearest node 

when the 11
th

 was damaged) were collected from one seedling per family (all from one 

replicate) for near infrared reflectance spectroscopy (NIRS). Collected leaves were 

freeze dried and then their surface was scanned using NIRS. A Bruker MPA Fourier 

Transform near infrared reflectance spectrometer coupled with a fibre-optic probe was 

used for scanning and Opus 5.5 (OPUS LAB) used to score the NIR spectra. Spectra 

were collected between 9000-4000 cm
-1

 at a resolution of 4 cm
-1

. Two different areas on 

the adaxial surface of each leaf were scanned, four spectral measurements were taken at 
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each area, and the average was taken as a single spectrum for a leaf. Four samples were 

removed because they were outliers.  

 

4.2.4 Morphological data analysis 

4.2.4.1 Analysis of genetic variation between populations  

Trait measurements were transformed where necessary to optimise the normality and 

homogeneity of variances. For each trait, the following mixed model was fitted with 

population as a fixed effect for all analysis:  

 

Y = rep + tray(rep) + col(tray) + population + family(population) + residual…model (I) 

 

Where, Y is an observation of the seedling trait, rep is replicate as a fixed effect, 

tray(rep) represents the random tray within replicate effect, col(tray) represents the 

random column within tray effect, population is the fixed population effect and 

family(population) is the random family within population effect. The random 

family(population) variation was used as the error to test the fixed population effect 

using a Walds F-test. The significance of the family (population) variance component 

from zero was tested using a Z-test. This model was fitted for univariate analyses using 

PROC MIXED in SAS 9.2 (SAS Institute Inc. 2009) and the population least-square 

means estimated. To test for a relationship of the population least-squares means for 

each trait with population altitude as well as the 35 ANUCLIM climatic variables, a 

univariate analysis of covariance was undertaken using PROC GLM of SAS. To 

account for multiple testing of climate associations, the regression probabilities for each 

trait were adjusted for a dependent false discovery rate using PROC MULTITEST in 

SAS 9.2 (SAS Institute Inc. 2009). 

 

To obtain an overall estimate of the differentiation between populations, discriminant 

function analysis was undertaken using the 25 seedling traits listed in Table 4.2. This 

analysis was undertaken using PROC DISCRIM of SAS with the pooled within-

population covariance matrix and population positions on the two major discriminant 

axes (CV1 and CV2) plotted. The Mahalanobis generalized distances amongst 

populations in this discriminatory space was also calculated.  
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Table 4.2. Seedling traits scored on each seedling of Eucalyptus pauciflora for quantitative 

genetic analysis. The table contains the description of the traits measured, codes used for each 

trait in the subsequent tables and text, and transformation used during analysis. 

 

The association of overall population differentiation with geography, altitude and 

climatic variables was assessed in two ways. Firstly, the independent variables were 

fitted as vectors into the space defined by the significant discriminant axes. This vector 

fitting was undertaken using the envfit function in the vegan package in R (Team 2010), 

which provided estimates of the direction of variation in the discriminant space, the 

correlation and tests of significance was calculated using 9999 permutations. Secondly, 

the association between the population Mahalanobis generalised distance matrix and 

Euclidean distance matrices representing population differences in geographic distance, 

altitude and climatic variables was determined using the Mantel test and autocorrelation 

 Description Code Transformation 

 Growth and developmental traits  

 Height at 2 months (cm) HT1 

 Height at 6 months (cm) HT2 

 No. of nodes with lignotubers at 2 months LIGNO1 

 No. of nodes with lignotubers at 6 months LIGNO2 

 No. of nodes at 2 months (cotyledon = 1) NNODES1 

 No. of nodes at 6 months (cotyledon = 1) NNODES2 

 Node at which 1
st
 petiolate leaf occurs at 6 months  PET2 (NNODES2 - PET2)/NNODES2 

Node at which 1
st
 leaf alternates at 6 months ALT2 (NNODES2 - ALT2) /NNODES2 

Node at which 1
st
 leaf twists at 6 months TWIST2 (NNODES2 - TWIST2)/NNODES2 

 

 

  Other traits  

 Stem oil glands (0 = absence of oil glands; 1 = 

presence of small oil glands 2 = protruding oil 

gland density) Stem OG 

 Stem diameter at node 1 (x) (cm) at 6 months STMD 

 Lignotuber diameter at node 1 (90° to x) (cm) Lig size √ (LIGD- STMD)/STMD 

  Leaf traits scored at 4
th

 node leaf 

 Leaf colour at node 4 at 2 months (1 = light 

green, 2 = intermediate, 3 = dark green) Leaf colour 

 Leaf lamina length (cm)  LL4 

 Lamina width (cm) LW LL4 log10(LW4/LL4) 

Leaf area (cm
2
) LA4 

 Lamina length to widest point from base (cm) LWP LL4 LWP4/LL4 

Petiole length (cm) PL4 log10 (PL4) 

Vein angle (°) VA4 

 

 

 

  Leaf traits scored at 11
th

 node leaf 

 Leaf lamina length (cm) LL11 

 Lamina width (cm) LW LL11 log10(LW11/LL11) 

Leaf area (cm
2
) LA 11 

 Lamina length to widest point (cm) LWP LL11 LWP 11/LL11 

Petiole length (cm) PL11 log10 (PL11) 

Vein angle (°) VA11 
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analysis. The overall differences in climatic variables amongst populations were 

calculated after standardising each variable to a mean of zero and standard deviation of 

one. Mantel tests (Mantel 1967) were performed in order to test for significant 

correlations between the various matrices and the autocorrelation analyses used to 

determine the pattern of change. These analyses were performed using GENALEX 

6.501 (Peakall and Smouse 2006).  

 

4.2.4.2 Estimation of genetic parameters 

Genetic parameters were estimated with a restricted maximum likelihood (REML) 

model using average information REML algorithm (Gilmour et al. 1995) implemented 

using ASReml 3.0 (Gilmour et al. 2009). For univariate analyses, an individual tree 

mixed model was fitted: 

 

Y = rep + tray(rep) + col(tray) + row(tray) + population + tree + residual…model (II) 

 

where, Y is an observation of the seedling trait, rep is the fixed replicate effect, tray(rep) 

represents the random tray within replicate effect, col(tray) represents the random 

column within tray effect, row(tray) represents the random row within tray effect, 

population is the random population effect and tree is the random additive genetic effect 

for each seedling and residual is the random residual variation.  

 

The tree term was defined using a pedigree file to calculate the additive relationship 

matrix for parents and progeny. As the analysis was based on open-pollinated progeny 

from native patents, the additive relationship matrix used to estimate the additive 

genetic effects was modified to take into account a selfing rate of 10% for E. pauciflora 

(Gauli et al. 2014) and a base level of population inbreeding of 0.067 (Gauli et al.  in 

press). This modification accounts for differences in the coefficient of relatedness (r) 

amongst sibs and between sibs and their parents in estimating additive genetic effects 

and followed the procedure of Dutkowski and Raymond (2001). This was implemented 

in ASReml using the !SELF and !FGEN options respectively. Similar adjustment of the 

coefficients of relatedness using an average outcrossing rate and inbreeding level have 

been used in other studies of eucalypts to estimate additive genetic variances from open 
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pollinated progenies (Apiolaza et al. 2005; Blackburn et al. 2013; Bush and Thumma 

2013). 

Following Hamilton et al. (2013), estimates of narrow-sense heritabilities within 

populations (   
 ) were obtained for each trait from the open-pollinated families using 

variance components estimated from the univariate analysis as follows: 

   
  

  
 

       
 

where   
  is the additive genetic variance within populations;   

  is the residual variance 

derived from model 2. The significance of the heritability estimates was tested using Z 

tests, and the significance of   
  was tested using a one-tailed likelihood ratio test (LRT, 

Gilmour et al. 2009). 

 

Coefficients of additive variation (CVA) were calculated as follows to compare the level 

of additive genetic variance in each trait independently of their means as follows: 

       
√  

 

 ̅
 

where,   
  is the additive genetic variance and  ̅ is the phenotypic mean of the trait. 

The quantitative trait inbreeding coefficient (   ) which is analogous to the molecular 

inbreeding coefficient FST (Chapter 3), was estimated as follows: 

    
  
 

        
 

where,   
  is the population variance and   

  is as defined above (Latta 1998). A 

comparison of     with the putatively neutral nuclear microsatellite differentiation     

was done using the maximum value of 0.07 obtained for 10 microsatellite loci for the 

progenies of the species (Chapter 3). A     value significantly greater than     provides 

evidence of diversifying selection (Edelaar and Björklund 2011; Whitlock 2008), and 

this has been reported in several recent studies of population differentiation in eucalypts 

(Dutkowski and Potts 2012; Hamilton et al. 2013; O'Reilly-Wapstra et al. 2013). 
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Following Dutkowski and Potts (2012), the test was done by comparing likelihoods of 

the unconstrained model 2 to one where     =     using the constraint: 

  
 

   
 
     
    

 

In the present case the ratio was 6.64, and this constraint was implemented in ASReml 

using the option !VCC. A one-tailed likelihood ratio test was then used to test the 

difference between the two models and thus whether     >    . Variance components 

for estimating    
  and     were obtained from univariate analyses, with their standard 

errors calculated using an expanded Taylor series (Gilmour et al. 2009). 

 

The genetic correlations among traits were calculated using pair-wise bivariate analyses 

undertaken using a family model where the tree term in model 2 was replaced with the 

family(population) term. The covariance structures for each random term were fitted 

using the CORGH option of ASReml and parameter estimates generally unconstrained. 

Univariate estimates of variance components were used as starting values for parameter 

estimation, and where convergence problems were encountered convergence was 

usually achieved by fixing one or more of these values. This followed the approach 

widely used for open-pollinated families of eucalypts (Hamilton et al. 2013; Jordan et al. 

1999) and the genetic correlations were estimated as: 

     
    

√  
    

 
 

where,      is the correlation between traits 1 and 2 at the defined genetic level (family 

within population [rfamily] or at population [rpop] level),      is the covariance between 

traits,   
  and   

  are the variance component for each traits (Jordan et al. 1999). Two-

tailed likelihood ratio tests were conducted to determine if genetic correlations were 

significantly different from zero (Gilmour et al. 2009). 

 

4.2.5 NIR data analysis 

The variation amongst individuals in NIR spectra was summarised using principal 

components analysis undertaken with Unscrambler (version.10.0.1.). The first 25 
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principal components, that cumulatively explained 99.75 % of variation in the NIR 

spectral data, were used for subsequent analysis. Discriminant function analysis, vector 

fitting and spatial autocorrelation analysis were performed as described above for the 

morphometric analysis. Genetic correlations between the vectors derived from this 

analysis and the morphological and growth traits, were assessed using bivariate analyses, 

as described above. In this case, as only one seedling was assessed per family, the 

family residual for the NIR trait was fixed to zero.  

 

4.3 Results 

4.3.1 Genetic variation between populations 

Twenty-three out of the 25 seedling traits were found to be significantly different 

among populations (Table 4.3). Vein angle at 4
th

 node (VA4) and an aspect of the 11
th

 

node leaf shape (LWP LL11) were the only two traits that were not significant. QST 

estimates for each trait ranged from 0.0 to 0.40, averaging 0.17 (Table 4.3). This large 

variation of QST suggests that the various traits have been differentially affected by 

selection. The highest value was observed for relative lignotuber size (Lig size, 0.40), 

followed by number of nodes with lignotubers (LIGNO1, 0.39). Likelihood ratio test of 

the QST values against putatively neutral FST showed 13 traits had significantly more 

differentiation among populations than expected (Table 4.3). 

 

There was a significant but weak correlation of genetic-based Mahalanobis distances 

(calculated from the morphological and growth data) and the geographic distances 

amongst populations (Mantel r
 
= 0.23, n = 37, P = 0.003). Populations within 27 km of 

each other showed stronger genetic relatedness than would be expected by chance alone 

(Fig. 4.2a). Beyond this distance there was no significant decrease in the correlation. A 

virtually identical pattern was observed with the Mahalanobis distances derived from 

the NIR data (Mantel r
 
= 0.26, n = 37, P = 0.003; Fig. 4.2b).  

 

Stronger Mantel correlations were found between the Mahalanobis distances in 

morphology between populations and their difference in (i) altitude (Mantel r = 0.66, P 

< 0.001), or (ii) overall climate as assessed by the 35 bioclimatic variables (standardised 

Euclidean distance matrix, Mantel r =0.47, P < 0.001), than with geographic distance. 

The major role of altitude and associated climatic variables in determining population 
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differentiation is evident from the major directions of variation in the discriminant space 

derived from both the morphology and NIR data sets. In the case of the morphological 

discriminant space, vector fitting using 38 variables, including 35 climatic variables 

representing temperature, moisture, precipitation and radiation, showed 33 climatic 

variables as well as altitude, latitude and longitude were significantly related to 

population differentiation. However, it was altitude and climatic variables, mainly 

related to temperature and moisture, which were associated closely with the major 

direction of population differentiation in seedling morphology/growth traits as defined 

by CV1 (39%) (Fig. 4.3a). This was particularly the case for mean maximum 

temperature of the warmest month (TMXWM), mean temperature of the warmest 

quarter (TWMQ), and mean moisture index of the warmest quarter (MIMWMQ) (Fig. 

4.3a). This major direction of population differentiation was associated with decreasing 

altitude which was related to increasing temperature and decreasing moisture (Fig. 4.3a). 

Statistically significant population variation in the discriminant space was observed 

with latitude and longitude, but this variation was of minor significance and was in a 

different direction to the major variation explained by CV1 and CV2. 

 

In the NIR discriminant space, 29 of the climatic variables were significantly related to 

population differentiation. However, in this case the degree of differentiation of 

populations along CV1 (17%) and CV2 (14%) were more similar, and association with 

climatic variables was more related to variation along CV2. Consistent with the 

morphological results, population differentiation in NIR spectra was mainly associated 

with altitude and variables reflecting differences in temperature and moisture, although 

one radiation variable was also highly significant (RRH) (Fig. 4.3b). 

 

Spatial autocorrelation indicated a significant decline in Mahalanobis distance with 

increasing difference in altitude (Fig. 4.4a) and climate (data not shown) between sites. 

In the case of altitude, populations within 148 m of each other in altitude, exhibited 

above average genetic similarity, but thereafter there was a trend for decreasing genetic 

similarity with increasing altitudinal separation (Fig. 4.4a).  
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Table 4.3. Genetic parameters for the 25 seedling traits studied in Tasmanian Eucalyptus 

pauciflora. The table includes the trait code (see Table 4.2), overall trait mean, the F value for 

the differences between populations (F36, 238) and its significance (Sig), the quantitative 

inbreeding coefficient (QST) and its standard error (SE), the significance level for the one-tailed 

likelihood ratio test of the difference of QST from the neutral marker maximum FST (LRT), the z 

value for the random variation between families within populations (z), the significance level 

for the one-tailed likelihood ratio test of the difference of the additive genetic variance 

component estimate from zero (sig), open-pollinated estimate of the narrow-sense heritability 

(    
 ), and the within population coefficient of additive variance (CVA). CVA values are not 

presented for variables which were log transformed or where the additive variance was not 

significant. Significance levels are: ***P < 0.001, **P < 0.01, *P < 0.05, ns = P ≥ 0.05. 

