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Abstract

Several studies have identified effects of genetic variation on DNA methylation patterns and associated heritability, with
research primarily focused on Caucasian individuals. In this paper, we examine the evidence for genetic effects on DNA
methylation in a Mexican American cohort, a population burdened by a high prevalence of obesity. Using an Illumina-based
platform and following stringent quality control procedures, we assessed a total of 395 CpG sites in peripheral blood
samples obtained from 183 Mexican American individuals for evidence of heritability, proximal genetic regulation and
association with age, sex and obesity measures (i.e. waist circumference and body mass index). We identified 16 CpG sites
(,4%) that were significantly heritable after Bonferroni correction for multiple testing and 27 CpG sites (,6.9%) that
showed evidence of genetic effects. Six CpG sites (,2%) were associated with age, primarily exhibiting positive
relationships, including CpG sites in two genes that have been implicated in previous genome-wide methylation studies of
age (FZD9 and MYOD1). In addition, we identified significant associations between three CpG sites (,1%) and sex, including
DNA methylation in CASP6, a gene that may respond to estradiol treatment, and in HSD17B12, which encodes a sex steroid
hormone. Although we did not identify any significant associations between DNA methylation and the obesity measures,
several nominally significant results were observed in genes related to adipogenesis, obesity, energy homeostasis and
glucose homeostasis (ARHGAP9, CDKN2A, FRZB, HOXA5, JAK3, MEST, NPY, PEG3 and SMARCB1). In conclusion, we were able to
replicate several findings from previous studies in our Mexican American cohort, supporting an important role for genetic
effects on DNA methylation. In addition, we found a significant influence of age and sex on DNA methylation, and report on
trend-level, novel associations between DNA methylation and measures of obesity.
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Introduction

DNA methylation is an epigenetic modification that effectively

regulates gene expression via gene silencing, and is thus considered

an important mechanism in growth and development. Within

humans, the DNA methyltransferases, DNMT1, DNMT3a and

DNMT3b, regulate DNA methylation, which involves the covalent

addition of a methyl group at the C(5) position of cytosine in

cytosine-guanine (CpG) dinucleotides [1,2]. Emerging evidence

from both animal and human studies suggest that DNA

methylation may be heritable [3–7], although the mechanisms of

such heritability are speculative.

Both genetic and epigenetic mechanisms can underlie disease

development through gene dysregulation, and in many cases act

synergistically. DNA methylation changes, at least at the single

gene level, have been implicated in most complex diseases,

including cancer [2,8,9], autoimmune diseases (lupus, multiple

sclerosis) [8,9], psychiatric disorders (bipolar disorder, schizophre-

nia, autism and depression) [10], obesity [11–14], diabetes [15–

19], atherosclerosis [20], hypertension [21] and cardiovascular

disease [22–24].

Epigenetic regulation has not been well studied in Mexican

Americans, who show a distinct disease profile relative to

Caucasian populations. In particular, the prevalence of obesity,

diabetes and metabolic syndrome are all elevated among Mexican

Americans [25–27], which may be mediated, in part, by epigenetic

changes. Moreover, obesity is strongly associated with cardiovas-

cular disease, the leading cause of death worldwide and thus merits

particular attention. For our study sample, two measures of obesity

were taken: body mass index (BMI), which has been historically

used to define obesity (i.e. greater than 30 kg/m2); and waist

circumference, which, as an index for central adiposity, has been

shown to be a more accurate indicator of obesity, as well as an

independent risk factor for diabetes [28]. To date, several animal

and human studies have implicated DNA methylation in obesity

[11–14], but have primarily focused on global methylation levels
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or gene-specific DNA methylation rather than a genome-wide

approach, or have focused on relatively small sample sizes. In this

paper, we report the findings from our pilot study of genome-wide

methylation data that investigates: 1) the inherent genetic

contribution to epigenetic modifications in a family-based

Mexican American cohort; 2) the relationship between DNA

methylation and age and sex; and 3) the relationship of DNA

methylation with two measures of obesity, BMI and waist

circumference.

Materials and Methods

Ethics Statement
Written consent was obtained for all individuals in this study.

Approval for this study and for the consent process was received

from the Institutional Review Board at The University of Texas

Health Science Center at San Antonio.

