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Abstract

Background: Recombination rates vary at the level of the species, population and individual. Now recognized as a
transient feature of the genome, recombination rates at a given locus can change markedly over time. Existing
inferential methods, predominantly based on linkage disequilibrium patterns, return a long-term average estimate
of past recombination rates. Such estimates can be misleading, but no analytical framework to infer recombination
rates that have changed over time is currently available.

Results: We apply coalescent modeling in conjunction with a suite of summary statistics to show that the
recombination history of a locus can be reconstructed from a time series of genetic samples. More usefully, we
describe a new method, based on n-tuple dataset subsampling, to infer past changes in recombination rate from
DNA sequences taken at a single time point. This subsampling strategy can correctly assign simulated loci to
constant, increasing and decreasing recombination models with an accuracy of 84%.

Conclusions: While providing an important stepping-stone to determining past recombination rates, n-tuple
subsampling still exhibits a moderate error rate. Theoretical limitations indicated by coalescent theory suggest that
highly accurate inference of past recombination rates will remain challenging. Nevertheless, we show for the first
time that reconstructing historic recombination rates is possible in principle.
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Background
Meiotic recombination, whereby DNA variants are shuf-
fled between homologous parental chromosomes, is a
fundamental process in the evolution of genetic diver-
sity. For many years poorly studied, the mechanisms and
effects of recombination are now increasingly well
understood [1]. We know that recombination rates are
both heritable [2] and variable among individuals [3-7].
In other words, recombination is a Darwinian evolution-
ary system [8,9].
Recent studies have demonstrated convincingly that

recombination rates at a given locus vary at the level of
the species, population and individual. Comparisons be-
tween the chimpanzee and human genomes show poor
correlation of both hotspot and background recombin-
ation rates at orthologous loci [10,11]. Similarly, recom-
bination rates vary between human populations [11], not

only at continental scales, but also between close geo-
graphical neighbors (e.g., French and Italians) [11]. Re-
combination rates even vary widely between individuals
drawn from the same population [3-7]. The picture now
emerging is one of an extremely dynamic recombination
landscape [10], with transient recombination peaks and
troughs across the human genome, overlaying the
better-known evolutionary variation in DNA substitu-
tion rates [12].
How changes in recombination rate are controlled is

less well understood [13]. At some loci, recombination
events are determined by nucleotide variation within
specific DNA sequence motifs (such as the degenerate
13-bp pattern recognized by PRDM9) [14,15]. These
cis-mediated recombination events often show evidence
of transmission distortion [16], where biased gene con-
version preferentially favors one allelic variant that can
rapidly reach fixation [17]. Related mechanisms may also
act as a selective force to reduce recombination around
functional genomic elements [18]. However, recombin-
ation rates at most loci seem to be mediated by trans
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factors [5], typically controlled by genes that coordinate
DNA-protein interactions [19,20], or more generally, by
regional chromatin remodeling [1,7]. These studies
suggest that trans-mediated recombination processes
dominate genome-scale recombination events and are
not obviously under the influence of natural selection.
Recombination is typically detected either directly by

gamete typing, or indirectly from linkage disequilibrium
(LD) patterns [1]. Gamete typing surveys large numbers
of recombination events within a single generation, and
therefore provides an accurate (albeit costly) estimate of
contemporary recombination rates. Conversely, statistical
analysis of linkage disequilibrium patterns counts re-
combination events that have accrued over multiple gen-
erations, and therefore returns a long-term average
estimate of historic recombination rates. Since recom-
bination rates can change through time, contemporary
and historic rate estimates need not agree. Regions of
high recombination, as predicted from linkage disequi-
librium, may be inactive when surveyed using gamete
typing [21], a discrepancy that indicates the extinction of
a previously high recombination region. Conversely,
gamete typing may reveal regions of high recombination
where none are suggested by linkage disequilibrium, thus
indicating the birth of new high recombination loci [22].
The main point is that recombination rates at a

