
���

Chapter XIV
Adaptive Higher Order Neural

Network Models and Their
Applications in Business

Shuxiang Xu
University of Tasmania, Australia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Business is a diversified field with general areas of specialisation such as accounting, taxation, stock
market, and other financial analysis. Artificial Neural Networks (ANNs) have been widely used in ap-
plications such as bankruptcy prediction, predicting costs, forecasting revenue, forecasting share prices
and exchange rates, processing documents and many more. This chapter introduces an Adaptive Higher
Order Neural Network (HONN) model and applies the adaptive model in business applications such
as simulating and forecasting share prices. This adaptive HONN model offers significant advantages
over traditional Standard ANN models such as much reduced network size, faster training, as well as
much improved simulation and forecasting errors, due to their ability to better approximate complex,
non-smooth, often discontinuous training data sets. The generalisation ability of this HONN model is
explored and discussed.

INtrODUctION

Business is a diversified field with several gen-
eral areas of specialisation such as accounting
or financial analysis. Artificial Neural networks
(ANNs) provide significant benefits in business
applications. They have been actively used for
applications such as bankruptcy prediction,

predicting costs, forecast revenue, processing
documents and more (Kurbel et al, 1998; Atiya et
al, 2001; Baesens et al, 2003). Almost any neural
network model would fit into at least one business
area or financial analysis. Traditional statistical
methods have been used for business applications
with many limitations (Azema-Barac et al, 1997;
Blum et al, 1991; Park et al, 1993).

 ���

Adaptive Higher Order Neural Network Models and Their Applications in Business

Human financial experts usually use charts
of financial data and even intuition to navigate
through the massive amounts of financial informa-
tion available in the financial markets. Some of
them study those companies that appear to be good
for long-term investments. Others try to predict
the future economy such as share prices based on
their experiences, but with the large number of
factors involved, this seems to be an overwhelm-
ing task. Consider this scenario: how can a human
financial expert handle years of data for 30 fac-
tors, 500 shares, and other factors such as keep-
ing track of the current values simulataneously?
This is why some researchers insists that massive
systems such as the economy of a country or the
weather are not predictable due to the effects of
chaos. But ANNs can be used to help automate
such tasks (Zhang et al, 2002).

ANNs can be used to process subjective in-
formation as well as statistical data and are not
limited to particular financial principle. They
can learn from experience (existing financial
data set) but they do not have to follow specific
equations or rules. They can be asked to consider
hundreds of different factors, which is a lot more
than what human experts can digest. They won’t
be overwhelmed by decades of financial data, as
long as the required computational power has been
met. ANNs can be used together with traditional
statistical methods and they do not conflict with
each other (Dayhoff, 1990).

Using ANNs for financial advice means that
you don’t have to analyse complex financial charts
in order to find a trend (of, eg, a share). The ANN
architecture determines which factors correlate
to each other (each factor corresponds with an
input to the ANN). If patterns exist in a financial
dataset, an ANN can filter out the noise and pick
up the overall trends. You as the ANN program
user decide what you want the ANN to learn and
what kind of information it needs to be given, in
order to fulfill a financial task.

ANN programs are a new computing tool
which simulate the structure and operation of

the human brain. They simulate many of the
human brain’s most powerful abilities such as
sound and image recognition, association, and
more importantly the ability to generalize by
observing examples (eg, forecasting based on
existing situation). ANNs establish their own
model of a problem based on a training process
(with a training algorithm), so no programming
is required because existing traning programs are
readily available.

Some large financial institutions have used
ANNs to improve performance in such areas as
bond rating, credit scoring, target marketing and
evaluating loan applications. These ANN systems
are typically only a few percentage points more
accurate than their predecessors, but because of
the amounts of money involved, these ANNs are
very profitable. ANNs are now used to analyze
credit card transactions to detect likely instances
of fraud (Kay et al, 2006).

While conventional ANN models have been
bringing huge profits to many financial institu-
tions, they suffer from several drawbacks. First,
conventional ANNs can not handle discontinuities
in the input training data set (Zhang et al, 2002).
Next, they do not perform well on complicated
business data with high frequency components
and high order nonlinearity, and finally, they are
considered as ‘black boxes’ which can not explain
their behaviour (Blum et al, 1991; Zhang et al,
2002 ; Burns, 1986).

To overcome these limitations some research-
ers have proposed the use of Higher Order Neural
Networks (HONNs) (Redding et al, 1993 ; Zhang
et al, 1999 ; Zhang et al, 2000). HONNs are able
to provide some explanation for the simulation
they produce and thus can be considered as ‘open
box’ rather than ‘black box’. HONNs can simulate
high frequency and high order nonlinear business
data, and can handle discontinuities in the input
traning data set (Zhang et al, 2002). Section 3
of this chapter offers more information about
HONNs.

���

Adaptive Higher Order Neural Network Models and Their Applications in Business

The idea of setting a few free parameters in
the neuron activation function (or transfer func-
tion) of an ANN is relatively new. ANNs with
such activation function seem to provide better
fitting properties than classical architectures
with fixed activation functions (such as sigmoid
function). Such activation functions are usually
called adaptive activation functions because the
free parameters can be adjusted (in the same
way as connection weights) to adapt to different
applications. In (Vecci et al, 1998), a Feedfor-
ward Neural Network (FNN) was able to adapt
its activation function by varying the control
points of a Catmull-Rom cubic spline. First, this
FNN can be seen as a sub-optimal realization of
the additive spline based model obtained by the
regularization theory. Next, simulations confirm
that the special learning mechanism allows one
to use the network’s free parameters in a very
effective way, keeping their total number at lower
values than in networks with traditional fixed
neuron activation functions such as the sigmoid
activation function. Other notable properties are
a shorter training time and a reduced hardware
complexity. Based on regularization theory, the
authors derived an architecture which embodies
some regularity characteristics in its own activa-
tion function much better than the traditional FNN
can do. Simulations on simple two-dimensional
functions, on a more complex non-linear system
and on a pattern recognition problem exposed the
good generalization ability expected according to
the theory, as well as other advantages, including
the ability of tuning the activation function to
determine the reduction of the number of hid-
den units.

