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Abstract

Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little
prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its
seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these
seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks
at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans.
Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef:
whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus
albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged
moved to the neighbouring Shark Reef (,14 km away) and one grey reef shark completed a round trip of ,250 km to the
Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they
were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at
Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of
Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating
no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.
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Introduction

Many marine apex predators are under threat from direct

exploitation, mortality as bycatch, competition with fisheries and

from other anthropogenic impacts such as habitat alteration or

degradation [1–7]. Since many predators are important for

maintaining the stability and functional structure of ecosystems

(e.g. by regulating mesopredator populations), the protection of

these species is also effectively contributing to protecting ecosystem

health and biodiversity [3,8,9]. However, the vulnerability of

many apex predators, as a result of their K-selected life-history

strategies generally characterized by low fecundity, slow growth

and late age at maturity, hampers both their protection and

attempts at rebuilding exploited populations, even after they have

been protected [4,10].

In general, total protection only occurs once a species is

significantly reduced [11]. So, for vulnerable species that are not

presently protected, other management methods are needed to

preserve their populations. For species with a commercial value,

this can be achieved through implementing quotas and size limits

to the catch or temporal closures to the fishery. However, for

species with little or no commercial value, other methods of

protection are warranted. The formation of marine protected

areas (MPAs) is a common method used to preserve both targeted

fishery species and non targeted species alike [6,12–14]. The

protection of key habitats can also assist in facilitating population

growth for some species. However, as protected areas are unlikely

to encompass entire distribution ranges of large predator

populations [6,15], the challenge is to implement an area that is

large enough to afford sufficient protection to species that are

highly mobile, while also appeasing human activities [6,16].

Therefore, defining important habitats within a species’ broader

distribution range can reveal areas that are essential to a

population’s survival [16]. For example, studies on killer whales

Orcinus orca and African penguins Spheniscus demersus used behav-

ioural information to prioritise habitats primarily used for the

activity in which they are most receptive to anthropogenic

disturbance [6,16]. In both cases, the protection of essential

foraging grounds was of greater benefit than protecting habitats

generically.

Shark stocks are experiencing huge declines in numerous

locations [10,17–22], and with the high level of susceptibility this

group has to over exploitation, there is a critical need for adequate

conservation and management to protect their stocks [23]. The

tropical Indo-Pacific Ocean area has experienced significant

increases in the harvesting of shark species, driven by a growing

demand for shark products from Asian markets [24,25]. These

heavy levels of exploitation in conjunction with habitat degrada-
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tion are severely threatening shark populations in reef systems

[25]. MPAs have been proposed for shark conservation [19–21,26]

but, to date, protected area management has mainly focused on

life stages using coastal nursery areas [27]. Although MPAs are a

common strategy implemented on coral reef systems to conserve

predators, unfortunately these areas are often designed with little

prior knowledge of the spatial behaviour of the species they are

designed to protect [28], rendering MPAs ineffective if they fail to

encompass a large part of the species’ home range [12,21,29].

Therefore, knowledge of the spatial ecology of sharks is essential

for their appropriate management and conservation [7,12,27].

The Coral Sea region, an area of approximately 972 000 km2
,

extends east of the Great Barrier Reef Marine Park (GBRMP) to

the edge of Australia’s Exclusive Economic Zone. In May 2009,

the entire Coral Sea region was declared a Conservation Zone to

provide interim protection while the area is being assessed for

potential inclusion in the Commonwealth Marine Reserves.

Activities taking place in the Coral Sea region, including tourism

and commercial and recreational fishing, were allowed to

continue. Commercial fishing activities are currently licensed

and managed through the Australian Fisheries Management

Authority (AFMA) and include long lining, deep water trapping,

sea cucumber collecting and aquarium fish collecting. These

activities have an estimated value of , $AUS1 million per annum

[30,31]. Charter vessel companies that offer a mix of rod and line

and spear fishing provide the majority of recreational fishing.

Tourism activities consisting of live-aboard dive vessels operating

out of a number of ports in Queensland also operate in the area.

Since September 2008, there has been a campaign in the

Australian community to have the Coral Sea declared a Marine

Park. The initial proposal is for a multiple use marine park model

for the whole region that promotes sustainable use, similar to that

of the Great Barrier Reef Marine Park (http://www.environment.

gov.au/coasts/mbp/coralsea/publications/pubs/coralsea-reserve-

proposal.pdf). Conservation groups and some scientists have

proposed a total no-take model. To date, this no-take proposal

has polarized the debate amongst the community and stakeholders.

