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Abstract

Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II)
are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides
neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under
stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured
brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by
quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody.
Displacement curves constructed using MT-I/II knockout (MT-I/II2/2) mouse tissues were used to validate the ELISA. Hepatic
MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels
were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI.
Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but
returned to normal by 7DPI. Zinc in the livers of MT-I/II2/2 mice did not show a return to normal at 7 DPI which suggests
that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-
regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver.
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Introduction

Metallothionein (MT) is a 6–7 kDa, cysteine rich, metal binding

protein that has been shown to be neuroprotective during central

nervous system (CNS) insults in studies utilising transgenic MT-I

over-expressing animals [1–3] and MT-I/II2/2 mice [4–11].

Interestingly, it is not MT-III, the brain-specific isoform of MT,

that provides neuroprotection [12] but the MT-I and MT-II

isoforms that provide the most neuroprotection after brain injury.

The MT-I and MT-II isoforms are often considered as a single

species (MT-I/II) due to their high homology and the inability of

primary antibodies to differentiate between the two forms. The

mechanism by which MT-I/II imparts protection to the injured

CNS is yet to be fully elucidated.

MT-I/II is expressed in many organs throughout the murine

body [13]. Numerous studies have shown that after brain injury,

the level of MT-I/II expression in the brain is increased [5,6,14–

17]. MT is chiefly a cytoplasmic protein but increased levels have

been observed in the blood of brain injured patients [18]. The

expression levels of MT-I/II in other organs after brain injury

have not been reported previously and the origin of the MT found

in the blood has not been determined. Up-regulation of MT-I/II

expression in the liver occurs in response to many stressful stimuli

such as burn injury [19–21], restraint stress [22,23], zinc challenge

[24,25], fasting and lipopolysaccharide challenge [26,27]. The

induction of liver MT-I/II expression has been shown to cause

increases in hepatic zinc content, a response that does not occur in

MT-I/II2/2 mice [19–21,24,25]. Therefore, it appears that the

induction of hepatic MT-I/II expression results in the sequestra-

tion of zinc to the liver. Zinc sequestration from the plasma is a

characteristic of the acute phase response which is typically

induced by the cytokine interleukin(IL)-6 [28]. MT-I/II expression

is induced by increased intracellular zinc concentration, glucocor-

ticoids and IL-6 [29] which indicates that MT-I/II expression may

occur in conjunction with the acute phase response.

Altered zinc homeostasis [30] and raised concentrations of IL-6

in serum [31] have been observed in patients suffering the early

stages of brain injury. The process of hepatic MT-I/II mediated

zinc sequestration has been proposed to explain these alterations

in plasma zinc concentrations [32] but hepatic MT-I/II expression

has not been experimentally quantified after brain injury. There is

some evidence that systemic zinc status may affect the outcome of

brain injury because rats with dietary zinc deficiency preceding

experimental brain injury have greater microglial activation and

neuron death compared to injured rats on zinc-sufficient diets

[7,33]. There is also a positive association between zinc
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supplementation after hospital admission and neurologic recovery

rate in head injured patients [34].

The aim of this study was to determine whether brain injury in

mice causes an increase in hepatic MT-I/II expression and

whether any increase in hepatic MT-I/II results in sequestration of

zinc to the liver. MT-I/II expression was measured by quantitative

reverse-transcriptase PCR (RT-PCR) and enzyme-linked immu-

nosorbent assay (ELISA). The study utilised a MT-I/II2/2 mouse

strain that still produces MT-I and MT-II mRNAs but premature

stop codons in the open-reading-frame result in production of

greatly truncated peptides consisting of 10 and 15 amino acids

from the N-terminus, respectively [35]. This allowed for liver zinc

content after brain injury to be measured in a mouse without fully

functional MT-I/II protein.

