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ABSTRACT

Glutamate excitotoxicity is a major pathogenic process
implicated in many neurodegenerative conditions, includ-
ing AD (Alzheimer’s disease) and following traumatic brain
injury. Occurring predominantly from over-stimulation of
ionotropic glutamate receptors located along dendrites,
excitotoxic axonal degeneration may also occur in white
matter tracts. Recent identification of axonal glutamate
receptor subunits within axonal nanocomplexes raises the
possibility of direct excitotoxic effects on axons. Individual
neuronal responses to excitotoxicity are highly dependent
on the complement of glutamate receptors expressed by
the cell, and the localization of the functional receptors. To
enable isolation of distal axons and targeted excitotoxicity,
murine cortical neuron cultures were prepared in com-
partmented microfluidic devices, such that distal axons
were isolated from neuronal cell bodies. Within the com-
partmented culture system, cortical neurons developed to
relative maturity at 11 DIV (days in vitro) as demonstrated
by the formation of dendritic spines and clustering of
the presynaptic protein synaptophysin. The isolated distal
axons retained growth cone structures in the absence of
synaptic targets, and expressed glutamate receptor sub-
units. Glutamate treatment (100 mM) to the cell body cham-
ber resulted in widespread degeneration within this chamber
and degeneration of distal axons in the other cham-
ber. Glutamate application to the distal axon chamber
triggered a lesser degree of axonal degeneration without
degenerative changes in the untreated somal chamber. These
data indicate that in addition to current mechanisms of
indirect axonal excitotoxicity, the distal axon may be a
primary target for excitotoxicity in neurodegenerative
conditions.
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INTRODUCTION

Glutamate excitotoxicity has been implicated as a major

pathogenic process in many neurodegenerative conditions,

including AD (Alzheimer’s disease), motor-neuron disease and

following traumatic brain injury (Arundine and Tymianski,

2004; Hynd et al., 2004). Excitotoxicity occurs by over-

stimulation of excitatory amino acid receptors, resulting in

calcium influx and consequential pathological changes

triggering neuronal loss (Carriedo et al., 1996; Doble 1996;

Van Den Bosch et al., 2000). The response of an individual

neuron to excitotoxicity is dependent on a number of factors,

including the intensity and duration of the excitatory in-

sult, and the profile of excitatory receptors or downstream

signalling molecules expressed by the cell (Arundine and

Tymianski, 2003). Pathologically, excitotoxicity can result in

apoptotic cell death that may be preceded by dendritic beading.

Excitotoxicity has also been implicated in axon degeneration,

and in cultured cortical neurons degeneration is preceded by

neurofilament loss (Chung et al., 2005). Furthermore, excito-

toxicity has been shown to result in a distal axonopathy in

retinal ganglion cells (Saggu et al., 2008) and cultured motor

neurons (King et al., 2007). It is currently unknown as to how

excitotoxicity results in axonal degeneration.

Neuronal glutamate receptors, the mediators of excito-

toxicity, are found on postsynaptic densities where they are

involved in synaptic transmission. However, immunohisto-

chemical techniques have demonstrated the presence of

glutamate receptors at numerous extrasynaptic sites includ-

ing the soma, dendrites and spines (reviewed in Newpher and

Ehlers, 2008) and presynaptically (Tovar and Westbrook,

2002). Importantly, electrophysiological techniques have also

indicated that these receptors can be functional (Andrasfalvy

and Magee, 2001; Bardoni et al., 2004). Dendritic extrasynaptic

receptors, and specifically NMDA (N-methyl-D-aspartate)
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receptors, have been particularly implicated in excitotoxicity

(Sattler et al., 2000). Current evidence supports the notion that

synaptic receptor activation promotes neuroprotection

through activation of survival genes and suppression of

apoptotic genes, whereas extrasynaptic stimulation promotes

cell death (Hardingham et al., 2002), although this may be due

to differences in receptor subunits (Liu et al., 2007). Thus, the

distribution of synaptic and extrasynaptic NMDA receptors,

rather than total calcium load, influence neuronal suscepti-

bility and responses to excitotoxicity (reviewed in Hardingham

and Bading, 2010).

Although excitotoxicity is considered primarily a neuronal

somatodendritic insult, glutamate toxicity has also been

demonstrated to occur in white matter tracts lacking

neuronal cell bodies. This type of toxicity, often associated

with brain injury, ischaemia and glaucoma (Stys and Li, 2000;

Saggu et al., 2008), has been attributed to glial cells known to

express functional glutamate receptors (Micu et al., 2006;

Matute, 2007). Oligodendrocytes are directly vulnerable to

AMPA (a-amino-3-hydroxy-5-methylisoxazole-4-propionic

acid) mediated Ca2+ excitotoxicity resulting in demyelination

and secondary axonal pathology (Yoshioka et al., 1995;

Bannerman et al., 2007). However, the recent identification

of axonal glutamate receptor subunits within axonal inter-

nodal nanocomplexes, raises the possibility of direct axonal

excitotoxicity (Ouardouz et al., 2009a, 2009b). The functional

status of these receptors remains disputed; they may be

involved in local regulatory mechanisms within the internodal

nanocomplexes they reside in.

