
Environmental Temperature Affects Prevalence of Blood
Parasites of Birds on an Elevation Gradient: Implications
for Disease in a Warming Climate
Itzel Zamora-Vilchis*, Stephen E. Williams, Christopher N. Johnson¤

Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia

Abstract

Background: The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude
and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of
extinction for many already threatened species. To understand how host communities could be affected by changing
parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and
rainfall that are predicted to be affected by climate change.

Methodology/Principal Findings: We determined relations between prevalence of blood parasites, temperature, and
seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to
investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus,
Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%,
with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite
prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry
season.

Conclusions/Significance: Low temperatures of the higher elevations can help to reduce both the development of avian
haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the
lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that
rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to
higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be
given high priority in management plans under climate change.
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Introduction

Many studies have described trends in the structure of

assemblages along elevational gradients, and have found temper-

ature to be one of the main variables controlling elevational

distribution across a diverse taxonomic and ecological range of

species [1–3]. However, little is known about the distribution of

pathogenic organisms on these gradients. Vector-borne diseases

are widely distributed pathogens transmitted to hosts by arthropod

vectors such as biting flies [4]. The rising global temperature is

predicted to expand the distribution of vector-borne diseases [5].

There are two reasons for this: abundances of most vectors are

positively related to temperature [6]; and for most vector-borne

diseases, transmission may be enhanced by higher ambient

temperature. The development of Plasmodium, for example, can

occur between 16–30uC, with optimal temperatures around 28–

30uC, whereas temperatures lower than 16uC greatly inhibit

parasite development [7].

In contrast to predictions for vector borne parasites, many

studies have reported reductions in geographical range size and

abundance, and shifts to lower latitudes or high altitudes, in a wide

range of organisms that are potential hosts for these parasites [8–

11]. Range expansion of vector borne parasites may increase their

prevalence in many host populations. Increased parasite loads can

have negative effects on host populations, reducing growth and

causing higher mortality and/or lower birth rates [12–15]. These

effects could amplify the risk of extinction for many already

threatened species. The study of parasite distributions in relation

to climate gradients is important in helping us to understand how

host species might be affected by changing parasite prevalence

under climate change. Elevational gradients provide an excellent

framework for such research, because temperature is closely
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related to elevation and elevation differences can cause large

changes in temperature over short geographic distances [16].

The main aim of this study was to determine how temperature

and rainfall influence prevalence of blood parasites in tropical

birds. To do this we studied bird communities along elevation

gradients in the Australian Wet Tropics. This bioregion is one of

the best-studied tropical rainforests in the world. It consists of a

strip of coastal plains and a series of adjacent mountain systems,

with an altitude range from sea level to 1600 meters above sea

level [17]. Species distribution models predict that under

impending temperature rises many bird species in this region

could experience significant range reductions, increased popula-

tion fragmentation and declines in population size, and therefore

heightened risk of extinction [18–21]. However, there has been no

study of elevational distribution of bird parasites and how climate

change could affect their prevalence.

We present data on the prevalence and lineage diversity of four

genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon

and Trypanosoma) in birds of the Australian Wet Tropics in relation

to elevation. We test for relations between parasite prevalence,

elevation, temperature, and seasonal rainfall. These studies are not

only important to implement future models on how increase of

temperature will affect parasite loads but also how host

communities could be affected by parasites.

Methods

Ethics Statement
This study was carried out under permits WISP01559303 and

WITK01559403 of the Environmental Protection Agency,

Queensland Parks and Wildlife Service, Australia. This research

was approved by the Committee on the Animal Ethics of the

James Cook University (Permit Number A-1120). Birds were

caught and banded under the license number 2664 from the

Department of the Environment and Heritage, Australia. All birds

were released after blood samples were taken.

Study Area and Bird Community
The Australian Wet Tropics bioregion (AWT) is located in far

North Queensland between 19u30’S and 15u30’S. The region is

dominated by tropical rainforest, which covers an area of

10,000 km2 and is primarily distributed along the mountain

ranges [17]. In this region, temperature is one of the most

important variables driving trends of distribution of many species

along elevational gradients of the mountain systems [22]. Mean

annual rainfall in the region varies between 1500 mm and

3300 mm [21], with approximately 75–90% falling between

November and April [17]. The bird community shows strong

trends of assemblage structure along the elevational gradient with

high levels of regional endemism in the uplands [18,23]. Both

species richness and bird abundance exhibit a humped-shaped

pattern with elevation, with highest values found between 600 m

and 800 m [22].

