

Available online at www.sciencedirect.com

JOURNAL OF CHROMATOGRAPHY A

Journal of Chromatography A, 1184 (2008) 504-541

www.elsevier.com/locate/chroma

On-line sample preconcentration in capillary electrophoresis Fundamentals and applications

Review

Steven L. Simpson Jr.^a, Joselito P. Quirino^b, Shigeru Terabe^{c,*}

^a University of California, Berkeley, School of Public Health, Berkeley, CA 94720, USA

^b University of Tasmania, School of Chemistry, Australian Centre for Research on Separation Science, Hobart, Tasmania 7001, Australia

^c Emeritus Professor, University of Hyogo, Graduate School of Material Science,

Kamigori, Hyogo 678-1297, Japan

Available online 5 November 2007

Abstract

On-line preconcentration is one of the aspects of analytical method development using capillary electrophoretic techniques. The choice of the sample matrix alone can significantly alter both method sensitivity and separation efficiency. The recent trend to detect samples in narrower separation vessels also necessitates the need to improve detection sensitivity. The desire to detect very low levels of analytes using limited amounts of sample from biological specimens and the high separation efficiency obtainable using very large injections compared to classical small size injections also adds to this list. Indeed, one of the rich areas of research in the capillary electrophoresis field is on on-line sample preconcentration. More than 400 published research articles gathered from the http://www.webofscience.com from the year 2000 described a form of on-line preconcentration in capillary electrophoresis. This review provides a comprehensive table listing the applications of on-line preconcentration in capillary electrophoresis.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Field-enhanced sample stacking; Transient isotachophoresis; Dynamic pH-junction; Sweeping

Contents

1.	Introduction	. 505
2.	Background considerations	505
3.	On-line sample preconcentration techniques	. 506
	3.1. Field-enhanced sample stacking	
	3.2. Transient isotachophoresis	. 507
	3.3. Dynamic pH junction	508
	3.4. Sweeping	. 508
	3.5. Combination of different preconcentration techniques	. 509
4.	Applications of on-line sample preconcentration in capillary electrophoresis	
	4.1. Biological applications	. 531
	4.2. Environmental	. 532
	4.3. Food analysis	533
	4.4. Pharmaceuticals	
	4.5. Toxicological/forensic	534
5.	Conclusion	. 536
	References	. 536

^{*} Corresponding author. Tel.: +81 77 583 4622; fax: +81 77 583 4622. *E-mail address:* terabe@gaia.eonet.ne.jp (S. Terabe).

^{0021-9673/\$ –} see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.chroma.2007.11.001

1. Introduction

Capillary electrophoresis (CE) is now a mature technique for analytical separation and it has several advantages over other separation techniques: high efficiency separation, minimum requirements of sample and chemical amounts, almost no need of the use of organic solvents. Although CE is popular among academia, it has not been widely accepted among industry yet as a routine analytical method except for some specific applications such as DNA and protein analysis. One of the disadvantages of CE is generally thought to be poor concentration sensitivity of photometric detectors, which are the most popular among CE detectors. Since the volume or length of the injected sample zone in capillary is very small (nL) or short (mm), it is essential to employ on-capillary detection methods not to deteriorate separation efficiency. On-capillary detection causes a short pathlength of the light, which is nearly equal to the diameter of the capillary (50–100 μ m), less than 1/100 of the conventional detection cell used in high-performance liquid chromatography (HPLC). Therefore, the concentration sensitivity of the UV detector in CE is much lower than that in HPLC.

To solve the problem of low concentration sensitivity in CE, several techniques have been developed. One is the use of high sensitivity detectors such as laser-induced fluorescence (LIF), chemiluminescence or electrochemical detectors: LIF and chemiluminescence detectors can increase sensitivity more than 1000-fold than that of the conventional absorbance detector, while electrochemical detectors do not provide very high concentration sensitivity but they can be used with the minimum detection volume as low as tens of fL. The extended pathlength capillary with bubble cell or Z-type cell is available for absorbance detectors to increase sensitivity up to 10-fold. Another is the sample preconcentration before (off-line) or after (on-line) sample injection. The off-line technique or sample pretreatment is popularly employed in combination with the sample extraction in analytical separations such as gas chromatography (GC) or HPLC: liquid-liquid extraction (LLE) or solid-phase extraction (SPE). The concentration efficiency is rather limited up to 100-folds in these sample pretreatments because of difficult handlings of large sample volumes. For example, the analyte is extracted from a 10 mL sample solution and concentrated to 0.1 mL, giving 100-fold concentration. While on-line sample preconcentration can be performed just by injecting a large volume of sample solution without modification of the instrument and the analyte can be focused into a minimum volume inside the capillary. Therefore, on-line sample preconcentration is a useful technique to improve the concentration sensitivity of the detector by taking advantage of small sample volume requirement in CE. The final volume of the sample subject to the CE analysis is usually in the order of nL and off-line handling of these small volumes needs special skills.

On-line sample preconcentration is a very useful technique in CE, where a larger volume of the sample solution compared to the conventional run is introduced into the capillary by pressurized or electrokinetic methods and the analytes in a long sample zone is focused into a narrow zone before separation. The principle of most techniques is based on the velocity change of the

analytes between the sample zone and the separation solution zone, while conventional CE separations are performed in a homogeneous free solution and the migration velocity is constant under a constant applied voltage. The change in migration velocity is caused by the change in electric field strength between the sample solution and separation zone or the change in effective charge on the analyte. Some preconcentration techniques such as sweeping are based on the chromatographic principle, that is, the migration velocity is different either the analyte is complexed by the pseudostationary phase or free from the pseudostationary phase. A complexing reagent that forms a complex with the analyte can be also used for sweeping.

The background for several on-line sample preconcentration techniques are discussed in this article but off-line techniques are not described. The preconcentration techniques caused by molecular sieving effect in gel electrophoresis are also not described. Transient isotachophoresis (tITP), field enhanced (although the term "field-amplified" is more popularly used, "field-amplified" is not a suitable philological term for the electric field strength and "field enhanced" is used in this article) sample stacking, dynamic pH junction, and sweeping are described. The in-capillary solid-phase extraction techniques are not discussed but the applications of the techniques are included in this article. It should be mentioned that the concentration of the analyte must be high enough to be detectable by absorbance inside the detector cell even if a diluted sample solution is injected, or the total amount of the analyte injected must be similar to that in conventional CE even by employing on-line sample preconcentration techniques. However, in some examples, the peak width becomes very narrow by on-line preconcentration techniques compared with the conventional CE and the total amount of the analyte injected can be reduced (see later discussion).

On-line sample preconcentration in CE is a topic that attracted much attention last 10 years and several review articles were published even after the year 2000 [1–15]. The article aims to introduce on-line sample preconcentration techniques with an emphasis on the mechanism and advantages and disadvantages of each technique. We also try to tabulate the results from just over 400 papers published on this topic since the year 2000, summarized in a table.

2. Background considerations

It may be interesting to compare the column or capillary volume between HPLC and CE: an HPLC column of 15 cm \times 4.5 mm I.D. has an inside volume of 1.7 mL and mobile phase volume may be 1.2 mL if we assume mobile phase volume is 70% of the column volume. The detector cell volume is about 5–10 µL for the photometric detector. A typical capillary used in CE is 50 cm \times 50 µm I.D., which gives about 1 µL inside volume, while the detector cell volume is typically less than 1 nL. The relative cell volume to the column volume in HPLC seems larger than that of CE but it should be remembered that a separated zone is diluted by the mobile phase by a factor of (retention factor +1) when the analyte is eluted out from the column. The sample volume is few µL in HPLC, while approximately nL in CE. The relatively low sample volume in CE is required to keep high efficiency separation: an extra column contribution of the sample zone length, $(1/12)l_{inj}^2$, must be kept lower than 10% (preferably less than 5%) of the total variance of the separation, σ_{total}^2 , not to deteriorate the high separation efficiency in CE, where l_{inj} is the sample zone length injected. For N = 250,000, where N it the plate number, σ_{total}^2 is 1 mm² and hence, l_{inj} must be less than 1 mm. This will be discussed again in the following sections.

Two types of sample injection methods are available in CE, pressurized (or hydrodynamic) and electrokinetic. The former is more widely accepted, where the sample volume injected can be precisely estimated and any analytes including neutral ones are introduced keeping the same composition as that of the sample solution. The amount injected can be controlled by changing pressure and time. If the viscosity is significantly different between the sample solution and the running solution or background solution (BGS), the sample volume injected will not linearly proportional to the injection time and any calibration must be employed to know exact amount injected. To inject a large sample volume for on-line sample preconcentration, it takes few minutes. The latter is employed in capillary gel electrophoresis and capillary electrochromatography because the former technique is not applicable. The amount of the analyte injected is related to the electrokinetic velocity, which is a sum of electroosmotic velocity and electrophoretic velocity. The analyte having a shorter migration time will be injected more than that having a longer migration time. It is possible to inject more amounts of analytes in electrokinetic injection by a prolonged injection time than those by pressurized injection when the migration velocity of the analyte is faster than the electroosmotic velocity. It should be noted that even during electrokinetic injection, the electrolysis of water proceeds and the pH of the sample solution may be changed during the prolonged injection, causing change in electrophoretic velocity of the analyte in the sample solution particularly because the sample solution is usually not pH buffered. It should be also mentioned that the depletion of the analyte or exhaustive injection will occur in prolonged injection in the electrokinetic injection. An advantage of the electrokinetic injection is the possible selective injection of analytes because only charged analytes can be successfully injected by this technique. That is, the analytes having higher pK_a than the pH of the sample solution can be efficiently injected at positive polarity and vice versa.

The maximum sample volume that can be injected by pressure is limited less than the capillary volume: even when a highly efficient preconcentration technique is employed, while more than 10% of the effective length (from injection front to the detector) of the capillary must be available for the CE separation. Therefore, concentration efficiency with pressurized sample injection is limited by the capillary length. Although the plate number in CE does not depend on the capillary length, as given by [16]

$$N = (\mu_{\rm ep} + \mu_{\rm eo})V/2D \tag{1}$$

where μ_{ep} and μ_{eo} are electrophoretic and electroosmotic mobility, respectively, V applied voltage, D diffusion coefficient of the analyte, the contributions of extra-column effects, sample zone length and detector cell length, to the total plate number becomes critical when a short length capillary is used for separation as in case of on-line sample preconcentration. If we assume N=250,000, the analyte zone length at the detector must be 0.4 mm (4 σ) for 5 cm separation length. This simple assumption suggests the sample zone length after preconcentration must be much narrower than that in conventional CE. The conditions are more critical in case of microchip electrophoresis because the channel length is much shorter than the capillary length.

There are many definitions proposed to describe the concentration efficiency. Most papers use the ratio of peak heights obtained by the conventional procedure, for example, 1 or few second-injection, to that obtained under sample preconcentration conditions multiplying the dilution factor. This definition is a little bit arbitrary because even in conventional procedure large volume injection will give higher peaks. Another definition is the ratio of the length of the sample zone to that of the analyte at the detection cell, called the detector-to-injection bandwidth ratio (DIBR) [17]. This definition does not apply to electrokinetic injection because the sample zone length may become narrower during injection. A more practical definition is to compare the limits of detection (LODs) between the conventional and preconcentration procedures.

3. On-line sample preconcentration techniques

3.1. Field-enhanced sample stacking

The principle of field-enhanced sample stacking is straightforward and the technique is easy to perform by simply optimizing the sample solution and the separation solution or BGS, mainly in concentrations or electrical conductivities of the solutions to constitute different electrical field strengths between the two solutions. The electrophoretic velocity, v_{ep} , of the analyte in free solution is described as

$$v_{\rm ep} = \mu_{\rm ep} E = \mu_{\rm ep} \frac{V}{L} \tag{2}$$

where *E* and *L* are electric field strength and capillary length. Eq. (2) assumes that the field strength is homogeneous throughout the capillary or the capillary is filled with homogeneous BGS. To perform preconcentration, the discontinuous zones having different electrical conductivities must be constructed along the capillary axis. The ratio of the electrophoretic velocities of the ions, γ , between the two zones having different conductivities is given

$$\gamma = \frac{v_{ep1}}{v_{ep2}} = \frac{E_1}{E_2} = \frac{\rho_1}{\rho_2}$$
(3)

where ρ is resistivity and 1 and 2 indicate two discontinuous zones, for example, sample zone and BGS. If the sample solution is prepared as a high resistivity or a low electrolyte concentration solution and BGS is a low resistivity or a high electrolyte concentration solution, the analytes in the sample solution will be concentrated at the boundary of the two zones. The concentration of the analyte concentrated by field-enhanced sample stacking, C_{stacked} , is given by

$$C_{\text{stacked}} = C_{\text{injected}}\gamma\tag{4}$$

where C_{injected} is the concentration of the analyte in the sample solution injected. The resistivity is inversely proportional to the concentration of the electrolyte. It is easy to realize the value γ higher than 1000 but it is not easy to realize high concentration efficiency even with a high γ conditions. The velocity of electroosmotic flow (EOF), which is the bulk liquid flow in the capillary generated under most CE conditions either strong or weak, is also proportional to the field strength. However, the bulk liquid flow velocity must be constant throughout the capillary and hence mixing of the two solutions will occur at the boundary, causing broadening of the focused zone. Therefore, it is recommended to employ acidic condition or EOF suppressed condition using coated capillary to obtain a high concentration efficiency or to avoid the mismatch of EOF velocity between the two zones.

Several techniques have been developed by utilizing the fieldenhanced sample stacking for sample preconcentration [1,18]. Normal stacking mode (NSM) is the simplest among the techniques but concentration efficiency is not high (ca. 10-fold). The sample solution prepared in low electrical conductivity matrix is introduced as a long plug by pressurized method and a voltage is applied without any additional procedures. The amount of the sample injected must be rather low to keep separation efficiency high. If EOF is suppressed, the concentration efficiency is higher than that with a strong EOF.

To obtain higher concentration efficiency, large volume sample stacking (LVSS) and field-enhanced sample injection (FESI) techniques are available and more than 100-fold concentration is possible. The sample matrix must be removed from the capillary before CE separation in LVSS: two techniques are available for the removal of the sample matrix, with or without polarity switching. LVSS has also been defined in the literature as stacking with matrix removal (SWMR). For the preconcentration of anions under a strong positive (toward cathode) EOF, a negative voltage is first applied to remove the sample matrix and the polarity is switched to positive when the current reaches 90–99% of the actual current (the current observed when whole capillary is filled with BGS only). For the analytes to be concentrated the electrophoretic velocity of the analyte anion in the sample solution must be faster in opposite direction than the velocity of EOF, which condition is generally satisfied because the field strength in the sample solution zone is higher than that in the BGS. For the preconcentration of cations by LVSS, an additive is used to reverse EOF. LVSS without polarity switching is less popular technique and must be performed under low EOF having opposite migration direction to the electrophoretic migration of the analyte. Acidic conditions are usually employed for this purpose. It should be noted that only anions (or cations) can be concentrated and separated in LVSS in a run.

In FESI the sample solution is prepared in a low conductivity matrix and is electrokinetically injected by applying positive or negative voltage depending on the charge of the analyte. A useful theoretical treatment is given by Chien [19] for FESI. The sample solution is prepared in a low conductivity matrix as in other stacking modes and electrokinetically injected; low or reduced EOF conditions are employed. A short water plug is often injected prior to electrokinetic injection to secure fieldenhanced sample stacking conditions. The amount of the sample injected can be much larger in FESI than that in LVSS but the amount injected is biased by the electrophoretic mobility. FESI is a powerful sample preconcentration technique and more than 1000-fold increase in sensitivity is possible. It should be noted that the amount of the sample injected is not proportional to the injection time if the injection time is long due to depletion of the analyte in the sample solution. An advantage of FESI is possible selective injections by optimizing the pH of the sample solution; this is particularly useful for selective injection of amphoteric analytes. For example, amphoteric analytes such as peptides can be negatively or positively charged depending on pH and only positive or negative analytes are injected in FESI [20].

Although neutral analytes are not directly concentrated by this technique, the use of the pseudostationary phase as in electrokinetic chromatography (EKC) enables on-line sample preconcentration as in capillary zone electrophoresis (CZE) [21,22], because neutral analytes are apparently charged when they are complexed with the pseudostationary phase. However, the concentration efficiency depends significantly on the retention factor or the ratio of the complexed and free analytes; a weakly interacting analyte have low apparent charge and hence low apparent electrophoretic mobility causing low concentration efficiency. Under suppressed EOF, hydrophobic analytes can be concentrated about 100-fold in MEKC either with pressurized injection [23] or with electrokinetic injection [24].

3.2. Transient isotachophoresis

Isotachophoresis (ITP) is a separation mode of CE, where analytes are separated as adjoining successive zones in the order of decreasing electrophoretic mobilities. Therefore, separated analyte peaks give a stepwise electropherogram different from peaks in CZE. The sample solution is introduced between the leading electrolyte solution and the terminating electrolyte solution. The leading electrolyte has higher and the terminating electrolyte has lower electrophoretic mobility than any analyte ions in the sample solution. When the voltage is applied the concentration of each separated zone is automatically adjusted to that determined by the concentration of the ion in the foregoing neighbor zone as given by

$$C_{\rm A} = \frac{C_{\rm L}\mu_{\rm A}(\mu_{\rm L} + \mu_{\rm Q})}{\mu_{\rm L}(\mu_{\rm A} + \mu_{\rm Q})}$$
(5)

where $\mu_L > \mu_A$ and C_A , C_L are concentrations of analyte ion, A, in the adjoining zone to the leading ion, L, zone and μ_A , μ_L , μ_Q electrophoretic mobility of A, that of L, and that of the counter ion Q (assumed the same ion for A and L), respectively. Eq. (5) suggests that the concentration of A is determined by C_L , μ_L and μ_A . Another ion, for example, the concentration of B in the following B zone is similarly determined by C_A . If the concentration of analyte ion A in the sample solution is much lower than that of the leading electrolyte, it will be concentrated up to that determined according to Eq. (5).

The principle of ITP can be applied to preconcentration in CZE, which is termed as transient ITP (tITP). There are several modifications in tITP to perform sample preconcentration. For example, a BGS having a low electrophoretic mobility like borate is filled inside the capillary and a leading electrolyte (e.g., chloride ion) solution is injected, followed by the sample solution. When the voltage is applied, the ITP separation starts and the analytes are concentrated by the ITP principle if their concentrations are low. The concentrated zones are soon separated further by CZE. The leading electrolyte can be added to the sample solution to obtain the same tITP effect. The choices of BGS and leading or terminating electrolyte are very important to perform tITP successfully. Computer simulation of tITP concentration is reported Schwer et al. [25] and zone behaviors in tITP are schematically described by Beckers and Boček [3].

Shihabi reported that the addition of a water miscible organic solvent such as acetonitrile, acetone, methanol or 2-propanol and salts such as sodium chloride was useful for on-line sample preconcentration and the method was named as transient pseudo-isotachophoresis [26], where the mechanism was assumed that the organic solvent functions as a terminating ion and chloride ion acts as the leading ion when sodium chloride was used. Borate (300 mM, pH 8.4) or β -alanine (300 mM, pH 10.4) was used as BGS.

3.3. Dynamic pH junction

It is well understood that the pH of BGS is very important to optimize the separation in CZE. The pH close to the pK_a of the analytes is generally a good choice for the separation because the ionization states are most diverse among the analytes when their pK_a values are close each other. The dynamic pH junction technique utilizes significant changes in ionization states of the analytes or electrophoretic velocities between different pH values. The name dynamic pH junction was named by Britz-McKibbin and Chen [17], although the use of discontinuous buffer system was reported by Aebersold and Morrison previously [27]. For example, a weakly acidic analyte dissolved in an acidic matrix is injected as a long plug and the capillary is filled with an alkaline BGS. When a positive voltage is applied at the injection end, the acidic sample zone is gradually titrated by the hydroxide ion in the alkaline BGS from the cathodic side and the analyte will be ionized in the neutralized zone. The negatively ionized analyte will migrate toward the anode but if it enters into the acidic sample zone, it will be protonated again to neutral and stop the electrophoretic migration. Thus, the weakly acidic analyte can be focused at the neutralization boundary during the neutralization of the sample zone. The concentration mechanism is discussed by comparing experimental and computer simulated results by Kim et al. [28], where electrokinetic dispersion was found to play an important role; that is, the choices of sample matrix and BGS were important as well as that of pH values. Lee et al. discussed the importance or tITP mechanism in dynamic pH junction [29] by experiments and

computer simulation. Generally a high concentration buffer of high pH consisting of a low electrophoretic mobility electrolyte is needed as BGE for the concentration of weak acids and a high concentration acidic sample matrix consisting of a high mobility ion. Dynamic pH junction technique can selectively concentrate analytes having a narrow range of pK_a and it is useful for the concentration of weakly acidic or basic analytes.

Wei et al. developed an interesting technique to form the pH gradient inside the capillary by electrolysis of water [30]. A Pt wire was inserted inside the capillary and when the voltage was applied the electrolysis of water occurred and H⁺ ion was continuously generated at the cathodic end and OH⁻ ion at the anodic end. These ions titrated the BGS and the sharp pH gradient was formed; high [H⁺] at the cathodic end of the Pt wire to low [H⁺] at the cathodic end of the capillary, and high [OH⁻] at the anodic end of the Pt wire to low [OH⁻] at the anodic end of the capillary. As the BGS, a low conductivity 15 mM histidine solution (pH 7.0) with 0.2% poly(vinylpyrrolidone) was used to suppress the bubble formation at the end of the Pt wire and EOF. For the separation of anionic analytes, the Pt wire was placed at the injection end of the capillary and negative voltage was applied. For the separation of cationic analytes, the same polarity and same position of the Pt wire were held but reversed EOF condition was employed with an addition of didodecyldimethylammonium bromide. More than several hundredfold concentration factors for anionic analytes and a 30-fold concentration factor for cationic analytes were observed. The concentration mechanism is explained in terms of sweeping of analytes by OH⁻ ion for anionic analytes and H⁺ ion for cationic analytes.

3.4. Sweeping

Sweeping has been originally developed for the on-line concentration of neutral analytes for micellar electrokinetic chromatography (MEKC) separation [31]. Sweeping can be defined as a phenomenon whereby analytes are picked up and accumulated by the pseudostationary phase (micelles) that penetrates the sample zone. The length of the analyte zone after sweep, l_{sweep} , is given by

$$l_{\text{sweep}} = l_{\text{inj}} \left[\frac{1}{(1+k)} \right]$$
(6)

where l_{inj} and k are the length of the sample solution injected and the retention factor defined by the ratio of the amount of the analyte incorporated into the micelle to that free of the micelle. The concentration of the micelle entering the sample zone is assumed equal to the micellar concentration in the BGS. It is apparent that the analyte having a higher k value is more efficiently concentrated. When the interaction between the analyte and the pseudostationary phase is very strong or k is large the concentration efficiency is very high up to 5000-fold. Eq. (6) gives the length of the sample zone when sweeping completed and not the zone length observed at the detection cell. To make k large, the sample matrix should be prepared without organic solvents or other additives to improve separation such as cyclodextrins. An extremely narrow zone length was observed for analytes having large *k* values when the swept zone was measured just at the end of the sweeping process inside a microchip channel with laserinduced fluorescence detection [32]. The narrow zone (less than $30 \,\mu\text{m}$), however, broadened quickly according to the thermal diffusion along the channel. Therefore, when the length from the detection end of the injected sample zone to the detection point was very short and very narrow detection window was employed, a very high concentration efficiency up to 3,900,000-fold was observed [33].

