
Bull. Aust. Math. Soc. 83 (2011), 273–288
doi:10.1017/S0004972710001851

ON THE PARTITION MONOID AND SOME RELATED
SEMIGROUPS

D. G. FITZGERALD ˛ and KWOK WAI LAU

(Received 16 June 2010)

Abstract

The partition monoid is a salient natural example of a *-regular semigroup. We find a Galois connection
between elements of the partition monoid and binary relations, and use it to show that the partition
monoid contains copies of the semigroup of transformations and the symmetric and dual-symmetric
inverse semigroups on the underlying set. We characterize the divisibility preorders and the natural order
on the (straight) partition monoid, using certain graphical structures associated with each element. This
gives a simpler characterization of Green’s relations. We also derive a new interpretation of the natural
order on the transformation semigroup. The results are also used to describe the ideal lattices of the
straight and twisted partition monoids and the Brauer monoid.
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1. Diagrams and products

Partition algebras, which are twisted semigroup algebras of the partition monoids,
are important in the theory of group representations, combinatorics, and statistical
mechanics, and have an extensive literature including significant studies in [7, 13, 14].
Generators and relations for partition monoids have been studied in [3], and their
endomorphisms in [15]. Wilcox [20, Section 7] studied the structure of the partition
monoid in an application of his quite general theorem about the cellularity of twisted
semigroup algebras of regular semigroups. It is our intention to investigate the
structure of partition monoids further. We use this first section to describe the elements
of the partition monoid PX and their multiplication, and to draw attention to some of
the subsemigroups of PX which are interesting in their own right.

Let X be a set. A diagram over X is an equivalence class of graphs on a vertex set
X ∪ X ′ (consisting of two copies of X ). Two such graphs are regarded as equivalent
if they have the same connected components. We define PX as the set of all diagrams
over X . Also, if X is finite, say X = {1, 2, . . . , n}, we conventionally write Pn in
place of PX , and similarly for other families of semigroups.
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FIGURE 1. Multiplication of a and b in P6 (left, expanded form; right, contracted form).

We need to have a standard representative of each equivalence class; for this
purpose, we choose a graph with maximal edge set, so that each of its components
is a complete graph. Proofs below will generally use standard representatives. When
it comes to drawing the graphs, however, it is convenient to use a minimal number of
edges, as in Figure 1. We draw the graph of a ∈ PX so that the undashed vertices
(elements of X ) are arranged in a horizontal row, and the corresponding dashed
vertices (those in X ′) are directly below. Thus we will refer to the undashed elements
as the upper vertices, and the dashed elements as the lower vertices.

To multiply two elements a, b of PX , their diagrams are first drawn stacked
vertically, with a above b. Then the lower vertices of a are identified with the upper
vertices of b, in an ‘interior’ row called an interface; we call this diagram the expanded
form of the product. Next, the connected components of the expanded form are
constructed. Finally, we ignore the vertices in the interface, and any components using
only these vertices. This results in another member of PX , which defines the product
ab; we call it the contracted form in contrast to the expanded form. Note too that a path
in the expanded form becomes an edge in the standard representative of the contracted
form. An example with a, b ∈ P6 is seen in Figure 1. Here a has components

{1, 3′}, {2, 3, 1′}, {4, 5, 4′}, {6}, {2′}, {5′, 6′}

and b has components

{1, 2, 2′}, {3, 4}, {5, 6}, {1′}, {3′, 6′}, {4′, 5′}.

We call PX , with this multiplication, the partition monoid on the set X because
the components of a diagram are the blocks of a partition of X ∪ X ′. An edge of
a member a of PX is called transversal if it is of the form {i, j ′} with i ∈ X and
j ′ ∈ X ′. Likewise a component of a is transversal if its vertices include both upper and
lower elements (and so it includes a transversal edge), and otherwise the component
is nontransversal. For example, in Figure 1, the product ab has one transversal
component, {2, 3, 2′}.

A Galois connection with binary relations.

DEFINITIONS. Let RelX denote the set of binary relations on X.We define a mapping
F : PX −→ RelX as follows. With a ∈ PX in standard form (union of complete
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aF  :

bF  :

aF ° bF  :

aFG  :

bFG  :

(aFG)(bFG)  :

(a) (b)

FIGURE 2. The action of the maps F and G : (a) F applied to diagrams a and b in Figure 1, and the
composite relation aF ◦ bF ; (b) images under G of the relations in (a), and their product as diagrams.

subgraphs), put

aF = {(i, j) ∈ X × X : {i, j ′} ∈ a for i ∈ X and j ′ ∈ X ′},

the relation on X induced by the transversal edges of a. In the reverse direction, we
define G : RelX −→ PX thus:

for ρ ∈ RelX , ρG is the graph on X ∪ X ′ with edge set being all (finite-
length) paths produced from the edges {{i, j ′} : (i, j) ∈ ρ}.

In consequence, ρG is an element of PX , in fact in standard representative form. These
definitions are illustrated in Figure 2.

