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INTRODUCTION

Understanding and predicting patterns of biodiver-
sity is increasingly important for the conservation and
management of ecosystems world-wide (Reid 1998,
Austin 2002, Guisan et al. 2006). In the marine environ-

ment, shallow reefs support diverse ecosystems that
are currently under threat from the effects of fishing
(Jackson et al. 2001), pollutants (Johnston & Roberts
2009), introduced species (Walker 1998) and climate
change (Hoegh-Guldberg et al. 2007). Prioritising
areas for effective protection and long-term conserva-
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ABSTRACT: Management and conservation of ecosystems relies on biodiversity data; however,
broad-scale biological data are often limited. Predictive modelling using environmental variables has
recently proven a valuable tool in addressing this gap. Wave exposure is a particularly important
environmental variable that structures shallow reef systems, but it is rarely quantified across the
large areas often used for predictive studies. Therefore, we investigated approaches that quantify
exposure and can be readily applied across a large area. We generated 6 quantitative indices that
emphasise different aspects of exposure using a numerical wave model and cartographic fetch mod-
els. The utility of these indices for predictive modelling in shallow temperate reef systems was
assessed by how well they explained community and genera-level algal patterns in Tasmania, Aus-
tralia, which is a region that experiences a wide range of wave exposure conditions. Exposure indices
were significant predictors of algal patterns, explaining up to 18% of community level patterns and
up to 37% of the variance associated with the occurrence and cover of algal genera. Fetch-based
indices in particular appear to be a viable option for quantifying exposure on shallow reefs. These
indices can be generated within a Geographic Information System (GIS) program for specific sites of
interest, along coastlines or on a grid, and are potentially accessible to ecologists. Quantification of
exposure across broad regions using fetch indices will allow ecologists to makes advances in predic-
tive modelling studies, but also facilitate studies that test the generality of hypotheses and mecha-
nisms driving patterns previously observed using qualitative measures.
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tion of shallow reef communities requires knowledge
of biodiversity patterns across large regions. Because
collecting biological data is labour intensive, difficult
and expensive for the large areas relevant to manage-
ment, these data are often limited and patchy. Where
biological data are limited or lacking, predicting pat-
terns of biodiversity using relationships between biodi-
versity and physical variables can facilitate conserva-
tion decision-making (Lehmann et al. 2002, Beger &
Possingham 2008, Foster & Dunstan 2010).

A range of physical data is now available across
large regions to aid in the development of predictive
models for the marine environment. These include
data on sea surface temperature or ocean colour from
satellites (e.g. MODIS and SeaWiFS) or Argo floats,
ocean chemistry measurements (e.g. CSIRO Atlas of
Regional Seas, CARS; Condie & Dunn 2006), bathy-
metry (e.g. Whiteway 2009) and sediment grain-size
data (e.g. Marine Sediment database, MARS; Geo-
science Australia). While these physical data have
proven useful for ecosystems such as the continental
shelf and slope (Foster & Dunstan 2010), the suitability
of some datasets for shallow, coastal environments is
questionable. This is due to a range of issues that in-
clude reduced coverage inshore, uncertainty created
by interpolation from offshore data (Condie & Dunn
2006), and artefacts that affect satellite data, such as
turbidity and tannin levels in coastal waters (Zibordi
2009). Thus, identifying and developing a suite of
physical measures that are likely to be important dri-
vers of shallow reef community structure is necessary
for the success of predictive models of these eco-
systems.

Exposure is a physical measure that has long been
recognised by ecologists as an important factor in
structuring reef communities. It includes forces such as
waves generated by local winds, waves generated by
remote weather systems (swell) as well as tides and
currents. The water movement associated with expo-
sure can have both positive and negative effects on
shallow reef organisms as it supplies nutrients and par-
ticles to benthic organisms (Hurd 2000), disperses
propagules (e.g. Hunt & Scheibling 1996), can affect
light availability (e.g. Carruthers et al. 2002), influ-
ences sedimentation and scouring processes (e.g.
Airoldi & Cinelli 1997), and can act as a physical distur-
bance removing organisms from the substratum
(Vadas et al. 1990, Thomson et al. 2004). In shallow
temperate reef systems, macro-algae often dominate
the community and are directly affected by exposure,
which can influence algal morphology (Wernberg &
Thomsen 2005, D’Amours & Scheibling 2007), the dis-
tribution of species (Kennelly 1989, Fowler-Walker et
al. 2005), and hence the composition and diversity of
communities (Collings & Cheshire 1998, England et al.

2008). However, exposure is often only qualitatively
described and subjectively categorised, hindering
generalisation of results across studies and geographic
regions (Lindegarth & Gamfeldt 2005). Thus, the
development of standardised, quantitative measures of
exposure, generated at broad scales and applicable to
a range of shallow-water systems is timely.

