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Purpose: Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental
abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS
encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific
isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for
this isoform at cell-cell junctions in epithelial cells. This study aimed to identify the causative mutations in new patients
diagnosed with Nance-Horan syndrome and to investigate the effect of mutations on subcellular localization of the NHS-
A protein.
Methods: All coding exons of NHS were screened for mutations by polymerase chain reaction (PCR) and sequencing.
PCR-based mutagenesis was performed to introduce three independent mutations in the NHS-A cDNA. Expression and
localization of the mutant proteins was determined in mammalian epithelial cells.
Results: Truncating mutations were found in 6 out of 10 unrelated patients from four countries. Each of four patients
carried a novel mutation (R248X, P264fs, K1198fs, and I1302fs), and each of the two other patients carried two previously
reported mutations (R373X and R879X). No mutation was found in the gene in four patients. Two disease-causing
mutations (R134fs and R901X) and an artificial mutation (T1357fs) resulted in premature truncation of the NHS-A protein.
All three mutant proteins failed to localize to the cellular periphery in epithelial cells and instead were found in the
cytoplasm.
Conclusions: This study brings the total number of mutations identified in NHS to 18. The mislocalization of the mutant
NHS-A protein, revealed by mutation analysis, is expected to adversely affect cell-cell junctions in epithelial cells such
as the lens epithelium, which may explain cataractogenesis in Nance-Horan syndrome patients. Mutation analysis also
shed light on the significance of NHS-A regions for its localization and, hence, its function at epithelial cell junctions.

Nance-Horan syndrome (NHS; OMIM 302350) is
characterized by bilateral congenital cataracts, dental
anomalies, craniofacial abnormalities, and, in some cases,
mental retardation and behavioral disturbance. This syndrome
is caused by mutations in the Nance-Horan syndrome (NHS)
gene located on Xp22.13 [1-3]. Additional features associated
with this disorder are microcornea and microphthalmia [4-6].
While the phenotype of the syndrome in males is severe and
necessitates cataract surgery early in life, females display
variable severity of cataract and dental defects [6,7]. Since
NHS has been identified, 16 families affected with this
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syndrome have been reported worldwide [3,8-11]. In these
families, 14 different mutations in four of the eight exons of
NHS have been identified. All are either non-sense or
frameshift mutations that would lead to premature truncation
of the protein.

NHS encodes two major isoforms, NHS-A and NHS-1A,
which are transcribed by alternate transcription start site usage
in exons 1 and 1A, respectively [12]. Individuals who are
carrying the disease-causing mutation, 400delC, in exon 1 of
the gene are predicted to affect the NHS-A isoform alone and
exhibit typical features of the syndrome [3,8]. The Xcat
mouse, a model for NHS, develops X-linked bilateral
congenital cataracts due to absence of the NHS-A isoform,
which resulted from an insertion mutation in intron 1 of NHS
[13]. Therefore, disruption of the NHS-A isoform seems
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primarily responsible for the syndrome. This epithelial and
neuronal cell-specific isoform is expressed in the human lens,
the organ severely affected in NHS, and the encoded protein
associates with the peripheral cell membrane in the lens
epithelium [12]. It co-localizes and interacts with the tight
junction protein, ZO (zonula occludens)-1, in epithelium ex
vivo, which suggests a role for this isoform at tight junctions
( [12] and unpublished data).

Herein, we report four novel and two recurrent mutations
in NHS in six unrelated NHS patients. To gain an insight into
the functional effects of various NHS mutations, two
previously reported disease-causing mutations and an
artificial mutation were expressed in epithelial cells, and
localization of the mutant proteins was determined. While the
wild type NHS-A is associated with the cell membrane, the
mutant isoform proteins lost this ability, suggesting impaired
function as a consequence of protein mislocalization. The
present work reveals the significance of various regions of the
NHS-A protein for its localization.