Campolucci et al (1996) proposed an adaptive
activation function built as a piecewise approxima-
tion with suitable cubic splines that can have arbi-
trary shape and allows them to reduce the overall
size of the neural networks, trading connection
complexity with activation function complexity.
The authors developed a generalized sigmoid
neural network with the adaptive activation func-

tion and a learning algorithm to operate on the
identification of a non-linear dynamic system. The
experimental result confirmed the computational
capabilities of the proposed approach and the at-
tainable network size reductions.

In (Chen et al, 1996), real variables a (gain)
and b (slope) in the generalised sigmoid activation
function were adjusted during learning process. A
comparison with classical FNNs to model static
and dynamical systems was reported, showing
that an adaptive sigmoid (ie, a sigmoid with free
parameters) leads to an improved data model-
ling. Based on the steepest descent method, an
auto-tuning algorithm was derived to enable the
proposed FNN to automatically adjust free pa-
rameters as well as connection weights between
neurons. Due to the ability of auto-tuning, the
flexibility and non-linearity of the FNN was
increased significantly. Furthermore, the novel
feature prevented the non-linear neurons from
saturation, and therefore, the scaling procedure,
which is usually unavoidable for traditional
neuron-fixed FNNs, became unnecessary. Simu-
lations with one and two dimensional functions
approximation indicated that the proposed FNN
with adaptive sigmoid activation function gave
better agreement than the traditional fixed neuron
FNN, even though fewer processing nodes were
used. Moreover, the convergence properties were
superior.

There have been limited studies with emphasis
on setting free parameters in the neuron activa-
tion function before Chen and Chang (1996). To
increase the flexibility and learning ability of
neural networks, Kawato’s group (Kawato et al,
1987) determined the near-optimal activation
functions empirically. Arai et al (1991) proposed
an auto-tuning method for adjusting the only
free parameter in their activation function and
confirmed it to be useful for image compres-
sion. Next, based on using the steepest descent
method, Yamada & Yabuta (1992a,b) proposed an
auto-tuning method for determining an optimal
nonlinear activation function. Still, only a single

 ���

Adaptive Higher Order Neural Network Models and Their Applications in Business

parameter that governs the shape of the nonlinear
function was tuned, and their single parameter
tuning method may restrict the structure of the
possible optimum shape of the nonlinear activation
function. Finally, Hu and Shao (1992) constructed
a learning algorithm based on introducing a gen-
eralized S-shape activation function.

This chapter is organized as follows. Section
2 is a breif introduction to ANN architecture
and its learning process (this section can be
skipped by users who have some basic knowledge
about ANN). Section 3 is a brief introduction to
HONNs. Section 4 presents several Adaptive
HONN models. Section 5 gives several examples
to demonstrate how Adaptive HONN models
can be used in business, and finally, Section 6
concludes this chapter.

ANN strUctUrE AND LEArNING
PrOcEss (Dayhoff, 1990; Haykin,
1994; Picton, 2000)

One of the most intriguing things about humans is
how we use our brains to think, analyse, and make
predictions. Our brain is composed of hundreds
of billions of neurons which are massively con-
nected with each other. Recently some biologists
have discovered that it is the way the neurons are
connected which gives us our intelligence, rather
than what are in the neurons themselves. ANNs
simulate the structure and processing abilities of
the human brain’s neurons and connections.

An ANN works by creating connections
between different processing elements (artificial
neurons), each analogous to a single neuron in a
biological brain. These neurons may be physically
constructed or simulated by a computer program.
Each neuron takes many input signals, then, based
on an internal weighting mechanism, produces a
single output signal that’s typically sent as input
to another neuron.

The neurons are interconnected and organized
into different layers. The input layer receives the

input, the output layer produces the final output.
Usually one or more hidden layers are set between
the two.

An ANN is taught about a specific financial
problem, such as predicting a share’s price, using
a technique called training. Training an ANN is
largely like teaching small children to remember
and then recognize the letters of the English alpha-
bet. You show a child the letter “A” and tell him
what letter he’s looking at. You do this a couple
of times, and then ask him if he can recognise
it, and if he can, you go on to the next letter. If
he doesn’t remember it then you tell him again
that he is looking at an “A”. Next, you show him
a “B” and repeat the process. You would do this
for all the letters of the alphabet, then start over.
Eventually he will learn to recognize all of the
letters of the English alphabet correctly. Later
we will see that the well-known backpropagation
traning algorithm (supervised training) is based
on this mechanism.

An ANN is fed with some financial data and
it guesses what the result should be. At first the
guesses would be garbage. When the trained ANN
does not produce a correct guess, it is corrected.
The next time it sees that data, it will guess more
accurately. The network is shown lots of data
(thousands of training pairs, sometimes), over and
over until is learns all the data and results. Like
a person, a trained ANN can generalize, which
means it makes a reasonable guess when the
given data have not been seen before. You decide
what information to provide and the ANN finds
(after learning) the patterns, trends, and hidden
relationships.