If MPAs are approved, the protection of sharks at Coral Sea

seamounts should be an integral component of this planning.

Therefore, knowledge on the spatial ecology of sharks at the Coral

Sea seamounts is essential for the appropriate implementation of

management and conservation plans.

In the initial proposed multi-use model, our study location,

Osprey Reef (a seamount) is listed as a Habitat Protection Zone

that would allow limited commercial fishing (handline/rod and

reel, hand collection for the aquarium and sea cucumber trade)

and recreational fishing. As with other isolated atolls and

seamounts in the Indo-Pacific region, the shark assemblage at

Osprey Reef is dominated by a few species [32,33]. Grey reef

sharks Carcharhinus amblyrhynchos, whitetip reef sharks Triaenodon

obesus and silvertip sharks Carcharhinus albimarginatus are the most

common species observed [34–36]. All three species are widely

distributed across the Indo-Pacific, and whitetip and grey reef

sharks are the most abundant shark species on many coral reefs

[37]. However, due to their slow growth and low fecundity, all

three species are believed to be vulnerable to exploitation and

there is some evidence of population declines over parts of their

distribution range [20,37–42]. It is estimated that each year, live-

aboard dive boats are directly responsible for generating at least

AU$16 M worth of income to the Cairns/Port Douglas region

(North Queensland) [34]. Of all the Coral Sea reef systems,

Osprey Reef has the highest visitation rate by tourism operators,

primarily to conduct shark dives [34]. So, the depletion of reef

sharks at Osprey Reef would have financial ramifications for

tourism in North Queensland. To put this into perspective, in the

Maldives, the removal of only 20 grey reef sharks, with a market

value of only AU$1 000, caused an estimated loss of AU$500 000

annually in diving revenue [43].

The objective of this study was to examine the patterns of spatial

use of reef shark species to determine if an MPA would be an

appropriate management strategy for protecting shark populations

at Osprey Reef and the neighbouring Shark Reef. The specific

aims were 1) determine if reef sharks are permanent residents

around Osprey and Shark Reef, 2) investigate the spatial use of

sharks at Osprey Reef and 3) examine inter- and intra-specific

spatial overlap of sharks at Osprey and Shark Reefs.

Methods

Ethics Statement
All research methods were approved and conducted under

Australian Fisheries Management Authority Scientific Permit

#901193.

Study Area and Acoustic Array Design
Osprey Reef is an isolated seamount in the Coral Sea

(13u54.190’S, 146u38.985’E), approximately 220 km east off the

north-east coast of Australia, and 125 km from the edge of the

Great Barrier Reef (Fig. 1). Osprey Reef rises vertically from

2400 m to just below the sea surface (up to less than 1 m), and is

25 km in length and 12 km wide, covering an area of about 195

km2 (Fig. 1). The east wall and southern end of the reef are

exposed to the prevailing south-east winds, and the north-west

corner is the least exposed area. The centre of the reef is a lagoon

with a maximum depth of 40 m, characterised by sandy substrate

scattered with coral bommies throughout. There is currently no

commercial fishery targeting sharks at Osprey Reef. The only

human influences in the area are from a sea cucumber fishery

(hand collection), live aboard dive operators that often conduct

shark feeds (see [36] for description of dive operations), a small

amount of recreational fishing and minimal impact from aquarium

collectors.

An array of 31 VR2w acoustic receivers (VEMCO Ltd.,

Halifax, Canada) was deployed from March 2008 to June 2009.

Receivers were attached to and suspended above the reef with

stainless steel chains, shackles and buoys. The array was

configured to be non-overlapping, with 25 receivers forming a

ring around the perimeter of Osprey Reef, and 5 receivers within

the lagoon (Fig. 1). However, receivers W10 and W11 were lost

due to anchorage failure resulting from a cyclone. An additional

receiver was deployed at Shark Reef, a submerged atoll (top of reef

15 m, area ,15 km2) ,14 km south of Osprey Reef (Fig. 1). This

is the only shallow structure in close proximity to Osprey Reef.

The Shark Reef receiver was deployed to give some indication of

the movements/connectivity between the two seamounts. Range

testing of receivers showed that the distance at which 100% of

transmissions were recorded was 400 m.

