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ABSTRACT: Time-lagged relationships were explored between VARIMAX rotated principal components (RCs) of sea
surface temperatures (SSTs) and rainfall periods that are important for rainfed wheat production in Pakistan. Seasonal
forecasts were developed using Generalized Additive Models. The first 10 RCs explained 54% of the variance in the SST
data. Individual RCs were strongly (r2>10.5)) to moderately (r2>0.3|) correlated with climatic indices of SST anomalies
associated with the El-Nifio Southern Oscillation, Pacific Decadal Oscillation, Indian Ocean Dipole, and the tropical Atlantic
Ocean. Forecasts of monsoon (July to September), total growing season (November to April), early (November to January)
and late season (February to April) rainfall (1961-2010) were developed for Chakwal, Talagang and Islamabad. Important,
linear or non-linear, time-lagged relationships were found between the RCs of SSTs and rainfall. Cross-validated forecasts
were compared with real-time forecasts to evaluate the ‘true’ forecasting ability of the models. Continuous and categorical
probabilistic forecasts were tested with an array of skill scores. Skilful forecasts of pre-season, monsoon and late-season
rainfall were produced for the drier sites Chakwal and Talagang and to a lesser extent for the wetter site Islamabad. These
simple, statistical forecasts can be developed with minimal financial investment. However, consideration of the potential
uses of such forecasts will require a reflective decision framework that engages stakeholders and addresses socio-economic

and agro-ecological constraints not included here.
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1. Introduction

Crop production in the barani (rainfed) areas of the Pothwar
plateau in the northern Punjab, Pakistan, is risky because of
high rainfall variability. Pothwar is the largest rainfed cropping
area in Pakistan. Most of the arable land is allocated to wheat
(Triticum aestivum ), Pakistan’s main stable crop and contributor
to food security (Punjab Barani Commission, 1976; Khan and
Shah, 2010). Rainfall in the region is closely associated with the
South-Asian summer monsoon: winds from the Indian Ocean
bring heavy rains from June to September, which peak during
July and August, contributing over 50% to the annual rainfall
(Suleman et al., 1995). Wheat is grown in the following rabi
(winter) season, which begins in October to December and
ends in April to May. Variability of both pre-sowing and in-
crop rainfalls causes large fluctuations in yield from season to
season. This hinders the development of environmentally and
economically sustainable cropping systems in Pothwar (Byerlee
and Husain, 1993).

Farmers in dryland regions such as Pothwar are responsive
to climatic fluctuations (Stewart, 1991; Stone and Meinke,
2005). However, the experiential knowledge gained from past
climatic vagaries, such as erratic and deficient rainfall, does
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not necessarily prevent future failures: farmers in Pothwar did
not foresee the drought of the 2009/2010 season, which caused
widespread crop failures and left about 60% of farms without
return on investment (M. Ahmad, personal communications).
A means to increase the preparedness of farm managers above
a level that is solely based on experience is the application of
skilful seasonal forecasts ahead of critical periods in the farming
and crop calendar. The importance of each month’s rainfall
for yield depends on crop physiological factors related to
growth and development, and farmers must devise management
practices that optimize the productive use of scarce rainfall and
its conversion into yield to be successful (Passioura and Angus,
2010; Fischer, 2011). The summer monsoon is important for
moisture storage in the soil profile prior to the start of the
cropping season, especially in the low rainfall zone of Pothwar
(Arif and Malik, 2009). Among agricultural decisions that
could benefit from forecasts of monsoon rainfall are those
related to the area sown and the consequent amount of seed
and fertilizer to be purchased, choice of soil type (higher vs
lower water-holding capacity) as well as the crop/cultivar type
(long- vs short-season maturity types) (Meinke et al., 2005;
Stone and Meinke, 2005; Moeller et al., 2009). The rainfall
during October to December is critical for seed germination
and crop establishment, and farmers may adjust the rates of
fertilizer applied at the start of the season depending on the
outlook (Moeller et al., 2008). Late winter and early spring
rainfalls are vital for biomass accumulation prior to flowering,
which is positively correlated with yield (a vigorous crop
stand at this stage is a prerequisite for potentially achieving
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high yield), while March to May rainfall is important for
grain formation and filling (Passioura and Angus, 2010).
Decisions that can benefit from forecasting mid and late
season rainfall are those related to tactical crop management
(fertilizer and pesticide use), harvest preparations and marketing
(Everingham et al., 2002; Stone and Meinke, 2005). With all
these decisions, the aim is to minimize the chance of economic
and/or environmental losses and profit from the upsides of
rainfall variability (Hansen, 2005; Moeller et al., 2008). At
the regional/national level, skilful seasonal climate forecasts
issued 2—3 months ahead may assist planners to estimate the
size of the harvest to make timely decisions about importing
agricultural commodities to meet future demand (Barlow et al.,
2002; Hansen and Indeje, 2004; Hansen, 2005).

To realize opportunities related to the application of seasonal
climate forecasts in agriculture, it requires that the observed
pattern of rainfall variability in an agricultural region is
forced by changes in climatic predictors such as sea surface
temperatures (SSTs). Moreover, it is important that there is a
time-lagged relationship between the climatic predictors and
rainfall (Drosdowsky and Chambers, 2001; Goddard et al.,
2001; Stone and Meinke, 2005). Due to their large heat
capacity, the oceans are a key source of predictable climate
variability on several time scales (e.g. monthly, seasonal,
and inter-annual). The tropical oceans are the most important
regions for coupled ocean—atmosphere interactions (Chang
et al., 2006); better understanding of these interactions has
improved long-range climate forecasting capabilities (Cane,
2000; Goddard et al., 2001). However, the climate system has
also many chaotic features, which limit predictability beyond a
theoretical threshold (Westra and Sharma, 2010).

Large-scale SST patterns in the Pacific, Atlantic and Indian
Ocean are related to rainfall anomalies across the Indian Ocean
basin (Clark et al., 2000; Li et al., 2001; Chang et al., 2001,
2006; Krishnan and Sugi, 2003; Goswami et al., 2006; Zhang
and Delworth, 2006; Ashok and Saji, 2007; Schott et al., 2009).
The El-Nifo Southern Oscillation (ENSO) is the leading mode
of tropical climate variability, and a climatic phenomenon of
global significance characterized by warming/cooling cycles
of sea surface waters in the eastern equatorial Pacific Ocean
and the consequent changes in zonal air pressure gradients and
convection shifts in the equatorial Pacific Ocean (Allan, 2000;
Cane, 2000; Schott et al., 2009). During the ‘warm’ ENSO
event (EI-Nifio), warm SST anomalies occur in the eastern
Pacific; cells of intense convection shift eastward and rainfall
intensifies over the central to eastern equatorial Pacific. The
climatic pattern is the opposite during the ‘cold” ENSO event
(La-Nifna). The ENSO is locked into the seasonal cycle: eastern
Pacific SST anomalies typically develop during the boreal
summer, peak in winter and break during the boreal spring.
However, extreme phases of the ENSO have a tendency to last
for about 18-24 months once they have become established
(Allan, 2000). The large-scale shifts in convection over the
Pacific affect the atmospheric circulation over the Indian Ocean.
The tropical Indian Ocean gradually warms during El-Nifio
episodes. Following the height of El-Nifio (boreal winter), the
Indian Ocean warming peaks during the boreal spring (February
to April), and persists until the summer following the event.
This warming increases rainfall over the Indian Ocean and
the surrounding regions after the El-Nifio decays (Schott et al.,
2009). Severe drought years on the Indian subcontinent have
always been accompanied by El-Nifio (Kumar et al., 2006).

The Indian Ocean Dipole (IOD) has been described as a cou-
pled ocean-atmosphere phenomenon defined by the difference
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in SSTs between two areas in the tropical Indian Ocean and
accompanying anomalous low-level winds, and a significant
contributor to rainfall variability in countries that surround the
Indian Ocean (Saji and Yamagata, 2003; Terray and Dominiak,
2005; Schott et al., 2009). During positive IOD events, warm
SST anomalies occur in the western Indian Ocean and cold SST
anomalies in the east off Sumatra. The IOD has a strong season-
ality and peaks during the boreal fall (September to November);
an east—west dipole of anomalous rainfall establishes with
increased rainfall in the west. Easterly wind anomalies blow
from the cold/dry to the warm/wet regions and amplify the
SST cooling in the east. This SST pattern is of the opposite
sign during negative IOD events (Saji and Yamagata, 2003;
Ashok et al., 2004; Schott et al., 2009).