Materials and Methods

Animals
All procedures involving animals were approved by the Animal

Experimentation Ethics Committee of the University of Tasmania

and were consistent with the Australian Code of Practice for the

Care and Use of Animals for Scientific Purposes (Permit number:

A9836). 129SI/SvImJ (wild type) mice and 129S7/SvEvBrd-

Mt1tm1Bri Mt2tm1Bri/J (MT-I/II2/2) mice [35] were obtained from

Jackson Laboratories. Male mice were housed with food and water

ad libitum with 12/12 hour light/dark cycling. Mice were divided

evenly into groups for the time points of 0, 1, 3 and 7 days post-

injury (DPI) and were housed in individual cages for at least 7 days

prior to surgery.

Cryolesion brain injury and sham surgery
The cryolesion injury was conducted according to the method

of Ling et al. [36]. Briefly, animals were anaesthetised for surgery

with 3% isoflurane in oxygen, delivered via muzzle mask. A 2–

3 mm incision was made in the skin above the midline of the skull.

A steel rod, 3 mm in diameter and 50 mm long that had been

cooled to equilibrium in liquid nitrogen, was held against the skull

for 6 seconds, 4 mm anterior from lambda and 2 mm right of the

midline. The incision was then sutured and the animal was

allowed to recover back in its original cage. Less than 1% of

animals showed signs of seizure within the first 24 hours after the

application of the cryolesion injury. These animals were

euthanized and excluded from the study. Zero time-point animals

were housed identically to injured mice but did not undergo

surgery before euthanasia and tissue collection. Sham surgery was

conducted in an identical manner to cryolesion surgery except that

the steel rod was not cooled in liquid nitrogen before the

procedure.

Quantitative reverse-transcriptase PCR (RT-PCR)
Anaesthetised mice were transcardially perfused with PBS. The

cryolesion injury site was dissected out of the brain using a 3 mm

biopsy punch and a liver sample was obtained by dissection and

both samples were frozen in liquid nitrogen. Liver samples were

first ground to a fine powder under liquid nitrogen, brain samples

were homogenised whole. Brain and liver samples were homog-

enised by Ultra-Turrax mechanical homogenizer (IKA) in TRI

reagent (Sigma) and RNA was extracted according to manufac-

turer’s protocol. Reverse transcription with the Superscript-III

reverse transcriptase system (Invitrogen) and quantitative PCR

with Quantitect SYBR green (Qiagen) was conducted according to

the method of Brettingham-Moore et al. [37]. Oligonucleotide

primers are detailed in table 1. The MT-I and MT-II primer sets

were designed to bind to the cDNA for the transcripts from both

wild type and MT-I/II2/2 mice, which still produce MT-I and

MT-II transcripts but have premature stop codons inserted to

prevent complete protein translation. Standard curves were

created using known quantities of each PCR product and were

used to determine the original cDNA copy number at an arbitrary

fluorescence threshold (CT). b-actin mRNA was used as the house

keeping gene and MT-I and MT-II mRNA copy numbers was

divided by b-actin copy number, to standardise the data set.

Protein homogenisation
Brain biopsies and liver samples were ground to powder under

liquid nitrogen and homogenised in 150 mM NaCl, 20 mM Tris-

HCl, 1% Igepal, pH 7.6 with EDTA-free Halt-protease inhibitor

cocktail (Thermo Scientific) with an Ultra-Turrax mechanical

homogenizer (IKA). Samples were centrifuged at 10 000g for

10 minutes and the supernatant was retained for assay. Protein

concentration was obtained by Bradford assay [38].

UC1MT competitive ELISA
MT-IIA (HPLC-purified rabbit MT-IIA saturated with 7 Zn2+

ions per molecule, Bestenbalt, Estonia) was coated to a Nunclon

delta surface 96-well microplate (Nunc) in 50 mM Na2CO3 solution

at 4uC overnight on an orbital shaker. All subsequent stages took

place at room temperature. Following a 5 minute rinse in wash

buffer consisting of 0.05% Tween-20 (Sigma) in PBS, wells were

blocked with 150 ml casein solution (2.5%, pH 7.4) for 30 minutes.

The wells were washed again in wash buffer for 5 minutes. Mouse

tissue homogenates or plasma samples were diluted in wash buffer to

achieve a protein concentration of 0.1 mg/ml and standard MT-IIA

solutions were made up in wash buffer. Samples and standards were

applied to the plate in triplicate or quadruplicate in 50 ml aliquots.