Population Structure
The San Antonio Family Heart Study (SAFHS) was initiated in

1991 to study the effects of cardiovascular related illness in

Mexican Americans [29]. The initial population consisted of 1,431

individuals within 42 extended families. This pilot study assesses

DNA methylation profiles of a subset of these individuals (n = 183

successfully profiled subjects from an initial selection of 188

subjects) who represent large founder lineages, chosen to maximize

genetic variation. Many of these individuals are related. Pairwise

relationships include 196 pairs of 1st degree relatives, 221 pairs of

2nd degree relatives, 401 pairs of 3rd degree relatives, 320 pairs of

4th degree relatives and 39 pairs of 5th degree relatives. The mean

age of this population is 42.15 years (standard deviation (sd): 13.74;

range 19–75 years) and 55% of individuals are female. Each

individual has been assessed for basic anthropometric measures,

including those relevant to obesity, waist circumference (n = 182)

and BMI (n= 183). In this study, the prevalence of obesity (defined

as BMI$30 kg/m2) is 59%, with 86% of the sample falling in the

‘‘overweight’’ category (BMI$25 kg/m2). The average BMI for

the cohort is 32.40 kg/m2 (sd: 7.40 kg/m2), and is 31.21 kg/m2

(sd: 6.81 kg/m2) for males and 33.38 kg/m2 (sd: 7.75 kg/m2) for

females. The average waist circumference for the cohort is

104.86 cm (sd: 16.14 cm), and is 104.08 cm (sd: 14.91 cm) for

males and 105.50 cm (sd: 17.12 cm) for females.

Methylation Profiling
Using the EZ-96 DNA MethylationTM Kit (Zymo Research

Corp, Irvine, CA) and following the manufacturers’ instructions,

we performed bisulfite conversion of 1 mg DNA obtained from

peripheral blood of an initially selected 188 Mexican American

individuals following an overnight fast. We used Illumina Gold-

enGate technology incorporating the Methylation Cancer Panel I

(Illumina, San Diego, CA) to investigate the quantitative level of

methylation at 1,505 CpG sites across 807 genes; 28.6% of genes

contained only one CpG site, 57.3% contained two CpG sites and

14.1% of genes had three or more CpG sites. Although the CpG

sites within this panel were chosen on the basis of their association

or potential association with cancer, they fell within genes involved

in DNA repair, cell cycle control, differentiation and apoptosis

making them suitable for study in disorders other than cancer. The

GoldenGate assay was carried out according to manufacturers’

instructions. Throughout the manuscript, CpG sites are annotated

as GENE_Position_Strand, where GENE designates the gene name,

Position designates the position of the CpG site relative to the

transcription start site either within the promoter (P) or exon (E),

and Strand designates whether the CpG site is on the forward (F) or

reverse (R) strand.

Initial analysis was carried out using GenomeStudio, applying

background normalization by using the signals from built-in

controls to minimize the amount of variation in background

signals between arrays. DNA methylation for each CpG site is

reported as a beta value, which is a score between 0 (completely

unmethylated) and 1 (fully methylated). Built-in sample dependent

and independent controls were assessed for each sample to look for

any outliers. The raw data generated from GenomeStudio is given

in Table S1. We excluded three samples with call rates less than

90% (based on detection p-values$0.05). We excluded two

additional samples whose coefficient of variation (based on beta

values) was beyond the 97.5th percentile, leaving a total of 183

samples for statistical analyses. Samples used in this study were

also genotyped for approximately one million SNPs (see below) as

part of a larger study; sex and familial relationships were verified

during the genotyping process. Any CpG sites with a call rate less

than 0.97 were excluded from analysis (n = 103). The platform

used in this study has been shown to discriminate DNA

methylation levels (beta values) that differ as little as 17% [30],

as such, we excluded probes that showed ,0.17 variation in beta

values from analysis (n = 355). To account for the non-normal

distribution typical of many CpG sites, we used the Lilliefors test

for normality [31] at the 0.1 level after FDR correction for

multiple testing; non-normally distributed probes were excluded

from analysis (n = 641). Any remaining X-linked probes were

excluded from analysis (n = 11). Thus, in total, 395 CpG sites were

included in subsequent analyses. Polymorphisms within the probe

sequence may affect probe binding and therefore bias DNA

methylation levels detected. We therefore tested for the presence of

39,706,715 known single nucleotide polymorphisms (SNPs),

derived from the 1000 Genomes Project, in each of the 395

probes analyzed.

High Density SNP Genotyping
Each individual assessed in this pilot study has been genotyped

for approximately one million SNP markers using several Illumina

genotyping arrays, including the Illumina HumanHap550v3, with

HumanExon510Sv1, Human1Mv1 and Human1M-Duov3 (Illu-

mina, San Diego, CA). The Infinium Whole-Genome Genotyping

Assay was employed according to manufacturers’ instructions.

Genotyping of the full SAFHS cohort included .2,000 samples,

which underwent stringent quality control measures, excluding

any samples with call rates ,90% or that showed discrepancies in

either sex or known familial relationships. According to these

criteria, all 188 samples that underwent methylation profiling were

eligible for genotyping analysis. Data cleaning in the full SAFHS

population excluded monomorphic SNPs and those with a call

rate less than 95%, those that were monomorphic, those whose

minor allele was present in ,10 individuals and those with Hardy-

Weinberg Equilibrium test statistics of p#1024 (calculated using

SOLAR [32] taking familial relationships into account). A total of

995,320 SNPs were available for analysis of genetic regulation.

