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Abstract. To support coastal planning through improved understanding of patterns of
biotic and abiotic surrogacy at broad scales, we used gradient forest modeling (GFM) to
analyze and predict spatial patterns of compositional turnover of demersal fishes,
macroinvertebrates, and macroalgae on shallow, temperate Australian reefs. Predictive
models were first developed using environmental surrogates with estimates of prediction
uncertainty, and then the efficacy of the three assemblages as biosurrogates for each other was
assessed.

Data from underwater visual surveys of subtidal rocky reefs were collected from the
southeastern coastline of continental Australia (including South Australia and Victoria) and
the northern coastline of Tasmania. These data were combined with 0.018-resolution gridded
environmental variables to develop statistical models of compositional turnover (beta
diversity) using GFM. GFM extends the machine learning, ensemble tree-based method of
random forests (RF), to allow the simultaneous modeling of multiple taxa. The models were
used to generate predictions of compositional turnover for each of the three assemblages
within unsurveyed areas across the 6600 km of coastline in the region of interest.

The most important predictor for all three assemblages was variability in sea surface
temperature (measured as standard deviation from measures taken interannually). Spatial
predictions of compositional turnover within unsurveyed areas across the region of interest
were remarkably congruent across the three taxa. However, the greatest uncertainty in these
predictions varied in location among the different assemblages. Pairwise congruency
comparisons of observed and predicted turnover among the three assemblages showed that
invertebrate and macroalgal biodiversity were most similar, followed by fishes and
macroalgae, and lastly fishes and invertebrate biodiversity, suggesting that of the three
assemblages, macroalgae would make the best biosurrogate for both invertebrate and fish
compositional turnover.

Key words: Australia; biological surrogacy; coastal planning; gradient forest; marine biodiversity;
prediction; random forest; species turnover; Tasmania.

INTRODUCTION

Knowledge of the spatial distribution of biodiversity

is fundamental to many aspects of theoretical and

applied ecology. Yet, such basic knowledge is lacking for

many systems, and new tools are needed that make full

use of limited biological data. For example, while some

continental-scale biogeographical features, such as

latitudinal gradients in species richness, are considered

well defined, detailed inspection invariably indicates that

taxa respond in different and nonlinear ways to such

features (Kerswell 2006). The need for broadscale

analytical tools that generalize gradients across large

scales is particularly acute for marine studies, given that

the marine realm is out of sight and extremely expensive

to survey, resulting in ecological data sets that are at best

patchy and, in many regions, completely lacking.

Additionally, marine conservation and spatial manage-

ment that attempt to maximize representation of

biodiversity targets within regional reserve networks

(Ball and Possingham 2000, Margules and Pressey 2000,

Ban 2009, Watts et al. 2009) rely on adequate ecological

data. Clearly, delays in conservation action while we

collect more ecological data are undesirable, as good

environmental outcomes may be reduced due to lost

management opportunities (Grantham et al. 2009). In

this paper, we present a method that uses physical

surrogates to predict broadscale spatial patterns of

compositional turnover (McArthur et al. 2010). We then

use the observed and predicted spatial patterns of

compositional turnover to assess the efficacy of biolog-

ical surrogacy.
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Both physical (McArthur et al. 2010, Huang et al.

2011, Dunstan et al. 2012, Pitcher et al. 2012) and

biological (Ward et al. 1999) surrogates of marine

biodiversity have increasingly been applied to fill the

ecological data gap in conservation planning. However,

marine biodiversity mapping has largely focused on

predictions made from the distribution of coarse

categorical habitat features (Ward et al. 1999, Jordan

et al. 2005, Mumby et al. 2008) such as seagrass beds,

rocky reef, coral reef, sand, and mud. A much finer and

continuous biodiversity grain is needed for conservation

planning because quite different ecological communities

can occur within the same mapped habitat categories,

depending on variation in such factors as wave

exposure, depth, light penetration, or habitat structural

complexity (Lindsay et al. 2008). Unless the full range of

communities or their surrogates (biological and/or

environmental) are considered during planning, com-

plete sets of species will potentially be excluded from

protected area networks.

In a recent meta-analysis on the use of biosurrogates

for predicting marine biodiversity (Mellin et al. 2011),

higher-taxa or subset-taxa surrogates performed better

than cross-taxa surrogates. Yet in conservation man-

agement, cross-taxa biosurrogacy is frequently applied.

In this study, we predict the spatial patterns of

compositional turnover among three assemblages (fish-

es, invertebrates, and macroalgae), based on physical

surrogates. By comparing the predictions of the three

assemblages, we examine the utility of applying predict-

ed turnover of one of these assemblages for the

conservation management of the other assemblages. In

other words, we evaluate the effectiveness of biosurro-

gacy in the context of broadscale prediction of

biodiversity. To our knowledge, this is the first study

to examine the effectiveness of community-based pre-

dictions of marine biodiversity for biosurrogacy at such

large scales.