Sweeping phenomenon was experimentally and theoretically studied and it is shown that Eq. (6) is valid also for charged analytes regardless of charge of the analyte and the direction of EOF, provided k is defined as mentioned above [34]. Sweeping is very useful for the concentration of ions as well as neutral analytes because the interaction between ions and micelles are strong if their charges are opposite. For example, several amino compounds can be efficiently concentrated by sodium dodecyl sulfate (SDS) micelle under acidic conditions [35].

It should be mentioned that the conductivity of the sample zone is usually adjusted to be nearly equal to that of the running micellar solution but no micelle is added to the sample solution. Therefore, homogeneous electric field strength is assumed throughout the whole capillary under sweeping conditions different from field-enhanced stacking techniques. Palmer et al. claimed a better preconcentration effect upon addition of a salt in high concentrations into the sample matrix (high-salt) [36,37], while Quirino et al. described the mechanisms of focusing using high salt matrices under acidic conditions [38]. The data obtained since the seminal paper on sweeping in 1998 prescribed the use of sample matrices with conductivity values that are lower, equal to, or higher than that of the BGS. This suggests that an additional mechanism(s) may be affecting the focusing results of sweeping, such mechanisms is the subject of future investigations. Introduction of electrokinetic injection in combination with sweeping made it possible to inject a large volume of samples, although injection volume in conventional sweeping is limited less that the capillary volume [39].

Other pseudostationary phases are equally available for sweeping, for example, microemulsions in microemulsion EKC (MEEKC) or charged cyclodextrins in cyclodextrin EKC [40]. The idea can be extended to another interaction such as complexation reaction between metal ions and ethylenediaminetetraacetic acid (EDTA) [41], *cis*-diols and borate ion [42]. The former is very effective for the concentration of many metal ions which complex with EDTA can be concentrated by in situ complexation and sweeping, where metal ions dissolved in a weakly acidic buffer (e.g., 30 mM acetate buffer, pH 5.0 but the conductivity of the solution is adjusted to nearly equal to that of BGS, which contains, for example, 1 mM EDTA in the same acetate buffer) are used and more than 100-fold increase in sensitivity is obtained.

3.5. Combination of different preconcentration techniques

Although each on-line concentration technique is useful, the combination of two techniques is more efficient in increasing detection sensitivity. The first combination technique involved FESI and sweeping, this combination generated almost millionfold increase in sensitivity [43], because FESI enabled the injection of charged analytes only from a dilute sample solution for a prolonged duration of time and the analytes were injected with simultaneous concentrations. Although the technique was applied to the concentration of basic compounds with SDS micelle as the pseudostationary phase under acidic conditions, acidic analytes also can be concentrated with a cationic surfactant such as cetyltrimethylammonium chloride (CTAC) using a coated capillary to suppress EOF [44]. The similar technique named electrokinetic supercharging (EKS) in combination with tITP was published by Hirokawa et al. [45], where the first step is FESI and the second step is tITP. A leading electrolyte zone was injected before FESI and after a long time period of FESI a terminating electrolyte zone was injected and a CZE separation was performed with approximately 3000-fold concentration. If the analytes are a mixture of neutral and weakly acidic analytes, it may be possible to concentrate both analytes by sweeping under acidic conditions keeping the analyte neutral. However, weakly acidic analytes can be successfully concentrated by dynamic pH junction and if SDS is added to BGS, neutral analytes also can be simultaneously concentrated by sweeping [46].

4. Applications of on-line sample preconcentration in capillary electrophoresis

The applications of CE technologies in conjunction with online preconcentration will be explored here, classified in their relevance to several categories:

- (1) Biological, either basic biological research or more biomedical/clinical research of applied technology/therapy.
- (2) Environmental, in terms of the characterization of the native components of environmental samples, for example, cationic/anionic contents, or exogenously derived elements in environmental samples, such as chemical contaminants.
- (3) Food analysis, for nutritional assessment, determining the presence and amount of nutritional components in food/beverages, as well as food safety inspection for antibiotics or pest-control chemical residues.
- (4) Pharmaceutical products, referring to the quality control for production, quantifying the desired components or verifying the absence of contaminants, as well as in research and development, and determining the presence of desired bioactive components in animal or human samples, as well as phytochemical analysis.
- (5) Toxicological/Forensic, related in some extent to the previous categories, looks for and determines the amounts of analytes in human samples, as well as psychotropic drugs, toxic compounds, or/and their derivatives.

Table 1 describes a list of applications of on-line preconcentration techniques in capillary electrophoresis. A few examples from each application category will be mentioned here. Many different names and abbreviations are used for similar techniques but the names used in original papers are used in this table as they are. These abbreviations are explained following the table,

Table 1

Applications of on-line sample preconcentration in capillary electrophoresis

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
2,5-Dimethoxy-4- ethylthiophenethylamine (2C-T-2)	Murine urine samples	CZE-MEKC; LVSEP-CZE; Sweeping-MEKC	CZE-MEKC: 4.5–5.0 µg/mL; LVSEP-CZE: 19.2 ng/mL; Sweeping-MEKC: 9.1 ng/mL		Biological	[47]
2-Naphthalenesulfonic acid, L-tryptophan	Biological matrices	PEO-CE	2-Naphthalenesulfonic acid: 8 pM; L-tryptophan: 70 pM		Biological	[48]
3-Nitrotyrosine	Rat urine	LVSS-CE	0.08 μM		Biological	[49]
4-Nonylphenol, 4- <i>tert</i> -octylphenol, bisphenol A, and 4- <i>tert</i> -butylphenol	Biological matrices	SPE-RMM-MEKC	4-Nonylphenol: 0.089 mg/L; 4- <i>tert</i> -octylphenol: 0.030 mg/L; bisphenol A: 0.0091 mg/L; 4- <i>tert</i> -butylphenol: 0.033 mg/L		Biological	[50]
Adrenocorticotropic steroid hormones (cortisol, cortisone, corticosterone, 11-dehydrocorticosterone, 17-hydroxyprogesterone, 11-deoxycortisol, and progesterone)	Biological matrices	RMM-MEKC	3 ng/mL		Biological	[51]
Alexa fluor 488, BODIPY	Proof of concept	tITP-CE		6.4×10^{4}	Biological	[52]
Amines	Biological matrices	RPRP-HCFASS-CE	$10^{-13} \mathrm{M}$		Biological	[53]
Amino acids	Cerebrospinal fluid	PEO-CE	4 nM		Biological	[54]
Amino acids	Cerebrospinal fluid	PEO-Sweep-MEKC	0.30–2.76 nM	50–800-fold sensitivity enhancement	Biological	[55]
Amino acids	Pharmaceutical samples	LVSS-CZE	1000-fold increase in detection sensitivty relative to conventional CE		Biological	[56]
Amino acids	Amniotic fluid	CZE	Arg: 1.5 μM; Asp: 6.7 μM		Biological	[57]
Amino acids	Biological matrices	CD-CZE	CBI-DL-serine: 0.20 nM; CBI-DL-glutamate: 0.30 nM		Biological	[58]
Amino acids	Biological matrices	tITP-CZE		150,000-fold	Biological	[59]
Amino acids	Biological matrices	tlTP-CZE	Asp: 5200; Trp: 2800, Phe: 3100 times improvement in sensitivity, compared with normal CE separation		Biological	[60]
Amino acids	Murine brain microdialyste, murine serum, human saliva	ABS-CE	Murine brain: Glu:0.26–0.83 μM, Asp: 0.24–0.64 μM; murine serum: Glu: 37–40 μM, Asp: 8.4–10 μM; human saliva: Glu: 5.8 μM, Asp: 1.0–4.1 μM		Biological	[61]
Amino acids (glycine, glutamine, glutamate, and γ-aminobutyric acid)	Cerebrospinal fluid	PEO-CE	10–30 nM		Biological	[62]
Amino acids (tryptophan)	Biological matrices	SPE-CE		\sim 300-fold	Biological	[63]
Anilines	Biological matrices	Dynamic pH-junction CE	1.9-3.7 ppb		Biological	[64]

Aromatic amino acids (tyrosine, phenylalanine, dihydroxyphenylalanine, tryptophan, 3-nitrotyrosine,	Biological matrices	FASS-LVSS-CE	2.5–10 nM		Biological	[65]
3-chlorotyrosine, <i>ortho</i> -tyrosine, <i>meta</i> -tyrosine,						
3-hydroxyphenylacetic acid)						
Aromatic carboxylic acids, dansyl amino acids, and naphthalene-disulfonic acids	Biological matrices	ASEI-MEKC		1000–6000-fold	Biological	[44]
Biogenic amines (histamine,	Biological matrices	CZE	0.1 μM level		Biological	[66]
methylhistamine, and serotonin)	C				C	
Biomolecules (lipoproteins)	Biological matrices	MFMP-ACE	82-fold increase in sensitivity		Biological	[67]
BODIPY	Proof of concept	SPE-CEC (ODS column)	70 fM		Biological	[68]
Catecholamines (epinephrine)	Biological matrices	VDIF-pH junction-CE	$4 \times 10^{-8} \mathrm{M}$		Biological	[17]
Catecholamines, purines,	Bacillus subtilis cell extracts	Dynamic pH		>3 orders of magnitude	Biological	[46]
nucleosides, nucleotides, amino		junction-sweeping CE		increase		
acids, steroids, and coenzymes						
Charged proteins	Biological matrices	Mobility-based		\sim 60–200-fold	Biological	[69]
		selective				
		preconcentration-CE				
Chlorophenols, chlorophenoxy acids	Biological matrices	LVSS-Sweep-MEKC	10-40-fold improvement of		Biological	[70]
			sensitivity relative to standard			
			injection			
Cisplatin	Human serum	tITP-MEKC	2 µg/L		Biological	[71]
Corticosterone	Murine plasma	Sweep-MEKC	5 ng/mL		Biological	[72]
Dichlorprop, mecoprop enantiomers	Drinking, surface waters	SPE-Stacking-CE	0.1 µg/L		Biological	[73]
DNA	Biological matrices	SPE-MCE		500-fold	Biological	[74]
DNA	Biological matrices	FASS-FASI-AuNP-	5.7 amol/50 μL	23,000-fold for 400 bp;	Biological	[75]
		MGE		25,500-fold for 2000 bp		
				DNA fragments		
DNA	Biological matrices	Ultra-high voltage EC		5-fold	Biological	[76]
DNA	Biological matrices	EKS-MCGE	0.22 mg/L		Biological	[77]
DNA	Hepatitis B virus genome	tITP-CZE	0.0021 pg/µL		Biological	[78]
DNA (\varphi X174 RF DNA-HaeIII digest)	Biological matrices	PEO-CE	0.171 ng/m		Biological	[79]
DNA adducts	Human breast tissue extract	CE	$3 \times 10^{-8} \mathrm{M}$		Biological	[80]
DNA fragments	Biological matrices	PEO-CE	>400-fold improvements in the		Biological	[81]
			sensitivity relative to that by conventional injections			
DNA fragments	Biological matrices	PEO-CE		27-fold	Biological	[82]
DNA fragments	Biological matrices	tITP-CZE	0.2 mg/L of each DNA fragment		Biological	[83]
DNA fragments	Biological matrices	Dynamic pH	0.2 mg/L		Biological	[84]
		junction-CE				
DNA fragments	Nuclear extracts	PEO-CE	0.015 μg/mL		Biological	[85]

Table 1	(Continued)
---------	-------------

Table 1 (Continued)							
Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.	
DNA fragments DNA oligonucleotides	PCR buffer Biological matrices	Sweep-CZE		112-fold sensitivity enhancement for the oligonucleotides relative to that run in a running buffer without DTAB	Biological	[87]	
DNA oligonucleotides w/adducts	Biological matrices	PAEKI-CZE	0.04–0.08 µM for ds oligonucleotides	300–800-fold	Biological	[88]	
sDNA	Biological matrices	PEO-BCE	8	170-fold	Biological	[89]	
IsDNA fragments	PCR buffer	pH-mediated sample stacking-CE	9 fg/µL		Biological	[90]	
IsDNA markers V (pBR 322/HaeIII digest) and VI (pBR 328/Bg/I digest and pBR 328/HinfI digest) (~3–2176 bp)	Biological matrices	PEO-CE	2.0 ng/mL		Biological	[91]	
cdysteroids (20-hydroxyecdysone, ajugasterone C, polypodine B and ponasterone A)	Biological samples	Stacking-MEKC	LOD improved ~1 order of magnitude relative to conventional methods		Biological	[92]	
Enantiomers of 2,4-dinitrophenyl labeled norleucine (DNP-Nleu); tryptophan enantiomers	Human urine	tITP-CZE	200 nmol/L		Biological	[93]	
strogen and estrogen binding proteins	Biological matrices	SHDI-EKC		200-300-fold	Biological	[94]	
thyl glucuronide, lactate and acetate	Human serum, diluted	SSS-CZE	EtG: 3.8×10^{-7} M, lactate: 2.60 × 10 ⁻⁶ M and EtG acetate: 2.18 × 10 ⁻⁶ M		Biological	[95]	
Plavin denvatives (riboflavin, flavin mononucleotide (FMN) and flavin–adenine dinucleotide (FAD))	Human body fluids, Beverages	MCE	0.15–1.0 μg/L		Biological	[96]	
Flavin derivatives, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD)	Bacillus subtilis cell extracts	Dynamic pH junction-sweeping CE	4.0 pM		Biological	[97]	
Flavin derivatives, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD)	Bacillus subtilis cell extracts	Dynamic pH junction-sweeping CE	4.0 pM	1200-fold improvement in sensitivty relative to standard injection	Biological	[98]	
Flavins (riboflavin)	Biological matrices	Dynamic pH junction-MEKC	3–7 ppb	-	Biological	[99]	
Fluorescein	Biological matrices	MCE		300-fold	Biological	[100]	
luorescein and bodipy	Proof of concept	tITP-CE	100 aM		Biological	[101	
fluorescein and bodipy	Proof of concept	FASS-MCE		1100-fold	Biological	[102]	
Gabapentin	Human plasma	CZE	60 nM		Biological	[103	
Slucoconjugated and hydroxylated porphyrins and chlorins (e.g., <i>m</i> -THPP, TPP(glu)2)	Human serum	NACE	10–30 nM		Biological	[104	
Glutathione	Biological matrices	FASI-CD-MEKC		10-20-fold	Biological	[105	

Glutathione (GSH); oxidized-form glutathione (GSSG)	Human plasma	tITP-CZE	GSH: $6.3 \pm 0.8 \mu \text{mol/L}$; GSSG: $8.8 \pm 0.5 \mu \text{mol/L}$		Biological	[106]
Glycoprotein-derived oligosaccharides	Biological matrices (glycoproteins)	2D-PAGE-MEKC	·	60–360×	Biological	[107]
Heavy metal cations (Fe ²⁺ , Ni ²⁺ , Zn^{2+})	Human urine	tITP-CZE	Fe ²⁺ , 0.3 ppb; Ni ²⁺ , 0.16 ppb; and Zn ²⁺ , 0.8 ppb		Biological	[108]
Heavy metal cations (Fe ²⁺ , Ni ²⁺ , Zn^{2+})	Human urine	tITP-CZE	Fe ²⁺ , 0.7 ppb, Ni ²⁺ , 0.4 ppb; Zn ²⁺ , 1.2 ppb		Biological	[109]
Histamine	Biological matrices	FASI-CZE	$1.25 \times 10^{-11} \mathrm{M}$		Biological	[110]
Human serum albumin (HSA) and its immunocomplex with a monoclonal antibody	Human serum	tITP-MCE	7.5 pM		Biological	[110]
Low-abundance proteins	Proteomes	LVSEP-CE	μg/mL	>100-fold	Biological	[112]
Major milk proteins (e.g., β -lac B)	Skimmed bovine milk	CABCE	A few mg/L	30-200×	Biological	[113]
Melatonin and its precursors/metabolites (L)-tryptophan ((L)-TRP), 5-methoxyindoleacetic acid (5-MIAA), 6-hydroxymelatonin (6-HMT), MT, serotonin (SER) and 5-methoxytryptamine (5-MTRA))	Human serum, diluted	RMM-MEKC	L-Trp: 21 ng/mL; 5-MIAA: 26 ng/mL; 6-HMT: 100 ng/mL		Biological	[114]
Melatonin and other pineal hormones	Biological matrices	MEKC	9.7–41.8 nmol/L		Biological	[115]
Metal-binding proteins	Biological matrices	tITP-CZE	50–160 fmol		Biological	[116]
Mixed cultures of microorganisms Escherichia coli, Candida albicans, Enterococcus faecalis, and Staphylococcus epidermidis	Biological matrices	CZE	1–10 injected cells		Biological	[117]
Muramic acid (MA) and diaminopimelic acid (DAP) enantiomers	Complex biological samples	Dynamic pH junction-CE	100-fold enhancement in concentration sensitivity compared to conventional off-line derivatization procedures		Biological	[118]
Naphthalene-2,3-dicarboxaldehyde (NDA)-derivatized dopamine	Biological matrices	MEKC; Sweeping-MEKC	MEKC: 2.0×10^{-7} M; sweeping-MEKC: 4.0×10^{-9} M		Biological	[119]
Neuropeptide Y	Murine nuclear extract	Competitive immunoassay-CE	850 pM		Biological	[120]
Neuropeptides (somatostatin, vasopressin, neurotensin, thyrotropin-releasing hormone)	Human plasma	ACN-stacking/CZE	20 ng/mL		Biological	[121]
Nitrate/nitrite	Human serum, deproteinated	CZE	Nitrite: 4.1 μ M and nitrate 2.0 μ M		Biological	[122]
Nitrate/nitrite	Human serum, diluted	MCE	Nitrite: 24 μ M and nitrate 12 μ M		Biological	[123]
Nitrate/nitrite	Human serum, saliva	tITP-CZE	Nitrite: 2.6 μ M and nitrate 1.5 μ M		Biological	[124]
Nitrate/nitrite	Murine brain and liver tissue extracts from LPS-treated animals	tITP-CZE	sub-µM		Biological	[125]

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
Nitrate/nitrite	Neuronal tissues	tITP-SPME-CZE	Nitrite: 8.9 nM (0.41 ppb); Nitrate: 3.54 nM (0.22 ppb)		Biological	[126]
Nucelotides	Biological matrices	PAEKI-CZE	0.04–0.07 ng/mL	5000-fold enrichment	Biological	[127]
Nucleotides	Cell extracts	VDIF-CE	$4.0 \times 10^{-8} \text{M}$	50-fold	Biological	[128]
Organic acids	Cerebrospinal fluid	CZE	2–8 µg/mL		Biological	[129]
Peptides	Biological matrices	Dynamic pH	550–1000-fold sensitivity		Biological	[131]
	C	junction-CE	enhancement		C	
Peptides	Biological matrices	Dynamic		124-fold improvement	Biological	[132]
	-	pH-junction-CE		in concentration sensitivity	-	
Peptides	Biological matrices	CE	500 aM	-	Biological	[133]
Peptides	Biological matrices	CE		100-200-fold	Biological	[134]
Peptides	Biological matrices	CE	20 pg		Biological	[135]
Peptides	Biological matrices	SPE-CE	10	3–4 orders of	Biological	[136]
	C			magnitude	C	
Peptides	Biological matrices	FASI-CE	Detection sensitivity increase >3000-fold	C	Biological	[137]
Peptides	Biological matrices	CE	8–32 nM.		Biological	[138]
Peptides (bradykinin, L-enkelphalin)	Biological matrices	LVSS-CE	Bradykinin: 7 pM;		Biological	[139]
······································			L-enkelphalin: 3 pM			
Peptides (enkephalin)	Cerebrospinal fluid	Tee-split interface SPE-CE	5 ng/mL		Biological	[140]
Peptides (enkephalin)	Cerebrospinal fluid	MI-CE	5–10 ng/mL		Biological	[141]
Peptides (enkephalin)	Cerebrospinal fluid	SPE-CE	1.5–3 ng/mL		Biological	[142]
Peptides (enkephalin)	Cerebrospinal fluid	Tee-split interface	100 ng/mL		Biological	[143]
	1	SEC-CE	0		e	
Peptides (enkephalins and albumin)	Biological matrices	SEC-CZE	0.8 µg/mL		Biological	[144]
Peptides/proteins	Biological matrices	FESI-CE	Low nM levels (fmol/µL)		Biological	[20]
Phenol derivatives	Biological matrices	SEI-Sweep-MEKC		>100-fold	Biological	[145]
Phenolic compounds (derivatives of benzoic and cinnamic acids)	Biological matrices	CZE	2.3–3.3 µM		Biological	[146]
Phosphoamino acids	Biological matrices	Dynamic pH junction-CE	0.1 μΜ		Biological	[147]
Phosphopeptides	Biological matrices	CZE		600-fold	Biological	[148]
Phosphopeptides	Tryptic digests of α - and	CE	Low pmole levels		Biological	[149]
	β-casein		Ī			
Plant hormones (gibberellic acid, abscisic acid, indole-3-acetic acid, 1-naphthaleneacetic acid,	Tobacco flowers	LVSS-BCE	0.306 ng/L	10-600-fold	Biological	[150]
2,4-dichlorophenoxyacetic acid, kinetin-6-furfurylaminopurine and N-6-benzyladenine.						
Porphyrins (zinc-protoporphyrin, protoporphyrin, and coproporphyrin (CP) I and III)	Biological matrices	ACN-stacking-CZE	0.8 ng/mL (1.1 nmol/L of CPIII or CPI)	\sim 1000-fold	Biological	[151]
Protein	Staphylococcus proteome	FESI-CE	Species-specific protein patterns for 6 <i>Staphyloccal</i> species		Biological	[152]

magnitude relative to conventional electrophoretic/chromatographic-	
based proteome	
technologies	
Proteins Biological matrices EKSI-MCE Local and spatially Biological [153]	
averaged concentration are increased by 4 and	
2 orders of magnitude,	
respectively	
Proteins Mixture of test proteins and LVSS-CE 6-fold Biological [181]	
cadmium	
Proteins (lysozyme and ribonuclease Biological matrices IEF-CZE 100-fold Biological [154] A)	
Proteins (α -lactalbumin)Biological matricesPEO-CE0.48 nMBiological[155]	
Proteins (bovine carbonic anhydrase, Biological matrices CZE nM range <40-fold Biological [156]	
α-lactalbunin, and	
β-lactoglobulins A and B)Proteins (bovine serum albumin)Biological matricesCE550-foldBiological [157]	
Proteins (carbonic anhydrase) Biological matrices PEO-CZE 31 pM Biological [160]	
Proteins (cytochrome c, lysozyme, Biological matrices CE Cytochrome c, Biological [158]	
ribonuclease, and lysozyme,	
chymotrypsinogen) ribonuclease, and	
chymotrypsinogen were 65, 155, 705, and	
800-fold, respectively	
Proteins (cytochrome c, ribonuclease Biological matrices $2D$ -IEF-tITP-CE $50-100 \times$ Biological [159]	
A, and carbonic anhydrase II)	
Proteins (lysozyme)Biological matricesCE1.2 nMBiological[161]	
Proteins (lysozyme, myoglobin, carbonic anhydrase, andBiological matricespH-junction-CELysozyme: 1.9 nM; myoglobin: 3.2 nM; carbonic anhydrase:Biological[162]	
α -lactalbumin) $11.3 \text{ nM}; \alpha$ -lactalbumin: 6.5 nM	
Proteins (myoglobin) Biological matrices Dynamic ~1700-fold Biological [163]	
pH-junction-CE preconcentration	
Proteins (myoglobin) Biological matrices tITP-dynamic pH 65-fold Biological [164]	
junction-CE	
Proteins (ovalbumin)Biological matricesFASI-CE100 fMBiological[165]Proteins, amino acids (myoglobin, Biological matricesDynamic 3×10^3 for myoglobin, Biological[166]	
aspargine) pH -junction-CE 7×10^3 for asparagine	
Protein digests tITP-CZE <10 ⁻⁸ M Biological [167]	
Purine metabolitesHuman urineDynamic pH80 nMBiological[168]	
junction-CE	
Purines (adenosine, hypoxanthine, Biological matrices CE Adenosine: 2.2 µM; Biological [169]	
and inosine) hypoxanthine: 3.6 µM; inosine:	
$1.4\mu\mathrm{M}$	