Allele frequencies were calculated using maximum likelihood

estimates in SOLAR [32] and genotypes were checked for

Mendelian consistency using Simwalk [33]. Finally, Merlin [34]

was used to impute missing genotypes conditional on relatives’

genotypes with a weighted average of possible genotypes being

used when an individuals’ genotype could not be inferred with

certainty. Raw genotype data for the entire SAFHS cohort will be

made available shortly through the Center for Collaborative

Genomic Studies on Mental Disorders.

Genetic Effects on DNA Methylation
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Statistical Analysis
Our general computer package for statistical genetic analysis,

SOLAR [32], was used to estimate heritability, identify genetic

variation influencing DNA methylation and determine associa-

tions with age, sex and obesity measures. Polygenic regression

models of the form: ti~miz
Pk

j~1

bjxijzgizei were used in the

analyses where t is phenotypic trait observation on the ith

individual, m is the estimated mean trait value, b is the regression

coefficient associated with covariate6(total k covariates), g is the

polygenic effect and e is the residual error. The polygenic effect g

was modeled by including a pairwise kinship matrix with the

following kinship coefficients: identical twins, 1; parent-offspring or

sibling, 0.5; and grandparent-grandchild, avuncular, half-siblings

or double first cousins, 0.25. Further, the kinship coefficients for

3rd, 4th, 5th and 6th degree relatives are 0.0078, 0.0020, 0.0005 and

0.0001, respectively. The covariates sex, age, age2 and their

interactions were used in all relevant analyses. Regression terms

were estimated for each covariate, the statistical significance of

which was assessed using a likelihood ratio test by comparing the

log-likelihoods of models in which the covariate effect is estimated

to the likelihoods of models in which the covariate effects were

constrained to zero. Given that methylation profiling was

performed on individuals that were chosen to maximize capture

of founder genomes from the largest pedigrees and were optimally

chosen for heritability inference, we calculated power to detect

additive genetic heritability. We estimated that we have 50%

power to detect heritability as small as 0.23 and 80% power to

detect heritability as low as 0.36. To detect associations whilst

correcting for multiple tests (Bonferroni correction) our power is

80% to detect variants that account for 16.7% of the variation. As

such, we present results based on both Bonferroni correction and

the less stringent false discovery rate (FDR) of 5%. The tail area-

based estimation of FDR was computed using the R program

‘‘fdrtool’’ [35].

We used the BSMAP software package [36] to examine if the

autosomal CpG sites that were significantly associated with sex

were cross-reactive with the X-chromosome. For this analysis, we

used the Hg19 reference genome with the following in silico

conversions – reference, reverse complement, fully methylated and

fully unmethylated. We then aligned the three probe sequences

against these four reference genomes.

We employed the ‘‘measured genotype’’ model [37,38], as

implemented in the genome-wide association procedures in

SOLAR [39], to investigate the effect of genetic variation on

methylation levels at each CpG site. Each of the observed CpG

sites was tested as a possible covariate influencing waist

circumference or BMI using a regression approach that allowed

for non-independence. We also tested for effects of proximal

genetic variation, with the assumption that significant findings

(correlations) would likely indicate genetic effects. Two CpG sites

(PECAM1_E32_R and PECAM1_P135_F) could not be annotated

and were excluded from this analysis. To test for genetic effects on

DNA methylation levels, we took the measured-genotype

approach to analyses and defined proximal SNPs as those within

100 kb of the flanking region around the genomic location of the

CpG site (n = 29,862). According to these criteria, all 393 CpG

sites were assessed for genetic effects. For determining the

statistical significance of a correlated SNP, the nominal p-value

was estimated by comparing the log-likelihoods of a model with

and without the SNP. Since we anticipated that many of the SNPs

included in these analyses are likely to be in linkage disequilibrium,

we used the method suggested by Li and Ji [40] to correct for

multiple testing. In this method, the number of independent tests is

determined using the eigenvalues of the SNP6SNP correlation

matrix and then using a Sidak correction for multiple testing. We

conducted these analyses separately for each chromosome and

then summated all of the independent tests (correction for 4,209

tests). Additionally, we adjusted for an FDR of 5%.

Results and Discussion

We have conducted a pilot study to examine the effects of

genetic variation on DNA methylation in Mexican Americans, in

which these effects, to our knowledge, have not yet been

examined. Further, we assessed associations between DNA

methylation and age and sex, as well as obesity measures, in

order to better understand epigenetic contributions to health.