Sharks were tagged at four locations: North Horn, Admiralty

and False Entrance, which are located on the outer edge of the reef

and are popular dive sites (Fig. 1). The fourth location was in the

lagoon, where only juvenile grey reef sharks were caught and

tagged. No juvenile grey reef sharks were tagged at the other sites

because none were observed. Although shark tagging was

attempted at the east wall and southern Osprey, no animals were

attracted to the bait or observed in the area from the boat or

SCUBA diving.

Residency and Spatial Use of Reef Sharks
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Study Species and Transmitter Attachment
Animals were fitted with acoustic-coded V16 4H transmitters

(54 mm length615 mm diameter; weight in water: 11 g; trans-

mission off times: random between 50–150 s; battery life ,3 years)

(VEMCO Ltd., Halifax, Canada). Sharks were tagged between

25th March and the 13th April 2008, after all receivers had been

deployed. In total, 18 adult whitetip reef sharks (112–150 cm TL),

27 grey reef sharks (16 adults, 9 juveniles, 2 sub-adults; 80–182 cm

TL) and 4 adult silvertip sharks (157–230 cm TL) were tagged.

With the exception of three grey reefs and one whitetip, all sharks

were females.

Due to differences in behaviour and size, the three species were

captured using different techniques. For whitetip reef sharks,

animals were attracted to a closed crate containing fish frames

(heads and skeletons) and secured to a barren reef outcrop. Sharks

were then caught by a SCUBA diver gently grabbing the tip of the

tail and quickly transferring the noose of a rope around the tail

[36]. Sharks normally struggled for up to a minute before they

relaxed and hang upside down from the rope. The diver then

slowly surfaced and the sharks were brought aboard the boat for

measurement and tag attachment (see [36]). Individuals were

positioned on the duckboard of the boat and running water was

pumped over the gills. Acoustic tags were implanted into the

peritoneal cavity via a 1–2 cm incision in the abdominal wall, and

the incision closed with surgical needle and absorbable thread.

Sharks were returned to the water within 5 minutes.

Grey reef sharks were caught by handline using circle hooks or

using a hook-less method. In the hook-less technique, sharks were

attracted using a large tuna head threaded onto a stainless steel

chain attached to a rope. The tuna head was thrown from a

662 m hydraulic platform on the back of the research vessel into

the water and quickly pulled back in again. When a grey reef shark

pursued the bait onto the platform, this was quickly raised thereby

stranding the shark. Acoustic tags were implanted as described for

whitetip reef sharks.

For silvertip sharks, two individuals were caught by hook and

line, and internally tagged on the hydraulic platform of the boat as

described for whitetip reef sharks. The other two individuals were

tagged underwater. The transmitters were fitted with stainless steel

tag heads and fitted to a modified spear gun. The sharks were

attracted using the baitbox and a scuba diver shot the transmitter

into the dorsal region of the shark.

Figure 1. Location of Osprey Reef in the Coral Sea, Australia (A and B). Panel C shows the depth contours (in metres) around Osprey Reef,
the VR2 receiver array forming a ring around the perimeter of Osprey Reef, and the 5 receivers within the lagoon. Triangles represent receivers. North
Horn, Admiralty and False Entrance are the shark tagging locations.
doi:10.1371/journal.pone.0036574.g001

Residency and Spatial Use of Reef Sharks

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36574



Data Analysis
The number of days that each individual was detected at Osprey

and Shark Reef was plotted on a timeline to determine if individuals

are permanent residents at this seamount. Other data analyses were

based on the number of hours each shark was present at each area

(i.e. each receiver), and this was used as an indication of how often

an individual and a species used that area of the reef. If a shark was

detected by a receiver more than once in any particular hour, it was

considered as having been present during that hour.

The spatial overlap of the three species (for grey reef sharks,

only adults were used in the analysis) was compared using niche

overlap analysis conducted in EcoSim 700 [44], using Piankas

index (O), permutated 1000 times. The degree of overlap is

presented in a 0–1 scale, where 0 equals no overlap and 1 equals

complete overlap. To complement the spatial overlap results, the

proportion of hours each species was recorded at each receiver is

graphically presented. Further spatial overlap analyses were also

performed within species. For whitetip reef sharks, spatial overlap

was tested between sharks tagged at three locations (North Horn,

Admiralty and False Entrance), and for grey reef sharks spatial

overlap was run to compare adults tagged at two locations (North

Horn and Admiralty) and between life stages (adults from both

locations vs. juveniles).

