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Abstract

It is proposed that a dynamic Bayesian network (DBN) is used to perform turbo equalization in a system transmitting
information over a Rayleigh fading multipath channel. The DBN turbo equalizer (DBN-TE) is modeled on a single
directed acyclic graph by relaxing the Markov assumption and allowing weak connections to past and future states. Its
complexity is exponential in encoder constraint length and approximately linear in the channel memory length.
Results show that the performance of the DBN-TE closely matches that of a traditional turbo equalizer that uses a
maximum a posteriori equalizer and decoder pair. The DBN-TE achieves full convergence and near-optimal
performance after small number of iterations.
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1 Introduction
Turbo equalization has its origin in the Turbo Principle,
first proposed in [1] where it was applied to the itera-
tive decoding of concatenated convolutional codes. The
concept of Turbo Coding was subsequently applied to
equalization in [2,3] by viewing the frequency selective
channel as an inner code and replacing one of the con-
volutional maximum a posteriori (MAP) decoders with a
MAP equalizer. The MAP equalizer and the MAP decoder
iteratively exchange extrinsic information. By iterating the
system a number of times, the bit error rate (BER) per-
formance can be improved significantly, but at the cost
of additional computational complexity, especially if the
frequency selective channel has long memory.

Turbo equalization becomes exceedingly complex in
terms of the number of computations, due to the high
computational complexity of the MAP equalizer and MAP
decoder most often used in a turbo equalizer. The com-
plexity of the MAP equalizer is linear in the data block
length N, but grows exponentially with an increase in
channel memory. Its complexity is therefore O(NML−1),
where L is the channel impulse response (IR) length, and
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M is the modulation alphabet size. Similarly, the complex-
ity of the MAP decoder is linear in the data block length
and exponential in the encoder constraint length K.

It is however suggested in [4], and discussed in length
in [5], that an MMSE equalizer can be modified for use in
a turbo equalizer, to take advantage of prior information
on the symbols to be estimated. By replacing the optimal
MAP equalizer with a suboptimal, low complexity MMSE
equalizer, low complexity turbo equalization is achieved,
while still achieving matched filter bound performance
using static channels of length five [5]. It was also shown
in [5] how a decision feedback equalizer can be used in a
turbo equalizer configuration. Also, a soft-feedback equal-
izer (SFE) was proposed in [6] with performance supe-
rior to that proposed in [5]. The author of [6] expanded
upon ideas proposed in [5], where hard decisions on the
equalizer output are fed back by combining prior infor-
mation with soft decisions [6]. The performance of the
SFE turbo equalizer was evaluated for a magnetic record-
ing channel (9 taps), a microwave channel (44 taps), and a
power-line channel (58 taps), outperforming the low com-
plexity turbo equalizers proposed in [5], while doing so
at reduced complexity. Still, neither of the low complex-
ity turbo equalizers proposed in [4-6] can achieve optimal
or even near-optimal results, due to the suboptimality of
their constituent soft-input soft-output equalizers.

An interleaver is used as standard in a turbo equal-
izer not only to mitigate the effect of burst errors by
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randomizing the occurrence of bit errors in a transmitted
data block, but also to aid in the dispersion of the posi-
tive feedback effect, which is due to the fact that the MAP
algorithm used for equalization and decoding produces
outputs that are locally highly correlated [4]. When a ran-
dom interleaver is used, the Markov assumption, stating
that the current state is only dependent on a finite his-
tory of previous states, is violated since the interleaver
randomizes the encoded data according to some prede-
termined random permutation. The Markov assumption
therefore fails and the turbo equalizer can no longer be
modeled as a directed acyclic graph (DAG) to form a
cycle-free decision tree. As a result, much attention has
been given to approximate inference using belief propaga-
tion on graphs with cycles. The junction tree algorithm is
used to combine nodes into super-nodes until the graph
has no cycles [7], with an exponential growth in com-
plexity as nodes are combined. Apart from the very high
computational complexity of this approach, it has been
shown in [8-10] that exact inference is not guaranteed on
graphs with cycles.

In this article, a low complexity near-optimal dynamic
Bayesian network turbo equalizer (DBN-TE) is proposed.
The DBN-TE is modeled as a DAG, while relaxing the
Markov assumption. The DBN-TE model ensures that
there is always one dominant connection between a
given hidden state and its corresponding observation,
while there may be many weak connections to past and
future hidden states. The computational complexity of the
DBN-TE is exponential in decoder constraint length and
approximately linear in the channel memory length. Addi-
tional complexity is due to the channel memory, but is
only approximately linear since it does not increase the
size of the state space, but merely increases the summa-
tion terms in the sensor model. Results show that the
performance of the DBN-TE closely matches that of a
conventional turbo equalizer in Rayleigh fading channels,
achieving full convergence after only a small number of
iterations.

This article is structured as follows. Section 2 pro-
vides a brief overview of conventional turbo equalization.
Section 3 presents a discussion on the implications of
modeling a turbo equalizer as a DAG and quasi-DAG,
while a theoretical discussion on the iterative convergence
of a quasi-DAG is discussed in Section 4. The DBN-TE
formulation is discussed in Section 5 and a complexity
comparison between the DBN-TE and the conventional
turbo equalizer is shown in Section 6. Section 7 presents
simulation results and conclusions are drawn in Section 8.

2 Turbo equalization
A turbo decoder uses two MAP decoders to iteratively
decode convolutional coded concatenated codes. Like the
MAP equalizer, the MAP decoder produces posterior

probabilistic information on the source symbols. The out-
put of each decoder is therefore used to produce prior
probabilistic information about the input symbols of the
other decoder, thus allowing this scheme to exploit the
inherent structure of the code to correct errors with each
iteration [11], achieving near Shannon limit performance
in AWGN channels [1].

Since the communication channel can be viewed as
a non-binary convolutional encoder, the channel can be
viewed as an inner-code while a convolutional encoder is
used as an outer-code in much the same way as in turbo
coding [3], so that the turbo principle can be applied to
channel equalization. As such, one of the MAP decoders
in the turbo decoder is substituted with a MAP equalizer
to mitigate the effect of the channel on the transmitted
symbols (to “decode” the ISI-corrupted received symbols)
[3]. The output of the MAP equalizer is used to produce
prior probabilistic information on the encoded symbols,
which is exploited by the MAP decoder. In turn, the out-
put of the MAP decoder is used to produce prior proba-
bilistic information on the unequalized received symbols,
which is again exploited by the MAP equalizer. By iterat-
ing this system a number of times, the performance of the
system can be enhanced greatly [2-5].

