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Abstract

Central corneal thickness (CCT), one of the most highly heritable human traits (h2 typically.0.9), is important for the
diagnosis of glaucoma and a potential risk factor for glaucoma susceptibility. We conducted genome-wide association
studies in five cohorts from Australia and the United Kingdom (total N = 5058). Three cohorts were based on individually
genotyped twin collections, with the remaining two cohorts genotyped on pooled samples from singletons with extreme
trait values. The pooled sample findings were validated by individual genotyping the pooled samples together with
additional samples also within extreme quantiles. We describe methods for efficient combined analysis of the results from
these different study designs. We have identified and replicated quantitative trait loci on chromosomes 13 and 16 for
association with CCT. The locus on chromosome 13 (nearest gene FOXO1) had an overall meta-analysis p-value for all the
individually genotyped samples of 4.6610210. The locus on chromosome 16 was associated with CCT with p = 8.95610211.
The nearest gene to the associated chromosome 16 SNPs was ZNF469, a locus recently implicated in Brittle Cornea
Syndrome (BCS), a very rare disorder characterized by abnormal thin corneas. Our findings suggest that in addition to rare
variants in ZNF469 underlying CCT variation in BCS patients, more common variants near this gene may contribute to CCT
variation in the general population.
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Introduction

Glaucoma is one of the leading causes of irreversible blindness

worldwide. It is estimated that by 2010, approximately 60.5

million people globally will be affected by this condition [1]. It is

characterized by a progressive loss of retinal ganglion cells which

will lead to visual field damage. The most common form is open-

angle glaucoma (OAG), an adult-onset condition that generally

affects people over the age of 40. Whilst several well-established

risk factors including high intra-ocular pressure, ethnicity,

increasing age and positive family history have been identified

for OAG, recent evidence indicates that a decreased CCT is also a

major risk factor. Numerous studies have shown that people with a

thin cornea have a substantially increased risk of developing OAG

and its associated visual loss [2–4]. It is conceivable from these

data that there may be common genes in the pathways of both

CCT and OAG [5]. Therefore, CCT is considered a useful

quantitative trait for further dissecting the genetic aetiology of

OAG. CCT is also an important measure in determining a

person’s suitability for laser refractive surgery to correct myopia

and it may be abnormal in a range of corneal diseases such as

corneal dystrophies, keratoconus and herpes simplex keratitis.

CCT is one of the most heritable human traits; the estimated

heritability from existing studies is up to 0.95 [5]. Despite the

strong evidence for a genetic background, the genetic architecture

of corneal thickness remains unknown. Some candidate gene

analyses have been conducted to assess the contribution of

particular genes to this trait. For example, the candidates COL1A1

and COL1A2 encoding type I alpha collagens were determined

based on the extreme CCT values observed in the connective

tissue disorder osteogenesis imperfecta (OI) [6,7] as explored by

Dimasi et al [8]. Other possible candidates are the type V collagen

genes COL5A1and COL5A2 involved in Ehlers-Danlos syndrome

(EDS) [9], fibrillin-1 gene (FBN1) responsible for Marfan syndrome

[10], PAX6 associated with aniridia [11] and FOXC1 associated

with abnormal ocular development [12]. Candidate gene analyses

for normal CCT variation have been focused on the already

known associations of disease genes with abnormal CCT;

Genome–wide association (GWA) studies, on the other hand,

can identify new genetic relationships without bias to known

biology or disease associations of annotated well studied genes.

We carried out a multi-stage study on a panel of over 5,000

individuals in order to detect the genetic variation for CCT. In the

first stage, we conducted GWA studies on the two twin cohorts

from Australia and the UK separately. The first stage meta-

analysis on the twin cohorts uncovered several promising

chromosomal regions associated with CCT. We conducted an-

other set of GWA studies on two population-based cohorts

utilizing sample pooling techniques prior to genotyping (pool

genotyping design) and developed a new analytical technique that

allows comparison of the results from the different study designs.

The findings were further validated by individually genotyping an

extended cohort (pooled samples plus additional samples with

extreme CCT values). Sample size of each study population and

schematic of the study design can be found in Table S1 and Figure

S1 respectively.

Results

GWA results from twin cohorts
CCT values in both twin cohorts are normally distributed with a

mean of 544.3mm (635.0mm) in the combined Australian (AU)

twin cohort, and a mean of 545.8mm (634.0 mm) in the UK twin

cohort (Table 1). We report the results for standardized trait values

– for effect sizes on the original scale, simply multiply by the trait

standard deviation. We found weak association signals with the

smallest p-values on the scales of 1026 from the combined AU

twin cohort alone, as was expected from the Q-Q plot (Figure S2).