For whitetip and grey reef sharks, circular statistics (Oriana 3

software) were also used to study the diurnal pattern of area use

around receivers that had the highest number of hits (hereafter

termed as key locations): N, W1, W6, W7 and, for Grey Reef

sharks, also W2 (Fig. 1). For each receiver, Rao’s Spacing Test (U)

was used to test for uniformity in the temporal distribution of the

detection data. Silvertip sharks were not included in this analysis

because only four individuals were tagged, and two of which were

not detected for much of the study period. For these analyses, the

response variable was the number of individuals detected by a

receiver at each of the 24 hours of the day, and replicates were the

different days. Again, sharks were considered present only when

detected by a receiver more than once at a particular hour. Sunrise

time ranged from 05:50 h in summer to 06:40 h in winter, and

sunset was between 18:10 h in winter and 18:55 h in summer.

A Fast Fourier Transform (FFT) was also computed for each

species to identify any temporal periodicity in shark activity

around receivers N and W6, as these had the highest number of

detections for all species. Only adult individuals that were

regularly detected at either receiver throughout the course of the

study were considered in this analysis (whitetip reef sharks: n = 15,

grey reef sharks: n = 16, silvertip sharks: n = 2). Input data were the

number of detections per hour blocks. A FFT separates time-series

data into frequencies and identifies any sinusoid patterns, or

periodicity, in the dataset. A power spectrum is then constructed

and the dominant frequencies are represented by peaks in the

spectrum [34]. Before analysis, data were smoothed with a

Hamming window, a weighted moving average transformation

used to smooth the periodogram values [45]. Windowing reduces

discontinuity between frames, smoothes the data and reduces

noise, thus improving the ‘‘quality’’ of the harmonics so that

spectral leakage is reduced and it is easier to identify the

frequencies that contribute the most for the overall periodicity of

the time series. Time series analysis was done using Statistica v.7.0.

(Statsoft, USA).

Results

Residency
Most animals were detected at Osprey Reef from the day of

tagging until the end of the study (Fig. 2). The only exceptions

were three silvertips, three whitetips and four juvenile grey reef

sharks, for which detections stopped shortly (i.e. ,5 weeks) after

tagging (one silvertip), or animals were only detected on a few days

throughout the study (the nine other individuals) (Fig. 2). There is

a noticeable gap in the timeline, most evident for the whitetips

tagged in North Horn, which suddenly stopped being detected

from the 4th June, with regular detections starting again on the

29th September (Fig. 2). This was due to a battery failure at the

North Horn receiver. The pattern is not so obvious for grey reef

sharks because they move through wider areas, and were regularly

within range of the adjacent W1 and E1 receivers, and therefore

were still detected in the area each day. In contrast, whitetip reef

sharks tagged at North Horn rarely left the vicinity of the area (see

Discussion). However, outside of the battery failure period,

whitetip reef sharks were detected almost every day (Fig. 2). The

fact that all the North Horn whitetip reef sharks stopped being

detected on precisely the same day and then resumed detections

again on a precise day suggests they did not migrate out of the

North Horn area. For both adult whitetip and grey reef sharks, 11

out of the 18 tagged adult individuals were detected on .90% of

days after tagging. Because of the failure of the North Horn

receiver, for sharks tagged at North Horn the days of receiver

failure were not considered in this analysis.

Spatial Use
There was a strong spatial overlap in the area use by the three

species (Pianka’s O = 0.85), in particular between grey reef and

silvertip sharks (O = 0.98). All three species spent the majority of

time at N, W6 and W7 locations (Fig. 3). Overall, the north-west

corner of Osprey Reef was used far more than any other area, and

the east wall and southern ends were rarely visited. In fact,

whitetip reef sharks were never detected on the east wall and they

didn’t move into the lagoonal area past receiver L3 (Fig. 3). The

lagoon was only regularly used by the juvenile grey reef sharks

(Fig. 4).

