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Abstract

Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the
relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects.
We propose a ‘‘candidate interactome’’ (i.e. a group of genes whose products are known to physically interact with
environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple
sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge,
may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis
pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-
Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator,
vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open
reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P
values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide
association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control
Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology.
However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the
human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological
terms.
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Introduction

As in other multifactorial diseases, genome-wide association

studies (GWAS) are providing important data about disease-

associated loci in multiple sclerosis (MS) [1]. In parallel, sero-

epidemiological studies are reinforcing the evidence that nonher-

itable factors such as Epstein-Barr virus (EBV) and vitamin D are

associated with disease pathogenesis [2].

However, the effect size of the gene variants identified so far in

MS appears small. It is therefore important (but difficult: Sawcer

and Wason, 2012) [3] to establish if and in which cases (including

those gene variants with small but measurable effect size that do

not reach the significance threshold of GWAS) the interaction with

nonheritable factors may help understand their true impact on

disease pathogenesis [4]. Furthermore, as far as the sero-

epidemiological associations are concerned, their causal relevance

and underlying pathogenetic mechanisms become clearer if

interpreted in the light of genetic data.

As an attempt to consider, beyond the statistical paradigms of

GWAS analysis, which gene-environment interactions may

associate with the development of MS, we performed an

interrogation of GWAS data [1] through a ‘‘candidate inter-

actome’’ approach, investigating statistical enrichment of associ-

ations in genes whose products ‘‘interact’’ with putative environ-

mental risk factors in MS.

We elected to center the analysis on viral interactomes, based on

the classical hypothesis of a viral etiology of MS. Importantly, we

examined only direct interactions between viral and human

proteins as it has recently been shown that these are the

interactions that are more likely to be of primary importance for

the phenotypic impact of a virus in ‘‘virally implicated diseases’’

[5]. The chosen interactomes reflect the compromise between

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e63300



informative size and potential relevance for MS. In detail, EBV

was chosen as main association to be verified against phylogenet-

ically related or unrelated viruses. Given the profound influence of

EBV on the immune response, and the preponderance of

(auto)immune-mediated mechanisms in the pathogenesis of the

disease, we added two interactomes of immunological relevance,

human innate immunity interactome for type I interferon (hu-IFN)

and autoimmune regulator (AIRE). Finally, we included the

vitamin D receptor (VDR) and the aryl hydrocarbon receptor

(AHR) interactomes to evaluate, on the same grounds, also part of

the molecular interactions that compose other established or

emerging ‘‘environmental’’ associations.

Methods

Seven interactomes were obtained from the literature: EBV [6],

Human Immunodeficiency virus (HIV) [7], Hepatitis C virus

(HCV) [8], AIRE [9], hu-IFN [10], Influenza A virus (H1N1) [11],

Virus Open Reading Frame (VIRORF) [12]. Four interactomes

were manually curated: Human Herpesvirus 8 (HHV8), Cyto-

megalovirus (CMV), JC virus (JCV), Hepatitis B virus (HBV).

VDR and AHR interactomes were extracted from BIOGRID

(http: //thebiogrid.org) [13].

As reference to gather gene and single nucleotide polymorphism

(SNP) details from their HUGO Gene Nomenclature Committee

(HGNC) Ids and rsids, we employed a local copy of the Ensembl

Human databases (version 66, databases core and variation,

including SNPs coming from the 1000 Genome project); the

annotation adopted for the whole analysis was GRCh37-p6, that

includes the release 6 patches (Genome Reference Consortium:

human assembly data - GRCh37.p6 - Genome Assembly. http: //

www.ncbi.nlm.nih.gov/genome/assembly/304538/).

The genotypic p-values of association for each tested SNP were

obtained from the International Multiple Sclerosis Genetics

Consortium & Wellcome Trust Case Control Consortium,2 study.