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
Purines (mercaptopurine monohydrate, 6-methylmercaptopurine, thioguanine, thioguanosine, and thioxanthine)	Biological matrices	LVSS-CE w/polarity switching	44–90-fold improvement of sensitivity		Biological	[170]
Pyridine and adenine nucleotide metabolites	Bacillus subtilis cell extracts	Sweeping-CE	20 nM		Biological	[171]
Pyrimidine bases (uracil)	Biological matrices	CD-CZE	0.8–1.8 μg/mL; 0.05 μg/mL		Biological	[172]
Quinine	Biological matrices	Sweep-MEKC	12.5 ppb;	5800-10000-fold	Biological	[173]
Racemic vesamicol	Human serum	SPE-CD-CE	0.5 μg/mL		Biological	[174]
Rhodamine B	Biological matrices	Sweep-MCMEKC	1.6	450-fold	Biological	[32]
Sanguinarine	Biological matrices (e.g., rat hepatocytes, human gingival fibroblasts, feed, porcine faeces, body fluids and tissues)	SPE-SSS-CZE	3 nM		Biological	[175]
SDS–protein complexes (phosphorylase b, albumin, ovalbumin, carbonic anhydrase, trypsin inhibitor, and α-lactalbumin)	Biological matrices	EKS-MCGE	0.27 µg/mL		Biological	[176]
Seleno amino acids (selenomethionine, selenoethionine, and selenocystine)	Biological matrices	EKSI-Sweep-MEKC	µmole/L	80× enrichment	Biological	[177]
Seleno amino acids (selenomethionine, selenoethionine, and selenocystine)	Biological matrices	tITP-MCE	µmole/L		Biological	[178]
Staphylococcal enterotoxin B	Bovine serum albumin, casein, and milk sample matrixes	MACE	28.5 fg/mL		Biological	[179]
Tertiary amines	Biological matrices	FASS-pH junction-CE	TEA: 24 nM; TPA: 20 nM; TBA: 32 nM		Biological	[180]
Thymidylate, thymidine 5'-diphosphate	Biological matrices	CE	TMP: 2.6 $\mu M;$ TDP: 3.8 μM		Biological	[182]
Tryptophan derivatives (5-hydroxy L-tryptophan, 5-methyl L-tryptophan, 1-methyl L-tryptophan and L-tryptophan)	Amino acid mixture solutions	HLL-Sweep-CE	10 nmol/L		Biological	[183]
Unsaturated disaccharides of hyaluronic acid (di-HA) and chondroitin sulfate (di-CS)	Biological matrices	LPME-sweeping- MEKC	di-HA: 1.0–400.0; di-CS: 0.2–1.0 µg/mL		Biological	[184]
Urinary 8-hydroxydeoxyguanosine (80HdG)	Human urine	SPE-Dynamic pH-junction-CE	20 nmol/L		Biological	[185]
Weakly acidic organic compounds	Biological matrices	LVSEP-SPE-NACE	10–100 nM		Biological	[186]
Xanthine and purine metabolites	Human urine	Dynamic pH junction-CE	Xanathine: 40 nM		Biological	[187]
2,4-Dichlorophenol and 2,4,5-trichlorophenol	Environmental water samples	SPE-CE	2,4-Dichlorophenol and 2,4,5-trichlorophenol: 25 and 17 pg/mL, respectively.		Environmental	[188]

Alkylphosphonic acids (methyl-, ethyl-, and propylphosphonic acids)	Environmental samples	HSS-MEKC	MPA, EPA, and PPA were MPA: 0.13 μM (12 ppb), EPA: 0.13 μM (14 ppb) PPA: 0.14 μM (17 ppb)		Environmental	[189]
Aluminum concentration (aluminum ion Al(III))	Soil sample	FASS-CE	(17 ppb) Minimum detectable Al concentration can be increased 12 times		Environmental	[190]
Anionic metal cyclohexane-1,2- diaminetetraacetic acid (CDTA) complexes (Cu(II), Co(II). Zn(II), Mn(II), and Pb(II))	Environmental samples	MEKC	0.6×10^{-6} M to 1.8×10^{-6} M)		Environmental	[191]
Anions	Environmental samples	IE-EF-CE	1 μg/L		Environmental	[192]
Anions (Cl ⁻ , NO ₂ ⁻ , SO ₄ ²⁻ , NO ₃ ⁻ , HCO ₃ ⁻)	Snow	CZE	0.03 mg/L Cl ^{-,} 0.1 mg/L NO ₂ ^{-,} 0.07 mg/L SO ₄ ²⁻ 0.08 mg/L NO ₃ ^{-,} 0.05 mg/L F ⁻ , and 0.2 mg/L		Environmental	[193]
Cations (Co, Ni, Zn, Mn)	Environmental samples	CZE	Increase in detection sensitivty 40x		Environmental	[194]
Cations (Cu(II) and Co(II))	Environmental water samples	CPE-CE	Co(II) and Cu(II) were 0.12 and 0.26 µg/L, respectively	15.9-fold for Co(II); 16.3-fold for Cu(II)	Environmental	[195]
Cations (Cu(II), Ni(II), Co(II), and Fe(III))	Tap water	CE	2–10 µg/L		Environmental	[196]
Aromatic amines and alkyl phthalates	Environmental samples	SEI-Sweep-MEKC	100-fold increase in the concentration sensitivity relative to conventional MEKC-APCI-MS		Environmental	[197]
Aromatic amines of environmental relevance	Environmental samples	CSEI-Sweep-MEKC	ppt-levels		Environmental	[35]
Arsenic and selenium species (arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), selenate [Se(VI)], selenite [Se(TV)], selenocystine (SeC), selenomethionine (SeM), and selenocystamine (SeCM))	Environmental water samples	HSDC-CE	0.049–2.38 mg/L		Environmental	[198]
Arsenic compounds (arsenite, arsenate, dimethylarsenic acid, and monomethylarsenic acid)	Environmental water samples	CE	5.0–9.3 μg/L	37–50-fold	Environmental	[199]
Arsenic compounds (roxarsone, or 3-nitro-4-hydroxyphenylarsonic acid)	Animal feed	Dynamic pH-junction- CE	LOD reduced 100-800-fold		Environmental	[200]
Arsenic species (arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA))	Environmental samples	LV-FASI-CZE	0.026 mg/L for As(III), 0.023 mg/L for As(V), 0.043 mg/L for MMA, and 0.018 mg/L for DMA	34–100-fold	Environmental	[201]

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
Arsenic species (arsenite, arsenate, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), 4-hydroxy-3-nitrophenylarsonic acid (Roxarsone), <i>p</i> -aminophenylarsonic acid (<i>p</i> -ASA), 4-nitrophenylarsonic acid (4-NPAA), and phenylarsonic acid (PAA))	Environmental water samples	LVSS-HSC-CZE	5.61, 9.15, 11.1, and 17.1 μg/L for As(III), DMA, MMA, and AsM, respectively		Environmental	[202]
Arsenic species (arsenite, arsenate, monomethylarsonic acid, dimethylarsonic acid, <i>p</i> -aminophenylarsonic acid, 4-hydroxy-3-nitrobenzenearsonic acid, 4-nitrophenylarsonic acid, phenylarsonic acid, and phenylarsine oxide)	Environmental water samples	CE	Arsenite 1.62 mg/L, arsenate: 6.22 mg/L, monomethylarsonic acid: 1.45 mg/L, dimethylarsonic acid: 1.83 mg/L, <i>p</i> -aminophenylarsonic acid: 0.34 mg/L, 4-hydroxy-3- nitrobenzenearsonic acid: 0.40 mg/L, 4-nitrophenylarsonic acid: 0.40 mg/L, phenylarsonic acid: 0.18 mg/L, and phenylarsine oxide: 0.30 mg/L		Environmental	[203]
enzene and hexylbenzene	Environmental samples	FASS-CE	Detection sensitivity benzene and hexylbenzene is improved by a factor of 4 and 8, respectively		Environmental	[204]
Bromate ion	Drinking water	EKSI-CZE	0.1 µg/L		Environmental	[205]
romide, Potassium	Environmental water sample (saline groundwaters)	CZE	Br ⁻ : 0.1 mg/L; K ⁺ : 0.5 mg/L		Environmental	[206]
ationic impurities (Na ⁺ , Li ⁺ , and methylimidazolium (Ml(+))	Butylmethylimidazolium (BMI+)-based lLs	tITP-CZE	MI(+): 10 ppb; Li ⁺ : 1 ppb		Environmental	[207]
lations	Mixture containing alkali metals, alkaline earths, transition metals and lanthanides	CZE	<0.5 µM		Environmental	[208]
Ceftiofur	Environmental water samples	SPE-CZE	3 µg/L		Environmental	[209]
eftiofur	Environmental water samples	SPE-LVSS-CE	10 ng/L		Environmental	[210]
hromium (Cr(III) and Cr(VI))	Environmental samples	SE-CE	Cr(III): 1.8 µ g/L; Cr(VI): 1.9 µg/L		Environmental	[211]
Chromium(III)	Environmental water samples	MCE	$1.6 \times 10^{-16} \text{ mol/L}$		Environmental	[212]
opper(II)	Environmental samples	FASI-CE	$4 \times 10^{-12} \text{ M}$		Environmental Environmental	[213]
ivalent metal ions yes extracted from wool, cotton,	Factory wastewater Environmental samples	CSEI-Sweep-CZE tITP-MEKC	range of $(1.8-23.4) \times 10^{-8}$ M	190–640-fold	Environmental	[41] [214]
viscose, polyamide, and silk fibres	*		0.2	190-040-1010		
DTA	Drinking water	LVSEP-CE	0.2 μg/L 10 ⁻⁹ M		Environmental	[215]
nantiomers	Environmental samples	FASI-CE w/water plug tITP-CZE			Environmental	[216]
Strogens (estrone, β-estradiol, and ethynylestradiol)	Environmental water samples		0.16-0.30 nM $2.0 \times 10^{-9} \text{ M}$		Environmental	[217]
Suppose to	Environmental water samples	SPE-γ-CD-CZE			Environmental	[218]
Hyphosate Haloacetic acid	Environmental water samples Environmental samples	CE LVSS-CZE	0.06 μg/mL 97–120-fold sensitivity		Environmental Environmental	[219] [220]
	Environmental samples	L, JJ-CLL	enhancement		Environmental	[220]

S.L. Simpson Jr. et al. / J. Chromatogr. A 1184 (2008) 504-541

Halogenated phenolic and bisphenolic compounds	Environmental water samples	LVSEP-CE, LVSEP-NACE	LVSEP-CE and LVSEP-NACE improved peak heights by 5–26 and 16–220 folde momentically		Environmental	[221]
Heavy metal anions (Fe ²⁺ and Fe ³⁺)	Environmental samples	CE	and 16–330 folds, respectively <0.1 μM	50-fold relative to conventional hydrodynamic injection.	Environmental	[222]
Heavy metal cations (Cd(II), Pb(II), Cu(II), Ni(II), and Zn(II))	Molten snow	tITP-CZE	40–120 µg/L	injection.	Environmental	[223]
Heavy metal ions (Zn(II))	Tap water	CE	5 nM (Zn(II)) to 30 nM (Cu(II))		Environmental	[224]
Heavy metal ions (Zn(II), Co(II), Cu(II), and Ni(II))	Environmental samples	FASI-CE	5 nM	>3 orders of magnitude relative to non-stacking CE	Environmental	[225]
Herbicides (chlorinated acid herbicides) Herbicides (chlorophenoxy acid herbicides)	Environmental water samples Drinking water	SPE-FASS-CZE SPE-CE	0.269-20.3 ppt $1-4 \times 10^{-2} \text{ ng/mL}$	5000–10,000-fold	Environmental Environmental	[226] [227]
Herbicides (diclosulam, cloransulam-methyl, flumetsulam, metosulam, and florasulam))	Mineral/stagnant waters	SPE-ACN-stacking-CE	131 and 342 ng/L		Environmental	[228]
Herbicides (metribuzin, lenacil, ethofumesate, atrazine, terbutryn, isoproturon, chlorotoluron and linuron, and five of their principal degradation products; namely, deethylatrazine, 2-hydroxyatrazine, deethyl-2-hydroxyatrazine, deisopropylatrazine and 3-chloro-4-methylphenylurea))	Environmental samples	SPE-SDS-DOSS mixed-micellar MEKC	ppb range		Environmental	[229]
Herbicides (paraquat, diquat, difenzoquat)	Drinking water	CSEI-Sweep-MEKC	<1 µg/L		Environmental	[230]
Herbicides (paraquat, diquat, difenzoquat)	Drinking water	SPE-CZE	<2.2 µg/L		Environmental	[231]
Herbicides (paraquat, diquat, difenzoquat)	Drinking water	Stacking-CE	\sim 30–150 µg/L		Environmental	[232]
Herbicides (s-triazine herbicides)	Environmental samples	FASS-RMM-CZE	9–15 ng/mL		Environmental	[234]
Herbicides (triazines)	Environmental samples	LVSS-CE		500-fold	Environmental	[235]
Herbicides (triazines) Herbicides (triazolopyrimidine herbicides: flumetsulam, florasulam, cloransulam-methyl, diclosulam, and metosulam)	Environmental water samples Soil sample	SPE-REPSM-MEKC SPE-FASI-CE	3.3–8.5 μg/L 13.0–31.5 μg/L	4–10-fold	Environmental Environmental	[236] [237]
Hydride-forming elements (As(III) to As(V))	Environmental samples	ALOV-AFS	0.02 ng/mL As	8.8-fold	Environmental	[238]
Inorganic anions	Cigarette samples	ASEI-CZE	6–14 ng/L		Environmental	[239]
Inorganic anions ((Cl ⁻ , I ⁻ , Br ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , and SCN ⁻))	Seawater	CZE	1–3 μmol/L		Environmental	[240]
Inorganic anions (Br ⁻ , I ⁻ , NO ₃ ⁻ , CrO_4^{2-} , and MoO_4^{2-})	Ice	PAEKI-CZE	2.2–11.6 ppb		Environmental	[241]

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
Inorganic anions (bromide, nitrate, iodide, iodate, bromate, thiocyanate, and chromate)	Seawater	tITP-CZE	75 pM (9.5 ng/L)		Environmental	[242]
Inorganic anions (chloride, nitrate, and sulfate)	Environmental water samples	FI-CE	<125 µg/L		Environmental	[243]
Inorganic mercury (Hg(II)) and methylmercury (MeHg(I))	Environmental water samples	FI-CE	0.1 and 0.2 µg/mL (as Hg) for Hg(II) and MeHg(I)		Environmental	[244]
Iodide	Artificial seawater	tITP-CE	0.2 µg/L		Environmental	[245]
Iodide	Artificial seawater	tITP-CE	0.6 µg/L		Environmental	[246]
Iodide	Seawater	tITP-CE	0.4 µg/L		Environmental	[247]
Iodide/iodate	Seawater	tITP-CE	Iodide: 0.23 μg/L (2 nM); Iodate 10 μg/L (57 nM)		Environmental	[248]
Iodide/iodate	Seawater	tITP-CZE	Iodide: 4.0 µg/L; iodate: 5.0 µg/L		Environmental	[249]
Light-absorbing anions	Environmental samples	CZE	0.02–0.1 µg/mL		Environmental	[250]
Linear alkylbenzenesulfonates	Laundry/dishwashing detergents	LVSS-CZE		100-fold	Environmental	[251]
Mercury species (inorganic Hg ²⁺ , methyl-, ethyl-, and phenylmercury	Environmental samples	CZE	1.7 μg/L		Environmental	[252]
Mercury species (inorganic Hg ²⁺ , methyl-, ethyl-, and phenylmercury)	Environmental samples	SPE-CE	2.9-6.9 ng/mL	25–150-fold	Environmental	[253]
Methylmercury	Environmental samples	EKSI-NACE	18 ng/mL		Environmental	[254]
NaCl	NaCl standard solution	tITP-CZE	0.3 pM	500-fold improvement	Environmental	[255]
Naphthalene and benzenesulfonates	Environmental water samples	LVSS-CZE	5–10 µg/L		Environmental	[256]
Naphthalene, fluorene, pyrene, anthracene, phenanthrene, and chrysene	Airbornes particulates	CD-MEKC	10–20-fold increase in sensitivity relative to sweeping		Environmental	[257]
Naphthalenesulfonate compounds	Environmental samples	MEKC	0.96–0.47 ppb		Environmental	[258]
Naphthalenesulfonate compounds	Environmental water samples	CE	4 µg/L	100-fold	Environmental	[259]
Naphthalenesulfonate compounds	Environmental water samples (industrial effluent, river water)	SPE-CZE	1.0 µg/L in 200 mL		Environmental	[260]
Neutral compounds (butyrophenone, valerophenone, and acetophenone)	Environmental water samples	LLsME-MEKC	0.05, 0.05, and 0.1 mg/L for butyrophenone: 0.05 mg/L; valerophenone: 0.05 mg/L; acetophenone: 0.1 mg/L	63–151-fold	Environmental	[261]
Niobium(V), tantalum(V)	Environmental samples	MCL-CE	Nb(V): 9.1 µg/L; Ta(V): 25.2 µg/L		Environmental	[262]
Nitrate	Seawater	SSS-CZE	35 µg/L		Environmental	[263]
Nitrite/nitrate	Artificial seawater	tITP-CE	Nitrite: 15 µg/L; nitrate: 7.0 µg/L		Environmental	[264]
Nitrite/nitrate	Artificial seawater	tITP-CZE	Nitrite: 2.7 µg/L; nitrate: 3.0 µg/L		Environmental	[265]
Nitrite/nitrate	Artificial seawater	tITP-CE	Nitrite: 2.7 µg/L; nitrate: 3.0 µg/L		Environmental	[266]
Nitroaromatic explosives	Seawater	HSS-MEKC	<100 µg/L		Environmental	[267]
Nonsteroidal anti-inflammatory drugs (NSAIDS)	Environmental water samples	LVSEP-ASEI-CE	LVSEP, LVSEP-ASEI, and FAEP improved the sensitivity of the peak area by 100-, 1200-, and 1800-fold, respectively		Environmental	[268]

S.L. Simpson Jr. et al. / J. Chromatogr. A 1184 (2008) 504-541

Nonsteroidal anti-inflammatory drugs (NSAIDS)	Environmental water samples	LVSS-CE	Sensitivity was enhanced by 80–100-fold		Environmental	[269]
Nonsteroidal anti-inflammatory drugs (NSAIDS)	Environmental water samples	REPSM-MEEKC	Sensitivity enhanced up to 40-fold		Environmental	[270]
Nonsteroidal anti-inflammatory drugs (NSAIDS) (ibuprofen, fenoprofen, naproxen, ketoprofen, and diclofenac sodium)	Mineral waters	SRMM-MEKC; SRMM-ASEI-MEKC; FESI-RMM-MEKC	SRMM-MEKC, SRMM-ASEI-MEKC; FESI-RMM-MEKC: sensitivity was improved up to 154-, 263-, and 63-fold, respectively		Environmental	[271]
Ochratoxin A	Household dust	SPE-CE	0.2 ng/L		Environmental	[272]
Organic anions	Environmental samples	SPE-CZE	Ranging between 1.5 and 12 nM for the organic anions studied		Environmental	[273]
Parabens (methyl, ethyl, propyl, and butyl <i>p</i> -hydroxybenzoate)	Cosmetic products	SEI-RMM-LVSS- MEKC	$3.0 \times 10^{-7} \mathrm{M}$		Environmental	[274]
Perfluorocarboxylic acids	Environmental samples	CE	C6-PFCA: 2 µg/mL; C12-PFCA: 33 µg/mL		Environmental	[275]
Pesticides (aldicarb, carbofuran, isoproturon, chlorotoluron, metolachlor, mecoprop, dichlorprop, MCPA, 2,4-D, methoxychlor, TIDE, DDT, dieldrin, and DDE)	Drinking water	SPE-FASS-CZE	0.04–0.46 ng/mL	30-fold	Environmental	[276]
Pesticides (amitrole (AMT), carbendazim (MBC), 2-aminobenzimidazole (ABI), thiabendazole (TBZ) and 1,2-diaminobenzene (DAB))	Environmental samples	CE	ppm levels		Environmental	[277]
Pesticides and metabolites	Environmental water samples	FASS-SM-EKC	10^{-7} to 10^{-9} M		Environmental	[278]
Phenol pollutants	Environmental samples	FI-CZE	2000-fold enhancement of detection sensitivity		Environmental	[279]
Phenolic acids	Environmental samples	LVSS-CZE	0.01–0.025 µg/mL		Environmental	[280]
Phenols (<i>p</i> -nitrophenol, phenol, and resorcinol)	Environmental samples	CZE	40 µg/mL for a Kapel'-103R instrument and 0.05–0.1 µg/mL for a Hewlett-Packard HP ^{3D} CE		Environmental	[281]
Phenoxy acid herbicides	Environmental samples	FAEP-CE		>3000×	Environmental	[233]
Phenoxy acid herbicides	Environmental samples	FASI-CE	100 pg/mL		Environmental	[282]
Phenylurea herbicides (monuron, isoproturon, diuron)	Tap, pond water	RMM-MEKC	1 ppb	500-fold	Environmental	[283]
Phosphate	Seawater	tITP-CZE	32 µg/L		Environmental	[284]
Polyclic aromatic hydrocarbons	Environmental water samples	SE/HLL-CE (Triplex concentration system)	3.60 ppt	10 ⁷ -fold concentration	Environmental	[285]
Polycyclic aromatic hydrocarbons (PAHs) (Benzo[<i>a</i>]pyrene and pyrene)	Environmental samples	CE-RS	Bap and Py were Bap: 1.6×10^{-9} ; Py: 4.8×10^{-9} mol/L	8335-fold	Environmental	[286]
Propranolol and metoprolol	Environmental samples	CSEI-CE		\sim 5000 times relative to normal EKSI	Environmental	[287]
Propranolol and metoprolol	High-salt samples	FASIAS-CE	Propranolol and metoprolol was 10^{-4} and 7×10^{-4} mg/L,		Environmental	[288]