Currently, quantifying wave exposure over regions
generally is either by (1) numerical wave modelling or
(2) cartographic fetch modelling. Deep-water wave
models (such as WAM; WAMDI Group 1988) model
offshore wave climatology. They are available at conti-
nental scales (or greater), but generally have a coarse
grain and do not model shallow-water processes such
as shoaling, refraction, diffraction or breaking (Hughes
& Heap 2010). Shallow-water models such as Simulat-
ing Waves Nearshore (SWAN; Booij et al. 1999) do and
therefore, can model detailed variation in exposure
due to complex bathymetry and coastline. Generally
however, these high resolution models have only been
run over small areas which has limited their utility for
broad-scale studies (England et al. 2008). Few studies
have generated or used wave models in ecological
modelling (see England et al. 2008). This is because
they are complex models to run that are typically cali-
brated using field data and expert knowledge, are
computationally intensive, and in many cases are not
easily generated or sourced by ecologists.

An alternative approach to quantifying wave expo-
sure is to use a cartographic fetch model within a
Geographical Information System (GIS). These mod-
els are based on fetch, i.e. the distance of water over
which wind can blow uninterrupted in a given direc-
tion from the point of interest (or practically speaking,
the distance to the nearest wave-blocking obstacle in
a given direction). Fetch, along with the magnitude
and duration of wind, limits the magnitude of the
waves that can form in a given location (Denny 1988).
Thus, measuring fetch alone provides an estimate of
local sea-state and hence wave exposure at a given
location. Fetch models can range from simple mea-
sures, such as the average fetch along a number of
fetch lines, to methods that incorporate local wind
speed and directional data and/or the effects of bathy-
metry (e.g. Malhotra & Fonseca 2007). Fetch model-
ling can be easily implemented in a GIS program,
does not require calibration, and is less computer
intensive than numerical wave modelling. As fetch
models are designed to estimate local conditions, they
do not specifically model waves due to swell that may
originate from offshore systems. They also do not
account for nearshore processes such as the refrac-
tion, diffraction and breaking of waves.

Despite these limitations, fetch models have been
successfully applied within an ecological modelling
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context to describe and predict relationships between
exposure and rocky shore communities (Burrows et al.
2008), seagrass beds (Fonseca & Bell 1998), algal oc-
currence (Ruuskanen et al. 1999) and algal morpho-
logy (Bekkby et al. 2009). As may be expected, most
fetch-based studies have been conducted in semi-
enclosed waters (where locally-generated wind waves
dominate) on local to regional scales (but see Burrows
et al. 2008). Shallow-reef ecosystems dominate open
coasts, especially in Australia, and there is a need to
develop a general exposure measure that can be ap-
plied to semi-enclosed and open coastal shallow reefs
across broad regions.

In this paper we generated a series of quantitative
exposure indices with the aim of identifying a useful
index for shallow reef systems over large coastal
areas. The first set of indices was generated using
outputs from a deep-water model to test whether a
currently available, broad-scale, wave climate model
is able to explain patterns of biodiversity. The second
set of indices was derived from fetch models and rep-
resent a finer-scale approximation of exposure. The
third type of index is a composite index that combines
the strengths of both a wave climate model and a
fetch model. We then assessed the performance of the
exposure indices in explaining patterns in algal biodi-
versity in Tasmania, Australia which is a temperate
region that experiences a wide range of wave expo-
sure conditions, at both semi-enclosed and open
coastal sites.

METHODS

Study region and ecological data. The coastline of
Tasmania in southern Australia spans nearly 3000 km,
experiences a wide range of exposure conditions, and
supports a range of diverse algal communities (Bolton
1994). The western and southern coasts of Tasmania
are subject to frequent and intense weather systems
originating in the Southern Ocean and moving east-
wards, generating gale force winds and large swell
waves (Porter-Smith et al. 2004). The north coast to
some extent is buffered by the Bass Strait, a relatively
shallow body of water (~50 to 100 m water depth) that
dampens the effects of oceanic swell and separates
Tasmania from mainland Australia. On occasion, how-
ever, the north coast is subject to storm surges, wind
waves and tidal currents (Porter-Smith et al. 2004). The
east coast of Tasmania experiences variable and less
predictable oceanic conditions (Hemer et al. 2008).

Algal data were collected in Tasmania as part of a
long-term shallow temperate reef monitoring program
(Barrett et al. 2009, Stuart-Smith et al. 2010) estab-
lished in 1992 using underwater visual censuses

(UVC). Each census consisted of a diver-based survey
along a 200 m transect of reef at a site. The data used
here were limited to surveys conducted on mainland
Tasmania in 2006–2007 at sites of 5 m water depth, and
represented a mixture of semi-enclosed and open
coastal sites. The national marine bioregionalisation
scheme’s (IMCRA 4.0, Commonwealth of Australia
2006) meso-scale bioregions for Tasmania broadly
align with the regions of differing exposure regimes
described above. These bioregions were used as a
means to subset the data and attain a representative
coverage of sites across the exposure gradient. A total
of 79 sites were used in the analysis (Fig. 1) with 17 to
21 sites chosen from each of 4 of the 5 bioregions. The
fifth bioregion (Franklin) was not included in this study
because there were too few survey sites available for
analyses due to the remoteness of the region.