Figure 1 shows the structure of the turbo equalizer. The
MAP equalizer takes as input the ISI-corrupted received
symbols r and the extrinsic information LD

e (ŝ) and pro-
duces a sequence of posterior transmitted symbol log-
likelihood ratio (LLR) estimates LE(ŝ) (note that LD

e (ŝ) is
zero during the first iteration). Extrinsic information LE

e (ŝ)
is determined by

LE
e

(
ŝ
) = LE (

ŝ
) − LD

e
(
ŝ
)

, (1)

which is deinterleaved to produce LE
e (ŝ′), which is used

as input to the MAP decoder to produce a sequence
of posterior coded symbol LLR estimates LD(ŝ′). LD(ŝ′)
is used together with LE

e (ŝ′) to determine the extrinsic
information

LD
e

(
ŝ′) = LD (

ŝ′) − LE
e

(
ŝ′) , (2)

LD
e (ŝ′) is interleaved to produce LD

e (ŝ). LD
e (ŝ) is used

together with the received symbols r in the MAP equal-
izer, with LD

e (ŝ) serving to provide prior information on
the received symbols. The equalizer again produces pos-
terior information LE(ŝ) of the interleaved coded symbols.
This process continues until the outputs of the decoder
settle, or until a predefined stop-criterion is met [3]. After
termination, the output L(û) of the decoder gives an
estimate of the source symbols.

The power of turbo equalization lies in the exchange
of extrinsic information LE

e (ŝ) and LD
e (ŝ′) between the

equalizer and the decoder. By feeding back the extrin-
sic information, without creating self-feedback loops, the
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Figure 1 The structure of the turbo equalizer.

correlation between prior information and output infor-
mation is minimized, allowing the system to converge to
an optimal state in the solution space [4,5]. If informa-
tion is exchanged directly between the equalizer and the
decoder by ignoring interleaving and/or extrinsic infor-
mation, self-feedback loops will be formed. This will cause
minimal performance gains, since the equalizer and the
decoder will inform each other about information already
attained in previous iterations [4].

3 Modeling a turbo equalizer as a quasi-DAG
Suppose a wireless communication system generates a
column vector of source bits s of length Nu and s is
encoded by a convolutional encoder of rate Rc = 1/n,
producing a coded bit sequence c of length Nc = Nu/Rc.
Now suppose that the coded bits sequence is interleaved
using a random interleaver, which produces a bit sequence
ć of length Nc, which is transmitted. The resulting symbol
sequence to be transmitted is given by

ć = JGTs, (3)

where T denotes the transpose operation and G is an
Nu × Nc matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1K . . . gnK 0 . . . 0 0 0 0
...

. . .
... g1K . . . 0 0 0 0

g11 . . . gn1
... . . . 0 0 0 0

0 0 0 g11 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . gnK 0 0 0

0 0 0 0 . . .
... g1K . . . gnK

0 0 0 0 . . . gn1
...

. . .
...

0 0 0 0 0 0 g11 . . . gn1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

representing the convolutional encoder, where

g =

⎡
⎢⎢⎣

g11 . . . gn1

...
. . .

...
g1K . . . gnK

⎤
⎥⎥⎦ (5)

is the generator matrix of a rate Rc = k/n (k = 1)

convolutional encoder with constraint length K and J is
the Nc × Nc interleaver matrix. Now suppose the symbol
sequence ć is transmitted over a single-carrier frequency-
selective Rayleigh fading channel with a time-invariant IR
h of length L, the received symbol sequence is given by

r = Hć + n, (6)

where H is the Nc × Nc channel matrix with the channel
IR h = {h0, h1, . . . , hL−1}′ on the diagonal such that

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 . . . 0 0 0 0
... h0 . . . 0 0 0 0

hL−1
...

. . . 0 0 0 0

0 hL−1
. . . . . . 0 0 0

...
...

. . . . . . h0 0 0
0 0 0 hL−1 . . . h0 0
0 0 0 0 hL−1 . . . h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

and n is a complex Gaussian noise vector with 2Nc sam-
ples (Nc for real and Nc for imaginary) from the distribu-
tion N (0, σ 2).

Figure 2a shows a graphical model of the transmission
model in (6), without noise, where it is assumed that J = I
where I is an Nc × Nc identity matrix (i.e., no interleaving
is performed) where Rc = 1/3 and L = 2. It shows that
every uncoded bit sk produces Rc

−1 = 3 coded bits ck′ ,
ck′+1 and ck′+2, where k′ = ((k − 1)/Rc) + 1 (k runs from
1 to Nu and k′ runs from 1 to Nc). Each received symbol
can be expressed as

rk′ =
L−1∑
l=0

ck′−lhl, (8)

where h = {h0, h1}′ is the channel IR. Note that h0
and h1 are not shown in Figure 2a. This equalization-
and-decoding problem can be modeled as a DAG, and
the forward–backward algorithm can be used to optimally
estimate c, and hence s, with relative ease, since there
exists a one-to-one relationship between the observed
variables r and the hidden variables c. There also exists
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(b)(a)
Figure 2 Graphical models of (6) without (a) and with (b) a
random interleaver.

a relationship between consecutive codewords (groups of
n bits). Figure 2a also depicts the causality relationship
between the hidden variables and the observed variables.

Now consider Figure 2b. It shows a graphical model of
the transmission model in (6), again without noise, but
now J is a random Nc × Nc interleaver matrix and again
Rc = 1/3 and L = 2. Each received symbol can be
expressed as

rk′ =
L−1∑
l=0

ćk′−lhl, (9)

where ćk′ is the k′th interleaved symbol. It is clear from
Figure 2b that there is no obvious relationship between
the observed variables r and the hidden variables c and
that the causality relationship in Figure 2a is destroyed due
to the randomization effect of the interleaver. Moreover
the relationship between consecutive codewords (groups
of n bits) is also destroyed. This problem can therefore no
longer be modeled as a DAG and exact inference is in fact
impossible [8].

Deinterleaving the received sequence r will ensure that
the one-to-one relationship between each element in r
and c is restored, but only with respect to the first coef-
ficient h0 of the IR h. If h0 is dominant and if h is
sufficiently short, approximate inference is possible due
to the negligible effect of h1 to hL−1 on r, but this is not
normally the case. In a wireless communication system,
transmitting information through a realistic frequency-
selective Rayleigh fading channel h0 cannot be guaran-
teed to be dominant and the contribution of h1 to hL−1
is not negligible, and therefore this approach will fail.
This has been simulated and verified by the authors.
Another viable alternative is to model the system as a
loopy graph in order to perform approximate inference
as in [12], but as stated before, exact inference is impos-
sible [8-10] and full convergence is not guaranteed [13].
In loopy graphs, convergence is normally achieved after
many iterations.