genomic location can vary substantially through time.
Although this fact is now widely appreciated [16], the
manner in which recombination rates increase or de-
crease still remains completely unknown. Do changes in
recombination rate occur rapidly, perhaps due to point
mutations suddenly altering the action of the recombin-
ation machinery? Or are changes more gradual, occur-
ring as regional nucleotide diversity mutates slowly over
time? We currently lack any analytical framework to ad-
dress these sorts of questions. Here, we determine that a
suite of summary statistics can track changes in recom-
bination rate through time. We extract temporal infor-
mation about changing recombination rates, and
describe some of the theoretical limitations that con-
strain this endeavor. More importantly, we develop a
novel methodology based on n-tuple subsampling that
has sufficient statistical power to reconstruct the recom-
bination history of a genetic locus studied at a single time
point. This approach is intended as a proof-of-concept that
past changes in recombination rates can be reconstructed
from contemporary data, even if reconstructing historic
rates from empirical data remains challenging.

Results
Correlation and sensitivity of summary statistics
We first explored how different summary statistics
respond to recombination events. The number of segre-
gating sites S was used as a negative control because

mean S does not vary with the recombination rate. We
also assembled a suite of eight summary statistics that
were designed specifically to detect recombination
events – Rmin, rmmg, the number of haplotypes, haplo-
type diversity, Wall’s B and Q, Hudson’s C and ZnS.
These summaries likely recognize different aspects of re-
combination, although the relationships between them
have not been explored. Certainly none of these
summaries capture the entire recombination profile of a
genetic sample (i.e., they are not statistically sufficient).
We studied the correlation matrix between summary

statistics using an equal mix of datasets with linearly
increasing, decreasing and constant recombination rates.
A priori, we might expect that many of the summaries
detect similar aspects of the overall recombination
signal. Indeed, pairwise comparisons indicated that
nearly all the summaries were correlated, albeit to differ-
ent extents (r values range from 0 to 0.982, mean of
0.351) (Figure 1). The smallest correlations involved
rmmg, a conservative lower bound on the minimum
number of recombination events Rmin, which showed
little variation among datasets under the conditions
modeled here. None of the summary statistics were
perfectly correlated, thus emphasizing that multiple
summaries are needed to capture different aspects of the
recombination profile.
To determine how these summaries respond to differ-

ent recombination rates, we simulated genetic data
under a wide range of constant recombination values
(0–10 ρ/kb) (Figure 2). S is shown as a negative control
because its mean is invariant to the recombination rate
(Figure 2, upper right). Most summary statistics varied
nonlinearly across this linear range of recombination
values. It follows that the usefulness of any individual
summary may change with the underlying recombin-
ation rate, but in different ways. Therefore, a combin-
ation of some or all of these summaries may be more
sensitive for detecting different recombination rates than
any one of them alone.

Tracking changing recombination rates using time
series data
It is less obvious how summary statistics might covary
with recombination rates that change over time. To
explore this process, we generated coalescent simula-
tions where recombination rates were allowed to vary
over many generations. Genetic datasets were simulated
using coalescent software [23] modified to allow recom-
bination rates to change through time. We simulated
data for a human-like deme: 104 replicates of 10-kb
autosomal sequences were drawn from a constant sized
population (Ne = 104) [24-26] with a mutation rate, μ,
and average recombination rate, r, of 3.75 × 10-8 events/
bp/generation [27]. These rates were chosen to mimic
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regions of very strong recombination in real human
populations [11]. The recombination rate was either held
constant, or allowed to vary linearly, exponentially or
logistically through time for 104 generations (cf. [24,26]).
The total amount of recombination was constrained to
be identical for all models; only its distribution through
time was altered.
A representative example illustrating a logistic decline

in recombination rates towards the present is presented
in Figure 3. Corresponding plots for constant recombi-
nation, together with recombination rates increasing and
decreasing linearly, exponentially and logistically, are
presented in Additional file 1: Figure S1, Additional file 2:
Figure S2, Additional file 3: Figure S3, Additional file 4:
Figure S4, Additional file 5: Figure S5, Additional file 6:
Figure S6 and Additional file 7: Figure S7.
Most of the summary statistics tracked the changing

recombination profile, albeit with notable differences in
accuracy. The variance of many summaries altered with
the recombination rate, thus suggesting that different
summaries have greatest power to estimate recombin-
ation rates at different times. This reinforces the view
that using a combination of summary statistics should
maximize statistical power, although a simple linear
combination may not necessarily be optimal.