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
Rare earth ions	Environmental samples	EKS-CZE	0.1 μΜ	20,000-fold	Environmental	[45]
Rare earth ions	Environmental samples	tITP-CZE	0.1 µM	20,000-fold	Environmental	[289]
Short-chain organic acids	Natural rubber latex	LVSS-CZE		>17	Environmental	[290]
Strontium, lithium	Seawater	tITP-CZE	1.3 mg/L Sr(II) and 0.12 mg/L Li ⁺		Environmental	[291]
Tetrabromobisphenol A	Environmental water samples	LVSEP-NACE	Improved sensitivity of the peak height by 90–300-fold		Environmental	[292]
Tetracycline antibiotics (tetracycline, oxytetracycline, and doxycycline)	Environmental water sample (surface water samples)	SPE-CE	2 g/L		Environmental	[293]
Thiol/cyanide hydrolysis products of chemical warfare agents <i>O</i> -ethyl <i>S</i> -2-diisopropylaminoethyl methylphosphonothiolate (VX), <i>O</i> -isobutyl <i>S</i> -2-diethylaminoethyl methylphosphonothiolate (R-VX), and tabun (GA) (2-dimethylaminoethanethiol, 2-diethyl-aminoethanethiol, and cyanide)	Environmental samples	CE	 9.3 μg/L for cyanide, 1.8 μg/L for 2-diethylaminoethanethiol, 35 μg/L for 2-dimethylaminoethanethiol, 15 μg/L for 2-mercaptoethanol, and 89 μg/L for 1-pentanethiol 		Environmental	[294]
Trace metal	Environmental samples	tITP-CZE	$0.4-4.2 \times 10^{-7} \mathrm{M}$		Environmental	[295]
Trace metal impurities	Nickel and iron salts	CZE	$10^{-7} \mathrm{M}$		Environmental	[296]
Frace phenolic compounds	Environmental water samples	FASI-FASS-MCE	100–150 pM	5200-fold	Environmental	[297]
Frace transition metals (Cd^{2+}, Zn^{2+})	Environmental water samples	tITP-CZE	0.1–0.5 μg/L	0200 1010	Environmental	[298]
Uncharged pesticides (naphthalene acetamide, carbaryl, 1-naphthol, thiabendazole, and carbendazime)	Environmental samples	MEKC	Carbaryl: 0.22 µg/mL; 1-naphthol 1.13 µg/mL		Environmental	[299]
Vanadium	Fertilizer	CE	19 ppb		Environmental	[300]
Weakly acidic organic compounds, chlorinated phenols, aromatic amino acids	Environmental samples	LVSEP-CE	Sensitivity enhancement factors as large as 170		Environmental	[301]
Acidic phenolic compounds (caffeic acid, 3,4-dihydrobenzoic acid, gallic acid, <i>p</i> -hydroxybenzoic acid)	Food samples	ASEI-Sweep-MEEKC	3 ng/L	96,000–238,000-fold increase in detection sensitivty relative to normal MEEKC	Food analysis	[302]
Acrylamide	Food samples	FASI-CZE	3 ng/L		Food analysis	[303]
Biogenic amines (histamine, tryptamine, phenylethylamine, tyramine, agmatine, ethanolamine, serotonin, cadaverine, and putrescine)	Red wine sample	FASS-CE	0.02 mg/L for ethanolamine to 0.91 mg/L for serotonin		Food analysis	[304]
Cytokinin nucleotides	Coconut water	SPE-CZE	0.06–0.19 µM		Food analysis	[305]
Cytokinins	Coconut water	ACN-stacking CE	0.05–0.18 µM		Food analysis	[306]
Food colorants	Soft drinks, jellies, and milk beverages	LVSS-CE	0.1–0.5 µg/mL		Food analysis	[307]
Fungicides (carbendazim, metalaxyl, captan, procymidone, folpet, captafol, vinclozolin, and iprodione)	Fruit juices	HSS-MEKC	µg/L		Food analysis	[308]
Fungicides (thiabendazole, procymidone)	Fruits and vegetables	SPE-LVSS-CE	1.6–16.0 µg/kg		Food analysis	[309]

S.L. Simpson Jr. et al. / J. Chromatogr. A 1184 (2008) 504-541

Heavy metal anions (Cd ²⁺ , Cu ²⁺ , Zn ²⁺)	Fish liver metallothioneins	LVSS-CZE		13-fold	Food analysis	[310]
Herbicides (triazolopyrimidine sulfoanilide herbicides: cloransulam-methyl, metosulam, flumetsulam, florasulam, and diclosulam)	Soy Milk	SPE-CE	74 µg/L		Food analysis	[311]
Pesticides (carbendazim (benzimidazole), simazine, atrazine, propazine and ametryn (triazine), diuron and linuron (urea), carbaryl and propoxur (carbamate))	Drinking water, vegetables	SRMM-Sweep-MEKC	2–46 µg/L	3–18-fold	Food analysis	[312]
Pesticides (cyprodinil, cyromazine, pyrifenox, pirimicarb, and pyrimethanil)	Water, apple/orange juice	SPME-FESI-CE	$2.5 \ \mu g/L$ in water and $3.1 \ \mu g/L$ in juices		Food analysis	[313]
Quinolone antibiotics (ciprofloxacin, enrofloxacin, and flumequine)	Porcine plasma samples	tITP-CZE	Ciproflacin: 70 μg/L; Enrofloxacin: 85 μg/L; Flumequine: 50 μg/L		Food analysis	[314]
Quinolone antiobiotics (ciprofloxacin, ofloxacin, and enrofloxacin)	Porcine tissue	CE	Ciprofloxacin: 0.007 mg/L; ofloxacin: 0.016 mg/L; enrofloxacin: 0.020 mg/L		Food analysis	[315]
Riboflavin	Beer	Sweeping-MEKC	MEKC, stacking-MEKC and dynamic pH junction techniques, the detection limits were found to be 480, 20, and 1 ng/mL respectively		Food analysis	[316]
Riboflavin	Beer	Stacking-MEKC	20 ng/mL		Food analysis	[317]
Sodium tripolyphosphate	Food samples	tITP-CZE	0-80 mg P ₂ O ₅ /L		Food analysis	[318]
Sulfonamides (sulfapyridine, sulfamethazine, sulfamerazine, sulfamether, sulfadiazine, sulfadimethoxine, sulfamethoxazole, sulfachlorpyridazine, and sulfamethizole)	Meat, ground water	SPE-CZE	2.59–22.95 μg/L		Food analysis	[319]
trans-Resveratrol	Red wine sample	Sweep-MEKC	1500-fold improvement in detection sensitivity in comparison with normal-MEKC mode		Food analysis	[320]
Alkaloids	Sophora flavescens ait sample	FASI-CE	Concentration sensitivity was about 3–4 orders of magnitude higher than in hydrodynamic injection		Pharmaceutical	[321]
Alkaloids (berberine, coptisine, and palmatine)	Coptidis rhizoma sample	EKSI-FASS-CE	~5 ng/mL		Pharmaceutical	[322]
Alkaloids (berberine, coptisine, and palmatine)	Coptidis rhizoma sample	Sweeping-MEKC	Berberine, coptisine and palmatine were found to be 2.5 ppb (ng/mL)		Pharmaceutical	[323]

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
Benzoin, mephenytion, and propatenene	Standards (Proof of concept)	tITP-CZE		Benzoin, 134-fold; mephenytion, 219-fold; propatenene, 1600-fold	Pharmaceutical	[324]
Carbamazepine	Pharmaceutical tables, human serum	Sweep-MEKC	0.10 µg/mL		Pharmaceutical	[325]
D-Amphetamine, diphenhydramine	Anti-motion sickness capsules	CZE	D-Amphetamine and diphenhydramine were 10.0 and 5.5 ng/mL		Pharmaceutical	[326]
Ethynyl estradiol	Female contraceptive pill extract	Dynamic pH junction-sweeping CE	0	100-fold	Pharmaceutical	[327]
Fangchinoline, tetrandrine	Herbal medicine	FI-MEKC	6.8–8.9-fold improvement in concentration sensitivity relative to conventional CE methods		Pharmaceutical	[328]
Fangchinoline, tetrandrine	<i>Radix stephaniae tetrandrae</i> and its medicinal preparations	NACE	Fangchinoline: 0.30 ng/mL; tetrandrine:0.34 ng/mL		Pharmaceutical	[329]
Flavonoids	<i>Epimedium brevicornum</i> maxim extracts	FESI-RMM-MEKC	40–360-fold improvement in the detection sensitivity		Pharmaceutical	[330]
Flavonoids (hyperoside, isoquercitrin, quercitrin, quercetin, and rutin)	Methanolic extracts of Hypericum perforatum leaves/flowers	tITP-CZE	Quercetin-3-0-glycosides was 100 ng/mL		Pharmaceutical	[331]
Inorganic anions (Cl ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ , F ⁻ , HPO ₄ ²⁻)	Cigarette samples	ASEI-CE	6.2 ng/L		Pharmaceutical	[332]
Lovastatin	Chinese medicine monascus capsule	tMCRBM-CZE	0.73 g/mL		Pharmaceutical	[333]
Paracetamol (Par), pseudoephedrine hydrochloride (Pse), dextromethorphan hydrobromide (Dex) and chlorphenamine hydrogen maleate (Chl)	Pharmaceutical samples	FI-CE	0.22 μg/mL, 0.29 μg/mL, 0.42 μg/mL and 0.70 μg/mL for Par, Pse, Dex, and Chl, respectively		Pharmaceutical	[334]
harmaceuticals (eletripan, dofetilide, doxazosin, sildenafil, UK-103,320, UK-202,581, and CP-122,288)	Ringer's solution	FASS-CZE	10–27-fold sensitivity enhancement		Pharmaceutical	[335]
Phenolic compounds (salicylic acid, cinnamic acid, ferulic acid and vanillic acid)	Biological samples	NACE	Salicylic acid: 0.069, cinnamic acid; 0.051; ferulic acid 0.107; vanillic acid 0.089		Pharmaceutical	[336]
Phenolic compounds (several cinnamic acid derivatives and flavonoids)	Methanolic extracts of Sambucus flowers and Crataegus leaves and flowers	tITP-CZE	20–50 ng/mL and 100 ng/mL for the acids and flavonoids, respectively		Pharmaceutical	[337]
Pyrrolizidine alkaloids (PAs) of senkirkine, senecionine, retrorsine, and seneciphylline	Chinese herbal medicine (kuan donghua)	Dynamic pH-junction-Sweeping	LOD as low as 30 ppb for the PAs	23.8–90.0-fold	Pharmaceutical	[338]
Quinolizidine alkaloids (sophoridine, matrine, sophocarpine, and oxymatrine)	Roots of Sophora flavaescens ait and S. tonkinensis Gagnep	FASS-EMI-NACE	0.0210-0.0446 ng/mL		Pharmaceutical	[339]
Saponins SSRIs (sertraline, fluoxetine, and fluvoxamine)	Panax notoginseng extract Aqueus mixture of analytes	FESI-RMM-MEKC SPE-CZE	1.7–6.3 μg/mL	>500-fold	Pharmaceutical Pharmaceutical	[340] [341]
Strychnos alkaloids (strychnine and brucine)	Strychnos nux-vomica L	FESI-CE	1.0 ng/mL for strychnine and 1.4 ng/mL for brucine		Pharmaceutical	[342]

Terbinafine 5-Hydroxytryptamine (5-HT) and	Commercial spray/tablets Human urine	CZE CE	1.73 μmol/L 5-HT: 0.27 nM; 5-HIAA:		Pharmaceutical Toxicological/forensic	[343] [344]
5-hydroxyindole-3-acetic acid (5-HIAA)		02	0.31 nM			[0.1]
3,4- Methylenedioxymethamphetamine (3,4-MDMA)	Biological samples	LTB-NACE	$5.0 \times 10^{-9} \mathrm{M}$		Toxicological/forensic	[345]
8-Oxoguanine (80xoG) and 8-hydroxydeoxyguanosine (8OHdG)	Cerebral cortex microdialysate samples	CE w/pH-mediated anion stacking	0.5 nM		Toxicological/forensic	[346]
Acyclovir	Human plasma	MEKC	6.67 ng/mL		Toxicological/forensic	[347]
Amino alcohols	Human urine	LPME-CE	0.08–0.5 μg/mL	72-110-fold	Toxicological/forensic	[348]
Amiodarone, desethylamiodarone	Human serum	EKSI-FASS-CE	6.46 ng/mL		Toxicological/forensic	[349]
Amitriptyline (Ami); nortriptyline (Nor)	Human plasma	FASI-CE	Ami and Nor were 2.0 ng/mL (6.3 and 6.7 nM, respectively)		Toxicological/forensic	[350]
Amphetamine and derivatives (amphetamine, methamphetamine, and methylenedioxy-	Biological matrices	Sweeping-MEKC	6 to 8 pg/mL (ppt),		Toxicological/forensic	[351]
methamphetamine) Amphetamine and derivatives (amphetamine, methamphetamine and methylenedioxy-	Human hair	CSEI-MEKC	<50 pg/mL using CSEI-MEKC		Toxicological/forensic	[352]
methamphetamine)						
Amphetamines and derivatives (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, and 3,4,- methylenedioxymethamphetamine)	Human hair	FASS-CZE	<0.06 µg/L		Toxicological/forensic	[353]
Amphetamines and derivatives (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, and 3,4,- methylenedioxymethamphetamine)	Human urine	SPME-CZE	25–34 µg/L		Toxicological/forensic	[354]
Anabolic steroids (methyltestosterone, methandrostenolone, and testosterone)	Human serum	LVSS-CD-CEC	Methyltestosteron: 2.79×10^{-7} mol/L; testosterone: 3.47×10^{-7} mol/L; methandrostenolone: 3.56×10^{-7} mol/L (for		Toxicological/forensic	[355]
Anthracycline antibiotics	Aqueous mixture of analytes	MEKC	nM		Toxicological/forensic	[356]
(doxorubicin, daunorubicin)	1				J	1. A.
Anthracycline antibiotics (doxorubicin, daunorubicin)	Human plasma	SSS-CZE	nmole/L		Toxicological/forensic	[357]
Antibiotic (tobramycin)	Human serum	FASS-CE	50 µg/L		Toxicological/forensic	[358]
Antibiotics (kanamycin)	Human serum	SPE-CE	2 μg/mL		Toxicological/forensic	[359]
Antibiotics (marbofloxacin)	Porcine plasma samples	tITP-CZE	20 μg/kg	75-times more sensitive than conventional CE	Toxicological/forensic	[360]
Antibiotics (rapamycin)	Human whole blood	PAEKI-CZE	low µg/L levels		Toxicological/forensic	[361]

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
Antibiotics (trimethoprim and sulfamethoxazole)	Biological matrices	Dynamic pH-junction		2.9–4.7-fold relative to conventional capillary electrophoresis methods	Toxicological/forensic	[362]
Arsenic species (ASO(2)(2-), ASO(4)(2-), and dimethylarsinic acid, DMA))	Biological matrices	FASI-CZE	<1 µmol/L		Toxicological/forensic	[363]
Barbiturates (barbital and phenobarbital)	Human urine	Sweeping-MEKC	Barbital:0.27 µg/mL; andphenobarbital: 0.26 µg/mL		Toxicological/forensic	[364]
Biguanides (proguanil, 4-chlorophenylbiguanide and cycloguanil)	Human plasma, urine	Sweeping-MEKC	Limits of detection obtained by sweeping are improved over FASI for plasma but not for urine and the limits of detection are higher than those reported for LC, for these compounds		Toxicological/forensic	[365]
Carbamazepine Cationic constituents (e.g., metal cations, biogenic amines, amino acids)	Human serum Human sweat	MEKC tITP-CZE	0.10 µg/mL 3.2–5.8 µM for alkali and alkaline-earth cations (hydrostatic injection); 0.27–0.79 µM for other target analytes (hydrodynamicc injection)		Toxicological/forensic Toxicological/forensic	[366] [367]
Cationic low-molecular mass compounds	Human plasma, urine	tITP-CEC	Low nmol/L range		Toxicological/forensic	[368]
Cationic pharmaceuticals	Biological matrices	pH-mediated acid stacking-CE	Two-fold decrease in LOD	60-fold	Toxicological/forensic	[369]
Cefazolin	Human plasma; ringers solution	SE-CE	Plasma: 1.0 μg/mL; Ringers: 2.0 μg/mL		Toxicological/forensic	[370]
Cimaterol, clenbuterol, salbutamol	Biological matrices	FASI-CE	<2.0 ng/mL	30-40-fold	Toxicological/forensic	[371]
Ciprofoxacin	Biological matrices	CE	0.01 mg/L		Toxicological/forensic	[372]
Clenbuterol, salbutamol	Biological matrices	tITP-CZE	10^{-6} mol/L		Toxicological/forensic	[373]
Clozapine, clozapine <i>N</i> -oxide, and desmethylclozapine	Human plasma	FASS-CE	CZP, DMC, and CNO were 5, 5, and 10 ng/mL, respectively		Toxicological/forensic	[374]
Cocaine, thebaine	Water-immiscible solvent samples	OLBE-FASI-CZE	Range of 2–10 ng/mL		Toxicological/forensic	[375]
Coumarin metabolites (7-hydroxycournarin (7-OHC), 4-hydroxycoumarin (4-OHC) and 2-hydroxyphenylacetic acid (HPAA))	PBS	pH-mediated stacking-CE	7-Hydroxycournarin: 0.1 μM; 4-hydroxycoumarin: 0.5 μM; 2-hydroxyphenylacetic acid: 0.3 μM		Toxicological/forensic	[376]
Disopyramide Ephedra-alkaloids (ephedrine, pseudoephedrine, methylephedrine, methylpseudoephedrine, norephedrine, and	Human urine Herbal drug extracts, animal sera	CE CSEI-Sweep-MEKC	$2.5 \times 10^{-8} \text{ mol/L}$ $10^{-3} \mu\text{g/mL}$	104-fold	Toxicological/forensic Toxicological/forensic	[377] [86]
norpseudoephedrine Ephedrine derivatives	Human urine, serum	OLBE-FASI-CME-CE	0.15–0.25 ng/mL		Toxicological/forensic	[378]

Ephedrine, pseudoephedrine	Biological matrices	FASS-CZE	0.67 and 0.73 µ g/mL for ephedrine (E) and pseudoephedrine (PE), respectively	Toxicological/forensic	[379]
Ephedrine, pseudoephedrine	Human plasma, urine	FESI-CZE	5.3 ng/mL and 8.0 ng/mL in human plasma and urine, respectively	Toxicological/forensic	[380]
Escitalopram	Human urine	Sol-gel-CZE	10 pg/mL	Toxicological/forensic	[381]
Ethyl glucuronide	Human serum	CE	0.1 μg/mL	Toxicological/forensic	[382]
Flunitrazepam & its major metabolites (7-aminoflunitrazepam and <i>N</i> -desmethylflunitrazepam)	Human urine samples	Sweep-MEKC	 3.4, 5.6, and 12.0 ng/mL for flunitrazepam, 7-aminoflunitrazepam, and N-desmethylflunitrazepam, respectively 	Toxicological/forensic	[383]
Fluoresceins	Biological matrices	FASI-MCE	LOD was improved by 94-,	Toxicological/forensic	[384]
(fluorescein-5-isothiocyanate,			108-, and 160-fold for		
fluorescein disodium, and			fluorescein-5-isothiocyanate,		
5-carboxyfluorescein)			fluorescein disodium, and		
			5-carboxyfluorescein,		
			respectively, relative to a		
		EAGL OF	traditional pinched injection	T · 1 · 1/6 ·	12051
Fluoride	Dental composites	FASI-CE	20 ng/mL	Toxicological/forensic	[385]
Glutathione and glutathione disulfide	Human liver microdialysates	pH-mediated base stacking-CE	Glutathione: $0.75 \ \mu$ M and glutathione disulfide: $0.25 \ \mu$ M	Toxicological/forensic	[386]
Heroin metabolites	Human urine	CD-CZE	ng/mL	Toxicological/forensic	[387]
Heterocyclic aromatic amines	Human urine	FASI-CE	0.3 ng/mL	Toxicological/forensic	[388]
Heterocyclic aromatic amines	Human urine	HDSI-CE	18–360 ng/g	Toxicological/forensic	[389]
Heterocyclic aromatic amines	Human urine	muSPE-CE	750–810 fmol	Toxicological/forensic	[390]
Illicit drugs	Banknotes	FASS-CE	50 nM for heroin and 60 nM for cocaine w	Toxicological/forensic	[391]
Illicit drugs (methamphetamine, ketamine, morphine, codeine)	Human hair	CSEI-Sweep-MEKC	50 pg/mg hair for MA and K, 100 pg/mg hair for C and 200 pg/mg hair for M	Toxicological/forensic	[392]
Illicit drugs (methamphetamine, ketamine, morphine, codeine)	Human urine	CSEI-Sweep-MEKC	15 ng/mL for M and C, and 5 ng/mL for MA and K	Toxicological/forensic	[393]
Illicit synthetic drugs	Human bodily fluid sample	CE	0.1–6 μg/L	Toxicological/forensic	[394]
Inorganic anions (iodide, bromide, nitrate)	Human urine, serum	tITP-CZE	Iodide 1.4 µg/L	Toxicological/forensic	[395]
Isoxyzolylpenicillins (oxacillin, cloxacillin, and dicloxacillin)	Human serum	LVSEP-CE	2.0 µg/L	Toxicological/forensic	[396]
Itraconazole and hydroxyitraconazole	Human serum, plasma	MEKC	0.01 μg/mL	Toxicological/forensic	[397]
Ketamine and its major metabolites (norketamine, ketamine-D-4)	Human bodily fluid sample	RMM-Sweep-MEKC	2.8, 3.4, and 3.3 ng/mL for ketamine, norketamine, and ketamine-D-4, respectively	Toxicological/forensic	[398]
Lithium	Human whole blood samples	tITP-MCE	0.1 mmol/L	Toxicological/forensic	[399]
Lovastatin	Human urine	tMCRBM-CE	8.8 ng/mL	Toxicological/forensic	[400]
Lysergic acid diethylamine (LSD)	Murine blood	CSEI-Sweep-MEKC	120 and 30 ng/mL	Toxicological/forensic	[401]