Except for one SNP suggesting a strong association signal (p-value

of 2.9610208), the UK cohort was found mainly with weak

associations (Figure S3). This may be due to the relatively small

sample size of a single dataset, so we performed a first-stage meta-

analysis on both twin cohorts as the Discovery sample. A common

set of 524,813 SNPs was left after merging the datasets, among

which 0.4% SNPs were further excluded because of ambiguous

(A/T, C/G) polymorphism types at these loci. Furthermore, the

effects and allele frequencies estimated from the UK samples were

altered to have the same reference alleles as in the combined AU

twin samples. The association signals were clearly enhanced in the

meta-analysis. The meta-analysis results can be visualized by a

Manhattan plot in Figure S4, and the top 5 SNPs with p-values

from the association tests lower or around 161027 are listed in

Table 2.

The results from meta-analysis of the twin cohorts revealed the

most significant association around 86.86 Mb (build 36.3) on

chromosome 16. The genotyped SNP rs12447690 had a strong

genome-wide significant p-value of 1.67610209, with the stronger

signal from the UK samples (Table 2). The fourth SNP in Table 2,

rs9938149 is the top SNP in the imputation set (Figure 1).

Table 1. Descriptive statistics for central corneal thickness
(CCT) in the three twin cohorts.

AU twin cohort UK twin cohort

Number of subjects 1714 1759

Number of families 786 1119

Mean age (sd) 21.4 (12.6) 54 (12)

Range of age [5, 90] [16, 82]

Sex (% Female) 56% 88.9%

Mean CCT 544.3 545.8

Standard deviation 35.0 34.0

Range of mean CCT [381.5, 679.5] [369, 657.5]

Data presented as a combined Australian (AU) twin cohort and a United
Kingdom (UK) twin cohort. CCT is measured in mm. The CCT values are the mean
CCT for both eyes (Materials and Methods). Full details of the AU and UK twin
cohorts are given in Mackey et al [19] and Healey et al [20], respectively.
doi:10.1371/journal.pgen.1000947.t001

Author Summary

Central corneal thickness (CCT) is an important eye
measurement. It has been considered as a prognosticator
for the development of glaucoma, with a thin cornea
potentially increasing the risk of developing a subtype
known as open-angle glaucoma. CCT is highly heritable,
yet its genetic determinants are poorly characterized. We
have revealed two loci near gene FOXO1 and ZNF469
associated with CCT in this multi-stage genome-wide
association study examining over 5,000 samples. It is of
particular interest that, while rare mutations in ZNF469
cause Brittle Cornea Syndrome, more common variants
near this gene also contribute to CCT variation in the
general population. Furthermore, given the relation
between CCT and glaucoma, results from our CCT studies
will implement the search for the disease-susceptibility
genes of glaucoma.

ZNF469 Influences Corneal Thickness
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rs9938149 is 33.5 kb away from rs12447690, and they are in high

linkage disequilibrium (LD) with r2 of 0.748. A few other imputed

SNPs within 20 kb of the top SNP show strong association signals

because of high LD in this region. The nearest gene is ZNF469 on

chromosome 16q24, 108 kb away from the top imputed SNPs. It

is a small gene with a span of 42 kb (86,997K.87,039K, build

36.3). As shown in Figure 1, there is evidence for recombination

between the associated SNPs and the putative gene ZNF469. This

gene encodes a zinc-finger protein. Rare mutations in this gene

cause Brittle Cornea Syndrome (BCS), a recessive disorder

characterized by a thin cornea leading to progressive visual loss

and blindness [13].

Another associated SNP in Table 2, rs2755237 (p =

1.57610207) is 20 kb from the 39 end of the gene FOXO1 on

chromosome 13q14.1. It remained as the strongest signal in the

imputation set (Figure 2). Two other SNPs approximately 1 kb

away, rs2721051 and rs2755238, were masked by the top SNP in

the plot. They are in high LD with rs2755237 (r2 of 0.736). The

gene FOXO1 belongs to the forkhead family of transcription

factors, the same family as the candidate gene FOXC1 (6q25) that

Table 2. Directly genotyped variants on meta-analysis of twin cohorts associated with central corneal thickness (CCT).

Marker Chr
Coordinate
(build36)

Nearest
gene Allelesa

AU
Effect (SE) AU P

UK
Effect (SE) UK P

Weighted
Effect (SE) Meta-analysis P

rs12447690 16 86855625 ZNF469 T/C 0.122 0.04 3.66e-3 0.209 0.04 2.87e-8 0.170 0.03 1.67e-9

rs1006368 10 126336593 FAM53B A/G 0.220 0.06 2.82e-4 0.225 0.06 4.23e-5 0.223 0.04 4.94e-8

rs11245330 10 126370382 FAM53B A/G 0.220 0.06 2.87e-4 0.225 0.06 3.97e-5 0.223 0.04 4.94e-8

rs9938149 16 86889141 ZNF469 A/C 0.125 0.04 2.59e-3 0.210 0.05 5.32e-6 0.163 0.03 1.08e-7

rs2755237 13 40007429 FOXO1 A/C 0.200 0.06 3.24e-4 0.240 0.06 1.29e-4 0.217 0.04 1.57e-7