While there have been many predictive biodiversity

studies based on physical surrogates, to date the

majority have tended to focus on a single species of

interest (Guisan and Thuiller 2005) or elements of alpha

diversity, such as species richness and abundance (e.g.,

Leathwick et al. 2006, Mellin et al. 2010). Methods that

incorporate multivariate information regarding the

composition of communities have received less attention

(but see Ferrier et al. [2007]), yet spatial variation in

community composition (or beta diversity sensu Whit-

taker 1972) lies at the heart of many biological and

ecological phenomena. Because beta diversity can

quantify the turnover of species across space, it has

important applications to the scaling of diversity, the

delineation of biotic regions, and conservation planning

(McKnight et al. 2007). Here we use gradient forest

modeling (Ellis et al. 2011a) to map spatial patterns of

compositional turnover using environmental covariates

across broad scales. Specifically, we map biodiversity in

the form of compositional turnover in n-dimensional

space (where n is the number of environmental

covariates modeled). Throughout this paper, the term

biodiversity refers to compositional turnover.

Gradient forest modeling (GFM) is a tree-based

method that is based on random forest (RF) models

(Breiman 2001). RF models typically perform equivalent

to, or in most cases surpass, other statistical and

machine learning methods in comparisons relating

ecological with covariate data (e.g., Keller et al. 2011).

Key features of RF modeling is that as a classification/

regression tree method, nonlinearities and interactions

among predictor variables are considered by default and

that it copes with highly correlated predictor variables

(Strobl et al. 2008). GFM extends RF modeling to

incorporate whole assemblages instead of single species.

It combines the outputs of single-species models to relate

changes in the composition of assemblages to gradients

in environmental covariates (Ellis et al. 2011a). The

results of GFM are species turnover curves for each

environmental covariate. These curves can be used to

predict biodiversity in new locations based on the

environmental covariates at those locations (Pitcher et

al. 2012).

We model spatial patterns of turnover in community

composition using GFM for fish, invertebrate, and

macroalgal species records using 314 survey sites from

an extensive spatiotemporal quantitative survey of a

rocky subtidal system on the southern coastline of

continental Australia and the northern coastline of

Tasmania (Stuart-Smith et al. 2008, Barrett et al. 2009,

Leaper et al. 2011). Based on these models, we predict

biodiversity at unsurveyed locations across ;6000 km of

coastline in southeastern Australia that is of interest

biogeographically and hence also to management

(Commonwealth of Australia 2006). This area is a

hotspot of biodiversity both in terms of the number of

benthic species present and the extraordinarily high

levels of regional floral endemicity (Phillips 2001). Our

broadscale study includes three state government

jurisdictions: (1) Victoria, where a network of Marine

Protected Areas (MPAs) currently exists; (2) South

Australia, where an MPA network has been proposed

and is presently subject to public consultation; and (3)

Tasmania, where a single MPA has been designated

within the study region (the Kent Group Marine Park)

with the commitment to developing a larger network

within the National Representative System of MPAs in

the future.

Specifically, we (1) compare the biodiversity predic-

tions for fishes, invertebrates, and macroalgae to assess

biological surrogacy across ;6000 km of coastline; (2)

assess and quantify the influence of the environmental

covariates on biological assemblages and their turnover

using the 314 survey sites; and (3) quantify the

uncertainty of the predictions of biodiversity by

comparing our predictions with the survey data.

Quantifying uncertainty is rarely conducted in commu-

nity modeling.
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METHODS

Biological data

Estimates of the abundance of fishes and inverte-

brates, and the cover of macroalgae were obtained for

314 sites along the South Australian, Victorian, and

northern Tasmanian coastline (Fig. 1) using diver-

based, underwater visual censuses (Edgar et al. 1997,

Barrett et al. 2007, 2009). Surveys were conducted

between 2004 and 2009, and each site consisted of a

200-m transect at either 5 or 10 m water depth. Fishes

were censused by counting all individuals sighted to a

distance of 5 m either side of the transect line (i.e.,

sampled area ’ 2000 m2). Large, mobile invertebrates

(echinoderms other than ophiuroids, gastropods, and

crustaceans) that were .2.5 cm length were counted on

a 1-m swath along one side of the transect line (i.e.,

sampled area ;200 m2), and macroalgal cover for each

taxon was recorded in situ by divers using 20 quadrats

of 0.5 3 0.5 m placed equidistantly along the transect

length. The cover of canopy macroalgal species was

recorded initially, and then the canopy pushed aside so

that understory species could also be scored. Data were

recorded at the species level where possible, with some

invertebrate and macroalgal taxa recorded at the genus

level and occasionally (for macroalgae) as a broad

functional group (e.g., encrusting coralline algae).

