
STUDY PROTOCOL Open Access

Melanocortin-1 receptor, skin cancer and
phenotypic characteristics (M-SKIP) project: study
design and methods for pooling results of
genetic epidemiological studies
Sara Raimondi1,2*, Sara Gandini1, Maria Concetta Fargnoli3, Vincenzo Bagnardi1,4, Patrick Maisonneuve1,

Claudia Specchia5, Rajiv Kumar6, Eduardo Nagore7, Jiali Han8,9,10, Johan Hansson11, Peter A Kanetsky12,

Paola Ghiorzo13, Nelleke A Gruis14, Terry Dwyer15, Leigh Blizzard16, Ricardo Fernandez-de-Misa17,

Wojciech Branicki18, Tadeusz Debniak19, Niels Morling20, Maria Teresa Landi21, Giuseppe Palmieri22, Gloria Ribas23,

Alexander Stratigos24, Lynn Cornelius25, Tomonori Motokawa26, Sumiko Anno27, Per Helsing28, Terence H Wong29,

Philippe Autier30, José C García-Borrón31, Julian Little32, Julia Newton-Bishop33, Francesco Sera34, Fan Liu35,

Manfred Kayser35, Tamar Nijsten36 and GEM Study Group on behalf of the M-SKIP Study Group

Abstract

Background: For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to

investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a

disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results

may be obtained faster and with lower costs than with prospective consortia.

Design and methods: Based on our experience with the study design of the Melanocortin-1 receptor (MC1R)

gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in

planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical

analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to

account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and

environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases

and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization.

We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the

M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of

different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer

development will be studied via logic regression modeling.

Discussion: Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate

application of such methods, thus providing a better summary of the actual findings on specific fields.
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Background
Since millions of Single Nucleotide Polymorphisms

(SNPs) were identified by the SNP Consortium [1], a

growing number of studies have reported the association

of SNPs in candidate genes with several diseases. How-

ever individual studies of typical size usually have low

statistical power to find true associations given the poly-

genic nature of most common diseases, leaving alone

the various forms of potential interactions between gen-

etic, phenotypic and environmental factors. The advent

of genome-wide association studies allowed genotyping

of hundreds of thousands of SNPs across the genome on

a usually large number of subjects, but information on a

wide spectrum of epidemiological and lifestyle factors

were seldom collected, although the role of these factors

in complex diseases is undoubtedly crucial.

Meta-analysis of genetic epidemiological studies has

been adopted to increase the power of smaller candi-

date gene studies by summarizing results from mul-

tiple studies. However the lack of access to individual

data precludes in-depth investigations, including ana-

lyses of gene-gene and gene-environment interaction,

and appropriate stratified analyses. This may poten-

tially lead to false-positive or false-negative results,

or biased magnitudes of associations, as previously

pointed out [2].

Pooled-analysis of the primary data has been shown

to have critical methodological advantages over meta-

analysis [3,4] and has been applied successfully in the

genetic epidemiology field [4-11]. Pooled-analysis uses

standardized definitions of cases, outcomes and covari-

ates, as well as the same analytical methods, thus limit-

ing potential sources of heterogeneity across different

studies. It also allows investigators to better control for

confounding factors, evaluate alternative genetic models

and estimate the joint effect of multiple genes. Finally,

population-specific effect and gene-gene and gene-

environment interactions may be better assessed using

pooled-analysis [12]. The pooling of data from observa-

tional studies has become more common recently, and

different approaches of data analysis have been applied

[13]. Methodological guidelines to correctly design and

conduct pooled-analyses are needed to facilitate appli-

cation of such methods, thus providing a better sum-

mary of the actual findings on specific fields. Moreover,

the awareness of the potential problems connected

with the establishment of international collaborations

and data pooling might help investigators to avoid or

overcome them.