We say a diagram is earthed if all its nontransversal components are singletons.
We remind the reader that ρ ∈ RelX is bifunctional if ρ ◦ ρ−1

◦ ρ ⊆ ρ, where ◦means
composition of binary relations and ρ−1 is the inverse relation of ρ.

We shall show that F, G constitute a Galois connection between RelX and PX , in
which the closed elements are the earthed diagrams and the bifunctional relations.

THEOREM 1.1.

(i) F and G are monotone with respect to the usual inclusion orders; and
(ii) G FG = G and F = FG F.

For all ρ ∈ RelX and a ∈ PX :

(iii) ρG ⊆ a if and only if ρ ⊆ aF;
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(iv) aFG ⊆ a, with equality if and only if a is earthed; and
(v) ρ ⊆ ρG F, with equality if and only if ρ is bifunctional.

PROOF. (i) Suppose that a, b ∈ PX and a ⊆ b. If (i, j) ∈ aF , then {i, j ′} is an edge
of a and hence of b. So (i, j) ∈ bF , and thus aF ⊆ bF . Suppose that ρ, σ ∈ RelX and
ρ ⊆ σ . If {i, j} is an edge in ρG, there is a path (i, i1, i2, . . . , im, j) with successive
pairs (i, i1), (i1, i2), . . . , (im, j) in ρ or ρ−1 and so in σ ∪ σ−1, whence i, j are in
the same component of σG. So ρG ⊆ σG.

(ii) This will be proved last.
(iii) Suppose that ρG ⊆ a and (i, j) ∈ ρ. Then {i, j ′} is a transversal edge of

ρG, hence of a. So (i, j) ∈ aF . Conversely, suppose that ρ ⊆ aF and {i, j} is an
edge of ρG. Then there is a path (i, i1, i2, . . . , im, j) with successive pairs (i, i1),
(i1, i2), . . . , (im, j) in ρ or ρ−1, hence in aF or (aF)−1. Thus i, j are in the same
component of a, so ρG ⊆ a.

(iv) Taking ρ = aF in (iii) implies that aFG ⊆ a. For any ρ ∈ RelX , ρG is
earthed by definition, so a = aFG implies that a is earthed. Conversely, suppose
that a ∈ PX is earthed and {i, j} is an edge of a, with i, j ∈ X ∪ X ′. There is a path
in a from i to j using only transversal edges. Therefore either {i, j} is transversal,
or there are transversal edges {i, k} and { j, k} in a. Then (i, j) ∈ aF ∪ (aF)−1 or
(i, k), ( j, k) ∈ aF ∪ (aF)−1. In either case, {i, j} is an edge of aFG. Thus a ⊆ aFG.
Together with aFG ⊆ a, this gives a = aFG.

(v) Taking a = ρG in (iii) implies that ρ ⊆ ρG F . If (i, k), ( j, k), ( j, l) ∈ aF ,
then i, j, k′, l ′ are in the same component of a, and so {i, l ′} is an edge of a.
So (i, l) ∈ aF and aF = ρG F is bifunctional. Hence ρ = ρG F implies that ρ is
bifunctional. Conversely, suppose that ρ is bifunctional. If (i, j) ∈ ρG F , then
{i, j ′} is a transversal edge of ρG and so there is a path (i, i1, i2, . . . , i2m, j) in
ρG with (i, i1) ∈ ρ, (i1, i2) ∈ ρ

−1, . . . , (i2m, j) ∈ ρ (alternately in ρ and ρ−1). Thus
(i, j) ∈ (ρ ◦ ρ−1)m ◦ ρ and, by bifunctionality, (i, j) ∈ ρ. So ρ = ρG F .

Finally, (ii) follows as usual: for any ρ and ρG = a, (iv) gives ρG FG = ρG. The
proof of (v) shows that aF is bifunctional for any a, and then we have aF = aFG F . 2

It follows that the posets of earthed diagrams and bifunctional relations are
isomorphic, under restrictions of the maps F and G. The natural multiplications on
PX and RelX are not respected by F and G in general, as may be seen in Figure 2, but
there is a special case which is relevant to our concerns here.

PROPOSITION 1.2. For all ρ, σ ∈ RelX , (ρ ◦ σ)G = (ρG)(σG) if and only if
(ρG)(σG) is earthed.

PROOF. As a preliminary, we shall show that in general (ρ ◦ σ)G ⊆ (ρG)(σG). Let
{i, j} be an edge of (ρ ◦ σ)G, so there is a path (i, i1, i2, . . . , im, j) with successive
pairs (i, i1), (i1, i2), . . . , (im, j) in ρ, σ, ρ−1 or σ−1, hence edges {i, i1}, {i1, i2}, . . .

in the same component of (ρG)(σG). Thus {i, j} is an edge of (ρG)(σG).
So to the main proof. To prove the ‘if’ part, suppose that (ρG)(σG) is earthed, and

{i, j} is an edge of (ρG)(σG). Note that ρG and σG are earthed diagrams. Case (1):
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if i ∈ X and j ∈ X ′, there is a path (i, i1, i2, . . . , im, j) in (ρG)(σG) such that

(i, i1) ∈ ρ, (i1, i2) ∈ σ, (i2, i3) ∈ σ
−1, (i3, i4) ∈ ρ

−1, . . . , (im, j) ∈ σ.