The learning process involves updating the
connections (usually called weights) between
the neurons. The connections allow the neurons
to communicate with each other and produce
forecasts. When the ANN makes a wrong guess,
an adjustment is made to some weights, thus it
is able to learn.

ANN learning process typically begins with
randomizing connection weights between the

���

Adaptive Higher Order Neural Network Models and Their Applications in Business

neurons. Just like biological brains, ANNs can
not do anything without learning from existing
knowledge. Typically, there are two major methods
for training an ANN, depending on the problem
it has to solve.

A self-organizing ANN is exposed to large
amounts of data and tends to discover patterns
and relationships in that large data set (data min-
ing). Researchers often use this type of training
to analyze experimental data (such as economic
data).

A back-propagation supervised ANN, con-
versely, is exposed to input-output training pairs
so that a specific relationship could be learned.
During the training period, the target values in
the training pairs are used to evaluate whether
the ANN’s output is correct. If it’s correct, the
neural weightings that produced that output are
reinforced; if the output is incorrect, those respon-
sible weightings are diminished. This method has
been extensively used by many institutions for
specific problem-solving applications.

Implemented on a single computer, an ANN is
usually slower than a more traditional algorithm
(especially when the training set is large). The
ANN’s parallel nature, however, allows it to be
built using multiple processors, giving it a great
speed advantage at very little development cost.
The parallel architecture also allows ANNs to pro-
cess very large amounts of data very efficiently.

There are a few steps involved in designing a
financial neural network. First of all, you need to
decide what result you want the ANN to produce
for you (ie, the outputs) and what information the
ANN will use to arrive at the result (ie., inputs).
As an example, if you want to create an ANN
to predict the price of the Dow Jones Industrial
Average (DOW) on a month to month average
basis, one month in advance, then the inputs to
the ANN would include the Consumer Price Index
(CPI), the price of crude oil, the inflation rate, the
prime interest rate, and others. Once these factors
have been determined you then know how many
input neurons should be set for the ANN. In this

example, the number of output neurons would be
one because you only want to predict the price
for next month. Theorectically an ANN with only
one hidden layer is able to model any practical
problem. The number of hidden layer neurons can
not be determined based on any universal rules
but generally speaking this number should be
less than N/d, where N is the number of training
data sets and d is the number of input neurons
(Barron, 1994).

It’s usually good to give the ANN lots of in-
formation. If you are unsure if a factor is related
to the output, the neural network will determine
if the factor is important and will learn to ignore
anything irrelevant. Sometimes a possibly irrel-
evant piece of information can allow the ANN
to make distinctions which we are not aware of
(which is the essence of data mining). If there’s no
correlation, the ANN will just ignore the factor.

HONNs

HONNs (Higher Order Neural Networks) (Lee
et al, 1986) are networks in which the net input
to a computational neuron is a weighted sum of
products of its inputs. Such neuron is called a
Higher-order Processing Unit (HPU) (Lippman,
1989). It was known that HONN’s can imple-
ment invariant pattern recognition (Psaltis et al,
1988 ; Reid et al, 1989 ; Wood et al, 1996). Giles
in (Giles et al, 1987) showed that HONN’s have
impressive computational, storage and learning
capabilities. In (Redding et al, 1993), HONN’s
were proved to be at least as powerful as any other
FNN architecture when the orders of the networks
are the same. Kosmatopoulos et al (1995) studied
the approximation and learning properties of
one class of recurrent HONNs and applied these
architectures to the identification of dynamical
systems. Thimm et al (1997) proposed a suitable
initialization method for HONN’s and compared
this method to weight initialization techniques

 ���

Adaptive Higher Order Neural Network Models and Their Applications in Business

for FNNs. A large number of experiments were
performed which leaded to the proposal of a suit-
able initialization approach for HONNs.

Giles et al (1987) showed that HONN’s have
impressive computational, storage and learning
capabilities. The authors believed that the order
or structure of a HONN could be tailored to the
order or structure of a particular problem, and
thus a HONN designed for a particular class of
problems becomes specialized and efficient in
solving these problems. Furthermore, a priori
knowledge could be encoded in a HONN.

In Redding et al (1993), HONN’s were proved
to be at least as powerful as any other FNN
architecture when the order of the networks are
the same. A detailed theoretical development of
a constructive, polynomial-time algorithm that
would determine an exact HONN realization with
minimal order for an arbitrary binary or bipolar
mapping problem was created to deal with the
two-or-more clumps problem, demonstrating that
the algorithm performed well when compared
with the Tiling and Upstart algorithms.

Kosmatopoulos et al (1995) studied the ap-
proximation and learning properties of one class of
recurrent HONN’s and applied these architectures
to the identification of dynamical systems. In
recurrent HONN’s the dynamic components are
distributed throughout the network in the form
of dynamic neurons. It was shown that if enough
higher order connections were allowed, then this
network was capable of approximating arbitrary
dynamical systems. Identification schemes based
on higher order network architectures were de-
signed and analyzed.

Thimm et al (1997) proposed a suitable ini-
tialization method for HONN’s and compared
this method to weight initialization techniques
for FNN’s. As proper initialization is one of the
most important prerequisites for fast convergence
of FNN’s, the authors aimed at determining
the optimal variance (or range) for the initial
weights and biases, the principal parameters of
random initialization methods. A large number

of experiments were performed which led to the
proposal of a suitable initialization approach for
HONN’s. The conclusions were justified by suf-
ficiently small confidence intervals of the mean
convergence times.