We describe here our experience with the study design

of an international pooled-analysis on Melanocortin-1

receptor gene, SKin cancer and Phenotypic characteris-

tics (M-SKIP project). In the first part of the paper, we

explain the procedures that were used to identify studies

and to collect and standardize data. In the second part

we describe the statistical analysis plan that we are going

to apply, giving particular attention to methods of ana-

lysis recently proposed to account for between-study

heterogeneity and to explore the joint contribution of

genetic, phenotypic and environmental factors in the de-

velopment of a disease.

The M-SKIP project: rationale and aims
Melanocortin-1-receptor (MC1R, MIM#155555) is one

of the major genes that determine skin pigmentation

and it has been reported to be associated with risk of

melanoma [14], possibly through the determination of

the tanning response of skin to UV radiation [15-17].

However the relationship between some MC1R var-

iants and melanoma also in darkly-pigmented Euro-

pean populations suggests that MC1R signaling may

have an additional role in skin carcinogenesis beyond

the UV-filtering differences between dark and fair

skin [18]. In previous meta-analyses [14,19,20] authors

found evidence of a significant association between

melanoma, red hair and fair skin and the five MC1R

variants R151C, R160W, D294H, D84E and R142H,

and suggested a possible role in melanoma develop-

ment, via non-pigmentary pathways, for I155T and

R163Q variants. However, the specific contribution of

each MC1R variant to melanoma development via

pigmentary and non-pigmentary pathways could not

be evaluated in meta-analyses due to the lack of indi-

vidually joint information on MC1R variants and

phenotypic characteristics.

The aim of the M-SKIP project is therefore to per-

form a pooled-analysis of individual data on sporadic

skin cancer cases and controls with information on

MC1R variants, in order to: 1) assess the association

of MC1R variants with melanoma, basal cell carcinoma

(BCC) and squamous cell carcinoma (SCC); 2) assess

the association between MC1R variants and phenotypic

characteristics, including hair and eye color, skin color,

skin type, common and atypical nevi, freckles, and

solar lentigines; and 3) perform stratified analyses on

MC1R variants and skin cancer by phenotypic charac-

teristics, and evaluate MC1R-phenotype interaction in

skin cancer risk.

Data collection and creation of the standardized
dataset
The identification of data sets and data collection

Published epidemiological studies on MC1R variants,

melanoma, non-melanoma skin cancer (NMSC) and

phenotypic characteristics associated with melanoma

[21,22] were searched until April 2010 in the following

databases: PubMed, ISI Web of Science (Science Cit-

ation Index Expanded) and Embase, using the keywords
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“MC1R” and “melanocortin 1 receptor” alone and in

combination with the terms “melanoma”, “basalioma”,

“basal cell carcinoma”, “squamous cell carcinoma”, “skin

cancer”, “hair color”, “skin color”, “skin type”, “eye

color”, “nevi”, “freckles”, and “solar lentigines”, with no

search restriction. The computer search was supplemen-

ted by consulting the bibliographies of the articles and

reviews. We also tried to identify unpublished datasets

by personal communication with participant investiga-

tors, members of the Advisory Committee, and with

attendees of scientific meetings. Unpublished datasets

were evaluated by an internal peer-review process before

inclusion.

We selected papers according to the following inclu-

sion criteria: 1) observational studies on single-primary

sporadic skin cancer cases with information on any

MC1R variant or 2) control series with information on

any MC1R variant and at least one phenotypic character-

istic under study. Permanent exclusion criteria were: 1)

populations selected for MC1R status or for other

genetic factors, 2) studies including only familial and/or

multiple-primary melanoma cases, because we wanted to

study MC1R-melanoma association at a population level,

therefore excluding cases for whom the role of genetics is

probably stronger. In the first step of the project, we also

excluded genome-wide association studies (GWAS), be-

cause their different study design and genotyping method-

ology would significantly increase the heterogeneity of our

data; however GWAS with epidemiological data would be

included in a next step of the project and their results

would be compared with those of classical genetic

epidemiological studies.

