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Abstract

The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems
where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains
because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales
considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems.
Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were
better than random (i.e., low probability of making a Type I error; P) and as the predictability of targets using surrogates (R2).
A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts
demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate
effectiveness, at least according to either P or R2. The type of surrogate used (higher-taxa, cross-taxa or subset taxa) was the
best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of
R2, with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a
,10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods.
Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still
ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the
reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological
surrogates in predicting biodiversity.
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Introduction

Biodiversity is the term used to describe the collective variety of

life from molecules to ecosystems, and from alleles to kingdoms.

The diverse ways in which biodiversity can be defined has often

impeded its precise use in conservation planning and policy

development [1,2]. Prioritizing areas for conservation does not,

however, require a complete description of the biodiversity in

areas of conservation concern, but can be based on relative

measures of differences among them [3,4]. Typically, estimation

of these relative differences relies on the use of some simple

estimator, a surrogate (e.g., the number of species in a particular

taxon in a particular area) that is sufficiently related to the

biodiversity parameter of interest, the target (e.g., the total

number of species in that area [1,5]). Surrogates of marine

biodiversity patterns can be either physical [6] or biological.

During recent decades, the latter have become increasingly

necessary and useful in conservation science to bridge the gap

between the scale of ecological observations and the scale of

planning for conservation management [2,7,8], highlighting the

need to understand clearly how well such surrogates perform

under different conditions.

Interest in biological surrogates during the last decade has

resulted in a growing number of studies about their effectiveness,

in a variety of locations and at various spatial scales. It has also

resulted in the definition of many types of biological surrogates and

methods for their construction, partly because of recognized

shortcomings of some well-established methods used to construct

surrogates. For example, prioritizing habitats for conservation

based on species richness only, observed or predicted, at particular

sites (i.e. alpha diversity) might result in a selection of species-rich

sites containing similar subsets of species. If so, rare species, or

those only present in species-poor sites, could be excluded from

protection [9]. To overcome such difficulties, many different

methods have been developed, including those based on

multivariate measures of biodiversity (i.e., derived from the matrix

of site-specific species abundances [10–12]) or reserve-selection

algorithms that maximize complementarity, such as the total
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number of species represented by a set of sites (e.g., [1]). These

algorithms have recently been integrated into widely used

conservation planning software packages such as Marxan [13],

which are now used globally to address practical issues of reserve

design. However, the extent to which surrogate effectiveness

depends on the methods used and definitions employed has so far

remained unexplored.

The need for effective biological surrogates is especially acute in

the marine realm. A major impediment to area prioritization for

marine conservation is the lack of information about the

distribution of many marine species [10]. These gaps in our

knowledge are mostly due to the large number of species that

remain undescribed, difficulties in species identification, and the

high costs of marine biodiversity surveys [14–16]. While a meta-

analysis of the effectiveness of biological surrogates has been

conducted in terrestrial ecosystems [17], this task remains to be

done in the marine realm. Unless cost-effective biological

surrogates are identified that can be used to prioritize areas for

maximum conservation benefit, accelerating human impacts on

most marine ecosystems could cause the decline and ultimately,

the extinction of many marine species before they have been

discovered.

We assess the effectiveness of biological surrogates as predictors

of biodiversity in marine ecosystems using a Bayesian meta-

analysis. Bayesian methods offer the unique opportunity to

incorporate relevant prior knowledge explicitly into the analysis,

i.e. a probability distribution of what is already known about a

response variable [18]. Bayesian modelling techniques are well-

adapted to ecological meta-analyses, where (i) the true number of

independent studies are limited compared to the uncertainty and

complexity of ecological systems, (ii) the results might be subject to

publication bias [19] and (iii) expert knowledge acquired through

field work or publication in gray literature is available to estimate

priors. Recent interest in using expert knowledge in the elicitation

of priors has led to the development of survey methods for this

purpose [20,21].