 
 

Traits 

 

Mean 

Between populations  Family(population) 

F36,238 Sig QST SE LRT  z sig h
2

op SE CVA 

HT1 44.32 1.58 * 0.04 0.03 ns  3.13 *** 0.46 0.14 12.28 

HT2 58.40 1.91 ** 0.08 0.05 ns  1.88 * 0.32 0.15 10.23 

LIGNO1 1.14 9.57 *** 0.39 0.11 ***  2.65 ** 0.39 0.14 40.88 

LIGNO2 1.80 9.37 *** 0.31 0.08 ***  3.72 *** 0.57 0.14 35.12 

STMD 5.16 2.45 *** 0.08 0.04 ns  3.87 *** 0.63 0.15 13.40 

Lig size 0.80 10.86 *** 0.40 0.11 ***  2.91 *** 0.39 0.13 25.18 

Stem OG 1.28 4.06 *** 0.13 0.04 *  4.63 *** 0.73 0.15 38.76 

Leaf colour  1.83 7.45 *** 0.29 0.08 ***  3.44 *** 0.50 0.14 19.85 

NNODES1 9.23 4.56 *** 0.18 0.06 **  3.74 *** 0.57 0.14 9.65 

NNODES2 12.21 3.33 *** 0.11 0.04 ns  4.01 *** 0.70 0.15 12.86 

PET2 0.63 4.2 *** 0.18 0.07 **  3.28 *** 0.45 0.14 16.78 

ALT2 0.24 4.4 *** 0.17 0.06 **  3.7 *** 0.54 0.14 43.75 

TWIST2 0.23 4.36 *** 0.20 0.08 **  2.78 ** 0.38 0.14 37.33 

LL4 6.48 3.13 *** 0.09 0.04 ns  4.87 *** 0.75 0.14 14.60 

LW LL4 0.48 3.37 *** 0.13 0.05 ns  3.4 *** 0.48 0.14 - 

LWP LL4 0.42 1.83 ** 0.07 0.05 ns  2.22 * 0.28 0.13 8.33 

LA4 15.45 2.58 *** 0.08 0.03 ns  4.34 *** 0.64 0.14 24.91 

PL4 0.06 3.13 *** 0.22 0.13 *  1.37 ns 0.21 0.13 - 

VA4 47.06 1.35 ns 0.02 0.03 ns  2.78 ** 0.39 0.14 7.79 

LL11 8.64 4.1 *** 0.13 0.04 ns  4.51 *** 0.77 0.15 16.22 

LW LL11 0.44 1.98 *** 0.04 0.02 ns  5.1 *** 0.89 0.15 - 

LWP LL11 0.37 0.72 ns 0.00 0.00 *  2.12 * 0.26 0.13 8.99 

LA11 24.01 5.7 *** 0.27 0.09 ***  2.72 ** 0.40 0.14 20.67 

PL11 0.25 12.09 *** 0.37 0.08 NC  4.39 *** 0.71 0.15 - 

VA11 33.75 3.92 *** 0.30 0.17 **  1.25 ns 0.20 0.14 9.15 

NC: did not converged 
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a) Morphological traits 

 

 

 

 

 

 

b) NIR PCA 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Correlograms of Eucalyptus pauciflora populations from Tasmania based on the 

geographic distance and a) Mahalanobis’s distances derived from an analysis of 25 

morphological traits, and b) Euclidean distance matrix calculated from principal components 

derived from the leaf near-infrared spectral (NIR) data. r is the autocorrelation coefficient, 

upper (U) and lower (L) confidence limits bound the 95% confidence interval about the null 

hypothesis of no spatial structure for the combined data set as determined by permutation using 

GENAlEX 6.501 (Peakall and Smouse 2006). 
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a) Morphological data 

  
b) NIR data 

 

Fig. 4.3. Fitted climatic vectors, altitude, latitude and longitude (if significant) in a) the 

ordination of the Eucalyptus pauciflora population centroids along discriminant axes based on 

the morphological analysis, and b) the ordination of the E. pauciflora population centroids along 

discriminant axes based on 25 significant principal component analyses of the NIR spectra. 

Vectors indicate the magnitude and the direction of the population differentiation. Climatic 

variables plotted here are variables (out of 35 variables) that were most highly correlated (P < 

0.001) and altitude, latitude and longitude if they are significant with population variation in the 

two-dimensional discriminant space. TMXWM = mean max temp of warmest month, TWMQ = 

mean temperature of the warmest quarter, TANN = mean annual temperature, MICVAR = 

coefficient of variation (moisture index seasonality), MIMWMQ = mean moisture index of 

warmest quarter, MIANN = mean annual moisture index, RRH = highest period of radiation, 

and MIMLQ = mean moisture index of lowest quarter. 
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a)  Genetic distance vs altitude  

 
b) Genetic distance vs TMXWM  

 
c) Genetic distance vs MIMWMQ 

 
 

 

 

Fig. 4.4. Correlograms of E. pauciflora populations from Tasmania based on the 

morphological Mahalanobis’s genetic distances and a) altitude (m), b) mean maximum 

temperature of the warmest month (°C) (TMXWM), and (c) mean moisture index of 

warmest monthly quarter (MIMWMQ). r is the autocorrelation coefficient, upper (U) 

and lower (L) confidence limits bound the 95% confidence interval about the null 

hypothesis of no spatial structure for the combined data set as determined by the 

permutation.  
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In contrast to the non-linear trends observed with geographic distance, autocorrelation 

analysis of the population differences in altitude and the key temperature variable 

TMXWM and moisture index MIMWMQ revealed a more-or-less linear decline in 

morphological Mahalanobis distance between populations with increasing temperature 

and moisture index difference of the site of origin (Fig. 4.4b, Fig. 4.4c). This association 

is reflected in their highly significant Mantels tests (TMXWM: Mantel r = 0.64, P < 

0.001; MIMCLQ: Mantel r = 0.51, P < 0.001). Populations with less than 1ºC difference 

in TMXWM were genetically more similar than average, and thereafter similarity 

declined.  

 

Analysis of the relationship of morphological traits with altitude and climatic variables 

at the population origin at the univariate level yielded similar conclusions to the 

multivariate analysis. Thirteen of the 23 morphological traits that showed significant 

differences between populations were significantly associated with altitude (Table 4.4). 

Twenty-one of 23 traits were significantly associated with at least one climatic variable, 

but only 11 remained significant after accounting for multiple testing, all of which were 

significantly associated with altitude (Table 4.4). The climatic variable explaining most 

of the variation in many traits (seven) was the mean maximum temperature of the 

warmest month (TMXWM) and, while not the best predictor, this variable also 

explained significant variation in seven other traits (Table 4.4). The significant parallel 

responses to variation in this key climate variable were clearly evident for several traits. 

For instance, seedlings originating from hotter sites tended to have larger lignotubers 

(Fig. 4.5a), fewer oil glands on the stem (Fig. 4.5b), light coloured leaves (Fig. 4.5c), 

and later ontogenetic development of alternate leaves (Fig. 4.5d). 

 

4.3.2 Genetic variation within populations 

Highly significant within population genetic variation was observed in 23 of the 25 

morphological traits, as evidenced by significant family within population variance 

(Table 4.3). The overall average of the individual narrow-sense heritability estimates 

was 0.50, with 21 of the 25 traits having estimates greater than 0.3. In terms of the 

growth traits, the highest heritabilities were evident for the number of nodes (NNODES 

2,    
  = 0.70) and stem diameter (STMD = 0.63). Of the ontogenetic traits, leaf 

alternation showed the highest heritability (ALT2 = 0.54) and of the leaf morphological  
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Table 4.4. Association of functional traits with altitude and climatic variables of the site of 

origin for seedling traits from the Tasmanian Eucalyptus pauciflora populations. Population 

least square mean estimates were used for the regression analysis to test the effect of altitude 

and climatic variables. Only traits where population differences were statistically significant are 

shown (see Table 4.3). 

Traits Altitude Best univariate regression against climatic variables  

R
2
 Relationship F P  R

2
 Factor Relationship F P 

HT1 4% negative 1.3 0.261 11% TMNCM positive 4.5 0.042
 ns

 

HT2 0% positive 0.2 0.681 16% TCVAR negative 6.8 0.014
 ns

 

LIGNO1 62% negative 58.1 <0.001 84% TMXWM positive 183.7 <0.001
 ***

 

LIGNO2 64% negative 61.8 <0.001 81% TMXWM positive 146.6 <0.001
 ***

 

STMD 30% negative 14.9 0.001 33% TMXWM positive 17.4 <0.001
 *
 

Lig size 66% negative 69.4 <0.001 82% TMXWM positive 157.9 <0.001
 ***

 

Stem OG 63% positive 60.4 <0.001 69% TMXWM negative 77.4 <0.001
 ***

 

Leaf colour 68% positive 74.2 <0.001 71% TANN*
-
 negative 85.2 <0.001

 ***
 

NNODES1 16% negative 6.8 0.013 27% MICVAR*
+
 positive 12.6 0.001

 *
 

NNODES2 0% negative 0.0 0.897 7% TIT - 2.6 0.114
 ns

 

PET2 27% positive 13.1 0.001 37% MIMCLQ*
-
 positive 20.7 <0.001

 **
 

ALT2 42% positive 25.1 <0.001 51% TMXWM negative 36.3 <0.001
***

 

TWIST2 33% positive 17.3 <0.001 49% TMXWM negative 33.9 <0.001
 ***

 

LL4 1% negative 0.3 0.612 14% MIMCLQ positive 5.8 0.021
 ns

 

LW LL4 1% negative 0.2 0.663 17% TSPAN positive 7.0 0.012
 ns

 

LA4 3% negative 1.1 0.307 15% RCVAR positive 6.2 0.018
 ns

 

LWP LL4 1% positive 0.2 0.654 8% RRDRYQ - 3.3 0.08
 ns

 

PL4 10% positive 3.8 0.060 24% MIMCLQ*
-
 positive 11.2 0.002

 ns
 

LL11 17% negative 7.1 0.011 21% TCLQ*
+
 positive 9.2 0.005 

ns
 

LW LL11 2% positive 0.1 0.788 16% RRCLQ negative 6.6 0.014
 ns

 

LA11 17% negative 7.0 0.012 22% TIT*
+
 positive 10.1 0.003

 ns
 

PL11 28% positive 13.3 0.001 45% MIANN*
-
 positive 28.9 <0.001

 ***
 

VA11 0% negative 0.1 0.771 22% RRWETQ negative 9.7 0.004
 ns

 
 

TMNCM = mean minimum temp of the coldest month, TCVAR = coefficient of variation of temperature, TMXWM 

= mean max temp of warmest month, TANN = mean annual temperature, MICVAR = coefficient of variation of 

moisture index, TIT = isothermality, MIMCLQ = mean moisture index of coldest quarter, TCLQ = mean temp of the 

coldest three month period, TSPAN = diff coldest monthly mean min & warmest monthly max, RCVAR = 

coefficient of variation of rainfall, RRDRYQ = mean radiation with rainfall of the driest quarter, TMDR = mean 

diurnal range, MIANN = mean annual moisture index, RRWETQ = mean radiation with rainfall of the wettest quarter, 

RRCLQ = mean radiation with rainfall of the coldest quarter. In the ‘Factor’ column, where best climatic variable 

was other than TMXWM, *
- /

*
+ 

indicate a significant negative or positive correlation was also observed with 

TMXWM. Significance levels shown as superscripts after the P values in the last column denote the dependent false 

discovery rate significance after adjusting for multiple comparisons with the 35 climatic variables tested (*** P < 

0.001, ** P < 0.01, * P < 0.05, ns P ≥ 0.05).  
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Table 4.5. Genetic correlations between seedling traits in Eucalyptus pauciflora at a) the population level, and b) the family within population level. Trait 

codes are explained in Table 4.2. Where multiple measurements were made of the same or similar trait only the most recent or most relevant trait is presented. 

a) Population level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Family level 
  

 

 

 

 Population 

Traits STMD Lig size Stem OG Leaf colour NNODES2 

2 
PET2 ALT2 TWIST2 LL11 LW LL11 VA11 

HT2 0.01 ns -0.60* 0.19 ns 0.24 ns -0.01 ns 0.33 ns 0.43 ns 0.48 ns -0.20 ns -0.36 ns -0.23 ns 

STMD   0.59** -0.95*** -0.71*** -0.08 ns -0.27 ns -0.41 ns -0.46 ns 0.25 ns 0.22 ns 0.14 ns 

Lig size     -0.98*** -0.83*** -0.21 ns -0.55** -0.74*** -0.72*** 0.53** -0.23 ns -0.18 ns 

Stem OG     

 

0.89*** 0.04 ns 0.46 * 0.65** 0.66*** -0.47 * 0.21 ns 0.09 ns 

Leaf colour         0.10 ns 0.49* 0.69*** 0.54** -0.56** 0.14 ns -0.15 ns 

NNODES2           -0.45 ns -0.28 ns -0.37 ns -0.92*** 0.02 ns 0.31 ns 

PET2 

     

 0.92*** 0.96*** 0.03 ns -0.28 ns -0.29 ns 

ALT2              0.97*** -0.04 ns -0.40 ns -0.36 ns 

TWIST2                0.09 ns -0.39 ns -0.26 ns 

LL11                  -0.25 ns -0.34 ns 

LW LL11                    0.69** 

 

Family 

Traits STMD Lig size Stem OG Leaf colour NNODES2 PET2 ALT2 TWIST2 LL11 LW LL11 VA11 

HT2 0.56* 0.35 ns 0.14 ns -0.77** 0.69*** 0.04 ns 0.49 ns 0.58** -0.19 ns -0.23 ns -0.18 ns 

STMD 

 

0.34 ns -0.13 ns -0.89*** 0.14 ns 0.02 ns -0.00 ns 0.21 ns 0.25 ns 0.04 ns -0.05 ns 

Lig size 

  

0.02 ns -0.64** 0.32 ns -0.33 ns -0.06 ns -0.08 ns -0.01 ns 0.02 ns -0.03 ns 

Stem OG 

   

0.17 ns 0.07 ns -0.22 ns 0.02 ns 0.14 ns -0.12 ns -0.08 ns -0.04 ns 

Leaf colour 

    

-0.58*** 0.38 ns -0.11 ns -0.41 ns -0.32 ns 0.18 ns -0.21 ns 

NNODES2 

     

0.03 ns 0.49** 0.37* -0.36 * -0.14 ns 0.01 ns 

PET2 

     

 0.34 ns 0.28 ns 0.03 ns -0.02 ns 0.08 ns 

ALT2 

     

 

 

0.63** -0.10 ns -0.09 ns -0.03 ns 

TWIST2 

     

 

  

0.24 ns -0.23 ns -0.14 ns 

LL11 

     

 

   

-0.64*** -0.53 ns 

LW LL11 

     

 

    

0.17 ns 
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traits the highest heritabilities were observed for relative leaf width (LW LL11 = 0.89) 

and leaf length (LL11 = 0.77). The lowest heritability was observed for vein angle 

(VA11 = 0.20). In terms of the relative amount of within population additive genetic 

variation (CVA), the highest values was observed for the developmental trait leaf 

alternation (ALT2 = 43.8%). High CVA also observed for three lignotuber traits (e.g. 

LIGNO1 = 40.9%, LIGNO2= 35.1%). Some other developmental traits also had high 

CVA (e.g. TWIST2 = 37.3%) as well as one leaf area trait (e.g. LA11 = 20.7%) also had 

relatively high CVA. Other leaf morphological traits and most growth traits had low 

values of CVA. 

