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Abstract. The ability to locate promoters within a section of DNA is known to 
be a very difficult and very important task in DNA analysis. We document an 
approach that incorporates the concept of DNA as a complex molecule using 
several models of its physico-chemical properties. A support vector machine is 
trained to recognise promoters by their distinctive physical and chemical prop-
erties. We demonstrate that by combining models, we can improve upon the 
classification accuracy obtained with a single model. We also show that by ex-
amining how the predictive accuracy of these properties varies over the pro-
moter, we can reduce the number of attributes needed. Finally, we apply this 
method to a real-world problem. The results demonstrate that such an approach 
has significant merit in its own right. Furthermore, they suggest better results 
from a planned combined approach to promoter prediction using both physico-
chemical and sequence based techniques.  

Key words: promoter prediction, support vector machine, SVM, physico-
chemical, classifier, DNA, transcription. 

1 Introduction 

In-silico eukaryotic promoter recognition is known to be a difficult problem [1]. Ob-
jective statements about the current state of the art in terms of promoter recognition 
are complicated by the wide selection of metrics used for assessing performance.  
Moreover, an optimal trade off between sensitivity and specificity is not immediately 
apparent. In some applications, a high sensitivity is valued – i.e. it is best to find as 
many actual promoters as possible and a relatively high false positive rate is tolerable. 
In contrast, in other situations the specificity may be more important, particularly 
where it is expensive to validate predictions. As an indication of the progress to date 
in the field, Bajic, Tan et al. [2] report that none of the programs they tested achieved 
a combined sensitivity and specificity greater than 65%. 

The purpose of this paper is to examine how effectively physico-chemical proper-
ties of DNA can be used to predict the location of promoters within the human ge-
nome. Previous studies have demonstrated that promoters exhibit distinct patterns in 
terms of these properties [3-7].  Physical properties of DNA have also been shown to 
be important in terms of a biological understanding of the mechanisms of transcrip-



tion – for example [8-10]. Approaches to separating promoters from non-promoters in 
E-coli using physico-chemical properties have met with success [11, 12]. 

Ohler, Niemann et al. proposed an approach for incorporating them into their pro-
moter recognition program, McPromoter [13]. They demonstrated that this reduced 
the false positive rate on a given test set by about 30%. In contrast to the approach we 
employ within this work, they computed the mean value for a given model within a 
segment of the instance. The segmentation was based upon the sequence alone.  

It has also been shown in previous work that an encoding of sequence data using 
structural models can be more efficient than a sequence based encoding. Using a sin-
gle model Baldi, Chauvin et al [14] demonstrated that similar accuracy to a sequence 
based approach was possible but with only about a fourth of the attributes required. 
We explore a different approach to reducing the size of the representation.  

In their important examination of the application of physico-chemical properties to 
the clustering and classification of promoters, Florquin, Saeys et al. [4] examined how 
effectively certain properties could be used to discriminate between promoters and 
non-promoters. We aim to extend their exploration in several significant directions. 
Firstly, they examined the application of a single model at a time. We explore the ap-
plication of multiple models simultaneously and assess their classification perform-
ance, demonstrating an improved accuracy over any single model. Secondly, we ex-
amine which models are of importance within which segments of the promoter. We 
use this information to demonstrate how comparable accuracies can be achieved with 
fewer attributes, reducing computational time. Finally, we explore the application of 
this approach within a more realistic scenario – the classification of a contiguous 
segment of human DNA from chromosome 21, of length approximately 10Mbps. We 
measure the results by means of the approaches used by Bajic, Tan et al. [2] and show 
that this technique has merit in its own right for promoter prediction  

To the authors’ knowledge, this is the first large-scale application of a promoter 
prediction method that uses only physico-chemical properties. We demonstrate that 
they are actually quite effective at picking up promoters on their own. Although we 
are not advocating an abandonment of sequence related techniques, we present these 
results as further impetus to re-examine the abstraction of DNA (and biological in-
formation in general). That is, DNA is often represented in computational areas as 
simply a string of characters. Results such as those presented within this paper sug-
gest that its properties as a complex molecule are not only useful, but essential for 
various forms of computational modelling and biological understanding. 

2 Materials and Methods 

2.1 Datasets and Physico-chemical Properties 

We make use of the publicly available DBTSS (which can be accessed at: 
http://dbtss.hgc.jp/) for the location and sequence data of human promoters [15-17]. 
For training the classifier, we used this dataset as the positive instances and randomly 
selected an equal number of negative instances from the human genome. When test-



ing on chromosome 21, we used a modified version of this dataset for training, which 
excluded all data from chromosome 21.  

