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Abstract 

Environmental change and its impact on the form, function and adaptive 

responses of fish, especially in relation to maternal effects or individual genotype, 

is of major interest to biologists. Oxygen levels and temperature have profound 

effects on the physiology of fish, and early developmental stages are particularly 

susceptible to environmental challenges. In this thesis the metabolic, 

cardiorespiratory and cellular stress responses to acute or chronic changes of 

these variables in Atlantic salmon (Salmo salar) embryos and yolk-sac alevins 

were investigated. 

 

Eggs and alevins matched their metabolic demand to acute changes in oxygen 

levels without altering cardiorespiratory function unless oxygen reached critically 

low levels (5 kPa). In contrast, chronic hypoxia (10.5 kPa for 15 days), but not 

hyperoxia (28 kPa for 15 days) resulted in functional and structural modifications 

that enabled metabolic rate to return to the normoxic (21 kPa) pre-exposure level 

while maintained in hypoxia (10.5 kPa); this indicating a metabolic 

compensation. On return to acute normoxia, irrespective of the measurement 

temperature (4, 8, 12°C), metabolic rate was elevated above the pre-hypoxic 

value observed in normoxia, presumably a result of the structural and/or 

functional modifications that occured in hypoxia.  

 

In addition, differences in metabolism and responses to hypoxia were influenced 

by maternal factors such as egg size, which in turn are determined by maternal 

body size. Egg size-dependent differences in metabolic rate of embryos were 
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present and larger embryos from repeat spawning females exhibited increased 

tolerance to hypoxia, as represented by lower critical oxygen levels for hatching 

than observed in embryos from smaller eggs from maiden spawners (13 kPa vs. 

17 kPa). This result suggests an advantage in embryos from larger eggs whereby 

the embryo can obtain sufficient  oxygen due to the larger surface area of the egg 

in respect to the embryo’s metabolic rate.   

 

Genetic modification for growth (growth hormone transgenesis) or triploidy 

(three sets of paired chromosomes) increased metabolic rate above a diploid 

conspecific (both by 8%). This effect was additive in triploid transgenic alevins 

that also displayed an altered cardiorespiratory response to acute, severe hypoxia 

(5 kPa). In addition, acute hypoxia did not elicit a cellular stress response, but 

was associated with differential (reduced) expression of cellular stress proteins 

(heat shock proteins) that in one case (Hsp90) was dependent on the growth 

hormone transgenic genotype. 

 

Taken together, the above observations demonstrate that extrinsic as well as 

intrinsic factors have substantial effects on the physiology of developing fish, and 

that the overall response to extrinsic factors contains a temporal component. 

Given the associated effects are reflected in changes in metabolism, it is likely 

that the effects will significantly impact growth, survival and performance of the 

developing fish. 
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