Investigation of the expression of glutamate receptors in

different neuronal compartments and their role in excito-

toxicity is difficult under standard culture conditions due to

the inability to specifically target excitatory agonists. Simi-

larly, in vivo investigations are complicated by the presence

of glial cells. To overcome this, we have utilized microfluidic

devices (Taylor et al., 2005) to establish compartmented

embryonic cortical neuron cultures. Such devices allow fluidic

isolation of distal axons from cell bodies, thus allowing focal

exposure of the axon or soma to excitotoxins. In this study,

we have examined the maturation of primary mouse cortical

neurons within a microfluidic device, in addition to immuno-

cytochemical and Western blot analysis of the expression

of glutamate receptor subunits in both the somal and dis-

tal axon compartments. To determine if excitotoxin-induced

axon degeneration can result from somal or axonal exposure

to excitotoxin, we also examined the effect of a chronic

(24 and 72 h) exposure of glutamate to either the somal or

axonal chamber.

MATERIALS AND METHODS

All animals experiments used were reviewed and approved by

the Animal Ethics Committee of the University of Tasmania.

Primary cell culture
Primary cortical neurons were dissected from the superficial

layers of cerebral cortex of gestational day 14 embryos,

obtained from pregnant C57Bl/6 mice and prepared as

previously described (Dickson et al., 2000; King et al., 2006).

Cells were dissociated in ‘initial’ plating medium: Neurobasal

medium (Gibco BRL, Life Technologies), 2% B27 supplement

(Gibco BRL, Life Technologies), 10% foetal bovine serum,

0.5 mM glutamine, 25 mM glutamate and penicillin/strep-

tomycin. Cell density and viability was assessed using a Trypan

Blue dye exclusion assay, and the volume adjusted to achieve a

density of 86106 cells/ml. Neurons were plated into prepared

microfluidic devices (450 nm barrier grooves, Xona

Microfluidics, Figure 1A) as outlined below. In contrast to

Campenot compartmented chambers utilizing Teflon divisions

and scratched substrate to guide axonal growth, microfluidic

devices are fabricated from PDMS using a photoresist template

to create microchannels for axonal growth between compart-

ments (Taylor et al., 2005). Devices were attached to 22 cm2

glass coverslips (Livingstone), coated with 0.001% poly-L-lysine

and incubated overnight. Microfluidics were rinsed with initial

plating medium, which was removed immediately prior to

addition of cells into the somal chamber. Plated neurons were

incubated for 10 min to facilitate adhesion, followed by

addition of initial plating medium. Cultures were incubated

under standard conditions (37 C̊, 5% CO2), with the medium

changed to ’subsequent’ growth medium (Neurobasal medium,

2% B27 supplement, 0.5 mM glutamine and penicillin/

streptomycin), at 1 and 7 DIV (days in vitro).

Labelling of live cells in microfluidic chambers
Not all neurons extended axons through to the distal

chamber, therefore, to identify neuronal soma with isolated

distal axons, the lipophilic membrane stain CM-DiI (1 mg/ml,

Molecular Probes) was added to the distal axon chamber.

Microfluidic isolation between the treated and untreated

sides was achieved by maintaining a lower fluid volume on

the treated side (Taylor et al., 2005). Microfluidic devices were

incubated for 4 h under standard growth conditions,

followed by media change. Subsequent experimentation

was performed the next day, as required.

In some experiments, neurons were transfected with a

plasmid expressing GFP (green fluorescent protein; pmax GFP,

Lonza) to allow morphological analysis of neuronal pro-

cesses. Briefly, 800 ng plasmid DNA was applied to the somal

chamber using the LipofectamineTM 2000 reagent (Invi-

trogen) for 6 h, under standard growth conditions, according

to the manufacturer’s instructions. This was followed by

complete media change. Transfected neurons were visualized

by fluorescence microscopy after 24 h.

Excitotoxicity
Excitotoxicity was initiated in mature (11 DIV) compart-

mented cultures (n55 repeats) by a single application of
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100 mM glutamate in culture medium (Chung et al., 2005) to

either the distal axon or somal chamber of the microfluidic

device for 24 h (Figure 1B). Microfluidic isolation was

performed as above. Additional cultures were treated with

100 mM glutamate for 72 h to the axonal chamber, beginning

at 10 DIV. Treated cultures were maintained under standard

growth conditions for 24 or 72 h, followed by fixation.

Inhibition of caspase activity
The pan-caspase inhibitor Z-VAD-FMK (R&D Systems) was

added to either the distal axon or somal chambers to inactivate

caspase activity. Cultures were pre-incubated in 10 mM Z-VAD-

FMK in culture medium for 2 h and excitotoxicity induced as

described above.

