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Abstract. The ability to locate promoters within a sectidrDINA is known to
be a very difficult and very important task in DNahalysis. We document an
approach that incorporates the concept of DNA asraplex molecule using
several models of its physico-chemical propertfesupport vector machine is
trained to recognise promoters by their distincfitsysical and chemical prop-
erties. We demonstrate that by combining modelscare improve upon the
classification accuracy obtained with a single niodée also show that by ex-
amining how the predictive accuracy of these prigewvaries over the pro-
moter, we can reduce the number of attributes mkdgieally, we apply this
method to a real-world problem. The results denratesthat such an approach
has significant merit in its own right. Furthermptiey suggest better results
from a planned combined approach to promoter ptiediaising both physico-
chemical and sequence based techniques.
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1 Introduction

In-silico eukaryotic promoter recognition is knowmbe a difficult problem [1]. Ob-
jective statements about the current state of thenagerms of promoter recognition
are complicated by the wide selection of metricedufor assessing performance.
Moreover, an optimal trade off between sensitigityd specificity is not immediately
apparent. In some applications, a high sensitigityalued — i.e. it is best to find as
many actual promoters as possible and a relathigly false positive rate is tolerable.
In contrast, in other situations the specificityyrize more important, particularly
where it is expensive to validate predictions. Adradication of the progress to date
in the field, Bajic, Tan et al. [2] report that ronf the programs they tested achieved
a combined sensitivity and specificity greater t6&#o.

The purpose of this paper is to examine how effettiphysico-chemical proper-
ties of DNA can be used to predict the locatiompaimoters within the human ge-
nome. Previous studies have demonstrated that peosnexhibit distinct patterns in
terms of these properties [3-7]. Physical propsrtif DNA have also been shown to
be important in terms of a biological understandifighe mechanisms of transcrip-



tion — for example [8-10]. Approaches to separatimgmoters from non-promoters in
E-coli using physico-chemical properties have mighh success [11, 12].

Ohler, Niemann et al. proposed an approach forrparating them into their pro-
moter recognition program, McPromoter [13]. Theyndastrated that this reduced
the false positive rate on a given test set by 6aB0%. In contrast to the approach we
employ within this work, they computed the mearueafor a given model within a
segment of the instance. The segmentation was hgeedthe sequence alone.

It has also been shown in previous work that aro@ing of sequence data using
structural models can be more efficient than a segel based encoding. Using a sin-
gle model Baldi, Chauvin et al [14] demonstrateat gimilar accuracy to a sequence
based approach was possible but with only aboouetf of the attributes required.
We explore a different approach to reducing the sizthe representation.

In their important examination of the applicatidnpbysico-chemical properties to
the clustering and classification of promotersrélon, Saeys et al. [4] examined how
effectively certain properties could be used tcchiisinate between promoters and
non-promoters. We aim to extend their exploratiorséveral significant directions.
Firstly, they examined the application of a singledel at a time. We explore the ap-
plication of multiple models simultaneously andessstheir classification perform-
ance, demonstrating an improved accuracy over angyesmodel. Secondly, we ex-
amine which models are of importance within whielgreents of the promoter. We
use this information to demonstrate how comparabtriracies can be achieved with
fewer attributes, reducing computational time. Fjnave explore the application of
this approach within a more realistic scenario e dfassification of a contiguous
segment of human DNA from chromosome 21, of lergtproximately 10Mbps. We
measure the results by means of the approachedydgaiic, Tan et al. [2] and show
that this technique has merit in its own right floomoter prediction

To the authors’ knowledge, this is the first lasgale application of a promoter
prediction method that usesly physico-chemical properties. We demonstrate that
they are actually quite effective at picking up rpagers on their own. Although we
are not advocating an abandonment of sequencedeiathniques, we present these
results as further impetus to re-examine the aft#tra of DNA (and biological in-
formation in general). That is, DNA is often regeted in computational areas as
simply a string of characters. Results such asetlppesented within this paper sug-
gest that its properties as a complex moleculenateonly useful, but essential for
various forms of computational modelling and biabtad) understanding.

2 Materialsand Methods

2.1 Datasetsand Physico-chemical Properties

We make use of the publicly available DBTSS (whican be accessed at:
http://dbtss.hgc.jp/) for the location and sequedata of human promoters [15-17].
For training the classifier, we used this datasetha positive instances and randomly
selected an equal number of negative instances thenmuman genome. When test-



ing on chromosome 21, we used a modified versiahisfdataset for training, which
excluded all data from chromosome 21.