 

4.3.3 Inter- and intra-population genetic correlation  

Many of the developmental or allometric traits were highly inter-correlated as expected 

(data not shown) allowing reduction of the data set to 12 key traits describing different 

facets of variation in growth, morphology or seedling development (Table 4.5). In 

general age-age correlations of the same or equivalent traits were high (r > 0.7) at the 

family and population levels and thus only the latest measurement was included in the 

study of genetic correlations presented in Table 4.5. We similarly focused on a single 

measure of lignotuber development and three leaf morphological variables from the 11
th

 

node leaves. Seedling lamina length was highly genetically correlated with leaf area, 

both within and between populations (r > 0.85) and was the variable retained as an 

indicator of leaf size. The relative leaf width was retained as an indicator of leaf shape.  

 

Many of the correlations among the 12 key traits were found to be significant at the 

population level (Table 4.5a). Lignotuber size (Lig size), stem diameter (STMD), oil 

glands (Stem OG) and leaf colour were significantly inter-correlated. Seedlings from 

populations with larger lignotubers had larger stem diameters, had less oil gland 

development on the stem and had light green leaves. At the population level, vector 

fitting showed that three of these traits were also significantly (P < 0.001) correlated 

with variation in leaf NIR spectra (CV1-2 from Fig. 4.3b analysis Lig size r
2
 = 0.52; 

Stem OG r
2
 = 0.44; leaf colour r

2
 = 0.38). This trend was confirmed by significant 

population level correlation between leaf colour and CV1 (rpop=0.54, P < 0.01) and 

CV2 (rpop= -0.57, P < 0.01) derived from NIR data (Fig. 4.3b). However these 

correlations were not significant among families within populations (CV1 rfamily = 0.22, 
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P > 0.05 and CV2 rfamily = 0.20, P > 0.05). At the family within population level, 

lignotuber size was genetically independent of all these traits except leaf colour (Table 

4.5b). Stem diameter and oil glands were also independent at the family level. In 

contrast, leaf colour appeared to be genetically related to the stem diameter and 

lignotuber size at the family level, with lighter green leaves being associated with larger 

lignotubers and stem diameter. Despite many significant positive (stem diameter 

[STDM], number of nodes expanded [NNODES2], the onset of leaf twisting [TWIST2]) 

and negative (leaf colour) correlations involving seedling height (HT2) at the family 

level, seedling height was only correlated with one trait, lignotuber size, at the 

population level, with seedlings from populations with larger lignotubers tending to be 

shorter.  

 

The onset of early vegetative maturity in seedlings, as indicated by a greater proportion 

of nodes with petiolate (PET2), alternate (ALT2) and twisted leaves (TWIST2), was 

associated with smaller lignotubers (Lig size), more stem oil glands (Stem OG) and 

dark green leaves (Leaf colour) at the population level (Table 4.5a). In contrast, none of 

these genetic correlations were evident within populations (Table 4.5b). The 

developmental traits themselves were highly positively inter-correlated at the population 

level, but only leaf twisting (TWIST2) and leaf alternation (ALT2) was genetically 

correlated within populations. An increased number of nodes expanded (NODES2) 

were correlated with smaller leaf lamina lengths (LL11) at both within and among 

population levels. At the population level, leaf lamina length was correlated with 

lignotuber size (Lig size) , stem oil glands (Stem OG) and leaf colour in such a way that 

seedling with smaller leaf lamina lengths was associated with larger lignotuber size, 

smaller oil glands and lighter green leaves. None of these correlations were observed at 

the family level.  
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 a) Relative lignotuber size               b) Leaf colour 

 

 

a)  

 

 

 

 

 

 

c) Stem oil gland density                d) Proportion of nodes with alternate leaves 

 

 

 

 

 

 

 

 

 

Fig. 4.5. The regression of the population least-square mean a) relative lignotuber diameter (Lig 

size), b) stem oil gland density (stem OG), c) leaf colour (light [1] to dark [3] green), and d) 

proportion of nodes with alternate leaves (PROP ALT), against mean maximum temperature of 

the warmest month (TMXWM) for Eucalyptus pauciflora populations in Tasmania. Traits are 

detailed in Table 4.2. 

 

 

4.4 Discussion  

4.4.1 Genetic variation between and within populations 

A high level of genetic variation was observed both within and between Tasmanian 

populations of E. pauciflora for most traits studied. The level of quantitative inbreeding 
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coefficient (QST) was high for many of the traits and likely to exceed neutral 

expectations in many cases. E. pauciflora is relatively widely distributed on the island 

and, consistent with other widespread species in Tasmania (E. obliqua: Bloomfield et al. 

2011, E. globulus: Steane et al. 2006 ), there is likely to be few persistent historic 

barriers to pollen-mediated gene flow across the range of the species (Chapter 3). The 

maximum neutral marker estimate of FST for E. pauciflora is well below the average 

QST and that of many traits such as those reflecting lignotuber size, leaf colour and 

developmental traits. While higher QST values have been reported in species such as 

pine (Gonzalez-Martinez et al. 2002) and spruce (Mimura and Aitken 2007), our values 

were well within the range reported for oaks (Merilä and Crnokrak 2001) and other 

eucalypts (Dutkowski and Potts 2011). The QST for lignotuber size (QST = 0.40) in E. 

pauciflora was in the high range of QST values reported in Eucalyptus, which was 0.42 

for the adaptive trait of drought damage/resistance (Dutkowski and Potts 2012) and 0.71 

for leaf cineole content in E. globulus (O'Reilly-Wapstra et al. 2013). These statistics 

suggest that selection may be driving population differentiation, at least for some of the 

traits studied. 

 

4.4.2 Genetic differentiation is poorly associated with geographic distance  

Consistent with this hypothesis, and despite considerable climatic variation within the 

native range of E. pauciflora, there was little relationship between population 

differentiation and geographic distance between populations beyond 27 km. Beyond this 

distance the degree of differentiation of populations was unrelated to their distance apart, 

arguing against limited gene flow and isolation by distance being responsible for broad-

scale population differentiation in quantitative traits. Fine-scale localised relatedness 

may occur in eucalypt forest over several tree heights due to limited seed dispersal (i.e. 

family groups structure - Jones et al. 2007; Skabo et al. 1998), but in the present case it 

is the broader-scale population level affinities that are addressed. At this scale, the 

genetic affinities observed up to 27 km may reflect a distance over which broad-scale 

pollen dispersal defines a local population (Chapter 3). For example, using neutral 

molecular markers Bloomfield et al. (2011a) showed affinities of E. obliqua populations 

within 50-60 km, but little relationship with distance beyond. Yoeh et al. (2012) found 

that above-average genetic similarity in E. globulus to at least 40 km which they 

suggested reflected widespread pollen dispersal. However, as phenotypic rather than 
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neutral genetic similarity is addressed in the present study, coupled with the observed 

similarity in altitude and key climatic variables at the same localised spatial scale (data 

not presented), the possibility that this distance of 27 km also reflects the scale of 

adaptation to environmental homogeneity cannot be dismissed. In the case of the 

widespread E. camaldulensis, stronger, broad-scale spatial genetic structure was 

observed by Butcher et al. (2002, 2009) for both neutral marker and phenotypic 

similarity. This occurred both across, as well as within, major regions of the E. 

camaldulensis distribution, but was also confounded with strong associations with 

climatic variables. However, they found no association with altitude in E. camaldulensis, 

which contrasts with the present study where genetic-based difference between 

populations was more related with altitude than geographic distance apart. This might 

also be due to narrow ecological niche of the E. camaldulensis (Butcher et al. 2002). In 

the present case, this association with altitude is directly attributable to climatic 

similarity of the sites, particularly similarity in key climatic variables which change 

with altitude.  

 

4.4.3 Genetic differentiation is strongly association with altitude and climate of origin 

Strong association of altitude and climatic variables with various morphological traits 

have been reported in many tree species. Variation along altitudinal gradients well-

known to confound changes in multiple facets of the environment (Körner 2007), and 

this is clearly evident in the present study where there are parallel changes in both 

temperature and moisture with altitude. Adaptation of morphological traits to altitude 

has been reported in diverse species including (E. urophylla: Tripiana et al. (2007); 

Abies sachalinensis: Ishizuka and Goto (2012), Abies lasiocarpa: Green (2005); 

Quercus petraea: Alberto et al. (2011); Picea sitchensis: Mimura and Aitken (2007)). 

Common garden trials showed altitudinal adaptation of phenology timing and the 

growth rate in beech, oak and the ash species (Vitasse et al. 2009). Height of all studied 

species decreased linearly with increasing altitude of the population origin (Vitasse et al. 

2009). Adaptation to altitude is well documented in many eucalypt species (Kremer et 

al. 2014; Potts and Wiltshire 1997), including E. pauciflora (Slatyer 1978; Potts and 

Wiltshire 1997; Potts and Jackson 1986; Pryor 1956). The pioneering study of Pryor 

(1956) used progeny trials to show that the marked change in tree form and morphology 

with increasing altitude on mainland Australia was associated with significant genetic 
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based differences in seedling growth and morphology. Subsequent studies also revealed 

altitudinal differences in frost resistance may occur over short-distances, involving 

strong selection near the upper and lower (i.e. lower altitude frost hollows) tree lines 

(Harwood 1980; Harwood 1981). In our study, both multivariate and univariate 

approaches showed that the genetic based phenotypic variation amongst Tasmanian 

population of E. pauciflora were strongly associated with altitude and climate variation, 

with most traits showing strong correlation with at least one of the climatic variables 

studied. More than 50% of the traits showed association with the mean maximum 

temperature of the warmest month of the site of origin, suggesting an adaptive response. 

This is particularly evident for lignotuber related traits as well as for stem oil gland 

development and leaf colour.  

 

Most eucalypt species including E. pauciflora, are heteroblastic, showing a distinct 

change in vegetative features (e.g. leaf morphology, phyllotaxy, orientation) from 

seedling to juvenile, intermediate and adult forms (Boland et al. 2002; Jordan et al. 

1999; Lawrence et al. 2003; Loney et al. 2006; Wiltshire et al. 1998). The ontogenetic 

change may be accompanied by changes in foliar chemistry (Goodger et al. 2007; 

Goodger et al. 2006), susceptibility to herbivory (Loney et al. 2006) and growth rate 

(Jordan et al. 2000) and the adaptive significance of the change may vary between 

species or populations (Potts and Wiltshire 1997). Earlier vegetative maturation, 

expressed as earlier development of the petiolate, alternate and twisted leaves was 

attained in seedlings originating from sites with lower maximum temperatures and thus 

from higher altitudes. A parallel trend was also reported by Williams and Ladiges 

(1985), for mainland populations of E. pauciflora growing in a common environment 

trial, strongly supporting the hypothesis that this pattern is adaptive. In contast to our 

study, the reverse trend was observed in E. nitida (Shaw et al. 1984), in which higher 

altitude populations retained juvenile characteristics for longer. 

 

Lignotubers have been described in many Eucalyptus species and they are often evident 

early in seedling development (Boland et al. 2002; Nicolle 2006a). They comprise 

protected vegetative buds, vascular tissue and food reserves and allow plants to 

regenerate after death of or damage to the main stem, following events such as fire, 

drought, frost or browsing (Potts and Pederick 2000). Large genetic-based differences in 
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lignotuber development have been observed between (Nicolle 2006a) and within 

Eucalyptus species (Ladiges 1974; Whittock et al. 2003). The number and size of 

lignotubers in E. pauciflora seedlings increased in populations originating from sites in 

Tasmania which experience higher maximum temperatures. Sites with higher maximum 

temperatures are expected to be more prone to drought and heat stress. Increased 

lignotuber development in populations from such sites might bestow greater ability to 

regenerate after death or damage to the main stem (Ladiges 1974; Whittock et al. 2003), 

arguing that the trend we observed is likely to reflect adaptation of E. pauciflora to hot, 

drought and fire prone environments.  

 

The underlying cause of the leaf colour variation observed in E. pauciflora, from light 

to dark green, is at present unknown, but there is a clear trend for seedling leaves to 

become lighter green with increasing temperature and decreasing altitude of the site of 

origin. This colour change could be due to numerous factors including changes in leaf 

chemistry, physiology or surface properties. Higher photosynthetic activity and 

absorption was recorded on dark green leaves compared with those of lower intensity 

green in birch and oak species (Dillen et al. 2012). In the present case, the leaf colour 

variation was correlated at the population level with physicochemical variation of the 

leaf as assessed using NIR spectroscopy, but this variation was genetically independent 

at the family level suggesting parallel adaptation. The physicochemical variation (NIR 

spectra) may be indicative of variation in leaf defensive chemistry (McKiernan et al. 

2012), but may also be indicative of other differences among populations in traits such 

as pigment and antioxidant composition (leaf colour) related to photoprotection (Close 

et al. 2007; García-Plazaola and Becerril 2000) and the inherent photosynthetic 

adaptation of E. pauciflora. In the latter case, a close phenotypic (Ferrar et al. 1989; 

Slatyer and Morrow 1977) and underlying genetic-based (Slatyer 1977a; Slatyer and 

Ferrar 1977a) adaptation of the photosynthetic physiology to increasing altitude has 

been reported. Adaptation has been shown to involve lower optimal temperatures for 

photosynthesis at higher altitudes in E. pauciflora (Slatyer and Ferrar 1977a) but may 

also involve mechanisms for photoprotection that have been reported in high altitude 

populations (García-Plazaola and Becerril 2000). Electron microscope scans of the leaf 

surface of single samples from 5 populations of seedlings classified as dark green and 

from 5 populations classified as light green revealed no clear consistent differences in 
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wax morphology (unpubl. data). In all cases the leaf surface waxes covering the juvenile 

leaves match the plate-like waxes previously reported for the E. pauciflora (Hallam and 

Chambers 1970; Li 1993), and is consistent with the reported structural glaucousness in 

E. pauciflora (Barber 1955). 

 

The rugose stems of many eucalypt seedlings result from emergent oil glands 

(“verrucae”), the density of which in E. pauciflora increases with decreasing 

temperature and increasing altitude. It has been suggested (Ladiges 1984) that verrucae 

play a role in defence against herbivores (Ladiges 1984; Neish et al. 1995). If this was 

the case, our results would argue that herbivory pressure or the consequences of 

herbivore on plant fitness, increases as temperature decreases at higher altitudes. 

Increased insect herbivory has been recorded on eucalypts at higher altitudes in E. 

gunnii in Tasmania (Potts 1985), but the reverse trend has been reported for E. 

pauciflora forest on mainland Australia (Burdon and Chilvers 1974). An alternative 

explanation for the increasing density of stem oil glands at high altitudes might be 

introgression with the tree line species E. coccifera, which has highly rugose stems and 

hybridises with E. pauciflora in central regions of Tasmania (Williams and Potts 1996).  

 

4.4.4 Correlation between traits and possible effect on adaptation 

Many of the traits we studied showed correlated patterns of genetic variation at the 

population level and, from an evolutionary perspective, it is important to understand 

whether this is due to pleiotropy, genetic linkage or parallel evolution (Armbruster and 

Schwaegerle 1996). These alternatives can be resolved to some extent by comparing the 

degree to which genetic variation in various traits is correlated within, as opposed to 

between, populations (Armbruster and Schwaegerle 1996). High correlations amongst 

traits within populations may reflect either pleiotropy or tight linkage between 

underlying genes affecting multiple traits (Conner and Hartl 2004). Pleiotropy describes 

the genetic effect of a single gene on multiple phenotypic traits and, is the main 

persistent cause of such relationships and may result from allometric, developmental or 

biochemical relationships amongst the traits (Falconer 1989; Lynch and Walsh 1998). 

In the present case, while there is significant within-population genetic variation there 

are no significant genetic correlations within populations involving lignotuber size, stem 

diameter and oil glands. Within populations, these traits are also genetically 
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independent of the developmental traits describing the onset of early vegetative 

maturation as reflected in the development of petiolate, alternate and twisted leaves. 