Algal cover along each transect was recorded using
0.5 × 0.5 m quadrats with 50 points per quadrat (Barrett
et al. 2009). Twenty quadrats were censused per tran-
sect. The cover of canopy species was recorded first
and then pushed aside and the points falling on under-
storey species were counted. Algae were identified to
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sites surveyed for algae
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the lowest possible taxonomic level in situ, usually spe-
cies, otherwise to genus and in some cases to broader
functional groups (e.g. encrusting coralline algae). The
percent cover of each algal species was calculated at
the level of site and aggregated to genera as the lowest
taxonomic level for analysis.

Calculation of exposure indices. Three classes of ex-
posure indices were generated: (1) derived from the nu-
merical model for deepwater waves, (2) derived from
fetch models, and (3) one that combines outputs from
the offshore wave model with outputs from a fetch
model. These are described below and in Table 1.

Offshore wave model indices were based on outputs
from the AusWAM model; they represent exposure in
the context of offshore wave climatology. AusWAM is
an extension of the WAM model (WAMDI Group
1988), a third generation wave model that incorporates
local winds, energy attenuation due to bottom friction,
and swell propagation, but does not specifically model
processes that may occur in very shallow waters near
to the shoreline (<25 m; Hughes & Heap 2010).
AusWAM is available for the entire Australian region
at a 0.1 degree resolution (approximately 11 × 8 km at
42° S) and is routinely run by the Australian Bureau of
Meteorology for forecasting ocean conditions (Greens-
dale 2001). AusWAM produces 6-hourly predictions of
significant wave height, wave period and wave direc-
tion. Here, we used a hindcast dataset spanning 11 yr
from 1997 to 2008 and extracted the time-averaged
model values (Hughes & Heap 2010). For the indices
(below) extracted from AusWAM, sites were assigned
the closest model data point using nearest neighbour
methods in the GIS.

(A) ‘Mean_Hs’ is the mean significant wave height
over the 11-yr hindcast AusWAM dataset and repre-
sents average broad-scale wave conditions.

(B) ‘90th percentile_Hs’ is the 90th percentile of sig-
nificant wave height over the AusWAM dataset and
represents extreme broad-scale wave conditions.

Fetch-based indices were generated using the re-
cently developed Generic Relative Wave Exposure
Model (GREMO, Pepper 2009, Pepper & Puotinen
2009) implemented within the ArcMap™ program in
ArcGIS™ 9.3 (ESRI product). GREMO provides a num-
ber of options for calculating relative exposure indices
based on generalised versions of fetch models previ-
ously published in the literature (Ekebom et al. 2003,
Puotinen 2005, Malhotra & Fonseca 2007, Burrows et al.
2008), and can incorporate wind and bathymetric data
(Pepper & Puotinen 2009). The minimum requirement
to run GREMO is a dataset representing the location of
wave-blocking obstacles (i.e. coastline and islands) and
the location of the points for which the relative expo-
sure index is to be calculated. Here, for the former, we
used a 1:100 000 scale coastline as it represented the
highest resolution digital map available for the entire
coastline of Australia (GEODATA Coast 100K 2004,
Geoscience Australia). For the latter, spatial co-ordi-
nates for survey sites were recorded using GPS in the
field. Three fetch-based indices were calculated:

(a) ‘Openness’ is a measure of the distance of a site to
the nearest coastline in all directions and assumes that
locally-generated seas (and/or swell) are equally likely
to approach a site from any direction. Fetch lines were
constructed around a site at 7.5° spacing to a maximum
distance of 650 km. This distance represents the fetch
length required for seas to become fully developed (i.e.
maximal wave conditions) under gale force wind con-
ditions (based on equations in Denny 1988 and gale
force winds defined by the Bureau of Meteorology as
17.49 m s–1). Openness was calculated as the sum of
the length of the 48 fetch lines constructed per site and
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Index Abbreviation Type Units Calculation Interpretation

Openness Open GIS Dimensionless Average of fetch in 48 directions to a Potential exposure to locally generated
maximum of 650 km seas and undefined swell

Wind fetch Wind GIS Dimensionless Fetch weighted by proportion of time Locally generated wind wave exposure
wind blows in each direction

Bathymetry- Bathy GIS Dimensionless Fetch weighted by bathymetric layer Potential exposure accounting for some 
altered fetch effects of seafloor slope

Mean_Hs Mean_Hs Wave m Mean significant wave height Broad-scale mean wave climate
model extracted from hindcast AusWAM

model (Geoscience Australia)

90th 90_Hs Wave m 90th percentile significant waveheight Broad-scale extreme wave climate
percentile_Hs model extracted from hindcast AusWAM 

model (Geoscience Australia)

Potential wave PWC Wave Dimensionless Fetch weighted by directional Potential exposure taking into account 
climate model Mean_Hs values the direction of the mean wave climate

weighted GIS

Table 1. Exposure indices used in this study, their description, derivation and interpretation
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was subsequently normalised by dividing by the maxi-
mum possible sum of fetch lengths. Indices were nor-
malised to provide a standardised index that allows
comparison with future indices generated by GREMO
that may use different model settings.