Here we test the hypotheses that spatial scale, habitat, surrogate

type, and statistical approach can determine the effectiveness of

biological surrogates. To accommodate the multiple definitions

found in the literature, biological surrogates are hereafter defined

in their widest sense and can include species in one genus, class,

family or phylum, for which the biodiversity metrics that are

compared to those of the target taxon can be either univariate

(e.g., taxonomic richness, abundance, biomass) or multivariate

(i.e., species presence/absence or abundance matrix). We defined

surrogate effectiveness both as the proportion of tests where

predictions based on surrogates performed ‘better’ than random

(i.e., low probability of making a Type I error; P) and as the

predictability of targets using surrogates (R2). Our specific aims

were to (i) review and classify the surrogates, methods and spatial

scales considered so far in different marine habitats, (ii) test their

effectiveness as predictors of biodiversity in a variety of habitats, at

different spatial scales and using different definitions of surrogates

and statistical methods to construct them, and (iii) formulate

recommendations for the more reliable use of surrogates into the

future, as they become ineluctable tools in conservation science.

Our results also highlight directions for the further development of

the application of biological surrogates in marine and other

ecosystems.

Methods

Literature review and meta-data compilation
We conducted a meta-analysis of the peer-reviewed literature

on biological surrogacy in marine ecosystems. Published studies

testing biological surrogacy in marine ecosystems were identified

using ISI’s Web of ScienceH (www.isinet.com) and Elsevier’s

Science DirectH (www.sciencedirect.com) databases using the

keywords ‘biodiversity’, ‘biological’, ‘diversity’, ‘indicator’, ‘proxy’,

‘surroga*’ and ‘tax*’. Each surrogacy test (i.e., sampling unit of the

meta-analysis) was classified by the marine habitat studied (Habitat:

soft bottom, temperate reef, or tropical coral reef), the spatial scale

sampled, i.e. spatial extent of area over which samples were taken

(Scale: ,10, 10–100, .100 km), the type of surrogate used, defined

by its relationship with the target (Type: higher-taxa, where a taxon

acts as a surrogate for taxa at lower taxonomic levels; cross-taxa,

where a taxon acts as a surrogate for another taxon at the same

taxonomic level, or; subset-taxa surrogate, where a taxon acts as a

surrogate for the entire target community; Figure 1) and the

statistical approach used to construct the surrogate (Stats: spatial

congruence of univariate biodiversity metrics; spatial congruence

of multivariate biodiversity metrics; or representation, which uses

Figure 1. The different types of biological surrogates (red) and their targets (green). (A) Higher-taxa, where a taxon (or taxa) at a higher
taxonomic level acts as surrogates for taxa at lower levels, (B) cross-taxa surrogates, where a taxon (or taxa) acts as a surrogate for another taxon (or
taxa) at the same taxonomic level, and (C) subset-taxa surrogates, where a particular taxon (or taxa) acts as a surrogate for the entire target
community. See Table S2 for referenced examples of each type of biological surrogate.
doi:10.1371/journal.pone.0020141.g001
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site-selection algorithms to assess whether a network of areas

selected to maximize the number of surrogate taxa captures a

greater number of target taxa than expected by chance; Table 1).

The sample size of each surrogacy test (n) was also recorded to

account for different sampling intensities across studies.

From each surrogacy test, whether or not the null hypothesis

was rejected (based on the authors’ arbitrarily chosen threshold),

and the coefficient of determination (R2) of surrogate predictive

power were collated. Overall surrogate effectiveness was then

defined using both the probability of concluding that a surrogate

performed better than random (P) and the surrogate predictive

power (R2). Ideally, surrogate effectiveness would be assessed as the

likelihood of surrogate non-randomness based on bias-corrected

maximum likelihoods for multi-model comparisons [22] or

secondarily, as the probability of making a Type I error when

concluding that surrogate predictions performed better than

random. Such approaches could not be adopted here because

most surrogacy studies have only reported an arbitrary probability

threshold (e.g., P,0.05) when testing the null hypothesis that the

surrogate did not perform better than random.

A central assumption of meta-analyses is that the literature

reviewed is not subject to publication bias, which can arise if the

probability an article is published depends on the strength and

direction of its results [19]. We tested for publication bias using

funnel plots of sample size against effect size, i.e., the number of tests

in each 0.05-class of R2 (not shown; [23]) combined with a rank

correlation test between standardized sample size and effect size.

