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AbstrAct

Business is a diversified field with general areas of specialisation such as accounting, taxation, stock 
market, and other financial analysis. Artificial Neural Networks (ANNs) have been widely used in ap-
plications such as bankruptcy prediction, predicting costs, forecasting revenue, forecasting share prices 
and exchange rates, processing documents and many more. This chapter introduces an Adaptive Higher 
Order Neural Network (HONN) model and applies the adaptive model in business applications such 
as simulating and forecasting share prices. This adaptive HONN model offers significant advantages 
over traditional Standard ANN models such as much reduced network size, faster training, as well as 
much improved simulation and forecasting errors, due to their ability to better approximate complex, 
non-smooth, often discontinuous training data sets. The generalisation ability of this HONN model is 
explored and discussed.

INtrODUctION

Business is a diversified field with several gen-
eral areas of specialisation such as accounting 
or financial analysis. Artificial Neural networks 
(ANNs) provide significant benefits in business 
applications. They have been actively used for 
applications such as bankruptcy prediction, 

predicting costs, forecast revenue, processing 
documents and more (Kurbel et al, 1998; Atiya et 
al, 2001; Baesens et al, 2003). Almost any neural 
network model would fit into at least one business 
area or financial analysis. Traditional statistical 
methods have been used for business applications 
with many limitations (Azema-Barac et al, 1997; 
Blum et al, 1991; Park et al, 1993).
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Human financial experts usually use charts 
of financial data and even intuition to navigate 
through the massive amounts of financial informa-
tion available in the financial markets. Some of 
them study those companies that appear to be good 
for long-term investments. Others try to predict 
the future economy such as share prices based on 
their experiences, but with the large number of 
factors involved, this seems to be an overwhelm-
ing task. Consider this scenario: how can a human 
financial expert handle years of data for 30 fac-
tors, 500 shares, and other factors such as keep-
ing track of the current values simulataneously? 
This is why some researchers insists that massive 
systems such as the economy of a country or the 
weather are not predictable due to the effects of 
chaos. But ANNs can be used to help automate 
such tasks (Zhang et al, 2002).

ANNs can be used to process subjective in-
formation as well as statistical data and are not 
limited to particular financial principle. They 
can learn from experience (existing financial 
data set) but they do not have to follow specific 
equations or rules. They can be asked to consider 
hundreds of different factors, which is a lot more 
than what human experts can digest. They won’t 
be overwhelmed by decades of financial data, as 
long as the required computational power has been 
met. ANNs can be used together with traditional 
statistical methods and they do not conflict with 
each other (Dayhoff, 1990).

Using ANNs for financial advice means that 
you don’t have to analyse complex financial charts 
in order to find a trend (of, eg, a share). The ANN 
architecture determines which factors correlate 
to each other (each factor corresponds with an 
input to the ANN). If patterns exist in a financial 
dataset, an ANN can filter out the noise and pick 
up the overall trends. You as the ANN program 
user decide what you want the ANN to learn and 
what kind of information it needs to be given, in 
order to fulfill a financial task.

ANN programs are a new computing tool 
which simulate the structure and operation of 

the human brain. They simulate many of the 
human brain’s most powerful abilities such as 
sound and image recognition, association, and 
more importantly the ability to generalize by 
observing examples (eg, forecasting based on 
existing situation). ANNs establish their own 
model of a problem based on a training process 
(with a training algorithm), so no programming 
is required because existing traning programs are 
readily available. 

Some large financial institutions have used 
ANNs to improve performance in such areas as 
bond rating, credit scoring, target marketing and 
evaluating loan applications. These ANN systems 
are typically only a few percentage points more 
accurate than their predecessors, but because of 
the amounts of money involved, these ANNs are 
very profitable. ANNs are now used to analyze 
credit card transactions to detect likely instances 
of fraud (Kay et al, 2006). 

While conventional ANN models have been 
bringing huge profits to many financial institu-
tions, they suffer from several drawbacks. First, 
conventional ANNs can not handle discontinuities 
in the input training data set (Zhang et al, 2002). 
Next, they do not perform well on complicated 
business data with high frequency components 
and high order nonlinearity, and finally, they are 
considered as ‘black boxes’ which can not explain 
their behaviour (Blum et al, 1991; Zhang et al, 
2002 ; Burns, 1986).