To ensure DNA methylation levels were not significantly

influenced by variation within the probe sequence, we tested for

the presence of 39,706,715 SNPs derived from the 1000 Genomes

Project. We identified SNPs in 163 of the 395 probes used for

analysis (see Table S2); five probes contained three SNPs, 38

probes contained two SNPs and the remaining 120 probes

contained a single SNP, three SNPs overlapped with two probes

(total of 208 SNPs). Given that most of these SNPs are rare and

therefore unlikely to be present in our cohort at a significant

frequency, we have highlighted probes containing SNPs with a

minor allele frequency (MAF).5%. We identified SNPs within 24

probes that had a MAF.5%, two of these probes contained two

SNPs each. Within these 24 probes, eight contained SNPs within

5 bp of the cytosine molecule of the CpG site and an additional six

contained SNPs within 10 bp of the cytosine molecule. Although

we included all probes in our analyses, regardless of the presence

of SNPs, in the following text (and shown in Table S2), we have

highlighted any results that are likely to be influenced by the

inclusion of such probes. Only probes that showed significant

heritability or genetic effects contained SNPs with a MAF.5%.

DNA Methylation is Heritable
Of the 395 high quality CpG sites examined in this study, 95

(,24%) exhibited nominally significant (p,0.05) heritability, 28

(,7%) were heritable at an FDR of 5% and 16 (,4%) exhibited

statistically significant heritability after Bonferroni correction for

multiple testing (p,1.2761024; Table S3). Table 1 shows all sites

that are significantly heritable. Across all loci, the mean heritability

was 14%, but it was 36% for the 95 CpG sites that showed

nominal evidence for heritability, 52% for the 28 sites that were

heritable at an FDR of 5% and was 59% for the 16 CpG sites that

were significantly heritable after Bonferroni correction. One of the

CpG sites that was found to be heritable (LTA_E28) was within a

probe sequence that contained a SNP with a MAF of 35%, 19 bp

from the CpG site (see Table S2). Although a SNP at this distance

is unlikely to affect probe binding, alternative strategies to

determine the methylation status of this CpG site may be

warranted. An additional five probes that were associated with

heritability contained one or two SNPs, although the MAF of these

was #1% and they are therefore unlikely to influence results due

to the presence of perhaps only one or two copies in our cohort.

Several recent studies have examined the heritability of DNA

methylation, finding it to be highly variable for individual CpG

sites. Using the Illumina GoldenGate platform Boks, et al, [41]

estimated the mean heritability to be 22% (peripheral blood cells)

across 430 tested loci and ,3% of loci were found to be

significantly heritable (applying Bonferroni correction). Our results

using this same platform revealed a similar, although slightly

higher, percentage of significantly heritable sites. Using the

Genetic Effects on DNA Methylation
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Illumina HumanMethylation27 platform that assesses

,27,000 CpG sites, mean heritability has previously been

estimated at: 18% in peripheral blood cells [42]; 12%, 7% and

5% in human umbilical vein epithelial cells, cord blood

mononuclear cells and placenta, respectively [43]; and 3% in

brain [44]. Our overall mean heritability (14%) is within the range

of these study estimates and was determined based on a slightly

larger sample size and family data rather than twin or singleton

data. Recently, highly variable DNA methylation patterns were

identified across three different neonatal tissues and no compelling

evidence for a common set of highly heritable DNA methylation

variants was seen [43], suggesting that the tissue type analyzed

plays a role in heritability estimates.

Given the overlap in the platform and quality control strategies

employed, we compared our heritability findings to those of Boks

and colleagues, who examined heritability in a twin dataset using

430 CpG probes [41]. Of the 395 probes that were deemed of

suitable quality for heritability analysis in our study, only 232 of

these (59%) were assessed in the study by Boks, et al, reflecting

differential DNA methylation profiles across populations, which

may represent ethnic-specific differences or may be due to small

cohort sizes and subsequent underpowered analyses. Of the 16

sites we identified as heritable (after Bonferroni correction), five

Table 1. Heritability and genetic regulation of DNA methylation.