Cell fixation and immunocytochemical labelling
Cortical neuron cultures were fixed with 4% PFA (para-

formaldehyde) for 30 min at room temperature, then

permeabilized with 0.3% Triton X-100 for 2–5 min. For NR1

(NMDA receptor subunit 1) visualization, coverslips were fixed

in ice-cold methanol for 10 min at 220 C̊, omitting

permeabilization (note: AMPA receptor immunoreactivity

was not affected by the method of fixation). This was

followed by incubation with primary antibodies diluted in

PBS, for 1 h at room temperature followed by 4 C̊ overnight.

Antibodies used in this study include those directed to GluR1

(1:100 Chemicon), GluR4 (1:500 Chemicon), MAP2 (micro-

tubule-associated protein-2; 1:1000 Millipore), NF-M (1:1000

Serotec), NR1 (1:10,000 BD Pharmingen), synaptophysin

(1:200 Millipore). All antibodies are commercially available

and optimum concentrations were individually determined

for each antibody. Species and isotype appropriate fluor-

escent AlexaFluor secondary antibodies (1:1000, Molecular

Probes) were applied for 2 h at room temperature. The

filamentous actin dye, phalloidin (1:200, AlexaFluor 488,

Molecular Probes), was applied for 30 min during the

secondary antibody incubation. All antibodies have been

used in our previous studies (King et al., 2006, 2011). No cross

reactivity for the primary antibody’s isotype or secondary anti-

body non-specific binding have been observed. Following

antibody labelling, coverslips were stained with Nuclear Yellow

(0.0001%, Sigma) to identify nuclei.

Western blot
For Western blot analysis, the somal or distal axon chambers

were harvested from 10 microfluidic devices (n52 repeats) in

ice-cold Tris–Trion buffer (10 mM Tris, pH 7.4; 100 mM NaCl;

1 mM EDTA; 1 mM EGTA; 1% Triton X-100; 10% glycerol;

0.1% SDS and 0.5% deoxycholate) supplemented with

CompleteTM (protease inhibitor cocktail, Roche). Samples

were separated by SDS/12.5% PAGE. Coomassie Brilliant Blue

staining was also performed on a gel from each experiment.

Protein gels were transferred to a PVDF membrane.

Membranes were blocked overnight in 5% non-fat dried

skimmed milk powder, followed by an overnight incubation in

primary antibodies, including a combination of GluR1 (1:200,

Chemicon), GluR2 (1:500, Chemicon), GluR3 (1:500,

Chemicon) and GluR4 (1:500, Chemicon) for AMPA receptors

and NR1 (1:1000, BD Pharmingen) for NMDA receptors.

Membranes were washed in TBS-Tween. Species appropriate

HRP (horseradish-peroxidase)-conjugated secondary antibod-

ies (1:1000, Dako) were applied and visualized with

chemilluminescent peroxidase substrate (Sigma).

Figure 1 Schematic diagram of neuronal growth within the microfluidic culture device
Cell bodies are restricted to the somal chamber, and axons extend into the distal axonal chamber (A). Arrows indicate selective glutamate treatment
(yellow) of either the somal or distal axonal chamber, fluidic isolation is maintained by manipulating fluid levels (B). Quantification of axon
degeneration following excitotoxicity was achieved by analysing axonal segments in each square of a superimposed grid (C); axonal morphology was
scored as whole, beaded or fragmented (D). Scale bar55 mm.

Excitotoxicity-mediated axonopathy
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Quantification of axon degeneration
Treated cultures were immunolabelled for neurofilaments and

images for analysis were obtained using a Leica (DM LB2)

fluorescence microscope fitted with a cooled CCD camera

(Magnafire Optronics). Image acquisition and subsequent

analysis was performed blinded to experimental conditions.

Four6400 images were randomly captured from each distal

axon chamber. A 465 50 mm2 grid (Figure 1C) was super-

imposed on each image using Adobe Photoshop (CS5). Axons

in each square of the grid were scored as either whole,

beaded (distinguishable swellings connected by sections of

axon) or fragmented (disconnected swellings) (Figure 1D).

Overall degeneration was calculated as the sum of beaded

and fragmented axons. Values were expressed as a percentage

of total axons. Total values from each square were averaged

for each coverslip and analysed using Student’s t-test. P-

values ,0.05 were considered significant. A minimum of five

separate culture repeats were analysed. Data are represented

as means¡SEM.

