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[1] Remote sensing of Southern Ocean chlorophyll concentrations is the most effective way
to detect large-scale changes in phytoplankton biomass driven by seasonality and climate
change. However, the current algorithms for the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS, algorithm OC4v6), the Moderate Resolution Imaging Spectroradiometer
(MODIS-Aqua, algorithm OC3M), and GlobColour significantly underestimate chlorophyll
concentrations at high latitudes. Here, we use a long-term data set from the Southern Ocean
(20�–160�E) to develop more accurate algorithms for all three of these products in southern
high-latitude regions. These new algorithms improve in situ versus satellite chlorophyll
coefficients of determination (r2) from 0.27 to 0.46, 0.26 to 0.51, and 0.25 to 0.27, for
OC4v6, OC3M, and GlobColour, respectively, while addressing the underestimation
problem. This study also revealed that pigment composition, which reflects species
composition and physiology, is key to understanding the reasons for satellite chlorophyll
underestimation in this region. These significantly improved algorithms will permit more
accurate estimates of standing stocks and more sensitive detection of spatial and temporal
changes in those stocks, with consequences for derived products such as primary production
and carbon cycling.
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1. Introduction

[2] Ocean color remote sensing is our most effective tool
for understanding ocean ecology and biogeochemistry at ba-
sin to global scales. Within this context, high-latitude oceans
are of particular interest as they are the most remote and dif-
ficult to sample by other means, yet also potentially the
most sensitive to climate change [Intergovernmental Panel
on Climate Change, 2007]. The Southern Ocean is charac-
terized by extreme weather, strong seasonality and unique
photophysiology, nutrient regimes, and microbial commun-
ities. It therefore presents a challenge for both in situ and
remote observations. The Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) and the Moderate Resolution Imaging
Spectroradiometer (MODIS) use(d) empirically derived
algorithms to estimate in situ total chlorophyll concentration

from remotely sensed radiometry. Algorithms like these
have been used to estimate chlorophyll from space since the
first dedicated ocean color satellite, the Coastal Zone Color
Scanner, was launched in 1978 [Hovis et al., 1980]. Current
satellite chlorophyll algorithms are heavily weighted toward
in situ data from temperate and tropical regions, and their
performance at high latitudes is notoriously poor [Kahru
and Mitchell, 1999; Dierssen and Smith, 2000; Cota et al.,
2003; Gregg and Casey, 2004; Strutton et al., 2011].

[3] Since the Southern Ocean has distinctive bio-optical
properties [Szeto et al., 2011], developing regional algo-
rithms for SeaWiFS, MODIS, and GlobColour satellite
chlorophyll should improve our ability to detect the
response of phytoplankton to climate change, a long-term
goal of NASA’s ocean color project.

[4] Southern Ocean regional algorithms have previously
been proposed, but almost all of this work focused on the
Antarctic Peninsula, and used fluorometric chlorophyll
measurements [Mitchell and Holm-Hansen, 1991; Dierssen
and Smith, 2000; Gregg and Casey, 2004; Garcia et al.,
2005; Marrari et al., 2006; Mitchell and Kahru, 2009;
Kahru and Mitchell, 2010; Szeto et al., 2011]. This manu-
script builds on that body of work but is focussed on South-
ern Ocean algorithms applicable at the basin scale.

[5] In this manuscript, our goals are to:
[6] 1. Quantify the accuracy of existing satellite chloro-

phyll algorithms for SeaWiFS (OC4v6), MODIS (OC3M),
and GlobColour in the Southern Ocean, from the Indian to
the Pacific sectors.
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[7] 2. Improve algorithms for satellite estimation of
chlorophyll in the region, enhance the dynamic range and
reduce the underestimation of current algorithms.

[8] 3. Test the sensitivity of the improved algorithms to
changes in phytoplankton community composition, as indi-
cated by ratios of photosynthetic marker pigments
(Fp index) [Claustre, 1994].