(b) The ‘wind fetch’ index incorporates information
on local wind conditions and therefore represents ex-
posure in terms of local wind waves. Wind information
was sourced from the Australian Government’s Bureau
of Meteorology (www.bom.gov.au) for all stations
within 20 km of the coast and for the period between
1990 and 2008. Sites were assigned data from the clos-
est suitable weather station using nearest neighbour
methods in the GIS. These were then visually checked
to ensure that the most appropriate weather station
had been chosen and manually re-assigned where
necessary. For example, a site on the lee side of an
island or peninsula that was assigned to a weather sta-
tion located on the exposed coast was re-assigned to
one more representative. Directional wind records
from each weather station were then processed to give
the proportion of time wind blew from 16 sectors of the
compass. Following Malhotra & Fonseca (2007), each
fetch line generated for a site using the openness index
was weighted by the proportion of time wind blew in
that sector (Pepper 2009). Again, fetch lines were
summed and then normalised at each site to create the
wind fetch index.

(c) ‘Bathymetry-altered fetch’ attempts to account for
the attenuation of wave energy as waves move into
shallow waters and encounter friction with the sea-
floor. A bathymetry raster dataset was created for input
into the GREMO program based on the Australian
Bathymetry and Topography Grid (Whiteway 2009)
and supplemented with nearshore data collected by
the SEAMAP Tasmania project (Tasmanian Aquacul-
ture and Fisheries Institute, www.utas.edu.au/tafi/
seamap). The cell size of this raster dataset was set to
250 m and SEAMAP data was aggregated up to this
resolution. Accordingly, bathymetry was sampled
every 125 m along each fetch line. The fetch lines were
altered using an algorithm modified from Malhotra &
Fonseca (2007) (see the supplement for details, avail-
able at www.int-res.com/articles/suppl/m417p083_
supp.pdf) with a distance decay value of 0.5 (Pepper
2009). Each fetch line is split into segments which are
individually shortened in proportion to the shallowness
of the water depth along them, and then summed to
generate a new overall fetch line. The algorithm uses
an inverse distance weighting (IDW), which weights
the bathymetric context closer to a site as more influen-
tial than that further away (Pepper & Puotinen 2009).
The overall effect of the algorithm is to shorten fetch
lines (and hence lower the exposure value) according
to bathymetric conditions across the study area (Fig. S1

in the supplement). Missing depth values (i.e. located
very close to the coast) were set to a value of 1 m. Val-
ues of individual fetch lines for a survey site were
summed and then normalised to produce the bathy-
metry-altered fetch index.

Index combining wave and fetch models. Fetch-
based exposure indices are useful in accounting for po-
tential exposure to locally generated waves, but do not
specifically incorporate any information on the occur-
rence and magnitude of swell likely to affect the region.
Conversely, the wave model used here to describe the
offshore wave climate is generated on a much broader
scale than survey sites and does not incorporate lo-
calised information that can affect exposure. In an at-
tempt to incorporate as much localised site information
as possible but to also account for regional differences
in wave climate, a third type of index that combines
fetch-based and offshore wave model information was
generated. The ‘potential wave climate’ index esti-
mates the potential wave climate reaching a site by
weighting the fetch lines generated in the openness in-
dex by the directional spectra of mean significant wave
height extracted from the AusWAM model.

Statistical analyses. We used multivariate tech-
niques to examine patterns in algal community compo-
sition with respect to exposure. We tested the perfor-
mance of each exposure index in explaining patterns
in the algal community data with distance-based linear
models using DISTLM available in the PERMANOVA+
package in PRIMER (PRIMER-E, Plymouth). The
method is based on distance based redundancy analy-
sis (dbRDA, McArdle & Anderson 2001) and models
the linear relationship between one or more predictor
variables and the multivariate data as described by a
resemblance matrix (Anderson et al. 2008). Model
hypotheses are tested using p-values generated by
permutation methods.

DISTLM was performed on a Bray-Curtis dissimilar-
ity matrix generated from the algal cover data. Data
were square root transformed to increase the contribu-
tion of less common genera to the analyses. To account
for a potential non-linear relationship between predic-
tor variables and algal community composition, qua-
dratic (as well as linear) terms were tested for each
index. The proportion of community level variance
explained by an index in marginal tests was used as a
measure of performance.