Primary antibody (UC1MT mouse anti-MT-I/II, Assay designs) was

diluted 1:5000 (40 ng/ml, final concentration) in ELISA wash buffer

and applied to sample- or standard-containing wells for 1 hour. The

plate was rinsed 3 times with wash buffer. Secondary antibody

(Dako, Goat anti-mouse IgG-horse radish peroxidase (HRP)

conjugate) was diluted 1:2000 in ELISA wash buffer and applied

to each well in 50 ml aliquots for 1 hour. The plate was rinsed 3 times

with wash buffer. 50 ml TMB peroxidase substrate (KPL) was

applied for 1 hour. The reaction was terminated with 50 ml of 1 M

phosphoric acid and the absorbance was measured at 450 nm.

Calculation of sample MT-I/II concentrations from the standard

curve was conducted with 4-parameter logistic modelling according

to the method of Findlay and Dillard [39]. Displacement curves were

generated by serial dilution of MT-IIA standard solutions in tissue

homogenate from MT-I/II2/2 mice. Several curves were created

for each tissue type with varying concentrations of total protein.

Table 1. Oligonucleotide primer sets used for quantitative
RT-PCR with genbank accession numbers.

Primer Sequence (59 - 39) Accession No.

b-actin Fwd GTCCACCTTCCAGCAGATGT NM_007393.3

Rev AGGGAGACCAAAGCCTTCAT

MT-I Fwd GCTGTCCTCTAAGCGTCACC NM_013602.3

Rev AGGAGCAGCAGCTCTTCTTG

MT-II Fwd CAAACCGATCTCTCGTCGAT NM_008630.2

Rev AGGAGCAGCAGCTTTTCTTG

doi:10.1371/journal.pone.0031185.t001

Brain Injury and Hepatic Metallothionein
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Direct UC1MT ELISA to compare MT-IIA and MT-III cross-
reactivity

Microplate wells were coated with 50 ml of standard curve

solutions for MT-IIA and MT-III (HPLC-purified human MT-III

saturated with 7 Zn2+ ions per molecule, Bestenbalt, Estonia)

which were made up in 50 mM Na2CO3 and incubated overnight

at 4uC on an orbital shaker. Following a 5 minute rinse in wash

buffer, wells were blocked with 150 ml casein solution (2.5%,

pH 7.4) for 30 minutes. The wells were washed again in wash

buffer for 5 minutes. UC1MT primary antibody was diluted

1:1000 in ELISA wash buffer and applied to wells and incubated

for 1 hour. The plate was rinsed for 3 times with wash buffer.

HRP-conjugated secondary antibody was diluted 1:2000 in ELISA

wash buffer and applied to each well in 50 ml aliquots for 1 hour.

After rinsing with wash buffer, TMB peroxidase substrate (KPL)

was incubated in the wells in 50 ml aliquots for 1 hour. The

reaction was terminated by addition of 50 ml of 1 M phosphoric

acid and the absorbance was measured at 450 nm.

Radioimmunoassay for corticosterone
Blood was obtained from mice at 0, 1, 3 or 7 DPI. Mice were

anaesthetised by being placed in a chamber containing 5%

isoflurane in oxygen. As soon as anaesthesia was achieved, 0.5 ml

of blood was obtained via cardiac puncture with syringes

containing 20 ml of 5000 units/ml heparin solution (Sigma).

Plasma was obtained by centrifugation at 14 0006g for 5 minutes.

Assay of plasma corticosterone was conducted as described in

Pankhurst et al. [40]. Standard solutions of unlabelled corticoste-

rone were prepared by serial dilution in assay buffer and were

added directly to assay tubes. A standard curve was generated to

calculate the concentration of corticosterone in each sample. All

samples and standards were assayed in duplicate. Extraction

efficiency for mouse plasma was determined by adding a known

quantity of 3H-corticosterone to plasma samples pooled from

several mice and the assay concentrations were adjusted

accordingly.