This independence argues that the correlated patterns of population variation involving 

these traits are not due to pleiotropy but are the result of parallel evolution (selective 

covariance). As these traits are all significantly correlated with maximum temperature, 

our results argue that the adaptation to an increasingly more stressful hotter climate (as 

reflected by increasing TMXWM) will involve increasing lignotuber development, 

increasing stem diameter relative to height, decreasing stem oil gland density and a 

delayed onset of vegetative maturation in E. pauciflora seedlings and these traits are 

controlled by different genes.  

 

In contrast, several other correlated patterns of trait variation amongst populations may 

simply reflect pleiotropic relationships amongst traits and, thus, correlated responses to 

selection. This is evident when the same high genetic correlations exist both between 

and within populations (Armbruster and Schwaegerle 1996). Such correlations were 

observed between: (i) the proportion of nodes with alternate leaves and the proportion 

of nodes with twisted leaves, and (ii) leaf colour and stem diameter and lignotuber size. 

Leaf alternation and twisting are signals of vegetative maturity and are likely to be part 

of a broader pleiotropic response associated with this ontogenetic transition (Wiltshire 

et al. 1998). However, the association of lighter green leaves with faster growth and 

larger lignotuber size is more difficult to explain. The possibility of tight linkage is 

unlikely when there is no significant within population genetic correlation between 

faster growth and lignotuber size, suggesting the possibility that the association is due to 

pleiotropy. While a pleiotropic relationship is difficult to explain, it could arise if the 

lighter green leaves absorb more radiation, which increases overall seedling 

productivity in the glasshouse environment, leading to increased resources being 

allocated to both stem and lignotuber growth. Before pleiotropy can be considered 

another possible explanation will have to be disproved, that the association might reflect 

a foliar response to depletion of the limited resources in the individual pots that were 

used to grow the seedling in the glasshouse. At the population level, such a mechanism 

would reflect a differential allocation of resources to increased stem diameter and 

lignotuber size at the expense of height growth. The patterns of genetic correlation 
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observed in the present study may reflect tradeoffs that potentially have an important 

role in evolution (Sgrò and Hoffmann 2004). 

 

A key concern world-wide is whether forest tree populations are capable of responding 

to future climate change or not. The present study provides several lines of evidence for 

past adaptive response to key facets of climate. Standing genetic diversity or inter-

population gene flow for adaptive traits is required for populations to adapt to 

environment change (Hancock et al. 2011; Kremer et al. 2012). Genetic variability for 

many traits among and within populations of E. pauciflora suggests the species clearly 

has evolutionary potential. This is particularly evident for several ecologically important 

traits (e.g. lignotuber size) which differ significantly among populations, and are 

strongly associated with climatic variables, especially mean maximum temperature of 

the warmest month. The autocorrelation analysis suggest that small changes in climate, 

such as a 1ºC change in the maximum temperature of the warmest month, are likely to 

lead to significant adaptive changes in the seedling phenotype. Significant additive 

genetic variation and heritability suggest that there is standing variation in populations 

of E. pauciflora to allow adaptation to environmental change. Indeed, the coefficients of 

additive variance for many of the adaptive seedling traits are high compared with those 

reported previously for forest trees, arguing for their evolvability (Marc and John 1998). 

However, understanding the response of individual traits to selection will depend upon 

not only the levels of genetic variability but their genetic correlations (Agrawal and 

Stinchcombe 2009; Guillaume 2011). Genetic correlations may be environment and/or 

population specific (Sgrò and Hoffmann 2004) and they can either facilitate or constrain 

evolution (Agrawal et al. 2010; Etterson and Shaw 2001). In order to constrain 

evolution very strong genetic correlations are required (Conner et al. 2011; Lynch and 

Walsh 1998), yet only a few genetic correlations amongst the traits identified as 

showing adaptive signals were observed to be very high in the present study. This 

argues that most of the correlated patterns of population differentiation observed are due 

to selective covariance (Armbruster and Schwaegerle 1996), and in most cases genetic 

correlations are unlikely to constrain future evolutionary change.  
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4.5 Conclusion 

The present study has shown the close adaptive response of seedling morphology to 

climatic factors in Eucalyptus pauciflora. The close association of many traits with 

altitude at the site of origin and associated climatic variables, particularly the maximum 

temperature of the warmest month, suggests that population differentiation is to a large 

extent driven by variation in climate (especially temperature). Significant standing 

variation, high coefficient of additive variance and high heritability of ecologically 

important traits in E. pauciflora suggest that this species has the potential to adapt to 

environmental change from its standing variation. The absence of genetic correlation 

among many of the traits at the family level suggests many of these traits have potential 

to respond independently to selection. 
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Chapter 5. Genetic variation in seedling performance in field trials 

of Eucalyptus pauciflora 

 

 

 

Seedlings in the field trials: The top photo is of the Meadowbank trial site with 6 month 

old seedlings in the background showing trees just burnt by wildfire that occurred in 

early January 2013; the bottom photo is of 3 year old plants at the Dungrove trial site. 
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Abstract 

The early-age performance of 281 Eucalyptus pauciflora families from 37 populations 

from the island of Tasmania and 15 population bulks from mainland Australia was 

studied in two Tasmanian field trials. These trials were established to test the extent of 

local adaptation and guide seed source choice for restoration purposes. There were 

significant population differences in early growth and susceptibility to drought and 

herbivory. Population differences in early performance appeared to reflect a trade-off 

between fast growth and herbivore susceptibility. Low altitude populations from 

warmer sites, initially grew faster but appeared to lose their advantage because of higher 

susceptibility to herbivory. Although height growth of populations was initially related 

to the climate at the site of origin, this relationship was insignificant by three years of 

age. Drought and high temperatures at one trial reshaped the fitness profile of the 

planting, selecting against populations originating from areas with more moisture. 

Integrating mating system parameters into the analysis of the two field trials revealed 

selfing resulted in significant inbreeding depression for height growth (33 % at the age 

of 3 years). However, outcrossing rate did not affect performance at the population level, 

arguing that population level processes other than inbreeding are more important to 

performance. At both trials the Tasmanian populations outperformed those from the 

mainland, suggesting that at this stage there is no support for seed translocations from 

mainland Australia for restoration projects in Tasmania. Within Tasmania there was 

some evidence for maladapation of some non-local populations at the more benign trial 

site, Dungrove, since a few non-local populations performed significantly worse than 

the local population. At the site subject to drought stress, many non-local island 

populations were more damaged than the nearest local population, but this did not 

translate to differences in survival and a year later many non-local populations were still 

superior in height growth. This study emphasises the complexities of the factors 

impacting on the success of tree establishment and the importance of establishing field 

trials in order to study the combined impact of abiotic and biotic factors, in addition to 

extreme selective events in determining the most favoured germplasm.  

 

Keywords: Eucalyptus pauciflora, seedling growths, survival, genetic adaptation, field 

trials 
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5.1 Introduction 

Restoration plantings are widely used to combat habitat fragmentation and tree decline 

(Close and Davidson 2002; Hobbs and Norton 1996; Ruiz-Jaen and Mitchell Aide 

2005), and more recently to obtain carbon benefits (Bailey et al. 2013; Galatowitsch 

2009). Seed source decisions are a key concern to ensure  new populations became 

functional, persist and are resilient to environmental challenges (Broadhurst et al. 2008; 

McKay et al. 2005). The use of local genotypes is often viewed as a safe option and is 

widely practiced (Broadhurst et al. 2008; Jones and Monaco 2009; Kramer and Havens 

2009; O'Brien et al. 2007). This view assumes that local populations are best adapted to 

the long term environment of the site thus less at risk of mal-adaptation (Bischoff et al. 

2010; Hufford and Mazer 2003; McKay et al. 2005) and there is also less risk of 

deleterious effects from offsite gene flow (Byrne et al. 2011; Potts et al. 2003). Genetic 

contamination of local native populations through gene flow, and hybridization between 

local and non-local genotype may, for example, result in outbreeding depression or 

genetic swamping, which may have fitness cost (Jones 2013; Keller et al. 2000; 

Lenormand 2002). Local adaptation is well documented in tree species (Goto et al. 2011; 

Linhart and Grant 1996). However, whether the use of local genotypes for restoration is 

the best strategy is being increasingly questioned in the face of rapid global climate 

change, increasing globalisation of pests and diseases, as well as direct anthropogenic 

modification of the habitats being restored (Byrne et al. 2011; Sturrock et al. 2011; 

Weeks et al. 2011). 

 

One of the main concerns raised over the use of local seed sources from fragmented or 

disturbed landscapes involve inbreeding and reduced genetic variability. Trees usually 

have mixed or outcross mating systems and often exhibit significant inbreeding 

depression (Sedgley and Griffin 1989). Fragmentation and isolation of trees may result 

in increased inbreeding in open-pollinated seed, resulting in inbreeding depression 

which may override local adaptation (Kramer and Havens 2009; Mimura et al. 2009). 

Several authors have also suggested the use of genotypes from fragmented landscapes 

may result in populations which are mal-adapted due to genetic drift (Lopez et al. 2009), 

or do not contain sufficient genetic variation to maintain long-term evolutionary 

potential (Sgrò et al. 2011). There is also the possibility that seed sources from remnant 
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trees in fragmented and disturbed landscapes may include increased levels of 

hybridisation (Field et al. 2008). 

 

Seed sourcing for forest restoration needs to take into account future climate change as 

often these forests will be expected to survive hundreds of years. Climate models have 

predicted an increase in global temperature and changes in the hydrologic cycles, which 

are expected to have major impacts on the current distribution of many tree species 

(Kremer et al. 2014; McKenney et al. 2007), including eucalypts (Butt et al. 2013; 

Hughes et al. 1996). Changes in temperature and precipitation that go over the 

thresholds of physiological tolerance of tree species are likely to bring range shift in 

those species. Range shift from lower to higher altitude (Meshinev et al. 2000; Wardle 

and Coleman 1992) or to higher latitude (Grabherr et al. 1994) are expected as species 

respond by tracking the shifting climate (Walther et al. 2002). But whether species can 

actually disperse rapidly enough is one of the important questions in today’s biological 

conservation. 

 

Seed sourcing for restoration purposes is thus a complex issue, and there may be 

situations where non-local seed sources may be warranted and others where local are 

better. Choosing seed source involves balancing the need for sufficient genetic variation 

within populations with the need for long-term adaptive fitness. Identifying highly 

adapted populations with sufficient genetic diversity to allow future adaptation is a 

challenging issue, especially when aiming to restore the past system but at the same 

time building a system resilient to future changes (Montalvo et al. 1997; Sgrò et al. 

2011).  

 

This chapter uses Eucalyptus pauciflora field trials established for restoration purposes 

to address the extent to which populations studied in previous chapters are locally 

adapted. These populations differ in breeding system parameters such as outcrossing 

rate (Chapter 2) as well as quantitative seedling traits (Chapter 4), several of which 

showed evidence of climate adaptation, but populations differed little in neutral genetic 

diversity (Chapter 3). This chapter focuses on the tree establishment phase and aims to 

answer the following questions: i) is there genetic variation in fitness-related traits? ii) 

how much of the variation in these traits is a reflection of differences in inbreeding? iii) 
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are there climatic variables that can predict the genetic variation? iv) does inbreeding 

over-ride adaptive genetic variation? v) do mainland populations outperform Tasmanian 

populations? vi) does the local Tasmanian population perform best? and vii) if not, can 

we predict the best non- local seed source? Findings of this chapter will directly inform 

seed collection guidelines and restoration decisions. 

 

5.2 Materials and methods 

5.2.1 Genetic material 

The seedlings used for the field trial were progeny grown from open-pollinated seed 

collected from 281 trees from 37 Tasmanian populations and seedlot bulks of 15 

populations from mainland Australia. The Tasmanian populations were spread across 

the geographic and climatic range of E. pauciflora in Tasmania. Geographic 

information and the number of trees sampled in each of the 37 Tasmanian populations is 

same as given in Table 4.1, except one more tree was sampled from each of the 

Dungrove, Lake Rowallan, Longford, Nunamara, Rosarden and Waterhouse 

populations. To avoid sampling closely related individuals, a minimum distance of 100 

m generally separated the sampled trees. This distance was more than double the 

average tree height and should transgress any family group structure in the forest (Jones 

et al. 2007; Skabo et al. 1998). Geographic coordinates and altitude were recorded for 

each tree and later these were used to estimate climatic variables for each population 

using ANUCLIM Version 6.1 (Xu and Hutchinson 2010) as detailed in Chapter 4. 

Bulked seedlots from the 15 mainland populations were included in the study, which 

were mainly from the southern part of the species range on mainland Australia (Table 

5.1, Fig. 5.1). These bulked seedlots contained pooled seed from between 8 to 10 wild 

trees. ANUCLIM climatic variables for these bulked seedlots were derived from a 

single population coordinate. 

 

5.2.2 Field trials  

The study was undertaken on two genetics field trials situated in the Derwent Valley of 

Tasmania at Dungrove and Meadowbank (Fig. 5.2). The trials were part of a larger set 

of experiments within restoration plantings positioned to maximize the habitat 

connectivity within the fragmented landscapes (Bailey et al. 2013). Each planting 

comprised an area of 30 ha and represented differing climatic conditions. 
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The Dungrove field trial was established in 2010 at 569 m above sea level (latitude -42° 

16' 29.31 " S, longitude 146° 53' 28.01" E), which is a mid-altitude site for Tasmanian E. 

pauciflora. The trial was on ex-agricultural land with remnant patches of native 

eucalypt trees. It was previously occupied by E. pauciflora woodland and surrounded 

by fragmented E. pauciflora and E. tenuiramis woodland. This adjacent woodland was 

the local seed source for the Dungrove population [25] included in the genetics trial. 

The trial was on a fine sandy loam soil derived from a Permian mudstone substrate. 

ANUCLIM (Version 6.1) climate parameters were predicted for the site. The mean 

annual rainfall was 624 mm, which is near the lower minimum of the species’ 

precipitation range in Tasmania. The mean annual temperature was predicted to be 

9.1°C, with maximum temperature of the warmest month of 21.5 °C, which are mid 

values for the Tasmanian range of the species.  

 

The Meadowbank field trial was established in 2011 at 295 m above sea level (latitude -

42° 38' 18.83" S, longitude 146° 49' 16.13" E). The trial was on previous pastureland 

and the area included a mix of bracken fern, acacias and remnant patches of native 

eucalypt trees of E. viminalis and Acacia dealbata and was surrounded by fragmented 

eucalypt woodland comprising E. viminalis and some E. tenuiramis. The trial was on 

sandstone substrate with a coarse sandy loam. The ANUCLIM predicted mean annual 

rainfall of the trial site was 748 mm and the mean annual temperature was 10.5°C, with 

maximum temperature of the warmest month of 22.7 °C. The closest E. pauciflora trees 

sampled to this site was the population at Curringa [35], 8.6 km away from the 

Meadowbank. 

 

5.2.3 Site preparation 

In early May 2010 (six months before plantings), the existing pasture vegetation at 

Dungrove was sprayed with a knockdown herbicide (Glyphosate plus Hasten™). 

