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Abstract Evolved patterns of resource expenditure for

reproduction have resulted in a life history continuum

across species. A strictly capital-breeding strategy relies

extensively on stored energy for reproduction, whereas

income breeding uses energy acquired throughout the

reproductive period. However, facultative income breeding

has been shown in some classically capital-breeding ani-

mals, and was originally thought to provide a nutritional

refuge for smaller females incapable of securing sufficient

reserves during pre-partum foraging. We examined milk

composition and milk output for the Weddell seal to

determine to what degree lactation was aided by food

intake, and what factors contributed to its manifestation.

Milk composition was independent of maternal post-par-

tum mass and condition, but did change over lactation.

Changes were most likely in response to energetic and

nutritional demands of the pup at different stages of

development. During early lactation, females fasted and

devoted 54.9% of total energy loss to milk production.

Later in lactation 30.5% more energy was devoted to milk

production and evidence suggested that larger females fed

more during lactation than smaller females. It appears that

Weddell seals may exhibit a flexible strategy to adjust

reproductive investment to local resource levels by taking

advantage of periods when prey are occasionally abundant,

although it is restricted to larger females possessing the

physiological capacity to dive for longer and exploit dif-

ferent resources during lactation. This supports the

assumption that although body mass and phylogenetic

history explain most of the variation in lactation patterns

(20–69%), the remaining variation has likely resulted from

physiological adaptations to local environmental condi-

tions. Our study confirms that Weddell seals use a mixed

capital–income breeding strategy, and that considerable

intraspecific variation exists. Questions remain as to the

amount of energy gain derived from the income strategy,

and the consequences for pup condition and survival.

Keywords Capital breeding � Energy expenditure �
Income breeding � Leptonychotes weddellii � Milk energy

Introduction

Life history strategies reflect variation in the allocation of

an individual’s resources (i.e., time, effort and energy

expenditure) to competing life functions such as growth,

survival and reproduction. The expenditure for reproduction

can be broadly classified according to the temporal distri-

bution of energy acquisition and expenditure. At one end of
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the continuum, capital breeding relies extensively on stored

energy for reproduction, while at the other, income breeding

uses energy acquired throughout the course of the repro-

ductive period (Jönsson 1997; Stearns 1992). In mammals,

larger species tend to employ the capital-breeding strategy,

while smaller species generally rely on income breeding to

fuel reproductive costs (Boyd 2000; Trillmich and Weissing

2006). However, various other life history characteristics of

a species will determine the degree to which an animal is

likely to rely on stored ‘‘capital’’ for breeding (Bonnet et al.

1998), and the position of an organism along the capital–

income gradient will in turn be influenced by the particular

evolutionary context in which life history traits, such as

lactation length and size of offspring, develop.

Lactation is one of the major defining characteristics of

mammals and is an essential component of their repro-

ductive strategies. The physiology of lactation is

intertwined with that of reproduction itself, and the ‘‘lac-

tational capacity’’ of an individual, or species, relies on the

interaction between several physiological and environ-

mental factors (e.g., food availability, prey acquisition

efficiency) that determine maternal body condition during

foetal development and after parturition (Jenness 1986).

Although lactation imposes energetic stress on mothers, it

allows offspring to devote a higher proportion of energy

(from milk) to growth rather than maintenance (Pond

1977). The proportions of nutritive constituents in milk

differ greatly among species and vary during lactation

according to the particular reproductive strategy (e.g., rapid

development to offspring dependence vs. extended parental

care) and growth patterns of the offspring (Jenness 1986).

Species within the Suborder Pinnipedia (order Carniv-

ora) typify the extremes of the capital–income breeding

continuum, with females of the Family Phocidae (‘‘true

seals’’) generally following the capital strategy, while

females of the Family Otariidae (fur seals and sea lions)

follow the income strategy (Boyd 2000). Typically, phoc-

ids have a spatiotemporal separation between foraging and

reproduction, resulting in short, intense lactation periods

where milk is derived from maternal reserves and has high

lipid content (e.g., at times exceeding 50% in some spe-

cies—Hindell et al. 1994; Iverson et al. 1995a, b). Thus,

lactation allows prepartum foraging success to support pup

provisioning. Phocid provisioning is limited by these

maternal reserves, and fluctuation in energy acquisition

prior to the breeding season can influence both the duration

and magnitude of maternal expenditure, so that females

that forage successfully prior to birth will be able to

transfer more energy to offspring during lactation. This in

turn affects pup condition and survival (de Little et al.