While these biotic data sets are considered relatively

robust to seasonal and interannual variation (Stuart-

Smith et al. 2008, Barrett et al. 2009), such variation

was minimized as much as possible by using data

collected from the most recent survey that was

conducted at each survey location and within the

period from March to June.

Environmental data

Nineteen environmental covariates describing salinity,

temperature, nutrient concentrations, productivity, and

exposure were used in the present study. These

covariates have been generated across a national scale

at a 0.018 resolution as part of the Commonwealth of

Australia’s Environment Research Facility (CERF)

Marine Biodiversity Hub (Huang et al. 2010; data

available online).5 A detailed description of each

covariate, its source, and derivation can be found in

Appendix A.

Statistical modeling

Gradient forest modeling (GFM) is based on a

‘‘machine learning’’ approach known as random forest

(RF) modeling (Breiman 2001). This ensemble method

utilizes regression trees, combining many decision trees

to produce a distribution of splits rather than a point

estimate. The cumulative distribution of splits, or

cumulative importance curves, for a given predictor

provides a gradient of biological change, where the

steeper the gradient, the greater the change in compo-

sition (see Fig. 3 and Appendix C for the cumulative

importance curves related to this study). These curves

provide a measure of compositional turnover in n-

dimensional space, where n is the number of predictors

used.

While the cumulative importance curves are not the

same as traditional measures of turnover (such as Bray-

Curtis dissimilarity), in a paper (Leaper et al. 2011)

comparing the GFM predictions with predictions based

on generalized dissimilarity modeling (Ferrier et al.

2007) there was little difference.

In the present study, a total of 1000 trees were

generated for each taxon. The RF technique contains

both bootstrapping and cross-validation routines. Each

tree is generated using a random partitioning procedure

based on a subset of the survey sites (the ‘‘in-bag,’’

;63% by default), and each split is selected from a

random subset of six of the 19 predictors. Cross-

validation is conducted using the remaining ‘‘out-of-

bag’’ data, allowing estimation of prediction perfor-

mance for each taxon (R2). Calculation of the gradients

is weighted by both taxon importance (R2) and predictor

importance. Predictor importance is estimated by the

degradation of performance when randomly permuting

each predictor. The standard marginal procedure in the

RF methodology can suffer from bias toward correlated

predictors (Strobl et al. 2008). Hence, conditional

importance of the predictors was used (Ellis et al.

2011a). The gradient forest (GF) methodology adopted

for this paper is described in more detail in Ellis et al.

(2011a). The analysis was carried out with the ‘‘gra-

dientForest’’ and ‘‘extendedForest’’ packages for R

(available online).6

FIG. 1. A map showing ;6600 km of the southeastern
coastline of continental Australia for which compositional
turnover of fish, invertebrate, and macroalgal assemblages has
been predicted. The 314 survey sites are marked with crosses.
The predicted region, made up of 24 817 grid points, is shown
using a light gray color.

5 http://www.nerpmarine.edu.au 6 https://r-forge.r-project.org/projects/gradientforest
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We used a total of 19 candidate environmental

covariates for modeling (see Appendix A). We modeled

compositional turnover for fish density, invertebrate

density, and macroalgal cover separately. Taxa not

recorded at five or more of the 314 survey sites were

removed from the analysis. A Box-Cox method was used

to select an appropriate transformation for density data

for all taxa. The majority of the taxa required an inverse

square transformation with a positive offset of one.

For all analyses presented in this paper, the geo-

graphic covariates, latitude and longitude, were not

included as predictors in the GFM model. When they

were included, the predictive ability of the model was

improved by a small amount (0.022%, 1.3%, and 1.1%
for fishes, invertebrates, and macroalgae, respectively).

Predictions of assemblage diversity

Predictions of the compositional turnover of fishes,

invertebrates, and macroalgae were generated using the

procedure described in Pitcher et al. (2012). Predictions

weremade at newunsurveyed locations across 24 817 grid

points (0.018 resolution) along 5500 km length of coastline

of southern Australia and 1100 km of northern Tasmania

(including the islands in the Bass Strait; Fig. 1). The

environmental covariates at the grid points were trans-

formed using the cumulative importance curves for each

corresponding covariate as empirical functions, resulting

in a prediction space consisting of biologically trans-

formed environmental variables (or predicted turnover in

assemblage composition associated with each covariate).