METHODS
Subject recruitment and mutation analysis: The study adhered
to the tenets of the Declaration of Helsinki. DNA was obtained
from 10 individuals diagnosed with NHS or possible NHS by
the referring clinicians (R.V.J., Y.Y., F.B., L.V.M., and B.L.).
Where available, DNA from additional family members was
collected. Each coding exon and flanking splice site of NHS
was amplified by polymerase chain reaction (PCR) using
intronic primers. Primer sequences and PCR conditions used
for each amplimer are given in Table 1. Due to their large size,
exon 1 was amplified as three overlapping fragments, exon 6
as eight overlapping fragments, and exon 8 as two. Amplified
PCR fragments were purified with the Wizard® SV Gel and
PCR Clean-Up System (Promega Corporation, Sydney,
Australia). Cleaned fragments were directly sequenced using
BigDye Terminators (Applied Biosystems, Foster City, CA)
and electrophoresed on an ABI 3100 DNA sequencer
(Applied Biosystems). Chromatograms were compared to
each other and the reference sequence (GenBank accession
number NM_198270) using Sequencher® Software
(GeneCodes Corporation, Ann Arbor, MI).

Mutagenesis and recombinant DNA cloning: Mutant NHS-A
cDNA constructs were generated by PCR-based mutagenesis
and recombinant DNA cloning. Three mutations, 400delC
(exon 1), C2701T (exon 6), and 4071del299bp (exon 6), were
incorporated. The position descriptions of the latter two
mutations take into consideration the alternatively spliced
exon 3a [12]. The wild type NHS-A cDNA including the exon
3a sequence was cloned in pCMV-Tag 2A (Stratagene, La
Jolla, CA) at EcoRI/SalI sites for use as the parent construct
for PCR-based mutagenesis. The sequences of mutagenesis
primers are listed in Table 2. The first round of PCR (PCR1
and PCR2) was performed on the parent construct. The primer

combinations used for incorporation of each mutation are
given in Table 3. PCR1 and PCR2 were performed with the
GC-RICH PCR system (Roche Diagnostics Australia Pty Ltd,
Castle Hill, NSW Australia) at 95 °C for 3 min, 95 °C for 30
s, at the annealing temperature specified for each primer pair
in Table 3 for 30 s, 68 °C for 45 s for 30 cycles, and 68 °C for
7 min. An equimolar mixture of PCR1 and PCR2 products
was used as the template for the second round of PCR (PCR3)
with the appropriate primer pair for incorporation of each
mutation (Table 3). PCR was performed as above except the
extension step lasted for 70 s. To replace the corresponding
region in the wild type cDNA, the resulting partial mutant
cDNAs were independently cloned into the parent construct
using restriction enzymes flanking the mutation site (Table 3).
The resulting FLAG epitope-tagged wild type and C2701T
and 4071del299bp mutant NHS-A cDNA were each excised
by NotI/PacI digestion and independently cloned in pQCXIN
(Clontech Laboratories Inc., Mountain View, CA) at the same
sites. The 400delC mutant cDNA (in pCMV-Tag 2A) was
digested with EcoRI and EcoRV, and the 1.3 kb digested
fragment carrying the mutation was cloned in pEGFP-C1 at
EcoRI/SmaI sites to generate a GFP (green fluorescent
protein)-fusion construct. The generation of GFP-NHS-A was
described elsewhere [12].

Mammalian cell culture: HEK (human embryonic kidney)
293A and MDCK (Madin-Darby canine kidney) cells were
cultured in Dulbecco's modified Eagle's medium (DMEM;
GIBCO, Invitrogen Australia Pty Ltd, Victoria, Australia),
which was supplemented with 10% fetal bovine serum and
penicillin/streptomycin, and maintained in a humidified
atmosphere at 37 °C and 5% CO2.

For the generation of MDCK cells stably expressing the
wild type and mutant proteins, 3×105 cells seeded per well in
a six well plate were transfected the following day with
FLAG-tagged NHS-A, C2701T, or 4071del299bp constructs
(in pQCXIN) using Lipofectamine 2000 (Invitrogen Australia
Pty Ltd) according to the manufacturer's protocol.
Approximately 48 h after transfection, the cells were seeded
at 1:20 dilution and cultured in a selection medium containing
0.5 mg/ml G418 (Sigma-Aldrich Pty Ltd, Castle Hill, NSW
Australia). Selection was continued for four weeks by
changing the selection medium every third day. The resulting
population of stable transfectants was used for further
experiments.
Western blot analysis: 3×105 HEK 293A cells were seeded
per well in six well plates and transfected the following day
with wild type, mutant, or appropriate control plasmid using
Lipofectamine 2000. Approximately 48 h post-transfection,
the cells were harvested and cellular proteins extracted as
described elsewhere [12]. Total soluble proteins were size-
fractionated on a polyacrylamide gel by SDS–PAGE, and
western blot was prepared as previously described [12]. The
blot was probed with 1:500 dilution of mouse monoclonal
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anti-GFP antibody (Roche Diagnostics Australia Pty Ltd) or
1:1000 dilution of mouse monoclonal anti-FLAG tag antibody
(GenScript Corporation, Piscataway, NJ) and 1:1000 dilution
of sheep anti-mouse IgG-horseradish peroxidase secondary
antibody (Chemicon Australia Pty Ltd, Boronia, Victoria,
Australia). Antibody binding was detected with ECL western
blotting system (GE Healthcare Australia and New Zealand,
Sydney, Australia).
Protein localization: For localization of GFP-fusions, 3×105