Liver zinc assay by atomic absorption spectroscopy
Liver samples from uninjured and injured mice were dissected

out and freeze-clamped in liquid nitrogen. Each sample was

ground to a fine power under liquid nitrogen with a mortar and

pestle. The powdered liver was homogenised in 1 ml of MilliQ

(Millipore) water with a Potter-Elvehjem homogeniser. The

homogenate was transferred to a pre-weighed tube and was

lyophilised. The gross weight of the tube was measured after

lyophilisation to calculate the net weight of the sample.

Lyophilised liver samples were dissolved in 3.5 ml of 70% nitric

acid (Trace select, Fluka) by heating to 70uC for 1 hour. The

samples were diluted with 3 ml of MilliQ water and 0.5 ml of 30%

hydrogen peroxide to fully oxidise thiols (Trace select, Fluka).

Centrifugation at 20006g for 20 minutes was required to remove a

small quantity of insoluble matter. Zinc concentration in each

sample was assayed on an atomic absorption spectrometer (GBC

Avanta S). Zinc concentration of the sample solutions was

determined by comparison to the absorbance of zinc sulphate

standard solutions prepared in 35% nitric acid and 2.14%

hydrogen peroxide in MilliQ water.

Statistical analysis
Homogeneity of variances between groups within each data set

was determined with Levene’s test. The Box-Cox test was used to

determine the appropriate transformation for data sets with

heterogeneous variances between groups. Comparisons of MT-I

and MT-II mRNA, MT-I/II protein expression and liver zinc

content were conducted by 1-way ANOVA with Tukey’s B post-

hoc test. The comparison of corticosterone between wild type and

MT-I/II2/2 mice was conducted with 2-way ANOVA with

Tukey’s B post-hoc test on the factors of time after injury and

strain of mouse. For all experiments, differences were considered

statistically significant where p,0.05.

Results

UC1MT ELISA optimisation and validation
We optimised the MT-I/II ELISA procedure published by

Emeny et al. [41]. By trialling different coating concentrations of

recombinant MT-IIA and different antibody dilutions, it was

determined that the optimal coating concentration for the

microplate was 100 ng/ml MT-IIA. Optimal primary antibody

dilution of 1:5000 (40 ng/ml IgG final concentration) and

secondary antibody dilution of 1:2000 (0.5 mg/ml final IgG

concentration) yielded the highest sensitivity in the ELISA (data

not shown). Figure 1 shows the standard curve of the ELISA with

4-parameter logistic curve fitted. A cut-off for the detection limit of

was set at 10 ng/ml MT and yet this required 500-fold lower levels

of primary antibody than the procedure of Emeny et al. [41]. The

coefficient of variation was used to determine the range of the

intra-assay variability of the ELISA and was calculated to be 3.46–

10.33%cv.

When the UC1MT antibody was initially characterised for its

ability to detect MT-I and MT-II by ELISA [42], the discovery of

MT-III was relatively recent and no test for cross-reactivity of MT-

III with this antibody has since been published. It was necessary to

demonstrate that the UC1MT ELISA is specific for MT-I/II and

does not cross-react with MT-III, the brain-specific MT isoform

(figure 2). It is apparent from the curves that the UC1MT

antibody displays little cross reactivity with MT-III.

Displacement curves were set up to determine if matrix effects

that could interfere with the ELISA were present in mouse brain

or liver tissue homogenates (figure 3). Such curves have not been

published previously for the UC1MT ELISA technique. The term

‘‘matrix effects’’ relates to substances in complex biological

samples that do not directly cause false-positive detection in an

immunoassay but have the capacity to displace the antibody-

antigen interaction [43,44]. Displacement curves are similar to

standard curves except that serial dilution of the analyte is

performed in analyte-free matrix, in this case tissue homogenate

Figure 1. Standard curve generated by the UC1MT competitive
ELISA with 4-parameter logistic curve fitted. Each point shown is
the average of 4 quadruplicate standards.
doi:10.1371/journal.pone.0031185.g001
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from MT-I/II2/2 mouse brain and liver was used. Using MT-I/

II-free brain and liver homogenates with total protein concentra-

tion of 0.1 mg/ml or 0.01 mg/ml, we observed no deviation of the

slope of the displacement curves from the standard curve which

indicates that no matrix effects are present under these assay

conditions, in these tissues. We have determined that concentra-

tions higher than 0.1 mg/ml begin to interfere with the assay in

most of the tissue types tested.