[9] We compared chlorophyll estimates from each satellite
product with a database of >1300 in situ surface phytoplank-
ton pigment measurements and were able to significantly
improve both the accuracy and dynamic range of satellite
chlorophyll algorithms. Further, we show that differences
between satellite estimates and in situ measurements are
related to phytoplankton community composition.

2. Data and Analysis

2.1. Current Algorithms

2.1.1. SeaWiFS
[10] SeaWiFS, like all ocean color sensors, used an

empirically derived algorithm to calculate chlorophyll from
band ratios of remote sensing reflectance (Rrs). The current
chlorophyll algorithm used for SeaWiFS processing is
OC4v6 [O’Reilly et al., 1998, 2000].

ChlSW ¼ 10 0:3272�2:9940RSWþ2:7218R2
SW�1:2259R3

SW�0:5683R4
SWð Þ ð1Þ

where RSW ¼ log10ðRrsð443=555Þ > Rrs 490=555ð Þ > Rrsð510=555ÞÞ.
The log10 argument indicates that the algorithm uses the
maximum of the three ratios. The subscript in the RSW term
refers to the platform (SeaWiFS). ChlSW denotes the calcu-
lated chlorophyll concentration in mg m�3.
2.1.2. MODIS-Aqua

[11] The current chlorophyll algorithm used for MODIS-
Aqua processing is OC3M (http://oceancolor.gsfc.nasa.-
gov/ANALYSIS/ocv6/).

ChlMA ¼ 10 0:2424�2:7423RMAþ1:8017R2
MAþ0:0015R3

MA�1:2280R4
MAð Þ ð2Þ

where RMA ¼ log10ðRrs 443=547ð Þ > Rrs 490=547ð ÞÞ. The log10
argument indicates that the algorithm uses the maximum of
the two ratios. The subscript in the RMA term refers to the
platform (MODIS-Aqua). ChlMA denotes the calculated
chlorophyll concentration in mg m�3.
2.1.3. GlobColour

[12] GlobColour has two chlorophyll algorithms: a
weighted average empirical algorithm, which is derived
from SeaWiFS, MODIS-Aqua and MERIS, and the semi-
analytical Garver Siegel Maritorena (GSM) algorithm [Pin-
nock et al., 2007; Durand, 2007; Maritorena and Siegel,
2005]. The GSM algorithm will not be discussed here.
Because the GlobColour team disseminates the merged
normalized water-leaving radiance data, the improved
GlobColour algorithm presented here uses these as input af-
ter conversion to Remote Sensing Reflectance (Rrs) based
on NASA SeaDASv7.0 with the SeaWiFS Nominal Band
Solar Irradiances.

2.2. In Situ Data Set

[13] A total of 1388 High Pressure Liquid Chromatogra-
phy (HPLC) pigment samples, recorded from <5 m depth,

were obtained from 29 austral summer Southern Ocean
expeditions (40� � 70�S, 20� � 160�E, 2001–2008,
Figure 1), mostly from the French vessel MV L’Astrolabe
and the Australian vessel RSV Aurora Australis. Two of
the 29 voyages were sourced from the NASA SeaWiFS
Bio-optical Archive and Storage System (SeaBASS) data-
base. L’Astrolabe and Aurora Australis pigment samples
were collected by filtration of 2 L of surface seawater under
low vacuum (�50 kPa) onto 13 mm diameter GF/F filters
(Whatman, Gottingen, Germany) in low light conditions.
The filters were immediately frozen in liquid nitrogen for
later analysis. Pigment extraction and HPLC analysis were
conducted at the Australian Antarctic Division, Kingston
Tasmania, and followed Mock and Hoch [2005], along
with the modifications described in Wright et al. [2010].