Thus

(i, i2) ∈ ρ ◦ σ, (i2, i4) ∈ (ρ ◦ σ)
−1, . . . , (im−1, j) ∈ ρ ◦ σ,

and so {i, j ′} is an edge of (ρ ◦ σ)G. Case (2): if i, j ∈ X , there is k ∈ X such that
{i, k′}, { j, k′} are transversal edges of (ρG)(σG). The argument of case (1) shows that
{i, k′}, { j, k′} and so also {i, j} are edges of (ρ ◦ σ)G. The remaining cases (i ∈ X ′

and j ∈ X ; i, j ∈ X ′) are similar.
Turning to the ‘only if’ part, if equality holds, then (ρG)(σG) is earthed by

Theorem 1.1(iv). 2

Subsemigroups. We may use Proposition 1.2 to show that various kinds of relations
form semigroups embeddable in PX . Consider the restriction of G to the monoid of
all functions of X to X , the full transformation monoid TX . A diagram is an image
under G of such a function if and only if it is earthed, every upper vertex is in a
transversal component, and every component has a unique lower vertex. Similarly,
the symmetric inverse monoid IX of one-to-one relations on X is embedded by G in
PX ; images are precisely the earthed diagrams in which transversal components have
cardinality two. A bifunctional relation ρ which has both domain and range equal
to X is called a biequivalence or block bijection; it represents a bijection between
quotient sets of X . The block bijections, with an appropriate multiplication (not the
composition ◦) form the dual symmetric inverse monoid I ∗X , studied in [4, 12]. It is
easily verified that the multiplication in I ∗X is given by

ρσ = ((ρG)(σG))F, (1.1)

and so (using Theorem 1.1(iv)) G embeds I ∗X in PX . The image of this embedding
consists of the diagrams in which all components are transversal. East [3] has shown
that, when X is finite, PX is generated by the images of the symmetric group on X and
the idempotents of both IX and I ∗X ; see also [15, Lemma 4.1].

The monoid PTX of partial transformations of X is not embedded in PX by G,
by Proposition 1.2 (we are indebted to James East for pointing this out); PTX
embeds in TY , where Y = X t {0}, and hence embeds in PY . Alternative choices for
multiplication of diagrams are canvassed in [9], and for multiplication of bifunctional
relations in [19].

Here we shall concern ourselves with further submonoids of PX . The matching
monoid is the submonoid MX of PX consisting of matchings, that is to say, elements
each of whose components has just two vertices—that is, an edge. This has also been
called the Brauer semigroup in the literature, but we reserve that name for the twisted
version in Section 4 below. For finite |X | = n, the Jones monoid Jn consists of the
matchings which may be drawn in a planar manner in the region between the upper
and lower rows. We began an investigation of Jn in [11], and here we extend those
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results to PX . This also permits application of a lemma of Hall to deduce Green’s
relations and some order relations on MX and Jn .

2. Patterns and an involution

Associated with each element a of PX there are graphical structures we shall call
patterns. These are the subgraphs of a induced on (respectively) the upper and lower
vertex sets, and we give each a two-tone vertex colouring, so that the vertices of
the transversal and nontransversal components are given different colours. To be
specific, the subgraph induced on the upper vertices by the transversal (nontransversal)
components of a will be denoted by U T (a) (UN(a)), and we write U (a)=U T (a) ∪
UN(a) and consider U (a) as a two-tone graph. Similarly the subgraph of a induced on
the lower vertices by the transversal (nontransversal) components of a will be denoted
by LT (a) (L N (a)), and we write L(a) for LT (a) ∪ L N (a). For example, in Figure 1,
U T (a) has components {1}, {2, 3} and {4, 5}; L N (a) has components {2′} and {5′, 6′}.
Further, equality of U (a) and U (b) implies equality of their transversal components
and also of their nontransversal components. We order graphs by inclusion of the
vertex and edge sets:

(E, V )⊆ (E1, V1) if and only if E ⊆ E1 and V ⊆ V1.

The cardinality of the set of transversal components of a pattern is its rank. We note
that U (a) and L(a) have the same rank, and refer to this cardinal as the rank of a,
denoted rank(a). The following lemma is then immediate from the definitions above;
we use r ! to denote the cardinality of the set of permutations on a set of cardinality r
(if r is infinite, r ! = 2r ).

LEMMA 2.1. Given two patterns on X, say 0 and 0′, of equal rank r, there exist r !
elements a in PX such that U (a)= 0 and L(a)= 0′.