RESULTS

Developmental characteristics of

compartmented cortical neuronal culture
Mouse cortical neuron cultures were established within

compartmented microfluidic culture devices (Taylor et al.,

2005) and their growth characteristics were examined over a

time course (Figures 2A–2E). Initial neuronal development (1–

3 DIV) was restricted to the somal chamber (Figure 2A). By 5

DIV, the neurons had extended multiple neurites within the

somal chamber (Figure 2C) and axons were present within the

microchannels (Figure 2D). At 7 DIV long, relatively

unbranched axons were present extending from the micro-

channels into the distal axon chamber, forming an exten-

sively branched network at 11 DIV (Figure 2F). Isolated axonal

health declined from 14 DIV, with extensive distal axon

degeneration present at 15 DIV (Figure 2H). Degeneration of

axons within the distal axon chamber from 15 DIV was not

accompanied by degeneration within the somal chamber

(Figure 2G).

Double immunolabelling verified that axons (NF-M

immunoreactivity) were present in the distal axon chamber,

with neuronal cell bodies and dendrites (MAP2 immuno-

reactivity) restricted to the somal chamber (Figure 2I), as

previously described by Taylor et al. (2005). NF-M immunor-

eactive axons were also present in the somal chamber.

Neurons with axons extending into the distal chamber were

identified by incubating the distal axon chamber with CM-DiI

prior to treatment. CM-DiI was taken up by the axons and

transported to the cell body (Perlson et al., 2009) (Figure 2J).

DiI retrograde labelling from the distal axon chamber

indicated that approximately 30% of neurons extended

axons to the distal chamber.

Neuronal maturity in compartmented cultures was deter-

mined by examining the presence of growth cones, synapses

and spines. Previous investigations have demonstrated that

under standard conditions, immature neurons prior to the

development of synapses have numerous growth cones (Haas

et al., 2004). As neurons mature, punctate synapses and

mushroom-shaped spines are formed on the dendrites

accompanied by the loss of growth cones (King et al.,

2006). In the current study, the presence of growth cones in

compartmented cultures was examined by phalloidin staining

for filamentous actin and synaptic puncta were visualized by

immunolabelling with the presynaptic marker synaptophysin

in addition to the dendritic marker MAP2. Dendritic spine

morphology was determined by examination of neurons

transiently transfected with a GFP expression construct. In

the somal chamber at 11 DIV, few growth cones were present

and synaptophysin positive puncta were immunolabelled

along MAP2 immunopositive dendrites (Figure 3A), with the

number and density of puncta varying between cells,

congruent with previous investigations (King et al., 2006).

Furthermore, GFP expression revealed short, mushroom-

shaped spines (Figure 3B) on the dendrites in addition to a

number of long filopodial spines (Figure 3C). These data

indicate that, in the somal chamber, synapses were present in

accordance with neuronal maturity in standard cultures (King

et al., 2006). However, in the distal axonal chamber at this

developmental stage, large growth cones were present at

the ends of axons (Figure 3D), indicating a stage of im-

maturity not usually seen in standard cultures at this time

point in vitro.

Glutamate receptor expression in

compartmented cultures
To examine whether components of the machinery required

for functional glutamatergic signalling, and therefore

excitotoxicity, were present, the expression of glutamate

receptor subunits was determined. Expression of both NMDA

and AMPA receptors was examined within the somal and

distal axon chambers of mature (11 DIV) cultures by immu-

nocytochemistry using glutamate subunit specific antibodies.

The expression profiles of the receptors varied between

neurons within each culture. Within the somal chamber, im-

munoreactivity for AMPA (GluR1) and NMDA (NR1) receptor

subunits was present throughout the soma, with punctate

expression along the dendrites (Figures 4A and 4B). Within

the distal chamber, AMPA subunit labelling (GluR4) was

frequently present and punctate along distal axons and

within the growth cone (Figure 4C). Immunoreactivity for

NMDA receptors was occasionally present within distal axon

growth cones (Figure 4D).

To confirm the presence of glutamate receptor subunits

in the somal and distal axon chambers, protein was harvested
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from each chamber and glutamate receptor subunit express-

ion determined by Western blot analysis. Coomassie staining

of SDS/PAGE gels demonstrated a good yield of protein from

both chambers (Figure 4E). Western blots confirmed the

presence of NMDA (NR1 labelling at 120 kDa) and AMPA

(GluR1 GluR2, GluR3 and GluR4 labelling at 100 kDa)

receptors in the somal chambers (Figure 4F). Interestingly,

Western blot analysis also demonstrated the presence of

AMPA receptors in protein harvested from the distal axon

chamber (Figure 4F). NMDA receptors, however, were not

detected in the distal axon chamber (Figure 4F). Together,

these data indicate differential expression of glutamate

receptors subunits on both the somatodendritic compart-

ment and distal axon of the cortical neuron, with strong

evidence for the presence of AMPA receptor subunits in the

axon.

Functional contribution of expressed glutamate

receptors to focal excitotoxicity
To determine the role of the axon in mediating excitotoxi-

city, mature (11 DIV) mouse cortical neurons were treated

with 100 mM glutamic acid or vehicle control, applied to

either the somal or the distal axon chamber of the

microfluidic device, and maintained for 24 h post-treat-

ment. Following treatment, distal axon degeneration was

assessed based on neurofilament immunoreactivity for

axonal integrity.