Five individuals, four grey reef and one silvertip sharks were

detected at the single receiver at Shark Reef. Surprisingly, three of

the grey reef sharks were juveniles (80–107 cm TL). One grey reef

(7892) detected at W6 (Admiralty) on the 2nd December 2008

moved to Shark Reef in four days, stayed at Shark Reef for at least

four days and was detected back at Osprey by receiver W13 two

days later. Another individual (7891) was detected by receiver SR

on the 16th of September 2008, 11.5 h after being within range of

receiver S. It stayed in Shark Reef for at least one day, eight days

later it was detected back at Admiralty, and remained in the

Osprey area for the rest of the study. A third grey reef (7900) was

detected at Shark Reef on the 27th of March 2009, after a last

detection at North Horn 41 days earlier. This individual was not

recorded after this last detection at Shark Reef. The fourth grey

reef (7870) moved from receiver S to Shark Reef in one day, on the

15th January 2009, and remained in Shark Reef for the rest of the

study. The silvertip shark (7864) was detected at Shark Reef on the

7th January 2009, after a last detection in Admiralty on the 28th

December 2008. It was then within range of receiver SR until the

15th February 2009, after which there were no more detections.

Whitetip reef sharks remained very close (i.e. within 5 km) to

their tagging location for the duration of the study (Fig. 4a). A high

overlap was evident for sharks tagged at Admiralty and False

Entrance (O = 0.91; Fig. 4a). However, individuals tagged at North

Horn showed extremely low spatial overlap with individuals

tagged at Admiralty (O = 0.03) and False Entrance (O = 0.01)

(North Horn vs. Admiralty and False Entrance pooled: O = 0.11)

(Fig. 4). Adult grey reef sharks tagged at North Horn and
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Admiralty also showed a low degree of spatial overlap (O = 0.27),

and adult and juveniles were even more spatially separated

(O = 0.16; Fig 4b, c).

Diel Patterns at Key Locations
A circadian (24 h) periodicity in the use of receivers N and W6

was present for all adults of the three species that were frequently

detected at these sites (Fig. 5). For whitetip reef sharks tagged in

Figure 2. Timeline of the daily detections of acoustic coded individual sharks at Osprey Reef from March 2008 to June 2009.
Individuals are classified by their tagging location (FE- False Entrance, Ad- Admiralty, NH – North Horn, L – lagoon) and acoustic transmitter ID. Note
that all grey reef sharks tagged in the lagoon were juveniles. The arrows at the top of the graph represent the period from the 4th June to the 29th

September when the North Horn (N) receiver had a battery failure.
doi:10.1371/journal.pone.0036574.g002

Figure 3. Bubble plot showing the percentage of hours that each species was detected at each receiver. White circles - whitetip reef
sharks; grey circles - grey reef sharks; black circles - silvertip sharks.
doi:10.1371/journal.pone.0036574.g003
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North Horn, the diurnal pattern is somewhat hard to detect

visually with the circular graphs (Fig. 6), as whitetips spent the

majority of their time in the vicinity of receiver N. The distribution

of number of sharks detected per hour was however non-

homogeneous (Rao’s spacing test, p,0.01), driven by more

whitetips being detected per hour during the day, and less

individuals detected in the area around dawn, i.e. between 6:00

and 8:00 h (Fig. 6). Also, more whitetips occurred during the night

at receiver W1 (Fig. 6), the closest to receiver N (Rao’s test,

p,0.01). Whitetips tagged in Admiralty and False Entrance spent

most of their time at receivers W6 and W7 (Fig. 3). These animals

showed a non-uniform (Rao’s test, p,0.01) bimodal pattern in the

use of W6, with more individuals being detected in the first hours

of the night and in the first hours of the day (Fig. 6). At W7,

whitetip reef shark occurrence was higher during the day before

peaking at dusk to early evening, between 18:00 and 21:00 h

(Rao’s test, p,0.01) (Fig. 6).

Grey reef sharks tagged at North Horn showed diel difference in

the use of receivers N, W1 and W2 (Rao’s test, p,0.01) (Fig. 6).

The pattern suggests that they expand their area use at night,

moving down the reef from North Horn to W2 (Fig. 6). Grey reef

sharks tagged at Admiralty used the W7 area less during the day

(Rao’s test, p,0.01) (Fig. 6), and then peaked in activity around

dusk at W7 (Rao’s test, p,0.01) (Fig. 6).