Based upon the recommendations of Florquin, Saeys et al. [4], we selected six 
models for describing the physico-chemical properties of the DNA sequences. These 
were: A-philicity [18], DNA bending stiffness [19], DNA denaturation [20], duplex 
disrupt energy [21], nucleosome position preference [22] and propeller twist [23].  

When training the classifier, all sequence data is already in uniformly sized in-
stances (we use an instance size of 150bp with 100bps downstream and 50bps up-
stream of the TSS). From the raw sequence information, we evaluate each of the 
models listed above. This produces 6 sequences, of size 149 or 148 for a di- or tri-
nucleotide model respectively, which we then smooth with a window of size 10 and 
step of 1. After smoothing, the sequences are of length 139 or 140. These 6 sequences 
are then concatenated and represent a single instance as presented to the classifier.  

When scanning a contiguous segment of DNA for promoters, we first split the se-
quence into segments of 150bps in size, using a step of 1. That is, if the sequence is n 
bps in size, we convert this to n-150 segments of 150bps in size. Put another way, 
each segment differs from its nearest neighbour by only 2 bps (one at each end). The 
processing of these segments then proceeds as described above.  

When applying attribute pruning, we train the classifier on the dataset as described 
above and examine the weights associated with each of the attributes. Attributes with 
low weights are then removed from the dataset. In some cases we prune all attributes 
with a weight below a certain threshold. In other cases the top n weighted attributes 
are retained and the remainder are pruned. We specify which of these two approaches 
are being employed when we present the results. 

2.2 Classifier and Post-processing 

We employ a support vector machine using a linear kernel, specifically the implemen-
tation present in WEKA [24-26] using the default settings, to classify instances as ei-
ther promoter or non-promoter. We also post process the output of the support vector 
machine. The motivation for this is explained in more detail within the results section. 
The approach taken here is to locate runs of positive predictions within a window of a 
certain size and exceeding a threshold of a given percent of positives. For all the re-
sults presented within this paper, we set this to be a window of size 400bps containing 
85% positives or more. Different values for these parameters result in different bal-
ances of sensitivity and specificity. This produces a window of varying length de-
scribing the promoter region. For the purposes of comparing TSS prediction position, 
we examined taking the start, middle and end of this window. Given the metrics we 
are using, we determined that taking either the middle or end produced the same re-
sults, but taking the start was markedly worse.  

Due to the fact that training times are quite long for some of the approaches we 
present herein (most notably the combined model with 839 attributes), we do not per-
form a ten-fold cross validation as is often done. Instead, we present the result of 
training the model on increasing segments of the data (from 1% up to 50%) and show 
the result of testing on the left over data (from 99% down to 50%). In each case the 



sets are cumulative. That is, the 5% dataset contains all of the 1% dataset; the 10% 
dataset contains all of the 5% and the 1%, etc.  

Using the same approach as Bajic, Tan et al. [2], we count a true positive (TP) 
when a prediction falls within 2000bps of a TSS. We also aggregate predictions that 
are within 1000bp of each other. In evaluating the performance of the classifier we 
make use of five metrics throughout the paper. These are Sensitivity – abbreviated to 
Se (the percentage of positives that are correctly identified), Positive Predictive Value 
– abbreviated to PPV (the percentage of positive predictions that are correct), Accu-
racy (the percentage of predictions that are correct, be they negative or positive),  
True Positive cost (the number of FPs required to achieve a TP) and finally specificity 
– abbreviated to Sp (the percentage of negatives correctly identified). Expressed more 
succinctly, Se = TP/(TP+FN), PPV = TP/(TP+FP), Accuracy = (TP+TN)/(TP + FP + 
FN + TN), TP cost = FP / TP, and Sp. = TN/(TN+FP). 

3 Results and Discussion 

3.1 Single vs. Combined Model 

Within this section, we examine the results of comparing the classification perform-
ance of a single model with that of a combined model, using the six models suggested 
as highly discriminative by Florquin, Saeys et al. [4]. We use the full promoter data-
set, as described in the section materials and methods. The results are summarised in 
Table 1, using a simple accuracy (i.e. percentage of correct predictions) metric.  