The proposed DBN-TE addresses this problem by mod-
eling the turbo equalizer as a quasi-DAG by applying a
transformation to the ISI-corrupted received symbols, in
order to ensure that there will always exist a dominant
connection between the hidden variable (codeword sym-
bols) and the observed variable (received symbols) at a
given time instant, and only weak connections between
the observed variable at the current time instant and hid-
den variables at past and future time instances. With
this transformation the DBN-TE achieves full conver-
gence and is able to perform near-optimal inference in a
small number of iterations, in order to estimate the coded
sequence c, and hence the uncoded sequence s.

4 Theoretical considerations
In this section, we consider a simplified version of the
above-mentioned decoding problem. There are only two
hidden and two observation variables, with one weak con-
nection, between the observed value at the time instant
2 and a hidden variable at time instant 1. The purpose of
the section is to illustrate, and mathematically analyze, in
a clear-cut example how iteration can handle weak con-
nections. Although the analysis in this section is only valid
under restrictive assumptions, such as that there is only
one weak connection, we end the section with remarks
suggesting that it can be generalized.
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Consider a directed graph with (hidden) state variables
X1 and X2, and observables E1 and E2 (see Figure 3). We
assume that these four random variables are binary.

As already mentioned, we assume that the observable
variable E2 depends not only on the hidden variable X2,
but also on the hidden variable X1. One way to get back
to a classical hidden Markov chain problem is to com-
bine X1 and X2 into “super nodes.” This increases the size
of the state space and hence the computational complex-
ity. We therefore use an iterative method instead, which is
explained in Section 5.

We describe the iteration below, but first an infor-
mal definition of the weak connection between hidden
variable X1 and observed variable E2. For the current
discussion, it is adequate to understand with a “weak con-
nection” that the conditional probability distribution of
the observed variable E2 given X2 and {X1 = 0} is close to
the distribution given X2 and {X1 = 1}. The answer to the
question of how close these two conditional distributions
have to be, can in principle be determined from the proof
of Lemma 1 below. Similar to the preceding section, our
diagram is not a tree but a loopy DAG (or quasi-DAG).

To describe the iteration procedure, recall that for a hid-
den Markov model, the event matrix at position (k, m)

is the probability that the observation m is made, given
that the value of the hidden state is k. We will modify the
forward–backward algorithm (described in Section 5.2.4)
to compute the distribution of states given the evidence.

We now describe the iteration. Step 1 is to start with
an initial estimate, say (i, j) of the states (X1, X2). Step 2 is
to modify the forward–backward algorithm by modifying
the event matrix that is used at time 2: change the entry in
position (k, m) to

P(E2 = m|X2 = k, X1 = i). (10)

X1 X2

E2E1
Figure 3 Non-Markovian DAG. We assume that the connection
between X1 and E2 is “weak”.

Use the modified algorithm to compute the distribution
of each state given the evidence. Find the most likely states
from the distribution.

Step 2 can be iterated several times, but each time with
the most recently obtained sequence of states in the place
of the initial estimate (i, j). The claim is that these itera-
tions will converge if the connection between E2 and X1 is
“weak enough.”

In the rest of this section, we will interpret what “weak
enough” means through notions of real analysis such as
metric spaces and ε − δ description of continuity. The
readers unfamiliar with these concepts can skip now to the
next section without breaking the flow of their reading.

Note that we can put a metric (distance function) on
the collection of event matrices, for example Euclidean
distance will do.

The crux of the lemma is illustrated in Figure 4.

Lemma 1. Assume that at all iterations, the modified
forward–backward estimates of the probabilities P(X1 =
1|E1 = r, E2 = s) and P(X2 = 1|E1 = r, E2 = s) are differ-
ent from 1

2 and 0. Then, if the event matrices, correspond-
ing to the different possibilities for the previous-iterate
sequence of bits, are within sufficiently small distance of
each other, the iteration procedure will converge to a fixed
point; in fact the first and second iterations will already be
identical.

11

00 10

01

ε

Figure 4 On the four corners we have the possible previous
estimates. If the event matrices are “close enough,” then all previous
estimates will be mapped into the ε-ball, and thus into the same
quadrant. In a situation where the evidence tables are not “close
enough” initially, they may become so after a few iterations.
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Proof. It is easy to show that for any fixed observation
sequence (E1, E2) = (r, s) the dependence, of the posterior
probability distribution of (X1, X2), on the choice of event
matrices, is that of a continuous mapping. We can assume
without loss of generality that the iteration is initialized at
the state sequence (0, 0), because the argument below will
apply to any initialization.

Let (p1, p2) be the modified forward–backward esti-
mates obtained, for the probabilities P(X1 = 0, X2 =
0|E1 = r, E2 = s), when it is initialized at (0, 0). Because
these estimates are assumed to be different from 1

2 , the
point (p1, p2) belongs to the interior of one of the quad-
rants of the square [ 0, 1] ×[ 0, 1]. Since it is in the interior,
there is an ε > 0 so that the ball with midpoint (p1, p2)
and radius ε is contained in the same quadrant.

Our iteration procedure will now move to step 2 and
initialize the modified forward–backward algorithm with
the output of the first forward–backward run, which is the
corner nearest to (p1, p2). Now, by the above-mentioned
continuity of the posterior distribution on the used event
matrices, there is a δ > 0 such that if the all the event
matrices are within distance δ of the event matrix corre-
sponding to the above-used initial guess (0, 0), then the
output of the modified forward–backward algorithm will
be within distance ε of (p1, p2). Therefore, it will be in
the same quadrant as (p1, p2). So, rounding to the near-
est corner will give the same corner as was yielded by the
previous iteration.

We end this section by briefly discussing why this result
can be expected to have a version that is also applicable to
the less restrictive setup of the previous and next sections.

• More than two state variables: With a number of
state variables n, the square in the proof will become
a hypercube in n dimensions, with 2n corners, each
corner representing a possible previous sequence of
estimates of each of the n state variables. The proof
will carry over; the ε − δ description of continuous
mappings is still applicable without
modification.

• Event matrices not “close enough:” If the first
estimate of the hidden states is good, it is likely that it
will be mapped to a quadrant, of which the corner will
be mapped to the right quadrant in the next iteration.
In this case more than one iteration will be needed.