CpG Site# Heritability Genetic effects

h2 P-value

Number of

associations

Most significant

SNP

Genotypes

(MAF)*

Distance from

CpG site (bp) Beta P-value

@ABL2_P459_R 0.223 3.8761022 8 rs1318056 C/G (0.05) 287,050 1.069 2.2361026

ACVR1_E328_R 0.494 9.5061026 0 rs7595478 C/T (0.13) 288,318 0.442 1.2961023

ALOX12_E85_R 0.552 3.2061025 9 rs10852889 T/C (0.38) 1,356 20.911 5.51610221

ALOX12_P223_R 0.599 1.3861025 10 rs10852889 T/C (0.38) 1,664 20.997 3.56610226

AXL_P223_R 0.534 3.0061027 7 rs338585 C/T (0.39) 212,785 0.741 1.18610216

CDK10_P199_R 0.000 5.0061021 1 rs459920 T/C (0.30) 222,052 0.493 1.8861026

COL1A2_P407_R 0.220 2.0561022 2 rs3763469 A/G (0.13) 21,991 1.243 1.22610220

DNAJC15_E26_R 0.283 2.7761022 12 rs17553284 C/T (0.17) 318 0.898 1.38610210

DSC2_E90_F 0.434 4.1661025 0 rs1313586 A/G (0.25) 295,323 0.320 3.5961023

@GDF10_P95_R 0.233 5.9761023 2 rs11595733 A/G (0.10) 2,563 0.994 1.8561028

GNMT_P197_F 0.094 2.1161021 3 rs2395943 G/A (0.38) 12,370 0.514 3.7461027

GSTM1_P266_F 0.732 3.0061027 11 rs3754446 G/T (0.53) 23,065 21.016 1.80610230

@HHIP_P307_R 0.425 9.8561023 27 rs7680661 A/G (0.24) 21,750 0.944 1.01610214

@HHIP_P578_R 0.073 3.3261021 6 rs2883154 C/T (0.24) 234,750 0.662 5.97610210

HOXA5_P1324_F 0.726 2.9961025 0 rs10951154 T/C (0.14) 249,297 20.455 2.4661023

HPN_P823_F 0.549 1.0861025 1 rs2278996 A/C (0.09) 194 20.960 3.1061029

HS3ST2_E145_R 0.591 4.3661025 0 rs210090 T/G (0.30) 24,931 20.309 7.7061023

IL16_P93_R 0.436 3.4061023 23 rs7182786 A/G (0.40) 2843 20.881 5.91610223

INS_P248_F 0.175 5.1561022 6 rs7111341 C/T (0.21) 30,494 20.719 6.0561028

IRF5_E101_F 0.467 3.8361025 1 rs6955705 T/C (0.28) 220,725 20.750 8.45610211

@LTA_E28_R 0.566 2.3161025 29 rs2516390 A/G (0.46) 210,238 0.788 1.09610216

MEST_P62_R 0.307 5.8761022 14 rs7803211 C/T (0.28) 28,617 0.769 2.61610212

MET_E333_F 0.626 3.3061028 1 rs184953 C/A (0.19) 2862 0.903 6.38610212

NPR2_P618_F 0.674 2.53610210 13 rs2236293 G/A (0.49) 49,995 0.570 7.6761028

PLAT_P80_F 0.417 2.7261024 1 rs2020919 T/C (0.05) 265 20.988 1.1761025

PLSCR3_P751_R 0.516 3.2561024 6 rs4796399 A/C (0.46) 284,900 20.480 8.6561027

PSCA_E359_F 0.053 3.3961021 1 rs12155758 G/A (0.39) 3,613 20.547 3.1661027

PTK7_E317_F 0.848 5.0061027 0 rs34574340 C/T (0.01) 230,267 1.133 2.7561022

SEMA3B_P110_R 0.567 1.6561025 0 rs2518796 A/G (0.26) 297,855 20.251 4.0161022

SLC22A3_P634_F 0.420 2.7761023 11 rs487060 C/T (0.38) 5,668 20.533 1.6561027

SNCG_P53_F 0.549 1.1061026 1 rs1800373 G/T (0.46) 74 20.441 1.1561025

SPARC_P195_F 0.390 1.0761022 6 rs17112187 C/A (0.14) 26,974 1.194 9.78610222

SPP1_P647_F 0.000 5.0061021 2 rs6813526 T/C (0.27) 21,920 0.569 8.4661027

P-values that are significant after correction for multiple testing are given in bold.
#CpG sites are annotated according to GENE_Position_Strand, as outlined in the methods section.
@Indicates probe sequences containing SNPs with a MAF.5%.
*MAF: Minor allele frequency; minor allele is reported second.
doi:10.1371/journal.pone.0073950.t001

Genetic Effects on DNA Methylation

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e73950



were also identified as heritable in the previous study, one site was

nominally significant, seven sites were not assessed and three sites

were not heritable in the previous study. In particular, DNA

methylation at NPR2_P618, MET_E333_F, AXL_P223,

HPN_P823_F and HOXA5_P1324_F were found to be heritable

in both studies. Of the CpG sites that were assessed in both studies,

evidence for heritability of DNA methylation at IRF5_E101_F,

DSC2_E90_F and HS3ST2_E145_R was found in our study only,

which may represent population-specific DNA methylation

changes driven by heritable factors. We should also note that

both our study, and that by Boks and colleagues, assessed

heritability in small cohorts (183 and 82 individuals, respectively)

and may therefore be underpowered to accurately identify

heritable factors influencing DNA methylation or may be prone

to the detection of false positive results. A recent study by Breton,

et al, [45] presented contrasting findings for the AXL_P223 locus,

suggesting that DNA methylation was not heritable but was highly

influenced by environmental factors, however this too was

performed in a small sample set of only 36 twins and as such is

likely limited in its power to detect heritability. Nonetheless, given

the overlap for several CpG sites across our study and that by

Boks, et al, the case for DNA methylation being a heritable trait is

becoming stronger and the application of heritability analysis to

larger cohorts will ultimately be highly informative.