Cultivation was undertaken a month after spraying with the site ripped and mounded 

using a bulldozer and savannah plough. The site was left fallow for three months after 

cultivation. A second application of the knockdown herbicide and also the residual 

herbicide (Simazine) were done in September 2010. Blocks were again cultivated to a 

fine tilth to the top of the mound two weeks prior to planting. The Dungrove trial was 

planted on October 2010.  
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In late August 2011, the edge of the Meadowbank trial was marked and the whole area 

of acacia thickets was raked. Cultivation was done a month before planting in 

September 2011 with the site ripped and mounded using a bulldozer and savannah 

plough, then sprayed with a combination of knockdown and residual herbicides 

(Glyphosate, Lontril™ and Simazine). The genetics trial was planted on November 1
st
 

2011. 

 

Both sites were fenced for protection from sheep (although incursion occurred later at 

Meadowbank), but plants at both sites were exposed to varying levels of marsupial 

browsing as well as to feral populations of the European fallow deer (Dama dama) 

(Dungrove only). 

 

Table 5.1. Eucalyptus pauciflora populations from mainland Australia used for the study with 

their codes and geographic locations. Note that the Tasmanian populations used in the study are 

given in Table 4.1. 

ID Population Latitude (°S) Longitude (°E) Altitude 

38 Williamsons Springs -33.46 149.85 1162 

39 Mt Ginni -35.21 148.46 803 

40 Bugtown Hill -35.52 148.44 1146 

41 Tallaganda -35.55 149.32 786 

42 Bogong High Plains -36.87 147.29 1618 

43 Pastoria  -37.22 144.54 498 

44 Mt William Grampians -37.30 142.60 1101 

45 Haddon -37.59 143.72 392 

46 Hillcrest -37.62 143.64 427 

47 Mt Baw Baw -37.81 143.91 1560 

48 Mount Mercer -37.81 144.19 353 

49 Durdidwarrah -37.84 146.27 370 

50 Meredith -37.84 144.08 340 

51 Mt Martha Gippsland -38.29 145.01 146 

52 Modewarre -38.28 144.14 122 
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Fig. 5.1. Geographic distribution and seed collection sites of E. pauciflora in Australia and in Tasmania. Information on distribution of the 

Eucalyptus pauciflora on Mainland, Australia is based on Atlas of living Australia (http://www.ala.org.au/) and Tasmanian, Australia is based on 

the Williams and Potts (1996), Natural Values Atlas (www.naturalvaluesatlas.tas.gov.au) and additional records from the University of Tasmania. 

Population numbers correspond to those defined in Table 4.1 and Table 5.2. 

http://www.ala.org.au/
http://www.naturalvaluesatlas.tas.gov.au/
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5.2.4 Planting stock preparation and planting  

Each collected seedlot was soaked in water overnight, drained, and then stratified at 4°C 

for 4 weeks. Each seedlot was then sown onto separate germination trays and allowed to 

germinate at room temperature in a commercial nursery. After 8 weeks (including 

stratification), germinants were pricked out into individual cells in HIKO™ (HV93) 

trays; where each tray contained 40 plants of one family (one tray per family). Tray 

positions were then randomised in an indoor growing area of a nursery and transferred 

outside after 10 weeks. Eight months after sowing for Dungrove and 16 months after 

sowing for Meadowbank, seedling were labelled with their family identification and 

then sorted into the experimental design in HIKO™ trays. Labelled seedlings were 

transported in boxes to the trial site and distributed to their designated replicates. 

Seedlings were handed to professional forestry planters in the sequence matching the 

design. Following Davidson and Close (2006) and Close and Davidson (2002), plants 

were planted with Potipuki No. 55 tree planters so that the root ball was approximately 

2 cm below the soil surface to prevent desiccation. Soil was firmed down after planting 

to prevent air pockets between root ball and surrounding soil and to ensure seedlings 

were stable in the soil. 

 

5.2.5 Trial design and layout 

The genetic trials in each field site were established in an identical way. Eight replicates 

were established through each of the planting areas to obtain uniform planting areas 

(Fig. 5.2). In the case of Dungrove the replicates were not necessarily adjacent as some 

were interspersed through the planting area as other trials were planted at the same time 

in the area. At Meadowbank the replicates were more adjacent to one another. Each 

family (including mainland bulks) was randomized into a row X column design using 

CycDesigN 4.0 (Whitaker et al. 2002). There were 20 rows and 20 columns per 

replicate. Each replicate consisted of 400 treatments which were comprised of 281 

Tasmanian families (each family represented by one seedling) and multiple seedlot 

positions from the 15 mainland populations. Mainland seedlots were represented by one 

to nine seedlings giving a total of 119 seedlings from mainland per replicate. The rows 

were 3 m apart and within rows seedlings were planted 2.5 m apart (i.e. between 

columns). Where replicates were not contiguous, they were surrounded on all sides by a 

line of E. pauciflora seedlings planted as a buffer. 
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Fig. 5.2. Map of the experimental restoration planting sites situated in the Derwent Valley of 

Tasmania showing the disposition of the genetics field trials (green blocks) at, left- Dungrove 

field trial (Bailey et al. 2013) and right- Meadowbank field trial.  

 

5.2.6 Trait assessment  

In each field trial, survival and growth were monitored and scored on a regular basis, at 

least once every 6 months (Table 5.2, Fig. 5.3). Fitness related damage traits were 

recorded after the damage was evident. For instance insect damage or mammal damage 

was scored after outbreak of insect and browsing damage was observed or during 

routine growth assessments. At Dungrove, damage from frost was recorded after the 

trial site experienced significantly low temperatures in April 2011. The Meadowbank 

trial was affected by drought and high temperatures in the early January 2013. This 

stress event was accompanied with a week of severe bushfires and extreme hot 

temperature in southern Tasmania (Bureau of Meteorology 2013). Wildfire burnt the 

fence and some edge row plants of the Meadowbank trial but did not reach the plants in 

the genetics trial. The temperature peaked on 4
th

 January 2013 with temperatures of 

41.8°C (Bureau of Meteorology 2013). In order to assess the impact of this drought 

event on plant fitness, damage was assessed in 10 days after the event. 



Chapter 5            Seedling performance in field trials of Eucalyptus pauciflora 

102 

 

5.2.7 Statistical analysis  

The data were analysed separately for each trial using linear mixed models. Quantitative 

traits were analysed using PROC MIXED and transformed where necessary to optimize 

the normality and homogeneity of variances. Binary traits (e.g. survival) were analysed 

using PROC GLIMMIX with a logit link function. In all cases, fixed terms were tested 

using the Walds F-test and least-square means (LSMs) estimated. These analyses were 

performed in SAS 9.2 (SAS Institute Inc. 2009).  

 

To test for fixed differences between populations across a major latitudinal disjunction 

in the distribution of the species, Tasmania vs. mainland (i.e. state effect), the following 

model was fitted: 

Y = rep + row(rep) + col(rep) + state + population(state) + rep*population(state) + 

residual ………model (I) 

where, Y is an observation of the seedling trait, rep is replicate as a random effect, 

row(rep) represents the random row within replicate effect, col(rep) represents the 

random column within replicate effect, population(state) is the random effect of 

population within state and rep*population(state)is the random replicate by population 

within state interaction term. The random population(state) term was used as the error 

to test the fixed state effect.  

 

To test for a difference between the bulk provenances samples from the mainland, the 

following model was fitted to the subset of mainland data with population as a fixed 

term: 

Y = rep + row(rep) + col(rep) + population + population*rep +residual……model (II) 

The random interaction between population and replicate (population*rep) was used as 

the error to test the fixed population effect as there was no pedigree information within 

these population bulks.  

As the Tasmanian populations had families maintained separately, to increase the 

inference space the following model was fitted for quantitative traits using the subset of 

the data that comprised only the Tasmanian populations: 
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Y = rep + row(rep) + col(rep) + population + family(population) +residual…model (III) 

The replicate and population terms were treated as fixed. The family(population) term is 

the random family within population effect and was used as the error term to test the 

fixed population effect. The significance of the family(population) variance component 

from zero was tested using a Z-test for quantitative traits (PROC MIXED) and 

likelihood ratio test for the binary traits (PROC GLIMMIX).  

 

Binomial models were fitted using a logit link function. However, due to convergence 

issues, the random terms row(rep) and col(rep) were dropped from all binomial models. 

In cases where model convergence was still not possible, the binomial models were 

modified by either treating the replicate term as random (e.g. Tasmanian population 

analysis) and/or by dropping other random terms such as family(population). When 

these analytical modification were done this is indicated in the results Tables. The least-

square means for the population effects were estimated on the logit transformed scale as 

well as following back transformation to the original scale, to express as a proportion, 

using ILINK option in PROC GLIMMIX in SAS 9.2 (SAS Institute Inc. 2009). 

Comparisons of all populations with the closest local population sample for each trial 

site were undertaken using pair-wise contrasts specifying the specific local population 

as a control. 

 

To test for a relationship between the population least-squares means for each trait with: 

(i) population altitude, (ii) the 35 ANUCLIM climatic variables, (iii) population-level 

outcrossing rate (tm from Chapter 2), and (iv) biparental inbreeding estimates (tm-ts  from 

Chapter 2); a univariate analysis of covariance was undertaken using PROC GLM of 

SAS. To account for multiple testing with climate variables, probabilities for each trait 

were adjusted for a dependent false discovery rate using PROC MULTITEST in SAS 

9.2 (SAS Institute Inc. 2009). This analysis was used to identify the best significant 

predictor of the variation in population least-square means. The back-transformed least-

square means to proportions were used for the binary traits. For key variables where a 

priori tests were warranted (e.g. altitude, mean maximum temperature of the warmest 

month (TMXWM) and the mating system parameters tm and tm-ts) univariate regression 
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analysis was also undertaken using PROC REG of SAS. In addition, forward stepwise 

multiple regression analysis was undertaken using the full set of 35 climate and the two 

mating system parameters (tm and tm-ts) to determine whether population variation in 

each trait was better modelled with more than one variable. 

 

Fig. 5.3. Damage traits assessed in the field trials, a) a Perperus malevolens adult insect, 

causing damage to the tip of the seedlings, b) damage caused by Perperus malevolens insect to 

the seedings (tipdam_apr12), c) damage caused by an unknown insect (ins_nov10), d) seedling 

with 40% of the frost damage (frost_apr11), e) a seedling with drought damage and resistant to 

the drought (drought_jan13), and f) a seedling defoliated due to deer damage (deer_may13). 

( photos c,d,e,f from Paul Tilyard) 
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Table 5.2. Growth, survival and damage traits scored in field trials of Eucalyptus pauciflora for 

quantitative analysis. The table contains the description of the traits measured, age at which the 

traits were scored, codes used for each trait in this chapter, and type of trait and transformation 

used for analysis. 

Description Code Assessment 

age after 

plantings 

Trait type Transformation 

Dungrove trial site   

  Height (cm) ht_nov10 1 month quantitative 

 Height (cm) ht_july11 9 months quantitative 

 Height (cm) ht_may12 19 months quantitative 

 Height (cm) ht_nov12 24 months quantitative 

 Height (cm) ht_may13 31 months quantitative 

 Height (cm) ht_nov13 36 months quantitative 

 Insect damage (%) ins_nov10 1 month quantitative √Ins_nov10 

Insect damage (%) ins_dec11 14 months quantitative √Ins_dec11 

Tip damage by Perperus 

malevolens insect (%) tipdam_apr12 18 months binary 

tip damage   0% = 0;  

tip damage > 0% = 1 

Frost damage (%) frost_apr11 6 months quantitative  Fr_dam 

Survival (alive or not alive) survival_july11 9 months binary 

 Survival (alive or not alive) survival_may12 19 months binary 

 Survival (alive or not alive) survival_nov12 24 months binary 

 Survival (alive or not alive) Survival_may13 31 months binary 

 Survival (alive or not alive) survival_nov13 36 months binary 

 Deer damage (0 = absence, 

1 = damage) deer_nov12 24 months binary 

 Deer damage (0 = absence, 

1 = minor damage,  

2 = severe damage) deer_may13 31 months binary 

deer damage < 1 = 0;  

deer damage ≥ 1 = 1 

Browsing damage (0 = 

absence,1 = minor damage,  

2 = severe damage) brows_nov13 36 months binary 

browsing < 1 = 0; 

browsing ≥ 1 = 1 

 

  

  
Meadowbank trial site   

  Height (cm) ht0_nov11 1 month quantitative 

 Height (cm) ht1_may12 7 months quantitative 

 Height (cm) ht2_nov12 12 months quantitative 

 Height (cm) ht3_jun13 20 months quantitative 

 Survival (alive or not alive) survival_may12 7 months binary 

 Survival (alive or not alive) survival_nov12 12 months binary 

 Survival (alive or not alive) survival_jan13 15 months binary 

 Survival (alive or not alive) survival_jun13 20 months binary 

 

Drought damage (%) drought_jan13 15 months binary 

drought damage < 5% = 0; 

drought damage ≥ 5% = 1 

Browsing damage (%) brows_nov12 12 months binary 

browsing < 1 = 0; 

browsing ≥ 1 = 1 

Browsing damage (%) brows_jun13 20 months binary 

browsing ≤ 95 = 0; 

browsing > 95 = 1 
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Inbreeding depression was estimated directly from the covariate coefficient (slope) 

derived from fitting the family level outcrossing rates as a covariate in an individual tree 

mixed model. This coefficient directly estimated inbreeding depression due to selfing 

(tm = 0) which is expressed as a percentage of that expected under full outcrossing (tm = 

1), using the equation %ID = 100* slope/(intercept + slope), which equates to the 

standard expression for inbreeding depression: %ID =100*[(outx-self)/outx] (Hardner 

and Potts 1995). These values were estimated by fitting an individual tree mixed model 

which accounts for an average species wide-estimate of outcrossing in the coefficient of 

relatedness used in the estimation of additive genetic effects as used in Chapter 4. This 

was implemented with a restricted maximum likelihood (REML) model using an 

average information REML algorithm (Gilmour et al. 1995) implemented using 

ASReml 3.0 (Gilmour et al. 2009). The individual tree mixed model fitted was:  

Y = rep + tm + row(rep) + col(rep) + population + tree +residual…………model (IV) 

where, Y is an observation of the seedling trait, rep is the fixed replicate effect, tm is the 

family-level outcrossing rate (Chapter 2) fitted as a covariate, row(rep) represents the 

random row within replicate effect, col(rep) represents the random column within 

replicate effect, population is the random population effect and tree is the random 

additive genetic effect for each seedling and residual is the random residual variation. 

 

5.3 Results 

5.3.1 Tasmania versus mainland populations 

There was a highly significant difference (P < 0.001) between mainland populations and 

the Tasmanian population in all height measurements up to the age of 36 months (Table 

5.3, Fig. 5.4). On average the Tasmanian populations grew better than the mainland 

populations and this trend was evident in both trial sites (Dungrove: ht_nov13 mainland 

85.1 cm ± 9.92 [lsmean ± se], Tasmania 112.4 ± 9.40; Meadowbank: ht3_jun13 

mainland 36 ± 2.75; Tasmania 45.8 ± 2.18). Initially (up to 19 months after planting) 

there was no significant difference in survival rate among Tasmanian and mainland 

populations at Dungrove site, but after 24 months a significant difference was evident, 

with greater survival of the Tasmanian populations (mainland 65.7 % ±5.86, Tasmania 

84.2 % ± 5.48). No significant difference in survival between Tasmanian and mainland 

populations were evident over the 20 months of assessment at Meadowbank, despite 
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differences in height growth and the trial being affected by drought and high 

temperatures in January 2013. The foliage damage recorded on plants following this 

complex stress event was not significantly different between Tasmanian and mainland 

populations (drought_jan13; Table 5.3).  