Discussion

Results suggest that reef sharks at Osprey Reef are permanent

residents of the area (Osprey and neighbouring Shark Reef), with

very little emigration away from these areas. It is however

important to note that not all animals were detected for the entire

study period, and this needs to be considered when evaluating

emigration and possible immigration of sharks to and from the

Osprey population. There are a number of possible reasons why

some animals (6 adult and 4 juvenile sharks) were not detected for

the entire study: animals could still be present but were in areas of

low receiver coverage, they could have emigrated from Osprey

Reef, could have died during the study, or the transmitters failed.

All four reasons are plausible, and it could well be a combination

of them. As the results of whitetip reef shark movements suggest

this species has small centres of activity, the three individuals that

were not detected for the duration of the study could have moved

to an area with no receiver coverage. For example, two of these

individuals were tagged at False Entrance (W7) and they could

have moved further south into the area where the two receivers

were lost (W10 and W11). Also, there was only one receiver at

Shark Reef, so animals could have moved there without being

detected. Indeed, individuals moving to and from Shark Reef went

days without being detected (11.5 hours to 41 days). For the four

juvenile grey reef sharks, mortality could be responsible for the

cessation of detections, as juvenile sharks are vulnerable to natural

mortality by predation and starvation [46–48]. Alternatively, given

that three juveniles moved to Shark Reef, they may have spent

considerable time in that area but were not detected. Emigration

of approximately 134 km to the Great Barrier Reef (GBR) for

adult grey reef and silvertip sharks is also a possibility since shark

7908 was detected at the GBR 47.8 h after its last detection at

Osprey Reef on the 25th June 2008 [49] and was subsequently

detected back at Osprey Reef on the 2nd of October 2008. Finally,

the two silvertip sharks for which detections stopped during the

study were those that were externally tagged, so this could be a

result of the tags being removed or falling off the sharks. Although

the expulsion of internally implanted tags has been recorded in

teleosts [50], to date, no tag loss has been documented from

acoustic tags implanted in the body cavity of sharks.

An interesting aspect of the population structure of whitetip and

grey reef sharks at Osprey Reef is the sex ratio, which appears to

be strongly biased towards females (pers. obs. of authors, with .12

Figure 4. Area use maps, showing the 95% contours of the number of hours of detection occurred for sharks at different tagging
locations and the comparison of spatial use with Pianka’s niche overlap value (O), where 0 represents no overlap and 1 equals total
overlap. Panel A - whitetip reef sharks tagged at three locations.Note that for the O value calculation, sharks tagged at Admiralty and False Entrance
were pooled and compared with North Horn individuals. Panel B – Adult grey reef sharks tagged at two locations. Panel C – All adult grey reef sharks
compared with juveniles. The grey shaded area represents the 80% contours of juvenile hourly detections.
doi:10.1371/journal.pone.0036574.g004
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Figure 5. Fast Fourier transform of the time series of number of detections per hour for one representative individual of each
species at receivers N and W6. Periodicities of peaks are given over the peaks. Receivers N and W6 were chosen for this analysis because these
correspond to the tagging areas, and most individuals spent a large part of their time in the vicinity of the tagging place throughout the study.
Therefore, data from these receivers provides more complete information on the dial activity periodicity. FFT analysis for the other adult individuals of
the three species that were regularly detected at these receivers throughout the course of the study led to similar results.
doi:10.1371/journal.pone.0036574.g005
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years of frequent diving at Osprey Reef). This was reflected in the

low number of males tagged in the current study (one whitetip and

three grey reefs). So, do the few males mate with all females in the

area, or is there a temporary emigration by females (as seen by

shark 7908) or immigration of males from other areas? In Hawaii,

female whitetip reef sharks show higher philopatry than males,

which may suggest that males move more than females [42].

However, an Indo-Pacific study based on genetics suggests that

whitetip reef sharks are site attached, with sharks from two regions

of the GBR displaying unprecedented genetic isolation for a

carcharhinid species [51]. At Osprey reef, mating scars on females

of both species are evident during the summer periods, between

November and December, and newborn whitetips have been

observed at North Horn hiding amongst the reef during the

summer months (authors’ pers. obs.). Quantitative studies incor-

porating genetics and population structure and abundance (e.g.

photo ID for mark and recapture studies) are required to further

explore residency and the population dynamics of both species at

Osprey and Shark Reefs and the consequences that biased sex

ratios may have to the effectiveness of any implemented MPA.