To overcome these limitations some research-
ers have proposed the use of Higher Order Neural 
Networks (HONNs) (Redding et al, 1993 ; Zhang 
et al, 1999 ; Zhang et al, 2000). HONNs are able 
to provide some explanation for the simulation 
they produce and thus can be considered as ‘open 
box’ rather than ‘black box’. HONNs can simulate 
high frequency and high order nonlinear business 
data, and can handle discontinuities in the input 
traning data set (Zhang et al, 2002). Section 3 
of this chapter offers more information about 
HONNs.
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The idea of setting a few free parameters in 
the neuron activation function (or transfer func-
tion) of an ANN is relatively new. ANNs with 
such activation function seem to provide better 
fitting properties than classical architectures 
with fixed activation functions  (such as sigmoid 
function). Such activation functions are usually 
called adaptive activation functions because the 
free parameters can be adjusted (in the same 
way as connection weights) to adapt to different 
applications. In (Vecci et al, 1998), a Feedfor-
ward Neural Network (FNN) was able to adapt 
its activation function by varying the control 
points of a Catmull-Rom cubic spline. First, this 
FNN can be seen as a sub-optimal realization of 
the additive spline based model obtained by the 
regularization theory. Next, simulations confirm 
that the special learning mechanism allows one 
to use the network’s free parameters in a very 
effective way, keeping their total number at lower 
values than in networks with traditional fixed 
neuron activation functions such as the sigmoid 
activation function. Other notable properties are 
a shorter training time and a reduced hardware 
complexity. Based on regularization theory, the 
authors derived an architecture which embodies 
some regularity characteristics in its own activa-
tion function much better than the traditional FNN 
can do. Simulations on simple two-dimensional 
functions, on a more complex non-linear system 
and on a pattern recognition problem exposed the 
good generalization ability expected according to 
the theory, as well as other advantages, including 
the ability of tuning the activation function to 
determine the reduction of the number of hid-
den units.

Campolucci et al (1996) proposed an adaptive 
activation function built as a piecewise approxima-
tion with suitable cubic splines that can have arbi-
trary shape and allows them to reduce the overall 
size of the neural networks, trading connection 
complexity with activation function complexity. 
The authors developed a generalized sigmoid 
neural network with the adaptive activation func-

tion and a learning algorithm to operate on the 
identification of a non-linear dynamic system. The 
experimental result confirmed the computational 
capabilities of the proposed approach and the at-
tainable network size reductions. 

In (Chen et al, 1996), real variables a (gain) 
and b (slope) in the generalised sigmoid activation 
function were adjusted during learning process. A 
comparison with classical FNNs to model static 
and dynamical systems was reported, showing 
that an adaptive sigmoid (ie, a sigmoid with free 
parameters) leads to an improved data model-
ling. Based on the steepest descent method, an 
auto-tuning algorithm was derived to enable the 
proposed FNN to automatically adjust free pa-
rameters as well as connection weights between 
neurons. Due to the ability of auto-tuning, the 
flexibility and non-linearity of the FNN was 
increased significantly. Furthermore, the novel 
feature prevented the non-linear neurons from 
saturation, and therefore, the scaling procedure, 
which is usually unavoidable for traditional 
neuron-fixed FNNs, became unnecessary. Simu-
lations with one and two dimensional functions 
approximation indicated that the proposed FNN 
with adaptive sigmoid activation function gave 
better agreement than the traditional fixed neuron 
FNN, even though fewer processing nodes were 
used. Moreover, the convergence properties were 
superior.

There have been limited studies with emphasis 
on setting free parameters in the neuron activa-
tion function before Chen and Chang (1996). To 
increase the flexibility and learning ability of 
neural networks, Kawato’s group (Kawato et al, 
1987) determined the near-optimal activation 
functions empirically. Arai et al (1991) proposed 
an auto-tuning method for adjusting the only 
free parameter in their activation function and 
confirmed it to be useful for image compres-
sion. Next, based on using the steepest descent 
method, Yamada & Yabuta (1992a,b) proposed an 
auto-tuning method for determining an optimal 
nonlinear activation function. Still, only a single 
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parameter that governs the shape of the nonlinear 
function was tuned, and their single parameter 
tuning method may restrict the structure of the 
possible optimum shape of the nonlinear activation 
function. Finally, Hu and Shao (1992) constructed 
a learning algorithm based on introducing a gen-
eralized S-shape activation function.