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
Methacrylic acid Methamphetamine and derivatives (methamphetamine; amphetamine, and <i>p</i> -hydroxymethamphetamine)	Dental composites Human urine	FASI-CE ACN-stacking-MEKC	50 ppb 20 ng/mL for methamphetamine, and 15 ng/mL for amphetamine and <i>p</i> -hydroxymethamphetamine		Toxicological/forensic Toxicological/forensic	[402] [403]
Methotrexate and its metabolites	Human plasma	SPE-LVSS-CE	improvement of sensitivity of around a 100-fold		Toxicological/forensic	[404]
Monoamines	Human urine	FASS-CE	$6.0 \times 10^{-10} \text{ mol/L}$		Toxicological/forensic	[405]
Morphines (MOR, MOR-3-glucuronide, 6-monoacetylmorphine, codeine, codeine-6-glucuronide, dihydrocodeine, methadone and 2-ethylidene-1,5-dimethyl-3,3- diphenylpyrrolidine)	Human urine	FASS-CE	100–200 ng/mL		Toxicological/forensic	[406]
n-Alkane diamines, lysine, diaminopimelic acid, and isoniazid	Biological matrices	MCE	LOD of isoniazid was improved in the magnitude of 11 times compared with the one of free isoniazid		Toxicological/forensic	[407]
Naphthalene-2,3-dicarboxaldehyde (NDA)-labeled dopamine	Human urine	Sweep-MEKC	MEKC: 9.1×10^{-7} ; sweeping-MEKC: 1.2×10^{-8} M; methanol plug assisted sweeping MEKC: 4.7×10^{-9} M		Toxicological/forensic	[408]
Nateglinide	Animal plasma	Sweep-MEKC	0.2–7 mg/L	100-fold	Toxicological/forensic	[409]
Vicotine and metabolites	Human urine	SPE-CZE	ng/mL		Toxicological/forensic	[410]
Vitrophenols	Biological matrices	SPE-FI-CE	2-NP, 4-NP and 2,4-DNP:		Toxicological/forensic	[411]
-	-		0.3 μg/L, 0.6 μg/L, and 0.7 μg/L		-	
Nonsteroidal anti-inflammatory drugs (NSAIDS)	Human urine	SPE-CEC	 0.096 μm for indoprofen, 0.110 μm for ketoprofen, 0.012 μm for naproxen, 0.023 μm for ibuprofen, 0.110 μm for fenoprofen, 0.140 μm for flurbiprofen, and 0.120 μm for suprofen 		Toxicological/forensic	[412]
Nonsteroidal anti-inflammatory drugs (NSAIDS)	Human urine, serum	SPE-CE	0.88–1.71 μg/mL		Toxicological/forensic	[413]
Ochratoxin A	Human serum	ACE	0.5 ng/mL		Toxicological/forensic	[414]
Ochratoxin A	Human serum	ACE	0.55 ng/mL		Toxicological/forensic	[415]
Opiate drugs	Hair samples	Dynamic pH junction injection-CE	ng/mL - pg/mL		Toxicological/forensic	[416]
Dpiates (heroin, 6-monoacetylmorphine, morphine, codeine, papaverine, and narcotine)	Human urine	CZE	6.6–19.5 ng/mL		Toxicological/forensic	[417]
Opioids	Human urine	FASS-CE	>1000-fold sensitivity enhancement		Toxicological/forensic	[418]
Oxalate	Human urine	CZE	8×10^{-8} mol/L; Samples containing Cl- LOD: 3.5×10^{-3} mol/L		Toxicological/forensic	[419]

Oxprenolol, atenolol, timolol, propranolol, metoprolol, and acebutolol	Human urine	tITP-CE	<5 µg/mL		Toxicological/forensic	[420]
Penicillins	Human serum	REPSM-MEEKC	Decreased the detection limits by about 40-fold		Toxicological/forensic	[421]
Phenethylamine designer drugs, (2,5-dimethoxy-4-ethylthio- phenethylamine (2C-T-2), 2,5-dimethoxy-4-(<i>n</i>)- propylthiophenethylamine (2C-T-7), 4-chloro-2,5- dimethoxyphenethylamine (2C-C), 4-bromo-2,5-dimethoxy- phenethylamine (2C-B), 2,5-dimethoxy-4-iodo- phenethylamine (2C-I))	Aqueus mixture of analytes	Sweep-MEKC	10 ⁻⁷ M		Toxicological/forensic	[422]
Phenolic compounds (dopamine, epinephrine, catechol, and 4-aminophenol)	Biological matrices	CE	140 and 105 nM for dopamine and epinephrine, respectively.		Toxicological/forensic	[423]
Phenothiazines (thiazinamium methylsulfate, promazine hydrochloride, chlorpromazine hydrochloride, thioridazine hydrochloride, and promethazine hydrochloride)	Human urine	SPE-FASI-CZE	from 2 to 5 ng/mL		Toxicological/forensic	[424]
Procyclidine	Human urine	CZE	10^{-9} mol/L		Toxicological/forensic	[425]
Propranolol enantiomers	Human urine	SPE-CE	0.01 µg/mL		Toxicological/forensic	[426]
Reserpine	Human urine	FASI-MEKC	$7.0 \times 10^{-8} \text{ mol/L}$		Toxicological/forensic	[427]
Sildenafil citrate and metabolites	Human serum	MEKCPS	\sim 17 ng/mL		Toxicological/forensic	[428]
Steroids	Biological matrices	SEI-MEKC		60–600-fold increase in detection sensitivity	Toxicological/forensic	[429]
Strychnos alkaloids (strychnine and brucine)	Biological matrices	FESI-PMME-MEKC	Strychnine and brucine were 0.05 and 0.07 µg/mL, respectively	<100-fold improvement in concentration sensitivity relative to convention MEKC	Toxicological/forensic	[430]
Strychnos alkaloids (strychnine and brucine)	Human urine	LPME-MEKC	Strychnine and brucine were 1 and 2 ng/mL, respectively		Toxicological/forensic	[431]
Strychnos alkaloids (strychnine and brucine)	Human urine	Sweeping-MEKC	Strychnine and brucine were 1 ng/mL and 2 ng/mL		Toxicological/forensic	[432]
Sulindac	Human urine	muSPE-CE	2.9 ng/mL	>260	Toxicological/forensic	[433]
Sulindac, sulindac sulfide (SI) and sulindac sulfone (SO)	Human plasma	FASI-CE	0.1 μ M for SU and SO, and 0.3 μ M for SI		Toxicological/forensic	[434]
Triadimenol	Biological matrices	CD-MEKC	0.8–3.8 ppm	10-fold increase	Toxicological/forensic	[435]

Sample target	Sample matrix	Separation mode	Limit of detection	Concentration factor	Application	Ref.
Tricyclic antidepressants	Human serum	ACN-stacking-SPE- CZE	5 ng/mL		Toxicological/forensic	[436]
Urinary 8-hydroxydeoxyguanosine (80HdG)	Human urine	CZE	4.3 nM		Toxicological/forensic	[437]
Valproate	Human serum	tITP-MCE	0.3–0.7 μmol/L		Toxicological/forensic	[438]
Zotepine and norzotepine	Human plasma	tITP-CZE	Zotepine and norzotepine in plasma were 2 and 1 ng/mL, respectively		Toxicological/forensic	[439]

^a2-D-IEF, Two-dimensional isoelectric focusing; 2-D-LC, two-dimensional liquid chromatography; 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis; ABS, acid barrage stacking; ACE, affinity capillary electrophoresis; AN, acetonitrile; ASEI, anion-specific exclusion injection or anion selective exhaustive injection; AuNP, gold nanoparticles; BCE, bubble-cell capillary electrophoresis; CABCE, carrier ampholye-based capillary electrophoresis; CD, cyclodextrin modified; CEC, capillary electrochromatography; CME, centrifuge microextraction; CPE, cloud point extraction; CSEI, cation selective exhaustive injection; DOS, dioctyl sulfosuccinate; EC, electrochromatography; EKS, electrokinetic supercharging; EKSI, electrokinetic sample injection; ELISA, enzyme-linked immunosorbent assay; ESI, electrospray ionization; FAEP, field-amplified sample injection and water removal using the EOF pump; FASI, field-amplified sample injection; FASIAS, field-amplified sample injection with acid stacking; FASS, field-amplified sample injection and water removal using the EOF pump; FASI, field-amplified sample injection; FASIAS, field-amplified sample injection and water removal using the EOF pump; FASIA field-amplified sample injection; FASIAS, field-amplified sample injection with acid stacking; FASIA field-amplified sample injection; FASIAS, sample stacking; FI, flow injection; EKI, electrokinetic injection; FMOC, 9-fluorenvlmethoxycarbonyl; HCFASS, head-column field-amplified sample stacking; HLL, homogenous liquid-liquid extraction; HSS, high-salt stacking; HDSI, hydrodynamic sample injection; HSC, high-sensitivity cell; HSDC, high sensitivity detection cell; IE-CEC, ion-exchange capillary electrochromatography; IE-EF-CE, ion-exchange-based eluent-free capillary electrophoresis; LC, liquid chromatography; LLE, liquid-liquid extraction; LLsME, liquid-liquid semimicroextraction; LTB-NACE, low-temperature and ambient temperature nonaqueous capillary electrophoresis; LPME, liquid-phase microextraction; LV-FASI, large volume field-amplified sample injection; LVSEP, large-volume sample stacking injection using the electroosmotic flow pump; LVSS, large-volume sample stacking; LPME, liquid-phase microextraction; MACE, microchip affinity capillary electrophoresis; MBE, moving boundary electrophoresis; MCE, microchip electrophoresis; MCL, metallochromic ligands; MCMEKC, microchip micellar electrokinetic chromatography; MCRB, moving chemical reaction boundary; MEKCPS, micellar electrokinetic chromatography with polarity switching; MGE, microchip gel electrophoresis; MI, microinjection; MFMPs, multifunctional magnetic particles; muSPE, micro solid-phase extraction; NACE, non-aqueous capillary electrophoresis; OLBE-FASI, on-line back-extraction field-amplified sample extraction; PAEKI, pressure-assisted electrokinetic injection; PC-HFME, polymer-coated hollow fiber microextraction; PEO, polyethylene oxide; PEG, polyethylene glycol; LVSEP, large volume stacking with an electroosmotic pump; REPSM, reversed electrode polarity sample stacking; RPRP, reversed-polarity; RM-MEKC, reverse migration MEKC; RMM, reverse migrating micelle; RPLC, reversed-phase liquid chromatography, SC-CE, short-column CE; SEC, size-exclusion chromatography; SEI, selective exhaustive injection; SHDI, semihydrodynamic injection; SPE, solid-phase extraction: SPME, solid-phase microextraction: SRMM, stacking with reverse migrating micelles; SSS, sample self-stacking; SWMR, stacking with matrix removal; tMCRBM, transient moving chemical reaction boundary method; TOF, time-of-flight; VDIF, velocity-difference-induced focusing.

though readers are advised to consult the individual references to suit their needs.

4.1. Biological applications

Within the realm of biological applications, the complexity of components entailed in life necessitates a similar variety of methods and technologies for their concentration and detection. Biological components vary in nature, consisting of simple cationic/anionic entities, amino acids, peptides, proteins, nucleic acids or even whole cells. For these biological components, we will start with the most simple in nature, the inorganic ions. Heavy metal cations, such as iron, nickel and zinc, have been separated from human urine samples, with sweeping allowing LODs in the range of 0.2–1.2 ppb for the same cations [108,109]. Common inorganic anions such as nitrite and nitrate have been the focus of a number of studies, with biological matrices being no different. Nitrate and nitrite have been recovered from human fluid samples using MCE, CZE and tITP, allowing recoveries of 12-24 µM, 2.0-4.1 µM and 1.5-2.6 µM, respectively [123,122,124].

A variety of biomolecules of varying complexities have been preconcentrated and separated from a great many biological matrices. For example, dynamic pH-junction-sweeping-CE on *Bacillus subtilis* extracts to recover amines and other biomolecules with over 3 orders of magnitude increase in recovery relative to conventional CE [46]. LVSS-sweep-CE was applied to murine, porcine and human tissues to quantify sanguinarine at LODs of 3 nM [175]. Plant signaling compounds such as gibberellic acid and abscisic acid were isolated from tobacco flower extracts using LVSS-MEKC, allowing enrichment factors up to 600-fold, relative to standard MEKC [150]. Melatonin and related compounds have been isolated using reversed-migration-MEKC and normal-migration-MEKC, with LODs of 21–100 ng/mL in the former, and as low as 9.7 nmol/L in the latter [114,115].

A class of compounds critical to biological function of certain organisms, as well as to a number of pathophysiological diagnostic tests, are that of anabolic and catabolic intermediates. Ethyl glucuronide, lactate and acetate, elements in glucose metabolism and markers for cellular damage were isolated from diluted human serum using sample self stacking CZE, yielding LODs ranging from 0.38 to 26 µM [95]. Peptide and amino acid metabolism and biosynthesis has been the focus of a number of studies. Hsieh et al. looked at amino acid derivatives with polyethylene oxide modified CE, finding L-tryptophan at 70 pM [48]; tryptophan derivatives were recovered from mixed amino acid solutions using sweeping-CE, with detection limits as low as 10 nmol/L [183]. Nucleotide intermediates have been isolated by a number of means. Wang et al used LVSS-CE with polarity switching to isolate purines, allowing a 44-90-fold improvement in sensitivity relative to standard CE [170]. Pyridine and adeninine metabolites were recovered from B. subtilis extracts using CZE, allowing an LOD of 20 nM [171]. Using CE, thymidine mono- and diphosphates were found at LODs of 2.6 and $3.8 \,\mu$ M, respectively [182].

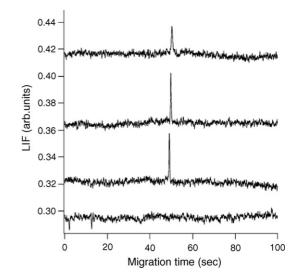


Fig. 1. Three successive analyses of 100 fM ovalbumin by CE in coated channels with 120-s preconcentration steps and 5 mM Tris–borate sample buffer. Mean peak height $\pm 1\sigma$ was 0.031 ± 0.008 . Traces are offset for clarity; bottom trace shows analysis of pure buffer. Separation conditions: separation buffer, 50 mM Tris–borate, pH 8.9; separation length, 2.2 cm; field strength, ~340 V/cm; PDMA-coated channels (from Ref. [165] with permission).

Amino acids are a varied and complex family of structures, requiring a similarly complex array of detection techniques. Most simply, CZE was applied to amniotic fluid samples, with LODs for arginine and aspartic acid of 1.5 and 6.7 μ M, respectively [57]. The in-column derivatization, stacking, and separation of amino acids with a polyethylene oxide plug to stack the derivatized amino acids was applied to cerebrospinal fluid (CSF) to allow detection at 4 nM [54]. PEO-sweeping-MEKC was used to find amino acids in CSF at LODs as low as 0.3 nM, a 50–800-fold enhancement in sensitivity relative to standard methods [55]. tITP-CZE was utilized in other biological matrices, allowing LODs with 2800–5200-fold improvements in sensitivity, compared to normal CE [60]; others have applied tITP-CZE to amino acid concentration, with up to 150,000-fold concentration factor [59].

Peptides, proteins and nucleic acids constitute the major active and structural components in contemporary organisms, thus constituting a wide target for CE technologies to focus upon. Peptides in biological matrices have been separated using CE and MEKC, with differing stacking preconcentration, allowing LODs as low as 500 aM, and enhancement factors of 600-fold [133,148]. Proteins have been similarly targeted, with subnM LODs and enhancement factors approaching 800-fold for some samples [155,156,158]. Using microchip affinity capillary electrophoresis (MACE), Staphylococcal enterotoxin B was extracted from bovine serum albumin (BSA), with detection limits at fg/mL levels [179]; others used FASI-CE to detect 100 fM samples of ovalbumin protein [165] (see Fig. 1). Solid-phase extraction microchip capillary electrophoresis was applied to biological matrices to yield enhancement factors in DNA separation of 500-fold [74]. pH-mediated sample stacking-CE was used to concentrate dsDNA following PCR, with detection limits at 9 fg/ μ L [90]. Microchip gel electrophoresis (MGE) with a hydroxypropyl cellulose matrix modified with gold nanopar-

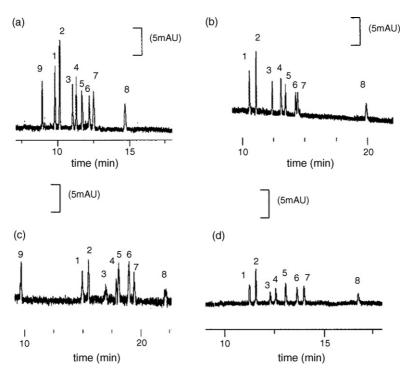


Fig. 2. Comparison of FAEP with FASI and LVSAP individually: (a) FAEP, 50 ng/mL, water plug 100 mbar \times 0.5 min, sample injection $-10 \text{ kV} \times 1.2 \text{ min}$; (b) FASI, 50 ng/mL, water plug 50 mbar \times 0.2 min, sample injection $-10 \text{ kV} \times 0.2 \text{ min}$; (c) LVSAP, 50 ng/mL, hydrodynamic sample injection 500 mbar $\times 2.0 \text{ min}$; (d) common CZE, 10 ppm, hydrodynamic sample injection, 50 mbar \times 0.1 min, \sim 1% of the total length of capillary. Buffer: pH 3.20, boric and phosphoric acid. 0.1% HEC. Voltage: -30 kV. Peaks: 1=picloram; 2=2,4-DCBA; 3=4-CPAA; 4=2,4-D; 5=2,4,5-T; 6=dichloroprop; 7=fenoprop; 8=mecoprop; 9=impurity (from Ref. [233] with permission).

ticles was applied to DNA, allowing LODs of 5.7 amol/50 μ L, and concentration factors up to 25,500-fold [75].

A particularly incredible application of capillary electrophoresis is the separation of the largest 'biomolecule', whole cells, in this case mixed cultures of bacteria and fungi, with detection limits of 1–10 cells [117].

4.2. Environmental

On-line preconcentration in CE has enjoyed much success to the analysis of many types of environmental samples, mainly inorganic pollutants, toxicants, organometallic compounds, and organic compounds typically encountered in industrial manufacturing. A variety of arsenic species were the focus of a number of studies - LVSS-HSC-CZE allowed LODs as low as 5.6–17.1 µg/L, while LV-FASI-CZE brought concentration factors of 34–100-fold, relative to conventional CZE [202,201]. Rare earth ions were recovered from earth samples using EKS-CZE, allowing enhancement factors of 20,000-fold [45,89]. Herbicides in environmental and drinking water and soil were analyzed using different focusing techniques, sample stacking, tITP, or CSEI-sweep separated by CE or MEKC, with LODs as low as the ppt-level and up to 10,000-fold enhancement factors [226–237] (see Fig. 2). Using CSEI-sweep-MEKC, aromatic amines in environmental samples were detected at ppt-levels [35] (see Fig. 3). In the diverse domain of seawater analysis, a number of sample stacking and injection techniques used with CZE allowed concentration and detection of anions in seawater as low as nM levels [245–249]. Other environmental water

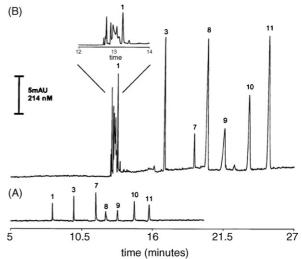


Fig. 3. CSEI-sweep-MEKC analysis of seven aromatic amines. Conditions: nonmicellar BGS, 100 mM phosphoric acid/5 mM triethanolamine/50 mM urea/20% acetonitrile (pH \sim 2); micellar BGS, 50 mM SDS/50 mM phosphoric acid/5 mM triethanolamine/50 mM urea/20% acetonitrile (pH ~2); high conductivity buffer (HCB) 100 mM phosphoric acid; S, aromatic amines in water; sample concentration, (A) 7.9-61.8 ppm, (B) 1/10,000 dilution of (A); conditioning solution before injection, (A) micellar BGS, (B) nonmicellar BGS; injection scheme, (A) 0.7 mm pressure injection of S, (B) ~13.2 cm pressure injection of HCB, then 3 mm pressure injection of water, followed by 20 kV electrokinetic injection of S for 400 s; sweeping and MEKC voltage, -20 kV with the micellar BGS at both ends of the capillary. Identification of peaks: (1) N-1-naphthyethylenediamine, (2) 3,4-dichloroaniline, (3) 3,5-dimethylaniline, (4) 2,4-dichloroaniline, (5) 2,3-dichloroaniline, (6) 2,5-dichloroaniline, (7) 3chloroaniline, (8) 1-phenylethylamine, (9) N-ethylaniline, (10) 2-methylaniline, (11) 4-methoxyaniline, (12) 2-nitroaniline, (13) 4-nitroaniline (from Ref. [35] with permission).

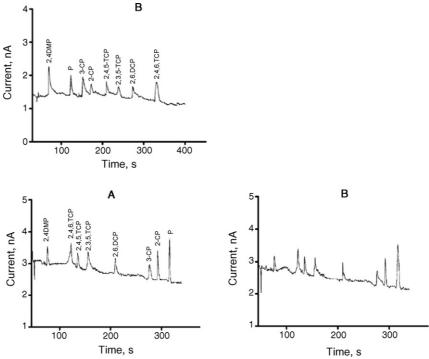


Fig. 4. (*Upper*) MCZE-EC analysis of eight phenolic compounds containing a 15 μ M solution of each compound at a modified electrode. Separation field strength, +200 V/cm, sample injection, 3 s at +200 V/cm, DP, +1.0 V vs. Ag/AgCl. (*Lower*) (A) Electropherograms for eight phenolic compounds obtained by the FASI step (A) and by both FASS and FASI steps (B). MEKC-EC conditions: Sample concentration (A) 15 nM and (B) 2.5 nM for each compound. Separation buffer, 10 mM H₃PO₄ + 10 mM SDS + 1 M urea (pH 2.1); detection buffer, 10 mM PBS (pH 7.0); separation field strength, -250 V/cm; injection time, 3 s at -200 V/cm; and DP, +1.0 V vs. Ag/AgCl (from Ref. [297] with permission).

samples were analyzed for trace phenolic compounds using sample stacking techniques in MCE, with LODs of 100–150 pM, and concentration factors 5200-fold relative to typical injections [297] (see Fig. 4).

4.3. Food analysis

The disparate areas of nutrition and food safety share in common the obvious element of their matrix, food, and/or bever-

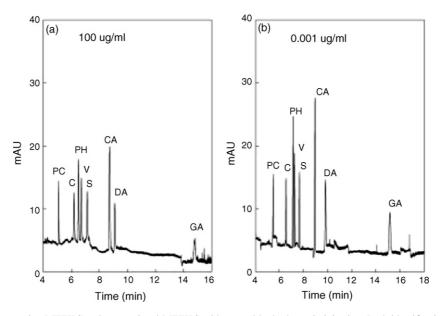


Fig. 5. Comparison of ASEI-sweeping MEEKC and conventional MEEKC with normal hydrodynamic injection. Peak identification, CA, caffeic acid; DA, 3,4dihydroxybenzoic acid; GA, gallic acid; PH, p-hydroxybenzoic acid. (a) Normal hydrodynamic injection, 0.32 mm (50 mbar, 1 s) (b) ASEI-sweeping MEEKC, 1.9 cm pressure injection of acid plug, then 1.9 cm pressure injection of water plug, followed by -18 kV electrokinetic injection of sample for 300 s. Sample concentration: (a) 100 µg/mL and (b) 0.001 µg/mL of each analyte was prepared in 55 mM borate–boric acid (pH 8.0). Capillalry, 48.5 cm (40.0 cm to the detector) × 50 µm I.D.; applied voltage, -20 kV; temperature, 35 °C; detector wavelength, 200 nm (from Ref. [302] with permission).