• More weak connections: With more than two state
variables, it becomes possible that Ek is connected
with Xl for some l < k − 1. The entries of the event
tables will then have to be set to a probability that is
conditioned on a sequence longer than that
appearing in equation (10). This does not affect the
proof, as long as the connections are weak enough.
Here the connections being weak enough means that
the event matrices that are possible due to different

possible observation histories, are all close enough in
the sense of the lemma.

5 DBN turbo equalizer
In this section, the DBN-TE is discussed. The first part
explains the transformation that is applied to the chan-
nel matrix in order to ensure that there exists a dominant
connection between the observed variables and their cor-
responding hidden variables, and the second part explains
the operation of the DBN-TE, which jointly models the
equalization and decoding stages on a quasi-DAG as
defined in the previous section.

5.1 Transformation
For this exposition, assume that the coded symbols c are
transmitted through a channel Q = HJ, where H is the
channel matrix and J is the interleaver matrix as previously
defined. Therefore, Equation (6) can be written as

r = Qc + n. (11)

For the DBN-TE to perform approximate inference
there must exist a strong connection between the
observed variable and the hidden variable at time instance
k, and weak connections must exist between the observed
variable at time instance k and hidden variables at other
time instances. The randomization effect of the inter-
leaver must also be mitigated in order for the turbo equal-
izer to be modeled as a quasi-DAG so that there can exist
a one-to-one relationship (dominant connection) between
the observed variable and the corresponding hidden vari-
able at time instance k.

To ensure that the connections between the observed
variable and neighboring hidden variables are weak, the
energy must be concentrated in the first tap ho of h. This
can be achieved by applying a minimum phase prefilter
to the received symbols r [14]. This process produces a
filtered received symbol sequence and a minimum phase
channel IR.

In order to model the turbo equalization problem as a
quasi-DAG, the randomization effect of the random inter-
leaver must be mitigated. Figures 5 and 6 show ‖Q‖ for
systems with a channel IR lengths of L = 1 and L = 3,
respectively, for a hypothetical system with parameters
Nu = 50, Nc = 150, Rc = 1/3 at a mobile speed of
3 km/h and no frequency hops. It should be clear that any
sequence c that is transmitted through a channel Q, as
described in (11), will be subject to randomization.

To mitigate the effect of the interleaver, the following
transformation is applied to r:

QH r = QH Qc + QH n, (12)
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Figure 5 ‖Q‖ for a system with L = 1 IR coefficients.

which is equivalent to transmitting the coded symbol
sequence c through a channel U, where

U = QH Q, (13)

so that

QH r = Uc + QH n. (14)

Figures 7 and 8 show ‖U‖ for systems with channel
IR lengths of L = 1 and L = 3, respectively. It is
clear that this transformation mitigates the randomness
exhibited in Q, since the new “channel” U is diago-
nally dominant. The one-to-one relationship between the

observed variables and the corresponding hidden vari-
ables are therefore restored. Minimum-phase filtering
of r is performed before performing the transformation
in (12).

Therefore, applying a minimum-phase filter to r and
performing the transformation in (14), all the conditions
are met to model the turbo equalizer as a quasi-DAG with
dominant connections between the observed variables
and their corresponding hidden variables. Minimum-
phase filtering ensures that a dominant connection exists
between the observed variable and the hidden variable
at time instance t, and that there exist weak connections
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Figure 6 ‖Q‖ for a system with L = 3 IR coefficients.
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Figure 7 ‖U‖ for a system with L = 1 IR coefficients.

between the observed variable at time instance t and
the hidden variable at other time instances, while the
transformation in (14) mitigates the randomization effect
of the interleaver so that there exists a one-to-one
relationship between each observed variable and its
corresponding hidden variable. By performing the trans-
formation described here, all conditions for convergence
as described in Section 4 are met.

5.2 The DBN-TE algorithm
After making preparation for the turbo equalization prob-
lem to be modeled as a quasi-DAG, as explained in

the previous section, the DBN-TE algorithm can be
executed. In this section, various aspects of the DBN-
TE are discussed after which a step-by-step summary
is provided in Section 5.2.8 in the form of a pseu-
docode algorithm, encapsulating the working of the
DNB-TE.

We assume a system with a uncoded block length of Nu,
using the rate Rc = 1/3, constraint length K = 3, con-
volutional encoder in Figure 9 to produce Nc bits, where
Nc = Nu/Rc. The coded bits are interleaved with a ran-
dom interleaver and passes through a multipath channel
with an IR of length L.
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Figure 8 ‖U‖ for a system with L = 3 IR coefficients.
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c(1)

c(2)

c(3)

s

Figure 9 Rate Rc = 1/3 convolutional encoder.

5.2.1 Graph construction
The graph is constructed to model the possible outputs of
a convolutional encoder in much the same way as a trel-
lis is constructed in a conventional MAP decoder. For the
DBN-TE graph the number of states per time instance t is
equal to the number of possible state transitions, given by
M = 2K , where K is the encoder constraint length. This
is different from the number of states in a MAP decoder,
which is equal to the number of possible states, given by
M = 2K−1. The number of time instances in the DBN-TE
graph is equal to the number of uncoded bits Nu, which
is also equal to the number of codewords. Figure 10a,b
shows the graphical model of a DBN-TE for the first and
subsequent iterations, respectively, where the dashed lines
in Figure 10b depict weak connections due to ISI. Each
Xt on the graph contains a set of M state transitions x(m)

t ,
where t = 1, 2, . . . , Nu and m = 1, 2, . . . , M.

During the first iteration no coded bit estimates c̃ are
available, so the graphical model is a pure DAG due to
the fact that the current state is only dependent on the
previous state. Hence only Ut,t is used in the cost func-
tion of the sensor model, where Ut,t is a coefficient on
the diagonal of the new channel matrix U in (14). After
the first iteration estimates of the coded bits c̃ are pro-
duced and can therefore be used in subsequent iterations.
During subsequent iterations then, Ut,u and Ut,v are also
considered in the cost function of the sensor model, where
u = 1, 2, . . . , t − 1 and v = t + 1, t + 2, . . . , Nu.

5.2.2 State transition output table
The output associated with each state transition is also
tabulated using the encoder state diagram in Figure 11.
The output produced by each state transition x(m)

t , m =
1, 2, . . . , 8, is determined by loading the bit-values of the
current state into the leftmost K − 1 = 2 fields of the con-
volutional encoder in Figure 9, and then placing a 0 and a
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X4

XN-1

XN

X1

X2

X3

X4
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XN

(a) (b)
Figure 10 Graphical models for the (a) first iteration and
(b) subsequent iterations.
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Figure 11 Convolutional encoder state diagram.