Data Collection
Data were collected during 2005 and 2006 from two localities of

the region: the South Johnston/Atherton Tablelands area

(17.62uS; 145.72uE) and the Carbine Range (Lat; Long 16.56uS;

145.28uE). These localities are around 125 km apart. Neverthe-

less, they are within the same bioregion and have similar

vegetation structure and almost identical bird faunas [22,24].

There is a strong relationship with bird assemblages across

elevation in the two localities, and that relationship is similar in

both [22]. Bird blood samples were collected at different elevation

sites (Table 1). Mean annual temperature for each elevational site

located at every 200 m of elevation in each locality was measured

using data loggers maintained by the Centre for Tropical

Biodiversity and Climate Change at James Cook University. Each

logger consists of five sensors, which measure air temperature,

relative humidity, soil moisture, soil temperature, and condensa-

tion at 15 min intervals. Mean monthly rainfall for each

elevational site at each locality was estimated using daily rainfall

data extracted from the Australian Water Availability Project

http://www.bom.gov.au/jsp/awap/. Temperature decreased at

an approximate rate of 1uC per 200 m altitude and there was

approximately 1uC difference between the two areas sampled at

the same elevation (Figure 1A). The monthly average rainfall

indicated that the dry season began in May and was extended and

acute until November or December when the rainy season began.

The highest values of rainfall were between February and May

(Figure 1B).

Study Species
We collected blood samples from 403 individual birds belonging

to 40 species in sixteen different families: Acanthizidae, Alcedini-

dae, Climacteridae, Columbidae, Dicaeidae, Dicruridae, Estrildi-

dae, Eupetidae, Meliphagidae, Muscicapidae, Nectariniidae,

Pachycephalidae, Paradisaeidae, Petroicidae, Ptilonorhynchidae

and Zosteropidae (all species are listed in Table S1). None of the

bird species used here migrate to different geographic regions, and

they show specific trends of distribution along the elevation

gradient [22,25]. Birds were caught in mist nets, and approx-

imately 50 to 75 ml of blood was collected by puncture of the

brachial vein. Blood samples were stored in Queens lysis buffer

[26] for subsequent analysis.

Molecular Analyses
DNA was extracted from all samples using silica fines [27]. Two

nested-PCR protocols were used to detect four genera of blood

parasites: one nested PCR assay for Plasmodium, Haemoproteus and

Leucocytozoon targeting a 478 bp section of the mitochondrial

cytochrome b gene [28], and another assay for Trypanosoma

targeting a 326 bp section of 18 S rRNA gene (18 S) [29]. These

nested-PCR protocols are highly repeatable and provide signifi-

cantly higher detection success than inspection of blood smears

[28,29]. For Plasmodium, Haemoproteus and Leucocytozoon the first

PCR step was carried out in a 10 ml reaction, using approximately

50 ng of DNA, 1x GoTaq Green Master Mix (Promega) and 0.5

of each primer (Table S2). Cycling conditions included an initial

denaturation step at 94uC for 3 min, followed by 20 cycles of 30 s

at 94uC, 30 s annealing at 50uC and 45 s extension at 72uC; and a

final extension step of 10 min at 72uC. PCR products from the

first reaction were used as a template for two other reactions: one

that amplifies specific cytochrome b sequences for the genera

Plasmodium and Haemoproteus, and another for Leucocytozoon.