Occurrence data are the simplest measure of a spe-
cies’ distribution and are commonly modelled in pre-
dictive studies (e.g. Beger & Possingham 2008, Willi-
ams et al. 2009). The ability of each exposure index to
explain the presence or absence of 10 common algal
genera was tested using generalised linear models
(GLMs), specifically a binomial GLM with a logit link
function. For each index, 2 models were initially tested:
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a model with only the linear term and a model with lin-
ear and quadratic terms. Quadratic terms were consid-
ered to account for the likelihood that algal genera
occupy a niche along an exposure gradient (Austen
1985). The most parsimonious model for each index
was chosen using Akaike’s Information Criteria (AIC)
with lower values indicating a ‘better’ model (Burnham
& Anderson 2002). A model set for each of the 10 algal
genera was then constructed containing the linear or
quadratic model for each exposure index as deter-
mined in the previous step. The null model was also
included in the model set. The model containing the
‘best’ exposure index for our dataset was then deter-
mined using AIC, and the relative likelihood of each
candidate model calculated using AIC weights (Burn-
ham & Anderson 2002). The percent deviance ex-
plained by the best model for each algal genus was
also calculated and used a measure of goodness of fit.

Percent cover or abundance data gives a more com-
plete description of biological patterns than occur-
rence data and therefore we also conducted GLMs on
the percent cover of the same 10 algal genera exam-
ined in binomial tests. The broad functional groups
canopy, understorey and encrusting algae were also
included in percent cover analyses (Phillips et al.
1997). Data for each algal genera were arcsine-square
root transformed (functional groups were left untrans-
formed) and modelled with a Gaussian GLM with an
identity link function. Although some data were still
skewed after transformation, exploratory analyses
with alternative GLM families indicated that Gaussian
was the best option. The ‘best’ exposure index for ex-
plaining patterns in the cover of each algal genera or

group was determined in the same manner as for
occurrence data. All univariate tests were carried out
in R 2.8.1 (R Development Core Team 2008).

RESULTS

Properties of exposure indices

The generated exposure indices were correlated to
some degree (Table 2), with highly correlated indices
(r > 0.7) being derived from similar sources. For exam-
ple, openness was highly correlated with all indices
that incorporated fetch (r ≥ 0.716), but most correlated
with wind fetch (r = 0.957). Mean significant wave
height derived from AusWAM was highly correlated
with the 90th percentile of wave height derived from
AusWAM (r = 0.914).

Despite the fact that many of the indices were corre-
lated, each index emphasised a different component of
exposure when summarised at a bioregional scale
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Open Wind Bathy Mean_Hs 90_Hs PWC

Open 1.000
Wind 0.957 1.000
Bathy 0.716 0.647 1.000
Mean_Hs 0.184 0.187 0.187 1.000
90_Hs 0.023 0.077 0.003 0.914 1.000
PWC 0.911 0.907 0.668 0.255 0.083 1.000

Table 2. Spearman’s rank correlations between exposure in-
dices (see Table 1 for descriptions). Bold: highly correlated 

indices (r > 0.700)
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Fig. 2. Exposure indices by
bioregion as boxplots. The
horizontal line represents the
median value of the exposure
index, the top and bottom of
the box represent the 25th
and 75th percentiles, respec-
tively, and the whiskers are
2 standard deviations from
the mean; points outside the
whiskers represent outliers.
Index descriptions are given
in Table 1. Bioregions (see
Fig. 1 for location): BGS =
Boags; BRU = Bruny; DAV = 

Davey; FRT = Freycinet
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(rather than site by site; see Fig. 2). Qualitatively, the
openness and wind fetch indices assigned moderately
high relative exposure values to sites in the Boags
bioregion (adjacent to the Bass Strait; mean values
0.161 and 0.009 respectively) compared to sites on the
southern coast (Bruny or Davey bioregions, i.e. 0.068
and 0.003 or 0.039 and 0.003 respectively; Fig. 2a,b).
This reflects the fact that sites in the Boags region are
located on an open coastline, and subject to strong
winds across the Bass Strait, while sites in the southern
bioregions are generally located in semi-enclosed
areas. However, when the effect of bathymetry was
included in fetch indices, measures of exposure were
greatly reduced in the Boags bioregion, relative to the
other bioregions (see Fig. 2c), due to the shallowness of
the Bass Strait. Sites in the Freycinet bioregion encom-
pass a mixture of open and semi-enclosed sites and
consequently the exposure indices span a relatively
large range (e.g. 0.02 to 0.48 for the openness index).

Broad-scale wave climate statistics, such as mean
and 90th percentile of significant wave height, as-
signed relatively high average values (1.5 and 3.1,
respectively) with little variation to sites in the Davey
bioregion (Fig. 2d,e), an outcome in contrast to fetch
measures. This is particularly emphasised in the 90th
percentile_Hs (Fig. 2e) and corresponds to the suscep-
tibility of this region to weather systems originating in
the Southern Ocean. When the direction of mean sig-
nificant wave height is combined with the openness,
representing the potentially susceptibility of a site to
the broad-scale wave climate, exposure values in the
Davey bioregion are again down-weighted (Fig. 2f)
due to the fact many sites occur in semi-enclosed areas
(Fig. 1).