Based upon the recommendations of Florquin, Saeyd. 4], we selected six
models for describing the physico-chemical propertf the DNA sequences. These
were: A-philicity [18], DNA bending stiffness [19PNA denaturation [20], duplex
disrupt energy [21], nucleosome position preferd@@é and propeller twist [23].

When training the classifier, all sequence datalisady in uniformly sized in-
stances (we use an instance size of 150bp with @0@bwnstream and 50bps up-
stream of the TSS). From the raw sequence infoomative evaluate each of the
models listed above. This produces 6 sequencesizef149 or 148 for a di- or tri-
nucleotide model respectively, which we then smawith a window of size 10 and
step of 1. After smoothing, the sequences arermjtte139 or 140. These 6 sequences
are then concatenated and represent a single ¢estapresented to the classifier.

When scanning a contiguous segment of DNA for pitenso we first split the se-
guence into segments of 150bps in size, usingpaddté. That is, if the sequencenis
bps in size, we convert this 18150 segments of 150bps in size. Put another way,
each segment differs from its nearest neighbousrily 2 bps (one at each end). The
processing of these segments then proceeds asheesabove.

When applying attribute pruning, we train the difesson the dataset as described
above and examine the weights associated with efattte attributes. Attributes with
low weights are then removed from the datasetomescases we prune all attributes
with a weight below a certain threshold. In othases the top weighted attributes
are retained and the remainder are pruned. Wefgpeich of these two approaches
are being employed when we present the results.

2.2 Classifier and Post-processing

We employ a support vector machine using a lineandd, specifically the implemen-
tation present in WEKA [24-26] using the defaulttisgs, to classify instances as ei-
ther promoter or non-promoter. We also post prottes®utput of the support vector
machine. The motivation for this is explained inrexdetail within the results section.
The approach taken here is to locate runs of pesiredictions within a window of a
certain size and exceeding a threshold of a giwnant of positives. For all the re-
sults presented within this paper, we set thiseta lvindow of size 400bps containing
85% positives or more. Different values for theseameters result in different bal-
ances of sensitivity and specificity. This produeesvindow of varying length de-
scribing the promoter region. For the purposesoofigaring TSS prediction position,
we examined taking the start, middle and end &f tWindow. Given the metrics we
are using, we determined that taking either thedieidr end produced the same re-
sults, but taking the start was markedly worse.

Due to the fact that training times are quite Idogsome of the approaches we
present herein (most notably the combined moddl 8&9 attributes), we do not per-
form a ten-fold cross validation as is often dolmstead, we present the result of
training the model on increasing segments of tha (feom 1% up to 50%) and show
the result of testing on the left over data (fro89®down to 50%). In each case the



sets are cumulative. That is, the 5% dataset amntdi of the 1% dataset; the 10%
dataset contains all of the 5% and the 1%, etc.

Using the same approach as Bajic, Tan et al. [2],count a true positive (TP)
when a prediction falls within 2000bps of a TSS. ®&0 aggregate predictions that
are within 1000bp of each other. In evaluating peeformance of the classifier we
make use of five metrics throughout the paper. &lseSensitivity — abbreviated to
Se (the percentage of positives that are corrédeiytified), Positive Predictive Value
— abbreviated t®PV (the percentage of positive predictions that ameect), Accu-
racy (the percentage of predictions that are correetthey negative or positive),
True Positive cost (the number of FPs required to achieve a TP) enadlyf specificity
— abbreviated to Sp (the percentage of negativeeatty identified). Expressed more
succinctly, Se = TP/(TP+FN), PPV = TP/(TP+FP), Aecy = (TP+TN)/(TP + FP +
FN + TN), TP cost = FP / TP, and Sp. = TN/(TN+FP).

3 Resultsand Discussion

3.1 Singlevs. Combined M odel

Within this section, we examine the results of canmyg the classification perform-
ance of a single model with that of a combined rmhaa®ng the six models suggested
as highly discriminative by Florquin, Saeys et[4]. We use the full promoter data-
set, as described in the section materials andadsttThe results are summarised in
Table 1, using a simple accuracy (i.e. percentdgeroect predictions) metric.