2007; Hall et al. 2001; McMahon et al. 2000).

As a whole, phocids are categorized as capital breeders.

Despite this, some phocid species engage in feeding during

the lactation period (Bowen et al. 2001; Eisert et al. 2005;

Lydersen and Kovacs 1999), suggesting that these species

fall somewhere between the two extremes of the contin-

uum, and leading to the hypothesis that food intake during

this time provides an optional supplementation to body

reserves for nutritionally challenged individuals. If true, the

hypothesis predicts that income-like foraging should occur

when the physiological state of the largely capital-investing

mother is insufficient to see her pup through to indepen-

dence. Moreover, this raises questions regarding the

magnitude of this putative contribution, its benefits for pup

growth, body condition and post-weaning survival, and the

environmental contexts in which income supplementation

becomes more probable.

Weddell seals (Leptonychotes weddellii Lesson) offer a

unique opportunity to test predictions of a capital-breeding

species’ ability to adopt income-like reproductive behavior

through measures of lactation behavior and energetic

expenditure. They are one of the largest phocid species,

and given their extensive maternal reserves, it is generally

assumed that females should be able to sustain lactation

entirely from body reserves. However, the 5–6 week lac-

tation period (Wheatley et al. 2006a) is one of the longest

recorded for a phocid, and so increases the energetic

demands on the fasting female relative to other phocids that

have shorter lactation periods (see Trillmich 1996 for a

review). There is evidence that some females feed during

lactation (Eisert et al. 2005; Hindell et al. 2002), so we can

directly test hypotheses related to the magnitude and form

of the capital–income breeding gradient among individuals.

Previous work has hypothesized that a mother’s particular

combination of strategies will influence the delivery of

energy to her pup and its subsequent wean mass, condition

and survival probability (Wheatley et al. 2006a).

To measure the energetics of lactation effectively, the

mother and pup must be measured simultaneously to sep-

arate energy used for maternal maintenance from that used

for production and transfer of milk. The measurement of

milk energy output over the course of lactation is the most

direct assessment of total energy transfer from mother to

pup (Iverson et al. 1993). This, combined with body

composition changes, also reveal metabolic requirements

of the female during lactation. These measurements should

therefore contribute to predicting which females feed dur-

ing lactation and identifying the causes and consequences

of this behavior on pup condition and survival. We there-

fore examined an individual’s milk composition through

time, milk output and the extent to which lactation was

fueled by income (food intake) in Weddell seals.

Larger animals need a higher food density in the marine

ecosystem to achieve a positive energy balance on short

foraging trips (Boyd 1998; Trillmich and Weissing 2006),

and travel time between breeding and feeding areas
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influences most maternal behavior (Trillmich and Weissing

2006). Consequently, we predict that foraging by Weddell

seal females during pup rearing makes a relatively small

contribution to the total energy budget of lactation. We

hypothesized that there were two alternatives to account for

feeding in females: (1) similar to some small phocids

(Bowen et al. 2001), smaller or ‘‘lipid-poor’’ female

Weddell seals will follow a capital breeding strategy at the

beginning of lactation and later supplement maternal

reserves with income-based provisioning as body reserves

are depleted, while larger females sustain lactation entirely

through capital reserves; or (2) large-bodied females will

be able to engage in foraging because they have attained a

certain threshold size that allows them to exploit resources

(through increased dive durations) that might not be

available to smaller females. We also predict these differ-

ences in mean reproductive strategy will have detectable

consequences on pup growth rate and condition: (1) if

foraging is energetically expensive, then small females will

only engage in it when essential for their pup’s develop-

ment, and pups will be in relatively poorer condition

relative to pups of larger females who have enough energy

to support the costs of lactation; and (2) if large females

forage, then their pups should be in better condition than

predicted by maternal reserves alone.

Methods

Field procedures

We studied breeding Weddell seals at Hutton Cliffs, East

Antarctica (77�510S, 166�450E) during the austral summer

(October–December) of 2002 and 2003. Thirty mother–pup

pairs in 2002 and a different 25 pairs in 2003 were captured

1–6 (mean ± standard error = 3.8 ± 0.22) days post-par-

turition (dpp). Individual females were identified by flipper

tags attached in previous years and pups born to study

females were marked with hind flipper tags soon after birth

as part of a long-term tagging study (Hadley et al. 2006).