 

 

Fig. 5.4. Geographic variation of least square means of the last height measurements of the 

mainland and Tasmanian populations of E. pauciflora at trial sites: a) height at 36 months at 

Dungrove (cm) (ht_nov13), and b) height at 20 months at Meadowbank (cm) (ht3_june13). The 

larger the red triangle the greater is height of the plant and the larger the green triangle smaller 

the height. Note that Tasmanian populations are growing better than the mainland samples at 

both trial sites. 

 

At Dungrove, there were no significant differences between the Tasmanian and 

mainland populations in early insect damage (ins_nov10) and deer browsing damage 

(deer_nov12), however, insect damage and deer damage at the later age were 

significantly different (Table 5.3). Insect damage (ins_dec11: mainland back 

transformed lsmean % damage 1.14, Tasmania 1.46; tipdam_apr12 proportion: 

mainland 0.20 ± 0.01 [lsmean ± se], Tasmania 0.27 ± 0.01) and the proportion of trees 



Chapter 5            Seedling performance in field trials of Eucalyptus pauciflora 

108 

 

damaged by deer (deer_may13 proportion: mainland 0.14 ± 0.01, Tasmania 0.24 ± 0.01) 

was greater on the faster growing Tasmanian populations. Despite no significant 

difference in early mammal browsing at Meadowbank, browsing mainly by sheep at 20 

months was significantly different between Tasmanian and mainland populations. 

Unlike the previous trend observed at Dungrove, browsing was slightly greater on 

mainland than the Tasmanian populations (brows_jun13 proportion: mainland 0.90 ± 

0.02; Tasmania 0.93 ± 0.01). Following the mild frost event at Dungrove, where leaf 

necrosis was observed on 40 % of the plants, Tasmanian populations were observed to 

be significantly less damaged than the mainland populations (frost_apr11; P < 0.05).  

 

5.3.2 Genetic variation among populations within Tasmania and within the mainland 

All height measurements at both Dungrove and Meadowbank showed highly significant 

genetic variation among the Tasmanian populations (Table 5.3). The geographic 

distribution of the faster growing populations changed with age (Fig. 5.5). At Dungrove 

the population with the greatest plant height at 36 months was the Oatlands [27] 

population and the tallest at Meadowbank after 20 months was the Rossarden [7] 

population. The Tasmanian populations did not differ in their survival at Meadowbank. 

However, significant differences were evident at age 31 months at Dungrove, but not in 

the subsequent assessment at 3 years. At Dungrove, the initial unidentified insect 

damage observed 1 month after planting was significantly different between populations 

(P < 0.001), but damage assessed by insects a year later did not differ significantly 

between populations, which could be caused by the same insects type or a different 

insect. Nevertheless, tip damage assessed following a weevil outbreak (Perperus 

malevolens) at 18 months of age, showed significant population differences (Table 5.3; 

Fig. 5.5). The deer damage observed on plants at Dungrove appeared to be mainly a 

result of rubbing their heads on the stems during antler shedding. While initially deer 

damage was significantly different among the Tasmanian E. pauciflora populations 

(deer_nov12; P < 0.001), the population differences were not significant 6 months later 

(deer_may13; P > 0.05). However, foliage browsing by unidentified mammals 

(probably mainly native marsupials) at Dungrove, 3 years after planting, was 

significantly different among populations (brows_nov13; P < 0.001). The recorded 

browsing at Meadowbank prior to the drought event was not significantly different  
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Table 5.3. Genetic parameters for the seedling traits of Tasmanian and mainland Eucalyptus 

pauciflora measured at the Dungrove and Meadowbank trial sites. The table includes the trait 

code (see Table 5.2), the F value and degrees of freedom for the differences between Tasmanian 

and mainland populations (F1, 50) and its significance (sig), the difference between mainland 

populations (F14, 98) and its significance, difference between Tasmanian populations (F36, 238) and 

its significance and Z value for the random variation between families within populations (z) for 

quantitative traits or chi square likelihood ratio test (Chi LRT) for binary traits and its 

significance level. Significance levels are: ***P < 0.001, **P < 0.01, *P < 0.05, ns P ≥ 0.05.  

Traits 

  

Assessment 

age (after 

plantings) 

Tasmanian vs 

Mainland 

Mainland 

Populations 

 Tasmania 

 Populations Family(population) 

F1,50 sig F14,98 sig  F36,238 sig z/Chi LRT sig 

Dungrove trial site  

ht_nov10 1 month 6.1 * 35.5 ***  4.3 *** 8.4 ** 

ht_july11 9 months 15.1 *** 6.0 ***  4.1 *** 3.7 *** 

ht_may12 19 months 36.8 *** 7.0 ***  5.5 *** 1.2 ns 

ht_nov12 24 months 36.7 *** 6.0 ***  3.8 *** 1.1 ns 

ht_may13 31 months 38.8 *** 9.5 ***  3.1 *** 1.3 ns 

ht_nov13 36 months 33.5 *** 7.8 ***  2.7 *** 0.6 ns 

survival_july11 9 months 0.1 ns 0.42
 b
 ns  0.4

 d
 ns NC NC 

survival_may12 19 months 3.0 ns 2.23 **  1.0 ns 0.9 ns 

survival_nov12 24 months 10.5 ** 3.8 ***  1.0 ns 0.8 ns 

survival_may13 31 months 4.8 * 3.0
 b
 ***  1.5

 b
 * NC NC 

survival_nov13 36 months 7.0 * 5.9 ***  1.2
 
 ns 1.5 ns 

ins_nov10 1 month 0.0 ns 5.4 ***  4.4 *** 8.4 *** 

ins_dec11 14 months 6.9 * 1.5 ns  1.3 ns 1.2 ns 

tipdam_apr12 18 months 10.3
 a
 ** 0.8 ns  2.2 *** 0.0 ns 

frost_apr11 6 months 6.8 * 8.9 ***  5.3 *** 3.3 *** 

deer_nov12 24 months 6.8
 b
 ns 1.95

 b
 *  2.0

 b
 *** NC NC 

deer_may13 31 months 27.6
 b
 *** 1.48

 b
 ns  1.2 ns 2.8 * 

brows_nov13 36 months 3.2 ns 4.1 ***  2.8
 b
 *** 0.2 ns 

 

Meadowbank trial site  

ht0_nov11 1 month 19.1 *** 45.0 ***  3.5 *** 8.2 *** 

ht1_may12 7 months 33.3 *** 3.7 ***  2.5 *** 2.9 ** 

ht2_nov12 12 months 21.5 *** 4.3 ***  4.5 *** 2.1 * 

ht3_jun13 20 months 16.0 *** 3.9 ***  3.6 *** 0.8 ns 

  survival_may12 7 months 0.0 ns 1.73
 b
 *  1.0 ns 1.2 ns 

survival_nov12 12 months 1.3 ns 2.48
 b
 **  0.9 ns 1.0 ns 

survival_jan13 15 months 1.7 ns 2.58
 b
 **  0.9 ns 1.4 ns 

survival_jun13 20 months 2.7 ns 0.72
 b
 ns  0.9 ns 1.4 ns 

drought_jan13 15 months 0.9 ns 1.1
 a
 ns  2.0 ** 0.0 ns 

brows_nov12 12 months 0.1 ns 3.2
 b
 ***  1.2 ns 0.0 ns 

brows_jun13 20 months 10.3
 c
 ** 1.3

 a
 ns  2.9 *** 0.4 ns 

 

Note for convergence of some binary models, it was necessary to drop some of the random terms from the 

model. Modification on the model is denoted as: 
a
 dropping the rep term; 

b
 dropping all random terms; 

c
 

dropping random population*replicate interaction error term from the model and
 d 

dropping random 

family(population) term.  Model terms are detailed in the methods. NC = not converged. 
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Fig. 5.5. Geographic variation of least-square means of the traits based on the performance in 

the field trials: a) height at 9 months at Dungrove (cm) (ht_july11), b) height at 36 months at 

Dungrove (cm) (ht_nov13), c) height at 7 months at Meadowbank (cm) (ht1_may12), d) height 

at 20 months at Meadowbank (cm) (ht3_june13), e) proportion of plants with tips damaged by 

the insect Perperus malevolens at 18 months at Dungrove (tipdam_apr12), and f) proportion of 

plants showing drought damage at 15 months at Meadowbank (drought_jan13). 
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amongst populations (brows_nov12; P > 0.05). However, after the drought, when the 

trial had been heavily browsed by sheep, significant variation among populations was 

evident (brows_jun13; P < 0.001). In addition to population differences in susceptibility 

to biotic stresses such as browsing, populations also exhibited significant differences in 

their susceptibility to climatic stress from drought (Meadowbank drought_jan13; P < 

0.01) and frost (Dungrove frost_apr11, P < 0.001).  

 

As with the Tasmanian populations, the mainland populations differed significantly for 

height at all assessments (Table 5.3). However in contrast to the Tasmanian populations, 

there were significant differences in most survival assessments. As with Tasmanian 

populations, earlier insect damage and deer damage were significantly different among 

populations but not the later assessments. In contrast to the Tasmanian populations, 

there were no significant differences among the mainland populations for the later 

browsing at Meadowbank (brows_jun13) and drought damage (drought_jan13). 

However the mainland populations did differ in their levels of frost damage at 

Dungrove (frost_apr11; P < 0.001). 

 

5.3.3 Association of traits with mating system parameters and climatic variables 

Analysis of the effect of mating system parameters on seedling performance in the field 

trials provided evidence of significant inbreeding depression on growth (height) at the 

family level (Table 5.4). Inbreeding depression for height growth increased with age at 

Dungrove from 26% to 37%. Outcrossing rate differences between populations did not 

explain the significant variation among populations in height, except 9 months after 

planting at Dungrove (ht_july11). However, the trend was the reverse to what was 

expected with inbreeding depression, populations with higher outcrossing rates tended 

to be shorter. When significant, this trend only explained a small percentage of the 

variation (ht_july11 R
2 

= 7%), and subsequent growth measurements were not 

significantly related to outcrossing rate. With the exception of height as assessed one 

month after planting (family tm for ht0_nov10 R
2
 28%, P = 0.017), no significant effects 

of outcrossing rate on growth or survival were observed at the family or population 

level at Meadowbank. In contrast to outcrossing rate, population variation in biparental 

inbreeding did appear to have a slight negative effect on population growth consistent 

with inbreeding depression. However while this effect appeared to be increasing with 
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age at Dungrove, it was only statistically significant (P < 0.05) at Meadowbank and was 

only evident at two ages (height_may12 and height_nov12). There was no significant 

effect of biparental inbreeding on population survival at either site. 

Table 5.4. The relationship of growth and survival traits with outcrossing rate (tm) and 

inbreeding depression due to selfing (%ID) at the family level, and population-level 

relationships of these traits with outcrossing rate (tm) and biparental inbreeding (tm-ts) in 

Eucalyptus pauciflora. The population level associations were analysed using the regression of 

the population least-square means on the population-level estimates of outcrossing rate and 

biparental inbreeding presented in Chapter 2. Trait codes are detailed in Table 5.2. 

Traits Family tm fitted as covariate in 

individual tree mixed model 
  Population level regression 

 

tm tm-ts 

  Intercept Slope Prob % ID   R
2
 Slope Prob R

2
 Slope Prob 

 
Dungrove trial site 

ht_nov10 15.2 5.44 0.009 26.4 

 

4% -7.24 0.090 0% 0.78 0.883 

ht_july11 35.7 8.00 0.046 18.3 

 

7% -17.44 0.019 2% -11.94 0.195 

ht_may12 62.2 20.52 0.004 24.8 

 

2% -21.20 0.184 2% -22.25 0.254 

ht_nov12 69.2 15.46 0.055 18.3 

 

4% -26.34 0.094 3% -26.85 0.163 

ht_may13 76.0 38.85 0.001 33.8 

 

1% -21.14 0.320 4% -45.18 0.080 

ht_nov13 72.2 41.73 0.001 36.6 

 

0% -6.69 0.757 5% -47.44 0.069 

survival_may13 0.79 0.09 0.200 10.5 

 

10% 0.26 0.052 0% -0.001 0.998 

 
Meadowbank trial site 

ht0_nov11 16.7 6.53 0.017 28.1 

 

3% -7.74 0.274 8% -14.24 0.096 

ht1_may12 32.3 3.59 0.351 10.0 

 

1% -4.20 0.607 14% -21.53 0.025 

ht2_nov12 45.4 6.41 0.259 12.4 

 

1% -7.76 0.643 14% -44.22 0.025 

ht3_jun13 35.1 10.81 0.140 23.5 

 

0% -3.99 0.838 9% -42.54 0.069 

survival_jun13 0.7 0.10 0.194 12.1 

 

3% -0.13 0.286 0% 0.04 0.803 

 

 

Of the traits that showed significant differences among the Tasmanian populations in 

the field trials, the population least-square means for approximately 50% were 

significantly associated with altitude and/or climatic variables predicted for the site of 

population origin (Table 5.5). This climate association was particularly strong with the 

mean maximum temperature of the warmest month (TMXWM), which was the climatic 

variable best explaining the variation in many of the seedling traits (Chapter 4). At 

Dungrove, populations originating from lower altitude and warmer sites initially were 

taller, but this trend diminished with age to become non-significant by 24 months 

(Table 5.5). This trend was also evident for the mainland populations at both Dungrove 

and Meadowbank, except the positive relationship with TMXWM persisted longer. 
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There was no association of population variation in survival with altitude or any 

climatic factor for either the Tasmanian or mainland populations.  

 

Biotic damage to the Tasmanian populations was significantly associated with 

population altitude or TMXWM climate for five of the six significant damage traits 

(Table 5.5). In these five cases, browsing or other biotic damage was greater in 

populations originating from lower altitude and warmer sites. The same trend was 

evident for the mainland populations but only statistically significant in four of the ten 

regressions. There was no evidence for an association of drought damage at 

Meadowbank with population altitude. However, drought damage was significantly 

negatively correlated with the mean maximum temperature of the warmest month 

(TMXWM; R
2
 = 15%, P < 0.05) and the best climatic variable was the mean moisture 

index of the highest quarter (MIMHQ) which explained 48% of the variation amongst 

the Tasmanian populations. The same trend was evident but not significant in the 

mainland populations. The differences observed amongst the Tasmanian populations for 

frost damage were not associated with altitude nor any climatic variable. However for 

the mainland populations there was a trend for lower altitude population to be more 

damaged by frost (frost_apr11 R
2
 = 32%, P < 0.05). 

 

Multiple regression analyses rarely resulted in a statistically better prediction of the 

variation in population least-square means than the best climatic variable alone. There 

was only one exception where mean annual temperature (TANN) and coefficient of 

variation of rainfall (RCVAR) together explained 66% of the variation in population 

differentiation in browsing damage (brows_nov13). In no case did a mating system 

parameter (tm or tm-ts) have better predictive power than altitude, TMXWM or the best 

climatic variable, and in no case when they were included with the climatic variables in 

multiple regressions did these parameters contributed significantly to the model.  