Top five SNPs associated with CCT in twin cohorts.
aThe first letter listed in the column Alleles is the reference allele for the corresponding SNP, e.g., T is the reference allele for SNP rs12447690.
doi:10.1371/journal.pgen.1000947.t002

Figure 1. Significant association of central corneal thickness on chromosome 16 from the meta-analysis of the AU and UK twin
cohorts. The top SNP rs9938149 had a p-value of 2.54610210 in the imputation set. The degree of linkage disequilibrium (LD) between rs9938149
and other SNPs is indicated by red shading. The recombination rate is displayed as a light blue line, with scale on the right hand axis. This imputed
SNP is about 108 kb away from gene ZNF469 (16q24, build 36.3), and there is evidence for recombination in the intervening region.
doi:10.1371/journal.pgen.1000947.g001

ZNF469 Influences Corneal Thickness
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was previously associated with early onset glaucoma (see

Introduction).

The two remaining SNPs in Table 2 were found in the same

region around 126,300K to126,400 K on chromosome 10. The

SNPs rs1006368 and rs11245330 within the gene FAM53B

(10q26.13), are 35kb apart and in complete LD (r2 of 1). They

had the same meta-analysis p-value from the twin cohorts of

4.94610208. An imputed SNP rs4962399 also in this gene

improved the p-value to 2.8610209 (Figure S5). Several other

SNPs with a similar level of significance spread over this region

also because of high LD. FAM53B was reported as related to the

hypothetical protein LOC9679 in Reference Sequence database

(RefSeq, NCBI).

GWA results from population-based cohorts
As demonstrated above, evidence for association with CCT at

loci on chromosomes 16, 13 and 10, was found in the Discovery

sample of the meta-analyzed twin cohorts. As the replication, we

conducted another GWA study on the population-based cohorts

using pool genotyping design and validated the findings by

individually genotyping the extended cohort (pooled samples plus

extra samples with extreme phenotypes). Descriptive statistics of

the two population-based cohorts are provided in Table 3. With

the advantage of time and cost efficiency, pool genotyping design

provided an expedient examination of the top variants from the

results in the twin cohorts. We compared the allelic effect

estimated from each cohort as shown in Figure 3. In order to

reveal the association signals more clearly, we also performed a

meta-analysis based on the two sets of GWA results from the twin

samples and the population-based samples (results shown in Table

S2, Manhattan plot in Figure S6).

The most significant SNP rs12447690 from the twin cohorts

had smaller effect sizes estimated from the pooled samples

(Figure 3). Similar results were found in the other SNP

rs9938149 in the ZNF469 region (33.5kb away from the most

Figure 2. Association with CCT for variants on chromosome 13 from the meta-analysis of the AU and UK twin cohorts. The genotyped
variant rs2755237 remained as the top SNP in the imputation set. It is about 20 kb from 39 end of gene FOXO1 (13q14.1, build 36.3). The degree of
linkage disequilibrium between rs2755237 and other SNPs is indicated by red shading. The recombination rate is displayed as a light blue line, with
scale on the right hand axis.
doi:10.1371/journal.pgen.1000947.g002

Table 3. Descriptive statistics for central corneal thickness
(CCT) in the two Australian pooled samples.

Blue Mountains
DNA pool

Adelaide Blood
pool

Size of thin CCT group 143 106

Mean CCT (sd) in the case pool 495.52 (12.2) 488.1 (17.9)

Size of thick CCT group 146 105

Mean CCT (sd) in the control pool 584.83 (13.6) 600.1 (21.9)

Mean Age (years) 73.95 70.76

Sex (% Female) 57.3% 55. 5%

CCT is measured in mm. DNA or Blood samples from the thin CCT group were
constructed as the case pool, and samples from the thick group as the control
pool.
doi:10.1371/journal.pgen.1000947.t003

ZNF469 Influences Corneal Thickness
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associated SNP rs12447690). Although there was an overall

genome-wide significant p-value for rs12447690 in the meta-

analysis with twin cohorts (Table S2), the results from pooled

samples alone did not show a clear replication for the SNPs near

ZNF469. However, when we added the additional samples to the

pooled samples, the individual genotyping results did show

evidence for replication (p = 0.014) in the extended cohort

(pooled+extra samples). The meta-analysis based on all the

individually genotyped samples yielded an overall p-value of

8.95610211 for the SNP rs12447690. The final results summa-

rizing the findings from all the individually genotyped samples are

presented in Table 4.