Note too that summary values typically lagged changes
in the recombination rate. Genetic variation observed in
the present was actually laid down in the (sometimes very
distant) past [28]. As recombination rates change, it takes
time before this change is reflected in the genetic record.
This lag effect is perhaps best illustrated in the plot show-
ing recombination rates increasing exponentially into the
past (Additional file 5: Figure S5). Although the recombin-
ation rate drops quickly, the summaries change far more
slowly. Even after the recombination rate falls near zero,
existing lineages still retain the signal of recombination
events that occurred further back in the past. Only as
these recombined lineages are lost through genetic drift is
the new low recombination rate finally reflected in the
summaries. This time lag places important constraints on
the resolution with which recombination rates that have
changed through time can be reconstructed.

Reconstructing past recombination rates from data taken
at a single time point
Tracking variable recombination rates using time series
data may be feasible for some fast evolving systems (e.g.,
exploring the loss of sexual competency in yeast), but it
is not practical for long-lived organisms like humans.
To explore whether past recombination rates can be

Figure 1 Correlations between recombination summary statistics. (Upper diagonal) Scatter plots show pairwise relationships among the
summary statistics. (Lower diagonal) Pie charts show the magnitude of the correlation with blue and red indicating positive and negative values
(e.g., Pearson’s r = −0.20 for Hudson’s C and ZnS). All non-zero correlations are statistically significant (P ≤ 0.05).
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Figure 2 Sensitivity of summary statistics to different constant recombination rates. Black lines show the mean (solid) and 95% confidence
intervals (dotted) of summary statistic values. The red line indicates different constant recombination rates (ρ per kb). Note that summary statistics
mostly vary nonlinearly with linear change in recombination rates.
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Figure 3 (See legend on next page.)
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reconstructed from genetic data taken at a single time
point, we developed a novel bootstrapping methodology
that we call n-tuple subsampling.
Mutations occur randomly through time. In any given

dataset, some polymorphisms will be old and most mod-
ern lineages will carry them. Others will be young, and
will therefore be found in only one or two individuals.
By determining whether recombination events affect
young or old polymorphisms, we can theoretically obtain
snapshots of recombination rates through time.
This concept is best shown graphically (Figure 4). Im-

agine we repeatedly subsample a group of four lineages (i.e.,
an n-tuple of four, or a ‘quartet’) from a given dataset.
These individuals may be closely related (Figure 4A), in
which case they contain information about recombination
rates in the recent past. Alternately, the individuals may be
only distantly related (Figure 4C), in which case they may
carry both young and old recombination events. By repeat-
edly resampling the dataset, the recombination rate at
different times can be inferred. We emphasize that n-tuple
subsampling has a natural confound. Young n-tuples carry
information about recent recombination rates, but old
quartets contain a mix of information about old and recent
recombination events. The statistical power of this
approach is therefore unclear and we explore this issue in
detail below.
The use of resampling methods, such as the bootstrap

and jackknife [29], to estimate sampling distributions is
widespread in statistics in general, but especially so in
evolutionary biology [30]. More recently, interest has
grown in so-called ensemble methods (also referred to
as ‘bagging and boosting’) that seek to improve overall

accuracy by combining the predictions of many weak
classifiers, each of which is shown a slightly perturbed
version of the data [31]. The following implementation
of n-tuple subsampling differs from the ensemble
method as we use only a single classifier. However, it is
a related concept in that the classifier is shown many
subsets of the data, which in our case is used to de-
velop combinations of summary statistics that cap-
ture information about recombination rates over
different time periods.
To ascertain whether n-tuple subsampling has sufficient

power to estimate past recombination rates, we created a
test system where datasets derived from only one of three
recombination models: recombination that is constant,
linearly increasing or linearly decreasing through time
(104 datasets each) (Additional file 1: Figure S1, Additional
file 2: Figure S2 and Additional file 3: Figure S3). 103 quar-
tets were generated for each dataset, and the suite of sum-
mary statistics was calculated for each subsample. The
mean, variance and maximum of these summary statistic
distributions were recorded.
Although powerful Bayesian and maximum likelihood