Figure 2 Neuronal growth in compartmented culture
Initial neuronal growth in compartmented culture (2 DIV) (A) is restricted to the somal chamber with axons extending into the distal cham-
ber to form a branched network at 11 DIV (B). At 5 DIV neuronal growth is characterized by branched neurites within the
somal chamber (C) and neurites visible within the microchannels (arrow) (D). At 11 DIV neurites within somal chamber (E)
were densely branched, and axons within the distal axon chamber (F) had formed extensive branched networks. Neurons
retained normal healthy morphology within the somal chamber at 15 DIV (G) despite severe deterioration of isolated axons
(H). Immunolabelling of 11 DIV neurons (I) demonstrates cell bodies (MAP2, green) restricted to the somal chamber and
axons (NF-M, red) present within the somal chamber and extending to the distal axon chamber. Neurons (Nuclear Yellow,
blue) with isolated axons were identified by CM-DiI (red) retrograde labelling from the distal axon chamber (J). Arrowhead
indicates a neuron positive for CM-DiI uptake, arrow indicates a neuron negative for CM-DiI. Scale bars A5100 mm, B–D5
50 mm, E530 mm, F550 mm.

Excitotoxicity-mediated axonopathy
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Glutamate applied to the somal chamber resulted in

extensive neuronal degeneration, both within the treated

chamber and at the unexposed distal axon. Specifically, axons

in both chambers frequently showed a beaded morphology

and additionally complete axon fragmentation was present in

some axons. Quantitative analysis of neurofilament immuno-

reactivity in the untreated distal axon chamber demonstrated

that somal glutamate treatment resulted in a significant

(P,0.01) 3-fold increase in total axon degeneration,

including the sum of both beaded and fragmented axons

(80.5%¡2.9). Beading (32.2%¡2.4) and fragmentation

(49.5%¡3.3) were significantly (P,0.01) increased relative

to untreated controls (26.9%¡2.8 total damage; 13.5%¡1.7

beading; 14.3%¡1.5 fragmentation) (Figure 5A). Widespread

axonal degeneration was also present in the treated somal

chamber (not quantified) (Chung et al., 2005).

We next determined if specific targeting of excitotoxicity

to the distal axon chamber could also result in degenerative

changes. Twenty-four hour glutamate exposure also resulted

in beading and fragmentation of the distal axon. Quantitative

analysis of neurofilament immunoreactivity demonstrated a

significant (P,0.01) 1.5-fold increase in total degeneration

(46.7%¡3.2), axonal beading (21.3%¡1.0) and axonal

fragmentation (25.5%¡2.3) when compared with untreated

controls (26.9%¡2.8, total damage; 13.5%¡1.7 beading;

14.3%¡1.5 fragmentation) (Figure 5A). The degenerative

changes in distally treated cultures was significantly (P,0.01)

1.5-fold less than the distal degeneration recorded from

somal treatment, assessed as both axonal beading and

fragmentation.

The neuron-wide effects of somal and axonal excitotoxin

exposure were examined to determine the extent of neuronal

damage. In addition to distal axon morphology (neurofila-

ment immunoreactivity) (Figures 5B–5D), we examined

changes to dendrites (MAP2 immunoreactivity) (Figures 5E–

5G) and overall cell health, using Nuclear Yellow to assess

nuclear integrity (Figures 5H–5J). Somal excitotoxicity

resulted in severe dendritic beading at 24 h post-treatment

(Figure 5E), as has been described previously (Park et al.,

1996). There was a significant (20%¡3.2, P,0.01) increase in

apoptotic (condensed) nuclei following somatodendritic

excitotoxicity (Figure 5I). In contrast with somal exposure,

the unexposed somal chambers of distally treated cultures

had no change to dendritic morphology relative to controls

(Figure 5G). The nuclear morphology of CM-DiI-stained

neurons was assessed; however, there was no difference in

the percentage of apoptotic nuclei between axonal excitotoxicity

at 24 h and untreated controls (25.4%¡2.0 24 h excitotoxi-

city; 22.7%¡1.3 control).

To investigate whether delayed apoptosis occurred,

through dying-back from the axon, cultures were treated

with 100 mM glutamate to the distal axon chamber for 72 h

at 10 DIV and axon degeneration and cell death assessed.