However, while it has been originally proposed that the
IOD is largely distinct from the ENSO (e.g. Saji ef al., 1999)
others have argued that the IOD is a representation of another
phase of the ENSO and therefore not an independent mode
of Indian Ocean climate variability (Allan et al., 2001). It is
thought that Pacific and Indian Ocean variability are linked
through an extension of the Walker Circulation to the west and
associated Indonesian throughflow (Bracco et al., 2005; Schott
et al., 2009; Ummenhofer ef al., 2011). Analyses of IOD and
ENSO events show that positive (negative) IOD events often,
but not always, co-occur with El Nifio (La Nifia), and that a
significant number of IOD events occur during neutral ENSO
years (Meyers et al., 2007). In the Asian summer monsoon
regions, a strong positive 10D generally reduces the rainfall
deficit induced by EI-Nifio over western India and parts of
Pakistan (Ashok et al., 2004; Ashok and Saji, 2007).

Monsoonal rainfall is thought to be modulated by variability
in northern Pacific Ocean SSTs occurring on 10-15year
timescales. This modulation has been described as the Pacific
Decadal Oscillation (PDO), and has been associated with
a decreased (increased) strength of the monsoon over the
subcontinent during its warm (cold) phase (Krishnan and Sugi,
2003; D’Arrigo and Wilson, 2006). However, others have
shown that the PDO is strongly correlated with the ENSO at all
timescales (Newman et al., 2003). Power and Colman (2006)
argue that the PDO may be simply the ENSO signal plus an
unknown (random) modulation which appears to be periodic on
an approximately decadal scale. While PDO signals have been
linked to climate fluctuations in the northern Pacific and Asian
region (Barlow et al., 2001; D’Arrigo et al., 2001; D’Arrigo
and Wilson, 2006), questions remain about whether the PDO is
a robust, predictable feature of Pacific Ocean climate variability
(Meinke et al., 2005).

North Atlantic SSTs have been linked to the Indian monsoon
through the modulation of tropospheric temperatures over Eura-
sia and by coupled ocean-atmosphere feedbacks in the Indian
and western Pacific Oceans (Chang et al., 2001; Goswami
et al., 2006; Lu et al., 2006). Furthermore, tropical Atlantic
SSTs have been shown to moderate the influence of ENSO
on the strength of the Indian monsoon (Kucharski et al., 2007,
2008). However, the mechanisms underlying the connections
between the ENSO and tropical Atlantic SSTs have yet to be
further explored (Kucharski et al., 2007).

This study explores climatic predictors (indices derived from
global SSTs) associated with the climate phenomena reviewed
above that influence rainfall variability over the Indian sub-
continent for their usefulness in forecasting seasonal rain-
fall (monsoon rainfall and three rainfall intervals during the
wheat growing season) at three agriculturally important sites
on the Pothwar plateau. Firstly, VARIMAX rotated principal

Meteorol. Appl. 21: 431-443 (2014)



Skilful seasonal forecasts for dry environments in Pothwar, Pakistan

components of SSTs (the climatic predictors) were calculated
and the strength of the correlation with the well-described cli-
mate phenomena was assessed. Secondly, time-lagged relation-
ships between the climatic predictors and rainfall in upcoming
months were established using Generalized Additive Models
(GAM) (van Ogtrop et al., 2011). The GAM models were used
to forecast seasonal rainfall at each of the study sites. Thirdly,
the forecast performance was assessed and the forecast skill was
evaluated using a number of cross-validated skill scores (Jolliffe
and Stephenson, 2003; Wilks, 2011). To our best knowledge,
this is the first study to develop and conduct statistical fore-
casts of seasonal rainfall using SSTs for rainfed wheat growing
locations in Pakistan.

2. Methods

2.1.  Site description

The Pothwar (or Pothohar) plateau (350-580m a.s.l.)
in the northern Punjab extends from 32°10-34°9’N to
71°10-73°10"E and covers about 1.82million ha of which
one third is arable land. Pothwar has a subtropical thermal
climate with summer-dominant rainfall (Fischer et al., 2002).
Rainfall environments range from semi-arid (about 250 mm
average annual rainfall) in the southern and western parts of
the plateau to sub-humid (> 1000 mm average annual rainfall)
in the northeastern regions around the capital Islamabad
(Byerlee and Husain, 1993; Arif and Malik, 2009).

The three study sites were Islamabad (33°40'N, 73° 10’E,
508 m a.s.l.), Chakwal (32°56'N, 72°52’E, 513 m a.s.l.), and
Talagang (32°55’N, 72°25'E, 458m a.s.l). Chakwal and
Talagang are located about 130 km southwest of Islamabad. The
climate at Islamabad is dry sub-humid with > 1000 mm aver-
age annual rainfall (high rainfall zone) and an average annual
temperature of 21.3°C. The semi-arid site Chakwal is situated
in the medium rainfall zone, and has an average annual tem-
perature of 22.4°C. Talagang (about 45 km west of Chakwal)
has an arid climate and is located in the low rainfall zone. The
average annual temperature is 23.7°C at Talagang. The annual
potential evapotranspiration (FAO Penman—Monteith) is about
1600 mm at all sites, and the rainfall variability during the wheat
growing season (November to April) is greater than the annual
variability (Table 1).

2.2.  Derivation of climatic predictors

Global SST anomalies (1961-2010) were extracted from ver-
sion 2 of the extended Kaplan SST dataset (Reynolds and
Smith, 1994; Kaplan ef al., 1998). The data can be download-
ed from http://iridl.Ideo.columbia.edu/SOURCES/.KAPLAN/.
EXTENDED/.v2/.ssta (International Research Institute for Cli-
mate and Society, 2012a). Principal Component Analysis (also
referred to as Empirical Orthogonal Function Analysis) of the
SSTs (1207 grid cells) was conducted to reduce the dataset into
a manageable number of covariates, and understand the SST
data in terms of a much smaller number of prominent modes
(Westra et al., 2010). Principal components are essentially lin-
early uncorrelated, which is important to avoid collinearity in
the data used for statistical rainfall forecasting (Graham, 2003).
The principal components (PCs) of the SSTs were calculated
using the principal function in the ‘psych’ package (Revelle,
2011) in the open source program R (R Development Core
Team, 2011). For the specific analyses presented here, the PCs
of the SSTs were rotated using VARIMAX rotation (Westra
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et al., 2010; Revelle, 2011). The rotated PCs were chosen fol-
lowing initial tests, which showed that the forecasting models
tended to perform better using rotated PCs compared to unro-
tated PCs (results not shown). An advantage of rotated PCs is
that they allow more localized features, which are often better
aligned with the physical mechanisms underlying climatic phe-
nomena (Appendix) than unrotated PCs, to be obtained (Han-
nachi er al., 2007; International Research Institute for Climate
and Society, 2012b). Advantages/disadvantages such as robust-
ness of the results and physical justification have been discussed
in detail by Jolliffe (1987, 2002), Hannachi er al. (2007) and
Richman (1986, 1987).

The first 10 VARIMAX rotated principal components
(referred to as RC1, RC2 ... RCI10), which explained 54%
of the variance in the SST data, were used as predictors in
the forecasting model described in Section2.3. The strength
of the relationships between these RCs and the well-described
climate indices (Appendix) were assessed using Pearson’s
correlation analysis. Because the RCs are not the same as
the climate indices (Appendix), correlation analysis is typi-
cally used to assist with the interpretation of the RCs (Dom-
menget and Latif, 2002; Westra et al., 2010). These climate
indices can be downloaded from http://www.esrl.noaa.gov/psd/
data/climateindices/list/ (National Oceanic and Atmospheric
Administration, 2012).

2.3. Rainfall forecasting

The forecast periods chosen are relevant for decision-making
and productivity in wheat-based farming systems of the study
region. These were: the (1) peak monsoon period (three forecast
periods: July to September, July to August, and August to
September), (2) the wheat growing season (November to April),
(3) crop establishment and early growth (November to January),
and (4) the period of rapid biomass accumulation, anthesis, and
maturation (February to April (Table 1)). The SST predictors
were obtained for month/s preceding the forecast periods, and
lag-periods (forecast lead-times) between 1 and 6 months were
considered. For the monsoon period, SST predictors were
obtained for the April to May period. For all other forecast
periods, SST predictors were derived for the month/s: July,
August and September, July to August, August to September,
and July to September. If not otherwise indicated, names of
months are denoted by their first letter in subsequent sections.

Time-lagged statistical relationships between the climatic
predictors (i.e. the 10 VARIMAX RCs) and rainfall were
established using the Generalized Additive Model (GAM) in
R. A GAM is an extension of a Generalized Linear Model
and allows for non-normal response distributions (e.g. rainfall),
non-linearity in the model structure (e.g. relationship between
rainfall and the sum of the VARIMAX RCs), and non-linearity
in the predictor variables (e.g. relationship between rainfall and
VARIMAX RCs) (Wood, 2006).