ADAPtIVE HONN MODELs

Adaptive HONNs are HONNs with adaptive
activation functions. The network structure of an
Adaptive HONN is the same as that of a multi-layer
FNN. That is, it consists of an input layer with
some input units, an output layer with some output
units, and at least one hidden layer consisting of
intermediate processing units. Usually there is
no activation function for neurons in the input
layer and the output neurons are summing units
(linear activation), and the activation function in
the hidden units is an adaptive one.

In (Zhang et al, 2002) a one-dimensional
Adaptive HONN was defined as follows.

Suppose that:

 i = The ith neuron in layer-k
 k = The kth layer of the neural network
 h= The hth term in the NAF (Neural network

Activation Function)
 s = The maximum number of terms in the

NAF
 x = First neural network input
 y = Second neural network input
 neti,k = The input or internal state of the ith

neuron in the kth layer
 wi,j,k = The weight that connects the jth

neuron in layer k – 1 with the ith neuron in
layer k

 oi,k = The value of the output from the ith
neuron in layer - k

The one-dimension adaptive HONN activation

function is defined as:

��0

Adaptive Higher Order Neural Network Models and Their Applications in Business

NAF: () (), , , , , , ,
1

()
s

i k i k i k i k i k h i k
h

net o net f net
=

Ψ = =∑
 (1)

In case of s = 4:

(),

, ,

, ,

,

1
, ,1 , , , ,

2 ()
, ,2 , ,

, ,3 , , 3 ()

4
, ,4 , , ,

() 1 sin 1 ()

() 2
1() 3

1
() 4 ()

i k

i k i k

i k i k

i k

c
i k i k i k i k i k

b net
i k i k i k

i k i k i k b net

b
i k i k i k i k

f net a b net

f net a e

f net a
e

f net a net

- ⋅

- ⋅

= ⋅ ⋅

= ⋅

= ⋅
+

= ⋅ (2)

The one-dimensional Adaptive HONN ac-
tivation function then becomes Equation (3),
where a1i,k,b1i,k,c1i,k,a2i,k,b2i,k,a3i,k,a4i,k,b4i,k are
free parameters which can be adjusted (as well
as weights) during training.

In this chapter, we will only discuss the follow-
ing special case of the above adaptive activation
function: a1i,k = b1i,k = 0, a4i,k = b4i,k = 0.

So the adaptive activation function we are
interested in is Equation (4).

The learning algorithm for Adaptive HONN
with activation function (4) can be found in the
Appendix section.

ADAPtIVE HONN MODEL
APPLIcAtIONs IN bUsINEss

In this section, the Adaptive HONN model as
defined in Section 4 has been used in several

finanical applications. The results are given and
discussed.

simulating and Forecasting total
taxation revenues of Australia

The Adaptive HONN model has been used to
simulate and forecast the Total Taxation Revenues
of Australia as shown in Figure 5.1. The financial
data were downloaded from the Australian Taxa-
tion Office (ATO) web site. For this experiment
monthly data between Jan 1994 and Dec 1999
were used. The detailed comparison between the
adaptive HONN and traditional standard ANN
for this example is illustrated in Table 5.1.

After the Adaptive HONN (with only 4 hidden
units) has been well trained over the training data
pairs, it was used to forecast the taxation reve-
nues for each month of the year 2000. Then the
forecasted revenues were compared with the real
revenues for the period and the overall RMS error
reached 2.55%. To demonstrate the advatages of
the Adaptive HONN, the above-trained Standard
ANN (with 18 hidden units) was also used for the
same forecasting task which resulted in an overall
RMS error of 5.63%.

Next, some cross-validation approach was
used to improve the performance of the Adaptive
HONN. Cross-validation is the statistical practice
of dividing a sample of data into subsets so that
the experiment is initially performed on a single

()

(), , , ,

, ,

4

, , , , ,
1

1 2 () 42
, , , , , , ,3 ()

()

11 sin 1 () 2 3 4 ()
1

i k i k i k i k

i k i k

i k i k i k h i k
h

c b net b
i k i k i k i k i k i k i kb net

net f net

a b net a e a a net
e

=

- ⋅
- ⋅

Ψ =

= ⋅ ⋅ + ⋅ + ⋅ + ⋅
+

∑

Equation (3).

 () , ,

, ,

2
2 ()2

, , , , , , , 3 ()
1

1() 2 3
1

i k i k

i k i k

b net
i k i k i k h i k i k i k b net

h
net f net a e a

e
- ⋅

- ⋅
=

Ψ = = ⋅ + ⋅
+

∑

Equation (4).

 ���

Adaptive Higher Order Neural Network Models and Their Applications in Business

subset, while the other subset(s) are retained for
subsequent use in confirming and validating the
initial analysis. The initial subset of data is usually
called the training set, and the other subset(s) are
called validation or testing sets. Cross-validation is
one of several approaches for estimating how well
the ANN you’ve just trained from some training
data is going to perform on future as-yet-unseen
data. Cross-validation can be used to estimate the
generalization error of a given ANN model. It can
also be used for model selection by choosing one
of several models that has the smallest estimated
generalization error.

For this example, the traning data set was di-
vided into a traning set made 70% of the original
training set and a validation set made of 30% of
the original training set. The training (training
time and number of epochs) was optimized based
on evaluation over the validation set. Then the
well-trained Adaptive HONN was used to fore-
cast the taxation revenues for each month of the
year 2000, and the forecasted taxation revenues
were compared with the real prices for the period.
The overall RMS error reached 2.05%. The same
mechanism was applied to using a Standard ANN,
which resulted in an RMS error of 4.77%.