1, respectively, on the input of the encoder, each produc-
ing a new codeword c(1)c(2)c(3) at the output. This process
is followed exhaustively and tabulated. Table 1 shows the
state transition outputs of the encoder in Figure 9 that
results from moving from one state to the next.

5.2.3 Transition probability table
The DBN-TE depends on a transition model to describe
the permissible state transitions. This is constructed
by examining the encoder state transition diagram in
Figure 11 and noting the possible state transitions. The
solid lines and dashed lines indicate state transitions
caused by ones and zeros at the input of the encoder.
It is clear from Figure 11 that only two state transitions
emanate from any given state transition (one caused by
a 1 at the input and one caused by a 0 at the input).
Table 2 shows the transition probabilities of the encoder
in Figure 9 of which the state transition diagram is shown
in Figure 11.

Table 1 State transition output table

c(1) c(2) c(3)

x(1)
t 0 0 0

x(2)
t 1 1 0

x(3)
t 1 0 1

x(4)
t 0 1 1

x(5)
t 1 0 0

x(6)
t 0 1 0

x(7)
t 0 0 1

x(8)
t 1 1 1

5.2.4 The forward–backward algorithm
The forward–backward algorithm computes the distribu-
tion over past states given evidence up to the present [15].
It determines the exact MAP distribution P(Xk|e1:t) for
1 ≤ k < t, where e1:t is a sequence of observed variables
from time 1 to t. This is done by calculating two evidence
“messages”—the forward message from 1 up to k and the
backward message from k + 1 up to t.

Forward message The forward message computes the
posterior distribution over the future state, given all evi-
dence up the current state. To compute the forward mes-
sage, the current state is projected forward from time t to
time t+1 and is then updated using the new evidence et+1.
To obtain the prediction of the next state it is necessary to
condition on the current state Xt , hence:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)
∑

xt

P(Xt+1|xt)P(xt|e1:t)

(15)

where α is a normalization constant, P(et+1|Xt+1) is
obtained from the sensor model, P(Xt+1|xt) is the transi-
tion model and P(xt|e1:t) is the current state distribution.
The forward message can be computed recursively using
(15).

Backward message The backwards message is computed
in a similar fashion. It computes the posterior distribu-
tion over past state, given all future evidence up to the
current state. Whereas the forward message is computed
forwards from 1 to k, the backwards message is computed
backwards from t to k + 1. Thus, the backwards message
determines

P(ek+1:t|Xk) =
∑
xk+1

P(ek+1|xk+1)P(xk+1|Xk)P(ek+2:t|xk+1)

(16)

Table 2 Transition probability table; transition probability
table showing P(x(m)

t |x(n)
t+1)

x(1)
t+1 x(2)

t+1 x(3)
t+1 x(4)

t+1 x(5)
t+1 x(6)

t+1 x(7)
t+1 x(8)

t+1

x(1)
t

1
2

1
2 0 0 0 0 0 0

x(2)
t 0 0 1

2
1
2 0 0 0 0

x(3)
t 0 0 0 0 1

2
1
2 0 0

x(4)
t 0 0 0 0 0 0 1

2
1
2

x(5)
t 0 0 0 0 1

2
1
2 0 0

x(6)
t 0 0 0 0 0 0 1

2
1
2

x(7)
t

1
2

1
2 0 0 0 0 0 0

x(8)
t 0 0 1

2
1
2 0 0 0 0
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where P(ek+1|xk+1) is obtained from the sensor model,
P(xk+1|Xk) is the transition model and P(ek+2:t|xk+1) is
the current state distribution. The backward message can
be computed recursively using (16).

Forward–backward message Finally, by combining the
forward and backward message, the posterior distribution
over all states at any time instance 1 ≤ k < t can be
determined as

P(Xk|e1:t) = αP(Xk|e1:k)P(ek+1:t|Xk). (17)

5.2.5 Sensor model
The conditional probabilities obtained from the sensor
model for the respective forward and backward messages,
P(et+1|Xt+1) and P(ek+1|xk+1) are determined by cal-
culating a metric between the observed variable et and
the hidden variable x(m)

t , where m = 1, 2, . . . , M. The
observed variable et consists of Rc

−1 received symbols
rt′+1 to rt′+Rc−1 , where t′ = ((t − 1)/Rc) + 1 (t runs from
1 to Nu and t′ runs from 1 to Nc), and the hidden variable
x(m)

t consists of the output (c(1), c(2), and c(3)) associated
with state transition x(m)

t in Table 1.

During the first iteration, only the dominant connec-
tion Ut′,t′ between the observed variable et and the hidden
variable xt is used in the cost calculation, since no coded
bit estimates c̃ are available at that point. Recall that U is
the new channel matrix brought about by performing the
transformation in (12), resulting in the new transmission
model in (14) having the desired properties to model the
system as a quasi-DAG. During the first iteration the sys-
tem can therefore be modeled as a pure DAG, as if no ISI
occurred. Given a hidden variable or state transition out-
put xn

t+1, its associated bits (as tabulated in Table 1) are
used together with observed variables/received symbols
rt′+1 to rt′+Rc−1 , where t′ = ((t − 1)/Rc) + 1 and Rc

−1 is
the number of encoder output bits, to calculate the cost of
the nth state transition at time instance t

�n
t =

R−1−1∑
j=0

‖rt′+j − Ut′+j,t′+jc
j+1
n β(i)‖2, (18)

where t = 1, 2, . . . , Nu runs over time for the uncoded bit
estimates and β(.) is a function that produces an optimiza-
tion scaling factor for each iteration i. P(et+1|Xt+1) in (15)
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Figure 14 DBN-TE and CTE performance at different mobile speeds in a system with channel IR length L = 6. Black circle, CTE: 110 km/h;
Black square, DBN-TE: 110 km/h; Pink circle, CTE: 80 km/h; Pink square, DBN-TE: 80 km/h; Green circle, CTE: 50 km/h; Green square, DBN-TE: 50 km/h;
Blue circle, CTE: 20 km/h; Blue square, DBN-TE: 20 km/h; Red circle, CTE: 3 km/h; Red square, DBN-TE: 3 km/h; Black dashed, Decoded AWGN.
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is determined by

P(et+1|xn
t+1) = α exp(−�n

t /2σ 2) (19)

where α is a normalization constant and σ is the noise
standard deviation.