Elicitation of priors using expert knowledge
Eight international experts in marine biological surro-

gacy answered an online survey (http://www.adelaide.edu.au/

environment/mbp/survey/02.html) on the effectiveness of biolog-

ical surrogates in marine ecosystems. They were asked to estimate

the likelihood (P) of a surrogate being effective in predicting a

target, and the proportion of variance explained (R2) by the

surrogate for the different habitats, scales, types of surrogates and

statistical approaches defined above. In each situation, experts

were asked to classify P and R2 into one of five categories (0.0–0.2;

0.2–0.4; 0.4–0.6; 0.6–0.8; 0.8–1). Additionally, they were asked to

indicate their confidence in the classification using the same

categories. We translated these classes into a categorical estimate

from ‘very low/small’ to ‘very high/large’ to facilitate interpreta-

tion by the experts [20]. Their type and level of expertise were

assessed using questions on their research activities and proportion

of time allocated to the study of marine biological surrogates. The

effect of their level of expertise and how it was acquired on their

confidence when answering these questions was investigated with a

multivariate analysis of variance using a Bray-Curtis distance

matrix and 100 permutations (NPMANOVA; [24]). The statistical

units were experts, and multivariate responses were their mean

confidence score when answering questions relating to the Habitat,

Scale, Type, or Stats factors. Predictors were the descriptors of their

expertise (Table S1).

Bayesian model fitting
Bayesian hierarchical (i.e., multilevel) models of surrogate

effectiveness, successively defined as P and R2, were implemented

to assess the influence of the factors defined above on surrogate

effectiveness. For each response variable, covariates included each

of the factors Habitat, Scale, Type, Stats coded as dummy variables,

or n, in a separate model. The hierarchical term Study was added to

account for the non-independence of multiple tests within the

same study. The resulting model formulation is given by:

logit yij

� �
~
X

k

bkXijkzE0j

E0j*N(0,tj)

Table 1. Statistical methods and biodiversity metrics used in marine biological surrogacy studies.

Method Statistical index Biodiversity metrics Description of biodiversity metric Test ID (examples)

& Congruence of univariate
biodiversity metrics

& Spearman’s rho
or Pearson’s r

& Taxonomic richness & Number of taxa (e.g.,
species, genera)

1–3, 60–65, 98–101

& Numerical Rarity & Number of rare
species (e.g., n#2)

57, 59

& Endemicity & Number of endemic species
(e.g., based on range extent)

102

& Abundance & Number of individuals
(per unit area)

74, 218, 220–222

& Biomass & Mass per unit area 73, 75

& Congruence of multi-
variate biodiversity metrics

& Spearman’s rho or Pearson’s
r between surrogate and target

& Incidence matrix & Presence or absence of taxa
(columns) at the different sites (rows)

4, 9–23

& Bray-Curtis distance matrices & Community composition & Abundances of taxa (columns)
at the different sites (rows)

76–97, 103–108

& Representation & Site-selection algorithms & Taxonomic richness & Number of taxa (e.g.,
species, genera)

5, 7, 25–55

& Numerical Rarity & Number of rare species 6, 8

& Occurrence of & Taxa grouped according 149–162

assemblages to similarity in distribution

Methods used are grouped into three categories: congruence of univariate biodiversity metrics assesses whether surrogate biodiversity is spatially correlated with target
biodiversity; congruence of multivariate biodiversity metrics evaluates whether pairs of sites showing the highest similarity in surrogate assemblages also show the
highest similarity in target assemblages, and; representation uses site-selection algorithms to assess whether a network of areas selected to maximize the number of
surrogate taxa also maximises the number of target taxa and whether this number is greater than expected by chance. Test ID refers to Table S2.
doi:10.1371/journal.pone.0020141.t001
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where yij is the surrogate effectiveness for each test i of study j, bk is

the coefficient associated with the kth (dummy) covariate Xijk, E0j is

the effect for the jth study and tj is gamma-distributed (a = 0.001,

b = 0.001). The binary P response variable was modeled using a

binomial density function. The continuous R2 response variable,

which is restricted to the interval [0, 1], was modeled using a beta

density function (see code in Text S1; [25]). The logit link function

was used for both response variables. Both uninformative priors

bk,N(0, 1000) and informative priors bk,N(mk, sk
2), where mk

and sk
2 were estimated based on expert opinion, were considered.