2.3. Initial Comparison of Satellite Estimates to In
Situ Data

[14] NASA SeaWiFS Level 3, 9 km, NASA MODIS-
Aqua Level 3, 9 km, and ESA GlobColour 4 km sea surface
chlorophyll data were evaluated against the in situ data set,
in a standardized manner so as to allow intercomparison.

Figure 1. Maps of geographical distribution of coincident
in situ HPLC and satellite chlorophyll measurements
(‘‘match ups’’) for each satellite data product: (a) Sea-
WiFS, (b) MODIS-Aqua, and (c) GlobColour.
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Initial match ups were conducted using three different time
averaged data products (daily averages, 8 day averages and
monthly averages), in order to determine the maximum us-
able temporal resolution and minimize cloud interference.
Spatial averaging was applied to increase probability of a
satellite to in situ match. Both 3 � 3 and 5 � 5 pixel aver-
aging of satellite data around each in situ observation were
performed. To ensure homogeneity of the pixel averaging
window, any pixel window with a standard deviation
>0.15 mg m�3 among valid pixels was removed from the
analysis [Bailey and Werdell, 2006]. The worst case,
MODIS-Aqua, resulted in a loss of 2.5% of match ups,
when this criterion was applied.

2.4. Creating New Models

[15] We used an optimization routine that requires a
starting point algorithm as this reduces the likelihood of
diverging from the relationship we wish to model. The
original algorithm was used as a starting point from which
to run optimization routines for SeaWiFS. The original
MODIS-Aqua algorithm did not describe the Southern
Ocean maximum band ratio to chlorophyll relationship
well enough to use as an optimization starting point.
Instead the optimized SeaWiFS algorithm was used as the
MODIS-Aqua optimization starting point. All algorithm
coefficients were modified for our Southern Ocean data set
using the optimization toolbox in Mathworks MATLAB
2011a. The optimization process attempted to achieve a
slope of 1, a y intercept of 0, and a large r2 for algorithm
predicted chlorophyll versus in situ chlorophyll. Increasing
and decreasing the degree of the polynomial was allowed
in order to obtain the best possible fit. The GlobColour data
were treated with the same optimization method except
that the SeaWiFS OC4v6 algorithm was used as a starting
point for the optimization process, as there is no existing
empirical chlorophyll algorithm for GlobColour.

2.5. Phytoplankton Pigment Contribution

[16] Pigment composition is considered to be a driving
factor in the absorption profile of phytoplankton and there-
fore impacts satellite chlorophyll retrievals. In order to best
describe the changing pigment composition across such a
vast geographic scale, an index of the key diagnostic pig-
ments was investigated using a pigment biomarker index
developed by Claustre [1994]. The index is:

Fp ¼
P

Fucoxanthinþ
P

Peridininð Þ �
�P

Fucoxanthin

þ
X

Peridininþ
X

190HexFucoxanthin

þ
X

190ButFucoxanthinþ
X

Zeaxanthin

þ
X

Chlorophyll � bþ
X

Alloxanthin
��1

ð3Þ

where
P

pigment is the summation of that pigment’s
HPLC derived concentration in mg m�3.

[17] The Fp Index was originally derived from the
knowledge that variations in chlorophyll standing stocks on
a global scale are mainly due to variation in stocks of dia-
toms and dinoflagellates with respect to other taxa
[Claustre, 1994]. Fucoxanthin is a key diagnostic pigment
of diatom species and Peridinin is a key pigment for dino-
flagellates, so large Fp values represent high concentrations

of diatoms or dinoflagellates or both, relative to other phy-
toplankton groups [Claustre, 1994; Jeffrey et al., 1997].

2.6. Independent Evaluation

[18] In situ data were broken down into a development
data set and a validation data set. The validation data set
contained a random selection of 1/3 the available in situ
measurements and the development data set consisted of all
remaining in situ data. In order to assess the validity and
performance of the new algorithms, each satellite chloro-
phyll product was reprocessed using our newly developed
algorithms and then compared against the validation data
set.