In both DNA and blood pooled samples, SNP rs2755237 near

FOXO1 showed estimated allelic effects similar to the results from

the twin cohorts (Figure 3). The other SNP rs2721051 in high LD

with rs2755237 had a similar result (Table S2). This demonstrated

Figure 3. Comparison of the allelic effects estimated from the four cohorts. The four cohorts in comparison are the combined Australian
twin cohorts (AU), the UK twin cohort (UK), the Blue Mountains population-based cohort in DNA pooling design (DNA), and the Adelaide population-
based cohort in Blood pooling design (BLOOD). The mean allelic effect from each cohort is marked as red dot, with standard errors marked as bars.
The overall meta-analysis p-value based on all the cohorts is shown under the x-axis label for each sub-figure. These SNPs are the most significant
variants found in the meta-analysis of twin cohorts. The estimated effects from pooled samples of rs12447690 and rs9938149 around ZNF469 region,
were smaller than the effects in the twin cohorts. rs2755237 near FOXO1 replicated well in pooled samples, with similar effects shown in all the
cohorts. Two SNPs within gene FAM53B had an opposite direction of the effects found in the Blood pools.
doi:10.1371/journal.pgen.1000947.g003

ZNF469 Influences Corneal Thickness
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a clear replication of these two variants from the pooled samples.

The individual genotyped results on the extended cohort displayed

the same pattern and obtained significances for both SNPs

(Table 4). Due to the smaller pool sizes, the estimated allelic effects

from the pooled samples have relatively larger standard errors and

hence neither pool considered separately showed a significant

(P,0.05) association (Table S2). In the overall meta-analysis,

rs2721051 and rs2755237 obtained p-values of 4.6610210 and

7.02610209 respectively (Table 4).

The SNPs from the chromosome 10 region associated with

CCT in the discovery sample had similar estimated effects in the

first (DNA) pool. However effects in the opposite direction (e.g.

negative effect for the same reference allele compared to positive

effects in other samples) were observed in the second (blood) pool

sample, indicating a possible false positive association with CCT

(Figure 3).

Another interesting result arising from the meta-analysis of twin

cohorts and the pooled samples is the SNP rs7044529, which is

within the gene COL5A1 (9q34.2–q34.3). As outlined in the

introduction, the type V collagen gene COL5A1 is a strong

candidate for CCT, given the phenotypic association between the

connective tissue disorder EDS and abnormal CCT values.

Extremely thin corneas are common findings in EDS [9]. The

estimated allelic effects for rs7044529 were similar in all the

samples, with a weighted effect of 20.15. This SNP has a

moderate overall p-value of 9.3610206 (Table S2).

Discussion

CCT is an important clinical measurement of human eyes.

Recent studies have highlighted CCT as a prognosticator for the

development of glaucoma, one of the leading causes of irreversible

blindness worldwide, with a thin CCT potentially increasing the

risk of developing a subtype known as open-angle glaucoma

(OAG) [2–4]. The genetic aetiology of OAG is not well

understood, with only one major gene myocilin identified [14].

Given that OAG has a complex molecular aetiology, the

breakdown of the dichotomous trait (i.e., ‘‘affected’’ or ‘‘unaffect-

ed’’ status) into its quantitative measurement will aid in the search

for disease-susceptibility genes. It is therefore of highly clinical

significance to explore the genetic factors that contribute to CCT

variation. Thus, we conducted a multi-stage study on over 5,000

samples with the purpose of detecting the genetic variants for the

human CCT. We conducted GWA studies on the discovery

sample of the two twin cohorts from Australia and the UK.

Another set of GWA studies were performed on the two

population-based cohorts in pool genotyping design and the

results were further validated by individual genotyping the

extended cohort (pooled samples plus additional samples with

extreme phenotypes).

We have identified a novel locus near FOXO1 (overall p-value of

4.6610210 for SNP rs2721051), which accounts for ,1.2%

variation in normal human CCT. FOXO1, located at 13q14.1 is a

111kb gene belonging to the forkhead family of transcription

factors and characterized by a distinct forkhead domain. Whilst

the specific functions of this gene are unknown, it may play a role

in myogenic growth and differentiation (RefSeq, NCBI). Trans-

location of this gene with PAX3 has been associated with alveolar

rhabdomyosarcoma (RefSeq, NCBI). A recent study by Berry et

al. reported that the transcription factor gene FOXC1 (6p25)

regulates the expression of FOXO1 and binds to a conserved

element in the FOXO1 promoter [15]. FOXC1 is a major

transcription factor involved in the development of the anterior

segment of the eye, which is involved in both anterior segment

dysgenesis and congenital glaucoma phenotypes [16].

In the twin cohorts we obtained genome-wide significant

association for the genotyped SNPs rs12447690 (p =

1.67610209) and rs9938149 (p = 1.08610207), ,140kb and

,108kb respectively from the gene ZNF469 (16q24). By

individually genotyping the population-based samples with

extreme CCT values, we showed that rs12447690 was well

replicated with an overall p-value of 8.95610211, accounting for

1.29% of the variation in CCT. ZNF469 was recently implicated

in a study of the rare disorder BCS [13]. Abu et al. showed that

rare sequence variants in ZNF469 segregated with BCS. The SNPs

we report near ZNF469 have high MAFs – for example

rs12447690 has MAF 0.44 in HapMap CEU samples, with a

similar value in the cohorts presented here. Given the recombi-

nation hotspot (Figure 1) and the large difference in allele

frequency between such variants and the rare variants identified

by Abu et al., our findings are unlikely to be explained by linkage

disequilibrium (LD) between the rare and common variants (the r2

parameter cannot be high between such polymorphisms). At the

16q24 locus there are four putative genes nearer to rs12447690

than ZNF469. However, in each case the putative genes are poorly

characterized with only a hypothetical protein role.