This chapter is organized as follows. Section 
2 is a breif introduction to ANN architecture 
and its learning process (this section can be 
skipped by users who have some basic knowledge 
about ANN). Section 3 is a brief introduction to 
HONNs. Section 4 presents several Adaptive 
HONN models. Section 5 gives several examples 
to demonstrate how Adaptive HONN models 
can be used in business, and finally, Section 6 
concludes this chapter.

ANN strUctUrE AND LEArNING 
PrOcEss (Dayhoff, 1990; Haykin, 
1994; Picton, 2000)

One of the most intriguing things about humans is 
how we use our brains to think, analyse, and make 
predictions. Our brain is composed of hundreds 
of billions of neurons which are massively con-
nected with each other. Recently some biologists 
have discovered that it is the way the neurons are 
connected which gives us our intelligence, rather 
than what are in the neurons themselves. ANNs 
simulate the structure and processing abilities of 
the human brain’s neurons and connections.

An ANN works by creating connections 
between different processing elements (artificial 
neurons), each analogous to a single neuron in a 
biological brain. These neurons may be physically 
constructed or simulated by a computer program. 
Each neuron takes many input signals, then, based 
on an internal weighting mechanism, produces a 
single output signal that’s typically sent as input 
to another neuron. 

The neurons are interconnected and organized 
into different layers. The input layer receives the 

input, the output layer produces the final output. 
Usually one or more hidden layers are set between 
the two.

An ANN is taught about a specific financial 
problem, such as predicting a share’s price, using 
a technique called training. Training an ANN is 
largely like teaching small children to remember 
and then recognize the letters of the English alpha-
bet. You show a child the letter “A” and tell him 
what letter he’s looking at. You do this a couple 
of times, and then ask him if he can recognise 
it, and if he can, you go on to the next letter. If 
he doesn’t remember it then you tell him again 
that he is looking at an “A”. Next, you show him 
a “B” and repeat the process. You would do this 
for all the letters of the alphabet, then start over. 
Eventually he will learn to recognize all of the 
letters of the English alphabet correctly. Later 
we will see that the well-known backpropagation 
traning algorithm (supervised training) is based 
on this mechanism.

An ANN is fed with some financial data and 
it guesses what the result should be. At first the 
guesses would be garbage. When the trained ANN 
does not produce a correct guess, it is corrected. 
The next time it sees that data, it will guess more 
accurately. The network is shown lots of data 
(thousands of training pairs, sometimes), over and 
over until is learns all the data and results. Like 
a person, a trained ANN can generalize, which 
means it makes a reasonable guess when the 
given data have not been seen before. You decide 
what information to provide and the ANN finds 
(after learning) the patterns, trends, and hidden 
relationships.

The learning process involves updating the 
connections (usually called weights) between 
the neurons. The connections allow the neurons 
to communicate with each other and produce 
forecasts. When the ANN makes a wrong guess, 
an adjustment is made to some weights, thus it 
is able to learn. 

ANN learning process typically begins with 
randomizing connection weights between the 
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neurons. Just like biological brains, ANNs can 
not do anything without learning from existing 
knowledge. Typically, there are two major methods 
for training an ANN, depending on the problem 
it has to solve. 

A self-organizing ANN is exposed to large 
amounts of data and tends to discover patterns 
and relationships in that large data set (data min-
ing). Researchers often use this type of training 
to analyze experimental data (such as economic 
data).

A back-propagation supervised ANN, con-
versely, is exposed to input-output training pairs 
so that a specific relationship could be learned. 
During the training period, the target values in 
the training pairs are used to evaluate whether 
the ANN’s output is correct. If it’s correct, the 
neural weightings that produced that output are 
reinforced; if the output is incorrect, those respon-
sible weightings are diminished. This method has 
been extensively used by many institutions for 
specific problem-solving applications. 

Implemented on a single computer, an ANN is 
usually slower than a more traditional algorithm 
(especially when the training set is large). The 
ANN’s parallel nature, however, allows it to be 
built using multiple processors, giving it a great 
speed advantage at very little development cost. 
The parallel architecture also allows ANNs to pro-
cess very large amounts of data very efficiently. 