As can be seen, there is an approximately 2% isergmaccuracy achieved by the
combined model over the best of the single modaliacies. Although the difference
is not great, the 2% improvement would accounhiandreds of instances when con-
sidered from the perspective of a genome wide sgasjmilar magnitude. This is
clearly a significant improvement, although it camet the cost of computational
time. Using half the dataset for training (appra®® instances), a single model
SVM takes only approximately ten minutes to trdmcontrast, the combined model,

Table 1. The accuracy of the SVM in separating promoterusages from non-promoter
sequences in a 50% positive/negative dataset. Reorsequences are taken from DBTSS and
non-promoter sequences randomly selected fromuhwh genome

Training set proportion (%) | 1 5 10 15 20 30 40 50
A-philicity 814 | 848| 84.7| 850 854 86.1 865 86.6
DNA Bending Stiffness 829 | 848| 8438| 848 851 85.6 859 862
DNA Denaturation 80.4 | 84.2| 845| 850 851 855 860 82
Duplex Disrupt Ener gy 85.1 | 86.9 87.5 87.7 87.4 88.4  88J7 88.7
INIECeSonCIsbSifopEINd- Ml 83.2 | 86.5 86.5 86.7] 87.( 87.2 87)3 87.7
Propeller Twist 851 | 87.0| 87.3| 875 874 88.p 883 884
COMBINED MODEL S 81.5 87.4 88.3 88.9 89.3 90.1 90/4 90.7




using the same size training set takes approximaed hours. Putting this in per-
spective, however, the SVM need only be traineceantd the difference in classifi-
cation time between the two approaches is less égdsaie due to the relatively small
figures (approx. 8.15s and 0.35s respectively lfigh8y more than 8,000 instances).

These two approaches allow a trade off betweendsped accuracy. Within the
next section, we will examine a third techniquet tt@n equal the accuracies of the
single model approach but uses less than half wineber of attributes, resulting in a
further speed improvement.

3.2 Attribute Pruning

Due to the characteristics of the learning methedave using (i.e. an SVM), we can
examine the weights associated with the attribusesl. As described in the section
materials and methods, input is provided to the SVM as a series of ins&s. Each in-
stance describes the result of applying the givedets to the sequence data returned
by a sliding window of 150bps. We will now examitieese weights to determine
which parts of the promoter are discriminativedmts of each model.

We graph these attribute weights in Figure 1. As loa seen, the area around the
TSS is of most discriminatory power, with many migdéisplaying clear spikes in
this region (150bps are shown for each model; B8 7§ at the 16thp).

Curiously, A-philicity has the highest weightedritttite spike but when used on its
own (as discussed in the previous section and shiowable 1) it does not produce
the best classification performance. This seeniaditate that A-philicity is predic-
tive of promoter activity when combined with othmodels, but less so when consid-
ered independently. In contrast, Duplex Disruptrgpeclearly performs well on its
own and is highly influential in a combined approac

We applied the attribute pruning describe in thetisa materials and methods to
both single models and the combined model presentttd previous section. The re-
sults are shown in Table 2. These datasets areiloeddoy only 61 attributes, as
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Fig. 1. The attribute weights associated with each of&B@ attributes used in the combined
model approach. The weights are segmented accotdimgodel in the following order: A-
philicity, DNA bending stiffness, DNA denaturatioduplex disrupt energy, nucleosome posi-
tional preference and propeller twist.



Table 2. The accuracy of the models after attribute prunirige combined model was
pruned to include only those attributes weighteghér than 0.6 — 61 attributes. The

single models were pruned to include the 61 attebwith the highest weights

Training set proportion (%) | 1 5 10 15 20 30 40 50
A-philicity 826 | 84.9| 85.2| 86.0 85.1 86.3 86(5 86.6
DNA Bending Stiffness 835 | 84.9| 84.8| 849 853 856 85[9 86.1
DNA Denaturation 822 | 84.3| 85.1| 851 85.4 85.f 85[9 8.0
Duplex Disrupt Ener gy 858 | 87.1| 87.7| 879 88.] 88 887 848
Nucleosome Positional Pref. 845 | 86.7| 86.8| 86.8 87.1 87.3 875 877
Propeller Twist 858 | 87.5| 87.5| 87.7 874 88/l 882 885
COMBINED MODEL S 83.0 | 86.0| 86.3] 86.6 86.9 87l 873 875
DDE + PROP. TWIST 86.7 | 88.1| 88.3] 88.4 88. 89.p 8912 893