MT-I and MT-II induction in liver post-brain injury
In the site of the brain injury, expression of MT-I and MT-II

mRNA and MT-I/II protein was increased within 1 DPI (data not

shown), as has been observed previously [5,6,14–17]. Quantitative

RT-PCR revealed that liver MT-I and MT-II mRNA increases

after brain injury (figure 4). Wild type mice showed a 4.9 fold

increase in MT-I mRNA at 1 DPI in the liver, followed by

subsequent decreases at 3 and 7 DPI. MT-II mRNA was

significantly increased at 1 DPI but was maximal at 3 DPI with

a 40.4 fold increase in expression over uninjured levels.

Interestingly, increases in MT-I/II protein levels, as determined

by competitive ELISA, were delayed and did not show significant

increases until 3 DPI with maximal protein expression at 7 DPI

(figure 5). The possibility of MT-I/II protein increases from zero

to 1 DPI could not be investigated because the quantities detected

at both of these time points were less than or equal to the detection

limit of the assay.

The nature of the targeted disruption of the MT-I and MT-II

genes in the MT-I/II2/2 mouse strain allows for the measurement

of gene transcription in the absence of expression of the full-length

proteins. In MT-I/II2/2 mice the level of MT-I and MT-II

mRNA in the liver after brain injury is reduced compared to wild

type mice (figure 4).

Plasma corticosterone concentration increases after
cryolesion brain injury

The glucocorticoid, corticosterone, is the primary stress

hormone produced by the adrenal gland in rodents, and has an

analogous role to cortisol in humans. Thus, we hypothesised that

corticosterone may influence hepatic MT-I/II synthesis as part of

a systemic response to brain injury. To test this in our model,

plasma corticosterone levels were assayed by radioimmunoassay in

both wild type and MT-I/II2/2 mice, with injury, without injury

and with sham injury surgery (figure 6A). No significant differences

in plasma corticosterone were found between wild type and MT-

I/II2/2 mice before or after injury as determined by 2-way

ANOVA. However, it was determined that there were significant

and comparable increases in plasma corticosterone concentrations

in cryolesioned and sham-injured animals. This indicates that

animal handling is the most likely responsible for the increases in

plasma corticosterone rather than the brain injury. Quantitative

RT-PCR was carried out on liver samples from sham-injured

animals but no significant increases in MT-I or MT-II mRNA

expression were observed after sham surgery, despite the ability of

the procedure to increase plasma corticosterone (figure 6B). In

summary, the increases in plasma corticosterone after brain injury

or sham surgery are not sufficient to induce hepatic MT-I/II

expression alone and it is likely that another process is responsible

for the increased hepatic expression of MT-I/II after brain injury.

Liver zinc post-injury
Liver zinc was assayed by atomic absorption spectroscopy in

MT-I/II2/2 and wild type mice to determine if hepatic MT-I/II

sequesters zinc after brain injury. In the absence of injury there is

no significant difference in the liver zinc content between the two

mouse strains, indicating that MT-I/II normally makes a minor

contribution to total zinc binding. Brain injury caused a slight

decrease in liver zinc content at 1 and 3 DPI in both strains of

mouse (figure 7), suggesting release of zinc from non-MT-I/II

source. However, at 7 DPI significant differences between wild

type and MT-I/II2/2 mice were observed. In the wild-type mice

we saw a recovery in zinc content to a level that was not

significantly different to the level seen pre-injury. This increase in

Figure 2. Cross-reactivity of the UC1MT antibody for MT-III was
tested by direct ELISA. Comparison of the standard curves for MT-IIA
(blue lines) and MT-III (red lines) demonstrate UC1MT has very little if
any cross-reactivity for MT-III. Data are expressed as the mean of
triplicate measurements (error bars = SEM).
doi:10.1371/journal.pone.0031185.g002