Accounting for non-linearity in the covariates is achieved by
adding smoothing functions (splines) of the covariates to the
models (Wood, 2008). Fewer predictors can be used in a GAM
as including a spline in a regression equation is equivalent to
fitting, depending on the complexity of the chosen spline, two
or more covariates.

To implement the forecasting models, the ‘gam function’ in
the ‘mgcv package’ of R was applied (Wood, 2006). The default
‘thin plate splines’ was used (Wood, 2003). For each site, model
parameter selection was achieved by applying a ridge penalty
term allowing each term to shrink to zero (Copas, 1983; Wood,
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Table 1. Rainfall statistics for five periods at the study sites (individual months are denoted by their first letter).

Site Annual NDJFMA? JASP NDJ FMA¢
Islamabad Mean 1070 302 590 97 206
Median 1060 270 593 89 176
CV%*© 28 54 39 47 66
Chakwal Mean 600 240 282 61 180
Median 576 257 283 55 166
CV% 30 42 51 74 49
Talagang Mean 290 114 124 30 85
Median 292 115 136 27 77
CV% 29 43 56 75 46

Total growing season rainfall for wheat. ®Pre-sowing, monsoon rainfall. °Crop establishment and early growth. Rapid biomass accumulation, anthesis and maturation.
¢The co-efficient of variation was calculated as CV% = mean/standard deviation x 100. Monthly rainfall data (1961-2010) were sourced from the Meteorology

Department of Pakistan (http://www.pmd.com.pk/)

2006). In other words, this shrinkage approach was used to
select only those RCs for the forecasting models that showed
an important time-lagged relationship with rainfall at the study
sites.

The following model was considered:

n
Seasonal rainfall = B, + Z gi (lag RCy)
i=1

Seasonal rainfall ~ N (u,0) @))]

where g is a thin plate spline, i is the i selected RC
covariate and n is the total number of RC covariates used.
The coefficient S, is the intercept and lag RC; is the i™ lagged
RC covariate where the lags correspond to those mentioned
above. Due to the limited number of data points (49 seasons;
1961-2010), the maximum number of knots was restricted to
five in the model. The exact number of knots was chosen
using the default generalized cross-validation (Wood, 2006).
The combinations of site, forecast and lag period, and month/s
for which VARIMAX RCs were calculated, resulted in 63
forecasting models.

2.4. Model evaluation

Leave-one-out cross-validation was used for model calibration
and evaluation (van Ogtrop ef al, 2011). The aim was to
minimize the risk of artificial forecast skill, which is an
optimization bias generated by small sample sizes (here: 49
seasons). The cross-validation process involved iterative cycles
in which the models were calibrated on the full data set minus
one season and validated on the left-out seasons.

In addition to cross-validating the models’ ability to forecast
rainfall, a split- and an expanding-window evaluation was
performed for independent evaluation. Large deviations from
the cross-validated forecasts would indicate that those results
are not indicative of the true predictive skill of the forecasts. In
the split-window approach, the calibration/training period was
1961-1995 and the verification period was 1996-2008. The
expanding-windows approach involved forecasting one season
ahead, i.e. data from 1961 to 1995 was used to forecast 1996
rainfall, and then data from 1961 to 1996 was used to forecast
1997 rainfall. This process was repeated for seasons up to 2008.
This process is equivalent to a real-time forecast as it assumes
no knowledge of future climate. The evaluation approaches
were compared using the measures 7> and percent bias (pBIAS;
an indicator of whether a model is consistently over- or under-
predicting) for the 1996-2008 period.
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2.5. Goodness of fit

Seven skill scores were used to test the goodness of fit for
both the continuous and probabilistic forecasts produced by
the models. The R package ‘hydroGOF’ (Zambrano-Bigiarini,
2011) was used to calculate the root mean square error (RMSE),
a measure of the magnitude of the forecast error, and pBIAS
(explained above). A RMSE score of zero indicates a perfect
forecast and a pBIAS value of 0% indicates that the forecast
is unbiased. The R package ‘verification’ (NCAR — Research
Application Program, 2010) was used to calculate the linear
error in probability space (LEPS), a measure of the forecast
error, and the Brier score (BS) and response operating charac-
teristic curve, both measures of a forecasts ability to predict two
alternative outcomes correctly. A LEPS score of one indicates
a perfect forecast and any value equal to or below zero indi-
cates no skill. A Brier score of one indicates no skill and zero
indicates a perfect forecast. The ROC value is calculated as a
p-value with p < 0.05 indicating a skilful forecast. The S-score
(S%) is the percentage of correct forecasts above the percentage
expected due to chance alone (Moeller et al., 2008). A value
of S% greater than 0% is considered a skilful forecast. Further
detail on goodness of fit tests can be found in Wilks (2011)
and Jolliffe and Stephenson (2003). The skill scores were cross-
validated as described above in Section2.4. The probabilistic
rainfall forecasts were obtained from the assumed rainfall dis-
tribution (van Ogtrop et al., 2011).

3. Results

3.1. Interpreting the VARIMAX rotated principal
components

The first 10 VARIMAX RCs explained 54% of the variance in
the SST data. Figure 1 shows contour plots of RC2 and RC9,
which together explained 20% of the variance. The contours
represent the loadings of each component. It can be seen that
higher loadings tend to centre in certain oceanic regions: RC2
shows high positive loadings in the Pacific Ocean, while RC9
shows high loadings around the Atlantic Ocean south of the
equator.

The RC2 was highly correlated with SSTs in the central and
western Pacific Ocean indicating its relation to the ENSO phe-
nomenon (Table2, Figure 1). Furthermore, RC9 was strongly
correlated with the Tropical Southern Atlantic index (TSA)
(Table 2, Figure 1) and RC3 with the Tropical Northern Atlantic
index (TNA), and the Nino 1 + 2, and Nino 3 regions. The IOD

Meteorol. Appl. 21: 431-443 (2014)
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Figure 1. Contour plots of the first two VARIMAX rotated principal components, which explained 20% of the variance in the SST data, showing
high loadings in the central Pacific Ocean (RC2) and the southern Atlantic Ocean (RC9).

was most strongly related to RC1, RC2 and RC8. The PDO was
reasonably well correlated with the RC2, RC4 and RC10.

3.2. The forecasting models

The forecasts produced using the three different approaches for
forecast evaluation (cross-validation, split- and moving-window
methods) all followed a similar pattern (Figure 2). The positive
trend in the rainfall data between 1970 and 1995 (Figure 3) was
captured in all evaluation approaches as exemplified here for
monsoon forecasts (JAS) at Chakwal (Figure 2). This suggests
that the relationship between rainfall and SSTs is approximately
stationary in this region. Forecast results obtained using the
cross-validation and expanding-window approach were in close
agreement as revealed by an r2 of 0.71 and pBIAS of —0.3%
(Figure 2). The cross-validation and split-window evaluation
approaches were less similar as indicated by an r? of 0.42
and pBIAS of 12.9% (Figure2). Because the cross-validation
approach makes maximum use of the limited, available data
(49 seasons only), and the evaluation methods produced overall
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reasonably similar forecast results, only the cross-validated
forecasts are presented in subsequent sections.

The model that best described time-lagged relationships
between a specific rainfall period and the climatic predictors
depended on the site. Significant RCs are shown in Table 3.
Generally, the relationships between total seasonal rainfall and
the RCs related to Indian, Pacific and Atlantic Ocean SSTs
were significant at all sites. This section presents only the
skilful subset of cross-validated forecast models (see Section
3.3). Results for all forecasts and lag periods considered in
this study are given in an Appendix.

The forecasting models captured the increasing trend in total
seasonal rainfall in the monsoon period (Figure 3(a) and (b)).
Similarly, wet and dry periods during the mid 1970s, late 1970s,
and early 1980s have also been captured in the models for
the FMA period (Figure 3(c)). Forecasts for the FMA period
performed better up until the 1980s and then after 2007. In
contrast, forecasts of monsoon period performed better in the
1980s, 1990s and early 2000s. The wet period in the late 1990s
was captured by most models.

Meteorol. Appl. 21: 431-443 (2014)
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Table 2. Pearson correlation co-efficients for 10 VARIMAX rotated principal components (RC1, RC2 ... RC10) and climate indices describing
known climate phenomena.