Proximal Genetic Variants Influence DNA Methylation
We studied the association of a total of 29,862 SNPs within the

100 Kb flanking region of 393 CpG sites (two sites were excluded

due to inability to be annotated), applying a Sidak correction for

4,209 independent tests. In total, 214 statistically significant

correlations were detected across 27 CpG sites (p,1.1961025,

6.9%; Table S4); the most significant association for each CpG site

is shown in Table 1. All 16 CpG sites that were significantly

heritable also showed at least nominal evidence of being

influenced by genetic effects, although several sites that showed

nominal evidence for heritability were not found to be regulated

by genetic variation (Table S3). We should note that four CpG

sites influenced by genetic effects were within probes that also

contained SNPs with a MAF.5% (ABL2_P459, GDF10_P95,

HHIP_P307, LTA_E28; see Table S2), three of these had SNPs

within 5 bp of the CpG site. It is therefore possible that the genetic

effects seen for these CpG sites are in fact due to linkage

disequilibrium between genetic variants influencing probe binding

rather than a true biological effect. The SNP contained within the

LTA_E28 probe (rs2239704) was directly tested for association

with DNA methylation levels and found to be significantly

associated (p = 1.09610216; see Table S4). An additional eight

probes contained between one and three SNPs, although all had a

MAF#3% and are therefore unlikely to influence the results.

Recent genome-wide analyses have indicated that DNA

methylation may indeed be tightly regulated by genetic factors.

In fact, across studies 4–9% of CpG sites show evidence of genetic

effects by SNPs within 50 kb-1 Mb of the site [42,46,47]. Applying

stringent criteria for the localization of proximal genetic variants

(100 kb) and correction for multiple testing (Li and Ji’s correction

for 4,209 independent CpG site/SNP association tests; adjusted

alpha value 1.1861025), we found that DNA methylation levels

within 6.9% of CpG sites tested were correlated with one or more

SNPs. Although this is well in the range of the studies reported

above, it is slightly higher than what was reported in the study by

Boks, et al, (4%) using the same DNA methylation platform [41].

This may be explained by the smaller sample size (n = 91) they

used, a smaller set of SNPs to assess (,550,000 compared to

,1,000,000 in our study) and a larger defined region for

regulatory variation (1 Mb versus 100 kb in our study), which

increases the number of statistical tests that have to be corrected

for, thereby reducing power to detect associations. In fact, Quon

and colleagues systematically varied the window size to detect

regulation using 10 kb, 50 kb, 100 kb, 500 kb and 1 Mb windows

surrounding the CpG site to identify the optimum window for

detection of heritable sites [44]. Their results showed that a

window size of 50 kb yielded the highest number of heritable

methylation loci, although similar numbers were seen for the

100 kb window, which we used in our study.

Once again, we compared our regulatory findings to those

presented by Boks, et al, who used the same platform but in a

singleton dataset, examining 512 probes [41]. Of the 393 high

quality probes assessed in our study, only 155 (39%) were also

assessed in the study by Boks and colleagues. Of the 23 CpG sites

that showed evidence for genetic effects in our study, seven were

previously identified as regulated by genetic variation in the study

by Boks, et al, (defined as FDR,0.05; ALOX12_E85,

ALOX12_P223, GNMT_P197_F, HPN_P823, MET_E333,

NPR2_P618_F and SLC22A3_P634_F). In all cases where the

same SNP was used to test for regulatory effects, the direction of

effect was identical in both studies.

In total, all of our significantly heritable CpG sites

(p,1.2761024) showed at least nominal evidence for genetic

effects; 10 of the 16 heritable CpG sites (63%) showed strong

evidence for regulation by genetic variation. For nominally

heritable CpG sites (p,0.05, n= 94 assessed for genetic effects),

21% showed significant evidence for genetic effects and a further

65% showed nominal evidence for genetic effects; only 14% of

nominally heritable sites showed no evidence of genetic effects (see

Table S3). Although it is tempting to suggest that heritability

associated with DNA methylation is derived solely through

association with regulatory variants, the fact that not all nominally

heritable sites are regulated by such variants suggests that at least a

portion of the heritability may be due to other factors. Based on in

silico SNP analysis and animal studies, Kaminsky and colleagues

suggest that the molecular mechanisms driving heritable epige-

netic differences may not be limited to sequence differences [6].

Further, evidence from mouse studies suggest that epigenetic

marks may not be completely erased, resulting in transgenerational

inheritance of epigenetic modifications [3,4].