All SNPs which did not pass quality checks in the International

Multiple Sclerosis Genetics Consortium & the Wellcome Trust

Case Control Consortium,2 study were filtered out from the

original data. We used ALIGATOR [14,15] to evaluate how

single genes get summed to provide total contribution of candidate

interactomes (Table S1). The idea behind ALIGATOR’s strategy

is to evaluate gene category significance by means of an empirical

approach, comparing each interactome with the null hypothesis,

built using random permutations of the data. Such method begins

its analyses by evaluating the Gene Ontology (GO) category

association in each interactome provided: (i) each SNP with a p-

value stronger than the P-CUT parameter is associated to the gene

within 20 kb; then the most representative SNP for each gene is

selected; (ii) LD filter of SNPs that have an r2#0.2 and those that

are farther than 1000 kb; (iii) count the number of genes

significant in each GO category. This is the real observed data.

A non parametric bootstrap approach was used to generate a

null hypothesis as follows: (i) build 5000 random interactomes (of

the same size of the one under analysis, this procedure is repeated

for each interactome); (ii) obtain category-specific p-values by

comparing each random interactome with the remaining 4999

built; (iii) elect one of the interactomes in (i) as simulated observed

data; (iv) randomly sample interactomes in (i) to generate category-

specific p-values; (v) repeat (iv) to simulate 1000 simulated studies.

The GO category association distribution in the real observed data

is then compared with the null hypothesis: (i) generate an expected

number of significant genes in each category, using the simulated

studies; (ii) compare the number of significant categories in the real

observed data with (i). ALIGATOR parameters that we used are

those of its reference paper [14]. p-value cut-off was taken at 0.05,

only the SNPs with marginal p-value less than this cut-off were

employed (p-value cut-offs were also taken at 0.005 and 0.03 for

the re-analysis of interactomes that resulted associated at 0.05, see

results). Furthermore, to limit the uncertainties introduced by

combined SNP effects in the MHC extended region (that is the

haplotype set with the strongest signal in our analysis), we

computed two different statistical evaluations for each interac-

tome, one including and the other one excluding SNPs coming

from such region (we considered as belonging to the extended

MHC region all those SNPs that participate in at least one of the

following haplotypes: HSCHR6_MHC_APD,

HSCHR6_MHC_COX, HSCHR6_MHC_DBB,

HSCHR6_MHC_MANN, HSCHR6_MHC_MCF,

HSCHR6_MHC_QBL, HSCHR6_MHC_SSTO according to

GRC data). In both cases we used Ensembl API [16] and BioPerl

[17] (version 1.2.3) to gather all SNP information, haplotype

participation, genes position and size [18]; such annotated

information was then fed into ALIGATOR together with the

interactomes.

Ingenuity Pathway Analysis (IPA) was employed twice: (i) before

the ALIGATOR statistics, to characterize the composition of our

interactomes (Table S2), and (ii) on the genes with nominally

significant evidence of association [1] that ALIGATOR took as

representative of each interactome-SNP relation (Table S3). In

both cases we performed the IPA-’’core analysis’’, and we

restricted the settings to show only molecular and functional

associations. Afterwards, we used IPA-’’comparative analysis’’ to

produce the p-value of association between each functional class

and all our interactomes. IPA knowledge base (ie, the input data

used by IPA) was set to the following criteria in every analyses:

consider only molecules and/or relationships where the species in

object was human (or it was a chemical), and the datum was

experimentally observed. Since IPA-’’comparative analysis’’ pro-

vides p-value ranges associated to functional classes, we took as

reference the value used by IPA to fill its reports, namely the best

p-value for that class.

Results

We performed a ‘‘candidate interactome’’ (i.e. a group of genes

whose products are known to physically interact with environ-

mental factors that may be relevant for disease pathogenesis)

analysis of genome-wide association data in multiple sclerosis.

We obtained 13 interactomes, 7 from the literature (as such) and

6 by manually selecting those interactions that were reported by

two independent sources or were confirmed by the same source

with distinct experimental approaches. In all cases we considered

only physical-direct interactions (Table S2,Table 1).