The original search provided 748 papers, among

them 111 were considered potentially interesting and

full-text articles were retrieved and evaluated. We

excluded 49 articles for the following reasons: duplicate

populations (N = 20), no data on outcome (case/control

status or any of the studied phenotypic characteristics)

or on MC1R variants (N = 12), case reports, commen-

taries or reviews (N= 6), GWAS (N=6), populations

selected for genetic factors (N = 4) and multiple pri-

mary melanoma cases only (N = 1). The remaining 62

independent studies were considered eligible for inclu-

sion in the pooled-analysis.

For each independent study, we identified the corre-

sponding investigator and retrieved his/her contact in-

formation. Each investigator was invited to join the

M-SKIP project: this required them to sign a partici-

pation form and a document attesting to approval of

the study guidelines, and then to provide their data in

electronic form without restrictions on format. A

detailed list of variables relevant for skin cancer was

provided and, for each available variable in the list,

the authors were required to compile a form with a

clear and complete description on how it was col-

lected and coded. Investigators did not send any per-

sonal identifier with data, but only identification

codes. Finally, investigators were asked to send a

signed statement declaring that the original study was

approved by an Ethic Committee and/or that study

subjects provided a written consent to participate in

the original study.

Data collection started in May 2009 and was closed in

December 2010. During this period, 43 investigators

were contacted and invited to share data. Thirty-one

(72%) agreed to participate and provided data on 28,998

subjects, including 13,511 skin cancer cases (10,182 mel-

anomas) and 15,477 controls from 37 independent pub-

lished [19,23-62] and 2 unpublished studies. Both the

unpublished datasets came from investigators who were

originally contacted for their published data and who

had further data of (still) unpublished studies. Among

the 12 non-participant investigators, seven did not reply

to our invitation letter, three were not able to retrieve

the original dataset and two were not interested in the

project. The total number of skin cancer cases and

controls from the 25 independent studies [63-95] of

non-participant investigators was 5,135 and 8,262, re-

spectively. The study design was case–control for 13

studies, control-only for 11 studies, and case-only for

one study.

Quality control, data coding and creation of the

standardized dataset

We inspected the data for completeness and resolved

inconsistencies with the investigator of each study. A

number of subjects were excluded due to the following

reasons: multiple-primary melanoma cases (N = 1596),

missing data on MC1R variants (N = 1081), non-skin

melanoma cases (N= 150), subjects with atypical mole

syndrome and no skin cancer (N = 58), non first-

primary melanoma cases (N= 24), familial melanoma

cases, defined as subjects with two first-degree relatives

or three or more any-degree relatives with melanoma

(N= 25), other reasons including: unknown case/control

status, duplicate subjects, or inappropriate controls

(N= 232).

The following study-related variables were recoded

uniformly: study country, study design, source of con-

trols, application of case–control matching, methods to

define phenotypic characteristics, genotyping method-

ology, whether genotyping was done in the same cen-

ter for cases and controls and was blinded for case/

control status, and DNA source. These variables were

not used to assign a quality score to each study, but

will be taken into account in meta-regression and sen-

sitivity analyses. In addition, the variables listed in

Table 1 were retrieved from each study if available,
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checked for quality, recoded in a standardized manner

and entered in the main database. Finally, data on

MC1R variants were entered for each subject. Quality

controls and data coding were performed independ-

ently by two investigators, and inconsistencies were

solved via consensus.

Some variables were collected in different ways in dif-

ferent studies. We report here as an example the rules

we used to standardize sun exposure variables, in order

to provide suggestions on how to recode variables with

highly heterogeneous assessment among studies.

Intermittent and continuous sun exposure was coded

as hours of exposure per day if the information was

structured in this way. If not, we converted it to hours/

day on a scale of 0 as no exposure and 6 as the max-

imum hours of exposure per day. For example, for data-

sets with four classes of exposure (never, seldom, often,

always), we recoded the classes as 0, 2, 4, 6 hours/day. If

individual sun exposure was collected over different time

periods, we calculated the average exposure weighting

for years of exposure in each time period. Other con-

tinuous variables (i.e. days of exposure per year, average

hours of exposure per year) were converted to hours/day

using the following algorithm:

1) calculate the variable mean on all the study subjects as:

μ ¼
X

n

i¼1
xi=n ð1Þ

where xi is the measure of the continuous variable on

subject i, and n is the study sample size;

2) calculate the average hours of exposure/day (ν) over

all the datasets with the variable coded (or recoded)

in this way as in 1);

3) recode each observation basing on the proportion

xi : μ ¼ x̂i : ν as:

x̂i ¼ νxi=μ ð2Þ

4) set as 6 (maximum hours of exposure per day) the

value of all calculated values greater than 6.