Indices explaining patterns in community data

All of the exposure indices significantly explained a
proportion of variance in algal assemblage data. This
indicates that quantitative exposure indices can effec-
tively account for some of the patterns observed in the
composition and relative abundance of algal assem-
blages on broad scales. The variance explained ranged
from 10.4 to 17.8% (Table 3). The 4 indices that ex-
plained the greatest proportion of variation were open-
ness (17.8%), potential wave climate (15.5%), wind
fetch (15.2%) and bathymetry-altered fetch (14.5%).

Indices explaining patterns in univariate data

Exposure indices were able to explain up to 37.5% of
the variance in the occurrence of individual algal gen-
era (Table 4). However, none of the exposure indices

were a particularly good fit for Ecklonia (6.0% de-
viance explained), perhaps because it is a ubiquitous
alga in temperate regions. The most parsimonious
models most often contained fetch-derived indices
(Table 4; statistics for all models tested are in Table S1
of the supplement). Where fetch-based indices per-
formed better, bathymetry-altered fetch was the best
predictor in 5 out of 7 cases (Caulerpa, Durvillaea, Eck-
lonia, Lessonia, Phyllospora). Broad-scale wave cli-
mate indices were the best predictors only for Sargas-
sum occurrence (in this case the 90th percentile of
wave height index). The exposure index combining
offshore wave climate and finer-scale fetch (potential
wave climate) was the best predictor for the occur-
rence of 2 genera (Acrocarpia and Zonaria; Table 4).
Models contained a mixture of linear and quadratic
terms. In most cases, the best model from each candi-
date set for an alga was assigned a relative weight
(wAIC) of >0.8, indicating that there was strong evi-
dence that this was the best model in the candidate set
(Table 4). The exception to this was Cystophora and
Ecklonia where the relative weight of the best models
was 0.439 and 0.312 respectively (Table 4).

Algal genera had distinct relationships with expo-
sure. Genera such as Carpoglossum, Caulerpa, or Sar-
gassum were more likely to be present when exposure
was relatively low (i.e. <1/3 of the maximum value for
the particular exposure index; Fig. 3b,c,i). In contrast,
Durvillaea, and Phyllospora were less likely to occur
when exposure was relatively low (Fig. 3e,h). Other
genera such as Acrocarpia, Cystophora, Lessonia and
Zonaria had a bell-shaped response to exposure and
were more likely to occur at an intermediate value of
relative exposure (Fig. 3a,d,g,j).

The exposure indices also explained a moderate pro-
portion of variance in the percent cover data. The
deviance explained by the most parsimonious model
for each algal group ranged from 9.3 to 35.6% and was
greatest for Acrocarpia (Table 4). However, the index
identified as the best predictor of algal occurrence was
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Index SS(trace) Pseudo-F p Proportion of 
variance

Open 27849 8.216 0.0001 0.178
Wind 23766 6.797 0.0001 0.152
Bathy 22647 6.422 0.0001 0.145
Mean_Hs 16315 4.418 0.0001 0.104
90_Hs 18208 4.998 0.0001 0.116
PWC 24353 6.995 0.0001 0.155

Table 3. Marginal significance and proportion of commu-
nity-level variance explained by each exposure index (in-
cluding its quadratic form), as calculated using DISTLM.
In all cases; residual degrees of freedom = 76, regression de-
grees of freedom = 3. See Table 1 for descriptions of indices
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Fig. 3. Best exposure index explaining the presence/
absence of 10 common algal genera in binomial GLMs.
Index descriptions are given in Table 1. Grey symbols:
data points; dashed line: fitted line from the best model.
Data were back-transformed for plotting. Scale of the
x-axis differs between graphs. Bioregions: s = Boags; 