MDCK cells were seeded onto glass coverslips in six well
plates. Cells were transfected the following day with GFP-
fusion constructs or pEGFP-C1 control (Clontech
Laboratories Inc.) using Lipofectamine 2000. Approximately
72 h post-transfection, the cells were fixed in 4%
paraformaldehyde/phosphate buffered saline (PBS) and
mounted on slides in buffered glycerol. Confocal microscopy
was performed on an Olympus AX70 microscope (Olympus
America Inc., Centre Valley, PA) attached to a Bio-Rad 1024
MRC scanning confocal system (Carl Zeiss Pty. Ltd., North
Ryde, Sydney, Australia) equipped with an Argon Ion and a
Helium neon laser using LaserSharp 2000 software. GFP was
excited with a 488 nm laser line and detected at 522 nm.

For localization of FLAG-tagged wild type and mutant
NHS-A proteins, 3×105 MDCK cells stably expressing the
protein were seeded onto glass coverslips in six well plates.
After culturing for four days, the cells were fixed in 4%
paraformaldehyde/PBS, permeabilized with 0.4% Triton-
X100, blocked with 5% donkey serum, hybridized with mouse
monoclonal anti-FLAG tag antibody (1:1000; GenScript
Corporation) and Alexa Fluor 488-conjugated anti-mouse IgG
antibody (1:250; Molecular Probes, Invitrogen Australia Pty
Ltd, Victoria, Australia), and mounted on slides in buffered
glycerol. Confocal microscopy was performed as explained
above.

RESULTS
DNA samples from 10 male individuals with clinical
presentations consistent with Nance-Horan syndrome were
assessed for mutations in NHS. Table 4 shows the clinical
features of each patient and the mutation identified. All male
patients presented with congenital cataract, and female
carriers had sutural cataract. No mutations were identified in
individuals 102, 104, 124, and 134 despite features consistent
with NHS. Patient 102 had X-linked congenital cataract.
Patient 124 appeared to display the NHS phenotype, but

TABLE 2. SEQUENCE OF PRIMERS USED FOR PCR-BASED MUTAGENESIS.

Primer Sequence
NHS-F01 5′-TACCGGAATTCTCCTTTCGCCAAGCGGATCGTGGAG

NHSA400R 5′-GCTGCCGGAGGGTACCGCCAGAGCGGCGTTGCTGA
NHSA400F 5′-ACGCCGCTCTGGCGGTACCCTCCGGCAGCTCTCGGACGT

NHSA1350R 5′-CAGCAATCAGAATATCCTCGGTTTGGCACTCAGAG
NHSA2220F 5′-TTTTAGTCCTGAGCGTCCCAAGGCAGACAG
NHSA2701R 5′-GGAAGATTGGCGTTTTGAATTCAAGAAGGCGTGTTGGCGA
NHSA2701F 5′-GCCAACACGCCTTCTTGAATTCAAAACGCCAATCTTCCCACCA
NHSA3050R 5′-AGCCACTTGATGGAGATGCCAAGCCAGCCA
NHSA4340F 5′-GCAGTCATTCACAGATCCAAGAGGAAAGTACTTG
NHSA4451R 5′-ACATTACTGCTGGGTGAAGAGATCTAACTGGCGCTGCTGCTGCTA
NHSA4451F 5′-CAGCAGCAGCGCCAGTTAGATCTCTTCACCCAGCAGTAATGTGAC
Tag2A810R 5′-TACGACTCACTATAGGGCGAATTGGGTACAC

TABLE 3. THE NHS-A MUTATIONS GENERATED BY PCR-BASED MUTAGENESIS.