In I ∗X , MX and Jn there are further restrictions on the patterns which may arise as
upper and lower patterns. If a is a block bijection, UN(a) and L N (a) are empty. In
a matching a, every component of UN(a) and L N (a) has cardinality 2, and U T (a)
and LT (a) are discrete graphs (no edges). Moreover, for finite |X | = n and a ∈ Mn ,
n − rank(a)must be even. For Jn , in addition to the above, the nontransversal patterns
must correspond to properly nested bracketings in which no transversal vertex occurs
within an ‘open’ bracket. We refer to these patterns as admissible for each submonoid.
For example, in Figure 1, L N (b) has components {1′}, {4′, 5′} and {3′, 6′} and is
inadmissible for both M6 and J6 because of the singleton; this pattern is shown
in Figure 3(a). Figures 3(b), (c) show (upper) nontransversal patterns with edges
{1, 2}, {3, 6} and {3, 5}, {4, 6} respectively, admissible for M6 but not for J6; and
Figure 3(d) with edges {3, 6}, {4, 5} is admissible for both.

LEMMA 2.2.

(a) Given two patterns on X of equal rank r, say 0 and 0′, both admissible for MX ,
there exist r ! elements a in MX such that U (a)= 0 and L(a)= 0′.
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LN(b) vertex

LT(b) vertex

(a)

(b)

(c)

(d)

FIGURE 3. Examples illustrating patterns: (a) inadmissible for both M6 and J6; (b), (c), admissible for
M6 but not for J6; (d), admissible for both.

(b) Given two patterns on X of equal rank, say 0 and 0′, both admissible for Jn ,
there exists a unique element a in Jn such that U (a)= 0 and L(a)= 0′.

Define, for a ∈ PX , a diagram a∗ ∈ PX obtained by ‘turning a upside-down’ or,
more formally, exchanging dashed and undashed symbols. Together with the definition
of multiplication, this gives the following lemma.

LEMMA 2.3. For a, b ∈ PX :

(i) U (a∗)= L(a);
(ii) a∗∗ = a;
(iii) (ab)∗ = b∗a∗;
(iv) aa∗a = a.

By the definitions of IX , I ∗X , MX , and Jn , each is closed under the unary operation
a 7→ a∗. So parts (ii) to (iv) assert that each of PX , MX , and Jn is a regular
∗-semigroup as introduced by Nordahl and Scheiblich [17]. Of course, for IX and
I ∗X , the operation ∗ is the inversion which makes them inverse semigroups.

3. Divisibility, Green’s relations and the natural order

The relation ≤L on a semigroup S is defined by:

a ≤L b if and only if a = b or a = xb

for some x ∈ S. It is a preorder induced by the inclusion relation on principal left
ideals: a ≤L b ⇐⇒ a ∪ Sa ⊆ b ∪ Sb. When S is regular or a monoid, the definition
simplifies to a ≤L b ⇐⇒ a = xb for some x ∈ S. Dually, a ≤R b ⇐⇒ a = b or
a = by for some y ∈ S.

LEMMA 3.1. For a, b ∈ PX , a ≤L b if and only if (i) every component of L N (b) is a
component of L N (a), and (ii) every edge of LT (b) is an edge of L(a).
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PROOF. If {i ′, j ′} is an edge of L N (b), then it is an edge in L N (xb). If {i ′, j ′}
is an edge of L N (xb) with i ′ ∈ L N (b), then j ′ ∈ L N (b). So if a = xb, (i) holds.
Let {i ′, j ′} be an edge of LT (b). Then there exists k ∈ X such that {k, i ′} and {k, j ′}
are edges of b. If there is a transversal edge {l, k′} of x then {l, i ′} and {l, j ′} are edges
of xb, and so {i ′, j ′} is an edge of LT (xb). But if there is no such l, then {i ′, j ′} is an
edge of L N (xb). In either case, {i ′, j ′} is an edge of L(xb). So if a = xb, (ii) holds.

Conversely, suppose that (i) and (ii) hold, and consider the projection b∗b. We
intend to prove that a = ab∗b, by considering the different kinds of edges in turn. We
have U (b∗b)= L(b∗b)= L(b), and conditions (i) and (ii) imply that each component
of L(a) is a union of components of L(b). Clearly UN(a)⊆ UN(ab∗b), and if {i, j} is
an edge of UN(ab∗b) then either it is an edge of UN(a), or there is a path (i, j ′, . . . , k)
with

j ′ ∈ LT (a) ∩ UN(b∗b)= LT (a) ∩ L N (b)=∅,

which is impossible. So UN(a)= UN(ab∗b).
Next let {i, j ′} be a transversal edge of a. Then j ′ ∈ LT (a)⊆ LT (b)= LT (b∗b),

and there is a path from i to j ′ in ab∗b, that is, {i, j ′} is a transversal edge of ab∗b. In
the reverse direction, if {i, j ′} is a transversal edge of ab∗b, then there is a path from i
to j ′ using transversal edges alternately from a and b∗b, and hence all in a. It follows
{i, j ′} is an edge of a. So a and ab∗b have the same transversal edges.