Interestingly, one of the clinical features of BCS patients is

hyperlaxity of the joints [13]. A small part of the AU twin cohort

overlaps with samples from a pelvic floor study by Hansell et al

[17], which included measurements of joint mobility [18] (Figure

S7). Based on a small sample size of 102 individuals, CCT was

inversely correlated (Pearson correlation 20.221, P = 0.02583)

with thumb bending degree, but was uncorrelated with the other

two measurements of joint mobility (Figure S7). To minimize

multiple testing, we only tested for association of the thumb

bending measure of joint mobility, and focused on 31 SNPs in the

ZNF469 region of interest. Despite the limited power in this study,

2 SNPs rs7198446 and rs7500421 in the underlying region were

nominally associated with thumb bending degree, with p-values of

Table 4. Association results for the three SNPs individually genotyped on all samples.

Marker Chr
Coordinate
(build36)

Nearest
gene Allelesa

Meta-analyzed Twin
cohorts

Extended cohort (pool
samples plus extra
samples) Overall Meta-analysis

Effect (SE) P Effect (SE) P Weighted Effect (SE) P

rs12447690 16 86855625 ZNF469 T/C 0.170 0.03 1.67e-9 0.140 0.06 0.014 0.162 0.03 8.95e-11

rs2721051 13 40008884 FOXO1 A/G 20.221 0.04 4.87e-7 20.303 0.08 2.7e-4 20.240 0.04 4.60e-10

rs2755237 13 40007429 FOXO1 A/C 0.217 0.04 1.57e-7 0.175 0.07 0.013 0.206 0.04 7.02e-9

aThe first letter listed in the column Alleles is the reference allele for the corresponding SNP.
doi:10.1371/journal.pgen.1000947.t004

ZNF469 Influences Corneal Thickness
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0.0298 and 0.0471 respectively (Figure S8). These SNPs are

halfway (,60kb to both sides) between the top SNPs on

chromosome16 found in the CCT study and the gene ZNF469.

We also checked the associations of these variants with CCT in

this sample, but none of them was significant.

We have demonstrated a flexible approach to GWA studies

using different designs. By taking into account of the thresholds

used to determine high and low pools for the quantitative trait

(together with population allele frequencies), we mapped the

estimates of the differences in pooling allele frequency between

high and low pools to the effect sizes on additive scale of the

quantitative trait.

In summary, we identified a novel QTL for CCT near gene

FOXO1 (13q14.1) with p = 4.60610210. Common variants near

ZNF469 (16q24) were found in this study as associated with CCT

with p = 8.95610211. Our findings suggest that in addition to rare

variants in ZNF469 underlying CCT variation in BCS patients,

more common variants near this gene may contribute to CCT

variation in the general population.

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

human ethics committee of the University of Tasmania, Royal

Victorian Eye and Ear Hospital, Queensland Institute of Medical

Research and the Flinders Medical Centre. Informed consent was

obtained from parents with the child’s assent or from adult

participants before testing.

Twin cohorts
Three twin cohorts were recruited from Australia and the UK.

The AU twin cohort consisted of two sub-samples, 953 individuals

from the Brisbane Adolescent Twin Study (BATS) and 761

individuals from the Twin Eye Study in Tasmania (TEST),

making up a whole cohort of 1714 participants from 786 families.

A full description of the AU twin cohorts is given in Mackey et al

[19]. Twins from the UK were a sub-sample from the cohorts

collected at St Thomas’ Hospital in London. 1759 people from

1119 families were included in this study. Nearly 90% of the UK

samples are adult women. Details of the UK twin cohort are given

in Healey et al [20]. CCT was measured in the twin cohorts using

ultrasound pachymetry and recorded for both eyes. Measurements

were performed using a Tomey SP 2000 (Tomey Corp., Nagoya,

Japan) or a DGH Technology (model 500; Scarsdale, NY)

pachymeter in the Australian and UK twin cohorts respectively.

Twin pairs were measured at the same time of day to avoid bias

related to diurnal variation. With little evidence for a significant

difference between the left and right eyes (ANOVA p-val-

ue = 0.575), the mean CCT value of both eyes was used

throughout as our measurement.