methods have been developed to perform inference on
such datasets [32,33], these approaches are extremely
computationally expensive (i.e., tens to thousands of
CPU hours to analyze a single dataset) [25,26,34,35]. As
we needed to run power analyses for thousands of test
cases, a more pragmatic analytical framework was neces-
sarily adopted (cf. [36]). We instead employed discrimin-
ant analysis [37], a routine statistical technique for data
classification, with jackknife cross-validation to evaluate
the accuracy of the classifier. Discriminant analysis infers
the combination of weighted summaries (i.e., the optimal
transform) that best distinguishes the recombination
models. In jackknife cross-validation, model labels were
removed, and each blinded dataset was instead assigned
to a recombination model using the discriminant func-
tion. Assignment accuracy was calculated by determining
the proportion of datasets that were assigned to the cor-
rect recombination model (i.e., datasets derived under a
constant recombination model should be assigned back to
the constant model). Both linear discriminant analysis
(LDA) and quadratic discriminant analysis (QDA) were
tested. These related methods respond differently to un-
equal covariance among models, as well as different sizes
of sample and training sets [38]. LDA proved to return
more accurate classifications in this instance.

(See figure on previous page.)
Figure 3 Response of summary statistics to recombination rates changing logistically over time. Black lines show mean (solid) and 95%
confidence intervals (dotted) of summary statistic values. The red line indicates how the recombination rate changes over time (ρ per kb). Note
the lag between changes in the recombination rate and changes in summary statistic values. Compare responses for constant recombination,
as well as linearly, exponentially and logistically increasing and decreasing recombination rates, in Additional file 1: Figure S1, Additional file 2: Figure S2,
Additional file 3: Figure S3, Additional file 4: Figure S4, Additional file 5: Figure S5, Additional file 6: Figure S6 and Additional file 7: Figure S7.

Figure 4 Variable ages of quartets. Randomly selected quartets
(black lines) capture information about (A) young, (B) medium and
(C) old time depths. For visual clarity, quartets are shown on a non-
recombining genealogy, but the principle holds equally for ancestral
recombination graphs.
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LDA was performed on all datasets from all three recom-
bination models. Each dataset was sequentially excluded,
the optimal transform inferred by LDA was applied, and
each dataset was reassigned back to a recombination
model. As we have three models, assignment rates of one-
third are expected just by chance. Assignment rates ap-
proaching one indicate increasingly accurate assignments.
Table 1 shows observed assignment rates. Because

the mean of S is invariant to recombination (Figure 2,
upper right), assignments using S alone are presented as a
negative control. As expected, the mean, variance or max-
imum number of segregating sites performed no better
than chance. The best individual summary, the mean num-
ber of haplotypes, was much more accurate (60%). The best
result was obtained by combining the mean, variance and
maximum values of all summaries (68%), although 32% of
datasets were still placed incorrectly.

Scaling subsamples by n-tuple Age
These assignments were obtained using information
about the amount of recombination in each n-tuple, but

not its age. When recombination rates change over time,
the amount of recombination and the age of each n-
tuple should be correlated. We would therefore prefer to
use summaries that capture information about both
factors simultaneously. To develop such summaries, we
scaled the recombination summaries by S, which is a
robust proxy for n-tuple age (Additional file 8). Pairwise
correlations indicated that most scaled summaries are
positively correlated (r values from 0.055 to 1, mean of
0.436) (Additional file 9: Figure S9). The cross-validation
test was repeated, and surprisingly, the scaled summaries
often performed more poorly than their unscaled
versions. Nevertheless, using the mean, variance and
maximum values of both the scaled and unscaled sum-
maries returned the best overall result (71% correct as-
signment). This suggests two key conclusions. First,
genetic datasets do record retrievable information about
past changes in recombination rate. Second, scaled and
unscaled recombination summaries do capture very
slightly different information from the recombination
profile.
Coalescent theory tells us that the power to detect re-

combination events should decline exponentially into
the past (see details later). Therefore, the linearly in-
creasing and decreasing models are mostly dominated
by low and high recombination rates, respectively, while
the constant model is intermediate. We were concerned
that our cross-validation test might simply be detecting
low, medium and high recombination rates rather than
distinguishing constant recombination from recombin-
ation rates that change through time. We therefore re-
peated the cross-validation test with four recombination
models: constant high, constant low, linearly increasing
and linearly decreasing recombination rates. Assignment
accuracy was only slightly lower than for the three-
model test (64% vs 71%). We conclude that n-tuple sub-
sampling can distinguish changing recombination from
constant recombination, as well as rates that increase or
decrease through time.