3. Results

3.1. Initial Comparison of Satellite Estimates to In
Situ Data

[19] Our in situ data set consisted of 1388 in situ HPLC
chlorophyll concentrations that ranged from 0 to 3.97 mg
m�3, mean¼ 0.37 mg m�3. The number of successful
match ups for each temporal and spatial averaging strategy
for SeaWiFS is summarized in Table 1. Case 3 (8 day data
and 3 � 3 pixel averaging, Table 1) was subjectively deter-
mined as the optimum combination. This choice was based
on a marked increase in the number of matches obtained by
using 8 day data compared with daily data, and the rela-
tively small difference between 3 pixel averaging and 5
pixel averaging across all products. It was thought that
monthly data would average over too much of the seasonal
variability. SeaWiFS data products showed the fewest
match ups to the in situ data set and GlobColour the most,
as can be seen from the increasing density of data points in
Figure 1—greater matches to GlobColour were to be to be
expected, due to it being a merged satellite data product.
All three algorithms showed considerable scatter, system-
atic underestimation at chlorophyll >0.1 mg m�3 and con-
siderably reduced dynamic range when compared to in situ
data (Figure 2). There were poor correlation coefficients
(r2¼ 0.25–0.27), poor slopes (0.23–0.26), and also signifi-
cant offsets (y intercepts¼ 0.15–0.16 mg m�3) that pro-
duced significant overestimates when in situ chlorophyll
concentrations were below approximately 0.1 mg m�3

(Table 2, left columns of each pair).
[20] Histograms of the log 10 ratio of satellite chloro-

phyll to in situ chlorophyll show the scatter in a different
way (Figure 3). For developing the new algorithms, the

Table 1. Summary, for SeaWiFS, of All Temporal and Spatial
Averaging Techniques Trialed During the In Situ to Satellite
Chlorophyll Match-Up Process

Case Temporal Averaging Pixel Averaging % Matchesa Adjusted r2

1 Daily 3 10.5% 0.18
2 Daily 5 13.1% 0.28
3 8 Day 3 42.7% 0.27
4 8 Day 5 48.6% 0.30
5 Monthly 3 63.2% 0.29
6 Monthly 5 64.2% 0.31

a% Matches represents the proportion of the 1388 in situ data points that
matched to coincident satellite data points under each scenario.
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scatter (at least partly derived from our relaxed match up
criteria) was reduced by only considering data within one
standard deviation of the mode of log10 Chlsat=Chlinsituð Þ
for each product. A 20% (134 of 641), 18.1% (128 of 705),
and 25% (119 of 464) reduction in match ups was observed
for MODIS-Aqua, GlobColour, and SeaWiFS, respectively.
The underestimation by current algorithms is evident by
the negative mode of all panels in Figure 3. The standard
deviation and mode, respectively, were 0.41 and �0.20 mg
m�3 for SeaWiFS, 0.38 and �0.24 mg m�3 for MODIS-
Aqua, and 0.39 and �0.42 mg m�3 for GlobColour.

3.2. Creating New Models

[21] The relationship between the maximum band ratio
and in situ chlorophyll is poorly described by all original
algorithms (dashed lines in Figure 4). The original algo-
rithms for all satellite products show an underestimation of
up to 1 mg m�3 (see slopes <1 in Figure 2). The original
MODIS-Aqua algorithm did not describe the maximum
band ratio to chlorophyll relationship well enough to use as
an optimization starting point and this is illustrated by the
fact that the dashed line for the original algorithm barely
intersects the data in Figure 4b. The new chlorophyll algo-
rithms are presented below and as solid lines in Figure 4,
and their performance against the in situ data set is
described in Table 2 and Figure 5.