Preliminarily to the enrichment of association analysis, we used

IPA to obtain a sense of the cellular signaling pathways that are

targeted by each interactome. A classification for molecular and

cellular functions showed a comparable distribution of compo-

nents in most interactomes except for VDR, HBV, VIRORF and

hu-IFN where a relative enrichment of some functional pathways

(cell signaling, cellular growth and proliferation, cellular develop-

ment, cell cycle, cell death and survival, protein synthesis, RNA

post-transcriptional modification, gene expression) was present

(Figure 1).

We investigated statistical enrichment of associations within

each one of the above interactomes (Table 1). The analyses were

performed with and without considering SNPs falling in the MHC

extended region. In both cases the interactomes of EBV, HIV and

HBV reached significance. To verify the sensitivity of our results

A ‘‘Candidate-Interactome’’ Analysis in MS
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with respect to a choice (SNPs p-value cut-off at 0.05) that is not

obvious based on the literature published so far, we evaluated

different cut-offs (p,0.005 and p,0.03) on the three interactomes

that were MS-associated at p,0.05. These analyses supported the

consistency of the results (Table S4).

We then performed the same IPA classification as in Figure 1

(Figure 2) on the MS-associated genes within the EBV, HIV and

HBV interactomes (Table S3). The aim was to verify whether the

associations emerging from the three interactomes implied new

and MS-specific perturbations and whether these perturbations

are virus-specific or shared by the three pathogens. The

comparison between pre- and post-match distribution of the

functional classes (Figure 3) showed that the MS-associated

interactomes did not reflect a clear cut involvement of specific

pathways though, in the case of EBV, an enrichment of some

biological functions (cellular function and maintenance, cell

morphology, cellular assembly and organization, energy produc-

tion) was present. On the other hand the most frequent changes

for HBV and HIV could be in accord with the post-match

reduction of the interactome sizes.

Discussion

Of the 13 interactomes, 3 show a statistical enrichment of

associations. In line with the epidemiological and immunological

literature, the EBV interactome is among these. The lack of

significant associations with the hu-IFN and AIRE interactomes

suggests, though does not exclude, that the result is not an effect of

the immunological connotation of the EBV interactome. The

absence of associations with the interactomes of phylogenetically

related viruses (CMV and HHV8, both herpesviruses with the

latter that shares the same site of latency as EBV and belongs to

the same subfamily of gamma-herpesviridae) reinforces the

specificity of the EBV result. The fact that a portion of the

genetic predisposition to MS may be attributable to variants in

genes that interact with EBV may be complementary to another

our finding showing that EBV genomic variants significantly

associate with MS (unpublished data): the two results suggest a

model of genetic jigsaw puzzle, whereby both host and virus

polymorphisms affect MS susceptibility and, through complex

epistatic interactions, eventually lead to disease development.

The associations with the HBV and HIV interactomes were

unexpected. Overall, epidemiological data do not support a role of

these viruses in the pathogenesis of MS though some controversy

still holds concerning the safety of HBV vaccination [19–23].

Interestingly, Gregory et al. (2012) [24] demonstrated that in the

TNFRSF1A gene, which is part of the HBV interactome, the MS-

associated variant directs increased expression of a soluble tumor

necrosis factor receptor 1.

Concerning HIV, the lack of epidemiological association seems

more established. However, demyelination is a feature of HIV

encephalomyelopathy [25] and cases of difficult differential

diagnoses or association between the two conditions are described

in the literature [26,27]. All this considered, it might not be

surprising that some molecular interactions that take place

between HIV and host may predispose to demyelination. Other

viruses, sharing homology with HIV may possess better parapher-

nalia and be more prone to cause MS. The HERV-W family has

long been associated with MS [28] and HERV-W/Env, whose

expression is associated with MS [29], is able to complement an

env-defective HIV strain [30] suggesting a certain degree of

functional kinship.

Apart from any conjectures about the data on HBV and HIV

interactomes, it remains true, as recently demonstrated by

Pichlmair and colleagues (2012) [12], that viruses use unique but

also common strategies to perturb the human molecular network.