Age and Sex Effects on DNA Methylation Profiles
We also tested for effects of age and sex on DNA methylation

profiles and found substantial evidence for both; Table 2 displays

CpG sites significantly associated with age and sex after Bonferroni

correction. DNA methylation at 88 of the 395 CpG sites (,22%)

showed nominally significant associations with age (p,0.05),

24 CpG sites (,6%) were significant at an FDR of 5% and six

CpG sites (,2%) were significant after Bonferroni correction for

multiple testing (Table S5). Four of the probes analyzed contained

one or two SNPs, however these were all at a MAF#1% and

would be unlikely to influence the results (see Table S2). Only one

(CARD15_P302) of the six associations that we identified was also

identified as significant by Boks and colleagues [41], with one site

nominally significant (p,0.05), and the other four not assessed.

For sex, 50 CpG sites (,13%) showed nominally significant

associations (p,0.05) and three (,1%) of these were significantly

associated with sex after Bonferroni correction for multiple testing

and at an FDR of 5% (Table S6). One of the significantly

associated probes contained a SNP with a MAF of 1% (see Table

S2), which is unlikely to influence the results. Similar to our results

with age, the study by Boks, et al, [41] did not assess any of the
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three CpG sites that we identified as significantly associated with

sex.

Recent genome-wide studies have identified a number of age

related differentially methylated regions with 78–98% of associ-

ated CpG sites showing positive associations [42,48,49]. Similarly,

of the six CpG sites that we found to be associated with age, five

showed a positive association (83%); only the CARD15_P302 site

showed a negative direction of effect (i.e. decreased methylation

was associated with increased age), and this was the same direction

of effect that was observed in the study by Boks, et al [41]. Positive

associations were seen for two CpG sites within genes that have

previously been implicated with age in one or more genome-wide

methylation studies (FZD9 and MYOD1) [42,49,50]. Of these,

methylation within MYOD1 was associated with age in all three

previously published studies, as well as in our own. Although two

studies were performed in peripheral blood cells, the third assessed

DNA methylation that was consistently associated with aging

across four brain regions, suggesting that the DNA methylation

changes associated with the MYOD1 gene may be general rather

than tissue-specific. In addition to replicating results obtained from

these genome-wide studies, we have identified new loci, possibly

specific to the Mexican American population, whose DNA

methylation status may be related to age. Due to the small

number of samples assessed in our study however, such findings

would need to be verified.

Despite evidence for sexual dimorphism in a number of

diseases, a recent genome-wide association study meta-analysis

[51] failed to reveal any genome-wide significant common SNP

differences between men and women, which suggests that at least

some sex-based differences in disease may be driven more so by

either rare variants or epigenetic effects. It is clear that DNA

methylation plays a sex-specific role during fetal germline

progression [52] and a recent genome-wide methylation study

identified DNA methylation differences between the two sexes,

although these differences were subtle [53]. Similarly, we identified

significant associations between sex and DNA methylation at three

CpG sites, each of which has been at least loosely implicated in

sex-specific functions of disease. We found highly significant DNA

methylation changes at CASP6_P201, showing increased methyl-

ation in women. Although a sex-specific role has not yet been

defined, an early study in rats suggests that caspase-6 is involved in

the control of apoptotic processes at estrus following treatment

with the sex-hormone 17b-estradiol [54]. Increased methylation at

HSD17B12_P97, which encodes a sex steroid hormone, was also

seen in females. HSD17B12 has been shown to be involved in the

catalytic conversion of oestrone to estradiol and has also been

implicated in fatty acid synthesis (reviewed in [55]), which shows

sex-specific differences (reviewed in [56]). DNA methylation at

RET_seq_54_S260 was increased in males, and although specific

sex effects have not been noted, genetic variants within this gene

have been shown to have different effects in males and females,

and parent of origin effects involving such variants have been

noted in Hirschsprung disease [57,58]. It is important to note that

some level of cross-reactivity with sex chromosomes has been

reported in ,6–10% of the autosomal probes used in some of the

higher-throughput Illumina platforms (i.e. 27 k and 450 k

methylation chips), due to high sequence homology [59,60]. This

may generate spurious signals that overestimate the effect of DNA

methylation on sex and as such, DNA methylation changes that

are determined by probe-based methods and are associated with

sex should be interpreted with caution. Using BSMAP [36], we

observed that none of the three significant sex-associated CpG

sites identified in our study (CASP6_P201, HSD17B12_P97 or

RET_seq_54_S260) could be mapped to the X-chromosome, using

the reference, reverse complement, bisulfite converted fully

methylated and bisulfite converted fully unmethylated genomes.

Further, given some of the plausible biological roles discussed

above, we believe that this study provides additional evidence for a

potential role of DNA methylation in sex.