Therefore, for each response variable and each covariate, three

models were considered with (i) covariate effect only and uninfor-

mative priors (ii) covariate and hierarchical effects and uninfor-

mative priors and (iii) covariate and hierarchical effects and

informative priors. Model performance was assessed using the

deviance information criterion (DIC) [26]. Model parameters were

estimated using Markov chain Monte Carlo (MCMC) and Gibbs

sampling. To ensure model convergence, models were run for

50,000 iterations with a 2,000 iteration burn-in period and every

12th observation was retained to control for any potential auto-

correlation; the remaining 4000 values of each parameter were

retained to generate the posterior distributions of the parameters.

Model fitting was done using WinBUGS 1.4 [27] and the

R2WinBUGS [28] package for R 2.9.2 [29].

Results

Literature review and meta-data compilation
Peer-reviewed and published literature on biological surrogacy

in marine ecosystems included 20 studies presenting 264 biological

surrogacy tests (Table S2; Text S2). Of these 264 tests, 138 were

for soft bottom habitats (all in temperate regions), 71 were for

temperate reefs and 55 for coral reefs (see Table 2 for cross-factor

tabulations). These surrogacy tests were distributed globally, with

10 tests from the Arctic, 114 from Australia, 55 from the Indo-

Pacific (including Indonesia, Madagascar, the Philippines and

Papua New Guinea), 59 from the Mediterranean Sea and 26 from

northern Europe. For higher-taxa surrogates, there were a variable

number of taxonomic steps between the surrogate and the target,

and the surrogate predictive power decreased as the number of

taxonomic steps between the surrogate and the target increased

(Table 3). We found no evidence of any publication bias in the

surrogate predictive power: i.e., no consistent trend between the

number of published articles and surrogate effectiveness (Spear-

man’s r = 20.20; P = 0.38).

Elicitation of priors using expert knowledge
Most experts answered all questions within 15 to 30 minutes

(Table S1) and left less than 10% of the questions (24 of 288)

unanswered. Expert confidence averaged 58613% (mean 6

standard deviation), corresponding to ‘fairly confident’ according

to the survey terminology. Mean expert confidence was influenced

by their experience in statistical analysis only (NPMANOVA

R2 = 0.30; P = 0.040).

Experts’ ranking of P was the highest in soft bottom habitats, at

a 10–100 km spatial scale, using representation-based statistical

methods and a higher-taxa surrogate (Figure 2: circles). Experts’

ranking of R2 was in agreement with that of P, although differences

among factor levels were less pronounced (Figure 3: circles).

Bayesian model fitting
The Type model of the P response variable was top-ranked

according to the deviance information criterion (DIC), with

higher- taxa surrogates, and subset-taxa surrogates to a lesser

extent, both predicting higher P than cross-taxa surrogates (odds

ratio = 60.1 and 10.0, respectively; Table 4; Figure 4). The type of

habitat best explained R2, with both soft bottoms and temperate

reefs performing better than tropical reef (odds ratio = 7.3 and 6.4,

respectively; Table 4; Figure 5). All factors were important

predictors of P, but only the type of habitat and the sample size

models were ranked higher than the null model for the R2 response

(Table 4). For both response variables, hierarchical models that

incorporated a Study effect accounting for the non-independence of

tests within the same study ranked higher than the covariate-

effects-only models (Table 4).

Models incorporating an informative prior were ranked higher

than those incorporating an uninformative prior for the Method

Table 2. Cross-tabulations of the number of tests for each combination of factor levels.