Cumulative variance explained (%) Ninol +2 Nino 3.4 Nino3 Nino4 10D TNA TSA PDO
RC2 12 0.30 0.79 0.58 0.76 0.39 0.14 —-0.20 0.38
RC9 20 —-0.23 —-0.07 —0.12 —0.09 0.17 —-0.07 0.80 —0.10
RC1 26 0.35 —-0.26 0.04 —0.41 —-0.32 0.26 0.23 —0.12
RC3 31 —0.51 —0.08 —-0.30 0.19 0.06 0.69 0.12 —-0.13
RC6 36 0.19 0.00 0.12 —0.08 0.04 —0.09 —-0.41 0.25
RC4 40 —0.04 —0.04 —0.05 0.03 —0.26 —0.09 —-0.07 0.32
RC10 44 0.02 0.02 —0.01 0.16 0.01 —0.02 —0.01 —0.59
RCS 48 —0.04 0.00 —0.01 0.06 0.23 0.34 0.11 —0.19
RC7 51 0.13 0.17 0.18 0.05 0.11 0.14 —0.05 —0.02
RC8 54 0.37 0.04 0.21 —0.11 —0.31 —0.03 —0.10 0.13

A value of one indicates perfect correlation and zero indicates no correlation. The RCs are noted in order of the variance explained. See appendix for a list of
climate indices.

Table 3. Time-lagged relationship between rainfall during different periods and 10 VARIMAX rotated principal components of SSTs (RC1, RC2
... RC10). The RC was either significant at p <=0.05 and selected in the forecasting model (S), was selected but was not highly significant
(4), or was non-significant (—).

Region Chakwal Talagang Islamabad
SST month/s AM AM S AS S
Rainfall period JAS JAS FMA NDJFMA FMA
RC2 - — S N S
RC9 S S S S S
RCl1 S S S S —
RC3 — - + - S
RC6 S + + S +
RC4 - - - - -
RC10 + S S S

RC5 - — - — -
RC7 - - S S S
RC8 — — + +

The RCs are noted in order of the variance explained. Individual months are denoted by their first letter.

phenomena). The model parameters RC2, RC6, RC7, RC8 and
RC9 were included in the FMA forecasts for both Talagang and
Islamabad (Table 3, Figure3). The RC1 and RC10 were only
significant for the FMA forecast at Talagang. The significant
RCs were similar for the FMA and NDJFMA forecasts for
Talagang. The RC 4 and RC5 were not significant in any of the
models given in Table 3.

In addition to assessing which RCs affect rainfall,
linear/non-linear properties of the relationship between each of
the significant RCs and rainfall were explored. Figure 4 shows
the significant relationships between the monsoon (JAS) at
Talagang and the significant mean April to May RCs. The RC1
and RC9 both showed non-linear behaviour. The SST anomaly
values above 0.5 had a marginal effect on rainfall as indicated
by the fact that the value zero was included in the confidence
intervals. Below this value, RC9 was approximately linear and
decreasing. The inverse was true for RC1. In contrast, RC10

— Cross-validation
- — Split-window
- =+ Expanding-window

300 400 500 600
1 | | |

Forecast rainfall (mm)

200
1

1980 1980 2000

Year

Figure 2. Comparison of three forecast evaluation methods: cross val-

idation, split- and expanding-window method. Shown are forecasts of

monsoon (JAS) rainfall using VARIMAX rotated principal components
of April to May SSTs. The location is Chakwal.

The model parameters RC1, RC6, RC9 and RC10 explained
rainfall during the month JAS at Chakwal and Talagang (see
Appendix for the climate indices of well-described climate

© 2013 The Authors. Meteorological Applications published by John Wiley & Sons Ltd

on behalf of Royal Meteorological Society.

was positive linear, which also demonstrated the flexibility of
using a GAM whereby a relationship can be either linear (the
number of knots is approximately 1) or non-linear (the number
of knots is greater than 1). In summary, Figure 4 suggested an
inverse relationship between RC1 and RC9 and a similar rela-
tionship between RC1 and RC10. That is, a lower (higher) value
of RC9 and higher (lower) values of RC1 and RC10 indicated
higher (lower) monsoon rainfall at Talagang. As the values for
the RCs moved towards the positive and negative extremes,
the uncertainty in the relationship with rainfall increased.

Meteorol. Appl. 21: 431-443 (2014)
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Figure 3. Continuous forecast of seasonal rainfall (dotted line), 95% confidence intervals for forecasts (shaded area), and measured seasonal
rainfall (solid line) for Pothwar, Pakistan. The locations and rainfall periods were: (a) Chakwal JAS, (b) Talagang JAS, (c) Talagang FMA, (d)
Talagang NDJFMA and (e) Islamabad FMA.

The normal quantile plot (qgplot), which was derived for
each of the 63 cross-validated models, indicated that the
assumption that seasonal rainfall follows a Gaussian distribu-
tion is not entirely valid because not all of the values, partic-
ularly values lower than —50, lie on the 1:1 line (Figure 5(a)).

This is also reflected by the histogram being slightly skewed
(Figure 5(b)). However, without the two outliers the residual
scatter plot showed a reasonable scatter (Figure5(c)). There
appeared to be more values concentrated between —50 and
+50, and a thin scatter above +50 illustrated some skewness

© 2013 The Authors. Meteorological Applications published by John Wiley & Sons Ltd Meteorol. Appl. 21: 431-443 (2014)
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Figure 4. Relationships between individual VARIMAX rotated principal components (covariates RC1, RC9, and RC10) and monsoon rainfall

(JAS) at Talagang. For each covariate, the modelled rainfall is given as deviation from the intercept (132.6 mm). The dotted lines indicate the

95% confidence intervals for each covariate. The number of knots in the smoothing functions was (a) 2.11 for RCI, (b) 3.18 for RC9, and (c)
0.84 for RC10. In the forecasting model, the predicted rainfall is the sum of the three smoothing functions (a—c) plus the intercept.

in the residuals. The scatter-plot of the observed versus the
fitted model showed a reasonable fit, although the model
slightly under-predicted seasonal rainfall. The two extreme
rainfall seasons (>300mm) were modelled with reasonable
accuracy.

3.3. Forecast skill

Subsequently, the skill of the models for forecasting rainfall
at the study sites was evaluated. There was generally greater
skill in forecasting rainfall at the drier sites Chakwal and
Talagang than at the wetter site Islamabad. Table4 shows the
subset forecasts for which all cross-validated skill scores were
significant. Values of the skill scores for all forecasts and lag
periods considered in this study are given in an Appendix.

Forecasts for the monsoon period showed significant skill at
both Chakwal and Talagang and for the entire growing season
at Talagang (Table4). The model had generally no skill for
forecasting rainfall during NDJ (crop establishment and early
crop growth). Forecasts for Talagang and Islamabad showed
significant skill at the end of the growing season (FMA).

The results of the skilful continuous forecasts for Chakwal,
Talagang and Islamabad (Table 4) showed that the VARIMAX
RCs of the SSTs explained between 16 and 38% of total
seasonal rainfall variability (r> x 100) with a RMSE between
42.5 and 122.1 mm rainfall. The pBIAS ranged between —1.90
and 4.90%, and the LEPS scores also showed skill with values
ranging between 0.23 and 0.31.

The skill score S% for categorical forecasts (above and below
median seasonal rainfall) ranged from 22 to 71% indicating
a marked improvement over relying on chance alone (i.e.
S% < =0). Similarly, the probabilistic forecasts, which are
presented as the probability of exceeding median seasonal
rainfall, gave Brier score values ranging from 0.14 to 0.28 and
the ROC values were significant at p <0.05.

4. Discussion

The analyses showed that there is scope for skilful sea-
sonal rainfall forecasting in Pothwar, especially in the arid
to semi-arid areas of Talagang and Chakwal, and, to a lesser
extent, at the dry sub-humid site Islamabad. Parameter selection
was generally consistent for Talagang and Chakwal which

© 2013 The Authors. Meteorological Applications published by John Wiley & Sons Ltd
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would be expected considering their close proximity (Talagang
is only 45km west of Chakwal but rainfall drops consider-
ably over this distance). However, subtle differences occur,
such as the level of significance with RC6 and RC10 for the
two JAS forecasts (Table 3). Given the complexity of the inter-
actions being modelled and potential input uncertainties, it is
likely that these differences may occur between different rain-
fall stations particularly when parameters are only marginally
influential in the model. Generally, the parameters selected and
dropped in the cross validation process were consistent for each
model.

The modelled relationships between the RCs and rainfall
were linear and non-linear (Figure4). It has been shown that
being able to capture non-linearity is essential for describing
relationships between SST anomalies and rainfall (Boulanger
et al., 2005). The fact that RC1 and RC9 are significant for
both Talagang and Chakwal suggests significant influence of
the Indian and Atlantic Oceans on rainfall (Ashok and Saji,
2007; Kucharski et al., 2008). It would also be expected that
monsoonal rainfall is well correlated with the ENSO (Kumar
et al., 2006). This is represented in the model by RC1, which
shows a positive correlation with eastern Pacific Ocean SSTs
and a negative correlation with western Pacific Ocean SSTs.
Similarly, as RC1 increased so did rainfall, which is consistent
with a La-Nifla event. Additionally, RC10, which is negatively
correlated with the PDO (—0.59, Table 2), was selected in both
models. This may support the finding that the PDO moderates
the effect of ENSO on the Indian monsoon (Krishnan and Sugi,
2003).