Reactions were carried out in a 25 ml volume containing 1x

GoTaq Green Master Mix, 0.6 mM of each of the respective

primers (Table S2) and 2 ml of the PCR product from the initial

reaction. Cycling conditions were identical to the first PCR but

performed for 35 cycles instead of 20. The first reaction for

Trypanosoma was carried out in a 10 ml volume containing 1x

GoTaq Green Master Mix, 0.5 mM of each primer (Table S2) and

approximately 50 ng of template DNA. Cycling conditions

included an initial denaturation at 95uC for 5 min followed by

five cycles at 95uC for 1 min, 45uC for 30 s, 65uC for 1 min, and

35 cycles at 95uC for 1 min, 50uC for 30 s, 72uC for 1 min; and a

final extension at 65uC for 10 min. The second reaction included

1x GoTaq Green Mastermix, 0.6 mM of each primer (Table S2)
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and 1 ml of PCR product from the initial reaction. Cycling

conditions included an initial denaturation at 96uC for 3 min,

followed by 35 cycles at 96uC for 30 s, 63uC for 1 min, 72uC for

30 s and a final extension at 74uC for 7 min. To identify parasite

lineages, all the positive products were bidirectionally sequenced.

Sequences were edited and aligned using the program Sequencher

4.8. We identified lineages based on single base pair difference.

Sequences were deposited in both MalAvi database [30] http://

mbio-serv4.mbioekol.lu.se/avianmalaria and GenBank (Accession

numbers JX021535-JX021582).

Results

Prevalence of Parasites
Of the 403 individual birds screened, 130 (32.3%) tested positive

for one or more parasite genera. The predominant parasite was

Haemoproteus with 80 infected birds (19.9%). Trypanosoma and

Leucocytozoon showed very similar prevalence with 28 (6.9%) and 25

(6.2%) infected birds respectively, whereas Plasmodium was present

in only 7 (1.7%) birds. An additional 15 (3.7%) individuals were

infected with Haemoproteus and/or Plasmodium but the parasite

could not be identified to genus due to low PCR amplification,

poor-quality sequence or unresolved multiple infections. Among

well-sampled host families (i.e. .15 individuals sampled per

family, Table 2), prevalence of Haemoproteus ranged from 2.1%

(Estrildidae) to 60.3% (Petroicidae). The family with the highest

prevalence of Plasmodium and Trypanosoma was Pachycephalidae

with 3.1% and 15.6% respectively, whereas Dicruridae had the

highest prevalence of Leucocytozoon with 16.3%. Prevalence of the

four genera of parasites was similar across different host families.

Lineage Diversity
A total of 48 unique lineages of parasites (including the four

genera) was detected. Haemoprotueus was the genus exhibiting the

highest number of lineages (30). Trypanosoma and Leucocytozoon

presented 7 and 6 haplotypes respectively. Finally, for Plasmodium

only 5 unique lineages were detected (MalAvi lineage names and

GenBank accession numbers are listed in Table S3). We found

that the four genera were generalist, strictly speaking, as most of

the lineages were found in more than one host species. However,

most of the Haemoproteus lineages were partially specific to host

family.

Analysis of parasite lineages along the elevation gradient showed

that most of the lineages were present only in certain elevation

sites. This was probably due to the observed high lineage diversity

and the specific trends of host distribution along the gradient. Only

a few lineages of two well-represented families (Petroicidae and

Pachycephalidae) were distributed along the entire gradient.

Nevertheless, due to the great diversity of lineages found, sample

sizes of each of these well-distributed lineages are not large enough

to determine significant trends of distribution in relation to

elevation, temperature or rainfall.

Figure 1. Variation of temperature and rainfall at the AWT. A)
Predicted variation of Mean annual temperature as a function of
elevation. Temperature decreased at an approximately rate of 1uC per
200 m altitude and there was approximately 1uC difference between
the two localities sampled at the same elevation and B) Monthly
variation of rainfall at the two localities within the region indicated that
the dry season began on May and was extended and acute through
November or December when the rainy season began. The highest
values of rainfall were between February and May. Localities: South
Johnston (SJ) and Carbine Range (CR).
doi:10.1371/journal.pone.0039208.g001

Table 1. Localities of sampling in the AWT.