Seventy two hour-treated cultures demonstrated a significant

(P,0.01) increase in total axon degeneration from untreated

controls (52.5%¡4.3 and 32.5%¡2.6, respectively); however

this was not significantly (P.0.05) different to cultures treat-

ed for 24 h (46.7%¡3.2) (Figure 6A). Additional cultures were

labelled with CM-DiI to the distal axon chamber prior to

treatment to specifically label neuronal soma with axons in the

Figure 3 Markers of neuronal maturity in compartmented culture
At 11 DIV, synaptophysin expression is localized to puncta (arrows) along MAP2 immunoreactive dendrites (A) within the somal
chamber. GFP expression indicates short, mushroom-shaped spines (arrows) along dendrites (B) in addition to long filopodial spines
(arrows) (C). Axons within the distal axon chamber (D) retain growth cones, immunoreactive for filamentous actin; inset shows
higher power of growth cone morphology. Scale bars A525 mm, B–C54 mm, D520 mm.
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distal chamber. Following treatment, the nuclear morphology

of DiI positive soma was assessed with no significant (P.0.05)

change to the percentage of apoptotic nuclei relative to

controls (13.9%¡1.9 72 h glutamate, 17.8%¡1.4 controls)

(Figure 6B).

Mechanisms of focal excitotoxin-induced axonal

degeneration
To investigate whether axon degeneration following soma or

axonal excitotoxicity involved activation of caspases and

apoptotic pathways, 11 DIV cultures were pre-incubated with

10 mM Z-VAD-FMK pan caspase inhibitor to either the somal

or distal axon chambers. Cultures were subsequently treated

with 100 mM glutamate for 24 h to induce excitotoxicity in

the two compartments. The efficacy of the inhibitor was

confirmed by a significant (P,0.05) decrease in apoptotic

nuclei following somal excitotoxicity when compared with no

inhibitor (16.06%¡3.93 glutamate only; 3.93%¡3.15 inhi-

bition+glutamate).

Figure 5 Axon degeneration following excitotoxicity
Somatodendritic excitotoxicity resulted in a significant (P,0.01) 3-fold
increase in distal axon degeneration (A). Distal axonal excitotoxicity resulted
in a significant (P,0.01) 1.5-fold increase in distal axon degeneration (A).
Immunocytochemical analysis of control and treated cultures (B–J). Distal
axons demonstrated increased beading and fragmentation between control
(B), somal-treated (C) and distal axon-treated (D) cultures, visualized with
NF-M immunoreactivity. Arrows indicate whole axons, arrowheads indicate
fragmented and beaded axons. Within the somal chamber, MAP2
immunoreactive dendrites demonstrated increased beading between control
(E) and somal-treated (F) cultures. Distal axon-treated cultures (G) did not
demonstrate changes to dendritic morphology. Arrows indicate soma,
arrowheads indicate dendrites. Similarly, nuclear health (Nuclear Yellow)
declined between control (H) and somal-treated cultures (I) as demonstrated
by an increase in apoptotic nuclei (arrowhead) versus normal nuclei (arrow).
Distal axon-treated cultures (J) showed no change in nuclear morphology
compared with controls. Scale bar550 mm.

Figure 4 Expression of AMPA and NMDA glutamate receptor subunits in
compartmented culture
AMPA (GluR1) and NMDA (NR1) immunoreactivity were both present
throughout the soma, with punctate expression along the dendrites (A, B). Dis-
tal axon AMPA (GluR4) immunoreactivity was frequently present, along distal
axons and within the growth cone (C). Expression of NMDA receptors (NR1)
was occasionally present within distal axon growth cones (D). Western blot
analysis of somal and distal axonal expression (E) indicates AMPA subunits in
both chambers; however, NMDA receptors were not detected in the distal axon
chamber (F). Scale bars A–B520 mm, C–D550 mm.

Excitotoxicity-mediated axonopathy
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Somal caspase inhibition prior to somal excitotoxicity

significantly (P,0.01) decreased distal axon degeneration

(31.3%¡3.2) when compared with somal treatment alone

(54.5%¡2.3) (Figure 7A). Axonal caspase inhibition com-

bined with somal excitotoxicity also significantly (P,0.01)

reduced axon degeneration (36.4%¡2.1) (Figure 7A). Somal

caspase inhibition and axonal caspase inhibition similarly

significantly (P,0.01) decreased axon degeneration in

conjunction with axonal excitotoxicity (2.5%¡4.0 and

9.9%¡2.4, respectively) compared with axonal excitotoxicity

alone (20.6%¡3.2) (Figure 7B). For both axonal and somal

excitotoxicity, there was no significant (P.0.05) difference

between somal and axonal application of caspase inhibition.

DISCUSSION

In this study, we have grown primary cortical neurons in a

compartmentalized microfluidic device to determine the

expression of glutamate receptors in specific neuronal

compartments and to investigate degenerative responses

following chronic targeted distal axon excitotoxicity. Of

relevance to the current study, our previous investigations

(King et al., 2006), and those of others (Choi et al., 1987; Liu

et al., 1996) have demonstrated that neuronal vulnerability

to excitotoxicity is dependent on neuronal maturity and

expression of glutamate receptor subunits, which is variable

between cell types. Thus, for the current study it was im-

portant to determine the maturity of neurons within the

microfluidic culture chambers.