Principal Components Analysis (PCA) was used to

reduce the dimensions of the 19 biologically transformed

environmental variables. The PCA was centered but not

scale transformed (to preserve biological importance of

the variables). For each of the three assemblages, the

difference in assemblage composition between grid

points was mapped using the first three principal

components (PCs).

Uncertainty in the predictions

To ascertain uncertainty, the procedure described in

Ellis and Pitcher (2011) was used. Uncertainty was

obtained by calculating the difference between the

predicted data and the actual data at the 314 survey

sites. Uncertainty at a new unsurveyed location was

estimated from a weighted average of these differences.

Specifically, gradient predictions were compared to

the observed taxonomic composition at the survey sites.

As the predictions were in the form of a transformed 19-

dimensional environment space representing composi-

tional variation, the observed taxonomic composition at

the survey sites was converted to dissimilarity measures

using Bray-Curtis. These Bray-Curtis dissimilarities

were then converted into a form that allowed direct

comparison at individual sites using ordination via

nonmetric multidimensional scaling (MDS), also with

19 dimensions. Uncertainty was measured via the

difference between the predicted compositional turnover

and the MDS ordination of the taxonomic composition.

To make this comparison, the predicted compositional

turnover and the MDS ordinated taxonomic composi-

tion were compared using a Procrustes superimposition

(where the matrices are rotated to minimize the sum of

square of the distances between the points; Peres-Neto

and Jackson 2001). The differences between the rotated

matrices (Procrustes residuals) were then used as a

measure of uncertainty at the survey sites.

Uncertainty at the unsurveyed locations was esti-

mated using kernel smoothing of the Procrustes

residuals along the 19-dimensional predicted biological

space:

Pj ¼
X314

i¼1

Pie
�ð1=2Þðdi; j=wÞ2

�X314

i¼1

e�ð1=2Þðdi; j=wÞ2 : ð1Þ

For Eq. 1, Pi is the Procrustes residual at the 314

survey sites, Pj is the estimated Procrustes residual at j¼
1, . . . , 24 817 grid points, di, j is the predicted biological

distance between the ith survey site and the jth grid

point, and w is the weight. Leave-one-out cross-

validation at the survey sites was used to obtain an

optimal value of w ¼ 0.005 (see Appendix B for more

detail).

Procrustes correlations, rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SS
p

were calculated

for each of the three assemblages, where SS is the

symmetric sum of squares of the Procrustes residuals

between the MDS ordinated taxonomic composition

and the predictions at the survey sites. A permutation

test with 1000 permutations was used to test the

significance of these correlations (as per Peres-Neto

and Jackson [2001]).

Comparing GF-predicted biodiversity among

the three biological assemblages

In order to ascertain how well fishes, invertebrates,

and macroalgae would act as biological surrogates for

each other, a Procrustes rotation was carried out

between the predicted turnover of each pair of the three

assemblages at the 24 817 grid points (Peres-Neto and

Jackson 2001). Only one of each pair of assemblage

matrices was rotated so that the rotation was not

dependent on the order of the matrices (scale ¼ TRUE

option for the Procrustes R function). The Procrustes

residuals were used to obtain a location-specific measure

of relative similarity/dissimilarity or difference between

the assemblages. The Procrustes residuals were divided

by the maximum Euclidean distance between predicted

biodiversity for all pairs of grid points over the three

assemblages, so that the measure of difference is in units

of maximum possible difference.

Matrix correlations (or Mantel correlations; Legendre

and Legendre 1998) were calculated for each pair of

assemblages, based on the Euclidean distances between

the predicted biodiversity at the 24 817 grid points. 95%
confidence intervals for the correlations were estimated

using bootstrapping without replacement (Politis and
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Romano 1994). Confidence intervals were scaled using

the assumption that

SEðrMÞ’ SEðrðsubÞ
M Þ

ffiffiffiffiffiffiffiffiffiffiffi
b� 2

n� 2

r

where r
ðsubÞ
M is the Mantel correlation of a subset of size b

and n is the number of grid points.

Comparing the observed biodiversity among

the three biological assemblages

The apparent biosurrogacy measured using the

predicted biology has possibly been mediated by the

environmental relationships, given that the predicted

biology is based on transformed environmental vari-

ables. Biosurrogacy was also assessed using the

surveyed biology at the 314 survey sites. Biosurrogacy

was measured via Mantel correlations (and 95%

confidence intervals) between the three pairs of

assemblages, based on the Bray-Curtis dissimilarities

between the sites.

RESULTS

Totals of 123 fish, 118 invertebrate, and 184 macro-

algal taxa were observed at the 314 survey sites. The

mean (range) of richness across sites was 15.9 (2–34) for

fishes, 12.9 (2–28) for invertebrates, and 19.5 (2–42) for

macroalgae. Of all the taxa analyzed, 61 fishes, 59

invertebrates, and 112 macroalgae showed a relationship

with the predictors (taxa importance . 0).