n = Bruny; D = Davey; I = Freycinet

Presence/absence Percent cover

Algae Model k LogL wAIC % DE Model k LogL wAIC % DE

Acrocarpia PWC + PWC2 3 –33.75 0.969 37.49 Open + Open2 3 14.63 0.789 35.60

Carpoglossum Open 2 –42.07 0.803 22.44 Open + Open2 3 51.45 0.834 34.30

Caulerpa Bathy 2 –40.66 0.996 23.15 Mean_Hs + Mean_Hs2 3 54.77 0.991 30.51

Cystophora Open + Open2 3 –43.01 0.439 15.22 Open + Open2 3 26.92 0.800 20.36

Durvillaea Bathy 2 –32.86 0.796 28.17 Bathy + Bathy2 3 0.65 0.549 18.56

Ecklonia Bathy 2 –31.63 0.312 6.01 Bathy + Bathy2 3 3.29 0.535 9.25

Lessonia Bathy + Bathy2 3 –30.70 1.000 31.31 Bathy + Bathy2 3 76.31 0.991 20.47

Phyllospora Bathy 2 –36.95 1.000 30.71 Bathy + Bathy2 3 –19.560 1.000 34.23

Sargassum 90_Hs + 90_Hs2 3 –38.21 0.937 25.61 90_Hs + 90_Hs2 3 54.23 0.949 27.94

Zonaria PWC + PWC2 3 –38.03 0.906 21.60 Bathy 2 59.83 0.698 16.15

Encrusting Not tested Mean_Hs 2 –356.50000.706 16.22

Understorey Not tested Bathy 2 –340.91000.999 28.79

Canopy Not tested Bathy + Bathy2 3 –374.37000.530 29.70

Table 4. Model statistics for the index best predicting the occurrence and percent cover of each algal genera or group, as deter-
mined by Akaike’s Information Criteria (AIC). Occurrence data were analysed using GLMs with binomial errors and a logit link
function. Percent cover data were arcsine-square root transformed (excepting canopy, understorey and encrusting algae) and
analysed using GLMs with a Gaussian error structure and identity link function. Columns: Model = terms included in the model;
k = number of parameters estimated in the model; LogL = log-likelihood of the model; wAIC = AIC weight; %DE = percent 

deviance explained by the model
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not always the best predictor for algal cover. For exam-
ple, for Acrocarpia the best predictor of occurrence
was potential wave climate, while openness was the
best predictor of cover (Table 4). Again fetch-based
indices performed well and were identified as the best
predictors for 10 out of 13 of the algal groups, with
bathymetry-altered fetch most often the best predictor
of algal cover (Table 4). Indices derived from offshore
wave climatology were the best predictors of Cauler-
pa, Sargassum, and encrusting algae (Table 4). How-
ever the combined index (potential wave climate) was
not the best predictor for any algal group. The weight
of evidence (wAIC) for the best model in each candi-
date set was generally high, but ranged from 0.530 to
0.949 (Table 4).

The relationships between the cover of algal genera
and exposure followed a similar pattern to occurrence.
The mean cover of Carpoglossum, Caulerpa, Sargas-
sum and Zonaria decreased with increasing values of
each alga’s best exposure index (Fig. 4b,c,i,j). In con-
trast, mean Phyllospora cover increased with exposure
to waves (Fig. 4h), and the remaining genera had
greatest cover at intermediate exposure. When genera
were aggregated to broad functional groups clear
trends emerged. For example, the cover of encrusting
algae was enhanced by increased exposure (Fig. 4k),
while the cover of understorey algae decreased
(Fig. 4l). The cover of canopy forming algae was high-
est at intermediate exposure (values of ~0.007 for
bathymetry-altered fetch; Fig. 4m).
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DISCUSSION

Using the outputs from offshore wave model hind-
casts and cartographic fetch models, we were able to
generate a suite of quantitative exposure indices for a
series of shallow reef survey sites around the coast of
Tasmania. The offshore model data used in this study
were based on hindcasts compiled for other studies
(Hemer 2006, Hughes & Heap 2010). They had wide
coverage (Australian coastal and continental shelf
waters) and indices were relatively easy to obtain once
the custodians of the datasets were identified and the
requested model outputs were extracted. Similarly, we
found that the minimum datasets needed for fetch
modelling (i.e. a coastline and the location of sites)
were easy to source and fetch indices were relatively
simple to calculate within a GIS (using GREMO in this
instance). However, calculating the wind fetch index
required the pre-processing of meteorological records
which was time consuming. The bathymetry-altered
fetch also required additional information in the form
of a bathymetry raster dataset for the entire area of
interest. However, fetch modelling can also be con-
ducted within a readily available GIS program and is
quite flexible. Fetch-based indices can be generated
for specific sites of interest (Ruuskanen et al. 1999,
Bekkby et al. 2009), for entire coastlines, or on a cus-
tomised grid (Kelly et al. 2001, Burrows et al. 2008).

In terms of predicting algal biodiversity, the perfor-
mance of the different exposure indices can be sum-
marised as follows. Indices derived from an offshore
wave hindcast model were the best predictor of algal
patterns in only a few instances. Although this model
is accessible and available over a broad area, this
likely indicates that offshore wave climate models are
inappropriate for biodiversity modelling for a number
of good reasons. Offshore wave models generally
have too coarse a resolution compared to coastal bio-
logical data and they do not specifically model near-
shore processes that result in fine-scale variability in
wave exposure (Hughes & Heap 2010). While the
SWAN wave model (Simulating WAves Nearshore,
Booij et al. 1999) specifically accounts for complex
nearshore processes, it is only currently available for
limited regions. Generating it for the Tasmanian
region was beyond the scope of this study. In the
absence of data from fine-scale shallow water wave
models we suggest that cartographic fetch models
provide good quantitative approximations of wave
exposure for ecological modelling purposes. Fetch-
based indices were in the majority of cases the best
predictors for the occurrence and cover of algal gen-
era and for community-level patterns. Of the 3 fetch-
based indices generated in this study, the bathymetry-
altered fetch was most often the best predictor of

univariate algal patterns. However, because bathy-
metry-altered fetch also requires additional informa-
tion that may be difficult to source, the simple open-
ness measure is also useful.