In the AU twin cohorts, DNA samples extracted from each

person were hybridized to the Illumina HumanHap 610W Quad

arrays, with the samples from BATS genotyped by deCODE

Genetics and the ones from TEST genotyped by the Center for

Inherited Disease Research (CIDR). We scrutinized the genotypic

data (SNPs) and screened them according to a series of quality

control criteria, including minor allele frequency (MAF)$1%, p-

value for Hardy-Weinberg equilibrium test$1026, SNP call

rate.95% or Illumina Beadstudio GenCall score$0.7. After

cleaning, 530,656 SNPs were left for association testing in AU twin

cohorts. The UK samples were partly genotyped on the Illumina

Hap610W arrays at CIDR, and partly genotyped on Illumina

HumHap 300K Duo arrays at Wellcome Trust Sanger Institute.

Slightly different quality control criteria compared with the AU

twin study were applied: MAF$1%, p-value for Hardy-Weinberg

equilibrium test$1024 and SNP call rate.95%, resulting in a

complete set of 548,001 SNPs for the association tests.

We screened the genotypic data for ancestral outliers using

principal component analysis [21]. By comparing AU twin data

with 16 global populations sourced from HapMap Phase 3 and

Northern European sub-populations from a previous study by

McEvoy [22], 2% of the samples were excluded for being

identified as ancestral outliers; thus giving us greater confidence in

the homogeneity of the study sample (Figure S2). UK twin samples

were also screened for genetic outliers by comparison with the

reference of three main populations from HapMap Phase 2. The

Q-Q plot (Figure S3) clearly shows the homogeneity of the UK

panel except for one data point. The discrepancy between the

observed and expected statistics for this variant suggests a potential

association signal.

Higher density markers on autosomes were also available from

imputation. We imputed data using MACH for the AU samples

based on a set of 469,117 SNPs which were common to the six

Illumina 610K subsamples at QIMR. The imputation for the UK

samples were undertaken with reference to HapMap release 22

CEU using IMPUTE version 2 [23]. Each of the imputed datasets

contains up to 2.4 million SNPs.

Both AU and UK twin cohorts in our study consist of either

twin pairs or their close relatives (parents, siblings) in the family.

Samples within the family are genetically related, sharing the

chromosomal regions of identity-by-descent (IBD). In those

regions, the related samples will provide the similar genetic

information. Failing to estimate the IBD states will result in an

increased false-positive rate in the association tests. To avoid this

problem, we conducted the association test (–fastassoc) in

MERLIN [24]. It incorporated genetic relatedness between the

samples by estimating the IBD prior to the association tests. The

AU samples were controlled for both age and gender effects, whilst

the predominantly female UK samples were only controlled for

age effects. We standardized the trait distribution of CCT to

increase the inter-sample compatibility as well as robustness to

extreme observations.

Population-based cohorts
Two population-based cohorts were studied in the case-control

pool design. We measured and recorded CCT for both cohorts in

the same way as in the Australian twin cohorts.

The first cohort utilized was the Blue Mountains Eye Study

(BMES). This population-based study, designed to investigate the

genetics and epidemiology of ocular disease, recruited 3654

individuals living in a defined geographical region in the Blue

Mountains (west of Sydney, Australia). Both DNA and CCT

measurements were available for 953 individuals. Jawaid et al

showed that the optimal fraction for quantitative trait locus (QTL)

mapping using pooled DNA samples was 20% [25]. Thus in this

study, DNA samples extracted from the individuals among the

thick CCT group (upper 20% of the CCT distribution) were

constructed as a control pool, whereas DNA samples from the thin

group (lower 20% of the distribution) as a case pool. This resulted

in 190 individuals in each tail although in practice sufficient DNA

was only available for 143 individuals in the thin pool and 146

individuals in the thick pool. The drop-out due to insufficient

DNA was random with respect to phenotype, suggesting we were

effectively sampling the extremes from a total sample size of

,145/190 * 953 = 727. Concentration of DNA samples were

carefully adjusted by serial dilutions and quantified using Pico-

ZNF469 Influences Corneal Thickness

PLoS Genetics | www.plosgenetics.org 7 May 2010 | Volume 6 | Issue 5 | e1000947



Green (InVitrogen), to ensure the equal quantity of DNA

contributed by individual samples. Pooled DNA was genotyped

on Illumina Human 1M-Duo V3 arrays at Queensland Institute of

Medical Research (QIMR, Brisbane, Australia) in triplicate.

The second cohort, based on a blood pooling design [26] was

collected from Adelaide, Australia. This study consisted of 530

unrelated individuals in total, with 106 individuals in the thin

CCT group (covers 20% lower tail of the underlying CCT

distribution) and 105 individuals in the thick CCT group (covers

20% upper tail). The CCT values for the middle group were not

recorded. Equal quantity (100 mL) of whole blood was aliquoted

shortly after venesection from each individual. This aliquot was

stored at 4uC then lysed immediately prior to pooling. A single

DNA extraction was then performed on each blood pool using

QIAmp maxi kit (Qiagen). Each blood pool was genotyped on

Illumina Human 1M-Duo V3 arrays at QIMR, with four

replications.