Our pathway analyses do not suggest, in fact, any specific cellular

signaling target for the three viruses in MS, perhaps with some

exceptions as far as the EBV interactome is concerned. Though

preliminary, this acquisition may be in accord with the largely

accepted view that, alongside the risk associated with EBV

infection, there can be a more general risk of developing MS

linked to a variety of other infections [31,32].

Table 1. Statistical enrichment of MS-associated genes within each interactome.

Interactome Size Source p-value with MHC p-value without MHC

VIRORF 579 Experimental data [12] 0.0610 0.0632

HIV 446 Experimental data [7] 0.0026 0.0034

HCV 202 Experimental data [8] 0.4244 0.4424

hu-IFN 113 Experimental data [10] 0.2176 0.1838

EBV 110 Experimental data [6] 0.0140 0.0446

H1N1 87 Experimental data [11] 0.9572 0.9648

AIRE 45 Experimental data [9] 0.4322 0.4012

HBV 85 manually curated 0.0124 0.0236

CMV 41 manually curated 0.1156 0.3322

HHV8 40 manually curated 0.1132 0.0920

JCV 10 manually curated 1.0000 1.0000

VDR 78 BioGRID 0.1848 0.1802

AHR 30 BioGRID 0.8752 0.8522

ALIGATOR-obtained interactome p-values (overall contribution given by SNP p-values to each interactome, with and without SNPs falling in the MHC region). The SNPs
with marginal p-value less than 0.05 were employed.
MS=multiple sclerosis; ALIGATOR =Association LIst Go AnnoTatOR; SNP= single nucleotide polymorphism; MHC=Major histocompatibility complex;
BioGRID = Biological General Repository for Interaction Datasets; VIRORF= Virus Open Reading Frame; HIV =Human Immunodeficiency virus; HCV=Hepatitis C virus; hu-
IFN = human innate immunity interactome for type I interferon; EBV = Epstein Barr virus; H1N1 = Influenza A virus; HBV=Hepatitis B virus; VDR = vitamin D receptor;
AIRE = autoimmune regulator; CMV=Cytomegalovirus; HHV8 =Human Herpesvirus 8; JCV= JC virus; AHR =Aryl hydrocarbon receptor.
doi:10.1371/journal.pone.0063300.t001
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The VDR interactome does not show significant enrichment of

associations. The result does by no means diminishes the

importance of the epidemiological association between vitamin

D and MS: its causal relevance is already supported by data that

are starting to explain the molecular basis of this association,

upstream [33–35,1] and downstream the interactions between the

VDR and its protein cofactors [36,37].

Current approaches for gene set analysis are in their early stage

of development and there are still potential sources of bias or

discrepancy among different methods, including those used in our

study. As the reproducibility of the techniques increases, and new

facilities [38] and methods become available to identify interac-

tions that still escape detection, new lists will become available for

matching with GWAS data. In parallel, also the assessment of

human genetic variation will become more comprehensive [39].

Figure 1. Heatmap from Ingenuity Pathway Analysis of each interactome. Statistical significance (in –log[p-value] notation, where p,0.05
corresponds to a –log[p].1.3) of the functional components in each interactome, as obtained through a Comparative Core-Analysis in IPA (Ingenuity
Pathway Analysis). The functional components identified at the molecular and cellular level are presented row-wise (right); the interactomes are
presented column-wise (bottom). Each cell in position (i,j) contains a number that represents in 2log notation the strength of the association
between the functional class i and the interactome j; this information is also color-matched with a color gradient that moves from white
(2log[p] = 0.0, p = 1) to crimson (2log[p] = 50, p,10250). Two hierarchical cluster analyses were employed to group functional classes that share
similar patterns of associations across all interactomes (left-side clustering), and to group interactomes that share similar functional compositions
(top-chart clustering).
doi:10.1371/journal.pone.0063300.g001
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Hence, the ‘‘candidate interactome’’ approach may become an

increasingly meaningful strategy to interpret genetic data in the

light of acquisitions from epidemiology and pathophysiology.

Notably, this approach appears to be complementary to other

studies, which look for statistical enrichment of associations in an

unbiased way, and may disclose unexpected pathways in MS

susceptibility [40].