0

�000

�000

�000

�000

�0000

��000

��000

��000

��000

Ja
n-��

Apr-�
�
Ju

l-�
�
Oct-

��
Ja

n-��
Apr-�

�
Ju

l-�
�
Oct-

��
Ja

n-��
Apr-�

�
Ju

l-�
�
Oct-

��
Ja

n-��
Apr-�

�
Ju

l-�
�
Oct-

��
Ja

n-��
Apr-�

�
Ju

l-�
�
Oct-

��
Ja

n-��
Apr-�

�

Neural Network No. HL HL Nodes Epoch rMs Error
Adaptive HONN � � �,000 0.0�����
Standard ANN � � ��,000 0.������
Standard ANN � �0 ��,000 0.������
Standard ANN � �� ��,000 0.0�����
Standard ANN � �� ��,000 0.0�����

Figure 5.1. Total taxation revenues of Australia ($ million) (Jan 1994 To Dec 1999)

Table 5.1. Adaptive HONN with NAF and standard ANN to simulate taxation revenues

(HL: Hidden Layer. RMS: Root-Mean-Square)

���

Adaptive Higher Order Neural Network Models and Their Applications in Business

simulating and Forecasting reserve
bank Of Australia Assets

The Adaptive HONN model has also been used
to simulate and forecast the Reserve Bank Of
Australia Assets as shown in Figure 5.2. The
financial data were obtained from the Reserve
Bank Of Australia. For this experiment monthly
data between Jan 1980 and Dec 2000 were used.
The detailed comparison between the adaptive
HONN and traditional standard ANN for this
example is illustrated in Table 5.2.

After the Adaptive HONN (with only 3 hidden
units) has been well trained over the training data
pairs, it was used to forecast the Reserve Bank Of
Australia Assets for each month of the year 2001.
Then the forecasted assets were compared with
the real assets for the period and the overall RMS
error reached 1.96%. To demonstrate the adva-
tages of the Adaptive HONN, the above-trained
Standard ANN (with 22 hidden units) was also
used for the same forecasting task which resulted
in an overall RMS error of 5.33%.

Again, some cross-validation approach was
used to improve the performance of the Adaptive

0

�0000

�0000

�0000

�0000

�0000

�0000

Ja
n-

�0

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

�0

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

��

Ja
n-

00

Figure 5.2. Reserve Bank Of Australia Assets ($ million) (Jan 1980 To Dec 2000)

Neural Network No. HL HL Nodes Epoch rMs Error
Adaptive HONN � � �,000 0.0�����
Standard ANN � � ��,000 0.������
Standard ANN � � ��,000 0.������
Standard ANN � �� ��,000 0.0�����
Standard ANN � �� ��,000 0.0�����

Table 5.2. Adaptive HONN with NAF and standard ANN to simulate Reserve Bank Of Australia Assets
($ million)

(HL: Hidden Layer. RMS: Root-Mean-Square)

 ���

Adaptive Higher Order Neural Network Models and Their Applications in Business

HONN. For this time, the traning data set was
divided into a traning set made 75% of the original
training set and a validation set made of 25% of
the original training set. The training (training
time and number of epochs) was optimized based
on evaluation over the validation set. Then the
well-trained Adaptive HONN was used to predict
the assets for each month of the year 2001, and
the forecasted assets were compared with the
real assets for the period. The overall RMS error
reached 1.80%. The same mechanism was applied
to using a Standard ANN, which resulted in an
RMS error of 5.02%.

simulating and Forecasting Fuel
Economy

In the next expriment a dataset containing infor-
mation of different cars built in the US, Europe,
and Japan was trained using the Adaptive HONN
to determine car fuel economy (MPG - Miles Per
Gallon) for each vehicle. There were a total of 392
samples in this data set with 9 input variables and
1 output. The dataset was from UCI Machine
Learning Repository (2007). The output was the
fuel economy in MPG, and the input variables
were:

• Number of cylinders
• Displacement
• Horsepower
• Weight
• Acceleration
• Model year
• Made in US? (0,1)
• Made in Europe? (0,1)
• Made in Japan? (0,1)

To compare the performance of Adaptive
HONN and Standard ANN the dataset was divided
into a set containing 353 samples for training,
and a set containing 39 samples for forecasting
(or generalization). This time, a cross-validation
mechanism was adopted directly which split the

training set into 2 sections to train both an Adaptive
HONN and a Standard ANN. After both neural
networks were well-trained, the forecasting RMS
error (over the 39 samples) from the Adaptive
HONN reached 6.03%, while the forecasting er-
ror from the Standard ANN (over the 39 samples)
reached 13.55%.

cONcLUsION

In this chapter an Adaptive HONN model was
introduced and applied in business applications
such as simulating and forecasting government
taxation revenues. Such models offer significant
advantages over traditional Standard ANN models
such as much reduced network size, faster train-
ing, as well as much improved simulation and
forecasting errors, due to their ability to better
approximate complex, non-smooth, often discon-
tinuous training data sets. Compared with some
existing approaches on applying ANN models
in business applications, although there are more
free parameters in the Adaptive HONN model,
training speed is increased due to a significant
decrease of network size. What is more, simula-
tion and forecasting accuracy is greatly improved,
which has to be one of the main concerns in the
business world.