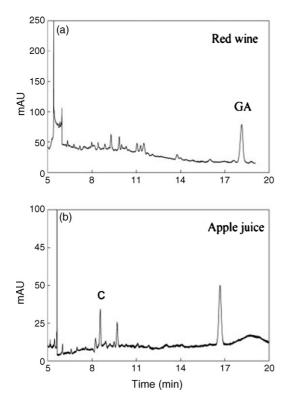


Fig. 6. Electropherograms of food samples determined by ASEI-sweeping MEEKC. Food samples were directly analyzed after 100-fold dilution with 55 mM borate–boric acid buffer (pH 8.0), and no other sample pretreatment was used. Injection scheme: 1.9 cm pressure injection of acid plug, then 1.9 cm pressure injection of water plug, followed by 218 kV electrokinetic injection of sample for 300 s. Other conditions are the same as in Fig. 5 (from Ref. [302] with permission).

age. Contaminants such as heavy metals, pesticides, and others were found in food samples using MEKC and CZE, alongside differing sample preconcentration techniques allowed LODs ranging from mg/L to ng/L (see Figs. 5 and 6) [302–315]. Food colorants in a number of food products such as soft drinks and jellies were quantified using LVSS-CE to μ g/mL levels [307].

Knowing the nutritional content of consumables is of significant, if not such immediately critical importance as the verified exclusion of contaminants. Both make abundant use of sample preconcentration methodologies, allowing more authoritative and precise determination of desired qualities of consumables. The nutritional content of riboflavin in humanity's most ancient nutritional beverage creation, beer, has been analyzed using sweeping-CZE with differing stacking preconcentration, allowing LODs on the order of ng/mL [316,317]. Mankind's next greatest hope for the extension of lifespan, resveratrol, found in red wine samples, was the target of sweeping-MEKC, yielding a 1500-fold improvement in detection sensitivity, relative to standard MEKC (see Fig. 7) [320]. Slightly less extraordinary in applications of immortality, biogenic amines in red wine samples were deduced at mg/L levels using sample stacking CE [304]. Cytokinins in coconut water were measured to µM levels using ACN-stacking-CE, as well as SPE-CZE [305,306].

4.4. Pharmaceuticals

Much like the preceding application of capillary electrophoretic separation and analysis of food, pharmaceuticals have need for composition identification and quality control. In the perpetual search for the next great drug treatment, the entirety of nature is a potential sample matrix for agents with activity against man's afflictions. CE and MEKC with a different sample stacking preconcentration and sample injection method have been applied to a variety of plant extracts, allowing the isolation of desired compounds to the ng/mL level, and up to 360-fold improvements in detection sensitivities relative to conventional methods [321-323,330,331]. Pharmaceuticals, once produced, have further need for CE, in quality control for inclusion of desired components, as well as the exclusion of contaminants. In the case of the former, LODs as low as parts per billion and ng/L, and enhancement factors of over 500-fold (see Fig. 8) [338,341]. As for harmful or otherwise untoward components, ASEI-CE was used to detect ng/L levels of inorganic cations in cigarette samples, not perhaps the most dangerous component therein, but nonetheless demonstrative of capacity for such analytes and matrices [332].

4.5. Toxicological/forensic

Our latter category is novel to the extent to which encompasses those previous, as well as the interesting variety of sample matrices. One such novel matrix is the application of FASS-CE to paper currency to detect illicit drugs at nM levels, a method of great use to the US Drug Enforcement Agency and other law enforcement institutions [391]. More pedestrian, but no less useful in illicit drug detection are those in drug testing of urine, serum, and hair samples. Proportionate to the variety of illicit drugs, as well as the means by which drug abusers attempt to conceal their use, detection of analytes in biological matrices necessitates a range of testing modalities. This was accomplished by a number of sample injection and stacking steps in tandem with CE, MCE, or MEKC, with LODs as low as ng/mL in urine and plasma samples, and pg/mL in hair samples [392–397].

A similar application of drug testing technologies, though with much greater media mention, is in the detection of anabolic steroids in human samples. Given the public outcry in recent years, a range of detection schema are in place, applying selective exhaustive injection MEKC to realize a 600-fold increase in detection sensitivity relative to conventional methods; LVSS-CD-CEC was applied to human serum to detect steroids at sub-µmole/L levels [355,429]. Law enforcement has no solitary claim to this methodology however, and indeed medicine has much broader range of use. Doctors need to detect legal drugs in biological samples to assess treatment efficacy, and use much the same technology as do law enforcement, and similar LODs of nM [347,360-362,421,431-434]. Clinical sample component analysis is applied to serum, urine and tissue samples to assess biological constituents, such as cations, hormones and proteins, allowing ng/mL to pg/mL levels of detection [365,367]. Even dentistry have use for CE preconcentration, utilizing FASI-

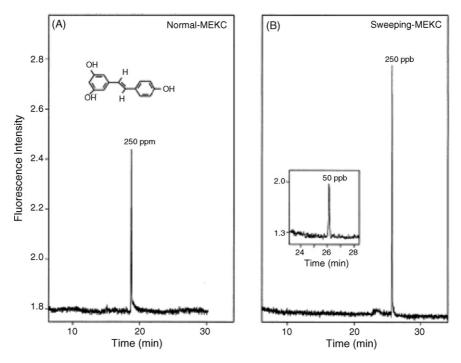
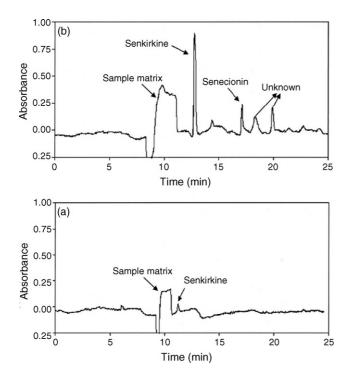



Fig. 7. Electropherograms of *trans*-resveratrol obtained by (A) the normal MEKC mode (250 ppm) and (B) by the sweeping-MEKC mode (250 ppb). The inset in (B) shows the electropherogram at the lowest concentration of 50 ppb (S/N = 3, LOD \sim 5 ppb). CE conditions: (A) phosphate buffer (30 mM), SDS (150 mM) in a methanol–water solution (25:75); applied voltage -25 kV; current ~ -8 mA; injection length ~ 0.5 mm; capillary length 93/97 cm. (B) Injection length, \sim 46 cm; detection conditions: $\lambda_{ex}/\lambda_{em} = 313 \pm 8$ mm/400 ± 16 nm; UV cut filter 320 nm; PMT 700 V; room temperature (from Ref. [320] with permission).

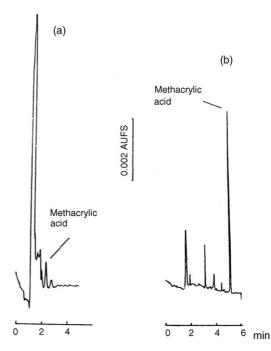


Fig. 8. Electropherograms of *kuan donghua* with normal MEKC and dynamic pH-junction-sweeping. (A) MEKC, sample was diluted ten times with 50% methanol in water; sample injection, 10 s at 20.7 mbar. (B) Dynamic pH-junction-sweeping, sample solution was diluted ten times with 10 mM phosphate with 20% methanol at pH 4.0; sample injection, 265 s at 20.7 mbar. (A) and (B) BGE, 20 mM borate, 30 mM SDS and 20% methanol at pH 9.1; separation voltage 20 kV; detection, 220 nm (from Ref. [338] with permission).

Fig. 9. Electropherograms of water-immersed solution of dental composites. Column, fused-silica capillary ($64 \text{ cm} \times 50 \mu \text{m}$ I.D., 52 cm effective separation length); voltage +30 kV; detection wavelength 215 nm; BGE 20 mM Na₂B₄O₇ solution (pH 9.5). (a) Hydrodynamic injection, 50 mbar × 1.0 min; (b) FASI injection, 500 mbar × 0.5 min by hydrodynamic loading, followed by FASI at -15 kV until the electric current reached 95% of that of the pure BGE before sample loading (from Ref. [402] with permission).

CE to assess dental composites for fluoride content, as well as methacrylic acid, with LODs in the ng/mL and ppb-levels, respectively [385,402] (see Fig. 9).

5. Conclusion

A significant number of on-line preconcentration strategies have been reported since the year 2000. These strategies include both variants of known focusing principles (e.g., ITP and sample stacking), and more recently, combinations of these focusing principles (e.g., field-enhanced sample injection and sweeping). Several to million-fold enhancements in peak sensitivities had been reported without significant deterioration in separation efficiency, in many cases, there are improvements in plate numbers causing very sharp peaks. As reported here, the possibility to detect at lower levels by CE provides new tools with which to analyze many real world samples; also CE complements other mainstay analytical techniques like HPLC. On-line preconcentration also allows for the analysis of samples in even smaller channels as seen in developments in microchip electrophoresis. Chemical analysis in the chip format has continued to grow and no doubt further applications of on-line preconcentration techniques are expected in the future. The fundamental understanding of focusing principles had also advanced in parallel with the applications development. Real world chemical systems are often unique and thus provide the medium to observe phenomena that would not have been routinely encountered in simple CE systems. The development of dynamic pH junction and acetonitrile stacking in fact resulted from studies that involved the analysis of real world samples. Clearly, there exist possibilities for new focusing principles to emerge as CE is applied to chemical and biological analysis.

References

- [1] J.P. Quirino, S. Terabe, J. Chromatogr. A 902 (2000) 119.
- [2] Z.K. Shihabi, J. Chromatogr. A 902 (2000) 107.
- [3] J.L. Beckers, P. Boček, Electrophoresis 21 (2000) 2747.
- [4] D.M. Osbourn, D.J. Weiss, C.E. Lunte, Electrophoresis 21 (2000) 2768.
- [5] T. Stroink, E. Paarlberg, J.C.M. Waterval, A. Bult, W.J.M. Underberg, Electrophoresis 22 (2001) 2375.
- [6] M.C. Breadmore, P.R. Haddad, Electrophoresis 22 (2001) 2464.
- [7] J.P. Quirino, J.-B. Kim, S. Terabe, J. Chromatogr. A 965 (2002) 357.
- [8] J.B. Kim, S. Terabe, J. Pharm. Biomed. Anal. 30 (2003) 1625.
- [9] P. Britz-McKibbin, S. Terabe, J. Chromatogr. A 1000 (2003) 917.
- [10] Z. Malá, M. Urbánek, L. Krivánková, P. Boček, Electrophoresis 24 (2003) 243.
- [11] M. Urbánek, L. Krivánková, P. Boček, Electrophoresis 24 (2003) 466.
- [12] R.-L. Chien, Electrophoresis 24 (2003) 486.
- [13] C.-H. Lin, T. Kaneta, Electrophoresis 25 (2004) 4058.
- [14] A.R. Timerbaev, T. Hirokawa, Electrophoresis 27 (2006) 323.
- [15] M.C. Breadmore, Electrophoresis 28 (2007) 254.
- [16] J.W. Jorgenson, K.D. Lukacs, Anal. Chem. 53 (1981) 1298.
- [17] P. Britz-McKibbin, D.D.Y. Chen, Anal. Chem. 72 (2000) 1242.
- [18] R.-L. Chien, D.S. Burgi, Anal. Chem. 64 (1992) 489A.
- [19] R.-L. Chien, Anal. Chem. 63 (1991) 2866.
- [20] M.R.N. Monton, S. Terabe, J. Chromatogr. A 1032 (2004) 203.
- [21] J.P. Quirino, S. Terabe, J. Cap. Electrophoresis 4 (1997) 233.
- [22] J.-B. Kim, S. Terabe, J. Pharm. Biomed. Anal. 30 (2003) 1625.
- [23] J.P. Quirino, S. Terabe, Anal. Chem. 70 (1998) 149.
 [24] J.P. Quirino, S. Terabe, Anal. Chem. 70 (1998) 1893.

- [25] C. Schwer, B. Gaš, F. Lottspeich, E. Kenndler, Anal. Chem. 65 (1993) 2168.
- [26] Z.K. Shihabi, Electrophoresis 23 (2003) 1612.
- [27] R. Aebersold, H.D. Morrison, J. Chromatogr. 516 (1990) 79.
- [28] J.-B. Kim, P. Britz-McKibbin, T. Hirokawa, S. Terabe, Anal. Chem. 75 (2003) 3986.
- [29] R. Lee, A.S. Ptolemy, L. Niewczas, P. Britz-McKibbin, Anal. Chem. 79 (2007) 403.
- [30] W. Wei, G. Xue, E.S. Yeung, Anal. Chem. 74 (2002) 934.
- [31] J.P. Quirino, S. Terabe, Science 282 (1998) 465.
- [32] Y. Sera, N. Matsubara, K. Otsuka, S. Terabe, Electrophoresis 22 (2001) 3509.
- [33] F. Kitagawa, T. Tsuneka, Y. Akimoto, K. Sueyoshi, K. Uchiyama, A. Hattori, K. Otsuka, J. Chromatogr. A 1106 (2006) 36.
- [34] J.P. Quirino, S. Terabe, Anal. Chem. 71 (1999) 1638.
- [35] J.P. Quirino, Y. Iwai, K. Otsuka, S. Terabe, Electrophoresis 21 (2000) 2899.
- [36] J. Palmer, N.J. Munro, J.P. Landers, Anal. Chem. 71 (1999) 1679.
- [37] J. Palmer, J.P. Landers, Anal. Chem. 72 (2000) 1941.
- [38] J.P. Quirino, S. Terabe, P. Boček, Anal. Chem. 72 (2000) 1934.
- [39] J. Palmer, D.S. Burgi, J.P. Landers, Anal. Chem. 73 (2001) 725.
- [40] J.P. Quirino, S. Terabe, K. Otsuka, J.B. Vincent, G. Vigh, J. Chromatogr. A 838 (1999) 3.
- [41] K. Isoo, S. Terabe, Anal. Chem. 75 (2003) 6789.
- [42] J.P. Quirino, S. Terabe, Chromatographia 53 (2001) 285.
- [43] J.P. Quirino, S. Terabe, Anal. Chem. 72 (2000) 1023.
- [44] J.B. Kim, K. Otsuka, S. Terabe, J. Chromatogr. A 932 (2001) 129.
- [45] T. Hirokawa, H. Okamoto, B. Gas, Electrophoresis 24 (2003) 498.
- [46] P. Britz-McKibbin, K. Otsuka, S. Terabe, Anal. Chem. 74 (2002) 3736.
- [47] Y.C. Chiu, S.H. Chou, J.T. Liu, C.H. Lin, J. Chromatogr. B 811 (2004) 127.
- [48] M.M. Hsieh, C.E. Hsu, W.L. Tseng, H.T. Chang, Electrophoresis 23 (2002) 1633.
- [49] N. Maeso, A. Cifuentes, C. Barbas, J. Chromatogr. B 809 (2004) 147.
- [50] X.H. Li, S.G. Chu, S. Fu, L.L. Ma, X.F. Liu, X.B. Xu, Chromatographia 61 (2005) 161.
- [51] L.A. Kartsova, E.A. Bessonova, J. Anal. Chem. 62 (2007) 68.
- [52] B. Jung, R. Bharadwaj, J.G. Santiago, Anal. Chem. 78 (2006) 2319.
- [53] S.A. Leung, A.J. de Mello, J. Chromatogr. A 979 (2002) 171.
- [54] P.L. Chang, T.C. Chiu, H.T. Chang, Electrophoresis 27 (2006) 1922.
- [55] T.C. Chiu, H.T. Chang, J. Chromatogr. A 1146 (2007) 118.
- [56] R.M. Latorre, J. Saurina, S. Hernandez-Cassou, Electrophoresis 22 (2001) 4355.
- [57] P. Tuma, E. Samcova, K. Andelova, J. Chromatogr. B 839 (2006) 12.
- [58] D.L. Kirschner, M. Jaramillo, T.K. Green, Anal. Chem. 79 (2007) 736.
- [59] W. Li, D. Fries, A. Alli, A. Malik, Anal. Chem. 76 (2004) 218.
- [60] Q.S. Qu, Y. Liu, X.Q. Tang, C.Y. Wang, G.J. Yang, X.Y. Hu, C. Yan, Electrophoresis 27 (2006) 4500.
- [61] Y.L. Han, M. Zuo, L. Qi, K. Liu, L.Q. Mao, Y. Chen, Electrophoresis 27 (2006) 4240.
- [62] M.J. Lu, T.C. Chiu, P.L. Chang, H.T. Ho, H.T. Chang, Anal. Chim. Acta 538 (2005) 143.
- [63] M.C. Breadmore, Anal. Chim. Acta 556 (2006) 121.
- [64] J.B. Kim, Y. Okamoto, S. Terabe, J. Chromatogr. A 1018 (2003) 251.
- [65] T. Tabi, K. Magyar, E. Szoko, Electrophoresis 26 (2005) 1940.
- [66] S. Oguri, H. Tanagaki, M. Hamaya, M. Kato, T. Toyo'oka, Anal. Chem. 75 (2003) 5240.
- [67] Y. Okamoto, F. Kitagawa, K. Otsuka, Anal. Chem. 79 (2007) 3041.
- [68] A.B. Jemere, R.D. Oleschuk, F. Ouchen, F. Fajuyigbe, D.J. Harrison, Electrophoresis 23 (2002) 3537.
- [69] Q.G. Wang, B.F. Yue, M.L. Lee, J. Chromatogr. A 1025 (2004) 139.
- [70] J. Kruaysawat, P.J. Marriott, J. Hughes, C. Trenerry, Electrophoresis 24 (2003) 2180.
- [71] Z. Huang, A.R. Timerbaev, B.K. Keppler, T. Hirokawa, J. Chromatogr. A 1106 (2006) 75.
- [72] C.H. Wu, M.C. Chen, A.K. Su, P.Y. Shu, S.H. Chou, C.H. Lin, J. Chromatogr. B 785 (2003) 317.
- [73] J. Triska, N. Vrchotova, Fresenius Environ. Bull. 11 (2002) 332.

- [74] R. Dhopeshwarkar, S.A. Li, R.M. Crooks, Lab on a Chip 5 (2005) 1148.
- [75] M.J.A. Shiddiky, Y.B. Shim, Anal. Chem. 79 (2007) 3724.
- [76] M. Vazquez, G. McKinley, L. Mitnik, S. Desmarais, P. Matsudaira, D. Ehrlich, J. Chromatogr. B 779 (2002) 163.
- [77] Z.Q. Xu, A. Hirokawa, Electrophoresis 25 (2004) 2357.
- [78] D.Y. Liu, M. Shi, H.Q. Huang, Z.C. Long, X.M. Zhou, J.H. Qin, B.C. Lin, J. Chromatogr. B 844 (2006) 32.
- [79] C.C. Huang, T.C. Chiu, H.T. Chang, J. Chromatogr. A 966 (2002) 195.
- [80] Y. Markushin, W. Zhong, E.L. Cavalieri, E.G. Rogan, G.J. Small, E.S. Yeung, R. Jankowiak, Chem. Res. Toxicol. 16 (2003) 1107.
- [81] C.C. Huang, M.M. Hsieh, T.C. Chiu, Y.C. Lin, H.T. Chang, Electrophoresis 22 (2001) 4328.
- [82] W.L. Tseng, H.T. Chang, Electrophoresis 22 (2001) 763.
- [83] Z.Q. Xu, T. Hirokawa, T. Nishine, A. Arai, J. Chromatogr. A 990 (2003) 53.
- [84] Z.Q. Xu, T. Nishine, A. Arai, T. Hirokawa, Electrophoresis 25 (2004) 3875.
- [85] M.M. Hsieh, W.L. Tseng, H.T. Chang, Electrophoresis 21 (2000) 2904.
- [86] H.Y. Chiang, S.J. Sheu, Electrophoresis 25 (2004) 670.
- [87] M.J. Gong, K.R. Wehmeyer, P.A. Limbach, W.R. Heineman, J. Chromatogr. A 1125 (2006) 263.
- [88] Y.L. Feng, H.Z. Lian, J.P. Zhu, J. Chromatogr. A 1148 (2007) 244.
- [89] Y.W. Lin, C.C. Huang, H.T. Chang, Anal. Bioanal. Chem. 376 (2003) 379.
- [90] A. Wainright, U.T. Nguyen, T. Bjornson, T.D. Boone, Electrophoresis 24 (2003) 3784.
- [91] Y.W. Lin, H.T. Chang, J. Chromatogr. A 1130 (2006) 206.
- [92] N.A. Santagati, S. Tropea, G. Ronsisvalle, J. Chromatogr. A 1081 (2005) 77.
- [93] S. Fanali, C. Desiderio, E. Olvecka, D. Kaniansky, M. Vojtek, A. Ferancova, HRC-J. High Resol. Chromatogr. 23 (2000) 531.
- [94] C.C. Chen, S.F. Yen, H. Makamba, C.W. Li, M.L. Tsai, S.H. Chen, Anal. Chem. 79 (2007) 195.
- [95] M. Mrazkova, J. Caslavska, W. Thormann, L. Krivankova, Electrophoresis 27 (2006) 4772.
- [96] J.H. Qin, Y.S. Fung, D.R. Zhu, B.C. Lin, J. Chromatogr. A 1027 (2004) 223.
- [97] P. Britz-McKibbin, M.J. Markuszewski, T. Iyanagi, K. Matsuda, T. Nishioka, S. Terabe, Anal. Biochem. 313 (2003) 89.
- [98] P. Britz-McKibbin, S. Terabe, Chem. Rec. 2 (2002) 397.
- [99] Y.S. Chang, C.M. Shih, C.H. Lin, Anal. Sci. 22 (2006) 235.
- [100] Y. Zhang, A.T. Timperman, Analyst 128 (2003) 537.
- [101] B.G. Jung, Y.G. Zhu, J.G. Santiago, Anal. Chem. 79 (2007) 345.
- [102] B. Jung, R. Bharadwaj, J.G. Santiago, Electrophoresis 24 (2003) 3476.
- [103] S.Y. Chang, F.Y. Wang, J. Chromatogr. B 799 (2004) 265.
- [104] F. Canada-Canada, A. Kasselouri, P. Prognon, P. Maillard, D.S. Grierson, S. Descroix, M. Taverna, J. Chromatogr. A 1068 (2005) 123.
- [105] Z.K. Shihabi, M.E. Hinsdale, C.P. Cheng, Electrophoresis 22 (2001) 2351.
- [106] Y. Kong, N. Zheng, Z.C. Zhang, R.Y. Gao, J. Chromatogr. B 795 (2003) 9.
- [107] S. Kamoda, Y. Nakanishi, M. Kinoshita, R. Ishikawa, K. Kakehi, J. Chromatogr. A 1106 (2006) 67.
- [108] A. Riaz, D.S. Chung, Electrophoresis 26 (2005) 668.
- [109] A. Riaz, B. Kim, D.S. Chung, Electrophoresis 24 (2003) 2788.
- [110] L.Y. Zhang, M.X. Sun, J. Chromatogr. A 1100 (2005) 230.
- [111] M.R. Mohamadi, N. Kaji, M. Tokeshi, Y. Baba, Anal. Chem. 79 (2007) 3667.
- [112] M.S. Chun, D. Kang, Y. Kim, D. Chung, Microchem. J. 70 (2001) 247.
- [113] J.M. Busnel, S. Descroix, D. Godfrin, M.C. Hennion, V. Kasicka, G. Peltre, Electrophoresis 27 (2006) 3591.
- [114] J. Musijowski, E. Pobozy, M. Trojanowicz, J. Chromatogr. A 1104 (2006) 337.
- [115] X.P. Wu, W.M. Wu, L. Zhang, Z.H. Xie, B. Qiu, G.N. Chen, Electrophoresis 27 (2006) 4230.
- [116] H. Stutz, G. Bordin, A.R. Rodriguez, Electrophoresis 25 (2004) 1071.
- [117] M. Horka, F. Ruzicka, V. Hola, K. Slais, Electrophoresis 26 (2005) 548.
- [118] A.S. Ptolemy, M. Le Bilhan, P. Britz-McKibbin, Electrophoresis 26 (2005) 4206.