The assumption underlying this coding was that the

average sun exposure pattern for study subjects was

Table 1 List of the main variables, number of original studies and related subjects per variable

Variable Studies (%)
N=39

Melanoma cases (%)
n = 7806

NMSC cases (%)
n =3151

Controls (%)
n= 14875

Age 37 (95%) 7761 (99%) 3150 (100%) 14550 (98%)

Gender 39 (100%) 7801 (100%) 3151 (100%) 14853 (100%)

Ethnicity 38 (97%) 6770 (87%) 3142 (100%) 13833 (93%)

Body mass index 8 (21%) 557 (7%) 1380 (44%) 2226 (15%)

Smoking status 6 (15%) 2266 (29%) 419 (13%) 2286 (15%)

Intermittent sun exposure 21 (54%) 4493 (58%) 1266 (40%) 2286 (15%)

Continuous sun exposure 21 (54%) 4909 (62%) 741 (24%) 1938 (13%)

Sunburns 25 (64%) 4210 (54%) 1288 (41%) 2968 (20%)

Artificial UV exposure 16 (41%) 3842 (49%) 298 (9%) 1058 (7%)

Family history of skin cancer 27 (69%) 6660 (85%) 1289 (41%) 3318 (22%)

Family history of cancer other than skin 19 (49%) 4445 (57%) 371 (12%) 1630 (11%)

Melanoma body site 24 (62%) 6271 (80%) NA NA

Melanoma histology 19 (49%) 4868 (62%) NA NA

Breslow thickness 24 (62%) 5907 (76%) NA NA

Hair color 34 (87%) 6841 (88%) 2590 (82%) 11889 (80%)

Eye color 31 (79%) 5990 (77%) 2456 (78%) 10720 (72%)

Skin color 23 (59%) 3517 (45%) 826 (26%) 2963 (20%)

Skin type 31 (79%) 6590 (84%) 1992 (63%) 4540 (31%)

Common nevi 19 (49%) 3817 (49%) 442 (14%) 1181 (8%)

Atypical nevi 11 (28%) 2681 (34%) 642 (20%) 1447 (10%)

Freckles 21 (54%) 4028 (52%) 737 (23%) 2333 (16%)

Solar lentigines 6 (15%) 1419 (18%) 442 (14%) 1088 (7%)

NA= not applicable; NMSC=non melanoma skin cancer.
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similar for different studies (and countries). Since we

will use this variable only for confounding adjustment

and/or effect modifier analyses, the purpose was to re-

group subjects with a similar pattern of sun exposure, al-

though the precise individual amount of sun exposure

could not be estimated.

As a general rule, when a variable (i.e. common nevi

count) was collected into classes, we recoded each class

by using its median. The maximum numbers for open

categories were chosen according to the available M-SKIP

data.

Brief description of the collected data and
statistical power
The final dataset was created in June 2011 and included

data on 7,806 melanoma cases, 3,151 NMSC cases

(2,211 BCC, 788 SCC and 152 with both), and 14,875

controls.

Distribution of data according to study country in

which the study was performed is presented in Table 2.

The majority of data came from Europe, especially from

southern European populations. There was no signifi-

cant difference in participation rate according to study

area (Fisher exact test p-value: 0.25).

The main characteristics of the studies included in the

M-SKIP database are described in Table 3. The majority

are case–control studies (54%) with population or healthy

controls and case–control matching. Phenotypic charac-

teristics were frequently assessed by self-administered

questionnaire (41%) or examination by a dermatologist or

research nurse (36%). The majority of studies sequenced

the entire coding region of the MC1R (67%) and used

blood as DNA source (62%).