During subsequent iterations, LLR estimates of the
uncoded bits are available, since the first set of LLRs are
produced after the first iteration. Therefore, the system
can be modeled as a quasi-DAG due to the fact that there
exists a dominant connection between the observed vari-
able et and the hidden variable xt and weak connections
between the observed variable et and other hidden vari-
ables. Thus we also use the rest of the coefficients Ut′,1 to
Ut′,Nc (and not only Ut′,t′ ) in the cost calculation. Analo-
gous to the first iteration, the output bits associated with a
given state transition xn

t+1 are used together with observed
variables rt′+1 to rt′+Rc−1 as well as the LLR estimates c̃
of the uncoded bits to calculate the cost of the nth state
transition at time instance t. Therefore, the cost of the nth
state transition for subsequent iterations at time instance
t is given by

�n
t =

Rc−1+1∑
j=0

‖rt′+j − Ut′+j,t′+jc
j+1
n

−
Nc∑

v=1,v�=t′,‖Ut′+j,v‖>0
Ut′+j,vc̃vβ(i)‖2.

(20)

The last term in (20) contains the ISI terms that must
be subtracted from the received symbols in order to
minimize �n

t so that P(et+1|xn
t+1), determined as in (19)

can be maximized.

5.2.6 Computing LLR estimates
After the forward and backward messages are combined
as in (17), the LLRs for each uncoded bit is determined
from the graph. Rc

−1 LLR vectors of length Nu are
determined—each one corresponding to one output bit
of the encoder—after which they are multiplexed to form
one vector of length Nc containing the LLR estimates c̃
of the coded bits c. With reference to the state transi-
tions in Table 1, the LLRs for the convolutional encoder in
Figure 9, are determined as follows:

c̃(1) = log
(∑M

j=1,c(1)=1 P(Xk|e1:t)∑M
j=1,c(1)=0 P(Xk|e1:t)

)
(21)

c̃(2) = log
(∑M

j=1,c(2)=1 P(Xk|e1:t)∑M
j=1,c(2)=0 P(Xk|e1:t)

)
(22)

c̃(3) = log
(∑M

j=1,c(3)=1 P(Xk|e1:t)∑M
j=1,c(3)=0 P(Xk|e1:t)

)
(23)
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Figure 15 DBN-TE and CTE performance at different mobile speeds in a system with channel IR length L = 8. Black circle, CTE: 110 km/h;
Black square, DBN-TE: 110 km/h; Pink circle, CTE: 80 km/h; Pink square, DBN-TE: 80 km/h; Green circle, CTE: 50 km/h; Green square, DBN-TE: 50 km/h;
Blue circle, CTE: 20 km/h; Blue square, DBN-TE: 20 km/h; Red circle, CTE: 3 km/h; Red square, DBN-TE: 3 km/h; Black dashed: Decoded AWGN.
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The final LLR vector is constructed by multiplexing the
respective LLR vectors such that

c̃ = {c̃(1)
1 , c̃(2)

1 , c(3)
1 , c̃(1)

2 , c̃(2)
2 , c̃(3)

2 , . . . , c̃(1)
Nu

, c̃(2)
Nu

, c̃(3)
Nu

} (24)

which is used in (20) in the next DBN-TE iteration.

5.2.7 Optimization
To improve the BER performance of the system, simu-
lated annealing is used [15]. Simulated annealing is usually
used in neural networks to allow the network to escape
suboptimal basins of attraction in order to converge to
a near-optimal solution in the solution space. Since the
DBN-TE employs a soft-feedback mechanism, simulated
annealing can also be applied to the coded symbol esti-
mates c̃ that are fed back after the first iteration, thus
allowing the DBN-TE to converge to a state where the BER
performance is near-optimal. The optimization scaling
function β(.) in (18) and (20)

β(i) = 1.5(i−Z)/Z , (25)

where Z is the number of iterations, is updated with each
iteration i, always starting at 0 < β(1) << 1 for the
first iteration (i = 1) and finishing at β(Z) = 1 for the

final iteration (i = Z). Figure 12 shows β(i) for Z = 3,
Z = 4 and Z = 5. Simulation results in Section 7 show the
performance of the DBN-TE with and without simulated
annealing.

5.2.8 Pseudocode algorithm
Additional file 1a–e shows the pseudocode of the DBN-TE
algorithm. The DBN-TE algorithm iteratively computes
the forward–backward message before producing LLR
estimates of the coded symbols. After the final iteration
the estimated turbo equalized uncoded information bits
are returned.

Function definitions DBN TE receives as input the
received ISI-corrupted coded symbols, the transition
probability table, the transition output table, the code-
word length, the coded data block length, the number of
states of the graph, the new channel after transformation,
the number of iterations and the noise standard deviation.

FORWARD MESSAGE and BACKWARD MESSAGE
receive as input the same variable as DBN TE, accept
for the number of iterations Z, and additionally they also
received the LLR estimates and the optimization scaling
factor as input.
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Figure 16 DBN-TE and CTE performance for different numbers of frequency hops in a system with channel IR length L = 6. Red circle, CTE:
No hops; Red square, DBN-TE: No hop; Blue circle, CTE: 2 hops; Blue square, DBN-TE: 2 hops; Green circle, CTE: 4 hops; Green square, DBN-TE: 4 hops;
Pink circle, CTE: 8 hops; Pink square, DBN-TE: 8 hops; Black dashed, Decoded AWGN.
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FORWARD BACKWARD MESSAGE receives only
the result of FORWARD MESSAGE and BACK-
WARD MESSAGE, while LLR ESTIMATES takes as
input the forward–backward message resulting from
FORWARD BACKWARD MESSAGE as well as the state
transition output table.

Optimization scaling factor For each iteration a new
optimization scaling factor is produced, as explained ear-
lier. BETA implements (25) and returns the scaling factor
used in the calculation of the forward and backward
messages.

Forward message The algorithm starts by initializing the
forward message, based on the initial state of the encoder
shift register. Since it is assumed that the encoder shift
register always starts in the all-zero state, the forward
message is initialized accordingly, using the appropriate
entries in the transition probability table (Table 2). The
forward message is therefore initialized as

forward(1, :) = trans prob table(1, :), (26)

such that forward(1, :) =[ 0.5, 0.5, 0, 0, 0, 0, 0, 0]′ since only
state transitions x(1)

t+1 and x(2)
t+1 can emanate from state

transitions x(1)
t and x(7)

t , which lead to the all-zero state
(see Figure 11).