There are a few steps involved in designing a 
financial neural network. First of all, you need to 
decide what result you want the ANN to produce 
for you (ie, the outputs) and what information the 
ANN will use to arrive at the result (ie., inputs). 
As an example, if you want to create an ANN 
to predict the price of the Dow Jones Industrial 
Average (DOW) on a month to month average 
basis, one month in advance, then the inputs to 
the ANN would include the Consumer Price Index 
(CPI), the price of crude oil, the inflation rate, the 
prime interest rate, and others. Once these factors 
have been determined you then know how many 
input neurons should be set for the ANN. In this 

example, the number of output neurons would be 
one because you only want to predict the price 
for next month. Theorectically an ANN with only 
one hidden layer is able to model any practical 
problem. The number of hidden layer neurons can 
not be determined based on any universal rules 
but generally speaking this number should be 
less than N/d, where N is the number of training 
data sets and d is the number of input neurons 
(Barron, 1994).

It’s usually good to give the ANN lots of in-
formation. If you are unsure if a factor is related 
to the output,  the neural network will determine 
if the factor is important and will learn to ignore 
anything irrelevant. Sometimes a possibly irrel-
evant piece of information can allow the ANN 
to make distinctions which we are not aware of 
(which is the essence of data mining). If there’s no 
correlation, the ANN will just ignore the factor.

HONNs

HONNs (Higher Order Neural Networks) (Lee 
et al, 1986) are networks in which the net input 
to a computational neuron is a weighted sum of 
products of its inputs. Such neuron is called a 
Higher-order Processing Unit (HPU) (Lippman, 
1989). It was known that HONN’s can imple-
ment invariant pattern recognition (Psaltis et al, 
1988 ; Reid et al, 1989 ; Wood et al, 1996). Giles 
in (Giles et al, 1987) showed that HONN’s have 
impressive computational, storage and learning 
capabilities. In (Redding et al, 1993), HONN’s 
were proved to be at least as powerful as any other 
FNN architecture when the orders of the networks 
are the same. Kosmatopoulos et al (1995) studied 
the approximation and learning properties of 
one class of recurrent HONNs and applied these 
architectures to the identification of dynamical 
systems. Thimm et al (1997) proposed a suitable 
initialization method for HONN’s and compared 
this method to weight initialization techniques 
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for FNNs. A large number of experiments were 
performed which leaded to the proposal of a suit-
able initialization approach for HONNs.

Giles et al (1987) showed that HONN’s have 
impressive computational, storage and learning 
capabilities. The authors believed that the order 
or structure of a HONN could be tailored to the 
order or structure of a particular problem, and 
thus a HONN designed for a particular class of 
problems becomes specialized and efficient in 
solving these problems. Furthermore, a priori 
knowledge could be encoded in a HONN.

In Redding et al (1993), HONN’s were proved 
to be at least as powerful as any other FNN 
architecture when the order of the networks are 
the same. A detailed theoretical development of 
a constructive, polynomial-time algorithm that 
would determine an exact HONN realization with 
minimal order for an arbitrary binary or bipolar 
mapping problem was created to deal with the 
two-or-more clumps problem, demonstrating that 
the algorithm performed well when compared 
with the Tiling and Upstart algorithms. 

Kosmatopoulos et al (1995) studied the ap-
proximation and learning properties of one class of 
recurrent HONN’s and applied these architectures 
to the identification of dynamical systems. In 
recurrent HONN’s the dynamic components are 
distributed throughout the network in the form 
of dynamic neurons. It was shown that if enough 
higher order connections were allowed, then this 
network was capable of approximating arbitrary 
dynamical systems. Identification schemes based 
on higher order network architectures were de-
signed and analyzed. 

Thimm et al (1997) proposed a suitable ini-
tialization method for HONN’s and compared 
this method to weight initialization techniques 
for FNN’s. As proper initialization is one of the 
most important prerequisites for fast convergence 
of FNN’s, the authors aimed at determining 
the optimal variance (or range) for the initial 
weights and biases, the principal parameters of 
random initialization methods. A large number 

of experiments were performed which led to the 
proposal of a suitable initialization approach for 
HONN’s. The conclusions were justified by suf-
ficiently small confidence intervals of the mean 
convergence times.