Protein length in
amino acids

Mutation                   M wt. in kDa)
Primer pairs for PCR (annealing temperature °C) Restriction sites for

cloningPCR1 PCR2 PCR3
400delC R134fs) 195 (21.5) NHSF01 and

NHSA400R (56)
NHSA400F and

NHSA1350R (58)
NHSF01 and

NHSA1350R (65)
EcoRI/EcoRV

C2701T (R901X) 901 (99) NHSA2220F and
NHSA2701R (50)

NHSA2701F and
NHSA3050R (52)

NHSA2220F and
NHSA3050R (63)

HindIII/PmeI

4071del299bp T1357fs) 1367 (150) NHSA4340F and
NHSA4451R (56)

NHSA4451F and
Tag2A810R (56)

NHSA4340F and
Tag2A810R (62)

ScaI/SalI

The predicted size of each mutant protein is indicated. The primer combinations used for each round of PCR and the annealing
temperature for each primer set is given. The restriction enzyme sites used for the cloning of each partial mutant cDNA are
specified.
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characteristic screw-driver blade shaped incisors were not
present. Mutations were identified in the remaining six cases.

Individual 101, a 19-year-old male from Germany,
presented with major ophthalmic features of congenital
cataract and secondary glaucoma. He had microcornea and
nystagmus at three months of age and presented with
strabismus and microphthalmia in childhood. His mother had
nuclear cataract with cone-shaped sutural lens opacity. Both
the index case and his mother were found to have a previously
undescribed single base insertion 3596insA in exon 6, coding
for K1198 frameshift (Figure 1A). This mutation results in the
incorporation of four aberrant amino acids, terminating at
position 1203.

Patient 105 from Belgium had typical features of NHS
(congenital cataract, diastema, mental retardation, and large
ears). This patient was found to carry the C2635T mutation in
exon 6, encoding R879X (Figure 1B). This mutation was
previously reported in another family from the Netherlands
[10].

Individual 120 from Australia had typical features of
NHS. His mother and sister also had cataract and dental
anomalies. All three individuals were found to have the
R373X mutation, which was previously reported by our group
in an unrelated isolated case of NHS from the UK as a de novo
mutation [3]. This mutation is designated at the DNA level by
C1117T (Figure 1C) and was also reported in a family from
the Netherlands [10].

The clinical features of Patient 122, an index case from
Israel, have been previously reported [14]. Prenatal diagnosis
of cataract in the male fetus of the proband’s sister (the

proband’s nephew) led the family to seek genetic diagnosis.
The proband displayed many typical features of NHS.
Although there was early developmental delay, the patient
now has normal intelligence. The novel mutation, an 11 bp
deletion at position 3908 (3908delCATCTCAGTCA), in
exon 6 causes a frameshift (Figure 1D), resulting in the
incorporation of four aberrant residues following I1302 and
terminating at position 1307. The proband’s mother and sister
are both carriers of the mutation and display a sutural cataract.
DNA was also obtained from the affected fetus and shown to
carry the same mutation.

Patients 127 and 135 were both referred from Sydney,
Australia. Each was found to have a different novel mutation
in exon 3 of NHS. Patient 127 had bilateral congenital cataract
diagnosed soon after birth as well as mild microphthalmia. At
15 months of age, the proband has small widely spaced teeth
and prominent ears. His mother and her monozygotic twin
sister both had posterior Y-sutural cataracts and had
undergone orthodontic procedures for small teeth and
irregular crowns. The proband and both women were found
to have a single base deletion at position 792 (792delA; Figure
1E). This mutation causes a frameshift following P264.
Eighteen aberrant amino acids are predicted to incorporate
into the protein that prematurely terminates at position 283.
The mutation was not identified in either of the proband’s
maternal grandparents, indicating that it arose de novo in his
mother and her twin sister.

Patient 135 was described as having both cataract and
microcornea. In addition, he had supernumerary maxillary
incisors and a high nasal bridge. His mother had bilateral

TABLE 4. CLINICAL FEATURES OF NHS PATIENTS TESTED.