Finally, if {i ′, j ′} is an edge of L N (a) then either it is an edge of L N (b)=
L N (b∗b)⊆ L N (ab∗b), or it joins two components of LT (b) ∩ L N (a), in which case
there is a path from i ′ to j ′ in ab∗b. So L N (a)⊆ L N (ab∗b). On the other hand, if
{i ′, j ′} is an edge of L N (ab∗b), either it is in L N (b∗b)= L N (b)⊆ L N (a) or there
is a path from i ′ to j ′ with edges alternately from LT (b∗b)= LT (b) and L N (a).
All vertices in this path are in L N (a) ∩ LT (b) and so the path is in L N (a). So
L N (a)= L N (ab∗b).

We have shown a = ab∗b and hence that a ≤L b. 2

By the dual proof, or Lemma 3.1 applied to a∗ and b∗, we have the following
corollary.

COROLLARY 3.2. For a, b ∈ PX , a ≤R b if and only if (i) every component of UN(b)
is a component of UN(a), and (ii) every edge of U T (b) is an edge of U (a).

Green’s relations. The equivalence relations of Green (see [5] or [8]) are important
tools for describing and understanding the structure of a semigroup S. We remind the
reader of their definitions. First, aRb if and only if a and b generate the same principal
right ideal. For a, b elements of a monoid or a regular semigroup S, aRb if and only
if aS = bS. Dually, aLb if and only if Sa = Sb. Note that aLb if and only if both
a ≤L b and b ≤L a, and so on. Further, D = L ◦R=R ◦ L, and aJ b if and only if a
and b generate the same two-sided ideal, which is to say that SaS = SbS in a monoid
or a regular semigroup. Wilcox [20, Section 7] described Green’s relations on Pn; we
use our divisibility results above to give an alternative description which seems a little
more transparent.
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THEOREM 3.3. For a, b ∈ PX :

(i) aRb if and only if U T (a)=U T (b) and UN(a)= UN(b);
(ii) aLb if and only if LT (a)= LT (b) and L N (a)= L N (b);
(iii) aDb if and only if a and b have equal rank;
(iv) a ∈ PX bPX if and only if rank(a)≤ rank(b);
(v) D = J ;
(vi) the ideals of PX form a chain, and if X is finite, all ideals are principal.

PROOF. (i) and (ii) follow directly from Lemma 3.1 and Corollary 3.2.
(iii) If there is c ∈ PX such that aRc and cLb, then the ranks of a and b are equal to

that of c. Conversely, given a, b ∈ PX of equal rank, there is by Lemma 2.1 an element
c ∈ PX such that U (c)=U (a) and L(c)= L(b), whence aRc and cLb. Thus aDb.

(iv) Suppose that a = xby for some x, y ∈ PX . Then a ≤L by ≤R b, so rank(a)≤
rank(by)≤ rank(b). Conversely, suppose that r = rank(a)≤ rank(b)= s. There exist
I, J ⊆ X such that I ⊆ J, |I | = r , and |J | = s. Define elements eI , eJ of PX
such that eI has edge set {{i, i ′} : i ∈ I }, and eJ has edge set {{ j, j ′} : j ∈ J }. Now
eI eJ = eI , so aDeI and bDeJ by (iii). Thus there are x, y, z, t ∈ PX such that
a = xeI y = xeI eJ y = xeI zbty ∈ PX bPX .

(v) In general, D ⊆ J . Suppose that aJ b. By (iv), rank(a)= rank(b) and so aDb
by (iii). Thus J ⊆D and equality holds.

(vi) The principal ideals of PX form a chain by (iv), and any ideal is a union of the
principal ideals it contains. If X is finite, an element of maximal rank generates the
ideal. 2

Now the submonoids TX , IX , I ∗X , MX , and Jn are regular and so their divisibility
preorders ≤L and ≤R , and their L and R relations, are the restrictions of those on
PX , by a result of Hall in [6] (see also [8, Proposition 2.4.2]). Thus the well-known
characterizations of Green’s relations L and R on the first two monoids in the list
above [8, 2.6 Exercise 16 and 5.11 Exercise 2] are corollaries of the theorem. For
TX , the UN and L N graphs are respectively empty and discrete, so part (i) of the
theorem simplifies to equality of the U T graphs, which in this case can be recognized
as kernels of mappings, and part (ii) reduces to equality of ranges. For IX , all patterns
are discrete, so the conditions reduce to equality of ranges and of domains. For I ∗X , the
UN and L N graphs are empty and the conditions reduce to equality of set partitions [4,
Theorem 2.2].

For MX we have the following results, attributed to Mazorchuk in [10, Theorem 1]
for the finite case.

COROLLARY 3.4. Let a, b ∈ MX . Then:

(i) aRb if and only if UN(a)= UN(b);
(ii) aLb if and only if L N (a)= L N (b); and
(iii) a ∈ MX bMX if and only if rank(a)≤ rank(b).