ADAPtIVE HONN MODELs 

Adaptive HONNs are HONNs with adaptive 
activation functions. The network structure of an 
Adaptive HONN is the same as that of a multi-layer 
FNN. That is, it consists of an input layer with 
some input units, an output layer with some output 
units, and at least one hidden layer consisting of 
intermediate processing units. Usually there is 
no activation function for neurons in the input 
layer and the output neurons are summing units 
(linear activation), and the activation function in 
the hidden units is an adaptive one.

In (Zhang et al, 2002) a one-dimensional 
Adaptive HONN was defined as follows.

Suppose that:

 i = The ith neuron in layer-k
 k = The kth layer of the neural network
 h= The hth  term in the NAF (Neural network 

Activation Function)
 s = The maximum number of terms in the 

NAF
 x = First neural network input
 y = Second neural network input
 neti,k = The input or internal state of the ith 

neuron in the kth layer
 wi,j,k = The weight that connects the jth 

neuron in layer k – 1 with the ith neuron in 
layer k

 oi,k = The value of the output from the ith 
neuron in layer - k

 
The one-dimension adaptive HONN activation 

function is defined as:
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The one-dimensional Adaptive HONN ac-
tivation function then becomes Equation (3), 
where a1i,k,b1i,k,c1i,k,a2i,k,b2i,k,a3i,k,a4i,k,b4i,k are 
free parameters which can be adjusted (as well 
as weights) during training.

In this chapter, we will only discuss the follow-
ing special case of the above adaptive activation 
function: a1i,k = b1i,k = 0, a4i,k = b4i,k = 0.

So the adaptive activation function we are 
interested in is Equation (4).

The learning algorithm for Adaptive HONN 
with activation function (4) can be found in the 
Appendix section.

ADAPtIVE HONN MODEL
APPLIcAtIONs IN bUsINEss

In this section, the Adaptive HONN model as 
defined in Section 4 has been used in several 

finanical applications. The results are given and 
discussed.

simulating and Forecasting total 
taxation revenues of Australia

The Adaptive HONN model  has been used to 
simulate and forecast the Total Taxation Revenues 
of Australia as shown in Figure 5.1. The financial 
data were downloaded from the Australian Taxa-
tion Office (ATO) web site. For this experiment 
monthly data between Jan 1994 and Dec 1999 
were used. The detailed comparison between the 
adaptive HONN and traditional standard ANN 
for this example is illustrated in Table 5.1.

After the Adaptive HONN (with only 4 hidden 
units) has been well trained over the training data 
pairs, it was used to forecast the taxation reve-
nues for each month of the year 2000. Then the 
forecasted revenues were compared with the real 
revenues for the period and the overall RMS error 
reached 2.55%. To demonstrate the advatages of 
the Adaptive HONN, the above-trained Standard 
ANN (with 18 hidden units) was also used for the 
same forecasting task which resulted in an overall 
RMS error of 5.63%.

Next, some cross-validation approach was 
used to improve the performance of the Adaptive 
HONN. Cross-validation is the statistical practice 
of dividing a sample of data into subsets so that 
the experiment is initially performed on a single 

 

( )

( ), , , ,

, ,

4

, , , , ,
1

1 2 ( ) 42
, , , , , , ,3 ( )

( )

11 sin 1 ( ) 2 3 4 ( )
1

i k i k i k i k

i k i k

i k i k i k h i k
h

c b net b
i k i k i k i k i k i k i kb net

net f net

a b net a e a a net
e

=

- ⋅
- ⋅

Ψ =

= ⋅ ⋅ + ⋅ + ⋅ + ⋅
+

∑

Equation (3).

 ( ) , ,

, ,

2
2 ( )2

, , , , , , , 3 ( )
1

1( ) 2 3
1

i k i k

i k i k

b net
i k i k i k h i k i k i k b net

h
net f net a e a

e
- ⋅

- ⋅
=

Ψ = = ⋅ + ⋅
+

∑

Equation (4).