Under standard growth conditions, development of pri-

mary murine cortical neurons occurs via a sequence of

predetermined steps that include neurite outgrowth, polar-

ization and elongation followed by movement of glutamate

receptors into the synapses and loss of immaturity markers

such as growth cones (Dotti et al., 1988, Haas et al., 2004).

The timing of these developmental stages is dependent on

culture density (de Lima et al., 1997; Rao et al., 1998).

Assessment of neuronal growth of cultures in microfluidic

chambers indicates that development occurs in a similar

manner to standard cortical culture within the somal

chamber, including the presence of mature spines and

punctate glutamate receptor subunits at 11 DIV. However,

in the axonal chamber, even at relative culture maturity (11

DIV), numerous axonal growth cones remained present. The

presence of growth cones is likely to be due to the inability of

presynaptic neurons to find postsynaptic partners in this

Figure 7 Mechanisms of axon degeneration following focal excitotoxicity
Inhibition of caspase activity, in either the somal or the axonal chamber,
significantly (P,0.01) decreased axon degeneration following somal
excitotoxicity (A), and following axonal excitotoxicity (B). Results expressed
relative to untreated controls.

Figure 6 Cell effects of long-term distal axonal excitotoxicity
Application of glutamate to the distal axon compartment for 72 h
significantly (P,0.01) increased percentage axon degeneration from
untreated controls, however, it did not significantly (P.0.05) alter the
percentage of axon degeneration from 24 h treated cultures (A). Application
of glutamate to the distal axon chamber for 72 h did not significantly
(P.0.05) alter the percentage of apoptotic nuclei between untreated, 24 h
and 72 h treated cultures (B).
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culture system and may affect the axonal expression of

glutamate receptor subunits.

Our data indicate that, in addition to the well-documented

expression of glutamate receptor subunits on the somato-

dendritic compartment of cultured primary cortical neurons

(King et al., 2006), glutamate receptors, and in particular

AMPA receptors, were also present on axons. Excitotoxic

stimulation of axonal glutamate receptors resulted in axonal

degeneration, which, unlike somatodendritic exposure, was

confined to the exposed segment of the axon and did not

cause retrograde degeneration or apoptotic cell death, even

at extended time-points of 72 h. These data also suggest the

presence of functional glutamate receptor complexes on

the axons in this chamber.

Axon degeneration and excitotoxicity
Axon degeneration following glutamate receptor stimulation

has been previously reported in a number of studies. In vitro

studies have indicated that axon degeneration occurs as a

result of chronic excitotoxicity in cultured motor (King et al.,

2007) and cortical (Chung et al., 2005) neurons. In these

studies, however, glutamate or other agonists were globally

applied to the cells and so it is unclear if axon degeneration

occurred from toxicity to somatodendritic glutamate recep-

tors, or receptors present on axons, growth cones or

presynaptic terminals. In vivo studies have allowed focal

excitotoxin exposure of neuronal compartments. Somal

glutamate exposure to retinal ganglion cells resulted in a

degeneration of the distal axon (Saggu et al., 2008),

confirming excitotoxic axonal degeneration in the unexposed

axon segment, consistent with the current study in cortical

neurons. In vivo glutamate exposure to myelinated axons also

resulted in axonal damage to the optic nerve (Matute, 1998)

and external capsule (Fowler et al., 2003). The vulnerability of

myelinating oligodendrocytes to excitotoxicity has been well

documented and myelin has been demonstrated to play a role

in axonal excitotoxicity (Fowler et al., 2006). However, studies

using myelin-deficient Shiverer mice show that compact

myelin is not required for AMPA toxicity to axons (Pitt et al.,

2010).

A study by Underhill and Goldberg (2007) utilized a

Campenot style compartmentalized culture system to directly

examine the role of glutamate receptor activation in axon

degeneration in the absence of glial cells. Their data

demonstrated that brief (2 h) axonal exposure to glutamate

receptor agonists, NMDA or AMPA, did not result in sig-

nificant axonal degeneration. Conversely, the current study

using a compartmentalized microfluidic culture system,

demonstrates the novel finding that chronic (24 h) glutamate

exposure results in axonal blebbing and fragmentation in a

proportion of axons. The reasons for these conflicting results

may be the length of time of the exposure, the agonists used

or differences in the culture systems, which may select for

isolation of axons from specific cell types. Interestingly, in

vivo studies also suggest difference in chronic versus acute

excitotoxic axonal exposure (Matute, 1998). These data

suggest that excitotoxicity can be mediated through

glutamate receptors expressed on the axon.

Excitotoxicity and glutamate receptor expression
In the current study excitotoxicity could be mediated through

glutamate receptors expressed either on the axon shaft or on

the growth cones. Glutamate receptors can be trafficked to the

axonal compartment and in particular their presence within

growth cones during neuronal development has been well

documented (King et al., 2006), with a proposed involvement

in pathfinding (Zheng et al., 1996). Recently, subunits for

AMPA and kainate receptors have been shown to be present on

myelinated axons (Ouardouz et al., 2009a, 2009b), although

the functional activity of these receptors is currently disputed.