Effect of n-tuple size on classification accuracy
Thus far, n-tuple subsampling has been performed using
just four sequences (a quartet). Quartets have found
many uses in phylogenetics because this is the minimum
number required for unrooted trees to possess distin-
guishable topologies. However, quartets may not be opti-
mal for reconstructing past recombination rates within a
population. We therefore varied the subsample size from
4 to the total sample size, 4 ≤ n ≤ 100 (Figure 5). The
three-model system was used, and the optimal LDA
transform was recalculated for each value of n.
As before, assignment rates started at 71% for quar-

tets, initially improved with increasing n, before declin-
ing again as the subsample size approached the total

Table 1 Assignment accuracy using linear discriminant
analysis on quartets

Mean Variance Maximum Combined

S 0.36 0.32 0.36

Rmin 0.43 0.45 0.38

rmmg 0.43 0.43 0.45

nHaps 0.60 0.59 0.33

HapDiv 0.59 0.57 0.33

Wall’s B 0.41 0.47 0.34

Wall’s Q 0.40 0.37 0.33

Hudson’s C 0.43 0.42 0.33

ZnS 0.48 0.34 0.48

All unscaled 0.66 0.65 0.52 0.68

S x Rmin 0.36 0.36 0.34

S x rmmg 0.43 0.41 0.45

S x nHaps 0.32 0.36 0.36

S x HapDiv 0.32 0.36 0.36

S x Wall’s B 0.37 0.33 0.31

S x Wall’s Q 0.37 0.34 0.32

S x Hudson’s C 0.42 0.37 0.37

S x ZnS 0.42 0.34 0.43

All scaled 0.64 0.59 0.53 0.67

All combined 0.71

Proportions of datasets assigned correctly to constant, linearly increasing and
linearly decreasing recombination models using jackknife cross-validation.
Values of one-third indicate assignments no better than chance; values
approaching one indicate improving assignment rates. 104 datasets consisting
of 10-kb of sequence for 100 individuals were generated under each model.
Assignments were made using the mean, variance and maximum value of
summary statistics for 103 quartets for each dataset.
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sample size. The best assignment accuracy (84%) was
obtained with an n-tuple of size 77. While subsampling
a large proportion of the dataset seemed to be most
informative under this model system, optimal subsample
size appears to vary from dataset to dataset in practice.
When recombination rates are low, recombination
events are recorded by few lineages and subsampling a
greater proportion of the dataset improves detection of
these rare occurrences. However, we can only detect
recombination rates from their effects on DNA polymor-
phisms, so recombination events will often pass un-
detected if nucleotide diversity is low. Both low
recombination rates and low genetic diversity therefore
favor larger subsamples, while smaller subsamples are
preferable for highly diverse or recombination-rich re-
gions. Apart from these general guidelines, it seems that
optimal subsample sizes must be determined empirically
for each dataset.
Assignment accuracy was maximized at 84% across all

analyses performed here. Although considerably better
than chance, the error rate is still moderate. Because
power levels are relatively modest, reconstructing historic

recombination rates for real genomic loci is expected to re-
main difficult even when n-tuple subsampling is employed.
The highly constrained testing environment used here (e.g.,
a simple and perfectly known demography) emphasizes this
point. In practice, complex demographic processes can
produce patterns of genetic variation that might otherwise
be attributed to processes of recombination [39]. Still, n-
tuple subsampling is directly amenable to statistical
methods that infer model likelihoods by simulating data
across a parameter space (e.g., approximate Bayesian com-
putation [32,33]). Like n-tuple subsampling, these methods
typically employ a suite of summary statistics, and because
they are based on Monte Carlo simulation, they can readily
be modified to accommodation the novel bootstrapping
process that we propose.