For whitetip reef sharks, the small area use reported at Osprey

Reef resulted in very low overlap or mixing between sharks

residing in different areas separated by only ,10 km. This agrees

with previous estimates that their movements are limited to 3–

Figure 6. Circular plots showing the distribution of the number of individuals detected at each hour of the day for each of the main
receivers (in % of total) for whitetip and grey reef sharks. Note the differences in scale between plots. Different shadings represent the
number of sharks detected in a given hour.
doi:10.1371/journal.pone.0036574.g006
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5 km [42,52]. However, movements of up ,26.4 km (straight line)

have also been recorded for some individuals in Hawaiian reefs

[42]. These larger movements have been interpreted as repre-

senting home range shifts [42]. In the present study, whitetip reef

sharks from North Horn expanded their area coverage from the

centre of activity at North Horn down the west wall to the area

around receiver W1 at night. Whitetips at North Horn also

increase vertical activity at night [36]. Both results confirm that

whitetip reef sharks at Osprey Reef are nocturnally active,

maintaining a central location or core area to rest during the

day, before dispersing at night. Resting in a core area during the

day and dispersing at night to likely forage has been reported for a

number of shark species [27,53], including grey reef sharks

[12,54].

Grey reef sharks at North Horn showed diel patterns of activity

similar to whitetip reef sharks, but over a greater area. For

example, during the day their centre of activity was around North

Horn and W1, but at night they moved further down the west wall

to the area around receiver W2 (see Fig. 6). The lower number of

sharks detected at North Horn and W6 during the night hours

could also be influenced by grey reef sharks leaving the proximity

of the reef at night to forage in the pelagic zone, out of receiver

range. Nevertheless, the high use of the North Horn area by both

whitetip and grey reef sharks over the entire diel cycle suggests

limited dispersal, with resting, foraging and any possible social

behaviours all occurring in close proximity to North Horn. High

spatial overlap between these two species also occurred at a coastal

aggregation site in Ningaloo Reef, Western Australia [54].

The predictable use of particular sites by reef sharks suggests

that determining the ecological significance of these sites is crucial

for conservation planning. For example, whitetip and grey reef

sharks showed peaks of activity in the use of the W7 area around

the dusk period. False Entrance (W7) is an area where the reef wall

is broken up, with many gullies and crevices (pers. obs). This may

make it a good area for foraging at dusk, when reef fish are in the

transitional stage from diurnal to nocturnal behaviour. Crepuscu-

lar peaks in activity have been observed for both captive and wild

whitetip reef sharks (Whitney et al., 2007; [36,55]. On the other

hand, the high use of the W6 area may be influenced by the

occurrence of a major cleaning station in the area, of which both

silvertip and grey reef sharks are regular visitors [35]. However,

the regular use of this area suggests that it is important for other

reasons such as foraging. This area is located at a point of the reef

with a ridge at 28 m and a steep drop off to 700 m [35], with

strong tidal flows from water entering and exiting the lagoon.

These are habitat features that grey reef sharks have previously

been associated with [56,57]. The repeated use of specific sites

within Osprey Reef, a known hotspot for sharks, is similar to the

spatial use of scalloped hammerhead sharks Sphyrna lewini in the

Galapagos Islands, where sharks mainly use a few key areas

around the Wolf Island hotspot [58].

The low spatial overlap between grey reef shark adults tagged

10 km apart was somewhat surprising, given that an individual

moved to the GBR and returned within 4 months, and grey reef

sharks display little site fidelity to reefs on the GBR [49]. Recent

studies have reported similar low spatial overlap and strong site

fidelity for large mobile sharks over relatively small spatial scales

(i.e. 10s km) [59,60], and grey reef sharks at an isolated group of

atolls 250 km off the north west coast of Australia (Rowley Shoals)

also appeared to show strong site fidelity to relatively small areas

[12]. However, the actual area use or dispersal patterns of

individuals could not be established because of limited receiver

coverage over relatively small sections of large reefs [12]. In

contrast to the Rowley Shoals study, in the present study the

Osprey seamount had broader receiver coverage and therefore

afforded a much more comprehensive view of area use for grey

reef sharks. Essentially, results from the current study confirm the

earlier predictions of Field et al. [12] at the Rowley Shoals, that

grey reef sharks are site-specific within isolated atolls/seamounts.