The forward message is calculated next by iterating over
time from k = 2 to k = N while iterating over M states
m = 1 to m = M for each k. For each (k, m) pair, the
forward message is initialized to zero, after which the mes-
sage is updated by multiplying and accumulating messages
from the previous time-step k − 1. The forward mes-
sages from the previous time-step k − 1 are multiplied
with their respective transition probabilities (determined
by the current state m) and summed together to form
the new forward message at time-step k (at state m in
the graph). Up to this point the forward message con-
tains the collective contribution of the state distributions
of the previous states, corresponding to the terms inside
the summation in (15).

To include the evidence at graph state (k, m), the cost of
the state transition associated with state m in the graph
at time k must be calculated. The GET COST functions
takes as input the received codeword, LLR estimates of the
codeword, the new channel U, the optimization scaling
factor and the noise standard deviation, and determines
the cost as in (18) for the first iterations and (20) for
subsequent iterations. The forward message is updated
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Figure 17 DBN-TE and CTE performance for different numbers of frequency hops in a system with channel IR length L = 8. Red circle, CTE:
No hops; Red square, DBN-TE: No hop; Blue circle, CTE: 2 hops; Blue square, DBN-TE: 2 hops; Green circle, CTE: 4 hops; Green square, DBN-TE: 4 hops;
Pink circle, CTE: 8 hops; Pink square, DBN-TE: 8 hops; Black dashed, Decoded AWGN.
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by multiplying with the output of the normal probabil-
ity distribution function NORMAL PDF (implemented as
in (19)) which takes the cost and noise standard devi-
ation as input. This completes the forward message. It
now fully corresponds to (15). After computing M forward
messages at time-step k (one for each of the M states at
time-step k), all the messages at time-step k are normal-
ized (NORMALIZE) so as to prevent message values from
becoming very small due to multiplication of probabilities,
when large data block sizes are used.

Backward message The backward message is initialized
similar to the forward message, based on the final state of
the encoder. The encoder is forced into the all-zero state
and the end of the transmitted data block, and hence the
backward message is initialized as

backward(N , :) = trans prob table(:, 1)′, (27)

such that backward(N , :) =[ 0.5, 0, 0, 0, 0, 0, 0.5, 0]′ since
the state transitions emanating from the all-zero state,
x(1)

t+1 and x(2)
t+1, are preceded by state transitions x(1)

t and
x(7)

t .
The backward message is calculated in a similar fash-

ion as the forward message, accept that iteration over time

starts at k = N − 1 and ends at k = 1. Also note that the
cost is not calculated for the current graph state (k, m), but
for all those preceding it (at time k + 1). Note the sensor
model output is inside the summation in (16), whereas it
is outside the summation in (15). The backward message
is therefore calculated by accumulating information at the
current graph state (at time k) from preceding graph states
(at time k + 1). The sensor model in (19) is applied (NOR-
MAL PDF) to each preceding state, multiplied with the
transition probability connecting the current state with
the preceding state, and then multiplied with the message
that corresponds to the preceding state. This result is then
summed together for all M preceding states and stored at
the current state.

Forward–backward message The forward backward
message is created by multiplying each corresponding for-
ward and backward message value for each (k, m) pair, and
normalizing the results as before.

Calculate LLR estimates The LLR estimates are calcu-
lated in three phase to produce a sequence of N LLR
estimates for each output bit of the decoder (assuming the
rate Rc = 1/3 convolutional encoder in Figure 9), after
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Figure 18 DBN-TE performance in a system with long channel IR lengths. Blue circle, DBN-TE - L = 5; Blue square, DBN-TE - L = 10; Blue
diamond, DBN-TE - L = 20; Black dashed, Decoded AWGN.
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which the three LLR sequences are multiplexed to create a
sequence of LLR estimates of length N/Rc. The LLR vec-
tors are calculated by noting the ones and zeros in Table 1
that correspond to the respective output bits generated by
the encoder. For instance, the first output bit c(1) in Table 1
is one for state transitions x(2)

t , x(3)
t , x(5)

t and x(8)
t , and zero

for x(1)
t , x(4)

t , x(6)
t and x(7)

t . The first LLR vector can there-
fore be calculated as in (21). The second and third LLR
vectors are calculated in the same fashion as in (22) and
(23). The GET LLR function calculates the three LLR vec-
tors, after which these vectors are multiplexed in function
MULTIPLEX. The LLR estimates are used in (20) during
the next iteration.

Result The result of the DBN-TE algorithm is deter-
mined after the final iteration when i = Z, by transform-
ing the LLR sequence corresponding to the first output bit
of the encoder, into a bit sequence. The first LLR vector is
used because the encoder in Figure 9 is systematic.

6 Complexity analysis
The computational complexity of the DBN-TE and the
conventional turbo equalizer (CTE) are presented in this

section. The complexity equations were derived by count-
ing the number of computations needed to perform Turbo
Equalization. The complexity of the DBN-TE was deter-
mined as

CCDBN−TE = Z(2NcMd + 3NcMdQ/Rc), (28)

where Z is the number of turbo iterations, Md is the num-
ber of decoder states determined by 2K−1 where K is the
encoder constraint length, Q is the number of interfering
symbols which can be approximated by Q ≈ 2L − 1, and
Rc is the code rate. The approximation for Q was obtained
empirically by calculating the average number of inter-
fering symbols in the new channel U in (13) for a given
original channel length L, after the transformation in (12)
is applied. The complexity of the CTE was determined as

CCCTE = Z(4NcMeL + 4NuMd/Rc), (29)

where Me is the number of equalizer states determined by
2L−1 for BPSK modulation.

Figure 13 shows the computational complexity graphs of
the DBN-TE and the CTE, normalized by the number of
coded transmitted symbols, for channel IR lengths from
L = 1 to L = 20, for Z = 3 and Z = 5. Rc = 1/3,
Nu = 400, Nu = 1200 and K = 3. From Figure 13 it can
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Figure 19 DBN-TE performance with and without simulated annealing. Red circle, CTE: 50 km/h; Red square, DBN-TE: 50 km/h; Blue circle, CTE:
20 km/h; Blue square: DBN-TE: 20 km/h; Black dashed: Decoded AWGN.
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be seen that the computational complexity of the DBN-
TE is much higher (10 times higher at L = 2) than that
of the CTE for systems with channel IR lengths L < 6.
However, as L increases beyond L = 6, the computational
complexity of the DBN-TE becomes significantly less than
that of the CTE. The DBN-TE is therefore a good candi-
date for systems with channel IR lengths L > 6. Note that
for L = 20 the complexity of the DBN-TE is four orders
less than that of the CTE.