The skilful seasonal climate forecasts presented here are
locally relevant, and could potentially inform risk management
strategies in dryland farming systems if embedded in a
reflective decision framework (Weaver et al., 2013). Generally,
skillful forecasts have economic and/or environmental benefits
only if they can change the course of decision-making therefore
reducing vulnerability (Hansen, 2002). For wheat systems
in Australian drylands, Moeller et al. (2008) showed that
a skill level of at least S% =26 was required for seasonal
forecasts of above/below median rainfall to be useful in
managing applications of fertilizer nitrogen. They defined
the deterministic value of the forecast as the additional gross
margin achieved over fertilizer strategies that ignore any
forecasts. The threshold level of skill required for the forecast

Meteorol. Appl. 21: 431-443 (2014)
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Figure 5. Quality checks for one of the 63 cross-validated models forecasting monsoon rainfall (JAS) at Talagang: (a) normal quantile plot, (b)
histogram of residuals, (c) residual plot, and (d) xy scatter plot of observed versus predicted rainfall. Details are given in text.

Table 4. Values of skill scores for skilful forecasts of seasonal rainfall at three locations in Pothwar, Pakistan (individual months are denoted by
their first letter).

Chakwal Talagang Talagang Talagang Islamabad
SST month/s AM AM S AS S
Forecast period JAS JAS FMA NDJFMA FMA
Skill score
r? 0.37 0.38 0.21 0.19 0.16
RMSE 118.2 57.7 42.5 514 122.1
pBIAS 0.6 -0.2 —2.6 -3.0 —4.9
LEPS 0.31 0.23 0.24 0.23 0.23
S% 22 27 37.5 71 333
BS 0.28 0.28 0.24 0.14 0.25
ROC 0.01 < 0.001 < 0.001 < 0.001 0.014

to be valuable was higher (lower) the lesser (more) the growth
and yield of the wheat crop was water-limited. In other words,
the forecast skill needed to be higher at wetter sites compared
to drier sites. Thus, high skill levels of S% =71% for seasonal
and S% =37.5% for FMA rainfall at Talagang could be useful
for decision-making. However, the ‘true’ value of skilful but
imperfect forecasts depends on a range of socio-economic and
agro-ecological constraints that were not considered here
(Hansen, 2002; Weaver et al., 2013).

Potential benefits from applications of seasonal climate fore-
casting necessitate an understanding of the forecast information,
including the forecast probabilities, format, accuracy, and skill
(Nicholls, 2000). Thus, forecast users need to be ‘climate-
literate’. For example, a shift in the odds towards a greater
chance for above median rainfall also means that there remains
a chance for below median rainfall; forecasts can be skilful but

© 2013 The Authors. Meteorological Applications published by John Wiley & Sons Ltd
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‘inaccurate’ (Figure 3). Furthermore, the analyses showed that
there is spatial and temporal variation in forecast skill (Figure 3,
Table 4), which forecast users would need to consider when
using forecasts in decision-making. Here, the selected seasonal
forecasts were out by between 42.5 and 122.1 mm as approxi-
mately indicted by the RMSE. This is about half to one-third
of the average seasonal rainfall in Pothwar, where wheat is
produced in regions delineated by the 100—350 mm isohyets of
November to April rainfall (Table 1). This may compromise the
usefulness of forecasts, which appeared to perform better dur-
ing certain periods in the climatic records that were available
from the study locations (Figure 3).

Temporal variations in forecast performance (Figure3,
Table 4) have been shown to be related to underlying climatic
modulations that are not captured in statistical forecasting
models (Power et al., 1999). Another source for the temporal

Meteorol. Appl. 21: 431-443 (2014)
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variation may be that the model cannot fully explain non-linear
relationships between the RCs and rainfall. Comparison of
models for the more skilful and less skilful periods may
assist in determining whether a particular combination of
RCs is responsible for the variability in model performance.
Results of this further analysis may assist in refining forecast
output to account for increased uncertainty in periods where
forecast performance is reduced. In contrast to the variability
in forecast skill at annual timescales, the relationship between
SSTs and rainfall appeared to be stationary at intra-decadal or
longer timescales (Figure3(a) and (c)). This suggests that the
forecasts may be able to capture general trends in the rainfall
data as a result of climate variability at longer periodicities
than annual.

The forecasts presented here are skilful but imperfect. As
a consequence of such forecast uncertainty, climate sensitive
management decisions do not always result in better outcomes
(Stone and Meinke, 2005; Meinke et al., 2007; Moeller
et al., 2008). Apart from discrepancies between forecast and
observed rainfall amounts, other reasons for the possibility
of poor outcomes include the variability in the timing and
intensity of rainfall events relative to critical crop growth
stages such as flowering (Fischer, 2011), temporal changes
in productions costs and commodity prices, and how forecast
users perceive the climate information provided (Weaver
et al., 2013). In fact, vulnerability can increase if agricultural
decision makers perceive forecast information as an explicit
and unambiguous signal (Meinke et al., 2005). Weaver et al.
(2013) argue that ‘predict-then-act” frameworks have generally
failed to inform decision-making meaningfully. Thus, for
applications of the seasonal forecasts discussed here to be
successful would require a reflective decision framework that
engages stakeholders, and which considers socio-economic
and agro-ecological constraints and their interactions with
decision-making under climatic uncertainty in Pothwar.

5. Conclusions

Seasonal forecasts were developed for rainfall periods
that coincide with important stages in the management,

Appendix
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growth and development of wheat crops grown in rainfed
environments of Pothwar. Strong correlations were found
between the VARIMAX rotated principal components of
SSTs (the climatic predictors) and well known SST anomalies
associated with the EI-Nifio Southern Oscillation, Pacific
Decadal Oscillation, Indian Ocean Dipole and the tropical
Atlantic Ocean. The Generalized Additive Models revealed
linear and non-linear relationships between agriculturally
relevant rainfall periods and multiple time-lagged climatic
predictors. Based on the statistical models developed, skilful
forecasts of seasonal rainfall totals (continuous and categorical
probabilistic forecasts) can be produced for Chakwal,
Talagang and Islamabad. Forecasts such as the probability of
exceeding median monsoon rainfall and volumetric rainfall
with 95% confidence intervals can be provided with minimal
financial investment alongside existing dynamical forecasts
(http://www.pmd.gov.pk/rnd/rndweb/rnd_new/seasonal.php).

The relatively simple, statistical forecasts presented here
can be easily implemented in the target region where specific,
locally relevant forecasts are not readily available. A wide
range of methods was employed to assess the true ability of
the models to forecast rainfall. Such thorough evaluation is
particularly important where the length of the available rainfall
record is limited (i.e. about just sufficient for model develop-
ment and some testing). While the addition of splines allows
for more complex relationships between rainfall and SST to be
modelled, it does require the user to either use less predictors
in the model or limit use to longer datasets. As more seasonal
rainfall data will become available, the models can be easily
updated and improved. Skilful, but imperfect, forecasts can
potentially assist decision-makers in managing climate related
risks on-farm and the regional level. However, consideration
of the value of the forecasts would require a research approach
that engages with stakeholders and addresses agro-ecological
and socio-economic constraints not included here.
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Table Al. Summary of climatic indices describing sea surface temperature (SST) anomalies related to various climate phenomena.

Index Name Region Description References
Ninol +2 10 to 0° S, 80-90° W Mean monthly SST anomaly Allan (2000)
Nino3 5N to 5°S, 90-150°'W Mean monthly SST anomaly
Nino3.4 5°N to 5°S, 120 to 170° W Mean monthly SST anomaly
Nino4 5°S to 5°N, 150°E to 160° W Mean monthly SST anomaly
10D Indian Ocean Dipole Indian Ocean Difference in SSTs between Saji et al. (1999)
regions in western and
south-eastern equatorial Indian
Ocean
TNA Tropical Northern Atlantic index 5.5-23.5°N and 15-57.5°W Mean monthly SST anomaly Enfield et al. (1999)
TSA Tropical Southern Atlantic index Equator-20°S and 10 °E to 30°W Mean monthly SST anomaly Enfield et al. (1999)
PDO Pacific Decadal Oscillation Pacific Ocean poleward of 20° N Leading principal component of Zhang et al. (1997) and

monthly SST anomalies in the
North Pacific Ocean

Krishnan and Sugi
(2003)

© 2013 The Authors. Meteorological Applications published by John Wiley & Sons Ltd

on behalf of Royal Meteorological Society.