Models of biodiversity

The order of importance of the physical predictors in

the gradient forest modeling (GFM) was relatively

consistent across fishes, invertebrates, and macroalgae

(Fig. 2). The standard deviation of sea surface

temperature (SST, SD) was the most important

physical predictor of biodiversity for all three assem-

blages. The conditional importance of SST, SD relative

to the other variables was greatest for macroalgae (the

percentage of the total conditional importance that was

attributed to SST, SD was 11.2%, 12.9%, and 15.2% for

fishes, invertebrates, and macroalgae, respectively).

Percentage sand and mean sea surface temperature

were also consistently important predictors, while

nitrate, wave exposure, sea surface and bottom water

temperature, salinity, and the standard deviation of

salinity were consistently among the top 10 predictors

of compositional turnover for all assemblages. Bottom

water temperature was more important than sea

surface temperature for invertebrates, while for fishes

and macroalgae, sea surface temperature was more

important.

Cumulative importance curves for each of the

physical predictors are shown in Fig. 3 and Appendix

C for each assemblage. They represent the rate at which

the community composition changes across the range of

each environmental covariate. The gradients are re-

markably congruent among the three assemblages, with

the invertebrate and macroalgal gradients appearing

more similar to each other than to fish. From the slope

of these cumulative importance curves, regions with high

turnover can be identified. For example, fish gradients

were noticeably steeper when SST, SD was ;3.08C and

SST ;178C (indicating greater change in community

composition).

FIG. 2. The importance of the physical predictors for the three different assemblages in the gradient forest model. Conditional
importance is estimated by the degradation of performance when randomly permuting each predictor. See Appendix A for a
detailed description of each of the physical predictors. Key to abbreviations: SST, sea surface temperature mean; SD, standard
deviation; BWT, bottom water temperature; k490, mean diffuse attenuation coefficient at wavelength 490 nm; chl a, chlorophyll a.
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Predicted patterns of biodiversity

Predictions from the GFM showed a distinctive east–

west gradient in compositional turnover of fish, inver-

tebrate, and macroalgal assemblages along the southern

Australian coastline (see panels A1, B1, and C1 in Fig.

4). However, changes in composition of all three

assemblages were not uniform along the southern

Australian coastline. Most noticeably, sheltered areas

along the coast stood out as biologically distinct from

the rest of the coastline and from each other (i.e., South

Australian gulfs [1368 E , longitude , 1398 E] and

Victorian embayments [1458 E , longitude , 1478 E]).

Panels A3, B3, and C3 in Fig. 4 provide uncertainty

associated with predictions of community turnover for

fishes, invertebrates, and macroalgae, respectively, as

estimated by comparing the predicted data with the

actual data. For all assemblages, relatively higher

uncertainty in the predictions of compositional turnover

was observed in gulfs and bays relative to the open

coast. Patterns in uncertainty were not, however,

completely consistent across the three assemblages.

For example, fish predictions were noticeably more

reliable to the west of 1388 longitude (Fig. 4, panel A3),

while invertebrates and macroalgae predictions were

most reliable on the central Victorian and north

Tasmanian coastlines (Fig. 4, panels B3 and C3,

respectively). Overall, the predictions were shown to be

considerably better than random, as the predictive

accuracy (as measured by the correlation between the

biological data and the predictions) was highly signifi-

cant at the original survey sites (P � 0.001 for all

assemblages). The predictive accuracy was lowest for

invertebrates, suggesting that of the three assemblages,

invertebrate compositional turnover was predicted least

successfully (rp ¼ 0.54 for fishes, rp ¼ 0.50 for

invertebrates, and rp¼ 0.55 for macroalgae).

Congruence in GF-predicted biodiversity among

the three assemblages

The predicted patterns of compositional turnover are

remarkably congruent among fishes, invertebrates, and

macroalgae (Fig. 5A–C), a conclusion supported by the

high correlation among the predicted compositional

turnover of the three assemblages (rM [95% CI of rM]:

0.846 [0.844–0.849] for fishes vs. invertebrates, 0.919

FIG. 3. Cumulative importance curves for four predictor variables (SST, sea surface temperature mean and SD; percentage
sand; and salinity). These curves are obtained from the cumulative distribution of tree splits, divided by the density of the predictor
data, and scaled so that the maximum cumulative importance is equal to the importance of that predictor (Fig. 1). These curves
relate the rate of cumulative compositional change to the environmental gradients (shallow slopes indicate low rates of change in
composition, whereas steep slopes indicate high rates) and show contrasting compositional responses along these gradients among
the different biological groups.
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FIG. 4. Biodiversity maps showing patterns of composition for the (A1) fish, (B1) invertebrate, and (C1) macroalgal
assemblages. These are developed from a principal components analysis (PCA) of the gradient forest predictions of compositional
turnover. Geographical sites with similar colors are predicted to have similar composition. The corresponding biplots from the
PCA are given for each of the biodiversity maps for (A2) fish, (B2) invertebrate, and (C2) macroalgal assemblages. These describe
how the colors lie within predicted biological space. Colors were assigned by varying the green, red, and blue palettes,
corresponding to variation in principal components 1, 2, and 3, respectively. The arrows on the biplots indicate the correlation
between the environmental predictors and the principal components. The maps below each biodiversity map show the uncertainty
of the predictions (A3) for fishes, (B3) for invertebrates, and (C3) for macroalgae, using a grayscale where the lightest sites are the
most uncertain. This uncertainty was obtained from calculating the distance between the predicted biological space and biological
data using a Procrustes residual. The key on the biplots shows the relationship between a shade of gray and a distance on the biplot,
as illustrated by the x–y segments in panel (A2). The distances are the same in the three panels A2, B2, and C2. The dashed quarter
circles on the key indicate the minimum and maximum uncertainty that was observed.
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[0.918–0.921] for fishes vs. macroalgae, and 0.9590

[0.9587–0.9593] for invertebrates vs. macroalgae). In-

vertebrates and macroalgae were more highly correlated

with each other than they were with fishes, and fishes

were more highly correlated with macroalgae than

invertebrates, suggesting that, based on the congruency

criterion, macroalgae are the best surrogate for both

fishes and invertebrates.

The patterns of correlation between the different

assemblages were largely consistent when considered

across the full geographical range of the prediction space

(Fig. 5; Appendix D). Small exceptions to this are

observed in the east (longitude . 146.58 E, where fishes

are correlated equally with invertebrates and macro-

algae), and along the west coast of Tasmania (;1458 E,

.40.58 S), where macroalgae are correlated equally with

invertebrates and fishes).

Congruence in observed biodiversity

among the three assemblages

The Mantel correlations (rM) for the biological data

collected at the 314 survey sites were lower than for the

predicted biodiversity: 0.350 (95% CI, 0.293–0.407) for

fishes vs. invertebrates, 0.459 (95% CI, 0.410–0.511) for

fishes vs. macroalgae, and 0.443 (95% CI, 0.397–0.492)

for invertebrates vs. macroalgae. The confidence inter-

vals suggest that the correlation between fishes and

invertebrates is significantly smaller than for both fishes

and macroalgae and invertebrates and macroalgae,

again suggesting that, based on the congruency criteri-

on, macroalgae are the best surrogate for both fishes and

invertebrates.

DISCUSSION

While conservation management of communities

often assumes strong biological surrogacy (Rodrigues

and Brooks 2007), our work represents one of the few

marine studies where data are available to test this

assumption across broad spatial scales (Beger et al.

2007, O’Hara 2008, Williams et al. 2010, Mellin et al.

2011, Sutcliffe et al. 2012). We have used a novel

statistical technique, gradient forest modeling (GFM),

to predict patterns of compositional turnover of fishes,

invertebrates, and macroalgal assemblages across a

substantial section of southern Australian coastline. In

addition to showing a moderate degree of congruency in

the compositional turnover of demersal fishes, inverte-

brates, and macroalgae at survey sites, our results show

high levels of congruency in predicted patterns, provid-

ing empirical support for the efficacy of biological

surrogacy in temperate reef systems.

Our work supports the use of biological surrogates for

describing and predicting biodiversity patterns at broad

scales; however, previous studies have reported mixed

success. Consequently, the effectiveness of biological

surrogates for a range of purposes has been the subject

of some debate (e.g., Sætersdal and Gjerde 2011).

Results in the marine realm to date indicate that

biological surrogacy has tended to be more effective

when using higher-taxon surrogates at small spatial

scales (,10 km), and in relatively homogenous habitats

such as soft sediments (Mellin et al. 2011, Sutcliffe et al.

2012). There are, however, two key differences between

our study and previous biological surrogacy work in

marine ecosystems. First, we examined the efficacy of

biological surrogacy for measuring compositional turn-

over rather than the more traditional measures of

species richness. Second, in addition to comparing

congruency patterns between assemblages in point–

location biodiversity data (as presented in many marine

studies to date; Beger et al. 2003, Karakassis et al. 2006,

Sutcliffe et al. 2012), we used point–location data

combined with environmental data to model and predict

spatially explicit turnover patterns. The consistency of

the relationships between compositional turnover and

environmental covariates for the fish, invertebrate, and

macroalgal communities, and the resulting congruency

in predicted biodiversity patterns, suggest that where the

goal is broadscale prediction of biodiversity, data

collection on only one taxonomic group will provide

good representation of the biodiversity of other taxa. To

confirm this, further studies are needed that compare

broadscale prediction of biodiversity for different taxa,

also using a complementarity criterion, and with

different sites for each taxon to build the prediction

model. If broadscale congruency is confirmed, then this

has significant implications for the design of future field

surveys.