Habitat Type Scale Method

TR TE SO CT HT ST L M S UC MC RP

Habitat TR 55 55 0 0 2 53 0 5 16 34

TE 71 20 36 15 29 27 15 24 39 8

SO 138 27 92 19 16 80 42 32 84 22

Type CT 102 22 65 15 21 44 37

HT 128 14 77 37 20 86 22

ST 34 11 18 5 20 9 5

Scale L 47 19 28 0

M 160 24 80 56

S 57 18 31 8

Method UC 61

MC 139

RP 64

The diagonal indicates the total number of tests in each factor level including, for Habitat, TR: tropical reefs, TE: temperate reefs, SO: soft bottoms; for Type, CT: cross-
taxa surrogate, HT: higher-taxa surrogate, ST: subset-taxa surrogate; for Scale, L: .100 km, M: 10–100 km, S: ,10 km; and for Method, UC: univariate congruence, MC:
multivariate congruence, RP: representation.
doi:10.1371/journal.pone.0020141.t002

Effectiveness of Biological Surrogates

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e20141



model predicting P (Figure 2: diamonds; Table 4), and for the

Type, Method and Scale models predicting R2 (Figure 3: diamonds;

Table 4). However, differences in DIC were generally small (i.e.,

DDIC,1, except for the Scale and Type models of P), indicating

that models with uninformative or informative priors provided an

approximately equal description of the data and were essentially

undistinguishable. For the Scale and Type models of P, models with

uninformative priors performed better than those with informative

priors (Figure 2: squares). In the first case, priors based on expert

opinion did not capture the pattern revealed by the literature, i.e.,

a decrease in surrogate effectiveness as spatial scale increases.

In the second case, the ranking of factor levels according to

expert opinion was in agreement with the meta-data; however,

informative priors did not improve the model, as a consequence of

their diffuse distribution and a precise estimate of the likelihood

based on the meta-data only. The same situation was observed for

the Habitat model of R2 (Figure 3: squares).

Convergence was successfully achieved for all models,

although we could not fit any model that included interactions

because of missing cross-factor combinations. Models including

additive effects of all covariates could not be fitted either; adding

all terms aliased the random effect as a result of the low level of

replication of the different cross-factor combinations across

studies.

Discussion

Drivers of surrogate effectiveness
As a first attempt to collate information on biological surrogate

effectiveness in marine ecosystems, our study highlighted overall

that in most situations, surrogate effectiveness was typically lower

than generally assumed. Even with a relatively low expectation of

the relationship between surrogate and target biodiversity (i.e.,

non-random), in most situations more than one third of all studies

found no evidence for such a relationship. Moreover, even when

there was strong evidence for a relationship between surrogate and

target biodiversity, the predictability of such a relationship was

nevertheless often weak (e.g., at a spatial scale of 10–100 km;

P = 0.6660.10 and R2 = 0.3560.05). This clearly highlights the

need to understand why some surrogates might not be appropriate

in certain situations and to formulate precise recommendations for

a more reliable use of biological surrogates in future studies of

marine biodiversity.

By combining expert knowledge and published literature on

surrogate effectiveness, we showed that the spatial scale, habitat,

type of surrogate and method used for its construction all

influenced surrogate effectiveness, according to at least one of

the two measures of effectiveness considered. The type of

surrogate used was the strongest determinant of P, with higher-

taxa surrogates predicting higher P than all other types. This

greater effectiveness of higher-taxa surrogates might be intuitively

expected because of the hierarchical relationship among taxo-

nomic levels [30] where the probability of observing a high

number of genera increases with the number of species observed.

However even though expected, this result is demonstrated here

for the first time and warrants further development of higher-taxa

surrogates, once one guards against a number of potential pitfalls.

First, the rate of spatial variation in biodiversity metrics (b
diversity) declines with decreasing taxonomic resolution [31], so

inter-site differences in species richness or composition might not

be detected by such higher-taxonomic level surrogates. Secondly,

we advise caution when comparing the effectiveness of higher-taxa

surrogates across taxonomic groups. Indeed, subdivisions of taxa

and their rationale for classification into various taxonomic levels

is inconsistent across groups because current taxonomic classifi-

cations result from a heterogeneous mixture of various historical

and contemporary views [32]. Therefore, we contend that higher-

taxa approaches can provide valuable surrogates only at a scale

where they reflect species-level patterns of b diversity, and as long

as the inherent uncertainty of taxonomic classifications tempers

conclusions.