Age was known for 19 females in 2002 and 21 females in

2003 (range 6–21 years). Once captured, each female was

restrained and chemically immobilized as described in

Wheatley et al. (2006b). Females were weighed to the

nearest 1 kg, and body length and axial girth measurements

recorded. Each pup was weighed to the nearest 0.5 kg and

length and girth measured.

Sample collection

Body composition, water flux rates and milk intake

were determined using hydrogen isotope dilution at post-

parturition (PP) and end-lactation (EL; 36–38 dpp; mean ±

SEM 36.9 ± 0.26). After immobilization of females, a

10-ml blood sample was collected to measure background

isotope levels. Immediately after, a pre-weighed dose (to

the nearest 0.1 mg) of approximately 222 MBq of tritiated

water (HTO) was administered to each female. Due to a

shortage of HTO at the beginning of the 2002 field season,

ten females were administered a dose of deuterium oxide

(HDO, specific concentration 99.8%) at the PP capture

while HTO was used for all other females and the EL

captures (Wheatley et al. 2006a). In 2003, mother–pup pairs

were recaptured at mid-lactation (ML; 21–22 dpp),

weighed and measured with blood and milk samples taken

(n = 25). At EL, following an initial blood sample, isotope

was re-administered to the mother (n = 11) and she was

measured and sampled as with the PP capture. Body com-

position was measured for all pups (n = 25) at PP in 2003

and for 25 and 22 pups at EL in 2002 and 2003, respec-

tively. Approximately 74 MBq of HTO was administered in

2002, and a 10 ml dose of HDO (specific concentration

99.8%) in 2003 to each pup. A second blood sample (10 ml)

was taken from all animals 150 min on average after initial

injection to determine enrichment level.

Milk samples were collected using a modified 50-ml

syringe approximately 10–15 min after an intravenous

injection of oxytocin (1 ml, 10 IU ml-1), which was

administered during immobilization. All samples were

stored at -20�C until laboratory analysis.

Laboratory and data analyses

Plasma samples were analyzed for HTO activity using

liquid scintillation spectrometry as described in Wheatley

et al. (2006a). Mass spectrometric analysis of deuterium

enrichment was done in triplicate using H2 gas and a

platinum-on-alumina catalyst according to the method

described in Scrimgeour et al. (1993). Milk samples

(n = 59) were thawed, homogenized and analyzed for

proximate composition (water, protein, and lipid content).

Carbohydrate content has been found to be negligible in

Weddell seals (Tedman and Green 1987), so its consider-

ation and analysis were regarded as unnecessary. Water

content was analyzed in duplicate by drying a weighed

subsample (0.5–1.0 g) in an 80�C oven for 96 h. Protein

content was determined by spectrophotometry according to

the method of Clayton et al. (1988), modified for biological

fluid with bovine serum albumin as a standard. Milk lipids

were quantitatively extracted using a modified (overnight

extraction) Bligh and Dyer (1959) one-phase methanol/

chloroform/water extraction (2:1:0.8, v/v/v). Iverson et al.

(2001) found a significant difference in lipid extraction

between the Bligh and Dyer and the Folch methods;
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therefore, we repeated extractions on some samples from

PP (n = 4) and ML (n = 4) captures using a modified

version of the Folch et al. (1957) method for comparison.

Isotope dilution overestimates total body water (TBW)

by 4.0% for HTO and 2.8% for HDO in grey seals (Halic-

hoerus grypus—Reilly and Fedak 1990). Therefore, isotope

dilution space was corrected for using these values. Body

composition was estimated for mothers and pups from body

mass and TBW according to the equations of Reilly and

Fedak (1990). Total body water at mid-lactation was esti-

mated by interpolation, assuming that the decrease in water

pool mass of the female was linearly proportional to her

mass loss and that the increase in each pup was proportional

to mass gain (Iverson et al. 1993; Mellish et al. 1999).

Therefore, TBW values at mid-lactation were restricted by

the number of animals captured at end-lactation.