Patient Ocular features Dental features MR FD Mutation Exon
101 Congenital Cataract

Microcornea
Microphthalmia Nystagmus

Strabismus

- No No K1198fs 6

102 Congenital Cataract - - - None
104 Congenital Cataract Unusual dentition Yes Yes None
105 Congenital Cataract Diastema Yes Large ears R879X 6
120 Congenital Cataract

Microphthalmia Glaucoma
Diastema Supernumerary
Screwdriver-blade shape

No Yes R373X 5

122 Congenital Cataract
Microphthalmia Strabismus

Supernumerary Abnormal
shape

Develop-mental
delay

Long thin face I1302fs 6

124 Congenital Cataract Supernumerary maxillary
incisors

Yes Large ears None

127 Congenital Cataract
Microphthalmia

Diastema No Prominent ears P264fs 3

134 Congenital Cataract
Microphthalmia

- - - None

135 Congenital Cataract
Microcornea

Supernumerary maxillary
incisors

No High nasal bridge R248X 3

The mutation identified in NHS  is shown at the protein level. Missing information is indicated by “-”. MR=mental retardation,
FD=facial dysmorphism, fs=frameshift mutation, K=lysine, R=arginine, I=isoleucine, P=proline, X=stop codon.
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sutural cataracts. A previously undescribed truncating
mutation, C742T, was identified in both the proband and his
mother (Figure 1F). This mutation resulted in the premature
termination of translation at position 248 (R248X). Fifty
chromosomes from normal individuals were screened as
controls and not found to carry any of the novel mutations
identified here in NHS patients.

To understand the effect of disease-causing mutations on
the NHS-A protein, two previously reported mutations,
400delC (R134fs) in exon 1 and C2635T (R879X) in exon 6
(named C2701T [R901X] in this study because the mutant
cDNA included the alternatively spliced exon 3a) [3,8,10],
and an artificial mutation, 4071del299bp (T1357fs), also in
exon 6 were created in the wild type cDNA by PCR-based
mutagenesis. The 400delC mutation was reported in a family
with typical features of NHS and is predicted to prematurely
truncate only the NHS-A protein isoform. The family with the

C2635T mutation displayed most features of the syndrome,
and the mutation would abolish the COOH-terminal half of
the NHS-A protein. The 4071del299bp mutant was obtained
as a cloning artifact while attempting to create the S1484X
artificial mutation in exon 8. While cloning the PCR-
amplified fragment carrying this mutation to replace the
corresponding wild type fragment, a 299 bp deletion was
incorporated due to star activity of ScaI, one of the restriction
enzymes used for cloning. The resulting 4071del299bp
mutation is expected to give rise to a truncated NHS-A protein
very similar to that predicted to result from 3908del11bp
mutation identified here in patient 122 and was therefore
included in the study. The 400delC mutant was fused to GFP
at the NH2-terminus, and the C2701T and 4071del299bp
mutants were fused with a FLAG epitope tag. To confirm that
a mutant cDNA expressed the truncated protein, it was
transiently expressed in HEK 293A cells and protein

Figure 1. Chromatograms of identified mutations. In each case, the wild type sequence is shown above the mutated sequence for each patient.
A shows the 3596insA in patient 101; B shows the C2635T in patient 105; C shows the C1117T in patient 120; D shows the 3908del11bp in
patient 122; E shows the 792delA in patient 127; and F shows the C742T in patient 135.
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expression determined by western blotting. A truncated
protein of approximately 65 kDa was detected with an anti-
GFP antibody in cells expressing the 400delC mutant (Figure
2A). Similarly, around 140 and 225 kDa truncated proteins
were revealed with an anti-FLAG tag antibody in cells
respectively expressing the C2701T and 4071del299bp
mutants (Figure 2B). These protein sizes are greater than those
expected for each of the mutant proteins (Table 3). The wild
type NHS-A has a predicted size of 181 kDa but migrates
slower than its expected size probably due to post-
translational modification (Figure 2B) [12]. The greater than
expected size of each mutant protein observed here is
therefore not unusual and is also likely to result from post-
translational modification.