PROOF. U T (a) and U T (b) consist of singleton components, so part (i) is immediate;
likewise the L N graphs and part (ii). For part (iii), ‘only if’ is clear, so suppose that
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rank(a)= r ≤ rank(b)= s. There are I, J ⊆ X such that |I | = r , |J | = s and both
X r I and X r J admit partition into two subsets of equal cardinality. Thus there
are Y1, Y2 ⊆ X r I and a bijection φ : Y1 −→ Y2, and similarly Z1, Z2 ⊆ X r J and
a bijection ψ : Z1 −→ Z2. Let 0I be the rank-r pattern having singletons {i} (i ∈ I )
for its transversal components, and edges {y, yφ} (y ∈ Y1) for its nontransversal
components. It is admissible for MX and so there is, by Lemma 2.2(a), c ∈ MX
with U (c)=U (a) and L(c)= 0I , and hence aRc. Similarly, let 0J be the rank-s
pattern having singletons { j} ( j ∈ J ) for its transversal components, and edges
{z, zψ} (z ∈ Z1) for its nontransversal components. There is d ∈ MX with U (d)= 0J
and L(d)= L(b), whence d Lb. Now let f I have U ( f I )= 0I = L( f I ); it follows that
f I LcRa, so aD f I . Similarly, bD f J . Now f I f J f I = f I and it follows that there exist
x, y, z, t ∈ MX such that

a = x f I y = x f I f J f I y = x f I (zbt) f I y ∈ MX bMX .

This concludes the proof. 2

There is a completely analogous result for Jn , which we presented in [11,
Theorem 3.5].

The natural order. The natural or Mitsch order [16] on a semigroup S is defined
by:

a ≤M b ⇐⇒ a = b or a = xb = by = xa

for some x, y ∈ S. If it is necessary to specify the semigroup S involved, we write
≤

S
M , and so on. When S is regular, ≤M agrees with the more familiar natural

order for a regular semigroup, in which a ≤M b if and only if a ≤L b, a ≤R b and
a = ab′a for some inverse b′ of a. There are many equivalent formulations for regular
semigroups—see [16, Lemma 1], which summarizes the work of multiple authors.
From the formulation above, we have the following proposition.

PROPOSITION 3.5. For a, b ∈ PX , a ≤M b if and only if every component of UN(b)
is a component of UN(a), every component of L N (b) is a component of L N (a), every
edge of LT (b) is an edge of L(a), every edge of U T (b) is an edge of U (a), and
a = ab∗a.

PROOF. It is enough to use Lemma 3.1 and Corollary 3.2 and choose b∗ for the
inverse. 2

Clearly ≤M is a refinement of the left and right divisibility orders treated earlier.
There is a lemma of Hall’s type for the natural order.

LEMMA 3.6. If T is a regular subsemigroup of S and a, b ∈ T , then

a ≤T
M b ⇐⇒ a ≤S

M b.
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PROOF. If a ≤T
M b then of course a ≤S

M b. Conversely, if a = xb = by = xa for
x, y ∈ S, then

a = xb = xbb′b = by = bb′by

= ab′b = bb′a,

for any inverse b′ of b, which may be chosen in T . Then ab′, b′a ∈ T , and moreover
ab′a = xbb′by = xby = ay = a. 2

For PX , the condition a = ab∗a seems to be difficult to state simply in terms of
patterns—loosely, the transversal edges of b have to stitch together components of
UN(a) and L N (a) in just the right way. However, it simplifies for certain of the
subsemigroups of PX . By identifying TX with its image TX G under the map G of
Section 1, we have another quite transparent description of the natural order in TX
to add to the well-known ones mentioned and used in [16, Section 3]. We remind
the reader that for a ∈ TX , every component is transversal, so UN(a) is empty, and
U T (a)=U (a); the blocks of U (a) are the blocks of ker a; every upper vertex i of a
belongs to a component of a that in turn contains a unique lower vertex, which we
denote as usual by ia; the components of LT (a) are singletons of the range; and the
components of L N (a) are singletons of its complement.

PROPOSITION 3.7. Let a, b ∈ TX . Then the following are equivalent:

(i) a ≤M b;
(ii) a = ab∗a;
(iii) every component of a contains a component of b, and U (b)⊆U (a).

PROOF. By Proposition 3.5, (i) implies (ii).
Suppose that (ii) holds. If i ′ ∈ LT (a), then i ′ lies in a path of ab∗a at the ab∗

interface. Thus i ∈U T (b∗)= LT (b). Hence LT (a)⊆ LT (b). Let {i, j} be an edge
of U (b). There are two cases to consider.

First, if ib 6∈ LT (a), then there are paths

(ib, i, ia) and ( jb, j, ja)

in the expanded form of ab∗a. Since ib = jb, this gives an edge {ia, ja} of ab∗a = a,
and this is a contradiction unless ia = ja.

Second, if ib ∈ LT (a), say ib = ka, then there is a path

(k, ka = ib, i, ia)

in ab∗a = a, and so ka = ia. Similarly, ka = ja.
In either case, ia = ja, that is, {i, j} is an edge of a, and we have proved that

U (b)⊆U (a). Since, as seen above, LT (a)⊆ LT (b), every component of a contains
a component of b as in the second case. So (ii) implies (iii).