Total water influx (TWI) was calculated using Eq. 6 in

Nagy and Costa (1980) based on TBW changing linearly

with time. Milk intake (MI) was estimated according to the

equation of Oftedal and Iverson (1987):

MI ¼ 100� TWIþ ð1:07� LdÞ þ ð0:42� PdÞ
Wm þ ð1:07� LmÞ þ ð0:42� PmÞ

ð1Þ

where Ld and Pd are the daily fat and protein deposition rates

(g day-1), respectively, over the lactation period and Wm,

Lm and Pm are the water, lipid and protein contents (%), of

milk, respectively. The gross energy contents of tissues and

milk were calculated using values of 39.3 and 23.6 MJ kg-1

for lipid and protein, respectively (Blaxter 1989). Although

we captured 22 pups at the end of lactation, milk intake

estimation was restricted by milk samples (n = 10).

A series of standard generalized linear and mixed-effects

models (GLM; GLMM) were constructed to examine

intraspecific differences of females and pups. Candidate

models were influenced by previous knowledge of rela-

tionships (or lack thereof) between some model parameters

(e.g., no relationship between age and maternal post-partum

mass; Wheatley et al. 2006a). Examination of the residuals

for all models determined the statistical error distribution

and link function that were most appropriate. Model

selection was based on Akaike’s Information Criterion

corrected for small samples (AICc, Burnham and Anderson

2002). The information-theoretic weight of evidence (w+i)

for each predictor was calculated by summing the model

AICc weights (wi) over all models in which each term

appeared. However, the w+i values are relative, not abso-

lute, because they will be [0 even if the predictor has no

contextual explanatory importance (Burnham and Anderson

2002). To judge which predictors were relevant to the data

at hand, a baseline for comparing relative w+i across pre-

dictors was required, so we randomized the data for each

predictor separately, recalculated w+i, and repeated this

procedure 100 times for each predictor. The median of this

new randomized w+i distribution for each predictor was

taken as the baseline (null) value (w+0). For each term the

absolute weight of evidence (Dw+) was obtained by sub-

tracting w+0 from w+i, and predictors with Dw+ of zero or

less have essentially no explanatory power (Burnham and

Anderson 2002). Specific model comparisons were based

on the information-theoretic evidence ratio (ER), which is

equivalent to the AICc weight (w) of the full model divided

by the w of the null (intercept) model (Burnham and

Anderson 2002). Higher ER values indicate higher likeli-

hoods of the tested model relative to the null. We also

calculated the percent deviance explained (%DE) by each

model used as a measure of model goodness-of-fit. All

statistical analyses were done using the R Package (ver.

2.3.1; R Development Core Team, 2004). Values are pre-

sented as mean ± 1 SE of the mean (SEM) unless

otherwise stated. See Table 1 for a list of abbreviated terms.

Results

Milk composition

Milk samples (n = 8, from PP and ML) had an average

lipid content of 48.7 ± 3.0% with the modified Folch et al.

Table 1 List of abbreviations used throughout the text

Abbreviation Measurement

%DE Percent deviance explained by each model

%L Percent lipid content of milk

%ME Percent milk energy

%P Percent protein content of milk

%W Percent water content of milk

AICc Akaike’s Information Criterion corrected

for small samples

dpp Days post-parturition

Dw+ Predictor weight of evidence

EL End-lactation

ER Information-theoretic evidence ratio

GLM Generalized linear model

GLMM Generalized linear mixed-effects model

HDO Deuterium oxide

HTO Tritiated water

MI Milk intake

ML Mid-lactation

MPPM Maternal post-partum mass

PP Post-parturition

SEM Standard error of the mean

TBLMPPM Total body lipid at post-partum

TBPMPPM Total body protein at post-partum

TBW Total body water

TWI Total water influx
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(1957) method, and 48.1 ± 3.0% with the (overnight

extraction) Bligh and Dyer (1959) method. Comparison

between the two revealed no evidence for a difference

(ER = 0.37).

Milk composition changed over the course of lactation

(see the table in the ‘‘Electronic supplementary material’’),

and individual variability in composition can be seen at

each stage of lactation (Fig. 1). Protein (%P) increased

throughout lactation, while lipid (%L) and energy content

increased slightly to ML and then decreased again (Fig. 1).

The number of days elapsed since parturition (dpp)

explained 63.2% of the variation in protein (n = 60). For

%L, water (%W) and energy, dpp explained more of the

variation than the null model (ER: %L = 5.06 9 1013;

%W = 2.55 9 1015; energy = 1.63 9 1021; n = 60); how-

ever, the goodness-of-fit of these models was lower (%DE:

1.19, 9.79 and 9.92, respectively). Milk composition at

end-lactation from one female (Pu194) was excluded from

averages and analyses because there was an indication that

weaning may have occurred (%L = 8.2, %P = 18.8,

%W = 72.1).