We calculated that the minimum required sample size to

find a statistically significant association between a MC1R

variant and melanoma assuming a similar association to

that observed in our previous meta-analysis [14] (Odds

Ratio (OR)= 1.5) is around 7,500 cases and 7,500 controls

for rare variants (1-2% allele frequency in controls), and

1,400 cases and 1,400 controls for common variants (8-10%

allele frequency in controls), with 90% statistical power.

Sample size for gene-environment interaction analysis was

also calculated with the program POWER, version 3.0 [96].

Considering the study of a simple two-way interaction

between an environmental factor and a rare MC1R variant,

around 5,000 cases and 5,000 controls would be needed to

observe a multiplicative interaction effect of 2.0, arising to

16,000 cases and 16,000 controls to observe a smaller

multiplicative effect of 1.5, both with 90% statistical power.

For common MC1R variants, the same gene-environment

interaction effects of 2.0 and 1.5 could be observed with

around 1,200 cases and 1,200 controls, and with around

3,500 cases and 3,500 controls, respectively. Our sample

size therefore is appropriate for the purpose of the analysis,

and large enough to allow stratified and interaction ana-

lyses, especially to find even small interaction effects with

the most frequent variants, and larger interaction effects for

less common variants.

Statistical analysis plan
Appropriateness and representativeness of the collected

data

Comparability of the main study population characteris-

tics and results between studies included and excluded

from the pooled-analysis will be assessed. Funnel plots

to evaluate participation bias will be drawn and Egger’s

test [97] will be performed.

Departure of genotype frequencies of each MC1R vari-

ant from expectation under Hardy-Weinberg equilibrium

will be assessed by Chi Square test among controls for

each study, in order to detect any possible genotyping

error or stratification problem in the datasets.

Table 2 Summary of data included in the M-SKIP project by geographical location

Study area Invited investigators Participant investigators (studies) Melanoma cases NMSC cases Controls

Africa 1 0 (0) 0 0 0

Asia 3 2 (2) 0 0 345

Australia 4 2 (3) 744 298 290

Northern Europea 8 6 (6) 858 1629 8095

Central Europeb 6 3 (4) 977 639 2398

Southern Europec 9 8 (12) 2,747 0 2263

North America 13 11 (12) 2,480 585 1484

TOTAL 43 d 31d (39) 7808 3151 14875

NMSC=non melanoma skin cancer.
a includes Denmark, Norway, Sweden, The Netherlands, UK.
b includes France, Germany, Poland.
c includes Greece, Italy, Spain.
d one investigator collected data for two different areas (North America and Asia).
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Combining data into a single dataset with random effects

models

A first analysis using data combined into one dataset, is

to fit them with logistic regression models with random

slope. Considering a dominant model, let πik/X be the

probability of skin cancer for subject i (i = 1,. . .,nk) of

study k (k = 1,. . .,K) conditional on the presence of a cer-

tain MC1R variant (X). We will account for the fixed

MC1R effect and the random selection of studies, as-

suming a model that relates MC1R and study effects

linearly to the logit of the probabilities:

logit πik=Xð Þ ¼ αþ βXik þ bkXik ð3Þ

In this model the transformed regression coefficient

exp(β) is the odds of skin cancer for a subject with

the MC1R variant compared with a subject without

the MC1R variant, and the bk are the study-specific

coefficients accounting for the random selection of

studies, with bk~N(0, σ2b), where σ
2
b represents the between

study variance of the MC1R effect.