Figure 3. Displacement curves for MT-IIA in MT-I/II2/2 mouse
brain homogenate (A) and MT-I/II2/2 mouse liver homogenate
(B). Displacement curves constructed in solutions with protein content
of 0.01 mg/ml and 0.1 mg/ml are parallel to the standard curve
constructed in PBS. Therefore, no matrix effects were observed at these
concentrations, in these tissues (n = 3, error bars = SEM).
doi:10.1371/journal.pone.0031185.g003
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liver zinc content at 7 DPI corresponds precisely to the period

when dramatic increases in MT-I/II protein levels were observed

(figure 5). In contrast, no significant recovery in hepatic zinc was

observed for MT-I/II2/2 mice at 7 DPI which strongly implies

that MT-I/II is responsible for this process.

Discussion

The observations presented herein are consistent with a model

whereby zinc is released from cellular stores in the liver following

brain injury, and that increased MT-I/II expression then functions

to return zinc to the liver. In human studies it has been found that

serum zinc levels are decreased upon admission of head injury

patients to hospital [30]. Zinc excretion via urine was found not to

be the cause and it was later hypothesised that MT-I/II expression

in the liver was sequestering zinc from the plasma [32]. Our data

suggest that, in mice, zinc is initially released from the liver and

that MT-I/II expression is then up-regulated in order to restore

hepatic zinc to pre-injury levels. Because the liver is a relatively

large organ, this response may also have the ability to affect zinc

availability in other organs. It has been shown previously that MT-

I/II induction by the liver has the ability to buffer sudden, systemic

increases in free zinc after zinc injection [24]. In the present study,

the zinc composition of the diet remained constant but it is clear

that zinc is becoming mobilised from the liver. The effect that

disruption to zinc homeostasis has on the progression of brain

injury is not well understood.

The factors that directly induce MT-I and MT-II mRNA

expression have been identified as increased intracellular free zinc

concentration via interaction with metal transcription factor-1

(MTF-1), IL-6 signalling and glucocorticoid receptor activation

[29]. The data in the present study indicated that the

Figure 4. Expression of MT-I and MT-II mRNA in the liver of wild type and MT-I/II2/2 mice after brain injury was quantified by RT-
PCR. (A) MT-I mRNA expression showed its greatest increase at 1 DPI and 3 DPI in wild type mice. (B) MT-II mRNA was increased at 1 DPI in wild type
mice but was at peak levels at 3 DPI. MT-I/II2/2 mice were unable to increase MT-I and MT-II mRNA levels to the same extent as wild type mice.
Groups that share lower case letters are not significantly different from each other (for both graphs; n = 6–7, error bars = SEM).
doi:10.1371/journal.pone.0031185.g004

Brain Injury and Hepatic Metallothionein
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glucocorticoid, corticosterone, was unlikely to be responsible for

inducing an increase in MT-I or MT-II mRNA expression in the

liver. In vitro, glucocorticoids are capable of increasing levels of

MT-I/II mRNA in hepatocyte cultures [45]. However, in vivo

experiments investigating the induction of hepatic MT-I/II by

restraint stress suggest that glucocorticoids are responsible for

altering the translation of mRNA into protein but that IL-6

signalling is the factor responsible for inducing MT-I/II mRNA,

not glucocorticoids [22]. It remains a possibility that corticosterone

enhances the expression of hepatic MT-I/II synthesis after brain

injury, even if it is not solely responsible for MT induction. The

cytokine IL-6 has been found to be increased in the serum of head-

injured patients [31]. Using this cryolesion injury model, increased

IL-6 mRNA expression can be detected at the site of brain injury

but IL-6 protein was not readily detected in plasma by cytokine

assay, nor was there de novo synthesis of IL-6 mRNA detected in

the liver (unpublished observations). Therefore IL-6 is unlikely to

play a role in the induction of hepatic MT-I/II in our brain injury

model.