As can be seen, there is an approximately 2% increase in accuracy achieved by the 
combined model over the best of the single model accuracies. Although the difference 
is not great, the 2% improvement would account for hundreds of instances when con-
sidered from the perspective of a genome wide scan, or similar magnitude. This is 
clearly a significant improvement, although it comes at the cost of computational 
time. Using half the dataset for training (approx 8,000 instances), a single model 
SVM takes only approximately ten minutes to train. In contrast, the combined model, 
  

Table 1. The accuracy of the SVM in separating promoter sequences from non-promoter 
sequences in a 50% positive/negative dataset. Promoter sequences are taken from DBTSS and 
non-promoter sequences randomly selected from the human genome 

Training set proportion (%) 1 5 10 15 20 30 40 50 

A-philicity 81.4 84.8 84.7 85.0 85.4 86.1 86.5 86.6 

DNA Bending Stiffness 82.9 84.8 84.8 84.8 85.1 85.6 85.9 86.2 

DNA Denaturation 80.4 84.2 84.5 85.0 85.1 85.5 86.0 86.2 

Duplex Disrupt Energy 85.1 86.9 87.5 87.7 87.9 88.4 88.7 88.7 

Nucleosome Positional Pref. 83.2 86.5 86.5 86.7 87.0 87.2 87.3 87.7 

Propeller Twist 85.1 87.0 87.3 87.5 87.6 88.0 88.3 88.4 

COMBINED MODELS 81.5 87.4 88.3 88.9 89.3 90.1 90.4 90.7 



using the same size training set takes approximately two hours. Putting this in per-
spective, however, the SVM need only be trained once and the difference in classifi-
cation time between the two approaches is less of an issue due to the relatively small 
figures (approx. 8.15s and 0.35s respectively for slightly more than 8,000 instances).  

These two approaches allow a trade off between speed and accuracy. Within the 
next section, we will examine a third technique that can equal the accuracies of the 
single model approach but uses less than half the number of attributes, resulting in a 
further speed improvement. 

3.2 Attribute Pruning  

Due to the characteristics of the learning method we are using (i.e. an SVM), we can 
examine the weights associated with the attributes used. As described in the section 
materials and methods, input is provided to the SVM as a series of instances. Each in-
stance describes the result of applying the given models to the sequence data returned 
by a sliding window of 150bps. We will now examine these weights to determine 
which parts of the promoter are discriminative in terms of each model. 

We graph these attribute weights in Figure 1. As can be seen, the area around the 
TSS is of most discriminatory power, with many models displaying clear spikes in 
this region (150bps are shown for each model; the TSS is at the 100th bp). 

Curiously, A-philicity has the highest weighted attribute spike but when used on its 
own (as discussed in the previous section and shown in Table 1) it does not produce 
the best classification performance. This seems to indicate that A-philicity is predic-
tive of promoter activity when combined with other models, but less so when consid-
ered independently. In contrast, Duplex Disrupt Energy clearly performs well on its 
own and is highly influential in a combined approach.  

We applied the attribute pruning describe in the section materials and methods to 
both single models and the combined model presented in the previous section. The re-
sults are shown in Table 2. These datasets are described by only 61 attributes, as  
 

 

 

Fig. 1. The attribute weights associated with each of the 839 attributes used in the combined 
model approach. The weights are segmented according to model in the following order: A-
philicity, DNA bending stiffness, DNA denaturation, duplex disrupt energy, nucleosome posi-
tional preference and propeller twist. 

 



 
Table 2. The accuracy of the models after attribute pruning. The combined model was 
pruned to include only those attributes weighted higher than 0.6 – 61 attributes. The 
single models were pruned to include the 61 attributes with the highest weights 

Training set proportion (%) 1 5 10 15 20 30 40 50 

A-philicity 82.6 84.9 85.2 86.0 85.7 86.3 86.5 86.6 

DNA Bending Stiffness 83.5 84.9 84.8 84.9 85.3 85.6 85.9 86.1 

DNA Denaturation 82.2 84.3 85.1 85.1 85.6 85.7 85.9 86.0 

Duplex Disrupt Energy 85.8 87.1 87.7 87.9 88.1 88.5 88.7 88.8 

Nucleosome Positional Pref. 84.5 86.7 86.8 86.8 87.1 87.3 87.5 87.7 

Propeller Twist 85.8 87.5 87.5 87.7 87.8 88.1 88.2 88.5 

COMBINED MODELS 83.0 86.0 86.3 86.6 86.8 87.1 87.3 87.5 

DDE + PROP. TWIST 86.7 88.1 88.3 88.4 88.6 89.0 89.2 89.3 

 
 