Methylation Profiles show Nominal Association with
Obesity Measures
To investigate a potential role of DNA methylation in disease,

we looked for association with the obesity measures, waist

circumference and BMI. In particular, waist circumference, which

measures central obesity, is considered a stronger indicator of risk

for diabetes and cardiovascular disease than BMI [28]. Table 3

shows the ten most significant associations with waist circumfer-

ence, although none of these are within the threshold for multiple

testing correction (p,1.2761024). In total, we identified 27 and

12 nominally significant (p,0.05) associations between DNA

methylation and waist circumference and BMI, respectively (Table

S7). Several nominally associated CpG sites are in genes that have

a known or plausible role in obesity and diabetes.

Methylation levels of a CpG site within MEST, were found to

be negatively associated with both waist circumference (nominal

p = 1.2961022) and BMI (nominal p = 4.4161022). MEST is well

known to be involved in obesity and glucose metabolism. Gene

expression increases have been shown in white adipose tissue of

mice with diet-induced and genetically caused obesity/diabetes

[61] and in humans, decreased methylation of MEST has been

shown in morbidly obese individuals as well as in newborns of

mothers who had gestational diabetes [62]. We also identified a

negative association between DNA methylation within NPY and

waist circumference (nominal p = 2.9661022), but not with BMI.

NPY is a hypothalamic peptide which regulates feeding behavior

and energy homeostasis and has been proposed as a target for

anti-obesity drugs [63]. Studies have shown that knockdown of

NPY expression in the hypothalamus increases energy expendi-

ture [64] and overexpression within the paraventricular nucleus

results in obesity via increased food intake [65]. We identified a

positive association between DNA methylation in HOXA5 and

Table 2. Significant age and sex associations with DNA
methylation.

CpG Site# Beta* P-value

Age

FZD9_E458_F 0.039 8.0661028

MYOD1_E156_F 0.035 2.7561026

HS3ST2_E145_R 0.033 3.1261026

CARD15_P302_R 20.029 6.7061025

CDH11_P354_R 0.030 9.2961025

IL17RB_E164_R 0.029 1.1261024

Sex

CASP6_P201_F 1.369 2.81610218

RET_seq_54_S260_F 20.966 1.5161027

HSD17B12_P97_F 0.756 7.5561025

P-values that are significant after correction for multiple testing are given in
bold.
#CpG sites are annotated according to GENE_Position_Strand, as outlined in the
methods section.
*Note: a positive value for beta indicates increased methylation is associated
with increased age and females.
doi:10.1371/journal.pone.0073950.t002
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BMI (nominal p = 2.6461022), but not waist circumference.

HOXA5 has been implicated in body fat distribution, where it is

more highly expressed in visceral (i.e. abdominal) adipose tissue

as opposed to subcutaneous (i.e. gluteal) adipose tissue [66,67].

Further, HOXA5 is up-regulated in abdominal subcutaneous

adipose tissue following fat loss (one year after bariatric surgery)

[68]. In addition, nominal associations were seen between either

waist circumference or BMI and DNA methylation within several

other genes previously implicated in serum triglyceride levels

(ARHGAP9 [69]); obesity and adipogenesis (CDKN2A (p16)

[70,71], FRZB [72], JAK3 [73], PEG3 [74]); and glucose

homeostasis and insulin resistance (CDKN2A [75–77], SMARCB1

[78]).

Study Limitations
It is important to note the limitations of this study. As both the

number of samples (n = 183) and number of CpG sites assessed

(n = 395) are small, the power and scope of this study is limited.

We have only assayed DNA methylation in one tissue type,

peripheral blood, which may limit any generalized conclusions and

may not be representative of changes that would be seen in

diseased tissue (e.g. adipose tissue). However, given that lipid

profiling, glucose measures and cardiovascular-related biomarkers

are measured in blood, and that each of these are impacted by

obesity, blood represents a good surrogate tissue for these analyses.

Many of the results reported here further validate previously

reported data and may also offer insight into any ethnic-specific

differences.

Conclusions

We examined the effects of genetic variation, sex and age on

DNA methylation and assessed the role of DNA methylation in

measures of obesity. Other studies have previously investigated the

effects of genetic variation, age and sex using an identical or

higher-throughput Illumina platform. However, this is the first

study that has examined such factors in a Mexican American

population. We have demonstrated here, further evidence

supporting a role for genetic effects on DNA methylation, by

replicating previous findings and presenting new data. Although

several of our findings overlap with previous studies, the

identification of novel CpG loci that are heritable, regulated by

genetic variation, or that are influenced by age and sex may

suggest the existence of ethnic-specific factors that drive regulation

of DNA methylation. Such novel findings could also suggest that

currently published studies, as well as our own, may be

underpowered in their ability to detect true associations or have

generated false positive results due to small sample sizes.

Differences that are seen across studies could also be due to

environmental effects, some of which may themselves be ethnic- or

population-specific (e.g. different diets, residential areas). We also

provide nominal evidence that DNA methylation may be

implicated in obesity in Mexican Americans, however additional

follow up studies, particularly in a larger population are required

to fully assess such implications.
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