Our results indicate that surrogates based on representation

were less effective than those based on spatial congruence of

univariate or multivariate biodiversity metrics. Representation-

based methods, which consist of selecting a set of sites based on a

surrogate and summing the representation of the target within the

selected set, suffer from a number of flaws previously highlighted

in studies of surrogacy in terrestrial ecosystems. Site-selection

algorithms return one solution for reserve design from a large

number of potentials which might not be optimal because they

cannot assess the overall pattern of representation [33]. Moreover,

representation-based surrogates are designed to perform better

than the random addition of sites, but they are rarely compared to

the optimum selection of sites, derived by selecting sites on the

basis of the target instead of the surrogate – an approach that has

been developed in terrestrial ecosystems [34]. Such methods have

yet to be applied in marine ecosystems but appear worthy of

exploration in this realm. Lastly, representation-based methods

can and should be used with biodiversity metrics other than just

taxonomic richness. The number of taxa observed at a given place

depends strongly on sampling effort [35], and this might influence

the relationship between surrogate and target species richness.

Surrogate effectiveness also decreased with increasing spatial

scale. Most studies conducted at spatial scales .100 km assumed

homogeneity of the study system at finer scales. Such an assumption

might be incorrect if different biogeographic sub-regions or distinct

evolutionary histories are included [36,37], or if different combi-

nations of habitats are represented among areas. Indeed, surrogate

performance varies among areas displaying regional variation of

species distributions [8,38] and patterns of ‘local endemism’ (i.e.

fine-scale patterns in species-habitat associations; [37]). Despite

some evidence of the importance of spatial scale on surrogate

effectiveness, such effects are still largely unknown.

Surrogate effectiveness varied among habitats and was lowest

for tropical coral reefs. The high biodiversity and functional

Table 3. Higher-taxa surrogate predictive power (R2) as a
function of the number of taxonomic steps between the
surrogate and the target.

Nb
steps Surrogate Target

R2

mean
R2

sd n
mean
R2 ntot

1 class order 0.19 0.08 5 0.61 36

order family 0.47 0.06 6

family genus 0.87 0.08 6

genus species 0.91 0.09 19

2 class family 0.11 0.09 5 0.43 34

order genus 0.39 0.1 6

family species 0.78 0.19 23

3 class genus 0.11 0.09 5 0.29 23

order species 0.48 0.25 18

4 class species 0.25 0.18 10 0.25 10

With sd = standard deviation, n = number of tests, ntot = total number of tests.
doi:10.1371/journal.pone.0020141.t003
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complexity of coral reefs might have been responsible for weaker

relationships between surrogates and their target taxa. Indeed,

both theoretical and experimental evidence suggest that species

diversity, which is exceptionally high in tropical coral reefs [39,40],

is strongly correlated to functional diversity [41,42]. This strong

coupling could reflect a high partitioning of resources among

Figure 2. Surrogate effectiveness defined by P, the proportion of tests concluding that surrogate predictions were non-random.
Prior distribution (circles), posterior distribution given an uninformative prior (analogous to the likelihood; squares), and posterior distribution given
an informative prior (diamonds). Error bars depict the standard deviation of the prior or posterior. Asterisks indicate the best model according to the
deviance information criterion. Factors include the marine habitat (Habitat), spatial scale (Scale), the statistical method used to assess surrogate
performance (Method) and the type of surrogate (Type).
doi:10.1371/journal.pone.0020141.g002
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component species and low overlap in their functional traits [42].

Thus in tropical reefs, a large number of functional groups often

results in more complex food webs. These results corroborate the

idea that high species and functional diversity characterizing

tropical coral reefs enhances ecosystem complexity, thus weaken-

ing predictive and surrogacy relationships between taxa.