[22] SeaWiFS:

ChlSW ¼ 10 0:6736�2:0714RSW�0:4939R2
SWþ0:4756R3

SWð Þ
RSW ¼ log10 Rrs 443=555ð Þ > Rrs 490=555ð Þ > Rrs 510=555ð Þ

� � ð4Þ

[23] MODIS-Aqua:

ChlMA ¼ 10 0:6994�2:0384RMA�0:4656R2
MAþ0:4337R3

MAð Þ
RMA ¼ log10 Rrs 443=555ð Þ > Rrs 490=555ð Þ

� � ð5Þ

[24] GlobColour:

ChlGC ¼ 10 0:3205�2:9139RGCþ8:7428R2
GC�16:1811R3

GCþ9:0051R4
GCð Þ

RGC ¼ log10 Rrs 443=555ð Þ > Rrs 490=555ð Þ > Rrs 510=555ð Þ
� � ð6Þ

[25] The optimization and data refinement process
improved the fit (r2) of all chlorophyll algorithms: Sea-
WiFS from 0.27 to 0.46, MODIS-Aqua from 0.26 to 0.51,
and GlobColour from 0.25 to 0.50 (Table 2). The solid lines
in Figures 4 and 5 show that the improved satellite

Figure 2. Plot of satellite chlorophyll versus in situ
HPLC chlorophyll measurements for each satellite data
product: (a) SeaWiFS, (b) MODIS-Aqua, and (c) GlobCol-
our merged data product.

Table 2. Linear Fit Statistics for Both the Original Satellite Chlo-
rophyll Algorithms and the New Optimized Chlorophyll Algo-
rithms for Each Satellite Data Product to the Development Data
Set

Parameter

SeaWiFS MODIS-Aqua GlobColour

OC4v6 New OC3M New Original New

r2 0.27 0.46 0.26 0.51 0.25 0.50
Slope 0.25 0.76 0.23 0.90 0.26 0.46
y Intercept 0.16 0.13 0.15 0.05 0.15 �0.06
Dynamic range increase 172% 138% 1.3%
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chlorophyll algorithms represent in situ chlorophyll much
more accurately than the originals.

3.3. Spatial Anomaly Maps

[26] The spatial distribution of the underestimation by the
original algorithms is of considerable importance. Summer
climatological comparison maps are presented in Figure 6.
These maps represent the difference between the original sat-
ellite chlorophyll products and the new algorithms as applied
to climatological Austral summer data. There is a general
underestimation by the original algorithms throughout the
open ocean regions of the Southern Ocean, increasing at
higher latitudes. The original MODIS-Aqua and SeaWiFS
algorithms showed some isolated regions of overestimation
near continental margins during summer (Figure 6).

3.4. Phytoplankton Pigment Contribution

[27] Full HPLC pigment data are available for 94%
(1307 of 1388) of the in situ samples used in this analysis.

Figure 3. Histograms of the log10(Chlsat/Chlinsitu) for
each satellite data product: (a) SeaWiFS, (b) MODIS-Aqua,
and (c) GlobColour. Open circles represent the full in situ
data set, while filled circles show the refined (61 standard
deviation of the mode of log10(Chlsat/Chlinsitu)) data set.

Figure 4. HPLC in situ chlorophyll measurements versus
maximum band ratio of remotely sensed radiance for each
satellite data product, with original algorithms presented as
dashed lines and new algorithms as solid lines: (a) Sea-
WiFS, (b) MODIS-Aqua, and (c) GlobColour. Figure 4c
has no dashed line as there is no existing empirical chloro-
phyll algorithm for GlobColour.
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Figure 7 shows the distribution of the Fp diagnostic pig-
ment index latitudinally across the study region and as
function of the original satellite to in situ mismatch. Three
distinct community types are present; the northern low Fp
community (40–55�S), the middle mixed, variable Fp,
community (55–60�S), and the southern high Fp commu-
nity (60–70�S).