The logistic regression model above described could be

applied to different inheritance models and could include

covariates, in order to adjust the studied associations by

possible confounding factors. In order to include the

available information from all the studies, missing values

could be estimated in the model with multiple imput-

ation and/or the creation of a missing-data indicator

variable. However, when the majority of missing data are

the results of non-availability of certain variables in some

studies, as for the M-SKIP project, the use of both mul-

tiple imputation and the missing-data indicator would be

Table 3 Main characteristics of the included studies

Studies (%)
N=39

Melanoma cases (%)
n = 7806

NMSC cases (%)
n= 3151

Controls (%)
n= 14875

Study design

Case–control 21 (54%) 5092 (65%) 2052 (65%) 6852 (46%)

Case only 11 (28%) 2646 (34%) 0 0

Control only 6 (15%) 0 0 1464 (10%)

Cohort 1 (3%) 68 (1%) 1099 (35%) 6559 (44%)

Source of controls

Hospital 6 (21%) 509 (10%) 1169 (37%) 1847 (12%)

Population or healthya 21 (75%) 4651 (90%) 1982 (63%) 12872 (87%)

Mixed 1 (4%) 0 0 156 (1%)

Case–control matching b

No 10 (45%) 3151 (61%) 1739 (55%) 9578 (71%)

Yes 12 (55%) 2009 (39%) 1412 (45%) 3833 (29%)

Phenotype assessment

Self-administered questionnaire 16 (41%) 2768 (35%) 672 (21%) 1875 (13%)

Examination by an expert 14 (36%) 3970 (51%) 1380 (44%) 4392 (30%)

Instrumental measure 2 (5%) 0 0 222 (1%)

Mixed 5 (13%) 297 (4%) 1099 (35%) 7247 (49%)

No measure 2 (5%) 771 (10%) 0 1139 (8%)

Genotype assessment

Sequencing analysis 26 (67%) 5942 (76%) 1059 (34%) 4813 (32%)

Othersc 13 (33%) 1864 (24%) 2092 (66%) 10062 (68%)

DNA source

Blood 24 (62%) 4645 (60%) 2743 (87%) 13304 (89%)

Buccal cells 14 (36%) 3161 (40%) 408 (13%) 1326 (9%)

Tissue 1 (3%) 0 0 245 (2%)

NMSC=non melanoma skin cancer.
a healthy subjects are blood donors, friends or relatives of cases.
b individual or frequency.
c includes RFLP, SNaPshot, allele discrimination assay.
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likely to introduce a bias in comparison with the

complete case method [98,99] and a two-stage approach

would be preferred.

Two-stage analysis with random effects models

The two-stage analysis method [100] will allow us to

overcome the problem of the availability of different

study covariates. The pooled-estimates of the association

of MC1R variants with each skin cancer type and each

phenotypic characteristic will be calculated as follows.

First, study-specific ORs will be calculated by applying

logistic regression to the data from each study to esti-

mate the odds of skin cancer conditional on the pres-

ence of a MC1R variant (X), controlling for confounders

Zk. For study k (k = 1,. . .,K), assuming just one confoun-

der, the model is written as:

logit πik=Xð Þ ¼ αk þ βkXik þ γkZik ð4Þ

where πik is the conditional probability of skin cancer for

subject i (i = 1,. . .,nk) of study k. Although MC1R variants

were uniformly defined across studies, the confounders

Zk may be specific to a particular study. Analyses with

original covariates and with recoded data will be per-

formed and compared. The exposure log-odds ratio for

study k is denoted βk, the confounding log-odds ratio is

denoted γk, and the αk are the study-specific intercepts.

The βk are assumed to vary across studies according to

the second-stage model:

βk ¼ βþ bk þ ek ð5Þ

where β is the pooled-exposure log-odds ratio, bk are ran-

dom effects with bk~N(0, σ 2
b), where σ 2

b represents the

variability of the study-specific exposure effects βk about

the population mean β, and ek are independent errors with

ek~N(0, σ2k), where σ
2
k describes the within-study variation

of the βk. In the first stage β̂kand its variance σ̂k2 are esti-

mated from equation 4, separately for each study.

The two-stage estimator of the pooled exposure effect β

is a weighted average of the β̂k , weighted by the inverse

marginal variances of the β̂k , denoted wk ¼ σ̂ 2
k þ σb

2
" #%1

.