Lastly, suppose that (iii) holds. Since every component of a contains a component
of b, a ⊆ ab∗a. For the reverse inclusion, suppose that {i, j} is an edge of ab∗a.
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Without loss of generality, we may take it to be transversal, with (say) j = ka. Then
there is a path

(i, ia = kb, k, ka = j)

in the expanded form of ab∗a. Denote by A the component of a which contains i .
There is, by hypothesis, a component of b contained in A, and since kb = ia, this
must contain k. Hence {i, j} is an edge of a. We have proved that ab∗a = a. The
other conditions of Proposition 3.5 being satisfied, we thus have a ≤PX

M b, and by

Lemma 3.6, a ≤TX
M b follows. 2

Simplification also occurs in the case of Jn . We need an intermediate result
from [11, Lemma 3.8], which is correct as stated, but has a deficient proof. So we
also repair the proof here. We require the following items from [11], given in our
current notation.

Let a, b ∈ Jn . Then U (a) and UN(a) have the same edge sets, and likewise L(a)
and L N (a). Denoting the number of edges in a graph 0 by |0|, one has |L(a)| =
|U (a)| = 1

2 (n − rank(a)). Let ω(a, b) be the number of odd-length paths in the
interface of the product ab; such a path has edges alternately from L(a) and U (b).
Then by [11, Lemma 3.1(iv)],

2|U (ab)| = |L(a)| + |U (b)| + ω(a, b). (3.1)

LEMMA 3.8. Let a, b ∈ Jn . Then:

(i) a = aba if and only if ω(ab, a)= ω(a, ba)= 0; and
(ii) a = aba and b = bab if and only if ω(a, b)= ω(b, a)= 0.

PROOF. (i) By equation (3.1) we have

2|U (aba)| = |L(a)| + |U (ba)| + ω(a, ba)

= |L(ab)| + |U (a)| + ω(ab, a).

If a = aba, then abRaLba and so rank(a)= rank(ab)= rank(ba), whence
ω(a, ba)= 0= ω(ab, a). Conversely, if ω(a, ba)= 0 then U (aba)=U (a), and
if ω(ab, a)= 0 then L(aba)= L(a), by [11, Theorem 3.1(i) and (ii)]. Then by
Lemma 2.2(b), aba = a.

(ii) If a = aba and b = bab, then bDa, so |U (b)| = |U (a)|. Then ω(a, b)= 0
by (3.1). Similarly, ω(b, a)= 0. Conversely, if ω(a, b)= 0= ω(b, a), then by [11,
Theorem 3.1(i) and (ii)],

U (ab) =U (a) and L(ab)= L(b),

U (ba) =U (b) and L(ba)= L(a).

By definition, if U (b)=U (c) then ω(a, b)= ω(a, c). So ω(a, ba)= ω(a, b)= 0.
Similarly, ω(ab, a)= 0. By part (i), aba = a, and symmetrically, b = bab. 2
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COROLLARY 3.9. Let a, b ∈ Jn . Then a ≤M b if and only U (b)⊆U (a), L(b)⊆
L(a), and ω(ab∗, a)= ω(a, b∗a)= 0.

PROOF. This now follows from Corollary 3.6 and Proposition 3.7(i). 2

4. Twisted monoids

In this final section, we shall treat only the case of finite X , |X | = n. Recall from
Section 1 that the vertices in the interface were ignored in forming the product of
two elements a, b of Pn . We can construct new semigroups from those above in the
following manner. Let γ (a, b) be the number of components (including singletons)
in the expanded diagram for the product ab which have vertices only in the interface.
We shall call these interior cliques or simply cliques. (In Jn they are called circles.)
Figure 1 shows an example where γ (a, b)= 1. By definition, γ (b∗, a∗)= γ (a, b)
and γ (1, a)= 0 for all a ∈ Pn . Now define a product on the set N×Pn by the rule

(k, a)� (l, b)= (k + γ (a, b)+ l, ab),

and denote the resulting algebra (N×Pn,�) by P̂n .

LEMMA 4.1. For all a, b, c ∈ Pn ,

γ (a, b)+ γ (ab, c)= γ (a, bc)+ γ (b, c); (4.1)

consequently, P̂n is a monoid with identity (0, 1).

PROOF. Consider the three-layer expanded diagram for the product abc in Pn . The
cliques it contains are of three kinds: those on vertices in the upper interface, γ (a, b)
in number; those in the lower interface, of which there are likewise γ (b, c); and those
with vertices in both interfaces, of which there are (say) δ. Now we have

γ (ab, c)= γ (b, c)+ δ and γ (a, bc)= δ + γ (a, b),

whence (4.1) follows. In turn (4.1) implies associativity of �, and from the definition,

(k, a)� (0, 1)= (k, a)= (0, 1)� (k, a).