Localities Elevation (m) MAT (6C) No. of sampled birds

Carbine Range 100 21.8 14

Carbine Range 400 20.9 27

South Johnston 400 20.5 102

South Johnston 800 17.1 18

Carbine Range 1000 17.3 190

Carbine Range 1200 16.4 52

The elevation, Mean Annual Temperature (MAT) and Number of sample birds
for each locality are indicated.
doi:10.1371/journal.pone.0039208.t001
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Temperature and Prevalence of Bird Blood Parasites on
an Elevation Gradient

The overall prevalence of infection (of all four parasite genera)

was negatively related to elevation (F1,4 = 52.45, P,0.002,

R2 = 0.93) and positively to mean annual temperature

(F1,4 = 438.98, P,0.00003, R2 = 0.99; Figure 2A). A multiple

regression model of parasite prevalence on both elevation and

temperature was highly significant (F2,3 = 164.63, P,0.02,

R2 = 0.99, Adjusted R2 = 0.98) but only temperature contributed

significantly to the model (temperature: Beta = 0.99 P = 0.02;

elevation: Beta = 0.004 P.0.98). We checked for relationships of

parasite prevalence to host characteristics, including each species’

geographic range size, body mass and body size, but found no

significant relationships (Table S4; only species with more than 5

individuals were used in the analysis).

Relationships of overall parasite prevalence to temperature in

well sampled families (represented by .15 individuals and

sampled from at least 3 elevations) were positive in Acanthizidae

(F1,3 = 10.67, P,0.05, R2 = 0.78) and Dicruridae (F1,3 = 14.53,

P,0.05, R2 = 0.83), whereas Meliphagidae (F1,2 = 2.19, P.0.05,

R2 = 0.52) and Pachycephalidae (F1,1 = 1.36, P.0.05, R2 = 0.58)

displayed positive relationships that were not significant. Finally,

Petroicidae was divided into the two species that make up this

family and both showed a positive but statistically non-significant

relationship of parasite prevalence to temperature: Tregellasia capito

(F1,1 = 33.22, P.0.05, R2 = 0.97); and Heteromyias albispecularis

(F1,1 = 14.74, P.0.05, R2 = 0.88).

Testing relationships of temperature to prevalence for each

genus of parasite showed that prevalence of the predominant

parasite Haemoproteus was positively related to temperature

(F1,4 = 37.621, P,0.003, R2 = 0.90). Relationships for Leucocytozoon

(F1,4 = 4.90, P,0.09, R2 = 0.55), Trypanosoma (F1,4 = 4.45, P,0.1,

R2 = 0.53) and Plasmodium (F1,4 = 0.54, P,0.5, R2 = 0.12) were also

positive but were not statistically significant.

Seasonal Changes of Parasite Prevalence
The positive relationship between parasite prevalence and

temperature held even when the data were divided into monthly

averages (F1,10 = 14.44, P,0.003, R2 = 0.59; Fig 2B), but the

regression explained less of the variation than the mean values of

parasite prevalence and annual temperature. Estimates of parasite

prevalence during the dry season (May-November) tended to be

higher than expected under the linear model, while wet season

(December-April) were lower than expected (Figure 2B). We also

evaluated the relationship between monthly parasite prevalence

and rainfall and found no relationship (F1,10 = 1.43, P,0.02,

R2 = 0.04). The multiple regression model including both inde-

pendent variables (monthly temperature and rainfall) to predict

parasite prevalence was significant (F2,9 = 10.238, P,0.005,

R2 = 0.69, Adjusted R2 = 0.63 ) but again only temperature

contributed significantly to the model (temperature Beta = 0.76

P = 0.003; rainfall Beta = 20.32 P.0.11).

Discussion

We found strong relationships of temperature to overall parasite

prevalence. To facilitate the discussion, we used the lowland (0–

400 m) and the upland (600–1200 m) distinction of climatic zones,

based on forest structure [31]. In general, birds inhabiting the

lowland areas where temperatures were higher had higher parasite

prevalence, whereas species distributed in the upland regions with

lower temperatures had lower parasite prevalence. There were

similar trends for each genus of parasites surveyed. Results for

lineage diversity showed that the four genera of parasites were

generalist. However, most of the Haemoproteus lineages were

partially specific to host family. This supports the approach of

analysing parasite distribution within each well-sampled family

separately. Prevalence within each family and within the two well

sampled species showed the same trends along the gradient as for

overall parasite prevalence, showing that the decrease in

prevalence with elevation did not reflect a changing composition

of host taxa with elevation.