There was no evidence that maternal post-partum mass

(MPPM), total body lipid stores (TBLMPPM) or total body

protein stores (TBPMPPM) affected milk composition (%L,

%P, %W and energy content) at post-partum (Dw+ B 0 for

all terms; n = 25).

Milk output and energy flux

For ten females with body and milk composition data at

post-parturition, and milk and estimated body composition

data at mid-lactation, we calculated total energy loss and

total milk energy output to determine the proportion used

for metabolism versus milk energy (%ME) to the pup. This

was repeated for eight of the females from mid-lactation to

end-lactation (Table 2). If the decrease in water pool mass

of the female was not linearly proportionally to her mass

loss (as assumed), milk intake may be underestimated,

affecting pup energy gain calculations.

In early lactation, average %ME was 54.9 ± 0.04% of

the total energy lost by the female (n = 10). Between mid-

lactation and end-lactation, %ME exceeded that of total

energy lost by the female in almost all cases (Table 2).

From evidence that females at this location do not feed

during the first three weeks of lactation (Eisert et al. 2005),

and that %ME (PP–ML) was similar to that of non-feeding

southern elephant seals (57.2%; Mirounga leonina, Hindell

and Slip 1997) and northern elephant seals (59%; Mir-

ounga angustirostris, Costa et al. 1986), we considered the

%ME from post-parturition to mid-lactation to represent

that of a non-feeding individual. We assumed that percent

milk energy values above this (between ML and EL) rep-

resented an external energy source (i.e., mother feeding).

We were unable to calculate metabolic rates and therefore

could not quantify energy acquired from feeding. Instead,
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Fig. 1 Changes in milk composition of Weddell seals sampled at

post-parturition (n = 25), mid-lactation (n = 24) and end-lactation

(n = 10)

Table 2 Energy losses and transfers of Weddell seals during lacta-

tion in 2003

Female Total

energy

loss (MJ)

Total milk

energy

output (MJ)

Milk

energy

(%)

Energy

transfer

efficiency

(%)a

Feeding

index

PP–ML

Pu761 2,892.9 1,151.1 39.8 34.6 –

W636 3,508.2 1,511.4 43.1 34.8 –

Pu194 2,578.6 1,264.4 49.0 32.3 –

Y4295 2,146.5 1,058.9 49.3 33.9 –

Pu114 2,821.4 1,466.6 52.0 34.7 –

P871 2,259.9 1,184.9 52.4 47.7 –

P130 1,594.7 939.7 58.9 42.9 –

Y965 3,149.3 1,914.3 60.8 41.1 –

Y536 1,684.6 1,048.9 62.3 43.9 –

Pu517 1,381.5 1,127.2 81.6 64.2 –

ML–EL

Y965 1,567.2 1,531.9 97.7 33.1 0.61

Y536 993.2 1,183.9 119.2 35.7 0.91

Pu114 1,758.9 1,784.9 101.5 30.1 0.95

P130 1,452.8 1,936.3 133.3 47.4 1.26

Pu517 911.4 1,735.4 190.4 51.7 1.33

W636 2,280.6 2,455.9 107.7 36.0 1.50

P871 1,849.8 2,640.0 142.7 55.9 1.72

Pu761 2,258.8 2,867.9 127.0 37.2 2.19

a Pup energy gain/female energy loss 9 100
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we calculated a ‘‘feeding index’’ for the second half of

lactation as:

%MEML�EL �%MEPP�ML

%MEPP�ML

ð2Þ

which represents the number of times that %ME exceeded

that of non-feeding individuals (Table 2). This allowed us

to rank individuals by the relative amount of feeding. Total

energy loss (MJ) was 69.1 ± 0.05% lower in the second

half of lactation (n = 8), while total milk energy output

(MJ) was 30.5 ± 0.10% higher (n = 8). Therefore,

although female energy loss was lower in the second half

of lactation, more energy was transferred to the pups.