compared to the 139/140 (for a di- or tri-nucleetitiodel) attributes required for a
single model and the 839 attributes required ferdbmbined model. Despite the sig-
nificantly smaller size, one can see that perforceda comparable to evaluating each
model over the entirety of the instance. The comfbimodel loses enough accuracy
from the pruning to no longer be the best choicéeurthe simple accuracy metric
used here. We also present an alternate approgotuming, listed as DDE + prop.
twist. This method first prunes the duplex disrapergy and propeller twist models
to 30 attributes and then combines them to makedehof 60 attributes. As can be
seen, this approach produces the highest accufidwy.training time required for
these pruned models is roughly half that of thémddels, at approximately 5 min-
utes. Most importantly though, the classificatiame on approximately 8000 in-
stances is only 0.17s. With such a small numbaessdication time is now insignifi-
cant in comparison to the time required for operaisuch as file loading. On large
datasets, this fast classification time is invalaab

To briefly summarise, we have demonstrated thainabined approach using mul-
tiple physico-chemical properties improves accuraegr any single model consid-
ered on its own. We have also shown that if speaddre important than accuracy,
these models can be evaluated over a smaller parfithe input data for an almost
negligible lose of accuracy but a significant imgrment in execution time.

3.3 Real World Performance

As mentioned in the previous section, the resuitaioed from applying these meth-
ods to discriminating between isolated promoter aod-promoter instances are en-
couraging. However, it is not yet known whetherythan be extrapolated to more re-
alistic uses. We now apply the two combined modéMS produced in the above

section to contiguous sections of sequence ddtantkom human chromosome 21.
Note that when training the SVMs we used no datanfchromosome 21.



Fig. 2. The classification diagram produced by the SVMe Hhaxis is the position within the
input sequence data. The top line represents twitms of negative predictions. Notice the
clear gap in negative predictions centred on th® p&sition (indicated by the white line)

We took 25 promoters from the first half of chrom® 21 and extracted 20,000
bps around each one producing 25 testing sets.olefthat both SVMs on average
labelled 20% of the dataset (or approx 4000 ingtshas being promoters.

Although this is a poor result, we observed thatdrstribution of predictions was
correlated with the location of actual positivesisTis best illustrated with a diagram
and an example is presented in Figure 2. As caseka, the actual location of the
TSS coincides with a gap in the prediction of niagatby the classifier. We used this
observation as the basis for a second level talmsifier, which searches for these
gaps in the negative output. The results obtairsgabuhe 25 segments from the first-
half of chromosome 21 were used to select a sizéhéogap and the percentage of in-
stances within the gap that must be positive. VBe determined that taking the mid-
dle or the end of a gap as the predicted TSS waallggaccurate, but taking the
beginning produced significantly worse results.

3.4 Combined Classifier Performance

We now examine the performance of the combinedsifiess, using a section of
DNA from the second half of chromosome 21 of abb@Mbps. Interestingly, we
found that the SVM produced from taking a 0.6 dffitto the full combined model
produced fewer false positives than the most higidjghted attributes from the du-
plex disrupt energy and propeller twist models.sTihiturn leads to a worse PPV for
the DDE + Prop Twist model. It does however have advantage: producing the
highest sensitivity (at 66%) of the two models eksed, although this comes at the
cost of a very low PPV (approx. 8%). It is not cleghether the other combined
model might also produce sensitivity within thisge if more relaxed parameters al-
lowed a lower PPV. Because of space restrictiomschoose to omit a detailed com-
parison and focus our attention on the model lab&tembined model” above. We
feel that both the higher PPV values and the ghitit provide a better balance be-
tween the PPV and Se. make this model more praatiearealistic environment.

Within the region we have chosen for testing tlaee65 promoters and the classi-
fier correctly identifies 36 of them (a sensitivit§ 55.4%). In total, 224 positive pre-
dictions are made, equating to a positive predictizlue (PPV) of 16.1%. The sensi-
tivity is comparable to many other current apprasctor promoter prediction — of the
14 programs examined by Bajic, Tan et al [2] 9hafnh score sensitivity of approxi-
mately 55% or less. However, we are aware thatalwePPV value is a drawback to
the proposed method and now suggest an approaghgooving it.