  ���

Adaptive Higher Order Neural Network Models and Their Applications in Business

subset, while the other subset(s) are retained for 
subsequent use in confirming and validating the 
initial analysis. The initial subset of data is usually 
called the training set, and the other subset(s) are 
called validation or testing sets. Cross-validation is 
one of several approaches for estimating how well 
the ANN you’ve just trained from some training 
data is going to perform on future as-yet-unseen 
data. Cross-validation can be used to estimate the 
generalization error of a given ANN model. It can 
also be used for model selection by choosing one 
of several models that has the smallest estimated 
generalization error. 

For this example, the traning data set was di-
vided into a traning set made 70% of the original 
training set and a validation set made of 30% of 
the original training set. The training (training 
time and number of epochs) was optimized based 
on evaluation over the validation set. Then the 
well-trained Adaptive HONN was used to fore-
cast the taxation revenues for each month of the 
year 2000, and the forecasted taxation revenues 
were compared with the real prices for the period. 
The overall RMS error reached 2.05%. The same 
mechanism was applied to using a Standard ANN, 
which resulted in an RMS error of 4.77%.
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Neural Network No. HL HL Nodes Epoch rMs Error
Adaptive HONN � � �,000 0.0�����
Standard ANN � � ��,000 0.������
Standard ANN � �0 ��,000 0.������
Standard ANN � �� ��,000 0.0�����
Standard ANN � �� ��,000 0.0�����

Figure 5.1. Total taxation revenues of Australia ($ million) (Jan 1994 To Dec 1999)

Table 5.1. Adaptive HONN with NAF and standard ANN to simulate taxation revenues 

(HL: Hidden Layer. RMS: Root-Mean-Square)
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simulating and Forecasting reserve 
bank Of Australia Assets

The Adaptive HONN model  has also been used 
to simulate and forecast the Reserve Bank Of 
Australia Assets as shown in Figure 5.2. The 
financial data were obtained from the Reserve 
Bank Of Australia. For this experiment monthly 
data between Jan 1980 and Dec 2000 were used. 
The detailed comparison between the adaptive 
HONN and traditional standard ANN for this 
example is illustrated in Table 5.2.

After the Adaptive HONN (with only 3 hidden 
units) has been well trained over the training data 
pairs, it was used to forecast the Reserve Bank Of 
Australia Assets for each month of the year 2001. 
Then the forecasted assets were compared with 
the real assets for the period and the overall RMS 
error reached 1.96%. To demonstrate the adva-
tages of the Adaptive HONN, the above-trained 
Standard ANN (with 22 hidden units) was also 
used for the same forecasting task which resulted 
in an overall RMS error of 5.33%.

Again, some cross-validation approach was 
used to improve the performance of the Adaptive 
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Figure 5.2. Reserve Bank Of Australia Assets ($ million) (Jan 1980 To Dec 2000)

Neural Network No. HL HL Nodes Epoch rMs Error
Adaptive HONN � � �,000 0.0�����
Standard ANN � � ��,000 0.������
Standard ANN � � ��,000 0.������
Standard ANN � �� ��,000 0.0�����
Standard ANN � �� ��,000 0.0�����

Table 5.2. Adaptive HONN with NAF and standard ANN to simulate Reserve Bank Of Australia Assets 
($ million)

(HL: Hidden Layer. RMS: Root-Mean-Square)
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HONN. For this time, the traning data set was 
divided into a traning set made 75% of the original 
training set and a validation set made of 25% of 
the original training set. The training (training 
time and number of epochs) was optimized based 
on evaluation over the validation set. Then the 
well-trained Adaptive HONN was used to predict 
the assets for each month of the year 2001, and 
the forecasted assets were compared with the 
real assets for the period. The overall RMS error 
reached 1.80%. The same mechanism was applied 
to using a Standard ANN, which resulted in an 
RMS error of 5.02%.

simulating and Forecasting Fuel 
Economy

In the next expriment a dataset containing infor-
mation of different cars built in the US, Europe, 
and Japan was trained using the Adaptive HONN 
to determine car fuel economy (MPG - Miles Per 
Gallon) for each vehicle. There were a total of 392 
samples in this data set with 9 input variables and 
1 output. The dataset was from UCI Machine 
Learning Repository (2007). The output was the 
fuel economy in MPG, and the input variables 
were:

• Number of cylinders
• Displacement
• Horsepower
• Weight
• Acceleration
• Model year
• Made in US? (0,1)
• Made in Europe? (0,1)
• Made in Japan? (0,1)

To compare the performance of Adaptive 
HONN and Standard ANN the dataset was divided 
into a set containing 353 samples for training, 
and a set containing 39 samples for forecasting 
(or generalization). This time, a cross-validation 
mechanism was adopted directly which split the 

training set into 2 sections to train both an Adaptive 
HONN and a Standard ANN. After both neural 
networks were well-trained, the forecasting RMS 
error (over the 39 samples) from the Adaptive 
HONN reached 6.03%, while the forecasting er-
ror from the Standard ANN (over the 39 samples) 
reached 13.55%.

cONcLUsION

In this chapter an Adaptive HONN model was 
introduced and applied in business applications 
such as simulating and forecasting government 
taxation revenues. Such models offer significant 
advantages over traditional Standard ANN models 
such as much reduced network size, faster train-
ing, as well as much improved simulation and 
forecasting errors, due to their ability to better 
approximate complex, non-smooth, often discon-
tinuous training data sets. Compared with some 
existing approaches on applying ANN models 
in business applications, although there are more 
free parameters in the Adaptive HONN model, 
training speed is increased due to a significant 
decrease of network size. What is more, simula-
tion and forecasting accuracy is greatly improved, 
which has to be one of the main concerns in the 
business world.

The method described in this chapter relies on 
using cross-validation to improve generalisation 
ability of the Adaptive HONN model. As part of 
the future research, some current cross-valida-
tion approaches would be improved so that the 
forecasting errors could be reduced further down 
to a more satisfactory level. More factors which 
can help improve the generalisation ability would 
be considered.
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APPENDIX

We use the following notations:

,

, ,

( )          the input or internal state of the t h neuron  in 
                   the th layer

            the weight that connects the th neuron in 

                   layer 1 and the th

i k

i j k

I u i
k

w j
k i-

,

 neuron in layer 
( )         the value of output from the t h neuron in 

                   layer 
i k

k
O u i

k

,

1, 1, 2, 2     
                   adjustable variables in activation function

              the threshold value of the t h neuron in the t h layer
( )           the th desired output value

i k

j

A B A B

i k
d u j

               learning  rate
                total number of output layer neurons

                  total number of network layers
m
l
r  the iteration number
η  momentum

First of all, the input-output relation of the ith neuron in the kth layer can be described by:

, , , , 1 ,( ) ( )i k i j k j k i k
j

I u w O u- = - ∑         (A.1)

where j is the number of neurons in layer k-1, and:

( ) , ,

, ,

1 ( ) ,
, , , 2 ( )

2
( ) ( ) 1

1
i k i k

i k i k

B I u i k
i k i k i k B I u

A
O u I u A e

e
- ⋅

- ⋅= Ψ = ⋅ +
+      (A.2)

To train our neural network an energy function:

( )
2

,
1

1 ( ) ( )
2

m

j j l
j

E d u O u
=

= -∑         (A.3)

is adopted, which is the sum of the squared errors between the actual network output and the desired 
output for all input patterns. In (A.3), m is the total number of output layer neurons, l is the total num-
ber of constructed network layers (here l = 3). The aim of learning is undoubtedly to minimize the 
energy function by adjusting the weights associated with various interconnections, and the variables in 
the activation function. This can be fulfilled by using a variation of the steepest descent gradient rule 
(Rumelhart et al, 1986) expressed as follows:
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To derive the gradient information of E with respect to each adjustable parameter in equations (A.4)-
(A.9), we define:
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, ( ) i k

i k

E
I u
∂

=
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,
, ( ) i k

i k

E
O u
∂
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∂           (A.11)

Now, from equations (A.2), (A.3), (A.10) and (A.11), we have the partial derivatives of E with respect 
to adjustable parameters as follows:
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And for (A.10) and (A.11) the following equations can be computed:
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while:
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and:

, 1 , , 1

,

,

,         if  1 ;

,                    if  .

j k j i k
j

i k

i l i

w k l

O d k l

+ + ≤ <= 
 - =

∑

       (A.20)

All the training examples are presented cyclically until all parameters are stabilized, i.e., until the 
energy function E for the entire training set is acceptably low and the network converges.
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