Figure 3. Surrogate effectiveness defined by R2, the predictability of targets using surrogates. Prior distribution (circles), posterior
distribution given an uninformative prior (analogous to the likelihood; squares) and posterior distribution given an informative prior (diamonds). Error
bars depict the standard deviation of the prior or posterior. Asterisks indicate the best model according to the deviance information criterion. Factors
include the marine habitat (Habitat), spatial scale (Scale), the statistical method used to assess surrogate performance (Method) and the type of
surrogate (Type).
doi:10.1371/journal.pone.0020141.g003

Effectiveness of Biological Surrogates
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Value of Bayesian mixed-effect models in meta-analyses
Using Bayesian hierarchical models in a meta-analysis of

surrogate effectiveness allowed us to account for correlation among

multiple statistical tests within studies. All hierarchical models

ranked higher than the analogous non-hierarchical models, showing

the relevance of accounting for such correlation, and suggesting that

studies neglecting them should be interpreted with caution (e.g.,

[17]). Multi-level hierarchical models have been extensively used in

socio-economic and medical research, for example, to model the

relationship among households of a same city [43], but such models

have only recently received interest in ecology (e.g., [44,45]). A

frequentist framework could alternatively be used to model such

within-group correlations; however, when the number of groups is

small or the multi-level design is complicated, there might not be

enough information to estimate variance components precisely,

whereas a Bayesian approach would average over the uncertainty in

all parameters in the model [43].

Incorporating an informative prior in our models proved

valuable in a few cases where estimations of the likelihood based

on meta-data only were relatively imprecise, or differences among

factor levels were small, such as in the Method model of P, or in the

Scale, Method or Type models of R2. In other cases, models using

informative priors based on expert opinion and those using an

uninformative prior were essentially undistinguishable. This might

reflect a relatively diffuse distribution of the prior with respect to

that of the estimate based on the meta-data. According to the

terminology used by Kuhnert et al (2010), we used a direct-

elicitation method, conducted remotely through an online survey.

This has the advantage of eliciting opinion from multiple

international experts when resource constraints prevent face-to-

face interviews [20]. However, the drawback is that no Delphi

process could be used, i.e., the process by which mutual feedback

among experts promotes the convergence of their opinion to reach

a consensus, or where the elicitor can provide immediate feedback

to the expert in one-to-one style survey. Whether or not using the

Delphi approach, expert opinion can still be prone to biases that

can emerge from different sources (see Table 3 in Kuhnert et al.

2010). Among those sources, the linguistic uncertainty (inducing a

cognitive bias, i.e. misunderstanding of what is required) [21] is

probably the most accessible to the elicitor. In our survey,

measures were taken to reduce the linguistic uncertainty and

included the assistance of a social scientist to design the survey, as

well as a series of dry tests and feed-back loops among research

group colleagues (Mellin C, unpubl. data.).

Recommendations for the use of biological surrogates
Despite an exhaustive literature search, a careful examination of

the metadata revealed that specific surrogate and target groups

were not uniformly distributed across spatial scales and habitats.

For example, all studies targeting arthropods were done at a

spatial scale .100 km (Table S2). We found that the lowest

surrogate effectiveness, observed in tropical reefs, was always

associated with tests examining corals. Although we could not fit

any model that included interactions between taxon and spatial

scale (or habitat) because of missing cross-factor combinations, we

contend that associations between a specific taxon and a spatial

scale (or habitat) did not bias overall results across all taxa

considered (total of 16). However, these associations still reflect

ecologists’ expectations as to the spatial scales or habitats where

surrogates should be the most effective, and can in turn be

analysed qualitatively to revisit these expectations and inform the

sampling design of future studies. Likewise, studies targeting

arthropods could possibly benefit from the consideration of a

spatial scale ,10 km, whereas surrogate effectiveness in coral reefs

could be higher when considering taxa other than corals.

We expect surrogate effectiveness to be the greatest for higher-

taxa surrogates at a ,10-km spatial scale, in low-complexity

marine ecosystems such as soft bottoms, and using multivariate-

based methods. In addition, surrogate taxa should ideally have a

broad distribution across different environments [2] but also

incorporate many species with restricted distributions

[14,33,46,47], be easy and cost-effective to identify and survey

[47], and be amenable to survey at multiple spatial scales [48]. A

lack of spatial consistency in surrogacy due, for example, to

regional patterns in species distributions, might make indicator

groups perform differently among areas [47].

Table 4. Deviance information criterion (DIC) for models of
surrogate effectiveness defined as the proportion of tests (P)
concluding that surrogate predictions are non-random and as
the surrogate predictive power (R2).