Figure 5. Plot of reprocessed and optimized satellite
chlorophyll versus HPLC in situ chlorophyll measure-
ments, for each satellite data product : (a) SeaWiFS, (b)
MODIS-Aqua, and (c) GlobColour. Dashed lines represent
the 1:1 satellite chlorophyll versus in situ chlorophyll rela-
tionship we aimed for in optimization and the solid lines
represent the actual obtained satellite chlorophyll versus in
situ chlorophyll performance.

Figure 6. The geographical distribution of the chloro-
phyll differences (original satellite chlorophyll product
minus optimized satellite chlorophyll product) for the Aus-
tral summer climatology of each satellite data product: (a)
SeaWiFS, (b) MODIS-Aqua, and (c) GlobColour. Negative
differences indicate that the original algorithm underesti-
mated chlorophyll relative to the new algorithm.
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3.5. Independent Evaluation

[28] In order to assess the validity and performance of
the new algorithms, each satellite chlorophyll product was

reprocessed using the new algorithms and compared
against the validation data set (shown in Figure 8 and
Table 3). The performance of reprocessed satellite

Figure 7. The latitudinal distribution of the log10 ratio of
satellite to in situ chlorophyll, from Figure 3 (log10(Chlsat/
Chlinsitu)) colored by the pigment biomarker index Fp for
each satellite data product: (a) SeaWiFS, (b) MODIS-
Aqua, and (c) GlobColour.

Figure 8. Plot of reprocessed and optimized satellite
chlorophyll versus HPLC in situ chlorophyll from the vali-
dation data set, for each satellite data product: (a) Sea-
WiFS, (b) MODIS-Aqua, and (c) GlobColour. The open
circles and dashed lines represent the original satellite chlo-
rophyll product and the filled circles and the solid lines rep-
resent the reprocessed version of the same data.
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chlorophyll to in situ chlorophyll (Figure 8), shows greatly
improved slopes, close to those shown in Figure 5, for all
products (increases of 0.39, 0.44, and 0.11 for SeaWiFS,
MODIS-Aqua, and GlobColour, respectively; shown in
Table 3).

4. Discussion

[29] Developing regional algorithms for SeaWiFS,
MODIS-Aqua, and GlobColour has improved the ability of
each satellite product to represent the true concentration of
surface chlorophyll in the Southern Ocean. Current NASA
and GlobColour chlorophyll products result in more than a
50% underestimation in our study region (Figure 2).

[30] The high-latitude oceans are characterized by strong
seasonality. Blooms dominated by just a few species are
not uncommon in summer while growth is limited by
(micro-) nutrients or light for the rest of the year [Bath-
mann et al., 1997]. Species-specific absorption in the 440–
570 nm range of wavelengths fluctuates widely enough to
cause large taxon-specific differences in chlorophyll
retrievals when using the current empirical algorithms
[Stuart et al., 2000; Arrigo et al., 1998]. This study is the
first to combine a numerically large and spatially wide-
spread in situ sample set to develop robust and reliable
algorithms specific for the Southern Ocean. All three chlo-
rophyll algorithms were optimized using similar methods.
All three optimized algorithms improved chlorophyll
retrievals for the Southern Ocean (Table 2 and Figures 4
and 5), but the new MODIS-Aqua algorithm was by far the
best performer with a slope closest to 1.0 and y intercept
effectively 0 (Table 2 and Figure 5). The instrument is cur-
rently supported and operating for the foreseeable future,
unlike the now concluded SeaWiFS and MERIS missions.

[31] Along with improved chlorophyll accuracy, these
new regionalized algorithms increased the dynamic range
of detectable chlorophyll. The underestimation of chloro-
phyll by current satellite algorithms in the Southern Ocean
compresses the range of chlorophyll that can be detected.
This can be seen in Figure 2, where the in situ range of 0–3
mg m�3 is represented in a range of less than 0–1 mg m�3

by all three algorithms. This >50% reduction in dynamic
range severely reduces the resolving power of satellite
chlorophyll products, limiting their ability to detect change
in both space and time. The correction of the underestima-
tion (i.e., achieving a slope close to 1 for the satellite versus
in situ chlorophyll plots) was one of the highest priorities
of the optimization process, more so than improving accu-
racy (increasing r2). The algorithms described here substan-