Although overall the congruency of predicted patterns

of biodiversity between taxa was high, correlations

suggest that some pairs of taxonomic groups performed

slightly better as surrogates for each other. For example,

macroalgal and invertebrate diversity patterns were the

most highly correlated, and fish diversity patterns were

better correlated with macroalgae than with inverte-

brates. Furthermore, these correlations were consistent

within smaller geographic units (bioregions; Appendix

D), increasing our confidence in the robustness of the

surrogate relationships. For a surrogate to be effective,

it must also be easy and cost effective to survey and

identify (Mellin et al. 2011). Our results indicate that

differences in the congruency of predicted biodiversity

patterns were small among the three assemblages;

consequently, considerations such as the availability of

skilled observers for any given taxon group may

override other considerations when deciding the most

cost-effective form of data collection.

The overall congruency of patterns of biodiversity at

the survey sites was not as high as the predicted patterns.

This is not surprising since the predictions were based on

the same environmental variables, measured at the same

survey sites for each of the three assemblages. Conclu-

sions made about the need for collecting biological data

for only one assemblage, when the goal is broadscale

prediction of biodiversity, are specific to the circum-

stances where data for building the prediction models

RUSSELL J. THOMSON ET AL.294 Ecological Applications
Vol. 24, No. 2



for each of the three assemblages would be collected at

the same survey sites. However, the congruency of

patterns of biodiversity at the survey sites was still

reasonably high, indicating the effectiveness of biosur-

rogacy in other circumstances. Based on both the

predicted and observed patterns of biodiversity, out of

the three assemblages examined, macroalgae are the best

surrogate for the others.

The ability of macroalgae to act as a suitable

surrogate for both fishes and invertebrates probably

has a basis in tighter ecological relationships between

macroalgae and the other two groups than between

fishes and invertebrates. Invertebrates use macroalgae as

habitat and commonly also as a food resource, while

most reef fishes consistently respond to macroalgae as

habitat, although they typically feed opportunistically

on a range of invertebrate prey (Davenport and Bax

2002).

High congruency was also observed among the three

assemblages in terms of the environmental variables that

best predicted compositional turnover. The standard

deviation of sea surface temperature was the best

predictor of changes in reef communities for all three

assemblages. A causal relationship between variability in

sea surface temperature and reef communities is

ecologically reasonable (e.g., see Perry et al. [2005],

Helmuth et al. [2006]), perhaps through interaction with

oxygen stress (Poertner and Knust 2007) or vulnerabil-

ity to predation through changing patterns of behavior

(Biro et al. 2007). Environmental control of marine

populations is more likely to depend on the occurrence

of extreme temperature events than on mean tempera-

ture values (e.g., see Harley [2008]). Such congruency

between ecological theory and covariate importance

provides some confidence for planning purposes that

underlying ecosystem variation is largely captured

through the GFM process.

Sites showing the highest variability in sea surface

temperature occur in shallow embayments, locations

with extreme diel and seasonal fluctuations in temper-

ature, whereas sites with the lowest variability in sea

surface temperature are located along the open coast in

regions where cold-water upwelling occurs in summer.

Assuming that species with low physiological tolerances

to temperature fluctuations are most susceptible to

impacts of climate change, as is hypothesized for

terrestrial organisms (Deutsch et al. 2011), then species

that are adapted to open coast are arguably more at risk

through climate change, including the anomalously

rapid ocean warming currently occurring across the

southeastern Australian region (Poloczanska et al. 2007,

Wernberg et al. 2011), than species assemblages

FIG. 5. Maps showing the difference between predicted compositional turnover for the three pairs of assemblages (invertebrates
vs. algae, fishes vs. algae, and fishes vs. invertebrates) across the whole prediction space, using the Procrustes residuals as the
measure of difference. The difference measure is in units of maximum possible difference (as defined by the greatest distance
between two points in the three biplots shown in Fig. 4).
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restricted to sheltered embayments. Alternatively, the

effects of climate change may be more pronounced in

shallow embayments as they may not receive the

dampening effect of deeper layers. Our results show a

strong relationship between community turnover and

the standard deviation of sea surface temperature for all

three assemblages, particularly macroalgae, indicating

distinct differences in community composition between

open water and shallow embayment environments.

