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Abstract

ABSTRACT

Globally, Atlantic salmon aquaculture is faced with a critical challenge: How best to deliver
long-term sustainable growth, whilst optimising the opportunity for the expansion of the

industry presented by an increasing global seafood demand?

This thesis presents a novel framework of complementary decision support approaches to
enable decision-makers to better understand the factors influencing aquaculture
development, and examine alternative production (growout) technologies that more
effectively address the challenges associated with intensification and expansion. The
framework was developed through a combination of fieldwork (international data-
gathering), key stakeholder discussions, and the application of targeted qualitative and
guantitative analytical approaches; using the Tasmanian industry as a Case Study. The initial
research focused on shorter-term (tactical) decision support. A situational analysis defined
the business environment, and appraised viable expansion options (offshore, closed-
containment and extractive bio-remediation). An economic analysis of selected options then
provided a comparison of financial performance and risk. The outputs of this initial
component next informed strategic decision-making approaches; employing scenario
analysis to explore plausible strategies for the adoption of land-based recirculating
aquaculture systems; and qualitative modelling to understand the causal dynamics driving

and regulating the industry, and their impact on technology selection.

Whilst it was clear that business economic viability is paramount, the results suggested that
societal acceptance (the Social License to operate) is playing an increasingly important role in
influencing business decisions. There is no single ‘right’ technological solution; social
acceptance, in particular considerations regarding human wellbeing, trust, and animal
welfare concerns, will shape the business environment and therefore technology selection.
The research emphasised the importance of employing a balance of tactical and strategic
decision-making techniques, and of engaging with a broad range of industry stakeholders. It
also highlighted the complexity and dynamic nature of the industry and that key variances
(economic, regional, strategic, technological, and temporal) must be included in decision-

making.
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