Meteorol. Appl. 21: 431-443 (2014)



Table A2. Results for time-lagged relationships between VARIMAX rotated principal components (RC1, RC2 ...

Skilful seasonal forecasts for dry environments in Pothwar, Pakistan

441

10) of SSTs and six rainfall

periods at three locations in Pothwar, Pakistan: p-values of the RC covariates selected in the Generalized Additive Models and values of forecast

skill scores (estimates are rounded to two decimal places).

p-values for covariates

Skill scores

SST RCI RC2 RC3 RC4 RC5 RC6 RC7 RC8 RCY9 RCI0 r? RMSE pBIAS S% LEPS BS ROC
Chakwal, NDJ period

J 0.00 000 0.12 017 NA NA NA 001 0.00 NA 0.00 57.79 13.00 0.08 0.04 040 0.63
A 0.00 000 NA 004 001 NA 012 NA 034 NA 0.04 81.55 0.10 —0.13 —0.09 042 0.84
S 0.07 0.17 NA 000 NA NA NA NA 085 029 0.00 66.74  —6.10 0.08 0.00 035 0.50
JA 0.0l 001 NA 035 005 NA 054 0.14 001 0.15 0.05 70.15 1270  -0.33 —0.09 0.50 0.99
AS 0.01 000 NA 000 0.05 NA 017 NA NA NA 0.04 67.83 —4.50 —-0.25 —-0.12 042 0.83
JAS 0.00 000 027 NA 000 009 002 015 0.00 001 0.16 77.33 3.60 -029 -0.20 0.50 1.00
Chakwal, FMA period

J 032 0.00 0.01 0.00 001 000 0.00 0.01 002 0.00 0.01 149.45 —-8.10 0.29 0.10 0.30 0.05
A 002 000 NA NA 055 006 0.00 018 001 0.23 0.06  126.13 —6.40 —0.08 0.11 036 0.25
S 0.01 000 038 NA NA 006 001 007 0.02 0.15 0.05 106.69 —5.40 0.08 0.14 036 0.23
JA NA 000 NA NA NA 023 000 040 NA 001 0.00 133.14 —-4.70 -0.17 -0.01 042 0.65
AS 0.02 000 NA NA NA 001 000 004 001 0.13 0.05 12342 —4.80 0.00 0.11 036 0.23
JAS 0.01 000 NA 028 NA 007 002 047 012 NA 0.05 13421 -7.00 0.00  0.10 038 0.25
Chakwal, NDJFMA period

J 0.07 003 0.03 030 0.13 006 0.00 0.01 0.01 NA 0.00  146.44 0.20 0.00 0.04 036 048
A 0.00 000 NA NA 017 005 0.03 0.09 000 NA 0.02  171.14 —5.20 0.00 —-0.02 037 0.33
S 0.01 000 NA 0.17 NA 005 0.03 0.09 0.00 0.17 0.03 11191 —-1.10 0.17 0.09 032 022
JA 005 000 NA NA NA 022 002 0.14 003 NA 0.01 153.59 —-0.90 0.00 -0.07 039 0.79
AS 0.0l 000 NA 034 010 0.05 0.16 0.14 001 0.14 0.01 144.57 —=3.90 0.13 0.04 031 0.19
JAS 0.01 001 NA NA NA 004 023 029 005 NA 0.00 15885 —420 -0.04 0.02 036 049
Chakwal, monsoon periods JAS, JA, and AS (from top)

AM 000 NA NA NA NA 002 NA NA 000 028 037 11822 0.60 022 031 028 0.01
AM 0.01 0.01 000 NA 0.00 0.00 000 000 NA NA 0.08 14247 6.30 027 020 0.25 0.00
AM 007 NA 076 NA NA 005 NA 022 0.00 0.15 020  107.27 1.80 0.18 021 029 0.06
Talagang, NDJ period

J 002 000 NA 005 009 030 023 002 001 023 0.00 31.06 6.40 0.13 0.06 036 038
A 0.01 000 NA 001 031 NA 060 NA 005 NA 0.00 32.33 310 =029  0.02 041 0.80
S 0.03 008 NA 000 NA NA NA NA 0.09 036 0.00 36.15 =740 -0.17 -0.03 041 0.88
JA 0.03 000 NA 003 024 038 034 016 003 NA 0.00 31.75 630 —-0.04 000 041 0.76
AS 0.0 002 NA 000 024 041 054 NA 012 NA 0.00 2651  —0.30 —0.25 0.02 043 0.85
JAS 0.02 003 033 001 NA NA NA NA 003 NA 0.07 34.51 250 —-0.33 —-0.17 051  1.00
Talagang, FMA period

J 006 000 NA 053 NA 008 000 NA 012 NA 0.02 52.86 1.40 0.00 0.02 037 037
A 002 000 NA NA 009 002 000 NA 001 018 0.16 5371  —6.90 0.33 025 025 0.00
S 0.00 0.00 020 NA NA 0.10 0.00 027 0.00 0.03 0.21 4251 =250 038 024 024 0.00
JA 008 000 NA NA NA 005 001 NA 003 022 0.09 52.02 —2.60 029 0.13 027 0.01
AS 0.02 000 NA 034 NA 003 001 NA 000 0.10 0.16 5289 —5.50 042 023 025 0.00
JAS 002 000 NA NA NA 001 001 035 003 0.04 0.09 6240 —6.80 029 0.16 027 0.01
Talagang, NDJFMA period

J 005 001 NA NA NA 004 001 NA 002 NA 0.02 53.65 2.10 0.13 0.03 029 0.07
A 001 000 NA NA NA 000 002 NA 000 0.18 0.08 61.80 —6.10 038 0.14 024 0.00
S 0.00 0.00 020 028 031 0.02 0.00 0.11 0.00 0.04 0.16 49.85 —0.90 0.58 020 0.15 0.00
JA 003 001 NA NA NA 001 007 NA 001 0.11 0.10 53.16 —1.70 050 0.13 0.20 0.00
AS 0.00 000 NA NA NA 0.00 002 025 000 0.04 0.19 51.43  —=3.00 0.71 023  0.14 0.00
JAS 000 000 NA NA NA 000 0.01 080 0.00 0.08 0.09 59.19 —0.10 0.63 0.17 0.16 0.00
Talagang, monsoon periods JAS, JA, and AS (from top)

AM 001 NA NA NA NA NA NA NA 0.00 0.04 0.38 57.71  —0.20 0.27 023 0.28 0.00
AM 0.09 062 NA NA NA 055 NA NA 004 NA 0.02 68.84 —1.40 0.10  0.10 031 0.12
AM 009 NA NA 025 046 NA NA 037 0.00 001 0.16 5842  —-0.20 0.10  0.15 034 022
Islamabad, NDJ period

J 0.00 005 0.08 0.00 0.15 009 0.04 001 NA 0.00 0.01 88.25 470 —0.13 —0.04 042 058
A 007 NA NA 020 NA NA 034 NA NA 008 0.12  120.19 3.10 —-0.17 —0.11 043 0.90
S 028 NA NA 008 NA 0.11 0.11 0.08 043 030 0.02 86.14 —-0.60 -0.08 -0.01 035 0.53
JA 000 NA 0.2 008 NA 002 032 NA 001 0.00 0.00 96.49 —1.50 —0.17 —-0.03 042 0.65
AS 004 NA NA 016 074 NA 031 NA NA 007 0.00 7252 —1.50 —-0.21 —-0.04 042 0.86
JAS 002 NA NA 010 NA 020 NA NA NA 001 0.02 77.88 —4.40 0.04 0.05 038 0.0

© 2013 The Authors. Meteorological Applications published by John Wiley & Sons Ltd
on behalf of Royal Meteorological Society.
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Table A2. Continued

p-values for covariates

Skill scores

SST RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8 RC9 RCIO r2 RMSE pBIAS S% LEPS BS ROC
Islamabad, FMA period

J NA 022 000 NA 009 0.00 008 0.00 0.10 NA 0.05 158.83 0.90 0.13 0.12 033 026
A 041 001 0.04 NA 0.01 0.11 0.03 000 0.08 0.15 0.02 183.74  14.00 0.25 0.20 031 0.13
S NA 0.02 008 NA NA 037 006 0.06 000 NA 0.16 122.10 —4.90 0.33 0.23 025 0.01
JA NA 0.03 001 021 018 NA 003 0.00 0.02 NA 0.01 19542 —1.60 0.17 0.14 031 0.09
AS NA 000 032 NA NA 0.10 0.00 0.00 000 NA 0.12 127.02  —2.40 0.21 0.23 028 0.04
JAS NA 001 0.05 NA 023 NA 0.07 0.00 0.02 NA 0.09 154.62 1.70 0.29 0.21 027 0.02
Islamabad, NDJEMA period