tially expand the dynamic range of detection and in the
case of MODIS-Aqua by over 130% (Table 2). The ability
to correctly capture the dynamic range of Southern Ocean
chlorophyll is of fundamental importance when this
remotely sensed data is used as validation or initialization
for ecosystem models, and when determining large-scale
decadal variability and trends in ecosystem dynamics [Beh-
renfeld et al., 2006; Arrigo et al., 2008].

[32] The ability to resolve change in chlorophyll is
affected not only by the algorithm’s capacity to estimate
chlorophyll but also by the phytoplankton community com-
position. Satellite chlorophyll algorithms cannot discrimi-
nate between the individual species they are observing;
they merely measure the community as a whole. Phyto-
plankton community structure and community physiologi-
cal states are broadly reflected by community pigment
composition [Higgins et al., 2011; Jeffrey et al., 2011].
Unfortunately, there is extensive overlap in pigment com-
position between phytoplankton species [Cota et al., 2003;
Higgins et al., 2011; Jeffrey et al., 2011]. It is with this in
mind that a pigment biomarker (Fp) developed by Claustre
[1994] was invoked to determine the link between satellite
algorithm accuracy and phytoplankton community
composition.

[33] The ratio of satellite chlorophyll to in situ chloro-
phyll, which describes performance and therefore underes-
timation of satellite products, covaries with community
pigment composition (Fp) in the Southern Ocean (Figure
7). Low Fp indices typically represent oligotrophic regions,
high Fp indices typically represent mesotrophic or eutro-
phic conditions, and variable or frontal regions are often
represented by a highly variable Fp index [Claustre, 1994].
High Fp values indicate a phytoplankton community con-
taining high concentrations of diatoms and/or dinoflagel-
lates relative to all other taxa. In our data set, we observed
a transition from low Fp (�0.2), oligotrophic conditions at
around 45�S, through a mixed frontal zone community
(�55–60�S) into a high Fp (�0.8) zone reflecting more
eutrophic conditions and diatom/dinoflagellate dominance
around 60–70�S. This gradient is associated with some sys-
tematic variability in satellite chlorophyll algorithm accu-
racy. The current ocean color satellite algorithms are most
accurate in the frontal zones of 55–60�S, as seen by the
log10 Chlsat=Chlinsituð Þ values grouped closer to zero in Fig-
ure 7. North of approximately 50�S the scatter slightly
increased, indicating poorer algorithm performance in these
oligotrophic communities. The algorithm performance was
poorest in the higher latitude diatom dominated region,
where retrieval accuracy may have also been impacted by
sea ice.

[34] The merging of independent satellite ocean color
products, in order to improve spatial and temporal cover-
age, will improve the detection of change in areas of signif-
icant cloud cover, such as the Southern Ocean. GlobColour
merges MODIS-Aqua, MERIS, and SeaWiFS chlorophyll
products through an error-weighted averaging technique
[Pinnock et al., 2007]. For the merged product to be as rep-
resentative as possible, knowledge of parent sensor errors
and biases is very important. The weighted averaging tech-
niques employed by GlobColour are error correcting in na-
ture. They assign lower weight to high variance data during
averaging, but inherent biases in the parent products are not

Table 3. Linear Fit Statistics for the Original Satellite Chloro-
phyll Algorithms and the New Optimized Chlorophyll Algorithms
When Applied to an Independent Data Set for Validation