To study the subcellular distribution of the mutant
proteins, GFP-NHS-A400delC was transiently expressed and
FLAG-tagged C2701T and 4071del299bp mutants stably
expressed in MDCK epithelial cells. Localization of the
mutant proteins was compared with that of the wild type NHS-
A protein. Unlike its localization to the peripheral cell
membrane in lens epithelium in vivo, the NHS-A protein does
not associate with the cell membrane in lens epithelial cells
ex vivo because the latter do not form a polarized epithelium
in culture [12]. Therefore, localization studies were performed
in MDCK cells. As previously reported, transiently expressed
wild type GFP-NHS-A primarily localized at the cellular
periphery in a punctate fashion in MDCK cells (Figure 3)
[12]. Cytoplasmic localization of the protein was seen in some
cells. GFP-NHS-A400delC mutant protein mainly distributed
in the cytoplasm and nucleus but was not found to associate

Figure 2. Expression of mutant NHS-A proteins in mammalian cells.
A: Lysates of HEK 293A cells transiently transfected with GFP-
NHS-A400delC and pEGFP-C1 constructs and untransfected cells
were analyzed by western blotting with anti-GFP antibody. B:
Lysates of HEK 293A cells transiently transfected with FLAG-NHS-
A, FLAG-NHS-AC2701T and FLAG-NHS-A4071del299bp in
pCMV-Tag 2A and untransfected cells were analyzed by western
blotting with anti-FLAG tag antibody. A protein band of greater than
150 kDa seen in all the lanes is due to non-specific binding of the
anti-FLAG tag antibody (indicated with an asterisk). A very faint
protein band of approximately 130 kDa in the NHS-A and
4071Δ299bp lanes is most likely due to protein degradation. The
molecular masses of proteins standards are indicated.
UT=untransfected cells.

with the peripheral cell membrane (Figure 3). GFP, expressed
as a control, distributed both in the cytoplasm and nucleus.
Upon immunolabeling the FLAG-NHS-A stable transfectants
with an anti-FLAG tag antibody, intense immunoreactivity
was observed at the cell boundary in the majority of cells
(Figure 4). In some cells, immunoreactivity was also observed
in the cytoplasm. In stable transfectants of FLAG-tagged
C2701T and 4071del299bp mutants, FLAG tag
immunolabeling was confined to the cytoplasm (Figure 4). No
immunoreactivity was observed at the cellular periphery in
cells expressing these mutants.

DISCUSSION
Here, we describe NHS mutations in six patients clinically
diagnosed with NHS. Four novel mutations (R248X, P264fs,
K1198fs, and I1302fs) were identified in four of these
patients. The other two (R373X and R879X) represent
recurrent mutations and have been previously reported by us
and others [3,10]. This is the third report of the truncating
R373X mutation, and as such, this region of NHS could be a
mutation hot spot.

This report brings the total number of known NHS
mutations to 18, all of which are truncating mutations. All
known mutations are located in exons 1, 3, 5, and 6 with no

Figure 3. Localization of GFP-NHS-A400delC mutant in MDCK
cells. Cells were transfected with GFP-NHS-A and GFP-NHS-
A400delC fusion constructs and pEGFP-C1 control. Transiently
expressed fusion proteins were visualized by confocal microscopy.
GFP-NHS-A wild type protein primarily localized to the cellular
periphery whereas GFP-NHS-A400delC mutant protein localized in
the cytoplasm and nucleus. Apparent peripheral distribution of GFP
is an experimental artifact seen only between some adjoining
transfected cells. Images were taken with a 60X objective.
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obvious phenotype/genotype correlation. The apparent
absence of missense mutations in NHS is intriguing. It is
possible that missense mutations give rise to a different
(perhaps milder) phenotype such as isolated X-linked cataract
or X-linked mental retardation, although no reports of this
have been presented to date. Ten patients with a clinical
diagnosis of NHS were screened for mutations in this study.
Mutations were identified in only 60% of patients. Patients
like 102 and 134 with only ophthalmic information available
and no identified mutation may not represent NHS cases. At
least one patient, 124, has all the features of the syndrome but
no identified mutation while other patients such as 127 and
135 with superficially similar phenotypic features have a
mutation in NHS. Thus, a clinical diagnosis is not always
significant in predicting a mutation in this gene. It is as yet
unknown if patients like 124 represent phenotypic overlap of
other syndromes with NHS or if mechanisms other than
protein truncating mutations in NHS can cause the phenotype.
Alternative mechanisms may include mutations in the introns
such as that present in the Xcat mouse or in the promoter or
5′ and 3′ untranslated regions of NHS, which have not been
investigated here due to the very large size of the gene and

Figure 4. Localization of FLAG-tagged wild type and mutant NHS-
A proteins in MDCK cells. MDCK cells stably expressing FLAG-
NHS-A, FLAG-NHS-AC2701T, and FLAG-NHS-A4071del299bp
proteins and untransfected cells were immunolabeled with an anti-
FLAG tag antibody, and labeling was detected by confocal
microscopy. Wild type FLAG-NHS-A protein mainly localized to
the cellular periphery whereas FLAG-NHS-AC2701T and FLAG-
NHS-A4071del299bp mutant proteins localized in the cytoplasm.
No non-specific immunoreactivity was observed in untransfected
cells. Representative images from four independent experiments are
shown. Images were taken with a 60X objective.

unidentified regulatory elements. Patients negative for
mutations in the NHS gene in this study were not screened for
mutations in other genes.