  



 

 

Chapter 5       Seedling performance in field trials of Eucalyptus pauciflora 

114 

 

Table 5.5. Association of growth, survival and damage traits with altitude, mean maximum temperature of warmest month (TMXWM) and other climatic 

variables of the site of origin of the Tasmanian and mainland Eucalyptus pauciflora populations. Only traits for which significant differences were detected 

amongst the Tasmanian populations are shown (see Table 3), except for pre-drought browsing at Meadowbank (brows_nov12). Trait codes are detailed in 

Table 5.2. For the Tasmanan populations, the BIOCLIM climatic variable which had the highest regression R
2
 and the directionality of the relationship are 

shown. 
Trait Mainland 

 

Tasmania 

Altitude TMXWM 

 

Altitude TMXWM   

R
2
 Slope Sig R

2
 Slope Sig 

 

R
2
 Slope Sig R

2
 Slope Sig Best climatic factor 

              Dungrove trial site 

             ht_nov10 54% negative ** 50% positive *** 

 

53% negative *** 46% positive *** TWMQ(+)52% 

ht_july11 31% negative * 63% positive *** 

 

36% negative *** 36% positive *** TIT(+)45% 

ht_may12 2% negative ns 31% positive ** 

 

18% negative ** 23% positive *** ns 

ht_nov12 0% negative ns 21% positive * 

 

8% negative ns 9% positive ns ns 

ht_may13 0% positive ns 19% positive * 

 

1% negative ns 0% negative ns ns 

ht_nov13 0% positive ns 15% positive * 

 

3% positive ns 1% negative ns ns 

survival_may13 25% positive ns 6% negative ns 

 

1% positive ns 0% positive ns ns 

ins_nov10 16% negative ns 7% positive ns 

 

41% negative *** 34% positive *** TWMQ(+)39% 

tipdam_apr12 5% positive ns 7% negative ns 

 

8% positive ns 4% negative ns ns 

frost_apr11 32% negative * 15% positive * 

 

6% negative ns 1% positive ns ns 

deer_nov12 19% negative ns 28% positive * 

 

40% negative *** 51% positive *** TMXWM(+)51% 

brows_nov13 28% negative * 6% positive ns 

 

60% negative *** 50% positive *** TANN(+)60% 
^
 

               Meadowbank trial site 

             ht0_nov11 60% negative *** 31% positive ** 

 

1% negative ns 0% negative ns ns 

ht1_may12 13% negative * 9% positive ns 

 

4% positive ns 5% negative ns ns 

ht2_nov12 7% positive ns 0% positive ns 

 

4% positive ns 5% negative ns ns 

ht3_Jun13 3% positive ns 2% negative ns 

 

8% positive ns 14% negative * ns 

drought_jan13 12% positive ns 7% negative ns 

 

10% positive ns 15% negative * MIMHQ(+)48% 

brows_nov12 25% negative ns 23% positive ns 

 

25% negative ** 17% positive ** MIANN(-)41% 

brows_Jun13 33% negative * 3% positive ns   16% negative * 19% positive ** MIMHQ(-)37% 
TWMXW = mean maximum temperature of the warmest month, TWMQ = mean temperature of warmest quarter, TIT=isothermality, TANN = mean annual temperature, MIMHQ = mean 

moisture index of highest quarter, MIANN = mean annual moisture index, RCVAR = coefficient of variation of rainfall. Significance levels are: ***P < 0.001, **P < 0.01, *P < 0.05, ns P ≥ 0.05; 

(+) denotes the positive association; (-) denotes the negative association; ^ significant multiple regression with TANN(+) RCVAR(-)66%.
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5.3.4 Genetic variation within Tasmanian populations 

Significant within population genetic variation was observed only in 8 of the 29 

performance traits measured across both trials, as evidenced by significant family within 

population variance (Table 5.3). Height measurements and insect damage were initially 

significantly different among families within populations, but the differences decreased 

and were not significant at later ages. Despite significant population differences in 

drought damage (drought_jan13) at Meadowbank, there was no evidence of significant 

variation between families within population. In contrast, for frosts susceptibility 

(frost_apr12) there was evidence of significant differences among families within 

populations as well as among populations. 

 

5.3.5 Local versus non-local populations 

For the Tasmanian populations, the significance of the pair-wise tests of populations 

against the closest local population to each of the trials sites is shown for key 

performance traits on the plots in Fig. 5.5. To further explore the performance of local 

versus non-local populations, the distance of 27 km was considered as an operational 

limit for the definition of a broader ‘local’ population, taking into account the results 

from the molecular markers (Chapter 3) and seedling morphology (Chapter 4) studies. 

Based on this criterion, at Dungrove [25] five other populations [17, 20, 29, 30 and 31] 

and at Meadowbank [Curringa, 35] three other populations [29, 30 and 34] could be 

defined as local populations. At Dungrove at 9 months of age, six populations [15, 19, 

27, 28, 32 and 33] out of the 31 so defined non-local populations (originating from 

lower altitude and warmer sites) outperformed the closest local population [25] in 

height (ht_july11), while two populations [13,14] performed significantly worse than 

the closest local population (Fig. 5.5, significant populations were represented by 

asterix). None of the broader defined local populations performed significantly worse or 

better than the Dungrove [25] population at this age. However the trend changed by 36 

months (ht_nov13), with no local or non-local population performing significantly 

better than the onsite Dungrove population, but four non-local populations [6, 9, 14 and 

36] and one local population [31] performing significantly worse than the Dungrove 

population. At Meadowbank, Curringa [35] was the nearest population to the site and 

while not ‘onsite’ was considered as the control population for pair-wise comparisons. 

Initially, at seven months after planting (ht1_may12) 12 populations [2, 3, 7, 10, 15, 16, 
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18, 23, 26, 27, 28 and 33] out of the 33 non-local populations (with reference to [35]) 

significantly outperformed the Curringa population and one [29] of four local 

populations performed significantly better. Later at 20 months after planting (ht_jun13), 

only seven non-local populations [3, 7, 10, 16, 23, 26 and 27] and one local population 

[29] performed significantly better than the Curringa population. No local and only one 

non-local population [5] performed significantly worse than the Curringa populations at 

the Meadowbank. 

 

5.4 Discussion 

5.4.1 Population differentiation and association with altitude and temperature of origin 

There was highly significant variation in field growth (as measured by plant height) 

among Tasmanian populations and the variation was evident throughout the 

assessments until the age of 3 years and in both trials. Initially, there was a family effect 

on height growth. But its disappearance in later stages suggests the initial large 

difference in height might reflect the nursery effect where seedlings were grown in 

family blocks before being randomized. Though variation in survival was not evident 

among population, there was significant variation on seven out of 10 fitness related 

traits. Early population variation observed in growth and most of the damage traits in 

the field trials provided evidence of broad-scale climate adaptation. This adaptive 

variation appeared to be in response to two independent facets of climate variation. First 

was the multi-trait response to temperature variation associated with altitude. The 

second appeared to be an adaptive response to low moisture availability as expressed in 

the response to drought.  

 

Initially (up to 19 months after planting) populations originating from lower altitude, 

warmer regions appeared to outperform the local populations at Dungrove in early 

seedling height growth. At the same time populations originating from lower altitude 

and warmer regions appeared to be more susceptible to the insect damage and herbivore. 

The change in population differences in early performance appeared to reflect a trade-

off between fast growth and herbivore susceptibility, which in the presence of 

herbivores, appears to result in the eventual loss of any association between growth and 

climate with age. Populations at warmer lower altitude sites appear to be adapted for 

fast early seedling growth (present chapter), with high resource allocation into growth 
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and structural storage tissue (e.g. lignotuber development – Chapter 4) but reduced 

allocation of resources into direct herbivore defences (e.g. stem oil glands – Chapter 4). 

Significant, genetic-based differences in seedling growth and morphology amongst 

populations from different altitudes was previously recorded in mainland E. pauciflora 

by Pryor (1956). As in our study, Pryor (1956) observed the trend of increasing tree 

height with decreasing altitude, the correlation being close to linear. Genetic-based 

adaptation of the photosynthetic physiology to altitude has also been reported for 

mainland E. pauciflora populations (Slatyer 1977a; Slatyer and Ferrar 1977a; Slatyer 

and Morrow 1977) with lower optimal temperatures for photosynthesis (Slatyer and 

Ferrar 1977a) at higher altitudes. Similarly, experiments using mainland populations of 

E. pauciflora from different altitudes (33 m to 1790 m) have shown the low altitude 

populations grow faster than high altitude populations and the growth response is more 

tolerant to high temperatures (Paton 1980). 

 

Insect damage and herbivore susceptibility of populations was highly correlated with 

altitude and the temperature at the site of origin. Populations originating from lower 

altitude and warmer regions were more susceptible to the insect damage and herbivore. 

The reason for less susceptibility to hervivore of populations at higher altitudes could be 

due to adaptation to higher pressure exerted by hervivores, such as insects, and the 

evolution of resistance towards them (direct effect). Another explanation could be as 

lower altitude populations are growing faster, they might have more young leaves, and 

younger leaves are more favoured by the insect hervivores (Lowman and Box 1983). 

This altitudinal trend could also be due to an indirect effect associated with a correlated 

response to selection on other functional traits. However, this is not consistent with at 

least the one putative defensive trait studied in the glasshouse trial (Stem oil glands), 

which was genetically uncorrelated with all other seedling traits studied (Chapter 4). A 

study of the eucalypt leaf beetle (Paropsisterna bimaculata) and introduced E. nitens in 

Tasmania (Wardlaw et al. 2011), reports that both leaf beetle populations and their 

damage was greater at high altitudes and the severity was even more within the 10 km 

distance of Poa grassland. As the E. nitens is recently introduced for plantation 

purposes and most plantations are in their first rotation, genetic-based adaptation to the 

insect pressure is not expected to be confounded with this response. The report of 

Wardlaw et al. (2011) is consistent with greater herbivore pressure in high-altitude 
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woodland sites where E. pauciflora grows. Being a native species, E. pauciflora may 

have been able to counter herbivore pressure by genetic adaptation, hence resulting in 

the higher altitude population being more resistant to insect and other herbivore damage. 

Greater insect herbivory at higher altitudes in Tasmania has also been reported in E. 

gunnii (Potts 1985). However, in native E. pauciflora forest on mainland Australia the 

opposite trend was observed (Burdon and Chilvers 1974), but unlike the E. nitens 

example, this trend may be confounded with genetic-adaptation of the E. pauciflora 

itself reducing herbivory in the high altitude population. The differences between 

studies might also reflect differences in the broad chemical and physical traits affecting 

herbivory as well as different types of herbivore, time of assessment and the way the 

damage is assessed (Andrew et al. 2012). 

 

In the glasshouse trial reported in Chapter 4, there was evidence of morphological 

adaptation of E. pauciflora populations to the climate and altitude of origin. Population 

variation in 13 out of 25 traits studied showed a significant association with altitude, 

and the best predictor for 7 traits was the mean maximum temperature of the warmest 

month. The field trials using the same populations as in the glasshouse trial also showed 

a similar trend. Around 50% of the field measurements that showed significant 

differences among populations were explained by the same climatic variable, the mean 

maximum temperature of the warmest month, and most of these also had a significant 

correlation with altitude of population origin. The adaptive nature of this altitudinal 

variation in early growth and some of the browsing damage traits is supported by 

parallel trends being detected in both mainland and Tasmanian populations (Table 5.5). 

However, at Dungrove the differences in browsing damage amongst populations were 

more related to temperature whereas at Meadowbank they were more related to the 

moisture indices of the site of origin. This may reflect differences in foliar quality 

associated with the drought damage, but could also reflect a change in browsing 

preferences associated with a stress response. For example, changes in biotic stress to 

eucalypt trees following drought damage have been previously reported (Caldeira et al. 

2002; Hanks et al. 1999). In general Meadowbank has higher mean maximum 

temperature and receive more precipitation than Dungrove, but over the past two years, 

due to recorded high temperature heat stress and the recorded low precipitation (Bureau 

of Meteorology 2013) appear to have impacted the Meadowbank site more, resulting in 
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the performance differences in two trials. While this may have been due to different 

climates being experienced at the two sites during the establishment period, localised 

site characteristics and the fact that the Dungrove site had an addition year of 

establishment prior to these events cannot be dismissed as factors explaining the 

absence of noticeable drought damage at the Dungrove site at the same time as 

Meadowbank.   

 

Adaptation to altitude is well documented in many eucalypt species (Potts and Wiltshire 

1997; Potts and Jackson 1986). Many other species also show strong altitudinal and 

localized temperature adaptation in physiological and growth traits (Grady et al. 2011; 

Oleksyn et al. 1998; Rweyongeza et al. 2007; Vitasse et al. 2009). Though in our study, 

Tasmanian populations did not provide any evidence that frost damage was related to 

climate or altitude, populations from the mainland did show decreased frost damage 

with increase in altitude of origin. A broad-scale genetic-based adaptation for increasing 

frost resistance with increasing altitude of origin has been demonstrated in several 

studies of mainland Eucalyptus pauciflora (Green 1969b; Paton 1980; Pryor 1956). 

Subsequent studies also revealed a complex pattern of altitudinal differences in frost 

resistance which may occur over short-distances, involving strong selection near the 

upper and lower tree lines (Harwood 1980; Harwood 1981). Such fine-scale adaptation 

to frost could explain the absence of a broad-scale altitudinal and climatic response 

observed for the Tasmanian populations. 

 

Significant genetic differences in drought damage among the Tasmanian populations 

appeared to reflect an adaptive response to low moisture availability. While no 

association was observed with altitude of origin, our study showed populations 

originating from sites with lower mean moisture index of the highest quarter (MIMHQ) 

and higher mean maximum temperature of the warmest month (TMXWM) were less 

susceptible to drought damage. Also the present study suggests that of these two 

climatic variables, population differences in response to the specific drought/heat stress 

event that impacted the Meadowbank trial is more related to adaptation to water stress 

than to heat stress. Nevertheless E. pauciflora is known to have the ability to withstand 

periodic drought and a combination of environmental stresses (Williams and Ladiges 

1985; Williams and Potts 1996). This was certainly the case for the damage that 
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occurred at Meadowbank which was related to a record extreme hot temperatures in 

Tasmania, combined with very dry conditions (Bureau of Meteorology 2013). Adaptive 

divergence in drought stress has been recorded in E. globulus (Costa e Silva et al. 2006; 

Dutkowski and Potts 2012) and similar to our studies, Dutkowski and Potts (2012) 

observed that Tasmanian populations originating from sites with higher water 

availability and low evaporation were more susceptible to drought stress.  

 

5.4.2 Population differentiation is not affected by variation in outcrossing rate 

Population variation assessed using open-pollinated progeny may be confounded by 

differences in inbreeding, particularly in growth traits (Potts and Wiltshire 1997; Potts 

and Jordan 1994). Inbreeding depression has been associated with reduced growth and 

survival in many Eucalyptus species (Eldridge and Griffin 1983; Potts and Wiltshire 

1997; Potts and Jordan 1994; Potts et al. 1987) and with age inbreeding depression can 

eventually result in nearly complete elimination of selfed individuals (Costa e Silva et al. 

2010; Griffin and Cotterill 1988). In the present study, analysis of the effect of mating 

system parameters (outcrossing rate and biparental inbreeding) on the performance of 

the seedling in the field trials provided evidence of significant inbreeding depression 

due to selfing on height growth at the individual tree level ranging from 18 to 33% 

(Table 5.4). A similar trend of increasing inbreeding depression in height was observed 

by Hardner and Potts (1995) in selfed E. globulus (from 17 % at 10 months to 26 % at 

43 months). The level of inbreeding depression observed for height in E. pauciflora is 

slightly higher than the levels reported from selfing other eucalypts species (Griffin and 

Cotterill 1988; Hardner and Potts 1995; Hardner and Tibbits 1998), and this could be 

related to the relatively high outcrossing rate in this species (Chapter 2) leading to the 

accumulation of more deleterious recessive genes in the large populations. 