There was a strong correlation between %ME and

energy transfer efficiency (pup energy gain/female energy

loss; ER = 284.2; n = 18). This relationship was used to

estimate %ME for females captured in 2002, for which

there were no milk data (Wheatley et al. 2006a, Table 3). A

feeding index for the last half of lactation was also calcu-

lated using the average %MEPP - ML for non-feeding

animals from 2003 (54.9%, Table 3). Milk intake by pups

was also a measure of milk output of mothers. The most-

parsimonious GLM testing for the effect of age, MPPM

and TBLMPPM on maternal milk output (kg day-1) from

post-parturition to mid-lactation included MPPM and age,

although only MPPM explained an important component of

the variation in this model (Dw+MPPM = 0.216, Dw+TBL =

0.026, Dw+age = 0.000; n = 29), with milk output

increasing with MPPM. Daily milk output increased 34.7%

from 3.2 ± 0.19 kg day-1 in early lactation to 4.9 ±

0.37 kg day-1 in late lactation (Table 4). This coincided

with an increase in daily milk energy output of 35.8%, or

64.4 ± 4.24 MJ day-1 in early lactation and 100.3 ± 7.57

MJ day-1 in late lactation. However, the energy stored per

day (as body tissue) by pups decreased by an average of

3.9% between early and late lactation; this equated to a

total decrease in energy storage efficiency (energy stored/

energy gained) of 59.7% (Table 4).

The most parsimonious model testing for the effect of

MPPM, TBLMPPM and year on total %ME included

TBLMPPM and year; however, year was the only variable

with information-theoretic support (Dw+year = 0.183;

Dw+ B 0.000 for all others; n = 29). Model averaging

estimated that females in 2002 had 4.1% higher %ME than

females in 2003. The most parsimonious model testing for

the effect of age, MPPM and year on feeding index

included age and MPPM; however, MPPM was largely

responsible for driving the relationship (Dw+MPPM =

0.721, Dw+age = -0.022, Dw+year = -0.047; n = 43),

indicating that larger females fed more during lactation

(Fig. 2). There was also a strong positive relationship

between feeding index and daily mass gain (kg day-1)

of pups (feeding index = 0.79 9 mass gain + 0.85;

R2 = 0.44; n = 43).

Due to the increase in milk protein throughout lactation,

we measured whether there was a relationship between

total body protein depletion (kg) from the female’s body

stores and the feeding index (for both years). We found a

positive linear relationship (ER = 10.25, %DE = 20.3%;

n = 29), indicating that females who lost more protein had

a higher rate of feeding.

Discussion

Although we could not estimate the absolute amount of

feeding that occurred (total MJ), we were able to rank

females according to their relative feeding frequencies

during the latter part of lactation. We found that there was

up to a five-fold difference between individuals in the

feeding index (Tables 2, 3), and that larger (mass) females

fed more frequently, but there was no difference between

years. Dive duration increases with body mass (Kooyman

1989; Le Boeuf 1994), so a plausible explanation for the

observed trend is that larger females are able to exploit

resources in McMurdo Sound more efficiently than their

Table 3 Percent energy to pup in 2002, estimated from correlation

with energy transfer efficiency in 2003

Female Post-partum

mass (kg)

Energy transfer

efficiency (%)

Milk

energy (%)a
Feeding

indexb

Y3434 430.7 22.4 49.6 0.44

Pu514 410.1 36.6 72.8 0.91

Y4664 420.9 37.4 74.2 0.93

W464 503.6 39.3 77.2 1.00

Pu894 427.7 40.4 79.0 1.03

Y1463 442.1 40.8 79.8 1.05

Y4524 457.5 40.9 79.9 1.05

Pu526 420.9 41.3 80.6 1.06

Y2149 479.7 41.6 81.1 1.07

Y4876 471.7 43.2 83.6 1.12

Y1433 495.8 43.6 84.3 1.14

R957 429.3 43.6 84.4 1.14

Y1933 448.5 46.8 89.6 1.24

P282 432.2 48.7 92.7 1.30

R552 488.8 52.9 99.6 1.44

Y3298 481.6 55.0 103.0 1.51

Y481 482.8 55.6 104.0 1.53

Pu661 408.7 55.7 104.2 1.53

P244 419.7 55.8 104.3 1.54

Y2310 489.3 57.7 107.5 1.60

Y3243 456.9 60.3 111.7 1.69

a Average for the entire lactation period
b Estimate for the second half of lactation
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smaller counterparts, especially where population density