Figure 2. Heatmap from Ingenuity Pathway Analysis of MS-associated interactomes. Statistical significance (in –log[p-value] notation,
where p,0.05 corresponds to a –log[p].1.3) of the functional components in each one of the three MS-associated interactomes (Table S3)
computed by ALIGATOR (Association LIst Go AnnoTatOR) first flow process. These p-values were obtained through a Comparative Core-Analysis in
IPA (Ingenuity Pathway Analysis). The functional components identified at the molecular and cellular level are presented row-wise; the interactome
sub-sets are presented column-wise. Each cell in position (i,j) contains a number that represents in 2log notation the strength of the association
between the functional class i and the interactome; this information is also color-matched with a color gradient that moves from white (2log[p] = 0.0,
p = 1) to crimson (2log[p] = 14, p,10214). Two hierarchical cluster analyses were employed to group functional classes that share similar patterns of
associations across all interactome sub-sets (left-side clustering), and to group interactome sub-sets that share similar functional compositions (top-
chart clustering).
doi:10.1371/journal.pone.0063300.g002
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At present, our results support a causal role of the interaction

between EBV and the products of MS-associated gene variants.

Other viruses may be involved, through common and unique

mechanisms of molecular perturbation.

Supporting Information

Table S1 ALIGATOR settings.

(XLS)

Table S2 Composition of all the interactomes. Lists of

genes of each interactome as obtained from the literature.

VIRORF= Virus Open Reading Frame; HIV= Human

Immunodeficiency virus; HCV= Hepatitis C virus; hu-IFN=

human innate immunity interactome for type I interferon;

EBV=Epstein Barr virus; H1N1= Influenza A virus; HBV=

Hepatitis B virus; VDR= vitamin D receptor; AIRE= autoim-

mune regulator; CMV= Cytomegalovirus; HHV8= Human

Herpesvirus 8; JCV= JC virus; AHR= Aryl hydrocarbon

receptor.

(DOC)

Table S3 List of genes within molecular and functional

classes in the three MS-associated interactomes (p-value

cut-off,0.05). MS= multiple sclerosis; HIV= Human Immu-

nodeficiency virus; EBV= Epstein Barr virus; HBV= Hepatitis B

virus; MHC= Major histocompatibility complex

(XLS)

Table S4 Statistical enrichment of MS-associated inter-

actomes (p-value cut-off,0.005; 0.03). ALIGATOR-ob-

tained interactome p-values (overall contribution given by SNP p-

values to each interactome, with and without SNPs falling in the

MHC region). MS= multiple sclerosis; ALIGATOR=Associa-

Figure 3. Histograms of functional class distribution of MS-associated interactomes. The histograms show the strength of the association
between each IPA functional class and the 3 MS-associated interactomes (EBV [A], HIV [B] and HBV [C]). For each functional class 3 values were
derived according to its distribution before (Figure 1) and after (Figure 2, with and without MHC [Major histocompatibility complex]) the ALIGATOR
(Association LIst Go AnnoTatOR) statistical analysis of association.
doi:10.1371/journal.pone.0063300.g003
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tion LIst Go AnnoTatOR; SNP= single nucleotide polymorphism;

MHC=Major histocompatibility complex; HIV= Human Im-

munodeficiency virus; EBV=Epstein Barr virus; HBV= Hepa-

titis B virus.

(DOC)
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her helpful contribution to obtain the interactomes.

Themembers of the International Multiple Sclerosis Genetics

Consortium (IMSGC) and Wellcome Trust Case Control

Consortium,2 (WTCCC2) are: Stephen Sawcer,1 Garrett Hellenthal,2

Matti Pirinen,2 Chris C.A. Spencer,2,* Nikolaos A. Patsopoulos,3,5 Loukas

Moutsianas,6 Alexander Dilthey,6 Zhan Su,2 Colin Freeman,2 Sarah E.

Hunt,7 Sarah Edkins,7Emma Gray,7 David R. Booth,8 Simon C. Potter,7

An Goris,9 Gavin Band,2 Annette Bang Oturai,10 Amy Strange,2 Janna
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