Parameter

SeaWiFS MODIS-Aqua GlobColour

OC4v6 New OC3M New Original New

r2 0.27 0.29 0.27 0.30 0.28 0.28
Slope 0.25 0.64 0.29 0.73 0.26 0.37
y Intercept 0.16 0.27 0.14 0.18 0.15 0.03
Dynamic Range Increase 38% 114% 1%
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easily dealt with (see discussion in Durand [2007] and Pin-
nock et al. [2007]). The effectiveness of any bias compen-
sation that may occur in the GlobColour merging process is
diminished in the Southern Ocean. MERIS, which is
included in GlobColour, is known to overestimate some
nLW bands, especially 413 nm, whereas SeaWiFS and
MODIS have a tendency to under estimate. We propose
that, for the Southern Ocean, the merging process is com-
pressing the dynamic range of the GlobColour product due
to the different biases of the original products. This com-
pression of GlobColour’s dynamic range is evident in the
maximum band ratio used to calculate chlorophyll in this
manuscript. The standard deviation of SeaWiFS and
MODIS-Aqua maximum band ratios were 0.97 and 1.11,
respectively, whereas GlobColour had almost half the
standard deviation (0.53) for a similar range of in situ chlo-
rophyll standard deviation. This compression of variability
in the x axis of Figure 4c made the curve fitting and optimi-
zation procedure more difficult. GlobColour is the poorest
performer in the Southern Ocean, and its performance was
not significantly improved by optimization (Figures 2 and 5
and Table 2). GlobColour was optimized herein by using
merged water-leaving radiance data but a more robust
approach, not attempted here, would be to use optimized
satellite products, like the improved algorithms developed
here for MODIS and SeaWiFS, and then merge the opti-
mized data, according to the GlobColour error weighting,
to produce a Southern Ocean specific GlobColour chloro-
phyll product. Depending on the needs of the user, the
increased temporal and spatial coverage of GlobColour
may not be justified given the poor accuracy and dynamic
range, even after regional optimization.

[35] All algorithms require testing and validation in
order to characterize accuracy and performance. As
detailed in section 2, the algorithms developed here were
produced using two thirds of the available data set but a
randomly selected subset was reserved for validation and
testing. When validated against this reserved data set, all of
our new algorithms showed an improvement on standard
chlorophyll products for the Southern Ocean. Figure 8
shows original product performance (open circles) and the
same product when reprocessed with the new algorithms
(filled circles). All products showed strong improvements
in both dynamic range (slope) and correlation (r2) that are
broadly consistent with corresponding results in Figure 5
and Table 2. The new MODIS-Aqua and SeaWiFS algo-
rithms performed particularly well in the validation, with
improved final r2 and dynamic range increases of 0.30 and
114% and 0.29 and 38%, respectively, vindicating their
wide-scale application and preferential use over currently
available algorithms (Figure 8 and Table 3).

[36] Atmospheric correction is a major source of uncer-
tainty and variability in polar remotely sensed products,
mainly due to large solar zenith angle [Wang, 2003]. The
algorithm optimization process conducted here did not set
out to address the issues associated with atmospheric cor-
rection but may have indirectly done so. The method
described here effectively scales remote sensed reflectance
so as to better describe its relationship to chlorophyll in the
Southern Ocean and has therefore possibly accounted for,
at least in a small way, the variance due to unsuitable or
incorrect atmospheric correction. Further work on atmos-

pheric correction at high latitudes is still needed. Improve-
ments in this area will impact the signal-to-noise ratio and
spatial coverage of many polar ocean color products
[Wang, 2003].

[37] Provision of validated Southern Ocean satellite
chlorophyll data to the wider scientific community is one
of the goals of this work. We do not, however, attempt to
blend our improved Southern Ocean chlorophyll with
global data. Users who wish to do this are directed to
Moore et al. [2001, 2009] and Kahru and Mitchell [2010].
We have reprocessed the existing SeaWiFS and MODIS-
Aqua chlorophyll data sets, and will process data from the
latter source on a regular basis as more data become avail-
able. These reprocessed Southern Ocean data sets are sup-
ported and hosted by Australia’s Integrated Marine
Observing System (IMOS: http://imos.org.au/) where they
are available for download and use.
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