Figure 5. Liver MT-I/II protein levels after cryolesion injury to
the brain were assayed by UC1MT ELISA in wild type mice.
Hepatic MT-I/II protein levels were not increased until 3 DPI and showed
a further increase at 7 DPI. Groups that share lower case letters are not
significantly different from each other (n = 7, error bars = SEM).
signalling mechanism is involved.
doi:10.1371/journal.pone.0031185.g005

Figure 6. Corticosterone concentrations in plasma after cryolesion injury to the brain were assayed by RIA in wild type and MT-I/II2/2

mice (A). No significant differences were found between the mouse strains. There was a significant increase in plasma corticosterone after cryolesion
injury and sham surgery to a similar extent. Sham surgery does not induce a significant change in hepatic MT-I or MT-II mRNA expression (B). Time
points that share letters are not significantly different (n = 5, error bars = SEM).
doi:10.1371/journal.pone.0031185.g006

Brain Injury and Hepatic Metallothionein

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e31185



By process of elimination, zinc remains as the most likely signal

responsible for inducing hepatic MT-I/II expression after brain

injury, further supporting the hypothesis that brain injury disrupts

systemic zinc homeostasis. We provide the following hypothesis to

explain the increases in MT-I and MT-II mRNA expression

despite decreases in total zinc. Zinc is transported out of cells as

free ions but the majority of zinc in cells is bound to zinc-binding

proteins. Oxidative stress can displace zinc from metalloproteins

[46], effectively increasing the free zinc concentration inside the

affected cell. Free zinc would be susceptible to efflux transport, but

would also be available to bind to metal-transcription factor-1, a

complex which facilitates MT-I and MT-II gene transcription

[reviewed in 29]. Head injury to rats has been shown to induce a

whole body oxidative stress within 15 minutes of the injury [47].

MT-I/II itself, is a zinc-binding metalloprotein and it is susceptible

to oxidation leading to zinc liberation [48,49]. Liberation of zinc

from proteins and subsequent transport from hepatocytes is

consistent with the decreased hepatic zinc content observed at 1

DPI in the present study. Hence, an oxidative mechanism provides

one hypothesis to explain brain injury mediated decreases in total

hepatic zinc levels with simultaneous increases in MT-I and MT-II

mRNA expression.

High expression of MT-I/II is thought to decrease cytoplasmic

concentrations of free zinc. However, it has been shown that under

normal physiological conditions, the amount of zinc bound to

MT-I/II is below maximum capacity [50]. For hepatic MT-I/II to

be involved in zinc sequestration, the ratio of MT-I/II to cellular

zinc is expected to be much higher to create a sufficient diffusion

gradient to favour the entry, and retention, of zinc in the hepatic

cytoplasm. High levels of MT-I/II protein could also provide

negative feedback for MT-I and MT-II mRNA expression by

binding free-zinc and limiting the availability of cytoplasmic zinc

to MTF-1. This would explain the low levels of mRNA transcript

observed at 7 DPI, despite high levels of MT-I/II protein. The fact

that MT-I/II2/2 mice have altered expression of MT-I and MT-

II mRNA is in accordance with our hypothesis that MT-I/II is one

of the storage proteins for zinc that can play a role in its own

regulation when zinc is liberated from proteins. However, it

warrants mention that cellular processes known collectively as

nonsense-mediated mRNA decay exist to remove abnormal

transcripts [51] and may be removing the MT-I and MT-II

transcripts in MT-I/II2/2 mice at a faster rate than normal

because of the premature stop codons they contain. Reporter

assays in cells isolated from MT-I/II2/2 mice may be required in

future experiments to determine which of these possibilities is

occurring.

In conclusion, we have shown that brain injury, like many

severe perturbations to an animal, causes an increase in hepatic

MT-I/II expression which leads to sequestration of zinc to the

liver. This shuttling of zinc may affect the hepatic processes after

brain injury but may also have implications for systemic zinc

availability after brain injury. Given that the mechanism by which

MT-I/II is neuroprotective after brain injury is unclear, these

findings introduce the possibility that MT-I/II expressed outside

the central nervous system could impact upon brain injury.
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