The method described in this chapter relies on
using cross-validation to improve generalisation
ability of the Adaptive HONN model. As part of
the future research, some current cross-valida-
tion approaches would be improved so that the
forecasting errors could be reduced further down
to a more satisfactory level. More factors which
can help improve the generalisation ability would
be considered.

AcKNOWLEDGMENt

The author wishes to thank Prof Ming Zhang for
his valuable advice on this chapter.

���

Adaptive Higher Order Neural Network Models and Their Applications in Business

rEFErENcEs

Arai, M., Kohon, R., & Imai, H. (1991). Adaptive
control of a neural network with a variable func-
tion of a unit and its application, Transactions
on Inst. Electronic Information Communication
Engineering, J74-A, 551-559.

Atiya, A.F. (2001). Bankruptcy prediction for cre-
dit risk using neural networks: A survey and new
results. IEEE Transactions on Neural Networks,
12(4), 929-935.

Azema-Barac, M., & Refenes, A. (1997). Neural
networks for financial applications. In Fiesler, E.,
& Beale, R. (Eds.), Handbook of Neural Compu-
tation. Oxford University Press (G6:3:1-7).

Baesens, B., Setiono, R., Mues, C., & Vanthienen,
J. (2003). Using neural network rule extraction
and decision tables for credit-risk evaluation.
Management Science, 49(3).

Barron, A. R. (1994), Approximation and es-
timation bounds for artificial neural networks.
Machine Learning, (14), 115-133.

Blum, E., & Li, K. (1991). Approximation theory
and feed-forward networks. Neural Networks, 4,
511-515.

Burns, T. (1986). The interpretation and use of
economic predictions. Proc. Royal Society A,
pp. 103-125.

Campolucci, P., Capparelli, F., Guarnieri, S.,
Piazza, F., & Uncini, A. (1996). Neural networks
with adaptive spline activation function. Procee-
dings of IEEE MELECON 96 (pp. 1442-1445).
Bari, Italy.

Chen, C.T., & Chang, W.D. (1996). A feedforward
neural network with function shape autotuning.
Neural Networks, 9(4), 627-641

Dayhoff, J. E. (1990). Neural network architectu-
res : An introduction. New York: Van Nostrand
Reinhold.

Gallant, A. R., & White, H. (1988). There exists
a neural network that does not make avoidable
mistakes. IEEE Second International Conference
on Neural Networks, I, 657-664. San Diego: SOS
Printing,

Giles, C.L., & Maxwell, T. (1987). Learning, inva-
riance, and generalization in higher order neural
networks. Applied Optics, 26(23), 4972-4978.

Grossberg, S. (1986). Some nonlinear networks
capable of learning a spatial pattern of arbitrary
complexity. Proc. National Academy of Sciences,
59, 368-372.

Hammadi, N. C., & Ito, H. (1998). On the activation
function and fault tolerance in feedforward neural
networks. IEICE Transactions on Information &
Systems, E81D(1), 66 – 72.

Hansen, J.V., & Nelson, R.D. (1997). Neural
networks and traditional time series methods: A
synergistic combination in state economic fore-
casts. IEEE Transactions on Neural Networks,
8(4), 863-873.

Hinton, G. E. (1989). Connectionist learning pro-
cedure, Artificial Intelligence, 40, 251 – 257.

Holden, S.B., & Rayer, P.J.W. (1995). Generali-
sation and PAC learning: some new results for
the class of generalised single-layer networks.
IEEE Transactions on Neural Networks, 6(2),
368 – 380.

Haykin, S. S, (1994). Neural networks : A com-
prehensive foundation. New York : Macmillan.

Hu, Z., & Shao, H. (1992). The study of neural
network adaptive control systems. Control and
Decision, 7, 361-366.

Kawato, M., Uno, Y., Isobe, M., & Suzuki, R.
(1987) A hierarchical model for voluntary move-
ment and its application to robotics. Proc. IEEE
Int. Conf. Network, IV, 573-582.

Kay, A. (2006). Artificial neural networks. Com-
puterworld. Retrieved on 27 November 2006 from

 ���

Adaptive Higher Order Neural Network Models and Their Applications in Business

http://www.computerworld.com/softwaretopics/
software/appdev/story/0,10801,57545,00.html

Kosmatopoulos, E.B., Polycarpou, M.M., Christo-
doulou, M.A., & Ioannou, P.A. (1995). High-order
neural network structures for identification of
dynamical systems. IEEE Transactions on Neural
Networks, 6(2), 422-431.

Kurbel, K., Singh, K., & Teuteberg, F. (1998).
Search and classification of interesting business
applications in the World Wide Web using a neural
network approach. Proceedings of the 1998 IACIS
Conference. Cancun, Mexico.

Lee, Y.C., Doolen, G., Chen, H., Sun, G., Maxwell,
T., Lee, H., & Giles, C.L. (1986). Machine learning
using a higher order correlation network. Physica
D: Nonlinear Phenomena, 22, 276-306.

Lippman, R.P. (1989). Pattern classification us-
ing neural networks. IEEE Commun. Mag., 27,
47-64.

Park, J., & Sandberg, I.W. (1993). Approxima-
tion and radial-basis-function networks. Neural
Computation, 5, 305-316.

Picton, P. (2000). Neural networks. Basingstoke:
Palgrave.

Psaltis, D., Park, C.H., & Hong, J. (1988). Higher
order associative memories and their optical
implementations. Neural Networks, 1, 149-163.

Redding, N., Kowalczyk, A., & Downs, T. (1993).
Constructive high-order network algorithm that
is polynomial time. Neural Networks, 6, 997-
1010.