J 0.16 025 0.09 NA NA 001 0.11 001 0.06 NA 0.00 197.67 1.70  —0.04 —-0.09 040 0.72
A 037 006 NA NA 0.12 007 0.05 005 0.12 0.03 0.00 218.02 1.90 0.00 0.01 0.38 0.76
S NA 0.09 020 NA NA 0.18 0.16 025 0.02 NA 0.00 167.07 2.10 0.00 —-0.02 036 0.56
JA 024 005 NA NA 044 0.15 0.05 004 010 036 0.01 25421 —5.50 0.04 —-0.03 038 0.69
AS 023 007 NA NA NA 032 0.05 0.12 0.02 NA 0.02 165.68 —2.00 —0.08 —0.03 043 0.83
JAS 030 006 NA NA NA 033 0.11 0.15 0.01 NA 0.00 223.59 270 —0.17 —-0.09 044 0.86
Islamabad, monsoon periods JAS, JA, and AS (from top)

AM NA 010 NA 0.15 030 036 074 NA 046 NA 0.05 267.05 —0.20 —-0.27 -0.14 048 1.00
AM NA 003 NA 007 0.08 023 0.09 NA NA NA 0.03 201.70 —1.80 0.35 0.14 025 0.02
AM NA NA NA NA 022 025 NA NA NA NA 0.11 17728 —1.10 —-0.18 —-0.06 0.35 0.80

Individual months in the forecast period are denoted by their first letter.

References

Allan RJ. 2000. ENSO and climatic variability in the past 150 years.
In El Nifio and the Southern Oscillation: Multiscale Variability and
its Impact on Natural Ecosystems and Society, Diaz HF, Markgraf
V (eds). Cambridge University Press: Cambridge; 3-55.

Allan R, Chambers D, Drosdowsky W, Hendon H, Latif M, Nicholls N,
Smith I, Stone R, Tourre Y. 2001. Is there an Indian Ocean dipole,
and is it independent of the El Nifio — Southern Oscillation? CLIVAR
Exchanges 6(3): 18-22.

Arif M, Malik MA. 2009. Economic feasibility of proposed cropping
patterns under different soil moisture regimes of the Pothwar plateau.
Int. J. Agric. Biol. 11: 27-32.

Ashok K, Guan ZY, Saji NH, Yamagata T. 2004. Individual and
combined influences of ENSO and the Indian Ocean Dipole on the
Indian summer monsoon. J. Clim. 17: 3141-3155.

Ashok K, Saji NH. 2007. On the impacts of ENSO and Indian Ocean
dipole events on sub-regional Indian summer monsoon rainfall. Nat.
Hazards 42: 273-285.

Barlow M, Cullen H, Lyon B. 2002. Drought in central and southwest
Asia: La Nifa, the warm pool, and Indian Ocean precipitation. J.
Clim. 15: 697-700.

Barlow M, Nigam S, Berbery EH. 2001. ENSO, Pacific decadal
variability, and US summertime precipitation, drought, and stream
flow. J. Clim. 14: 2105-2128.

Boulanger JP, Leloup J, Penalba O, Rusticucci M, Lafon F, Vargas M.
2005. Observed precipitation in the Parand-Plata hydrological basin:
long-term trends, extreme conditions and ENSO teleconnections.
Clim. Dynam. 24: 393—-413.

Bracco A, Kucharski F, Molteni F, Hazeleger W, Severijns C.
2005. Internal and forced modes of variability in the Indian Ocean.
Geophys. Res. Lett. 32: 112707, DOI: 12710.11029/12005GL02
3154.

Byerlee D, Husain T. 1993. Agricultural research strategies for favored
and marginal areas - the experience of farming systems research in
Pakistan. Exp. Agric. 29: 155-171.

Cane M. 2000. Understanding and predicting the world’s climate sys-
tem. In Applications of Seasonal Climate Forecasting in Agricultural
and Natural Ecosystems — The Australian Experience, Hammer GL,
Nicholls N, Mitchell C (eds). Kluwer Academic Publishers: Dor-
drecht; 29-50.

Chang C, Harr P, Ju J. 2001. Possible roles of Atlantic circulations on
the weakening Indian monsoon rainfall-ENSO relationship. J. Clim.
14: 2376-2380.

Chang P, Yamagata T, Schopf P, Behera SK, Carton J, Kessler WS,
Meyers G, Qu T, Schott F, Shetye S, Xie SP. 2006. Climate
fluctuations of tropical coupled systems - the role of ocean dynamics.
J. Clim. 19: 5122-5174.

© 2013 The Authors. Meteorological Applications published by John Wiley & Sons Ltd

on behalf of Royal Meteorological Society.

Clark CO, Cole JE, Webster PJ. 2000. Indian Ocean SST and
Indian summer rainfall: predictive relationships and their decadal
variability. J. Clim. 13: 2503-2519.

Copas JB. 1983. Regression, prediction and shrinkage. J. R. Stat. Soc.,
Ser. B 45: 311-354.

D’Arrigo R, Villalba R, Wiles G. 2001. Tree-ring estimates of Pacific
decadal climate variability. Clim. Dyn. 18: 219-224.

D’Arrigo R, Wilson R. 2006. On the Asian expression of the PDO. Int.
J. Climatol. 26: 1607-1617.

Dommenget D, Latif M. 2002. A cautionary note on the interpretation
of EOFs. J. Clim. 15: 216-225.

Drosdowsky W, Chambers LE. 2001. Near-global sea surface temper-
ature anomalies as predictors of Australian seasonal rainfall. J. Clim.
14: 1677-1687.

Enfield DB, Mestas AM, Mayer DA, Cid-Serrano L. 1999. How
ubiquitous is the dipole relationship in tropical Atlantic sea surface
temperatures? J. Geophys. Res. 104: 7841-7848.

Everingham YL, Muchow RC, Stone RC, Inman-Bamber NG, Sin-
gels A, Bezuidenhout CN. 2002. Enhanced risk management and
decision-making capability across the sugarcane industry value chain
on seasonal climate forecasts. Agric. Syst. 74: 459-477.

Fischer RA. 2011. Wheat physiology: a review of recent developments.
Crop Pasture Sci. 62: 95—114.

Fischer G, van Velthuizen H, Shah M, Nachtergaele F. 2002. Global
Agro-ecological Assessment for Agriculture in the 21st Century:
Methodology and Results . International Institute for Applied Systems
Analysis, Food and Agriculture Organization of the United Nations:
Laxenburg.

Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane
MA. 2001. Current approaches to seasonal-to-interannual climate
predictions. Int. J. Climatol. 21: 1111-1152.

Goswami BN, Madhusoodanan M, Neema C, Sengupta D.
2006. A physical mechanism for North Atlantic SST influ-
ence on the Indian summer monsoon. Geophys. Res. Lett. 33:
L02706_02701-L02706_02704.

Graham MH. 2003. Confronting multicollinearity in ecological multiple
regression. Ecology 84: 2809-2815.

Hannachi A, Jolliffe IT, Stephenson DB. 2007. Empirical orthogonal
functions and related techniques in atmospheric science: a review.
Int. J. Climatol. 27: 1119-1152.

Hansen JW. 2002. Realizing the potential benefits of climate predic-
tion to agriculture: issues, approaches, challenges. Agric. Syst. 74:
309-330.

Hansen JW. 2005. Integrating seasonal climate prediction and agricul-
tural models for insights into agricultural practice. Philos. Trans. R.
Soc. London, Ser. B 360: 2037-2047.

Meteorol. Appl. 21: 431-443 (2014)



Skilful seasonal forecasts for dry environments in Pothwar, Pakistan

Hansen JW, Indeje M. 2004. Linking dynamic seasonal climate
forecasts with crop simulation for maize yield prediction in semi-arid
Kenya. Agric. Forest. Meteorol. 125: 143—-157.

International Research Institute for Climate and Society. 2012a.
IRI/LDEO climate data library. Kaplan Extended v2 ssta:
SST anomaly data. http://iridl.ldeo.columbia.edu/SOURCES/.
KAPLAN/.EXTENDED/.v2/.ssta/.

International Research Institute for Climate and Society. 2012b.
IRI/LDEO climate data library. Statistical analysis tutorial.
http://iridl.1deo.columbia.edu/dochelp/StatTutorial/SVD/ (accessed 9
July 2013).

Jolliffe IT. 1987. Rotation of principal components: some comments.
J. Climatol. 7: 509-512.

Jolliffe IT. 2002. Principal Component Analysis. Springer: New York,
NY.