Strong site fidelity in grey reef sharks has also been recorded at

Enewetak Atoll [61]. The differing movement patterns observed at

oceanic atolls/seamounts and the GBR probably reflect the spatial

context of the tagging studies. The GBR system consists of

approximately 2300 Km of relatively closely-spaced reefs, where

groups of reefs can be considered continuous habitat for grey reef

sharks to move between. This is in contrast to the isolation of the

deep sea atolls/seamounts [12,49].

The dissimilarity in movement patterns between grey reef

sharks on the GBR and at Osprey Reef highlights the dissimilar

behaviour that can be observed for the same species in different

locations. It also shows the uniqueness of different systems when

considering protection plans. The conservation plan currently

implemented in the GBR is considered to have limited utility for

grey reef shark protection [49], in contrast, due to the long-term

residency and strong site attachment of grey reef sharks at Osprey

and Shark Reefs, the implementation of a marine protected area

that incorporates no-take zones for sharks in this area could be

effective for this species.

Due to their isolation, oceanic seamounts can still constitute

relatively pristine functioning systems that support a diverse array

of species [18]. Therefore, many are ideal candidates for MPAs

because a large proportion of the animals living at these places will

spend their entire lives within the protected zone. This ideology

appears to be well suited to the reef shark populations at Osprey

Reef. Despite the possible emigration of a few animals, whitetip

and grey reef sharks at Osprey are highly site attached, displaying

predictable spatial use patterns, and are therefore vulnerable to

exploitation. This vulnerability is further evidenced by the low

inter-species spatial overlap and the strong dependence on N, W6

and W7 areas, meaning that residents in a small area could be

easily targeted. Also, the isolation of Osprey Reef suggests

immigration would be low and, consequently, re-stocking ability

of reef shark species after exploitation could be limited. In

addition, the small spatial use exhibited by sharks at North Horn

suggests they interact with ecotourism shark provisioning activities

year round, see [36] for a description of tourism and shark

interactions. Possible implications are 1) sharks in this area are

easily attracted to boats as they are already conditioned to

handouts [36], and 2) constant exposure to tourism activities can

affect long-term behaviour and health [36,62,63].

Overall, there is a lack of information regarding the spatial use

of large mobile species, and this makes it difficult to provide

technical advice on the design and spacing of MPAs [58].

However, recent studies have evaluated the effectiveness of MPAs

for protecting shark populations, e.g. [58,64], but most were

conducted after the MPAs have been implemented. The current

study is one of the first studies to test the effectiveness of a MPA in

protecting sharks prior to designing and implementing a marine

reserve. If shark no-take zones are implemented at Osprey and

Shark Reef then whitetip and grey reef shark populations should

benefit from this protection. But, ideally, a protection zone should

extend a significant distance from the reef to incorporate areas

used by reef associated species such as silvertip and hammerhead

sharks. However, further research is needed on these more mobile

species to determine the appropriate size of a pelagic buffer zone.

A similar protection plan was advised for the Galapagos Islands for

scalloped hammerhead sharks, where appropriate protection

might be provided by closing the areas where this species
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aggregates, and extending this protection outward to include the

area covered during nocturnal foraging movements [58].

Few tropical marine systems have remained unaffected by

human exploitation [65], so the depletion of apex predators often

precedes the study and monitoring of coral reef systems [66,67].

Consequently, protected areas are generally introduced after

exploitation is well underway, making it difficult to establish the

natural baseline for future studies [33]. Therefore, isolated coral

reefs such as Osprey, which lack a history of intense exploitation,

can be useful to evaluate human impacts, providing insights into

the original ecological function of coral reef systems, and helping

predict impacts of future exploitation (e.g. the comparison between

communities from pristine and exploited reefs can give informa-

tion on the likely consequences of future exploitation of pristine

systems), and help devise strategies for protecting and re-building

depleted predator populations in other regions, e.g. [18,33,67].

For example, studies at relatively pristine and exploited atolls in

the northern Line Islands in the central Equatorial Pacific show

that even modest fishing effort can drastically reduce apex

predators and have negative effects on fish assemblage structure

at coral reef atolls [18,33]. Based on the information presented in

the current study and from other isolated atoll/seamount locations

[18,33,67], if the proposed Coral Sea Conservation Zone is

implemented, it will provide a great deal of protection to shark

species at Coral Sea seamounts and species that are susceptible to

overfishing [21,23].
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