compared to the 139/140 (for a di- or tri-nucleotide model) attributes required for a 
single model and the 839 attributes required for the combined model. Despite the sig-
nificantly smaller size, one can see that performance is comparable to evaluating each 
model over the entirety of the instance. The combined model loses enough accuracy 
from the pruning to no longer be the best choice under the simple accuracy metric 
used here. We also present an alternate approach to pruning, listed as DDE + prop. 
twist. This method first prunes the duplex disrupt energy and propeller twist models 
to 30 attributes and then combines them to make a model of 60 attributes. As can be 
seen, this approach produces the highest accuracy. The training time required for 
these pruned models is roughly half that of the full models, at approximately 5 min-
utes. Most importantly though, the classification time on approximately 8000 in-
stances is only 0.17s. With such a small number, classification time is now insignifi-
cant in comparison to the time required for operations such as file loading. On large 
datasets, this fast classification time is invaluable.  

To briefly summarise, we have demonstrated that a combined approach using mul-
tiple physico-chemical properties improves accuracy over any single model consid-
ered on its own. We have also shown that if speed is more important than accuracy, 
these models can be evaluated over a smaller portion of the input data for an almost 
negligible lose of accuracy but a significant improvement in execution time. 

3.3 Real World Performance 

As mentioned in the previous section, the results obtained from applying these meth-
ods to discriminating between isolated promoter and non-promoter instances are en-
couraging. However, it is not yet known whether they can be extrapolated to more re-
alistic uses. We now apply the two combined model SVMs produced in the above 
section to contiguous sections of sequence data, taken from human chromosome 21. 
Note that when training the SVMs we used no data from chromosome 21.  

 
 



 

Fig. 2. The classification diagram produced by the SVM. The X-axis is the position within the 
input sequence data. The top line represents the locations of negative predictions. Notice the 
clear gap in negative predictions centred on the TSS position (indicated by the white line) 

We took 25 promoters from the first half of chromosome 21 and extracted 20,000 
bps around each one producing 25 testing sets. We found that both SVMs on average 
labelled 20% of the dataset (or approx 4000 instances) as being promoters.  

Although this is a poor result, we observed that the distribution of predictions was 
correlated with the location of actual positives. This is best illustrated with a diagram 
and an example is presented in Figure 2. As can be seen, the actual location of the 
TSS coincides with a gap in the prediction of negatives by the classifier. We used this 
observation as the basis for a second level to the classifier, which searches for these 
gaps in the negative output. The results obtained using the 25 segments from the first-
half of chromosome 21 were used to select a size for the gap and the percentage of in-
stances within the gap that must be positive. We also determined that taking the mid-
dle or the end of a gap as the predicted TSS was equally accurate, but taking the 
beginning produced significantly worse results.  

3.4 Combined Classifier Performance 

We now examine the performance of the combined classifiers, using a section of 
DNA from the second half of chromosome 21 of about 10Mbps.  Interestingly, we 
found that the SVM produced from taking a 0.6 cut-off to the full combined model 
produced fewer false positives than the most highly weighted attributes from the du-
plex disrupt energy and propeller twist models. This in turn leads to a worse PPV for 
the DDE + Prop Twist model. It does however have one advantage: producing the 
highest sensitivity (at 66%) of the two models examined, although this comes at the 
cost of a very low PPV (approx. 8%). It is not clear whether the other combined 
model might also produce sensitivity within this range if more relaxed parameters al-
lowed a lower PPV. Because of space restrictions, we choose to omit a detailed com-
parison and focus our attention on the model labeled “combined model” above. We 
feel that both the higher PPV values and the ability to provide a better balance be-
tween the PPV and Se. make this model more practical in a realistic environment. 

Within the region we have chosen for testing there are 65 promoters and the classi-
fier correctly identifies 36 of them (a sensitivity of 55.4%). In total, 224 positive pre-
dictions are made, equating to a positive predictive value (PPV) of 16.1%. The sensi-
tivity is comparable to many other current approaches for promoter prediction – of the 
14 programs examined by Bajic, Tan et al [2] 9 of them score sensitivity of approxi-
mately 55% or less. However, we are aware that the low PPV value is a drawback to 
the proposed method and now suggest an approach for improving it.  



As we have mentioned previously, the output from the upper level of the classifier 
is a window of predicted promoter activity. We now consider the size of the window 
as an indication of confidence in respect to the prediction. This leads to the ability to 
discard low confidence predictions. Because we are aggregating windows that are 
within 1000bp of each other, this allows for two possible approaches in respect to ap-
plying a window-size threshold; before aggregation and after. We present the results 
obtained from both approaches graphically in Figure 3.  