Discussion
We show that information about past changes in recom-
bination rate can be extracted from genomic data using
a suite of summary statistics coupled with lineage
subsampling to provide proxy information about recom-
bination events at different time depths. Simulated
datasets can be correctly assigned to different models of
historic recombination with high accuracy (84%).
Why is the power of n-tuple subsampling not greater?

Coalescent theory suggests several possible reasons. The
coalescent describes how pairs of lineages sequentially
share a common parent and merge (“coalesce”) until
only one ancestral lineage remains. This process is
analogous to genetic drift, where lineages are lost by
chance over time. The key point is that individuals
existing today are represented by fewer and fewer ances-
tral lineages moving backwards into the past (Figure 6).
Put more formally, the coalescent times Ti of m sam-

pled lineages are exponentially distributed with mean
and variance [40-42].

E Ti½ � ¼ 2
i i � 1ð Þ for i ¼ 2; . . . ;m ð1Þ

Var Ti½ � ¼ 2
i i � 1ð Þ

� �2

ð2Þ

In the sampling limit m → ∞, this exponential process
implies that coalescence of the final two lineages (T2)
takes, on average, half the time to the most recent com-
mon ancestor of the sampled dataset (Figure 6A). While
these equations only hold for constant sized populations,
the general principle is true for most demographic sce-
narios of relevance to human history. Many lineages rec-
ord the recent history of a locus, but older time depths
are represented by fewer and fewer lineages that still
exist today. Indeed, only two lineages will be present for
approximately half the total age of the tree. These

Figure 5 Effect of subsample (n-tuple) size on assignment
accuracy. Subsample sizes range from 4 to the sample size (n = 100).
The curve shows a local regression through the data points.
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rootward branches are expected to provide most of the
signal for changes in historic recombination rates.
However, recombination events from distant times can
only be detected in the modern dataset if they directly
affect the few old lineages that survive to the present
(Figure 6B). Information about historic recombination
events therefore declines exponentially into the past.
Further, there is a high probability of observing these

two deepest branches, even with very small subsample
sizes [43,44].

Pðroot nj Þ ¼ n � 1
n þ 1

ð3Þ

Given four randomly chosen subsamples (i.e., a quar-
tet), P(root | n = 4) = 3/5 = 0.60. Even with just four quar-
tets, the probability that the oldest two branches are not
observed is less than 5%. This equation gives the average
expectation across all trees, but the general principle
holds even for highly unbalanced trees. At the RRM2P4
locus, which putatively introgressed from archaic
hominins into modern humans, 232 individuals are ob-
served on one side of the tree’s basal split, while only 21
are found on the other [35]. The probability of observing
the root with a single quartet is still high, P(root | n = 4)
= 0.29. Importantly, all n-tuples that sample these two
oldest branches return exactly the same information
about these oldest recombination events (Figure 4C). It
follows that simply observing a larger number of n-
tuples is not sufficient to obtain more information about
recombination in the oldest half of the ancestral recom-
bination graph. Conversely, young quartets offer many
possible sampling permutations (Figure 4A), and each of
these can potentially provide independent information
about recent recombination events. All datasets therefore

record more information about recent recombination rates,
while power to detect old recombination events declines
exponentially backwards into the past.

Conclusions
A natural limit places important constraints on our abil-
ity to reconstruct past changes in recombination rates. If
the change occurred recently, sufficient extant lineages
may still record the event, and n-tuple subsampling is
likely to be an informative technique. Moving further in
time from the change, the power to reconstruct the re-
combination profile decreases exponentially. If the
change occurs beyond the coalescent (i.e., the most re-
cent common ancestor of the dataset), it obviously can-
not be reconstructed at all. Extremely detailed changes
in past recombination profiles, particularly for more dis-
tant events or complex genomic loci, will remain chal-
lenging. However, we show that n-tuple subsampling
does have sufficient power to reconstruct some aspects
of past changes in recombination rates, especially for
relatively recent events.