- [119] C.M. Shih, C.H. Lin, Electrophoresis 26 (2005) 3495.
- [120] I. German, M.G. Roper, S.P. Kalra, E. Rhinehart, R.T. Kennedy, Electrophoresis 22 (2001) 3659.
- [121] E. Ban, O.K. Choi, W.Y. Chung, C.S. Park, E.A. Yoo, B.C. Chung, Y.S. Yoo, Electrophoresis 22 (2001) 2173.
- [122] T. Miyado, H. Nagai, S. Takeda, K. Saito, K. Fukushi, Y. Yoshida, S. Wakida, E. Niki, J. Chromatogr. A 1014 (2003) 197.
- [123] T. Miyado, Y. Tanaka, H. Nagai, S. Takeda, K. Saito, K. Fukushi, Y. Yoshida, S. Wakida, E. Niki, J. Chromatogr. A 1109 (2006) 174.
- [124] T. Miyado, Y. Tanaka, H. Nagai, S. Takeda, K. Saito, K. Fukushi, Y. Yoshida, S. Wakida, E. Niki, J. Chromatogr. A 1051 (2004) 185.
- [125] E. Szoko, T. Tabi, A.S. Halasz, M. Palfi, K. Magyar, J. Chromatogr. A 1051 (2004) 177.
- [126] D.Y. Boudko, B.Y. Cooper, W.R. Harvey, L.L. Moroz, J. Chromatogr. B 774 (2002) 97.
- [127] Y.L. Feng, J.P. Zhu, Anal. Chem. 78 (2006) 6608.
- [128] P. Britz-McKibbin, G.M. Bebault, D.D.Y. Chen, Anal. Chem. 72 (2000) 1729.
- [129] R. Ramautar, G.W. Somsen, G.J. de Jong, Anal. Bioanal. Chem. 387 (2007) 293.
- [130] Y.M. An, J.W. Cooper, B.M. Balgley, C.S. Lee, Electrophoresis 27 (2006) 3599.
- [131] K. Imami, M.R.N. Monton, Y. Ishihama, S. Terabe, J. Chromatogr. A 1148 (2007) 250.
- [132] M.R.N. Monton, K. Imami, M. Nakanishi, J.B. Kim, S. Terabe, J. Chromatogr. A 1079 (2005) 266.
- [133] C. Neususs, M. Pelzing, M. Macht, Electrophoresis 23 (2002) 3149.
- [134] N.M. Vizioli, M.L. Rusell, C.N. Carducci, Anal. Chim. Acta 514 (2004) 167.
- [135] J.C.M. Waterval, P. Bestebreurtje, H. Lingeman, C. Versluis, A.J.R. Heck, A. Bult, W.J.M. Underberg, Electrophoresis 22 (2001) 2701.
- [136] J.C.M. Waterval, G. Hommels, J. Teeuwsen, A. Bult, H. Lingeman, W.J.M. Underberg, Electrophoresis 21 (2000) 2851.
- [137] Y.Z. Yang, R.I. Boysen, M.T.W. Hearn, Anal. Chem. 78 (2006) 4752.
- [138] M.L. Ye, S. Hu, W.W.C. Quigley, N.J. Dovichi, J. Chromatogr. A 1022 (2004) 201.
- [139] N. Siri, P. Riolet, C. Bayle, F. Couderc, J. Chromatogr. B 793 (2003) 151.
- [140] F.W.A. Tempels, J. Teeuwsen, I.K. Kyriakou, G. Theodoridis, W.J.M. Underberg, G.W. Somsen, G.J. de Jong, J. Chromatogr. A 1053 (2004) 263.
- [141] F.W.A. Tempels, W.J.M. Underberg, G.W. Somsen, G.J. de Jong, Anal. Chem. 76 (2004) 4432.
- [142] F.W.A. Tempels, W.J.M. Underberg, G.W. Somsen, G.J. de Jong, Electrophoresis 28 (2007) 1319.
- [143] F.W.A. Tempels, G. Wiese, W.J.M. Underberg, G.W. Somsen, G.J. de Jong, J. Chromatogr. B 839 (2006) 30.
- [144] T. Stroink, P. Schravendijk, G. Wiese, J. Teeuwsen, H. Lingeman, J.C.M. Waterval, A. Bult, G.J. de Jong, W.J.M. Underberg, Electrophoresis 24 (2003) 1126.
- [145] M.R.N. Monton, J.P. Quirino, K. Otsuka, S. Terabe, J. Chromatogr. A 939 (2001) 99.
- [146] P. Kuban, D. Sterbova, V. Kuban, Electrophoresis 27 (2006) 1368.
- [147] A.S. Ptolemy, P. Britz-McKibbin, Analyst 130 (2005) 1263.
- [148] H.X. Zhang, G.K. Hunter, H.A. Goldberg, G.A. Lajoie, K.K.C. Yeung, Anal. Chim. Acta 581 (2007) 268.
- [149] P. Cao, J.T. Stults, Rapid Commun. Mass Spectrom. 14 (2000) 1600.
- [150] B.F. Liu, X.H. Zhong, Y.T. Lu, J. Chromatogr. A 945 (2002) 257.
- [151] Q. Li, C.W. Huie, Electrophoresis 27 (2006) 4219.
- [152] Z. Zhang, E. Carpenter, X.L. Puyan, N.J. Dovichi, Electrophoresis 22 (2001) 1127.
- [153] S. Song, A.K. Singh, B.J. Kirby, Anal. Chem. 76 (2004) 4589.
- [154] L.H. Zhang, C.J. Zhang, X.Z. Wu, Anal. Sci. 22 (2006) 1039.
- [155] Y.F. Huang, M.M. Hsieh, W.L. Tseng, H.T. Chang, J. Proteome Res. 5 (2006) 429.
- [156] J. Astorga-Wells, H. Swerdlow, Anal. Chem. 75 (2003) 5207.
- [157] B.C. Yang, F.F. Zhang, H.Z. Tian, Y.F. Guan, J. Chromatogr. A 1117 (2006) 214.

- [158] X.Z. Wu, R. Umeda, Anal. Chemicke Listy Bioanal. Chem. 382 (2005) 848.
- [159] D. Mohan, C.S. Lee, Electrophoresis 23 (2002) 3160.
- [160] W.L. Tseng, H.T. Chang, Anal. Chem. 72 (2000) 4805.
- [161] C.J. Yu, W.L. Tseng, Electrophoresis 27 (2006) 3569.
- [162] S.J. Wang, W.L. Tseng, Y.W. Lin, H.T. Chang, J. Chromatogr. A 979 (2002) 261.
- [163] C.A. Nesbitt, J.T.M. Lo, K.K.C. Yeung, J. Chromatogr. A 1073 (2005) 175.
- [164] S.H. Shim, A. Riaz, K.W. Choi, D.S. Chung, Electrophoresis 24 (2003) 1603.
- [165] R.S. Foote, J. Khandurina, S.C. Jacobson, J.M. Ramsey, Anal. Chem. 77 (2005) 57.
- [166] W. Li, D. Fries, A. Malik, J. Sep. Sci. 28 (2005) 2153.
- [167] J.W. Cooper, J.Z. Chen, Y. Li, C.S. Lee, Anal. Chem. 75 (2003) 1067.
- [168] P. Britz-McKibbin, T. Nishioka, S. Terabe, Anal. Sci. 19 (2003) 99.
- [169] H.F. Tzeng, C.H. Hung, J.Y. Wang, C.H. Chou, H.P. Hung, J. Chromatogr. A 1129 (2006) 149.
- [170] C.C. Wang, S.S. Chiou, S.M. Wu, Electrophoresis 26 (2005) 2637.
- [171] M.J. Markuszewski, P. Britz-McKibbin, S. Terabe, K. Matsuda, T. Nishioka, J. Chromatogr. A 989 (2003) 293.
- [172] P. Wang, J.C. Ren, J. Pharm. Biomed. Anal. 34 (2004) 277.
- [173] W. Shi, C.P. Palmer, J. Sep. Sci. 25 (2002) 215.
- [174] M. Zhou, J.T. Stewart, J. Pharm. Biomed. Anal. 30 (2002) 443.
- [175] P. Kosina, J. Sevcik, M. Modriansky, A. Gavenda, P. Bednar, P. Barktak, D. Walterova, J. Ulrichova, J. Sep. Sci. 26 (2003) 679.
- [176] Z.Q. Xu, T. Ando, T. Nishine, A. Arai, T. Hirokawa, Electrophoresis 24 (2003) 3821.
- [177] M. Gong, K.R. Wehmeyer, P.A. Limbach, W.R. Heineman, Anal. Chem. 78 (2006) 6035.
- [178] B. Grass, R. Hergenroder, A. Neyer, D. Siepe, J. Sep. Sci. 25 (2002) 135.
- [179] A.J. Haes, A. Terray, G.E. Collins, Anal. Chem. 78 (2006) 8412.
- [180] M. Sreedhar, Y.W. Lin, W.L. Tseng, H.T. Chang, Electrophoresis 26 (2005) 2984.
- [181] J. Chamoun, A. Hagege, J. Anal. At. Spectrom. 20 (2005) 1030.
- [182] H.F. Tzeng, H.P. Hung, Electrophoresis 26 (2005) 2225.
- [183] Y. Takagai, S. Igarashi, Chem. Pharm. Bull. 51 (2003) 373.
- [184] Y.F. Yang, M.C. Breadmore, W. Thormann, J. Sep. Sci. 28 (2005) 2381.
- [185] S.R. Mei, C.H. Yao, L.S. Cai, J. Xing, G.W. Xu, C.Y. Wu, Electrophoresis 24 (2003) 1411.
- [186] B. Kim, D.S. Chung, Electrophoresis 23 (2002) 49.
- [187] P. Britz-McKibbin, D.D.Y. Chen, Chromatographia 57 (2003) 87.
- [188] L.H. Zhang, X.Z. Wu, Anal. Chem. 79 (2007) 2562.
- [189] J. Jiang, C.A. Lucy, J. Chromatogr. A 966 (2002) 239.
- [190] Y.S. Ham, M. Okazaki, S. Suzuki, N. Nakagawa, Soil Sci. Plant Nutr. 49 (2003) 9.
- [191] K. Isoo, S. Terabe, Anal. Sci. 21 (2005) 43.
- [192] M. Novic, M. Gucek, J. Tursic, Y. Liu, N. Avdalovic, J. Chromatogr. A 909 (2001) 289.
- [193] W.P. Yang, Z.J. Zhang, Int. J. Environ. Anal. Chem. 82 (2002) 353.
- [194] L.Y. Zhang, W.B. Zhang, J.C. Duan, Y.K. Zhang, Chin. J. Anal. Chem. 33 (2005) 305.
- [195] A.N. Tang, D.Q. Jiang, X.P. Yan, Anal. Chim. Acta 507 (2004) 199.
- [196] J. Threeprom, W. Som-Aum, J.M. Lin, Anal. Sci. 22 (2006) 1179.
- [197] K. Isoo, K. Otsuka, S. Terabe, Electrophoresis 22 (2001) 3426.
- [198] B.G. Sun, M. Macka, P.R. Haddad, J. Chromatogr. A 1039 (2004) 201.
- [199] X.B. Yin, Electrophoresis 25 (2004) 1837.
- [200] J. Jaafar, Z. Irwan, R. Ahamad, S. Terabe, T. Ikegami, N. Tanaka, J. Sep. Sci. 30 (2007) 391.
- [201] P.D. Zhang, G.W. Xu, J.H. Xiong, Y.F. Zheng, Q. Yang, F.S. Wei, Electrophoresis 22 (2001) 3567.
- [202] B.G. Sun, M. Macka, P.R. Haddad, Electrophoresis 24 (2003) 2045.
- [203] B.G. Sun, M. Macka, P.R. Haddad, Electrophoresis 23 (2002) 2430.
- [204] G.C. Ping, Y.K. Zhang, W.B. Zhang, L. Zhang, L.H. Zhang, P. Schmitt-Kopplin, A. Kettrup, Electrophoresis 25 (2004) 421.
- [205] T. Takayanagi, M. Ishida, J. Mbuna, R. Driouich, S. Motomizu, J. Chromatogr. A 1128 (2006) 298.
- [206] S. Rovio, M. Mantynen, H. Siren, Appl. Geochem. 19 (2004) 1331.

- [207] M. Urbanek, A. Varenne, P. Gebauer, L. Krivankova, P. Gareil, Electrophoresis 27 (2006) 4859.
- [208] C. Johns, M. Macka, P.R. Haddad, J. Chromatogr. A 997 (2003) 87.
- [209] P. Puig, F. Borrull, C. Aguilar, M. Calull, Chromatographia 65 (2007) 501.
- [210] P. Puig, F. Borrull, M. Calull, F. Benavente, V. Sanz-Nebot, J. Barbosa, C. Aguilar, Anal. Chim. Acta 587 (2007) 208.
- [211] B.H. Li, X.P. Yan, Electrophoresis 28 (2007) 1393.
- [212] W. Som-Aum, J. Threeprom, H.F. Li, J.M. Lin, Talanta 71 (2007) 2062.
- [213] Y.M. Liu, J.K. Cheng, Electrophoresis 23 (2002) 556.
- [214] X. Xu, H. Leijenhorst, P. Van den Hoven, J.A. De Koeijer, H. Logtenberg, Sci. Justice 41 (2001) 93.
- [215] Z.W. Zhu, L.F. Zhang, A. Marimuthu, Z.G. Yang, Electrophoresis 23 (2002) 2880.
- [216] Z. Liu, K. Otsuka, S. Terabe, Electrophoresis 22 (2001) 3791.
- [217] H. Harino, S. Tsunoi, T. Sato, M. Tanaka, Fresenius J. Anal. Chem. 369 (2001) 546.
- [218] T. Asami, H. Imura, Anal. Sci. 22 (2006) 1489.
- [219] J. You, M. Kaljurand, J.A. Koropchak, Int. J. Environ. Anal. Chem. 83 (2003) 797.
- [220] C.H. Tu, L.Y. Zhu, C.H. Ang, H.K. Lee, Electrophoresis 24 (2003) 2188.
- [221] E. Blanco, M.C. Casais, M.C. Mejuto, R. Cela, J. Chromatogr. A 1068 (2005) 189.
- [222] Z.L. Chen, R. Naidu, J. Chromatogr. A 1023 (2004) 151.
- [223] J. Petr, S. Gerstmann, H. Frank, J. Sep. Sci. 29 (2006) 2256.
- [224] F. Tan, B.C. Yang, Y.F. Guan, Anal. Sci. 21 (2005) 955.
- [225] F. Tan, B.C. Yang, Y.F. Guan, Chem. J. Chin. Univ. Chin. 26 (2005) 825.
- [226] Y. Xu, W.D. Qin, Y.H. Lau, S.F.Y. Li, Electrophoresis 26 (2005) 3507.
- [227] W.D. Qin, S.F.Y. Li, Electrophoresis 24 (2003) 2174.
- [228] J. Hernandez-Borges, F.J. Garcia-Montelongo, A. Cifuentes, M.A. Rodriguez-Delgado, J. Chromatogr. A 1070 (2005) 171.
- [229] R. Carabias-Martinez, E. Rodriguez-Gonzalo, P. Revilla-Ruiz, J. Dominguez-Alvarez, J. Chromatogr. A 990 (2003) 291.
- [230] O. Nunez, J.B. Kim, E. Moyano, M.T. Galceran, S. Terabe, J. Chromatogr. A 961 (2002) 65.
- [231] O. Nunez, E. Moyano, M.T. Galceran, J. Chromatogr. A 946 (2002) 275.
- [232] O. Nunez, E. Moyano, L. Puignou, M.T. Galceran, J. Chromatogr. A 912 (2001) 353.
- [233] L.Y. Zhu, H.K. Lee, Anal. Chem. 73 (2001) 3065.
- [234] C.E. Lin, Y.C. Liu, T.Y. Yang, T.Z. Wang, C.C. Yang, J. Chromatogr. A 916 (2001) 239.
- [235] Y.R. Chen, M.C. Tseng, Y.Z. Chang, G.R. Her, Anal. Chem. 75 (2003) 503.
- [236] E. Turiel, P. Fernandez, C. Perez-Conde, C. Camara, Analyst 125 (2000) 1725.
- [237] J. Hernandez-Borges, F.J. Garcia-Montelongo, A. Cifuentes, M.A. Rodriguez-Delgado, J. Chromatogr. A 1100 (2005) 236.
- [238] X.B. Long, M. Miro, E.H. Hansen, J.M. Estela, V. Cerda, Anal. Chem. 78 (2006) 8290.
- [239] Z.X. Zhang, Y.Z. He, Y.Y. Hu, J. Chromatogr. A 1109 (2006) 285.
- [240] Z.L. Chen, G. Owens, R. Naidu, Anal. Bioanal. Chem. 375 (2003) 182.
- [241] M.C. Breadmore, A.S. Palmer, M. Curran, M. Macka, N. Avdalovic, P.R. Haddad, Anal. Chem. 74 (2002) 2112.
- [242] J.P. Hutchinson, P. Zakaria, A.R. Bowiet, M. Macka, N. Avdalovic, P.R. Haddad, Anal. Chem. 77 (2005) 407.
- [243] P. Kuban, P. Kuban, V. Kuban, Electrophoresis 24 (2003) 1935.
- [244] D.D. Wang, F. Li, X.P. Yan, J. Chromatogr. A 1117 (2006) 246.
- [245] K. Ito, T. Ichihara, H.A. Zhuo, K. Kumamoto, A.R. Timerbaev, T. Hirokawa, Anal. Chim. Acta 497 (2003) 67.
- [246] T. Hirokawa, T. Ichihara, K. Ito, A.R. Timerbaev, Electrophoresis 24 (2003) 2328.
- [247] Z. Huang, K. Ito, T. Hirokawa, J. Chromatogr. A 1055 (2004) 229.
- [248] Z. Huang, K. Ito, A.R. Timerbaev, T. Hirokawa, Anal. Bioanal. Chem. 378 (2004) 1836.
- [249] K. Yokota, K. Fukushi, S. Takeda, S.I. Wakida, J. Chromatogr. A 1035 (2004) 145.
- [250] M.I.T. Carou, P.L. Mahia, S.M. Lorenzo, E.F. Fernandez, D.P. Rodriguez, J. Chromatogr. A 918 (2001) 411.

- [251] W.H. Ding, C.H. Liu, J. Chromatogr. A 929 (2001) 143.
- [252] P. Kuban, P. Houserova, P. Kuban, P.C. Hauser, V. Kuban, J. Sep. Sci. 30 (2007) 1070.
- [253] P. Houserova, P. Kuban, V. Kuban, Electrophoresis 27 (2006) 4508.
- [254] Z.L. Peng, G.Q. Song, L.X. Zhao, J.M. Lin, Chromatographia 64 (2006) 281.
- [255] Y.W. Jeong, K.W. Choi, M.K. Kang, K.J. Chun, D.S. Chung, Sens. Actuators, B – Chemical 104 (2005) 269.
- [256] M.J. Cugat, F. Borrull, M. Calull, Analyst 126 (2001) 1312.
- [257] G.Q. Song, Z.L. Peng, J.M. Lin, J. Sep. Sci. 29 (2006) 2065.
- [258] J.B. Kim, J.P. Quirino, K. Otsuka, S. Terabe, J. Chromatogr. A 916 (2001) 123.
- [259] H.C. Chen, W.H. Ding, J. Chromatogr. A 996 (2003) 205.
- [260] C.H. Liu, W.H. Ding, J. Chin. Chem. Soc. 49 (2002) 349.
- [261] T.L. Wang, J. Tang, W. Wan, S.Z. Zhao, J. Chromatogr. A 1147 (2007) 105.
- [262] N. Vachirapatama, P. Doble, Z.S. Yu, M. Macka, P.R. Haddad, Anal. Chim. Acta 434 (2001) 301.
- [263] C.H. Tu, H.K. Lee, J. Chromatogr. A 966 (2002) 205.
- [264] N. Ishio, K. Fukushi, K. Michiba, S. Takeda, S. Wakida, Anal. Bioanal. Chem. 374 (2002) 1165.
- [265] K. Fukushi, K. Yokota, Y. Nakayama, N. Ishio, T. Miyado, Bunseki Kagaku 54 (2005) 665.
- [266] K. Fukushi, Y. Nakayamaa, J. Tsujimoto, J. Chromatogr. A 1005 (2003) 197.
- [267] B.C. Giordano, C.L. Copper, G.E. Collins, Electrophoresis 27 (2006) 778.
- [268] A. Macia, F. Borrull, C. Aguilar, M. Calull, Electrophoresis 25 (2004) 428.
- [269] A. Macia, F. Borrull, C. Aguilar, M. Calull, Electrophoresis 24 (2003) 2779.
- [270] A. Macia, F. Borrull, M. Calull, C. Aguilar, Electrophoresis 26 (2005) 970.
- [271] A. Macia, F. Borrull, M. Calull, C. Aguilar, J. Chromatogr. A 1117 (2006) 234.
- [272] G. Koller, U. Rolle-Kampczyk, P. Popp, O. Herbarth, Chromatographia 58 (2003) 763.
- [273] J.P. Hutchinson, M. Macka, N. Avdalovic, P.R. Haddad, J. Chromatogr. A 1106 (2006) 43.
- [274] S.L. He, Y.F. Zhao, Z.W. Zhu, H.W. Liu, M.X. Li, Y.H. Shao, Q.K. Zhuang, Talanta 69 (2006) 166.
- [275] L. Wojcik, B. Szostek, W. Maruszak, M. Trojanowicz, Electrophoresis 26 (2005) 1080.
- [276] Y.S. Fung, J.L.L. Mak, Electrophoresis 22 (2001) 2260.
- [277] S. Takeda, K. Fukushi, K. Chayama, Y. Nakayama, Y. Tanaka, S. Wakida, J. Chromatogr. A 1051 (2004) 297.
- [278] W. Wall, J. Li, Z. El Rassi, J. Sep. Sci. 25 (2002) 1231.
- [279] P. Kuban, M. Berg, C. Garcia, B. Karlberg, J. Chromatogr. A 912 (2001) 163.
- [280] J. Safra, M. Pospisilova, A. Kavalirova, J. Pharm. Biomed. Anal. 41 (2006) 1022.
- [281] A.V. Pirogov, K.V. Stepanov, O.A. Shpigun, J. Anal. Chem. 58 (2003) 478.
- [282] L.Y. Zhu, C.H. Tu, H.K. Lee, Anal. Chem. 74 (2002) 5820.
- [283] J.P. Quirino, N. Inoue, S. Terabe, J. Chromatogr. A 892 (2000) 187.
- [284] T. Okamoto, K. Fukushi, K. Yokota, S. Takeda, S. Wakida, Bunseki Kagaku 55 (2006) 627.
- [285] Y. Takagai, R. Akiyama, S. Igarashi, Anal. Bioanal. Chem. 385 (2006) 888.
- [286] Y. Takagai, S. Igarashi, Analyst 126 (2001) 551.
- [287] X. Zhang, Y.Z. He, J. Chromatogr. A 1066 (2005) 211.
- [288] Y. Li, Y.Z. He, Y.Y. Hu, L. Wang, Chin. J. Anal. Chem. 33 (2005) 248.
- [289] T. Hirokawa, H. Okamoto, N. Ikuta, Electrophoresis 22 (2001) 3483.
- [290] V. Galli, C. Barbas, Anal. Chim. Acta 482 (2003) 37.
- [291] H. Okamoto, Y. Okamoto, T. Hirokawa, A.R. Timerbaev, Analyst 128 (2003) 1439.
- [292] E. Blanco, M.C. Casais, M.C. Mejuto, R. Cela, J. Chromatogr. A 1071 (2005) 205.