Thus:

β̂ ¼
X

k
wk β̂k

$ %

=
X

k
wk ð6Þ

var β̂
$ %

¼
X

k
wk

$ %%1

ð7Þ

Two methods [100] are frequently used to estimate

the random effects variance σ2b in equations 6 and 7.

These methods are pseudo-maximum likelihood and

moment estimation.

Investigation of heterogeneity among studies

Homogeneity among the study estimates will be mea-

sured by Q statistic and I-Square [101], the latter repre-

senting the percentage of total variation across studies

that is attributable to heterogeneity rather than to

chance. Meta-regression analysis will be performed to

investigate heterogeneity among study estimates, by

evaluating the role of methodological characteristics of

the studies and the characteristics of study populations.

Joint association of MC1R and phenotypic characteristics

with skin cancer risk

Stratified analysis for the association of MC1R variants

with each skin cancer type will be performed for differ-

ent phenotypic characteristics. The hypothesis of homo-

geneity of ORs among strata will be verified using the

Breslow-Day test [102].

In order to identify combinations of MC1R variants

and phenotypic characteristics associated with each skin

cancer type, we will perform logic regression, a recently

proposed tree-based statistical method intended for bin-

ary predictors [103]. This approach is particularly useful

for detecting subpopulations at high or low risk of dis-

ease, characterized by high-order interactions among

covariates, and thus the methodology could be well ap-

plied to the study of complex diseases like cancer. First,

we will dichotomize continuous and categorical variables

by choosing appropriate thresholds and by creation of

dummy variables. For phenotypic characteristics we will

define dummy variables in order to 1) have as much dif-

ferentiation as possible in hair and eye color, and 2) sep-

arate the extreme classes of skin type and common nevi

count from intermediate classes, because it has been

suggested [21] that in the meta- and pooled-analysis set-

ting misclassification affects the intermediate classes of

exposure more than the extreme ones. Let X1, X2,. . ., Xp

be the binary predictors obtained by dichotomization,

and let Y be the binary response variable (case/control

status). The appropriate logic regression model can be

written as:

logit Y ¼ 1ð jX1;X2; . . . ;XnÞ ¼ αþ
X

k

j¼1

βjLj ð8Þ

where Lj is a Boolean expression of the predictors Xi,

such as Lj ¼ XC
4 ∧ X5∨X1∨X

C
3

" #

with ∧ ¼ AND, ∨ ¼ OR

and C ¼ NOT. Logic regression could be generally applied

to any type of regression outcome as long as the proper

scoring function is specified. For the logic regression

model in equation 8, the goal is to find the Boolean

expressions Lj that minimize the binomial deviance,

with the parameters βj and the Boolean expressions Lj
estimated simultaneously. The output from logic regression
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is represented as a series of trees, one for each Boolean pre-

dictor Lj, and the associated regression coefficient. An ex-

ample of a logic tree that may be applied to our pooled

analysis is shown in Figure 1. Using this representation it is

possible to start from a logic tree and obtain any other logic

tree by a finite number of operations such as growing of

branches, pruning of branches, changing of predictors and/

or operators.

The searching for the optimum combinations of MC1R

variants and phenotypic characteristics mostly associated

with skin cancer will be undertaken by a (stochastic) simu-

lated annealing algorithm [104-106]. This algorithm has a

good chance to find a model that has the best or close to

best possible score but, in the presence of noise in the

data, typically overfits data. In order to select the best

model, application of a combination of cross-validation

and randomization tests has been suggested [104,105].

In an explanatory setting, at risk gene-phenotype com-

binations will be identified among a very large number of

possible combinations by logic regression-based methods

recently proposed [106,107]. The skin cancer risk of the

identified subpopulations will be estimated within the

pooled-analysis context using the two-stage analysis previ-

ously described.

Structural equation models will be also applied to even-

tually clarify the independent and dependent role of MC1R

variants on skin cancer by phenotypic characteristics.

Finally, the role of environmental exposure will be

investigated by entering new covariates in the models,

by subgroup analyses and by studying gene-environment

and phenotype-environment interactions using trad-

itional and new proposed methodologies [108].