(Stirling 1969) and intraspecific competition is high

(Hindell et al. 2002). In other words, only after attaining a

certain threshold body size and condition will the costs

of extra foraging during late-lactation be outweighed by

the additional energy acquired for milk production. The

positive relationship we observed between the maternal

feeding index and daily mass gain of pups may support the

hypothesis that larger females can deliver relatively more

energy to their pup than predicted by their body reserves

alone (i.e., the rich getting richer), or be confounded by the

observation that large females (with a higher feeding

index) have the capacity to deliver more energy to their

pup (Wheatley et al. 2006a), regardless of feeding. The

lack of an age effect suggests that reproductive experience

is not as important as maternal mass per se in determining

the delivery of energy to the pup given the lack of corre-

lation between body size and age found previously

(Wheatley et al. 2006a). Therefore, smaller females not

only had less capital available to pups at the onset of lac-

tation, they were also less capable of supplementing that

disadvantage with late-lactation feeding (i.e., the poor

remaining poor). We conclude then that the lactation-

feeding phenomenon in this mainly capital-breeding

mammal does not provide an effective nutritional refuge

for smaller females incapable of securing sufficient

reserves during their pre-parturition foraging trips; rather, it

appears to be a flexible strategy employed by those indi-

viduals with the physiological capacity to supplement their

capital reserves with income feeding.

Although most (20–69%) variation in pinniped lactation

patterns can be explained by phylogenetic history and body

size, the remaining variation has likely resulted from

adaptations to local environmental conditions (Ferguson

Table 4 Water flux and milk intake of Weddell seal females and pups. Statistical comparisons between the time periods are given through

information-theoretic evidence ratios (ER)

Post-parturition to mid-lactation Mid-lactation to end-lactation ER

Mean SEM Mean SEM

(n = 10) (n = 10)

Females

Mass loss (kg day-1) 4.7 0.25 3.7 0.23 6.16

Water efflux (ml kg-1 day-1) 13.4 0.62 23.8 1.87 3.83 9 104

Milk water output (kg day-1) 1.3 0.08 1.9 0.17 4.15

Energy expenditure (MJ day-1) 153.3 14.18 104.1 11.82 5.61

(n = 21) (n = 9)a,b

Pups

Mass gain (kg day-1) 2.0 0.12 1.0 0.09 1.26 9 103

Milk intake (kg day-1) 3.2 0.19 4.9 0.37 10.22

Milk lipid intake (kg day-1) 1.5 0.10 2.2 0.17 7.11

Milk protein intake (kg day-1) 0.3 0.02 0.7 0.06 587.52

Milk energy intake (MJ day-1) 64.4 4.24 100.3 7.57 14.72

Energy stored (MJ day-1) 40.6 2.72 39.0 2.97 0.38

Storage efficiency (%) 63.6 2.30 39.0 0.89 4.94 9 106

a Milk composition at end-lactation from female Pu194 was excluded from averages
b Sample size dependent on the number of milk samples collected
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Fig. 2 Positive relationship between post-partum mass (x) and

feeding index (y); y = 0.003x - 0.37, R2 = 0.26, n = 43. Post-partum

mass was largely responsible for the influence on feeding index

(Dw+MPPM = 0.721)
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2006). It appears that differences in life history strategies

exist within lactating Weddell seals and these have resulted

from several interrelated features: (1) relatively precocial

pups that are able to swim and dive during lactation, (2)

one of the longest lactation periods of any phocid, and (3)

milk protein increases throughout lactation, depleting

maternal body stores. These factors may influence the

extent to which each female relies on stored energy to fuel

lactation and the physiological capacity to forage later in

lactation. In some respects, the existence of flexible for-

aging strategies in Weddell seals questions the true nature

of the phocid lactation continuum, and it also suggests that

other species may also frequently break out of their phys-

iological pigeon-hole to engage in ‘‘anomalous’’ lactation

behaviors.

The dichotomy between capital and income breeders is a

scheme that is increasingly used to understand the life

history strategies of birds (Gauthier et al. 2003; Meijer and

Drent 1999), reptiles (Bonnet et al. 1998), parasites (Casas

et al. 2005) and pinnipeds (Boyd 1998; Trillmich and

Weissing 2006). The demographic cost of reproductive

investment (i.e., decreased survival and future reproduction

as a function of current reproduction) is a pivotal trade-off

around which life histories are thought to evolve (Harsh-

man and Zera 2006; Stearns 1992). Our results provide

additional insight into the selective forces driving the

evolution of particular strategies (at least, in mammals),

and suggest that local environmental conditions may alter

evolved behaviors to the point where individuals have

some capacity to adapt to temporally variable resource

availability beyond that predicted by their phylogenetic

origins.