The relationships between exposure and many of
the algal genera in our study are consistent with
observations and ecological expectations regarding
the distribution of the Tasmanian marine flora (Edgar
1984). For example, our models show that the bull
kelp, Durvillaea, is more likely to occur at exposed
sites. Durvillaea is a large alga with a robust holdfast,
thick stipe and thick blades. It is commonly found in
southern temperate waters, and thrives in the shallow
sub-tidal, generally on open, exposed coastlines
where it forms dense beds and dominates community
structure (Taylor & Schiel 2010). Sargassum, a genus
comprised of many species, is another common alga in
Tasmanian and temperate waters. There is a range of
morphologies within this genus, but most Sargassum
species are not adapted to exposed environments and
our models showed that both occurrence and abun-
dance declined with increasing exposure. Sargassum
undergoes large seasonal variations in morphology
(Edgar 1983), dying back to a stipe in mid-summer
(Collings & Cheshire 1998). During winter (when ex-
posure is maximal) it has large lateral branches that
would increase drag and place strain on the relatively
small holdfast. However, large laterals enhance nutri-
ent uptake and are a competitive advantage in low
exposure environments (Collings & Cheshire 1998).
Caulerpa, a relatively fragile green alga, was gener-
ally only present at any significant level of cover at
sites with low exposure values.

The indices we generated were designed to empha-
sise different components of exposure. As a result,
additional information on the probable mechanisms by
which exposure influences the occurrence and abun-
dance of particular genera can be derived. For exam-
ple, the occurrence of Acrocarpia was best predicted
by the combination of offshore wave climate and fetch
(the potential wave climate index) while its cover was
more influenced by the openness index. This suggests
that the distribution of Acrocarpia, is influenced some-
what by oceanic conditions but that its cover is influ-
enced by finer-scale, localised exposure. The ability to
discriminate between different aspects of exposure
provides the potential for developing testable hypo-
theses regarding the specific mechanisms driving the
effect of exposure on a range of benthic community
metrics.

This study has quantitatively re-affirmed the poten-
tial for exposure to be an effective surrogate for pre-
dicting biodiversity in shallow-reef ecosystems. In
southern temperate Australia, fucoid algae often dom-
inate reef assemblages and are important ecosystem
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engineers (Wernberg et al. 2003, Edgar et al. 2004,
Goldberg & Kendrick 2004). We have shown that expo-
sure indices alone were able to predict up to 32% of
the variation in occurrence and abundance of large
fucoid species such as Phyllospora, Sargassum and
Cystophora (Table 4) and up to 37% of any one algal
genus (Acrocarpia). This is a promising result since
there is a range of factors that will determine the oc-
currence and abundance of algal communities. These
include other environmental variables such as temper-
ature, nutrient concentrations (Kraufvelin et al. 2010)
and light attenuation (Carruthers et al. 2002), that
covary with exposure on a range of spatial scales. Bio-
logical interactions, such as herbivory (Ling 2008) and
competition for space (Valentine & Johnson 2003), and
evolutionary constraints (Phillips 2001) are less easily
quantified but also affect species’ distributions. Prelim-
inary work predicting shallow temperate reef biodiver-
sity on broad spatial scales suggests that exposure is
still an important predictor even when considered
amongst a range of other measurable abiotic factors
(N. A. Hill unpubl. data; Commonwealth of Australia’s
Environmental Research Facility Marine Biodiversity
Hub). The ability of exposure indices to predict com-
munity patterns across several biogeographic regions
confirms its potential value for future predictive
modelling studies.

The fetch-based indices we calculated were effec-
tive for our purposes, but there is the potential for
future work to extend the findings presented here. All
indices calculated in this study quantify exposure to
waves at the sea surface. No attempt was made to
specifically account for water depth at a site. This
model however, could easily incorporate depth follow-
ing the work of Bekkby et al. (2008) if a sufficiently
large depth range is present in the study area or the
sites of interest.

While our study is focused on algal communities
associated with shallow temperate reefs, exposure is
an important force shaping a range of marine commu-
nities, and fetch-based indices should be equally ap-
plicable to ecological questions involving other assem-
blages in temperate and tropical waters (e.g. Fulton &
Bellwood 2004). Quantification of exposure across
large areas will greatly improve predictive modelling
of the distribution of shallow communities, which will
address what is currently a fundamental challenge for
improved coastal planning. Biodiversity modelling of
communities using ecologically-meaningful, abiotic
surrogates enables efficient use of field-sourced bio-
logical data. Newly-identified surrogates and better
distribution models come at a critical time, when
marine communities are under threat from a range of
stresses, and improved management is vitally impor-
tant for long-term conservation of inshore ecosystems.
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