One of the mechanisms that could explain these results is that

abundance of vectors is directly related to temperature. Bird

haematozoa are transmitted by arthropod vectors [32], and

ecological factors associated with vector abundance can explain

differences in the prevalence of parasite species independently of

host [33–36]. Studies in the Hawaiian islands have shown a

negative correlation between abundance of mosquitoes, the main

vector for Plasmodium, and elevation [12]. Like most vector-borne

diseases, transmission of avian malaria is affected by ambient

temperature. The onset, duration, and completion of the parasite’s

development to the infective stage in the vector are determined by

temperature. The development of Plasmodium occurs between 16–

30uC, temperatures lower than 16uC inhibit parasite development,

whereas optimal temperatures fluctuate between 28–30uC [7].

Other potential blood parasites vectors are ectoparasites that can

Table 2. Parasite prevalence across host families.

% of total Unknown

Host family infected birds % Hae % Pla % Hae and/or Pla % Leu % Try

1. Petroicidae 76.7 65.8 1.4 6.8 0 11

2. Pachycephalidae 43.8 31.3 3.1 3.1 0 15.6

3. Dicruridae 30.2 9.3 0 2.3 16.3 11.6

4. Meliphagidae 22.1 4.4 2.9 5.9 10.3 4.4

5. Acanthizidae 15.3 8.1 1.8 0.9 0.9 2.7

6. Estrildidae 8.3 2.1 0 4.2 4.2 0

7. Others 42.9 17.9 3.6 3.6 28.6 14.3

Total 32.3 19.9 1.7 3.7 6.2 6.9

Parasite prevalence of well represented families (1–6; .15 individuals) and other families (7; ,15 individuals). Percentage of total number of birds infected and number
of birds infected by each parasite genus (%) (Hae: Haemoproteus, Pla: Plasmodium, Unknown: either Haemoproteus and/or Plasmodium, Leu: Leucocytozoon and Try:
Trypanosoma).
doi:10.1371/journal.pone.0039208.t002
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include parasitic flies like hippoboscid flies (potential vectors for

Haemoproteus) and sucking lice (documented vectors of filarial

worms) [37,38]. The effects of temperature and rainfall on the

intensity of infection for this group of parasites are controversial.

For example, a global study of current and future habitat

suitability for ticks under different climate change scenarios

predicts that even though some tick species are likely to undergo

range expansions, others may suffer drastic range contractions

worldwide [39]. Studies on parasitic flies whose larvae infect bird

nestlings show the same controversial results. A study of parasitic

flies of the genus Philornis on Argentinean forest birds found that

temperature and rainfall were positively correlated with intensity

of infection [40]. In contrast, another study on parasitic

Protocalliphora (blow flies) on swallows showed that the number of

blow flies varied in a curvilinear fashion with temperature, with

parasite loads highest in nest around 25uC and decreasing at both

higher and lower temperatures [41]. The results found in our

study suggest that low temperatures of the higher elevations,

especially during winter, can help to reduce both the development

of avian haematozoa and the abundance of these parasite vectors,

leasing to low parasite prevalence. In contrast, the high

temperatures of the lowland areas provide an excellent environ-

ment for the development and transmission of haematozoa.

However, further research will be vital to determine both specific

vectors for each parasite genus and their trends of distribution

along the elevation gradient.

The AWT are characterized by two marked seasons, the wet

and dry. The dry season begins in May and is extended and acute

until October or November, when the wet season begins. There

was an interesting trend for parasite prevalence during the dry

season to be higher, and lower during the wet season. However,

we found no significant relationship between monthly parasite

prevalence and rainfall. Further research is needed to show the

influence of seasonal shifts that include both changes in rainfall

and temperature.

Implications for Infection Dynamics in a Warming Climate
Average global temperatures increased 0.6uC in the period

1901–2000 [42] and they are expected to increase by 1.4uC to

5.8uC by 2100 [43]. In tropical regions, this temperature increase

may be accompanied by heightened variability in rainfall with

more severe dry seasons [44,45]. The regression of overall parasite

prevalence and temperature documented in this study predicts an

increase of about 10% in the prevalence of parasites, for each 1uC
increment in temperature (Figure 3). Hosts could respond to this in

three ways. First, their immune systems could adapt to the higher

parasite pressure. However, the life cycles of birds are much longer

than of the parasites and rapid adaptation is unlikely. Second,

there could be increased mortality rates and/or lower birth rates in

host populations, reducing population density. Decreased repro-

ductive success has been associated with high infection of

Haemoproteus and Leucocytozoon in passerine birds [13,14]. Haemo-

proteus can also cause severe disease and high mortality in avian

hosts [15]. Third, birds could shift their elevational distributions to

hold parasite loads constant.