The output of the raw red and green bead scores from the

genotyping stage was available for the pooled data analysis. We

applied the same data processing protocol to both cohorts, similar

to the method described in the supplementary methods in Brown

et al [27]. Before calibrating the raw scores, a number of SNPs

with more than 10% negative scores on each array were excluded,

as well as the SNPs with the sum of mean red and green scores

across each array smaller than 1200. This step was included to

ensure that the calibration was done on a pre-cleaned dataset. A

normalization/correction factor (corr) was calculated by forcing the

mean value of the pooling allele frequency to be 0.5 over all SNPs

on each stripe (Illumina Human 1M-Duo V3 array has 6 stripes

on a single array). The pooling allele frequency (PAF) was then

estimated based on the raw red intensities and the corrected green

intensities for all the SNPs (PAF = red/(red+green/corr)).

A final set of autosomal SNPs met the following criteria: more

than 5 probes in each pool; with a MAF greater than 1%;

without a significant variance difference between case and

control pools (i.e., the log10 transformed p-values from an F test

on the ratio of case control pool variances were smaller than 6),

was taken forward to a linear regression model [28]. The

underlying idea was to regress the pooling allele frequency on

the case/control status for each SNP and estimate the pooling

error across all the SNPs (for more details see MacGregor et al

[28,29]). The p-value from comparing the test statistic in the

MacGregor paper (T2-x) to x2
(1) distribution was computed to

assess the significance of allele frequency difference between the

two pools (d).

Individual SNPs of interest were genotyped in most individuals

included in the DNA and blood pools as well as additional 102

samples (72 samples from BMES population and 30 samples from

Adelaide population) belonging to the extreme quantiles of the

CCT distribution but not available for pooling. SNPs were

genotyped using iPLEX GOLD chemistry (Sequenom) on an

Autoflex Mass Spectrometer (Sequenom) at the Australia Genome

Research Facility (Brisbane, Australia).

Method to compare association results in different
designs

Since the pooling design dichotomizes the quantitative trait of

CCT as a binary trait (case/control status), results from the

pooling cohorts are not comparable with those from the twin

cohorts. An alternative way of enabling such comparison is to

transform the case/control frequency difference (d) to be the allelic

effect (b), given information on the allele frequency (p) and the

upper/lower threshold cutting up both tails (TU/TL). Following

the notions in Jawaid et al [25], the expected allele frequencies in

the two pools are

E pUð Þ~

N 1{W
TU{mA1A1

sR

� �� �
P A1A1ð Þz 1

2
1{W

TU{mA1A2

sR

� �� �
P(A1A2)

� �

N
P

G 1{W
TU{mG

sR

� �� �
P Gð Þ

E pLð Þ~

N W
TL{mA1A1

sR

� �� �
P A1A1ð Þz1

2
W

TL{mA1A2

sR

� �� �
P A1A2ð Þ

� �

N
P

G W
TL{mG

sR

� �� �
P Gð Þ

,

where N is the sample size; W is the density function of standard

normal distribution; TU and TL are the upper and lower

thresholds; P(G) is the genotypic frequency; mG stands for the

mean trait value for the corresponding genotype; s2
R~1{s2

Q,

assume no dominance effects for the QTL, then s2
R~1{2pqb2 is

the trait variance for each genotype. Thus the case control

frequency difference between the two pools is d~E pUð Þ{E pLð Þ.
It demonstrates the relation between the case control frequency

difference (d) in a pooling design and the allelic effect (b) in a

conventional design, given the allele frequency (p) and the upper/

lower threshold (TU/TL). Based on the inverse function of d, the

allelic effect can be obtained from the estimated frequency

difference of the case control pools.

As described earlier, the lower threshold in this study is the 20%

quantile of the standard normal distribution and the 80% quantile

for the upper threshold. The allele frequencies estimated from the

combined AU twin cohort were fitted as the allele frequency

parameter, p in this context.

We also applied the association mapping method for selective

genotyping design in Huang and Lin [30] to the combined cohort

with extreme CCT phenotypes (pooled samples plus extra samples

which were individually genotyped for a small number of SNPs).

Our settings fit in the second design in their paper, namely, a

random sample of n individuals whose trait values fall into certain

regions is selected for genotyping and the trait values are retained

for only those individuals. Therefore, we utilized the conditional

likelihood described in the paper to obtain the unbiased estimator

of the effect size and its standard deviation.

Meta-analysis method
As mentioned above, the mean CCT values were measured

and standardized in the same way for all the five cohorts. Since

each of the sample size with all the Caucasian samples was

sufficiently large, the distributions of CCT values in all the

cohorts were good approximations of CCT distribution for

Caucasian population found in clinical studies, normal distribu-

tion with mean ,540mm [31] (Figure S9). These compatibilities

ensured the comparison of the results from two or more cohorts

in a single meta-analysis. It will considerably enlarge the overall

sample size and increase the power to identify associations. A test

statistic for the meta-analysis,

T~

P
i bSiwSi

� �2

P
i wSi

,

with b as the allelic effect from sample Si and the weight w as its
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inverse variance, is expected to be distributed as a chi-square with

1 degree of freedom. This test assessing the significance of the

weighted effect size with respect to its combined variance, has the

advantage of taking into account the direction of the allelic effect.