Our data confirm the presence of AMPA receptors in the

axonal compartment of cultured axons by immunocytochemi-

cal labelling and Western blot analysis. The role of these axonal

glutamate receptors is unclear; however, the expression of

functional NMDA and non-NMDA receptors on glial cells (Gallo

and Russell, 1995; Verkhratsky and Kirchhoff, 2007) raises the

possibility that axonal glutamate receptor subunits may

facilitate glutamatergic signalling between axons and myeli-

nating oligodendrocytes or astrocytes.

A limitation of the current study is that cultured distal

axons were unable to synapse on other neurons, prevent-

ing the formation of the presynaptic terminal. This excludes

the possibility that excitotoxicity was mediated through

presynaptic receptors. In vivo, both NMDA and AMPA

receptors are found presynaptically, where they are thought

to regulate glutamate release (recently reviewed in Pinheiro

and Mulle, 2008) and could potentially be targets for

excitotoxic stimulation. Although the expression pattern of

axonal glutamate receptors may differ in vivo, the current

study suggests that excitotoxicity can be mediated through

extrasynaptic glutamate receptors expressed on the axon.

The demonstration of the extrasynaptic expression of

glutamate receptor subtypes (Passafaro et al., 2001; Tovar

and Westbrook, 2002; Kane-Jackson and Smith, 2003; van

Zundert et al., 2004) suggests a wider role for glutamate than

solely as an inter-neuronal excitatory transmitter (Araque

and Perea, 2004). Glutamate receptor subunits at non-

synaptic sites on dendrites and spines are thought to act as a

reserve supply of synaptic receptors (for recent review see

Newpher and Ehlers 2008). However, electrophysiological

recordings indicate that these extrasynaptic receptors are

functional (Andrasfalvy and Magee, 2001) and a modulatory

role has been suggested, through activation by glutamate

spillover from the synapse or glial derived glutamate (Dia-

mond and Jahr, 2000; Jourdain et al., 2007). In terms of

pathological stimulation of glutamate receptors, extrasynap-

tic and synaptic receptors have been reported to play a

significantly different role in excitotoxicity. Stimulation of

synaptic NMDA receptors is neuroprotective, whereas activa-

tion of extrasynaptic NMDA receptors triggers neuronal

Excitotoxicity-mediated axonopathy
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degeneration (Hardingham et al., 2002), although some

authors demonstrate that preferential expression of receptor

subunit types at extrasynaptic sites is responsible for this

effect rather than localization itself (Liu et al., 2007).

Mechanisms of axonal glutamate excitotoxicity

and implications for disease
Mechanism of axonal degeneration, including potential

differences between axonal and somal glutamate stimulation,

cannot be fully determined in the current study; however, the

protective effect of a pan-caspase inhibitor suggests the in-

volvement of pathways associated with apoptosis. It is of parti-

cular interest to note that application of inhibitors to either the

soma or axon provided protection from degeneration. The role

of axonal caspases in axonal degeneration is being increasingly

recognized and has been reported in a number of models

(Schoenmann et al., 2010, Smith et al., 2011). The study also

suggests that retrograde signalling to the soma is involved in

axon degeneration following axonal excitotoxicity, without

inducing frank apoptosis. Further elucidating the mechanisms

of excitotoxin-induced axon degeneration will be the subject of

future studies using this model.

The findings of the current study have a number of

implications for our understanding of neurodegenerative

disease. Excitotoxicity within the white matter has been

shown to occur in a number of degenerative conditions

including glaucoma (Saggu et al., 2008) and multiple sclerosis

(Pitt et al., 2003), and is also common following injury

(reviewed in Lau and Tymianski, 2010). Furthermore, axonal

excitotoxicity may be involved in any condition involving exci-

totoxic pathogenesis including, potentially, ALS (amyotrophic

lateral sclerosis) (van Damme et al., 2005) and AD (Hynd et al.,

2004), with local regions of excitotoxicity triggering axon

degeneration and synaptic loss. At present, excitotoxic damage

is attributed to neuronal soma and glial cells, and secondary

axon degeneration via axon–glia signalling. The current study

suggests that axon degeneration could occur from direct

exposure of the axon to excitotoxins. However, axonal

excitotoxicty did not result in a dying back, even 72 h

following exposure. The relative immaturity of the axons

through lack of presynaptic targets and therefore retrograde

signals from postsynaptic cells may be a factor in the lack of

die back in this study. It is currently unknown as to how

axonally mediated excitotoxicity affects a cell’s survival in

mature cells in vivo in the long-term. However, this may have

therapeutic implications as intervention may need to be

directed specifically to induce axon protection.
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