Response Model Model type Priors DIC

P type mixed 207.31

type mixed informative 208.96

method mixed informative 212.66

method mixed 212.76

scale mixed 217.44

n mixed 218.08

habitat mixed 218.19

null mixed 218.26

habitat mixed informative 218.47

scale mixed informative 218.59

type fixed 221.51

method fixed 248.06

habitat fixed 253.63

scale fixed 266.84

null fixed 269.33

n fixed 270.99

R2 habitat mixed 274.55

habitat mixed informative 274.11

n mixed 273.14

null mixed 271.98

type mixed informative 269.39

type mixed 269

method mixed informative 268.06

method mixed 268

scale mixed informative 266.41

scale mixed 265.83

scale fixed 262.25

habitat fixed 261.61

n fixed 253.35

method fixed 252.98

null fixed 246.28

type fixed 243.81

Factors include the type of surrogate (type), the statistical method used to
assess surrogate performance (method), the marine habitat (habitat), the spatial
scale (scale) and the sample size (n). Models are ranked by increasing DIC.
doi:10.1371/journal.pone.0020141.t004
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While often used in combination and compared, the different

statistical methods applied to construct the surrogate serve

different purposes. One third of the studies examined here used

a combination of methods based on spatial congruence and

representation to answer the same question, despite the two

approaches addressing different issues. While congruence-based

methods (uni- or multivariate) are informative for prediction, they

cannot inform conservation planning efficiency. Ensuring the cost-

effectiveness of conservation efforts requires maximizing biodiver-

sity (or endemism) included in a minimum number of sites

[7,49,50]. This can only be achieved using representation-based

methods such as reserve-selection algorithms. Therefore, where

the goal of a study is the prediction of biodiversity patterns,

surrogacy methods based on spatial congruence should be used;

where conservation planning is the goal, surrogacy methods based

on representation are applicable. However, such a distinction

between the utility of these different approaches to biological

surrogates is rarely apparent in the published literature. Future

investigation of biological surrogacy will benefit from careful

choice and specification of methods depending on whether the

goal of the study is prediction or planning.

Independent of the ecosystems in which they are applied, the

reliability of biological surrogates can be improved in the following

ways: (i) Surrogates should be selected based on the target taxa of

interest, with an awareness of the limits imposed by that selection.

Higher-taxa surrogates can be appropriate (and often effective)

when identification of target taxa to species is expensive, while

cross-taxa surrogates are appropriate (but rarely effective) when

the target is difficult to census. (ii) The objective of using a

particular surrogate needs to be explicit, and the method used for

Figure 4. Posterior distributions (given an informative prior) of surrogate effectiveness defined as P. Posterior distributions of P (i.e. the
proportion of tests concluding that surrogate predictions are non-random) are given according to the marine habitat (Habitat), spatial scale (Scale),
the statistical method used to assess surrogate performance (Method) and the type of surrogate (Type). Asterisks indicate models outperforming the
null model. A Gaussian distribution with the mean and standard deviation of the posterior distribution was used to approximate posterior
distributions.
doi:10.1371/journal.pone.0020141.g004
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its construction must be matched to this objective to maximize its

effectiveness. If the surrogate is to be used for designing networks

of protected areas, only representation-based methods are

appropriate, whereas congruence-based methods should be used

to predict patterns of biodiversity where data are scarce or

unavailable. (iii) The costs of sampling surrogates need to be

evaluated to optimize their efficiency. To be efficient, a surrogate

must be considerably less expensive and time-consuming than

sampling the target [2]. There is, however, currently little

information available regarding the costs of monitoring biological

surrogates in marine ecosystems (but see [51] for the case of

tropical forests). (iv) Finally, the temporal stability of surrogate

effectiveness needs to be tested and not just assumed. Most

biological surrogacy studies have attempted to evaluate surrogate

effectiveness across space only, pooling samples among times,

without assessing the temporal robustness of the surrogate-target

relationship (but see [52]). Doing so will be particularly useful in

the context of monitoring the species-specific responses to global

change. By advancing knowledge in these four areas, a better

understanding of the properties of surrogates and how to deploy

them most effectively and efficiently will be gained. Bridging these

knowledge gaps is crucial as biological surrogates are becoming an

increasingly important tool for conservation planning.
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