Jolliffe IT, Stephenson DB. 2003. Forecast Verification: A Practi-
tioner’s Guide in Atmospheric Science. John Wiley & Sons Ltd.:
West Sussex.

Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan
B. 1998. Analyses of global sea surface temperature 1856—1991. J.
Geophys. Res. 103: 567-589.

Khan MA, Shah SAA. 2010. Food insecurity in Pakistan: causes and
policy response. J. Agric. Environ. Ethics , DOI: 10.1007/s10806-
010-9274-2.

Krishnan R, Sugi M. 2003. Pacific decadal oscillation and vari-
ability of the Indian summer monsoon rainfall. Clim. Dyn. 21:
233-242.

Kucharski F, Bracco A, Yoo J, Molteni F. 2007. Low-frequency
variability of the Indian monsoon-ENSO relationship and the tropical
Atlantic: the “weakening” of the 1980s and 1990s. J. Clim. 20:
4255-4266.

Kucharski F, Bracco A, Yoo JH, Molteni F. 2008. Atlantic forced
component of the Indian monsoon interannual variability. Geophys.
Res. Lett. 35: 1L.04076, DOI: 10.1029/2007GL033037.

Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M. 2006.
Unraveling the mystery of Indian monsoon failure during El Nino.
Science 314: 115-119.

Li T, Zhang YS, Chang CP, Wang B. 2001. On the relationship between
Indian Ocean sea surface temperature and Asian summer monsoon.
Geophys. Res. Lett. 28: 2843—2846.

Lu R, Dong B, Ding H. 2006. Impact of the Atlantic Multidecadal
Oscillation on the Asian summer monsoon. Geophys. Res. Lett. 33:
L24701.

Meinke H, Nelson R, Kokic P, Stone R, Ramasamy S, Baethgen W,
Selvaraju R. 2007. Actionable climate knowledge: from analysis to
synthesis. Clim. Res. 33: 101-110.

Meinke H, deVoil P, Hammer GL, Power S, Allan R, Stone RC, Folland
C, Potgieter A. 2005. Rainfall variability at decadal and longer time
scales: signal or noise? J. Clim. 18: 89-96.

Meyers G, Mclntosh P, Pigot L, Pook M. 2007. The years of El Nino,
La Nina, and interactions with the tropical Indian ocean. J. Clim. 20:
2872-2880.

Moeller C, Asseng S, Berger J, Milroy SP. 2009. Plant available
soil water at sowing in Mediterranean environments — Is it a useful
criterion to aid nitrogen fertiliser and sowing decisions? Field Crop
Res. 114: 127-136.

Moeller C, Smith I, Asseng S, Ludwig F, Telcik N. 2008. The
potential value of seasonal forecasts of rainfall categories — case
studies from the wheatbelt in Western Australia’s Mediter-
ranean region. Agric. Forest Meteorol. 148: 606-618, DOI:
610.1016/j.agrformet.2007.1011.1004.

National Oceanic and Atmospheric Administration. (2012). Cli-
mate indices: monthly atmospheric and ocean time series.
http://www.esrl.noaa.gov/psd/data/climateindices/list/.

NCAR - Research Application Program. 2010. Verification: forecast
verification utilities, R package version 1.31 ed. http://CRAN.R-
project.org/package=verification.

Newman M, Compo GP, Alexander MA. 2003. ENSO-forced variabil-
ity of the Pacific Decadal Oscillation. J. Clim. 16: 3853-3857.

Nicholls N. 2000. Opportunities to improve the use of seasonal
climate forecasts. In Applications of Seasonal Climate Forecasting
in Agricultural and Natural Ecosystems The Australian Experience,
Hammer GL, Nicholls N, Mitchell C (eds). Kluwer Academic
Publishers: Dordrecht; 309-327.

van Ogtrop FF, Vervoort RW, Heller G, Stasinopoulos D, Rigby R.
2011. Long-range forecasting of intermittent streamflow. Hydrol.

© 2013 The Authors. Meteorological Applications published by John Wiley & Sons Ltd

on behalf of Royal Meteorological Society.

443

Earth Syst. Sci. 15: 3343-3354.

Passioura JB, Angus JF. 2010. Improving productivity of crops in
water-limited environments. Adv. Agron. 106: 37-75.

Power S, Casey T, Folland C, Colman A, Mehta V. 1999. Inter-decadal
modulation of the impact of ENSO on Australia. Clim. Dyn. 15:
319-324.

Power S, Colman R. 2006. Multi-year predictability in a coupled
general circulation model. Clim. Dyn. 26: 247-272.

Punjab Barani Commission. 1976. Report of the Punjab Barani Com-
mission. Government Punjab: Lahore.

R Development Core Team. 2011. R: a language and environment
for statistical computing. http://www.R-project.org (accessed 9 July
2013).

Revelle W. 2011. psych: Procedures for Personality and Psychologi-
cal Research Northwestern University, Evanston. http://personality-
project.org/r/psych.manual.pdf.

Reynolds RW, Smith TM. 1994. Improved global sea surface temper-
ature analyses. J. Clim. 7: 929-948.

Richman MB. 1986. Rotation of principal components. J. Climatol. 6:
293-335.

Richman MB. 1987. Rotation of principal components: a reply. J.
Climatol. 7: 511-520.

Saji NH, Goswami BN, Vinayachandran PN, Yamagata T. 1999.
A dipole mode in the tropical Indian Ocean. Nature 401:
360-363.

Saji NH, Yamagata T. 2003. Possible impacts of Indian Ocean Dipole
mode events on global climate. Climate Res. 25: 151—-169.

Schott FA, Xie SP, McCreary JP. 2009. Indian Ocean circulation and
climate variability. Rev. Geophys. 47: RG1002.

Smith TM, Reynolds RW, Peterson TC, Lawrimore J. 2008. Improve-
ments to NOAA'’s historical merged land-ocean surface temperature
analysis (1880-2006). J. Clim. 21: 2283-2296.

Stewart JI. 1991. Principals and performance of response farming. In
Climatic Risk in Crop Production: Models and Management for the
Semiarid Tropics and Subtropics, Muchow RC, Bellamy JA (eds).
CAB International: Wallingford; 361-382.

Stone RC, Meinke H. 2005. Operational seasonal forecasting of
crop performance. Philos. Trans. R. Soc. Ser. B: Biol. Sci. 360:
2109-2124.

Suleman S, Wood MK, Shah BH, Murray L. 1995. Development of
a rainwater harvesting system for increasing soil moisture in arid
rangelands of Pakistan. J. Arid Environ. 31: 471-481.

Terray P, Dominiak S. 2005. Indian Ocean sea surface temperature
and El Niflo-Southern Oscillation: a new perspective. J. Clim. 18:
1351-1368.

Ummenhofer CC, Gupta AS, Li Y, Taschetto AS, England MH.
2011. Multi-decadal modulation of the El Nifio — Indian monsoon
relationship by Indian Ocean variability. Environ. Res. Lett. 6: 1-8,
DOI: 10.1088/1748-9326/6/034006.

Weaver CP, Lempert RJ, Brown C, Hall JA, Revell D, Sarewitz
D. 2013. Improving the contribution of climate model information
to decision making: the value and demands of robust decision
frameworks. Wiley Interdiscipl. Rev.-Clim. Change 4: 39—-60.

Westra S, Brown C, Lall U, Koch I, Sharma A. 2010. Interpreting
variability in global SST data using independent component analysis
and principal component analysis. Int. J. Climatol. 30: 333—-346.

Westra S, Sharma A. 2010. An upper limit to seasonal rainfall
predictability? J. Clim. 23: 3332-3351.

Wilks DS. 2011. Statistical Methods in the Atmospheric Sciences.
Elsevier: Oxford.

Wood SN. 2003. Thin plate regression splines. J. R. Stat. Soc. Ser. B
Stat. Methodol. 65: 95—-114.

Wood SN. 2006. Generalized Additive Models: An Introduction with R.
Chapman and Hall/CRC: Boca Raton, FL.

Wood SN. 2008. Fast stable direct fitting and smoothness selection for
generalized additive models. J. R. Stat. Soc. Ser. B Stat. Methodol.
70: 495-518.

Zambrano-Bigiarini M. 2011. hydroGOF: Goodness-of-fit functions
for comparison of simulated and observed hydrological time series.
R package version 0.3-2 ed. http://CRAN.R-project.org/package=
hydroGOF.

Zhang R, Delworth TL. 2006. Impact of Atlantic multidecadal oscilla-
tions on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res.
Lett. 33: L17712.

Zhang Y, Wallace JM, Battisti DS. 1997. ENSO-like interdecadal
variability: 1900-1993. J. Clim. 10: 1004—1020.

Meteorol. Appl. 21: 431-443 (2014)