 

At the population level, there was no trend for growth to be related to levels of 

inbreeding. Neither were there significant effects of population differences in 

outcrossing rate on survival rates in either trial. The effect of variation in biparental 

inbreeding at the population level was never significant at Dungrove, while it did 

adversely affect intermediate height growth at Meadowbank. Eucalyptus pauciflora has 

high outcrossing rate with only 10 % selfing (Gauli et al. 2014), which might be the 

reason for the minimal effect of inbreeding depression on the fitness traits at population 
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level. Overall, the results suggest that while inbreeding depression at family level is 

significant in this species, this has a minimal impact on variation between population 

which is likely more affected by additive genetic variation between populations. As the 

present study was only based on early growth and survival until the age of 3 years, the 

effect of inbreeding at the population level and on survival at the individual level may 

become more evident with age. 

 

5.4.3 Local adaptation to the experimental sites 

5.4.3.1 Translocation of mainland genotypes to the island of Tasmania 

Movement of seeds or seedlings is frequently undertaken to restore the landscape and 

this has given rise to considerable debate about the optimal seed sourcing strategy for 

restoration while conserving the existing genetic variation patterns within species 

(Broadhurst et al. 2008; Krauss et al. 2007; McKay et al. 2005). Though local 

genotypes are often considered to be best adapted (Hufford and Mazer 2003; Kramer 

and Havens 2009; O'Brien et al. 2007), in the face of climate change, several studies 

have raised concerns over the suitability of local genotypes for the habitat of the future 

(Byrne et al. 2011; O'Brien and Krauss 2010; Sgrò et al. 2011). Integration of mainland 

genotypes in the restoration of the Tasmanian midlands showed, from the initial stage, 

that the Tasmanian population clearly outperformed the mainland populations. In 

addition to height growth, survival rate was also greatly different between Tasmanian 

and mainland populations with higher survival rate for the Tasmanian populations. 

Despite insect and deer favouring fast growing the Tasmanian populations, they were 

performing far better than the mainland populations hence arguing against movement of 

germplasm from mainland to Tasmania for better restoration outcomes.  

 

5.4.3.2 Local vs non local issues within Tasmania 

Within Tasmania, at the more benign, mid-altitude site at Dungrove, there was little 

evidence of provenance choice impacting early growth or survival, despite earlier (until 

19 months) indications that populations from warmer regions were favoured. At the 

final measurements, though there were populations from warmer lower altitude region 

growing better, they were not significantly better than from the immediate site and 

where significantly poor performance was detected there was just as much likelihood of 

a ‘local’ (within 27 km) population performing poorly as a non-local population. By 
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contrast at Meadowbank, there was a clear signal that non-local populations were 

favoured over the closest local population (in terms of less drought damage and last 

height measurement). While adaptive differences in growth and fitness traits may be 

evident in the early age (Bush et al. 2013; Dutkowski and Potts 2012), sometimes it 

may also take several years until it is evident (Chambers et al. 1996; Lopez et al. 2003). 

Sudden pulses of harsh environmental conditions such as frost or drought may reshape 

the adaptation dynamics of fitness traits of the populations (Kay and Picklum 2013; 

Montalvo et al. 1997). This may result in trade-offs between traits (Petit and Hampe 

2006; Sgrò and Hoffmann 2004) as a differential response to selection. At Meadowbank, 

the occurrence of the combined stress of drought and a high temperature weather event 

(potentially coupled with the effects of a surrounding wildfire), differentially affected 

populations at the establishment phase and may change the long-term growth dynamics 

and selective outcome on the site. In addition, the changing growth dynamics at 

Dungrove due to what appears to be a trade-off between rapid growth and defence 

against herbivory, suggests that while adaptive patterns in early growth can be revealed, 

the plants have just established and the clear genetic differences in other traits such as 

herbivory and drought susceptibility may change the selective outcome with time.  

 

In conclusion, there are significant population differences in E. pauciflora for growth, 

survival and the susceptibility to biotic and abiotic stresses. While there is evidence that 

the differences observed among populations appears to reflect historical adaptation to 

altitude and climate of origin, there was no clear evidence that local genotype in the 

broad- (<27 km) and narrow (closest site) sense are better adapted than non local 

genotypes at this early establishment phase. However, the occurrence of ongoing (e.g. 

herbivory) and more-catastrophic selective events (drought), emphasized the dynamic 

nature of seedling growth and suggests that with more time it is possible that local 

populations may start performing better. Nevertheless our result clearly indicated that 

Tasmanian populations outperformed the mainland populations in this establishment 

phase, and coupled with the diversity present within Tasmanian E. pauciflora argues 

against the need for seed translocation from mainland at least in the current climate. The 

recommendation on selecting and sourcing the best Tasmanian provenance for 

restoration purpose from this early age data remains difficult due to the dynamic nature 

of this early establishment phase and different responses evident in the two trials. 
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Chapter 6. Discussion and conclusion 

 

This thesis has advanced our knowledge on the mating system, genetic diversity and 

adaptation in Eucalyptus pauciflora. The major findings of the study are overviewed 

below in terms of the original issues raised and relevance of findings to local adaptation 

and choice of seed sources for use in restoration. 

 

6.1 Minimal impact of habitat fragmentation on genetic variation in fitness traits 

in Eucalyptus pauciflora 

By investigating mating system parameters of E. pauciflora populations exhibiting 

diverse levels of forest fragmentation, it is now apparent that although forest 

fragmentation appears to reduce early seed yield, there is a little effect on the mating 

system parameters of E. pauciflora. Decreased population size due to habitat 

fragmentation is often considered to disrupt the gene flow dynamics of the population 

(Vranckx et al. 2012). Disruption in gene flow mechanism can lead to increased selfing 

and, thus, increase inbreeding depression, which can have strong fitness impacts on 

progenies (Lowe et al. 2005; Young et al. 1996). Though the impact of fragmentation 

can be deleterious, species can prevent this through the utilization of self – 

incompatibility mechanism (Husband and Schemske 1996). The minimal effect of 

fragmentation on mating system parameters we observed could be due to late acting 

post–zygotic incomplete self-incompatibility mechanisms, which are common among 

the eucalypts (Horsley and Johnson 2007; Pound et al. 2002). This may have buffered 

E. pauciflora against the expected negative consequences of forest fragmentation 

(Byrne et al. 2008; Kramer et al. 2008). Populations of E. pauciflora do vary in their 

outcrossing rate, but there is no evidence to accept the original hypothesis that forest 

fragmentation contributes to this variation. While it has been cautioned that seed 

collected from fragmented populations may exhibit increased rates of inbreeding, and 

harbour reduced genetic diversity, the present study did not support this hypothesis. In 

most cases the open-pollinated seed collected from fragmented E. pauciflora 

populations is unlikely to be more inbred or less genetically diverse than that from non-

fragmented populations. Thus while germinant yields per capsule collected may be 

reduced in this species because of fragmentation, the seed will be suitable for use in 
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local forest restoration. It is worth noting that the low seed yield of fragmented trees 

means higher cost for seed collection. 

 

6.2 Molecular markers provide insights into past migration and contemporary 

gene flow  

By exploring the genetic pattern of chloroplast and nuclear diversity in E. pauciflora 

populations, this thesis enabled a new understanding of the historical processes and 

patterns of gene flow which have shaped the E. pauciflora gene-pool on the island of 

Tasmania. In particular the molecular information has provided insights into the species 

response to past climate changes, including its distribution during glacial periods and 

migration patterns following post-glacial range shifts. The distribution of chloroplast 

haplotype richness showed a clear geographic pattern, with low-altitude centers of high 

richness suggestive of three major glacial refugia. Low haplotype richness and 

population sharing of haplotypes suggest post-glacial colonisation of the Tasmanian 

highlands, probably from lowland populations rather than in situ high-altitude source 

populations. Higher nuclear genetic diversity in putatively newly colonized areas 

compared to lowland putative refugial regions, and the converse in chloroplast DNA 

markers, suggested limited seed dispersal into newly colonised regions combined with 

high pollen flow between different source populations in newly colonised areas, since 

chloroplast are only seed transmitted while nuclear microsatellites are transmitted by 

both seed and pollen (Brondani et al. 2006; McKinnon et al. 2004a). This study has 

contributed to the increasing understanding of the effects that the Pleistocene glacial 

cycles have had on shaping the contemporary eucalypt gene pools and species 

distributions on the island of Tasmania.  

 

In addition, the molecular study revealed insights into the patterns of gene flow in E. 

pauciflora. The highly spatially structured (high FST values) genepool of E. pauciflora 

in maternally inherited, chloroplast markers compared with the low FST between 

populations for the nuclear markers argue that gene flow is mainly pollen-mediated, 

consistent with most eucalypts studied to date (Byrne 2008b). The higher levels of 

heterozygosity and lower FST values detected in mature forest maternal samples 

compared with the progeny samples, is consistent with selection against the products of 

inbreeding which are more likely associated with proximal (bi-parental) matings. This 
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hypothesis is consistent with the evidence for early-age inbreeding depression that was 

revealed by the two common garden field trials. However, variation in mating system 

parameters, particularly outcrossing rate, did not explain population variation in early 

age fitness-related traits. Rather, many of the functional traits studied exhibited much 

greater population-level inbreeding (high QST) than the nuclear markers would have 

predicted. These quantitative and molecular comparisons argue that disruptive selection 

rather than drift has shaped the patterns of genetic variation in many traits and over-

ridden the historical signals evident in the chloroplast haplotypes and more recent 

pollen-mediated gene flow. 

 

6.3 Altitude and temperature of warmest month - key drivers of population 

divergence 

Analysis of quantitative traits variation in seedling morphology in E. pauciflora 

provided strong evidence of adaptation to climatic factors of the site of origin. This 

adaptive genetic variation was associated with altitude, and particularly with the mean 

maximum temperature of the warmest month which increases with decreasing altitude. 

Apart from that expected from pollen-mediated gene-flow, there was no evidence of an 

association of geographic distance and the quantitative genetic variation among 

populations. With most of the traits association with climate variables, it is argued that 

small changes in climate, such as a 1ºC change in the maximum temperature of the 

warmest month, are likely to lead to mal-adaptation of local populations of the species. 

However, in addition to the potential for the redistribution of genetic variation amongst 

populations through pollen-mediated gene flow, there was evidence for significant 

levels of additive genetic variation residing within populations for most of these key 

functional traits which will allow a response to selection. This study provided evidence 

that adaptation of E. pauciflora to climate change may involve parallel changes in 

multiple plant traits. The analysis of intra- and inter-population genetic correlations 

argues that the parallel response patterns exhibited by multiple traits to changes in the 

same climatic gradient is controlled by different genes, rather than reflecting a 

correlated responses to selection arising from pleiotropy or linkage. This finding 

highlights the evolutionary significance of individual seedling traits, including those 

associated with resource allocation (lignotuber development), ontogenetic development 

(transition to an alternate leaf type) and biotic defence (stem oil glands). 
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Population variation observed in early-age performance traits in the field trials also 

provided evidence of broad-scale climate adaptation in the Tasmanian E. pauciflora. 

The adaptive genetic variation revealed in the field trials appeared to be in response to 

two independent facets of climate variation that occurred across the range of E. 

pauciflora. First was the multi-trait response associated with altitude which was mainly 

driven by temperature variation. Height growth and susceptibility to insect herbivores 

and browsing damage showed this trend, though the association for height decreased 

with age and was eventually erased. The genetic adaptation of drought damage was 

however associated with the low moisture availability. 

 

6.4 Delineation of local seed source  

This thesis provides several lines of evidence to define a spatial scale for an operational 

local population in E. pauciflora. Spatial structuring of genetic variation is a 

consequence of evolutionary drivers such as phylogeographic history, local adaptation 

and restricted gene flow, and therefore the key consideration for defining the local 

provenance (Krauss et al. 2013). In our study, both nuclear microsatellite (putatively 

neutral loci) analysis on maternal and progenies samples and morphological traits 

analysis (traits of adaptive significance measured at the seedling and young tree phase) 

showed that there is an above average genetic similarity of populations within the 

distance of 27 km. As the molecular comparisons of chloroplast and nuclear markers 

suggest that gene flow is predominantly pollen-mediated in E. pauciflora, the 

significant nuclear genetic similarity over these distances is most likely indicative of the 

distance over which broad-scale pollen dispersal is likely to define the local population. 

The suggestion of 27 km as an operational limit for defining a local population is 

congruent with the recommendation of the threshold local population seed collection 

zone of 30 km (radius) for Banksia menziesii for ecological restoration (Krauss et al. 

2013). In contrast, the Western Australian Forest Management Plan 2004-2014 

advocates the distance of 15 km for seed collection (Broadhurst et al. 2008), which 

would be more conservative than our recommendation for E. pauciflora, but consistent 

with the observed tree-level increase in genetic similarity amongst trees separated by 10 

km. 
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6.5 Is there direct evidence that local populations are better adapted – implications 

for choosing a seed sourcing strategy for restoration 

In the broad-sense the issue of what is local can be treated at the island-level, whereas 

the thesis compared the performance of Tasmanian E. pauciflora populations with that 

of introduced mainland populations in field trial. Over the next century, the climate 

envelopes of many eucalypt species are expected to exhibit a southward shift (Butt et al. 

2013; Hughes et al. 1996), accordingly the translocation of mainland populations onto 

the southern island of Tasmania is likely to be an assisted migration strategy argued in 

the future. While the present Thesis only studied the establishment phase of tree 

plantings up to 3 years after planting, it was clear that on average the Tasmanian 

populations outperformed the mainland populations in terms of growth and survival in 

both field trials over this period. This response would argue against the need for 

translocation of mainland seed sources to Tasmania, at least under the current prevailing 

climate conditions. However, while current results signal mal-adaptation of mainland 

populations in Tasmania, insect herbivory and deer damage was greater on the faster 

growing Tasmanian populations which could change the relative fitness of survivors in 

the future, as could an increasingly warmer/dryer climate (Mok et al. 2012). 

 

In the narrower sense, the issue of local provenance was addressed in terms of seed 

sourcing from within Tasmania and considering either the site-specific local population, 

or the set of populations within the identified 27 km operational limit of the local 

population. At the Dungrove planting site there was a little evidence of provenance 

choice impacting early growth or survival, despite early indications that populations 

from lower altitude warmer regions were favoured. At the final measurements, there 

was no population growing significantly better than the local population and where 

significantly poorer performance was detected there was just as much likelihood of 

another ‘local’ population performing poorly as a non-local population. By contrast at 

Meadowbank, there was a signal that non-local populations were favoured over the 

closest local population (in terms of less drought damage and last height measurement). 

However, only 1.5 years of data were available for Meadowbank and the possibility that 

changing growth dynamics as observed at Dungrove, due to what appears to be a trade-

off between rapid growth and defence against herbivory, may eventuate at the 

Meadowbank and change the fitness profile in the future. 



Chapter 6                         Discussion and conclusion 

129 

 

In conclusion, considering the long life cycle of the E. pauciflora and the diverse 

environments over which it grows it is obviously too early to suggest the suitability of 

local compared to non local populations. There are clearly a multitude of abiotic and 

biotic factors which impact on population fitness at different sites and at different times, 

including catastrophic events which this study shows may be site specific, including 

severe browsing and drought/heat stress. Making recommendations on seed sourcing 

strategy for restoration purpose in Tasmania from this early age data remains difficult 

due to the dynamic nature of this early establishment phase and different responses 

evident in the two trials. The differences in seedling performances in the two trials and 

the observed changing growth dynamics, thus make it difficult to either reject or accept 

the initial hypothesis that locally collected seeds sources from forest remnants might not 

always be better adapted than the seedlings raised from non-local seeds collected from 

intact native forest because of a combination of inbreeding and changing environments. 
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