The results of our study therefore assist in our under-

standing of the trade-offs associated with reproductive

strategies and life history theory in general. The pattern of

milk composition in Weddell seals that we described is

different to that reported by Tedman (1980), Tedman and

Green (1987) and to that of other phocid seals. Tedman

(1980) found no evidence for milk composition changes

throughout lactation; however, his analysis was based on

cross-sectional data, low sample sizes (total n = 11), and

high variance. Our study was more detailed and longitu-

dinal, revealing overall that milk composition does indeed

change over the course of lactation. Lipid content at PP

(39.9%) was higher than that reported for southern ele-

phant seals (16.1%; Hindell et al. 1994) but similar to that

of harbour seals (40.8%; Phoca vitulina, Lang et al. 2005)

and grey seals (34.5%; Mellish et al. 1999). Rather than a

gradual increase throughout lactation, we found instead

that lipid increased to mid-lactation and then declined

toward post-parturition levels. Protein changes (low post-

parturition, then tripling) were the least similar to any

other seal species, and the large increase and resultant

muscle growth may balance increased fat deposition due

to higher energy intake in pups early in lactation.

Although there was individual variability in milk compo-

sition (at parturition, see Fig. 1), it was not related to

maternal post-partum mass or body composition. How-

ever, maternal post-partum mass did influence milk output

(kg day-1), with larger females producing more milk. This

was consistent with the previously reported positive rela-

tionship between maternal post-partum mass and pup mass

again (Wheatley et al. 2006a).

The observed pattern of milk composition changes in

Weddell seals helps explain why they have a longer lac-

tation period than similar-sized phocids. For instance, at

parturition, mothers must devote resources to producing

lipid-rich milk for the pup’s thermoregulatory needs, fol-

lowed by a later increase in protein required for lean tissue

growth. Protein values at mid- and end-lactation were

similar to those reported for the income-breeding Antarctic

fur seal (Arctocephalus gazella—Arnould and Boyd 1995)

late in lactation. Therefore, this need for protein later in

lactation may require females to feed rather than deplete

their own stores (i.e., muscle), as well as influence total

lactation length. Our measures of milk output and storage

efficiency were similar to those measured by Tedman and

Green (1987) averaged over the entire lactation period;

however, we have demonstrated that changes occur during

lactation. Milk output increased over lactation, similar to

other species (Lydersen and Kovacs 1996; Mellish et al.

1999). In contrast, the rate of pup mass gain decreased.

This may be the result of reduced storage efficiency and

higher energy expenditure of pups that engage in swim-

ming and diving, a phenomenon not normally observed in

pre-weaned pups of most other phocids.

Milk energy represented the largest proportion of female

energy expenditure during lactation, and fatter females

were able to devote a higher percentage of their energy loss

to milk production than their own metabolic requirements.

This may result from lower lean body mass, culminating in

a lower metabolic overhead that allows for more energy to

be devoted to milk production. Through differences in

maternal post-partum mass and expenditure during lacta-

tion, Wheatley et al. (2006a) provided evidence for

environmental variation between the two years of study

(2002, 2003). Similar results were found here where the

year term was the only variable found to influence milk

energy delivery for the entire duration of lactation, with

more energy (4.1%) delivered in 2002. This was not related

to increased foraging success in one year (2002), but based

on energy transfer efficiency rates (Wheatley et al. 2006a).

Accordingly, it may be related to females devoting more

time foraging in 2003, albeit with little success, as main-

tenance expenditure (i.e., diving costs) dominated milk

production in that year.
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We conclude that the income acquired during lactation

in this predominantly capital-breeding mammal is rela-

tively nominal because milk lipid values late in lactation

were similar to those at parturition, mass loss rates of the

females were not different between early and late lactation,

and pup mass gain was lower than at the beginning of

lactation. Although differences did exist in the amount of

feeding occurring among individuals, effects on ‘‘lacta-

tional capacity’’ were small and support the hypothesis that

large Weddell seal mothers are more opportunistic feeders

during lactation when they can add energetic value to their

expenditure. This strategy favors fast delivery rates of

energy over a short period of time, but provides the

behavioral and physiological plasticity to maximize off-

spring survival via supplementary (income-fueled)

expenditure when conditions are suitable.
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