Redding, N.J., Kowalczyk, A., & Downs, T.
(1993). Constructive higher-order network algo-
rithm that is polynomial time. Neural Networks,
6, 997-1010.

Reid, M.B., Spirkovska, L., & Ochoa, E. (1989).
Simultaneous position, scale, rotation invariant
pattern classification using third-order neural
networks. Int. J. Neural Networks, 1, 154-159.

Rumelhart, D.E., & McClelland, J.L. (1986).
Parallel distributed computing: Exploration in
the microstructure of cognition. Cambridge,
MA: MIT Press.

Thimm, G., & Fiesler, E. (1997). High-order and
multilayer perceptron initialization. IEEE Trans-
actions on Neural Networks, 8(2), 349-359.

UCI Machine Learning Repository (2007).
Retrieved April 2007 from ftp://ftp.ics.uci.edu/
pub/machine-learning-databases/auto-mpg/auto-
mpg.data

Vecci, L., Piazza, F., & Uncini, A. (1998). Learn-
ing and approximation capabilities of adaptive
spline activation function neural networks. Neural
Networks, 11, 259-270.

Wood, J., & Shawe-Taylor, J. (1996). A unifying
framework for invariant pattern recognition. Pat-
tern Recognition Letters. 17, 1415-1422.

Yamada, T., & Yabuta, T. (1992). Remarks on a
neural network controller which uses an auto-
tuning method for nonlinear functions. IJCNN,
2, 775-780.

Zhang, M., Xu, S., & Lu B. (1999). Neuron-adaptive
higher order neural network group models. Proc.
Intl. Joint Conf. Neural Networks - IJCNN’99,
Washington, DC, USA, (Paper # 71).

Zhang, M., Xu, S., & Fulcher, J. (2002). Neuron-
adaptive higher order neural-network models
for automated financial data modeling. IEEE
Transactions on Neural Networks, 13(1).

Zhang, M., Zhang, J. & Fulcher, J. (2000). Higher
order neural network group models for financial
simulation. Intl. J. Neural Systems, 12(2), 123
–142.

ADDItIONAL rEADING

Baptista-Filho, B. D., Cabral, E. L. L., & Soares,
A. J. (1999). A new approach to artificial neural

���

Adaptive Higher Order Neural Network Models and Their Applications in Business

networks. IEEE Transactions on Neural Networks,
9(6), 1167 – 1179.

Barron, A. (1993). Universal approximation
bounds for superposition of a sigmoidal func-
tion. IEEE Transactions on Information Theory,
3, 930-945.

Brent, R. P. (1991). Fast training algorithm for
multilayer neural networks. IEEE Transactions
on Neural Networks, 2, 346 – 354.

Carroll, S., & Dickinson, B. (1989). Construction
of neural networks using the radon transform.
IEEE International Conference on Neural Net-
works, Vol. 1, pp. 607 – 611. Washington DC.

Cichocki, A., & Unbehauen, R. (1993). Neural
networks for optimization and signal processing.
New York: Wiley.

Clemen, R.T. (1989). Combining forecasts: A
review and annotated bibliography. International
Journal of Forecasting, 5, 559 – 583.

Day, S., & Davenport, M. (1993). Continuous-time
temporal backpropagation with adaptive time
delays. IEEE Transactions on Neural Networks,
4, 348 – 354.

Durbin, R., & Rumelhart, D. E. (1989). Product
units: a computationally powerful and biologically
plausible extension to backpropagation networks,
Neural Computation, 1, 133 – 142.

Finnoff, W., Hergent, F., & Zimmermann, H.G.
(1993). Improving model selection by nonconver-
gent methods, Neural Networks, 6, 771 - 783.

Fogel, D.B. (1991). System identification through
simulated evolution: A machine learning ap-
proach to modelling. Needham Heights, MA:
Ginn.

Gallant, S.I. (1993). Neural Network Learning and
Expert Systems. Cambridge, MA: MIT Press.

Geva, S., & Sitte, J. (1992). A constructive
method for multivariate function approximation
by multilayered perceptrons. IEEE Transactions
on Neural Networks, 3(4), 621-623.

Girosi, F., Jones, M., & Poggio, T. (1995). Regula-
risation theory and neural networks architecture.
Neural Computation, 7, 219 – 269.

Gorr, W.L. (1994). Research prospective on neural
network forecasting. International Journal of
Forecasting, 10(1), 1-4.

Grossberg, S. (1976). Adaptive pattern classifica-
tion and universal recording. I: Parallel develop-
ment and coding of neural detectors. Biological
Cybernetics, 23, 121-134.

Harp, S., Samad, T., & Guuha, A. (1989). Toward
the genetic synthesis of neural networks. In D.
Shaffer (Ed.), Proceedings of 3rd International
Conference on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann.

Hill, T., Marquez, L., O’Connor, M., & Remus,
W. (1994). Artificial neural network models for
forecasting and decision making. International
Journal of Forecasting, 10, 5 – 15.

Hill, T., O’Connor, M., & Remus, W. (1996).
Neural network models for time series forecasting.
Management Science, 42, 1082 – 1092.