The two disease-causing mutations, 400delC and
C2701T, and the artificial mutation, 4071del299bp, analyzed
here, respectively, reside in the NH2-terminus, middle, and
COOH-terminus of the NHS-A protein. All mutant proteins
lost the ability to associate with the cell membrane at the cell
boundary, which is exhibited by the wild type NHS-A protein
in epithelial cells, and instead localized in the cytoplasm. This
aberrant distribution of the mutant proteins may affect the
integrity of intercellular junctions in those epithelial cells that
express NHS-A such as the anterior lens epithelium.
Interestingly, in an attempt to generate MDCK cells stably
expressing the FLAG-tagged 400delC mutant upon
immunolabeling with the anti-FLAG tag antibody, no positive
cells were detected after G418 selection (data not shown). We
speculate this may be due to the degradation of the mutant
protein. Hence, this protein was transiently expressed as a
GFP-fusion for localization studies. Nuclear localization of
GFP-NHS-A400delC noted here might be due to
overexpression of the fusion protein.

We previously reported the NH2-terminal 374 amino
acids of NHS-A to be responsible for its peripheral membrane-
associated localization in epithelial cells [12]. However, in
this study, the R134fs (400delC) mutant protein carrying the
first 134 residues localized in the cytoplasm (Figure 3). This
mislocalization of the mutant protein may be due to lack of
amino acids 135-374. However, the possibility of
mislocalization due to the incorporation of aberrant amino
acids after the frameshift cannot be excluded. Cytoplasmic
localization of the truncated proteins, R901X (C2701T) and
T1357fs (4071del299bp), despite the presence of the NH2-
terminal 374 residues may be due to protein misfolding
(Figure 4). Both these truncated proteins lack the COOH-
terminal 295 amino acids from position 1358 to position 1652,
which may lead to their misfolding and hence mislocalization.
Because a GFP-fusion of the NH2-terminal 374 residues of
NHS-A associates with the cell membrane [12] but the R901X
and T1357fs mutant proteins do not, the downstream residues
in these proteins may interfere with their folding in the
absence of the COOH-terminus. Taken together, these data
indicate the significance of three regions in the NHS-A protein
for its localization. The NH2-terminus is necessary for
peripheral membrane associated localization of the protein
[12], the middle region causes mis-localization of the protein
in the absence of the COOH-terminus perhaps by exerting an
inhibitory effect, and the COOH-terminus seems to be
important for proper localization of the protein probably by
facilitating its folding. Therefore, both the NH2- and COOH-
termini of the NHS-A protein are important for its peripheral
membrane-associated localization in epithelial cells and its
function at cell-cell junctions. In view of these findings, the
disease-causing mutations in NHS identified in NHS patients
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in the present and previous studies would cause
mislocalization of the mutant NHS-A protein in epithelial
cells that express this isoform such as the lens epithelium.
Mislocalization of the protein may in turn impact epithelial
cell junctions in the developing lens and other organs affected
in this genetic disorder.

ACKNOWLEDGMENTS
This work was funded by the National Health and Medical
Research Council ‘(NHMRC), Canberra, Australia. J.E.C. is
a recipient of the NHMRC practitioner fellowship and K.P.B.
of the Peter Doherty fellowship. J.G. is a NHMRC principal
research fellow. A part of this work was presented at the
Annual Scientific Meeting of the Human Genetics Society of
Australasia 2008 (Adelaide, Australia).