Methods
Simulations
The coalescent simulation software ms [23] was modi-
fied to allow recombination rates to change through
time. The C source code of the resulting program,
ms_recomb, is available from the authors on request.
Simulations focus on the most common trans-mediated
recombination events, and we therefore model changes
in recombination without selection (i.e., no transmission
distortion).
Genetic datasets were simulated using Kingman’s n-

coalescent [40,41]. To ground the simulations in a realis-
tic framework, model parameters were chosen to reflect

Figure 6 Relationship between time and number of lineages under the coalescent. (A) Expected coalescent times for 2–5 lineages in units
of N generations for a haploid locus (2 N generations for autosomal loci). (B) Representative coalescent genealogy. Note that many lineages exist
to record events in the recent past, while few lineages remain to represent older time points. Only recombination involving an extant lineage
(shaded points) can be observed today. The probability that recombination involves an extant lineage is high in the present, where many shaded
points exist, but declines exponentially into the past, where shaded points are scarce.
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biologically meaningful values for humans. We pur-
posely simulated a generic human-like deme rather than
any specific population. Simulations were generated for
a single Wright-Fisher deme with a constant effective
population size (Ne = 104) (i.e., the estimated global ef-
fective population size of modern humans) [24-26]. A
sample of 10-kb autosomal sequences was simulated for
100 individuals with a mutation rate, μ, and average re-
combination rate, r, of 3.75 × 10-8 events/bp/generation
[27]. Unless otherwise noted, this process was iterated
104 times for each model.
The recombination rate was either held constant, or

allowed to vary linearly, exponentially or logistically
through time for 104 generations (cf.[24,26]). Linear
rates were incremented by the reciprocal of the gener-
ation units per generation, exponential rates were fitted
to a curve with λ = 5 × 10-4, and logistic rates were fitted
to a curve with K = 100, N = 1 and r = 9 × 10-4. (Note
that these curves are for exploratory purposes only. They
are not intended to represent real rates of change in hu-
man populations). The total amount of recombination
was constrained so as to be identical for all models, but
was apportioned through time according to the constant,
linear, exponential and logistic distributions described
above. Overall population recombination rates (i.e., ρ =
4Ner = 15) were chosen to mimic regions of very strong
recombination in real human groups [11]. Low and high
constant rates were defined as 15% and 85% of the max-
imum rate under the corresponding linear models.
To infer past recombination rates, samples were taken

at a single time point and surveyed using n-tuple sub-
sampling (see main text for details). To determine how
summary statistics respond to changing recombination
rates, variation in summary statistics was tracked over a
time span of 104 generations by taking 104 independent
coalescent simulations at each of 500 20-generation
intervals.

Summary statistics
Summary statistics were calculated using functions from
the libsequence library [45]. The C++ source code of the
resulting program, msstats_recomb, is available from the
authors on request. The number of segregating sites, S,
controls for the population mutation rate θ (= 4Neμ) and
summarizes the total length of the genealogy [46]. A
suite of eight additional summary statistics was
employed to capture different aspects of the recombin-
ation profile: Rmin, the minimum number of recombin-
ation events calculated from observed four-gamete
violations [47]; rmmg, a conservative lower bound on
Rmin proposed by Myers and Griffiths (equation four in
[48]); nHaps, the number of observed unique sequence
haplotypes; HapDiv, the haplotype diversity, expected
heterozygosity, or probability that two sequences chosen

randomly from the sample are different [49]; Wall’s B
and Q, variant estimators of the number of congruent
polymorphic sites (i.e., segregating sites in complete link-
age disequilibrium) [50]; Hudson’s C, an estimator of the
population recombination rate ρ (= 4Ner) estimated
from the variance of pairwise sequence differences [51];
and ZnS, the mean pairwise r2 estimate of linkage dis-
equilibrium across all polymorphic sites [52].

Statistics
Correlations between scaled and unscaled summary sta-
tistics, and discriminant analyses, were calculated using
the statistical software R [53]. Local regressions were
performed using a polynomial of degree 2, a smoothed-
particle hydrodynamics (SPH) kernel, and a 50% nearest
neighbor bandwidth with a 10% constant component.
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