 ���

Adaptive Higher Order Neural Network Models and Their Applications in Business

APPENDIX

We use the following notations:

,

, ,

() the input or internal state of the t h neuron in
 the th layer

 the weight that connects the th neuron in

 layer 1 and the th

i k

i j k

I u i
k

w j
k i-

,

 neuron in layer
() the value of output from the t h neuron in

 layer
i k

k
O u i

k

,

1, 1, 2, 2
 adjustable variables in activation function

 the threshold value of the t h neuron in the t h layer
() the th desired output value

i k

j

A B A B

i k
d u j

 learning rate
 total number of output layer neurons

 total number of network layers
m
l
r the iteration number
η momentum

First of all, the input-output relation of the ith neuron in the kth layer can be described by:

, , , , 1 ,() ()i k i j k j k i k
j

I u w O u- = - ∑ (A.1)

where j is the number of neurons in layer k-1, and:

() , ,

, ,

1 () ,
, , , 2 ()

2
() () 1

1
i k i k

i k i k

B I u i k
i k i k i k B I u

A
O u I u A e

e
- ⋅

- ⋅= Ψ = ⋅ +
+ (A.2)

To train our neural network an energy function:

()
2

,
1

1 () ()
2

m

j j l
j

E d u O u
=

= -∑ (A.3)

is adopted, which is the sum of the squared errors between the actual network output and the desired
output for all input patterns. In (A.3), m is the total number of output layer neurons, l is the total num-
ber of constructed network layers (here l = 3). The aim of learning is undoubtedly to minimize the
energy function by adjusting the weights associated with various interconnections, and the variables in
the activation function. This can be fulfilled by using a variation of the steepest descent gradient rule
(Rumelhart et al, 1986) expressed as follows:

���

Adaptive Higher Order Neural Network Models and Their Applications in Business

() ()1
, , , ,

, ,

r r
i j k i j k

i j k

Ew w
w

- ∂
= +

∂ (A.4)
() ()1
, ,

,

r r
i k i k

i k

E- ∂
= +

∂ (A.5)

() ()1
, ,

,

1 1
1

r r
i k i k

i k

EA A
A

- ∂
= +

∂
 (A.6)

() ()1
, ,

,

1 1
1

r r
i k i k

i k

EB B
B

- ∂
= +

∂ (A.7)

() ()1
, ,

,

2 2
2

r r
i k i k

i k

EA A
A

- ∂
= +

∂ (A.8)

() ()1
, ,

,

2 2
2

r r
i k i k

i k

EB B
B

- ∂
= +

∂ (A.9)

To derive the gradient information of E with respect to each adjustable parameter in equations (A.4)-
(A.9), we define:

,
, () i k

i k

E
I u
∂

=
∂ (A.10)

,
, () i k

i k

E
O u
∂

=
∂ (A.11)

Now, from equations (A.2), (A.3), (A.10) and (A.11), we have the partial derivatives of E with respect
to adjustable parameters as follows:

,
, , 1

, , , , ,

()
()

()
i k

i k j k
i j k i k i j k

I uE E O u
w I u w -

∂∂ ∂
= =

∂ ∂ ∂ (A.12)

,
,

, , ,

()
()

i k
i k

i k i k i k

I uE E
I u

∂∂ ∂
= = -

∂ ∂ ∂ (A.13)

, ,1,
,

, , ,1 1
i k i kB Ii k

i k
i k i k i k

OE E e
A O A

- ⋅∂∂ ∂
= =

∂ ∂ ∂ (A.14)

, ,

,

, , ,

1
, , ,

1 1

 1 i k i k

i k

i k i k i k

B I
i k i k i k

OE E
B O B

A I e- ⋅

∂∂ ∂
=

∂ ∂ ∂

= - ⋅ ⋅ ⋅ (A.15)

, ,

,
, 2

, , ,

1
2 2 1 i k i k

i k
i k B I

i k i k i k

OE E
A O A e- ⋅

∂∂ ∂
= = ⋅

∂ ∂ ∂ + (A.16)

 ���

Adaptive Higher Order Neural Network Models and Their Applications in Business

()
, ,

, ,

2 ()
, , ,

, 22 ()
, , ,

() 2 ()
2 () 2 1

i k i k

i k i k

B I u
i k i k i k

i k B I u
i k i k i k

O u A I u eE E
B O u B e

- ⋅

- ⋅

∂ ⋅ ⋅∂ ∂
= = ⋅

∂ ∂ ∂ + (A.17)

And for (A.10) and (A.11) the following equations can be computed:

, ,
, ,

, , , ,

i k i k
i k i k

i k i k i k i k

O OE E
I O I I

∂ ∂∂ ∂
= = = ⋅
∂ ∂ ∂ ∂ (A.18)

while:

()
, ,

, ,

, ,

2 ()
1 (), , ,

, , 22 ()
,

() 2 2
1 1

() 1

i k i k

i k i k

i k i k

B I u
B I ui k i k i k

i k i k B I u
i k

O u A B e
A B e

I u e

- ⋅
- ⋅

- ⋅

∂ ⋅ ⋅
= ⋅ ⋅ +

∂ + (A.19)

and:

, 1 , , 1

,

,

, if 1 ;

, if .

j k j i k
j

i k

i l i

w k l

O d k l

+ + ≤ <= 
 - =

∑

 (A.20)

All the training examples are presented cyclically until all parameters are stabilized, i.e., until the
energy function E for the entire training set is acceptably low and the network converges.

	10.pdf
	9.pdf
	nlReader11.pdf
	nlReader12.pdf
	nlReader13.pdf
	nlReader14.pdf
	nlReader15.pdf
	nlReader16.pdf
	nlReader6.pdf
	nlReader7.pdf
	nlReader8.pdf
	xu.pdf
	xu2.pdf
	xu3.pdf
	xu4.pdf
	xu5.pdf