Searching for macroalgal species (and others) that have

the strongest (positive or negative) relationship with the

standard deviation in sea surface temperature may

elucidate specific species that are potentially vulnerable

to climate change.

We also found that sediment composition (covariate

‘‘sand’’) had consistently high relative importance in

predicting compositional turnover for all three assem-

blages. This predictive importance is presumably due to

dependencies on unexamined colinear factors, given that

ecological surveys were undertaken on reef systems,

whereas values for sand were compiled as the mean

percentage of sand-size particles in sediments within the

nearest 0.018 3 0.018 grid cell. As is evident from the

distribution of GFM breakpoints across the range of

sand values (Fig. 2), the primary ecological change with

sand occurs at very low values, indicative of a basic

environmental dichotomy between grid cells with sandy

sediments and those dominated by finer silts and clays or

coarse gravels. The close coupling between sediment

characteristics and the reef community possibly relates

to changes in water flow that affect sediments and also

biota, or perhaps translocation of materials or organ-

isms between reef and soft-sediment habitats.

The strong relationships evident between sand and

reef communities highlight the important point that the

nineteen environmental covariates used in the GFM are

not necessarily the causal environmental variables.

Rather, they are estimates derived from available data

that, in an often unknown way, relate to truly causal

environmental variables. By including all available

variables, we were able to improve the predictions of

biodiversity (without identifying the unknown causal

variables). The advantage of using a random forest

model over traditional regression techniques is that

many variables, regardless of colinearity, can be

included in the model in order to improve the predictive

outputs.

The importance of the physical surrogate ‘‘sand’’ and

the biological surrogate ‘‘macroalgae’’ indicate that

measures of habitat are good predictors of biodiversity,

a result found by others (e.g., Mumby et al. 2008) using

a variety of prediction methods.

The environmental variables examined have been

applied in a range of research projects aimed at

addressing questions of biological surrogacy and pre-

diction of Australia’s marine biota (Pitcher et al. 2011).

Predictions of biodiversity described here were recorded

at a grid scale of 0.018 3 0.018 so they will not capture

species turnover at scales ,1 km2. In addition,

observational errors were added through biases in field

sampling. Some sampling errors may have varied

between sites, such as interactions between fish counts,

water clarity, and substratum type. However, in a study

based on the same survey methodology (Edgar et al.

2004), no interaction between observational bias and

different habitat types was observed, and variation in

density estimates between divers was extremely low

compared to variation between sites and between

months, indicating that observational error is dwarfed

by the uncertainty in prediction. Fig. 4 displays

relationships between the environment and prediction

error.

By incorporating multivariate biological data, we

were able to model the relationships between environ-

mental variables and community composition, rather

than single species or alpha diversity measures. Howev-

er, the less common species did not show any

relationship between the environmental variables and

community composition (most likely due to lack of

power). For the purposes of management of less

common species, an approach that targets rare species

is needed.

Maps of biodiversity predictions are often presented

without robust estimates of their reliability. While

univariate measures of marine diversity have been

predicted previously using tree-based classification

methods (e.g., Leathwick et al. 2006), the methods used

here represent one of the first applications of a tree-

based method for predicting the distribution of marine

reef communities with estimates of uncertainty (Ellis

and Pitcher 2011). Distinct patterns of uncertainty were

observed in all three assemblages, although Port Phillip

Bay (;388 S, ;1458 W) was found to have consistently

high uncertainty. This may be due to human impact in

this region (Stuart-Smith et al. 2008) and a lack of

availability of environmental variables that relate

directly to human impacts. However, relationships

between human impacts and species turnover were

probably modeled indirectly in part through correlated

variables. For example, wave exposure is likely to be

correlated with port influences. Inclusion in future

analyses of additional data sets that describe variability

in pollution (Fabricius et al. 2005, Hewitt et al. 2005),

port influences (Hewitt 2002, Stuart-Smith et al. 2008),

fisheries management restrictions (including locations of

Marine Protected Areas; Barrett et al. 2009), trawl effort

(Ellis et al. 2011b), and indicators of introduced species

should prove extremely interesting and topical.

CONCLUSION

Gradient forest modeling is a useful tool for

predicting patterns of turnover in assemblage composi-

tion across broad geographical scales and in providing

uncertainty for these predictions. The congruency of

predictions between fishes, invertebrates, and macro-

algae (in the importance of environmental covariates
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and in terms of the predictions themselves) suggests that

outcomes do not differ greatly when based on any of

these three assemblages. Of the three assemblages,

macroalgae would make the best surrogates for both

invertebrate and fish compositional turnover. This

taxonomic group is more similar to the other assemblage

types than the other assemblage types are with each

other. Outcomes described here have a broadscale

ecological basis and thus should be relevant to other

temperate reef systems.
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