- [293] L. Nozal, L. Arce, B.M. Simonet, A. Rios, M. Valcarcel, Anal. Chim. Acta 517 (2004) 89.
- [294] C.L. Copper, G.E. Collins, Electrophoresis 25 (2004) 897.
- [295] K. Isoo, S. Terabe, Chromatographia 61 (2005) 49.
- [296] T. Kagawa, T. Takayanagi, M. Oshima, S. Motomizu, Bunseki Kagaku 51 (2002) 791.
- [297] M.J.A. Shiddiky, H. Park, Y.B. Shim, Anal. Chem. 78 (2006) 6809.
- [298] Y.S. Fung, H.S. Tung, J. Microcol. Sep. 12 (2000) 337.
- [299] A.S. Carretero, C. Cruces-Blanco, S.C. Ramirez, A.C. Pancorbo, A.F. Gutierrez, J. Agr. Food Chem. 52 (2004) 5791.
- [300] N. Vachirapatama, M. Macka, P.R. Haddad, Anal. Bioanal. Chem. 374 (2002) 1082.
- [301] M.S. Chun, D.S. Chung, Anal. Chim. Acta 491 (2003) 173.
- [302] H.Y. Huang, W.C. Lien, I.Y. Huang, Electrophoresis 27 (2006) 3202.
- [303] E. Bermudo, O. Nunez, L. Puignou, M.T. Galceran, J. Chromatogr. A 1129 (2006) 129.
- [304] N. Garcia-Villar, J. Saurina, S. Hernandez-Cassou, Electrophoresis 27 (2006) 474.
- [305] L.Y. Ge, J.W.H. Yong, S.N. Tan, X.H. Yang, E.S. Ong, J. Chromatogr. A 1133 (2006) 322.
- [306] L.Y. Ge, J.W.H. Yong, S.N. Tan, E.S. Ong, Electrophoresis 27 (2006) 2171.
- [307] H.Y. Huang, C.W. Chiu, S.L. Sue, C.F. Cheng, J. Chromatogr. A 995 (2003) 29.
- [308] M. Molina, M. Silva, Electrophoresis 21 (2000) 3625.
- [309] R. Rodriguez, Y. Pico, G. Font, J. Manes, J. Chromatogr. A 949 (2002) 359.
- [310] G. Alvarez-Llamas, M.D.F. de la Campa, A. Sanz-Medel, J. Anal. At. Spectrom. 18 (2003) 460.
- [311] J. Hernandez-Borges, M.A. Rodriguez-Delgado, F.J. Garcia-Montelongo, A. Cifuentes, J. Sep. Sci. 28 (2005) 948.
- [312] C.L. da Silva, E.C. de Lima, M.F.M. Tavares, J. Chromatogr. A 1014 (2003) 109.
- [313] J. Hernandez-Borges, A. Cifuentes, F.J. Garcia-Montelongo, M.A. Rodriguez-Delgado, Electrophoresis 26 (2005) 980.
- [314] M. Hernandez, C. Aguilar, F. Borrull, M. Calull, J. Chromatogr. B 772 (2002) 163.
- [315] Y.Y. Zhao, L.J. Wang, Y.Q. Li, Y.Y. Han, G.L. Du, Chem. J. Chin. Univ.-Chin. 28 (2007) 62.
- [316] A.K. Su, Y.S. Chang, C.H. Lin, Talanta 64 (2004) 970.
- [317] A.K. Su, C.H. Lin, J. Chromatogr. B 785 (2003) 39.
- [318] A. Jastrzebska, Talanta 69 (2006) 1018.
- [319] J.J. Soto-Chinchilla, A.M. Garcia-Campana, L. Gamiz-Gracia, C. Cruces-Blanco, Electrophoresis 27 (2006) 4060.
- [320] M.C. Hsieh, C.H. Lin, Electrophoresis 25 (2004) 677.
- [321] S.H. Liu, Q.F. Li, X.G. Chen, Z.D. Hu, Electrophoresis 23 (2002) 3392.
- [322] S.W. Sun, H.M. Tseng, J. Pharm. Biomed. Anal. 36 (2004) 43.
- [323] S.W. Sun, H.M. Tseng, J. Pharm. Biomed. Anal. 37 (2005) 39.
- [324] Y.K. Zhang, J. Zhu, L.H. Zhang, W.B. Zhang, Anal. Chem. 72 (2000) 5744.
- [325] C. Wang, Z. Wang, D.D. Han, Q.H. Wu, X.H. Zang, Anal. Lett. 39 (2006) 1927.
- [326] L.L. Zhang, Y. Chen, M. Lin, G.R. Fan, W.Q. Zhao, Y.T. Wu, Chromatographia 65 (2007) 305.
- [327] P. Britz-McKibbin, T. Ichihashi, K. Tsubota, D.D.Y. Chen, S. Terabe, J. Chromatogr. A 1013 (2003) 65.
- [328] L.H. Liu, X.G. Chen, Z.D. Hu, Electrophoresis 26 (2005) 4456.
- [329] W.H. Gao, S.Y. Lin, Y.W. Chen, A.J. Chen, Y.Q. Li, X.G. Chen, Z.D. Hu, J. Sep. Sci. 28 (2005) 639.
- [330] S.F. Wang, Y.Q. Wu, Y. Ju, X.G. Chen, W.J. Zheng, Z.D. Hu, J. Chromatogr. A 1017 (2003) 27.
- [331] M. Urbanek, L. Blechtova, M. Pospisilova, M. Polasek, J. Chromatogr. A 958 (2002) 261.
- [332] Z.X. Zhang, Y.Z. He, Chin. J. Anal. Chem. 33 (2005) 1531.
- [333] M. Li, L.Y. Fan, W. Zhang, J. Sun, C.X. Cao, J. Pharm. Biomed. Anal. 43 (2007) 387.
- [334] X.M. Liu, L.H. Liu, H.L. Chen, X.G. Chen, J. Pharm. Biomed. Anal. 43 (2007) 1700.

- [335] D.J. Weiss, K. Saunders, C.E. Lunte, Electrophoresis 22 (2001) 59.
- [336] L.J. Li, J. Feng, H. Cheng, Q.F. Chen, Z.H. Zhong, H.X. Kong, J.L. Wu, Chin. J. Anal. Chem. 35 (2007) 401.
- [337] M. Urbanek, M. Pospisllova, M. Polasek, Electrophoresis 23 (2002) 1045.
- [338] L.J. Yu, S.F.Y. Li, Electrophoresis 26 (2005) 4360.
- [339] S.F. Wang, H.B. Qu, Y.Y. Cheng, Electrophoresis 28 (2007) 1399.
- [340] S.F. Wang, S. Ye, Y.Y. Cheng, J. Chromatogr. A 1109 (2006) 279.
- [341] D. Schaller, E.F. Hilder, P.R. Haddad, Anal. Chim. Acta 556 (2006) 104.
- [342] J.Y. Zhang, S.F. Wang, X.G. Chen, Z.D. Hu, X. Ma, Anal. Bioanal. Chem. 376 (2003) 210.
- [343] P. Mikus, I. Valaskova, E. Havranek, Talanta 65 (2005) 1031.
- [344] M.M. Hsieh, H.T. Chang, Electrophoresis 26 (2005) 187.
- [345] C.H. Tsai, C. Fang, J.T. Liu, C.H. Lin, Electrophoresis 25 (2004) 1601.
- [346] S.D. Arnett, D.M. Osbourn, K.D. Moore, S.S. Vandaveer, C.E. Lunte, J. Chromatogr. B 827 (2005) 16.
- [347] H.C. Vo, P.A. Henning, D.T. Leung, S.L. Sacks, J. Chromatogr. B 772 (2002) 291.
- [348] L. Hou, X.J. Wen, C.H. Tu, H.K. Lee, J. Chromatogr. A 979 (2002) 163.
- [349] T. Perez-Ruiz, C. Martinez-Lozano, A. Sanz, E. Bravo, Chromatographia 56 (2002) 63.
- [350] C.C. Chen, S.M. Wu, Y.H. Huang, W.K. Ko, H.S. Kou, H.L. Wu, Anal. Chim. Acta 517 (2004) 103.
- [351] N. Fang, P.J. Meng, H. Zhang, S. Ying, D.D.Y. Chen, Analyst 132 (2007) 127.
- [352] P.J. Meng, N. Fang, M. Wang, H.W. Liu, D.D.Y. Chen, Electrophoresis 27 (2006) 3210.
- [353] P.J. Meng, Chin. J. Anal. Chem. 34 (2006) 1137.
- [354] F. Wei, Y. Fan, M. Zhang, Y.Q. Feng, Electrophoresis 26 (2005) 3141.
- [355] P.L. Urban, C. Garcia-Ruiz, M.A. Garcia, M.L. Marina, J. Sep. Sci. 28 (2005) 2200.
- [356] A. Gavenda, J. Sevcik, J. Psotova, Chem. Listy 94 (2000) 1010.
- [357] A. Gavenda, J. Sevcik, J. Psotova, P. Bednar, P. Bartak, P. Adamovsky, V. Simanek, Electrophoresis 22 (2001) 2782.
- [358] W.S. Law, P. Kuban, L.L. Yuan, J.H. Zhao, S.F.Y. Li, P.C. Hauser, Electrophoresis 27 (2006) 1932.
- [359] Y.H. Long, A. Hernandez, E. Kaale, A. Van Schepdael, E. Roets, F. Borrull, M. Calull, J. Hoogmartens, J. Chromatogr. B 784 (2003) 255.
- [360] M. Hernandez, F. Borrull, M. Calull, Chromatographia 55 (2002) 585.
- [361] W. Buchberger, M. Ferdig, R. Sommer, T.D.T. Vo, Electrophoresis 26 (2005) 161.
- [362] L.Y. Fan, L.H. Liu, H.L. Chen, X.G. Chen, Z.D. Hu, J. Chromatogr. A 1062 (2005) 133.
- [363] Z.L. Chen, J.M. Lin, R. Naidu, Anal. Bioanal. Chem. 375 (2003) 679.
- [364] Q.L. Wang, L.Y. Fan, W. Zhang, C.X. Cao, Anal. Chim. Acta 580 (2006) 200.
- [365] R.B. Taylor, R.G. Reid, A.S. Low, J. Chromatogr. A 916 (2001) 201.
- [366] D.D. Han, C. Wang, Z. Wang, Q.H. Wu, X.H. Zang, Chin. Chem. Lett. 17 (2006) 953.
- [367] T. Hirokawa, H. Okamoto, Y. Gosyo, T. Tsuda, A.R. Timerbaev, Anal. Chim. Acta 581 (2007) 83.
- [368] M. Mazereeuw, V. Spikmans, U.R. Tjaden, J. van der Greef, J. Chromatogr. A 879 (2000) 219.
- [369] J.A. Gillogly, C.E. Lunte, Electrophoresis 26 (2005) 633.
- [370] B.X. Mayer, M. Petsch, E.M. Tschernko, M. Muller, Electrophoresis 24 (2003) 1215.
- [371] Y.F. Shi, Y. Huang, J.P. Duan, H.Q. Chen, G.N. Chen, J. Chromatogr. A 1125 (2006) 124.
- [372] Y.Y. Zhao, G.L. Yang, H.Y. Yan, Q. Yu, Y. Chen, Chin. J. Anal. Chem. 32 (2004) 485.
- [373] B. Toussaint, P. Hubert, U.R. Tjaden, J. van der Greef, J. Crommen, J. Chromatogr. A 871 (2000) 173.
- [374] Y.H. Ho, W.K. Ko, H.S. Kou, H.L. Wu, S.M. Wu, J. Chromatogr. B 809 (2004) 111.
- [375] H.F. Fang, Z.R. Zeng, L. Liu, D.W. Pang, Anal. Chem. 78 (2006) 1257.
- [376] E.M. Ward, M.R. Smyth, R. O'Kennedy, C.E. Lunte, J. Pharm. Biomed. Anal. 32 (2003) 813.
- [377] L.Y. Fang, X.B. Yin, X.H. Sun, E.K. Wang, Anal. Chim. Acta 537 (2005) 25.

- [378] H.F. Fang, Z.R. Zeng, L. Liu, Anal. Chem. 78 (2006) 6043.
- [379] L.Y. Fan, Y.Q. Cheng, Y.Q. Li, H.L. Chen, X.G. Chen, Z.D. Hu, Electrophoresis 26 (2005) 4345.
- [380] F. Wei, M. Zhang, Y.Q. Feng, J. Chromatogr. B 850 (2007) 38.
- [381] N. Johannesson, J. Bergquist, J. Pharm. Biomed. Anal. 43 (2007) 1045.
- [382] W.S. Law, J.H. Zhao, S.F.Y. Li, Electrophoresis 26 (2005) 3486.
- [383] C.W. Huang, H.P. Jen, R.D. Wang, Y.Z. Hsieh, J. Chromatogr. A 1110 (2006) 240.
- [384] M.J. Gong, K.R. Wehmeyer, P.A. Limbach, F. Arias, W.R. Heineman, Anal. Chem. 78 (2006) 3730.
- [385] L.Y. Zhu, S.Y. Tham, A.U.J. Yap, H.K. Lee, J. Sep. Sci. 25 (2002) 328.
- [386] M.E. Hoque, S.D. Amett, C.E. Lunte, J. Chromatogr. B 827 (2005) 51.
- [387] A. Alnajjar, B. McCord, J. Pharm. Biomed. Anal. 33 (2003) 463.
- [388] S. Sentellas, E. Moyano, L. Puignou, M.T. Galceran, J. Chromatogr. A 1032 (2004) 193.
- [389] S. Sentellas, E. Moyano, L. Puignou, M.T. Galceran, Electrophoresis 24 (2003) 3075.
- [390] P. Viberg, S. Nilsson, K. Skog, Anal. Bioanal. Chem. 378 (2004) 1729.
- [391] Y.H. Xu, Y. Gao, H. Wei, Y. Du, E.K. Wang, J. Chromatogr. A 1115 (2006) 260.
- [392] Y.H. Lin, M.R. Lee, R.J. Lee, W.K. Ko, S.M. Wu, J. Chromatogr. A 1145 (2007) 234.
- [393] Y.H. Lin, J.H. Li, W.K. Ko, S.M. Wu, J. Chromatogr. A 1130 (2006) 281.
- [394] C. Huhn, M. Putz, N. Martin, R. Dahlenburg, U. Pyell, Electrophoresis 26 (2005) 2391.
- [395] T. Hirokawa, M. Yoshioka, H. Okamoto, A.R. Timerbaev, G. Blaschke, J. Chromatogr. B 811 (2004) 165.
- [396] Z.W. Zhu, L.F. Zhang, A. Marimuthu, Z.G. Yang, Electrophoresis 24 (2003) 3089.
- [397] M.C. Breadmore, A. Prochazkova, R. Theurillat, W. Thormann, J. Chromatogr. A 1014 (2003) 57.
- [398] H.P. Jen, Y.C. Tsai, H.L. Su, Y.Z. Hsieh, J. Chromatogr. A 1111 (2006) 159.
- [399] E.X. Vrouwe, R. Luttge, W. Olthuis, A. van den Berg, Electrophoresis 26 (2005) 3032.
- [400] M. Li, L.Y. Fan, W. Zhang, C.X. Cao, Anal. Bioanal. Chem. 387 (2007) 2719.
- [401] C. Fang, J.T. Liu, S.H. Chou, C.H. Lin, Electrophoresis 24 (2003) 1031.
- [402] R. Sabapathy, W.P. Liu, A.U.J. Yap, H.K. Lee, Electrophoresis 21 (2000) 2886.
- [403] H.L. Cheng, Y.J. Jong, J.H. Li, W.K. Ko, S.M. Wu, Electrophoresis 27 (2006) 4711.
- [404] C.Y. Kuo, S.S. Chiou, S.M. Wu, Electrophoresis 27 (2006) 2905.
- [405] Q.F. Weng, G.W. Xu, K.L. Yuan, P. Tang, J. Chromatogr. B 835 (2006) 55.
- [406] A.B. Wey, W. Thormann, J. Chromatogr. A 916 (2001) 225.
- [407] R. Driouich, T. Takayanagi, Mitsuko, S. Oshima, Motomizu, J. Pharm. Biomed. Anal. 30 (2003) 1523.
- [408] H.M. Huang, C.H. Lin, J. Chromatogr. B 816 (2005) 113.
- [409] H.Y. Yan, G.L. Yang, F.X. Qiao, C. Yi, J. Pharm. Biomed. Anal. 36 (2004) 169.
- [410] E.E.K. Baidoo, M.R. Clench, R.F. Smith, L.W. Tetler, J. Chromatogr. B 796 (2003) 303.
- [411] E.A. Hutton, B. Ogorevc, M.R. Smyth, Electroanalysis 16 (2004) 1616.
- [412] Y.F. Pai, C.C. Lin, C.Y. Liu, Electrophoresis 25 (2004) 569.
- [413] C. Mardones, A. Rios, M. Valcarcel, Electrophoresis 22 (2001) 484.
- [414] G. Koller, G. Wichmann, U. Rolle-Kampczyk, P. Popp, O. Herbarth, J. Chromatogr. B 840 (2006) 94.
- [415] G. Koller, U. Rolle-Kampczyk, I. Lehmann, P. Popp, O. Herbarth, J. Chromatogr. B 804 (2004) 313.
- [416] G. Manetto, F. Tagliaro, F. Crivellente, V.L. Pascali, M. Marigo, Electrophoresis 21 (2000) 2891.
- [417] F. Wei, M. Zhang, Y.Q. Feng, Electrophoresis 27 (2006) 1939.
- [418] A.B. Wey, W. Thormann, J. Chromatogr. A 924 (2001) 507.
- [419] M. Zuborova, M. Masar, D. Kaniansky, M. Johnck, B. Stanislawski, Electrophoresis 23 (2002) 774.
- [420] P. Kriikku, B. Grass, A. Hokkanen, I. Stuns, H. Siren, Electrophoresis 25 (2004) 1687.

- [421] P. Puig, F. Borrull, C. Aguilar, M. Calull, J. Chromatogr. B 831 (2006) 196.
- [422] C.C. Tsai, J.T. Liu, Y.R. Shu, P.H. Chan, C.H. Lin, J. Chromatogr. A 1101 (2006) 319.
- [423] Y.S. Ding, A. Ayon, C.D. Garcia, Anal. Chim. Acta 584 (2007) 244.
- [424] F.J. Lara, A.M. Garcia-Campana, F. Ales-Barrero, J.M. Bosque-Sendra, Electrophoresis 26 (2005) 2418.
- [425] X.H. Sun, J.F. Liu, W.D. Cao, X.R. Yang, E.K. Wang, Y.S. Fung, Anal. Chim. Acta 470 (2002) 137.
- [426] X.W. Zhou, X.J. Li, Z.R. Zeng, J. Chromatogr. A 1104 (2006) 359.
- [427] W.D. Cao, X.R. Yang, E.K. Wang, Electroanalysis 16 (2004) 169.
- [428] J.J.B. Nevado, J.R. Flores, G.C. Penalvo, N.R. Farinas, J. Chromatogr. A 953 (2002) 279.
- [429] J.B. Kim, K. Otsuka, S. Terabe, J. Chromatogr. A 912 (2001) 343.
- [430] C. Wang, D.D. Han, Z. Wang, X.H. Zang, Q.H. Wu, Anal. Chim. Acta 572 (2006) 190.

- [431] C. Wang, C.R. Li, X.H. Zang, D.D. Han, Z.M. Liu, Z. Wang, J. Chromatogr. A 1143 (2007) 270.
- [432] .H. Zang, C.R. Li, Q.H. Wu, C. Wang, D.D. Han, Z. Wang, Chin. Chem. Lett. 18 (2007) 316.
- [433] P. Zhang, G.W. Xu, J.H. Xiong, Y.F. Zheng, X.Z. Shi, Q. Yang, F.S. Wei, J. Sep. Sci. 26 (2003) 1527.
- [434] Y.L. Chen, Y.J. Jong, S.M. Wu, J. Chromatogr. A 1119 (2006) 176.
- [435] K. Otsuka, M. Matsumura, J.B. Kim, S. Terabe, J. Pharm. Biomed. Anal. 30 (2003) 1861.
- [436] T. Galeano-Diaz, M.I. Acedo-Valenzuela, N. Mora-Diez, A. Silva-Rodriguez, Electrophoresis 26 (2005) 3518.
- [437] Q.H. Yao, S.R. Mei, Q.F. Weng, P.D. Zhang, Q. Yang, C.Y. Wu, G.W. Xu, Talanta 63 (2004) 617.
- [438] E. Olvecka, M. Konikova, N. Grobuschek, D. Kaniansky, B. Stanislawski, J. Sep. Sci. 26 (2003) 693.
- [439] Y.W. Chou, W.S. Huang, C.C. Chen, S.J. Lin, H.L. Wu, S.H. Chen, J. Chromatogr. A 1087 (2005) 189.