This concludes the proof. 2

This construction may be recognized as a twisting in the context of algebras; it
is a special case of the alteration product discussed by Sweedler [18]. Now we
introduce augmented diagrams, which are diagrams as described in Section 1 but
with the possible addition of cliques. Placement and size of the cliques are irrelevant.
Multiplication of augmented diagrams is similar to that for ordinary diagrams, except
that the components within the interface are retained, each being depicted by a new
clique in the augmented diagram for the product. Consider the map which associates
to (k, a) ∈ P̂n the Pn-diagram a augmented by k cliques. It is clear this map gives a
faithful representation of P̂n by augmented diagrams.
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If S is a subsemigroup of Pn then the subset N×S is closed under the
multiplication �, and so is a subsemigroup of P̂n which we denote by Ŝ. Consider the
cases S = Jn, Mn . Ĵn is the Kauffman monoid Kn investigated by Borisavljević et al.
[1], and is generated by the generators of the Temperley–Lieb algebra T Ln . Likewise
M̂n is the Brauer monoid Bn which has been well studied (beginning with [2]) because
of the significance of the Brauer algebra which it generates. We conclude with some
results on subsemigroups of P̂n of the form Ŝ where S is a subsemigroup of Pn having
the following property:

for all a, b ∈ S, there exist a′, b′ ∈ S such that

ab = ab′ = a′b and γ (a, b′)= γ (a′, b)= 0.
(4.2)

LEMMA 4.2. Let S be a subsemigroup of Pn with property (4.2), and (k, a), (l, b) ∈ Ŝ.
Then in Ŝ, (k, a)R(l, b) if and only if k = l and aRb; and dually for L.

PROOF. Suppose that (k, a)R(l, b), so there are (m, x) and (n, y) such that k ≤ l,
ax = b, l ≤ k and by = a. Thus k = l and aRb. Conversely, if aRb then there are
x, y ∈ S1 such that a = bx and b = ay, and by (4.2) we may assume that γ (b, x)=
0= γ (a, y). Then (k, a)= (k, b)(0, x) and (k, b)= (k, a)(0, y). 2

When S is In, I ∗n , Tn , or any of their subsemigroups, γ (a, b)= 0 for a, b ∈ S,
so (4.2) holds—indeed, Ŝ is simply the direct product N×S. By [11, Lemma 4.1],
Jn has property (4.2), and the same proof (without even the need for maintaining
planarity) shows this is true also of Mn . Finally, Pn itself has property (4.2): each
component entirely within the interface of the expanded form for the product ab may
be joined by an edge to any component of L(b), without changing the product, so we
may construct b′ by adjoining such edges to b. We have ab = ab′ and γ (a, b′)= 0;
and dually we construct a′ with ab = a′b and γ (a′, b)= 0. Thus Lemma 4.2 applies
not only to the Kauffman monoid (as shown in [11]) but also to the Brauer monoid Bn
and the twisted formP̂n of the partition monoid. We conclude with a description of the
poset of principal ideals for these monoids.

THEOREM 4.3. Let (k, a), (l, b) ∈ Bn [respectively, P̂n]. Then:

(i) (k, a)D(l, b) if and only if aDb in Mn[Pn] and k = l;
(ii) D = J in Bn[P̂n];
(iii) the poset of principal ideals of Bn[P̂n] is the product of a chain isomorphic to N

(with the order 0> 1> · · · ) with a chain of length n; and
(iv) all ideals of Bn[P̂n] are finitely generated.

PROOF. (i) (k, a)D(l, b) in Bn[P̂n] implies that there is (m, c) ∈ Bn[P̂n] such that
(k, a)L(m, c)R(l, b), when by Lemma 4.2, k = m = l and aLcRb in Mn[Pn].
Conversely, if aLcRb in Mn[Pn], then (k, a)L(k, c)R(k, b) in Bn[P̂n].

(ii) D ⊆ J in general, and if (k, a)J (l, b), then again k = l and aJ b, that is, aDb
by Theorem 3.3(v); so by part (i), (k, a)D(l, b).
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(iii) We use the bijection (well defined by parts (i) and (ii)) which associates to the
J -class J (k, a) the pair (k, J (a)), where J (a) is the J -class of a ∈ Mn[Pn]. The
result for P̂n follows from Theorem 3.3(iv), and for Bn from Corollary 3.4(iii).

(iv) Let I be an ideal of Bn[P̂n]; it is a union of a set X of principal ideals. Consider
the maximal elements of X . If there are more than n of them, at least two must be
comparable, by part (iii). 2

5. Conclusion

The semigroup structure of Pn determines the ring structure of the partition algebra,
so a thorough investigation of the former should be useful for a deeper understanding
of the latter. For instance, Wilcox [20] provides a semigroup-based proof that
the partition, Temperley–Lieb and Brauer algebras are cellular. We have given a
description of the ideal structure of the partition monoid, but this is not enough.
The relationship between congruences on a semigroup and ideals of its semigroup
ring suggests that further work should be directed towards a determination of all
congruences on Pn .
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