The most striking feature is that by applying a threshold of 1200, 1300 or 1400 bp 
to the window size before aggregation, we can achieve a PPV of greater than or equal 
to 70%. However, this comes at the cost of sensitivity, which falls to less than 15%. 
Whether this trade-off is worth it depends entirely on perspective: if the cost of false 
positives is paramount, then the answer may well be yes. It is also interesting to note 
that by applying a threshold of about 300bp, we can achieve an improvement in PPV 
for an almost negligible loss of sensitivity. A reasonable trade off is also apparent 
with a threshold of about 500bp, where PPV and Se of approximately 40% is 
achieved. It is also apparent that thresholding before aggregation favours PPV 
whereas after aggregation favours sensitivity. Intuitively, this is as one would expect. 
Because of the nature of the aggregation, it is possible that, for example, two small 
windows which are 900bps from each other may be aggregated into one large window 
of more than 1000bps. Hence, thresholding before aggregation favours large uninter-
rupted windows, which are more likely to represent actual promoters, while discard-
ing the interrupted windows which are less likely.  
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Fig. 3. The performance of the classifier when applying a post-processing step of discarding 
small windows. The window threshold is shown on the x-axis. We graph both sensitivity and 
positive predictive value for threshold application both before and after aggregation. 

 



4 Conclusions 

We have set out within this paper to address two distinct points. Firstly, we intended 
to demonstrate that a combined model of physico-chemical properties could be used 
for promoter prediction, improving the accuracy of using a single model. We have 
demonstrated this fact, showing an increase of approximately 2% over the best of the 
single models. We stress once again the importance of such a result in considering 
large datasets, or within applications where sensitivity is of importance.  

We have also explored the relative importance of the different properties in differ-
ent segments of the promoter in terms of predictive power by examining the attribute 
weighting of the support vector machine produced. Using these results, we produced a 
reduced model, which is faster but loses little in terms of accuracy. These two results 
combined demonstrate that this approach can be tailored for sensitivity by using the 
full combined model or for speed by using attribute pruned models.  

The second component of this paper has looked at how these approaches perform 
when confronted with large, real world problems. We showed that although the raw 
results of the SVM do not immediately appear encouraging, by post-processing the 
output, it is possible to predict promoter locations with a sensitivity of 55.4% and a 
PPV of 16.1%. By using a threshold approach to the window size, we also demon-
strated that a balanced 40% PPV and Se. was possible. Further to this, by modifying 
the threshold size, the approach can be tailored for either sensitivity or specificity. 
These results demonstrate that a promoter prediction technique based only on phys-
ico-chemical properties is possible and capable of performance that is competitive 
with established approaches. The use of the physico-chemical properties of DNA for 
promoter prediction is a promising direction for further research, both on its own and 
in conjunction with sequence based methods.  

5 Further Work 

There are several distinct directions to pursue as a result of this work. Firstly, 
Florquin, Saeys et al. [4] suggest that promoters be treated as distinctly separate 
groups. Within this work, we have not implemented this idea, treating all promoters 
as being the same. By learning separate classifiers for distinct types of promoters, im-
provements in sensitivity and PPV may be possible. Alternately, a simpler approach 
of retraining the classifier using the instances that were not correctly classified on the 
first pass may produce equivalent performance. There is also the question of how to 
combine these multiple classifiers.  

Bajic, Tan et al. [2] also suggest that the masking of repeats may improve the per-
formance of promoter prediction programs. They also present evidence to suggest that 
experiments run on single chromosomes may not be representative of results pro-
duced on the whole genome. Future work on this approach would require the explora-
tion of both these ideas: the application of repeat masker and larger-scale tests. 

Furthermore, we have presented proof that combined models can outperform single 
models, but have only examined a few possible combinations. Our results indicate 



that the combination of models may not be as simple as originally thought and a more 
thorough exploration is called for. 

Finally, we have shown that the application of physico-chemical properties to the 
problem of promoter prediction can produce competitive results on their own, but we 
are not advocating the abandonment of other approaches. A combined approach, em-
ploying these techniques and other complementary (possibly sequence related) ap-
proaches may produce better results. In particular, this approach is currently not 
strand specific. That is, predictions are equally likely to be on either strand. By em-
ploying sequence based techniques, this could be overcome, allowing a strand specific 
prediction to be made. 
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