Therefore, the reference alleles from all the samples were

required to be coordinated before the meta-analysis. In our

study, a small proportion (,1%) of SNPs with the ambiguous

polymorphism types (A/T, C/G) were excluded prior to our

main analyses.

Supporting Information

Figure S1 Schematic of the study design. The whole study is

divided into three phases. Phase I, we conducted genome-wide

association (GWA) studies on the two twin cohorts from

Australia (T1) and the UK (T2) separately. The first stage

meta-analysis on the twin cohorts uncovered three chromo-

somal regions showing evidence for association with CCT.

Phase II, we conducted another set of GWA studies on the two

population-based cohorts using pool genotyping design (P1,

P2), which allowed the quick examination of the variants from

Phase I. We also performed the meta-analysis on the two sets

of GWA results (denoted by I+II). Phase III, the SNPs of

interest from Phase II were further validated by individually

genotyping the extended cohort (pooled samples P1, P2 plus

extra samples P3). The final results of three associated SNPs in

two regions were provided in an overall meta-analysis based

on all the individual genotyped samples (denoted by I+III).

For sample information, refer to Materials and Methods and

Table S1.

Found at: doi:10.1371/journal.pgen.1000947.s001 (0.43 MB TIF)

Figure S2 Q-Q plot for the Australian (AU) twin cohort. The

general concordance between the observed and the expected chi-

square statistics indicates the homogeneity of the samples. The top

data points within the shade zone (confidence interval) shows no

evidence for strong association in the AU data alone.

Found at: doi:10.1371/journal.pgen.1000947.s002 (0.16 MB TIF)

Figure S3 Q-Q plot for the UK twin cohort. Nearly all the data

points are within the shade zone (confidence interval) except the

top one suggesting a potential strong association signal.

Found at: doi:10.1371/journal.pgen.1000947.s003 (0.17 MB TIF)

Figure S4 Manhattan plot for the meta-analysis of GWA results

from both twin samples.

Found at: doi:10.1371/journal.pgen.1000947.s004 (0.15 MB TIF)

Figure S5 Association of central corneal thickness with variants

on chromosome 10 from the meta-analysis of the AU and UK

twin cohorts. The top imputed SNP rs4962399 was within the

gene FAM53B (10q26.13). Several SNPs spread over this region

(around 126,300K to 126,500K) with similar significance levels

were due to high LD, which is indicated by red shading. The

recombination rate is displayed as a light blue line, with its scale on

the right hand axis.

Found at: doi:10.1371/journal.pgen.1000947.s005 (0.25 MB TIF)

Figure S6 Manhattan plot for the meta-analysis of GWA results

from the twin samples and the pooled samples.

Found at: doi:10.1371/journal.pgen.1000947.s006 (0.15 MB TIF)

Figure S7 Three measurements of joint mobility described in

Simpson [18]. In this study, the measurements were recorded as

follows, and the phenotypic data were analyzed as a quantitative

trait in a scale by degree: (A) The degree of apposition of the

thumb to the flexor aspect of the forearm; (B) The degree of

passive dorsiflexion of the metacarpophalangeal joint; (C) The

degree of hyperextension of the elbow.

Found at: doi:10.1371/journal.pgen.1000947.s007 (0.92 MB

TIF)

Figure S8 Nominally significant variants for the phenotype of

thumb bending degree. The significant variants were found in

the ZNF469 region given a small sample size (n = 102). The

SNPs rs7198446 (p = 0.02977) and rs7500421 (p = 0.0471) were

in linkage disequilibrium (r2) of 0.17. These SNPs were in

between (,60kb to both sides) the top SNPs on chr16 from

central corneal thickness study and the gene ZNF469.

Found at: doi:10.1371/journal.pgen.1000947.s008 (0.23 MB

TIF)

Figure S9 Distributions of central corneal thickness. The

central corneal thickness (CCT) distributions were presented for

three cohorts: the combined Australian twin cohort (AUtwin),

the UK twin cohort (UKtwin), the Blue Mountains population-

based cohort in DNA pooling design (samples in DNA pool).

Since the samples with non-extreme CCT values in Blood

pooling design were not recorded, its distribution was not

presented. However, by comparing the tails from samples in

Blood pooling design with the ones in DNA pooling design we

know that the whole distribution should be same with other

cohorts, normally distributed with mean of ,540 mm.

Found at: doi:10.1371/journal.pgen.1000947.s009 (0.25 MB TIF)

Table S1 Summary of the sample sizes of the study populations.

Found at: doi:10.1371/journal.pgen.1000947.s010 (0.01 MB PDF)

Table S2 Top genotyped variants from the association test based

on the meta-analysis of two twin samples and two pooled samples.

Found at: doi:10.1371/journal.pgen.1000947.s011 (0.03 MB PDF)
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