As we have mentioned previously, the output fromtpper level of the classifier
is a window of predicted promoter activity. We noansider the size of the window
as an indication of confidence in respect to trejmtion. This leads to the ability to
discard low confidence predictions. Because weaggregating windows that are
within 1000bp of each other, this allows for twcspible approaches in respect to ap-
plying a window-size threshold; before aggregatowl after. We present the results
obtained from both approaches graphically in Fidlire

The most striking feature is that by applying ae#rold of 1200, 1300 or 1400 bp
to the window size before aggregation, we can aehiePPV of greater than or equal
to 70%. However, this comes at the cost of serityitiwhich falls to less than 15%.
Whether this trade-off is worth it depends entirely perspective: if the cost of false
positives is paramount, then the answer may welldse It is also interesting to note
that by applying a threshold of about 300bp, we aamieve an improvement in PPV
for an almost negligible loss of sensitivity. A seaable trade off is also apparent
with a threshold of about 500bp, where PPV and Sepproximately 40% is
achieved. It is also apparent that thresholdingoteefaggregation favours PPV
whereas after aggregation favours sensitivity.itiviely, this is as one would expect.
Because of the nature of the aggregation, it isiptesthat, for example, two small
windows which are 900bps from each other may beeggded into one large window
of more than 1000bps. Hence, thresholding befogeemgtion favours large uninter-
rupted windows, which are more likely to represactual promoters, while discard-
ing the interrupted windows which are less likely.
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Fig. 3. The performance of the classifier when applyingoat-processing step of discarding
small windows. The window threshold is shown on xkexis. We graph both sensitivity and
positive predictive value for threshold applicatlooth before and after aggregation.



4 Conclusions

We have set out within this paper to address twtirdit points. Firstly, we intended
to demonstrate that a combined model of physicanited properties could be used
for promoter prediction, improving the accuracyusing a single model. We have
demonstrated this fact, showing an increase ofcqpiately 2% over the best of the
single models. We stress once again the importahaeich a result in considering
large datasets, or within applications where seiitsiis of importance.

We have also explored the relative importance efdifferent properties in differ-
ent segments of the promoter in terms of predigtiweer by examining the attribute
weighting of the support vector machine producesing these results, we produced a
reduced model, which is faster but loses littleeinms of accuracy. These two results
combined demonstrate that this approach can bwredilfor sensitivity by using the
full combined model or for speed by using attribptened models.

The second component of this paper has looked\atthese approaches perform
when confronted with large, real world problems. ¥f®wed that although the raw
results of the SVM do not immediately appear enaging, by post-processing the
output, it is possible to predict promoter locatiomith a sensitivity of 55.4% and a
PPV of 16.1%. By using a threshold approach towhelow size, we also demon-
strated that a balanced 40% PPV and Se. was pasEKilnither to this, by modifying
the threshold size, the approach can be tailorecitber sensitivity or specificity.
These results demonstrate that a promoter preditdichnique based only on phys-
ico-chemical properties is possible and capabl@esformance that is competitive
with established approaches. The use of the phytiemical properties of DNA for
promoter prediction is a promising direction forther research, both on its own and
in conjunction with sequence based methods.

5 Further Work

There are several distinct directions to pursueaasesult of this work. Firstly,
Florquin, Saeys et al. [4] suggest that promoterstreated as distinctly separate
groups. Within this work, we have not implementbis idea, treating all promoters
as being the same. By learning separate classféiedistinct types of promoters, im-
provements in sensitivity and PPV may be possibleernately, a simpler approach
of retraining the classifier using the instancest there not correctly classified on the
first pass may produce equivalent performance. 8 iealso the question of how to
combine these multiple classifiers.

Bajic, Tan et al. [2] also suggest that the maskihgepeats may improve the per-
formance of promoter prediction programs. They alssent evidence to suggest that
experiments run on single chromosomes may not peesentative of results pro-
duced on the whole genome. Future work on thisagatr would require the explora-
tion of both these ideas: the application of repeasker and larger-scale tests.

Furthermore, we have presented proof that comhimedls can outperform single
models, but have only examined a few possible coailzins. Our results indicate



that the combination of models may not be as sirapleriginally thought and a more
thorough exploration is called for.

Finally, we have shown that the application of pbgschemical properties to the
problem of promoter prediction can produce comjyetitesults on their own, but we
are not advocating the abandonment of other appesa@ combined approach, em-
ploying these techniques and other complementamgs{ply sequence related) ap-
proaches may produce better results. In particulds, approach is currently not
strand specific. That is, predictions are equakgly to be on either strand. By em-
ploying sequence based techniques, this could become, allowing a strand specific
prediction to be made.
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