7 Simulation results
The DBN-TE was evaluated in a mobile fading environ-
ment for BPSK modulation, where we used the Rayleigh
fading simulator in [16] to generate uncorrelated fading
vectors. Simulations were performed at varying mobile
speeds and different channel IR lengths, where the energy
in the channel was normalized such that h†h = 1. The
channel IR was “estimated” by taking the mean of the
respective fading vectors in order to get estimates for
the channel IR coefficients, unless otherwise stated. The
uncoded data block length was chosen to be Nu = 400
and the coded data block length was Nc = 1200, where
the rate Rc = 1/3 convolutional encoder with generator

polynomials g1(x) = 1, g2(x) = 1 + x, g3(x) = x + x2 in
Figure 9 was used. Frequency hopping was also employed
to reduce the BER.

Figures 14 and 15 show the performance of the DBN-TE
and the CTE for different mobile speeds through channels
with channel IR lengths of L = 6 and L = 8, respectively.
The frequency was hopped eight times, once for every
150 transmitted symbols. The DBN-TE was simulated for
Z = 3 iterations while the CTE was simulated for Z = 5
iterations. From Figures 14 and 15 it can be seen that the
performance of the DBN-TE is less than a decibel worse
than that of the CTE for mobile speeds of 3 and 20 km/h,
while the performance of the DBN-TE closely matches the
performance of the CTE for a mobile speed of 50 km/h.
For mobile speeds of 80 and 110 km/h the DBN-TE out-
performs the CTE. However, this result is of little practical
importance, as the performance of both turbo equalizers
at 80 and 110 km/h is no longer acceptable.

Figures 16 and 17 show the performance of the DBN-
TE and the CTE for a fixed mobile speed of 20 km/h but
with varying numbers of frequency hops, through chan-
nels with channel IR lengths of L = 6 and L = 8,
respectively. From Figures 16 and 17 it can be seen
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Figure 20 DBN-TE performance for different numbers of iterations. Blue circle, DBN-TE - 1 iteration; Blue square: DBN-TE - 2 iterations; Blue
diamond: DBN-TE - 3 iterations; Blue star: DBN-TE - 4 iterations; Blue downward triangle: DBN-TE - 5 iterations; Blue leftward triangle: DBN-TE - 8
iterations; Black dashed: Decoded AWGN.
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that the performance of the DBN-TE is again worse
by less than a decibel for zero, two, four, and eight
frequency hops.

Figure 18 shows the performance of the DBN-TE for
channel IR lengths of L = 5, L = 10, and L = 20 at a
mobile speed of 20 km/h using 8 frequency hops for Z = 5
iterations. From Figure 18 it is clear that the DBN-TE is
able to turbo equalize signals in systems with longer mem-
ory, due to its low complexity. With reference to Figure 13,
the number of computations required by the DBN-TE for
L = 10 to L = 20 is in the range 103.84 − 104.15, whereas
the number of computations required by the CTE is in the
range 105.01 − 108.32.

In Section 5.2.7, optimization via simulated anneal-
ing was discussed. To demonstrate the effect of sim-
ulated annealing in the DBN-TE, simulations were
performed with and without annealing for a channel
IR length of L = 6 at speeds of 20 and 50 km/h,
while the frequency was hopped four times (once for
every 300 transmitted symbols) using Z = 3 itera-
tions. Figure 19 shows the performance of the DBN-TE
with and without simulated annealing. It is clear that
the application of simulated annealing aids in improving
the performance of the DBN-TE, where improvements

of approximately 1 dB are achieved for the selected
scenarios.

In order to demonstrate the speed of convergence of
the DBN-TE, Figure 20 shows the performance of the
DBN-TE for different numbers of iterations (Z), where the
channel IR length is L = 5 at a mobile speed of 20 km/h
using eight frequency hops. From Figure 20 it can be seen
that there is no significant increase in performance for
Z > 3. The DBN-TE therefore almost fully converges after
only three iterations.

The simulation results in Figures 14, 15, 16, 17, 18,
19 and 20 were produced under the assumption that the
channel state information (CSI) is known, or that at least
the very best estimate thereof is available, due to the
averaging of each uncorrelated fading vector as explained
earlier. To evaluate the robustness of the DBN-TE with
respect to CSI uncertainties, the channel was estimated
with a least squares (LS) estimator, using various amounts
of training symbols. Figure 21 shows the performance
of the DBN-TE and the CTE for a channel IR length of
L = 6 at a mobile speed of 20 km/h using 8 frequency
hops, for 4L, 6L, and 8L training symbols in each fre-
quency hopped segment of the transmitted data block.
From Figure 21 it can be seen that the performance of

0 1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No [dB]

B
E

R

Figure 21 DBN-TE and CTE performance for various amounts of training symbols used in channel estimation. Red circle, CTE: Perfect CSI;
Red square, DBN-TE: Perfect CSI; Blue circle, CTE: 8L pilots; Blue square, DBN-TE: 8L pilots; Green circle, CTE: 6L pilots; Green square, DBN-TE: 6L pilots;
Pink circle, CTE: 4L pilots; Pink square, DBN-TE: 4L pilots; Black dashed, Decoded AWGN.
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the DBN-TE degrades, along with that of the CTE, due
to insufficient amounts of training symbols, causing an
increase in channel estimation errors. Is clear that the
DBN-TE is as resilient against channel estimation errors
as the CTE, as its performance closely matches that of the
CTE.

The results presented in this section are self-evident and
show that the DBN-TE achieves acceptable performance
compared to that of the CTE. There is a small degrada-
tion in BER performance compared to that of the CTE
for all simulation scenarios, while a significant computa-
tional complexity reduction is achieved for systems with
longer memory. The complexity of the DBN-TE is only
linearly related to the number of channel IR coefficients,
while the complexity of the CTE is exponentially related
to the channel IR coefficients, allowing the DBN-TE to
be applied to systems with longer channels. The fast con-
vergence of the DBN-TE demonstrated in Figure 20 also
adds to the complexity reduction, as full convergence is
achieved after only three iterations.

8 Conclusion
In this article, we have proposed and motivated a turbo
equalizer modeled on a DBN which uses belief propaga-
tion via the forward–backward algorithm, together with a
soft-feedback mechanism, to jointly equalize and decode
the received signal in order to estimate the transmit-
ted symbols. We have motivated theoretically that this
approach guarantees full convergence under certain con-
ditions and we have shown that the performance of the
new DBN-TE closely matches that of the CTE, with and
without perfect CSI knowledge. Its complexity is lin-
ear in the coded data block length, exponential in the
encoder constraint length, but only approximately linear
in the channel memory length, which makes it an attrac-
tive alternative for use in systems with highly dispersive
channels.
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