Figure 4 illustrates the shifts of host distribution along the

elevation gradient that would be required to hold parasite

prevalence to current values. Filled bars represent the predicted

distribution of birds with increments of temperature. At 0uC all

bars are filled representing the actual distribution of birds along

the elevation gradient. For each 1uC increase in temperature, bird

distributions would need to ascend 200 m in elevation. Open bars

indicate that birds at that site shifted upwards to the next elevation

site to avoid an increase in parasite prevalence, leaving that site

unoccupied. Given a 4uC temperature increase, only birds that

currently live at 400 m or below would be able to offset increases

in parasite prevalence by shifting their distributions upwards;

therefore for birds currently living above 400 m, some increase in

parasite prevalence would be unavoidable. In Hawaii, study of the

availability of disease-free habitat with increments of 2uC found

that there will be a reduction of the low-disease habitat and

predicted that high-elevation forest will be the most important

areas to preserve the low risk disease habitat [46].

Figure 2. Relationship between overall parasite prevalence and
temperature. Predicted variation of overall parasite prevalence as a
function of a) Mean annual temperature and b) Mean monthly
temperature. Month, year and locality (SJ = South Johnston and CR
= Carbine Range) are indicated for each point. Dry season months are
marked with asterisks.
doi:10.1371/journal.pone.0039208.g002
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The predicted increase of parasite prevalence due to increased

temperature could interact with, and further exacerbate, the

projected impacts of decreased range size, increased fragmenta-

tion, and decreased population size of birds due to climate change;

all these can lead to an increased risk of extinction, specially for

species inhabiting the uplands [20,21]. Our results show that

Figure 3. Extrapolations of parasite prevalence with increments of temperature. Parasite prevalence along the elevational gradient with
increments of 0uC (N), 1uC (#), 2uC (m) and 4uC (D), using the equation of the linear regression between overall parasite prevalence and mean annual
temperature (temperature –140.62/0.1047 = parasite prevalence). Extrapolations indicated that there will be an increase of about 10% in the
prevalence of parasites for each 1uC of increment in temperature.
doi:10.1371/journal.pone.0039208.g003

Figure 4. Elevational shifts upwards of bird distributions. One of the mechanisms proposed to compensate increments of parasite prevalence
at 0, 1, 2 and 4uC increase in temperature. Filled bars represent the predicted distribution of birds with increments of temperature. At 0uC all bars are
filled representing the actual distribution of birds along the elevation gradient, with prevalence variation from 64% in the lowlands to 16% at the
highest elevations. For each 1uC increase in temperature, bird distributions need to ascend 200 m in elevation in order to avoid an increase in
parasite prevalence. Open bars indicate that birds at that site shifted upwards to the next elevation site to avoid an increase in parasite prevalence,
leaving that site unoccupied. Failure to make such a distribution shift would potentially result in higher mortality or reduced reproduction because of
elevated blood parasite loads. The shifts in parasite loads are likely to be very large. At an altitude of 1200 m, for example, a 4uC temperature rise is
predicted to increase parasite prevalence from 16% to 50%. At this higher temperature, only birds that currently live at 400 m or below will be able to
offset increases in parasite prevalence by shifting their distributions upwards; for birds currently living above 400 m, some increase in parasite
prevalence are unavoidable.
doi:10.1371/journal.pone.0039208.g004
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upland areas are currently a low-disease habitat and their

conservation must be given high priority in the management

plans under climate change. Suggestions for future research

include the study of intensity of infection to identify trends along

the gradient.
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host ecological variables. Relationships between Parasite

prevalence and host: a) Geographic range size, b) Body mass

and c) Body size. All regressions are low and none significant.

(DOC)
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