REFERENCES
1. Horan MB, Billson FA. X-linked cataract and Hutchinsonian

teeth. Aust Paediat J 1974; 10:98-102.
2. Nance WE, Warburg M, Bixler D, Helveston EM. Congenital

X-linked cataract, dental anomalies and brachymetacarpalia.
Birth Defects Orig Artic Ser 1974; 10:285-91. [PMID:
4470901]

3. Burdon KP, McKay JD, Sale MM, Russell-Eggitt IM, Mackey
DA, Wirth MG, Elder JE, Nicoll A, Clarke MP, FitzGerald
LM, Stankovich JM, Shaw MA, Sharma S, Gajovic S, Gruss
P, Ross S, Thomas P, Voss AK, Thomas T, Gecz J, Craig JE.
Mutations in a novel gene, NHS, cause the pleiotropic effects
of Nance-Horan syndrome, including severe congenital
cataract, dental anomalies, and mental retardation. Am J Hum
Genet 2003; 73:1120-30. [PMID: 14564667]

4. Lewis RA, Nussbaum RL, Stambolian D. Mapping X-linked
ophthalmic diseases. IV. Provisional assignment of the locus
for X-linked congenital cataracts and microcornea (the
Nance-Horan syndrome) to Xp22.2-p22.3. Ophthalmology
1990; 97:110-20. [PMID: 1969135]discussion 120–21

5. Seow WK, Brown JP, Romaniuk K. The Nance-Horan
syndrome of dental anomalies, congenital cataracts,
microphthalmia, and anteverted pinna: case report. Pediatr
Dent 1985; 7:307-11. [PMID: 3868768]

6. Walpole IR, Hockey A, Nicoll A. The Nance-Horan syndrome.
J Med Genet 1990; 27:632-4. [PMID: 2246772]

7. Bixler D, Higgins M, Hartsfield J Jr. The Nance-Horan
syndrome: a rare X-linked ocular-dental trait with expression
in heterozygous females. Clin Genet 1984; 26:30-5. [PMID:
6467651]

8. Brooks SP, Ebenezer ND, Poopalasundaram S, Lehmann OJ,
Moore AT, Hardcastle AJ. Identification of the gene for
Nance-Horan syndrome (NHS). J Med Genet 2004;
41:768-71. [PMID: 15466011]

9. Ramprasad VL, Thool A, Murugan S, Nancarrow D, Vyas P,
Rao SK, Vidhya A, Ravishankar K, Kumaramanickavel G.
Truncating mutation in the NHS gene: phenotypic
heterogeneity of Nance-Horan syndrome in an asian Indian
family. Invest Ophthalmol Vis Sci 2005; 46:17-23. [PMID:
15623749]

10. Florijn RJ, Loves W, Maillette de Buy Wenniger-Prick LJ,
Mannens MM, Tijmes N, Brooks SP, Hardcastle AJ, Bergen
AA. New mutations in the NHS gene in Nance-Horan
Syndrome families from the Netherlands. Eur J Hum Genet
2006; 14:986-90. [PMID: 16736028]

11. Huang KM, Wu J, Brooks SP, Hardcastle AJ, Lewis RA,
Stambolian D. Identification of three novel NHS mutations in
families with Nance-Horan syndrome. Mol Vis 2007;
13:470-4. [PMID: 17417607]

12. Sharma S, Ang SL, Shaw M, Mackey DA, Gecz J, McAvoy JW,
Craig JE. Nance-Horan syndrome protein, NHS, associates
with epithelial cell junctions. Hum Mol Genet 2006;
15:1972-83. [PMID: 16675532]

13. Huang KM, Wu J, Duncan MK, Moy C, Dutra A, Favor J, Da
T, Stambolian D. Xcat, a novel mouse model for Nance-
Horan syndrome inhibits expression of the cytoplasmic-
targeted Nhs1 isoform. Hum Mol Genet 2006; 15:319-27.
[PMID: 16357105]

14. Reches A, Yaron Y, Burdon K, Crystal-Shalit O, Kidron D,
Malcov M, Tepper R. Prenatal detection of congenital
bilateral cataract leading to the diagnosis of Nance-Horan
syndrome in the extended family. Prenat Diagn 2007;
27:662-4. [PMID: 17451191]

Molecular Vision 2008; 14:1856-1864 <http://www.molvis.org/molvis/v14/a220> © 2008 Molecular Vision

The print version of this article was created on 13 October 2008. This reflects all typographical corrections and errata to the
article through that date. Details of any changes may be found in the online version of the article.

1864

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=4470901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=4470901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=14564667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1969135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=3868768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=2246772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6467651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6467651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15466011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15623749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15623749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16736028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17417607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16675532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16357105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16357105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17451191
http://www.molvis.org/molvis/v14/a220