Use of MC1R data

In all the proposed analyses, each of the nine most fre-

quently investigated MC1R variants (V60L, D84E,

V92M, R142H, R151C, I155T, R160W, R163Q, D294H),

as well as known rare mutations affecting MC1R function

[109] will be evaluated assuming different inheritance

models and choosing the one that fits the data best.

Haplotype frequencies will be estimated using the itera-

tive Expectation-Maximization algorithm [110,111], and

their association with each skin cancer type and pheno-

typic characteristics will be evaluated. Moreover, for the

studies that sequenced the entire gene, we will evaluate

the impact on skin cancer and phenotypic characteristics

of the total number of MC1R variant alleles and of the

scores obtained from appropriate classification of MC1R

variants [112].

Discussion
Based on our experience with the study design of the

M-SKIP project, we have described here the most im-

portant steps in planning, conducting and analyzing pooled

individual data from genetic epidemiological studies. A

previously published commentary highlighted the advan-

tages and limitations of this kind of analyses, but did not

describe the statistical methods that could be used to pool

datasets [4]. Some methods for pooling results of epi-

demiological studies were suggested [10,100,112-114], but

specific problems related to genetic epidemiology – such

as the evaluation of different genotyping methodology, the

Hardy-Weinberg equilibrium testing, the hereditary model

assumption, and the assessment of gene-phenotype

and gene-environment interaction – were not discussed.

Within the M-SKIP project, we collected a large

amount of data in which multiple hypotheses can be

examined with greater statistical power than is possible

in individual studies. The response rate of invited inves-

tigators was high (72%), probably due to the well defined

criteria of data collection and use, the clear publication

policy, and the presence of an Advisory Committee

tasked with monitoring adherence to project guidelines

and scientific quality. Another strength of the pooled-

analysis here described is the carefully-planned approach

to standardizing the demographic, epidemiological and

phenotypic information obtained from individual stud-

ies, giving the opportunity to perform appropriate and

detailed subgroup and interaction analyses. Because the

inclusion of an individual study in a particular analysis is

not dependent on whether those investigators have pub-

lished findings on that association, and because of

inclusion of unpublished datasets, our pooled-analysis

should not be affected by publication bias, as it might

a meta-analysis of the published literature. Finally, we

plan to analyze data by conventional and recently

proposed statistical methods, and will compare and

integrate the results obtained with these different

approaches.

Figure 1 Example of a logic tree representing the Boolean

expression “more than 50 common naevi V [skin type IV Λ

(MC1R R151C V brown hair)]”.
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The main limitation of a pooled analysis, especially with

respect to prospective consortia, is that it was planned

retrospectively, and hence there was no a priori

standardization of data collection. On the other hand,

pooled-analysis may be feasible with fewer funds than

those required for a prospective consortium, and it takes

shorter time to obtain results because the original data

have already been collected. The quality of genotype

methodology may be heterogeneous among different par-

ticipant laboratories. We will take into account this pos-

sible problem both by calculation of Hardy-Weinberg

equilibrium and by meta-regression analysis. Finally, while

we will try to assess the existence of participation bias, we

cannot completely rule out that the results could be

affected by the exclusions of the studies from the investi-

gators who refused to participate in this pooled analysis.

In conclusion, the data collected within the M-SKIP

project are a valuable resource for investigating associa-

tions between MC1R variants and skin cancer, particularly

for population subgroups, and may be an appropriate set-

ting to better investigate the genetics of sporadic skin

cancer. A pooled-analysis of epidemiological studies is

feasible, has many advantages over meta-analysis in mak-

ing it possible to adjust for confounders and assess inter-

actions, and in addition preliminary results may be

obtained with lower costs and shorter time than with pro-

spective consortia. We are convinced that its success

depends upon the initial definition and approval of clear

guidelines necessary for conducting such studies. The dif-

fusion of pooled-analysis in genetic epidemiology field

will assist epidemiologists and other health professionals

in synthesizing the vast amount of available data on spe-

cific gene-disease associations and a common data-base

would be the source of possible future investigations.
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